

A+M Data Center Activities in National Fusion Research Institute (2017~2019)

Mi-Young Song with FTR Division

Plasma Technology Research Center, National Fusion Research Institute

25th Meeting of the Data Centre Network, Vienna, Austria

CONTENTS

AMBDAS UPDATE.

STUDY OF FUNDAMENTAL PROPERTIES ABOUT MOLECULAR

SUMMARY AND FUTURE PLAN

National Fusion Research Institute

ITER DA and

Procurements

A World-class Institution in Fusion & Plasma R&D that is spear-heading the way to national energy independence while countering global climate change.

- R&Ds for Core Sciences and Technologies to achieve self-sustenance of Fusion Power Plant Technologies
- R&Ds for Spin-off **Plasma Technologies** of Fusion & Plasma Science

KSTAR Researches and Operation R&Ds for Fusion Nuclear Technologies R&Ds for Plasma Technologies

National Fusion Research Institute

NFRI [Headquarter (Daejeon)] @ Daejeon Main building with administration **KSTAR & ITER Project** Gunsan Construction : '10~'13 Area : 22,035M² [Fusion Research Center : KSTAR(Daejeon)] · KSTAR research facilities Construction : '98~'02 • Area : 22,866M² Daejeon 🔊 [Plasma Technology Research Center(Gunsan)] Gunsan **Research and administration** Construction : '09~'12 Area : building 7,535m², Land 16,500M²

Fundamental Technology Research Division

A+M Database

- DCPP Web Database System http://dcpp.nfri.re.kr
- Web content
 - Collision cross sections
 - Rate coefficient
 - Electron collision
 - Heavy particle reactions
 - numerical and bibliographic data
 - Evaluation process
- Total amount of data : 26,518 recodes.
- DCPP web database system is improved by a new system that focuses on user convenience.
- We will plan to add plasma-surface reaction data end of this year.

Site Statistics

Numerical data summary

database	recode
Chemical properties	660건
Cross section	69,371건
Rate coefficient	32,230건
Evaluation	860건
Sputtering yield	60건
International group evaluation	H2, D2,DH, CH4, C2H2, NF3,
(published)	N2O, NO, NO2
Complete set DB	C4F6/C4F8/CH2F2/O2/Ar
	HBr/Cl2/Ar, NF3/Ar

Func. Total Search

- Total Search
 - Search by species name
 - Search by specifying a specific item such as collision, surface, thermodynamic data
 - Classification of search result by process
 - Detail items
 - Chemical reaction info.
 - Graph (possible to compare the different values)
 - Numerical data
 - Article info.
 - Text type of info.
 - Xsams document download
 - Uncertainty info.

		ABOUT Global Plasma Simulator S	ABOUT Plasma Properties 🚭			
٩	 B201100833 B201100841 B201203422 87.07 	 B201100834 B201100842 B201204387 B201204442 	 B201100836 B201200064 B201205487 	201100837 ● B201100838 201201006 ● B201201294	 B201100839 B201202041 B201202041 	00840 03003
	Expression	e + Xe		THEORY / EXPERIMENT / RE COMMENDATION	Experime	ental Data
	Title	Elastic electron scattering cross sections for Xe in th n	ne 1-100 eV impact energy regio	XSAMS Doc.	Dow	nload
A	Author(s)	D. F. Register, L. Vuskovic and	S. Trajmar	수치정보	Х	Y
	Journal Name	J. Phys. B			1	1.65
	Publication Year	1986			1.75	7.3
	Volume	19			2.75	16.5
Total	Issue No	-			3.75	26
Differen	Page	pp.1685 ~ pp.1697			4.75	35.3
14	Categorize	Collision Processes			5.75	40.7
	Collision data categorize	Cross Section			9.75	40.4
	Collision process	Scattering			14.75	37.2
	Sub process	Total			19.75	35.6
	Collision type	Electron Impact			29.75	21

Func. Thermodynamic data Search

- Thermodynamic Data Search
 - search results of Structured Formula
 - Data generated by quantum chemical calculations and data created by Fitting
 - Search available : C3F2, C3F3, C3F4, CF4 (45 count)
 - Detail items
 - xyz-coordinates
 - Adiabatic Electron Affinity (AEA)
 - Vertical Electron Affinity (VEA)
 - Vertical electron Detachment Energy (VDA)
 - Vertical Ionization Potential (VIP)
 - Adiabatic Ionization Potential (AIP)
 - Polarizability
 - Thermodynamic Data (Raw)
 - Thermodynamic Data (Fitted Equation)

13

Collision Data	Surface Data	Thermodynamic Data						
cyclo-C ₃ F ₂ (7)	CCCF ₂ (7)	FCCCF(7)						
lolecular formul xyz_coordinates	la							
Molecular	Rational	Level	charge	spin state	atom	×	Y	z
C ₃ F ₂	CCCF2	wB97X-D/avtz	0.0	singlet	С	-0.000002	-2.302779	0.0000
					С	-0.000002	-1.039403	0.0000
					С	0.000000	0.280488	0.0000
					F	-1.058040	1.020566	0.0000
					F	1.058042	1.020563	0.0000
Adiabatic Electron A	ffinity (AEA) Rational	Level	AEA(eV)	difference	:(eV)	error(%)	r	iote
		BHandHLYP/avdz						
C ₃ F ₂	CCCF ₂							
C ₃ F ₂	CCCF ₂	BHandHLYP/avtz						
C ₃ F ₂	CCCF2	BHandHLYP/avtz wB97X-D/avdz						
C ₃ F ₂	CCCF ₂	BHandHLYP/avtz wB97X-D/avdz wB97X-D/avtz	1.879				Recom	mendatio

Molecular	Rational	Lavel	temperat ure(K)	Cv (J/mol K)	Cp (J/mol K)	Н° (КЈ/m ol)	H°-H°29 8.15 (KJ/ mol)	S° (J/mol K)	-(G°-H°29 8.15)/T" (J/molK)
C ₃ F ₂	CCCF ₂	wB97X-D/avtz	298.15	56.6	64.9	62.5	0.0	297.6	297.5
			298.00	56.6	64.9	62.5	0.0	297.5	297.5
			300.00	56.8	65.1	62.6	0.1	298.0	297.5
			400.00	64.8	73.1	69.5	7.1	317.8	300.2
			500.00	71.2	79.5	77.2	14.7	334.9	305.5
			600.00	76.3	84.6	85.4	22.9	349.8	311.6
			700.00	80.3	88.6	94.1	31.6	363.2	318.1
			800.00	83.5	91.8	103.1	40.6	375.2	324.5
			900.00	86.0	94.3	112.4	49.9	386.2	330.7
			1000.00	88.1	96.4	121.9	59.5	396.2	336.8
-)			1100.00	89.7	98.0	131.7	69.2	405.5	342.6
			1200.00	91.1	99.4	141.5	79.1	414.1	348.2
			1300.00	92.2	100.5	151.5	89.1	422.1	353.6
			1400.00	93.1	101.4	161.6	99.1	429.6	358.8
			1500.00	02.0	102.1	171.0	100.2	426.6	262.7

C3F2 (View details)

Func. Surface data Search

- Surface Data Search
 - Search by species name (Currently only Sputtering Yield possible)
 - Search available : Ar, Kr, Xe (45 count)
 - Other checkable items besides the basic search results
 - Sputtering coefficient (Theory only)
 - Surface critical energy (Theory only)
 - Incident particle energy
 - Incident particle angle
 - Sputtering yield numeric data
 - Sputtering yield uncertainty
 - Upcoming Items
 - sticking coefficient, adsorption coefficient, diffusion coefficient

AMBDAS Update

 Maintenance of Bibliographical Data on Collisional Processes (AMBDAS).

A	B	С	D	E	F	G	н
파일명	Title	Authors	Title of Th	Volume	Page	Year	DOI
2009							
Aas_493_687_2009	Rotational excitation	Troscon	Astronom	A&A 493	687-69	2009	10.1051
Aas_493_697_2009	Breit-Pauli R-matrix	Hudson	Astronom	A&A 493	697-71	2009	10.1051
Aas_494_729_2009	Breit-Pauli R-matri	Hudson	Astronom	A&A 494	729-73	2009	10.1051
Aas_497_911_2009	Rotational excitation	Dubern	Astronom	A&A 497	911-92	2009	10.1051
Aas_498_915_2009	CHIANTI - an aton	Dere, K.	Astronom	A&A 498	915-92	2009	10.1051
Aas_499_943_2009	R-matrix electron-i	Liang, G	Astronom	A&A 499	943-95	2009	10.1051
Aas_500_1253_2009	Electron-impact ex	Burgos,	Astronom	A&A 500	1253-1	2009	10.1051
Aas_500_1263_2009	R-matrix electron-i	Liang, G	Astronom	A&A 500	1263-1	2009	10.1051
Aas_501_619_2009	Cosmic-ray ionizat	Padova	Astronom	A&A 501	619-63	2009	10.1051
Aas_505_195_2009	Excitation and abu	Staeube	Astronom	A&A 505	195-20	2009	10.1051
Aas 506 955 2009	Ionization process	Gronoff	Astronom	A&A 506	955-96	2009	10 1051

Sort by Year: 🗹 | Abstract/Comment: 🗹 | Search Case Sensitive: 🗌 The maximal allowed number of references is 200

Exp vs Theory

Reference Type

AMBDAS ALADDIN Comments Home

v

Keywords/Patterns

Years

	Job Time	2014	20)15	2016	2017	2018	2019
Search period		2009 ~2012	2013	2014	2015	2016	2017	2018
Number of searches	2 weeks	3631	1138	1181	1150	1054	1237	1283
Filtering (1 st)	2 weeks	2993	739	814	751	844	1008	1071
Filtering(2 st)	2~3 months	2863	527	627	549	600	720	690 (334)
Expert Reviews & update	1 months		433	407	248	184	293(210)	179(178)

- First we collected articles through complex keywords.
- After that, I filtered the duplicate collection and canceled it if there was no data.
- So we got the following result

		E: Electron		
		P: Photon		
	Please indicate the format of data in the paper (Figure	H: Heavy particle	Please refer to ProcessClassific ation pdf -pages	Please find valid energy / temperature
	Table, Analytic	S: Structure/spectra	4-14	ranges
	Fit etc)	M: particle-matter		
		D: Data Compilation		
		B: Bibliography		
doi	Comments	IAEA Category	IAEA	Energy
			Process	range
	Figure	E	ETS, EEL, EX, EI	0.1 ~ 5000 eV
https://doi.org/10.1088/1361- 6455/aa640b	Table	E	EEL, EMT	6, 7, 8, 10, 12
DOI: 10.1103/PhysRevA.96.04270 3	Figure	E	EIN	0 ~360 degree
https://doi.org/10.1140/epjd/e 2017-70809-3	Figure	E	EIN	20 ~ 180 degre
https://doi.org/10.1016/j.radph yschem.2016.10.003		Р		

	2018 (2017)	2019 (2018)
Electron	115	117
Photon	14	
Heavy particle	88	40
Structure/ spectra	59	21
particle-matter		9
Data Compilation		
Bibliography		
positron	12	•
Null	5	•

Journal Statistics (TOP 5)

Monthly Notices of the Royal Astronomical Society

Study of Fundamental Properties about Atomic and Molecular

- Molecular structure, Physical and Chemical parameters
- Electron collision processes with A + M
- Plasma properties of A+M

Theoretical Measurement

Molecular structure, Physical and Chemical parameters

- The fluorocarbon molecules (FCs) have been widely used for plasma processing in the semiconductor industry for various applications.
- The plasma assisted oxide-etch technology depends on the use of FCs to achieve the required profile control and etch selectivity to mask and etch stop layers.
- A deep understanding of all possible reaction of FCs and their fragments in plasma is required to make technological progress.

Fundamental Physical Property Data

Target Compound	$C_x F_y$, $C_x F_y H_z$, $C_x F_y X_z$ (X=O, Cl, Br, I), $N_x F_y$,
Fundamental Physics Data	Kind of Data : Molecular geometry, Internal energy, Electron affinity, Ionization potential, Polarizability, Specific heat, Standard enthalpy, Standard entropy, Orbital energy, Electron binding energy, Total ionization cross-section
	Number of Data . Over 500
Chemical Reaction Data	Kind of Data : Chemical reaction path, TS geometry, Activation energy, Relative energy, Reaction rate constant
	Number of Data : Over 160
Level of Theory applied	Density Functional Theory (DFT), Binary Ecounter- Bethe (BEB) model, Transition State Theory (TST)
Calculation Program used	Gaussian09, GAMESS, Cfour, KiSTheIP(Kinetic and Statistical Thermo-dynamical Package)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Molecular Weight [kg/kmol]	Characteris (Lennard Paramet	tic Energy I-Jones ter) [K]	Collision Diameter (Lennard-Jones Parameter) [angstroms]	Polarizability [angstroms^3]	Ionization Energy [eV]	Electron Affinity [eV]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2F4 C2F4	100.015	202	2.6	5.164	6.82 (copy of C2F	5) 9.89	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C2F4+	100.015	202	2.6	5.164	6.82 (copy of C2F)	5) -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C2F5 C2F5	119.013	50	0	5	6.82 (copy of C2F	5) 12.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2F5+	119.013	50	0	5	6.82 (copy of C2F)	5) -	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2F6	138.012	194	.5	5.512	6.82	14.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F2 C3F2							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F3 C3F3	93.0273	50	0	5	6.19	10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F3+ C3F3-	93.0273 93.0273	50	0	5	6.19 6.19	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F5 C3F4							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F5 C3F5	131.043	50	0	5	6.014	10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F5+	131.043	50	0	5	6.014	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C3F6 C3F6							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C4F5	143.035	50	0	5	8.64 (copy of C4E)	7) 10.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4F5+	143.035	50	ō	5	8.64 (copy of C4F)	7) -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4F6 C4F6	162.033	50	0	5	8.64 (copy of C4F)	10.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C4F5	162.035	50			a.e+ (copy of C+P.	., -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFF7 180.269 500 5 8.64 - CAFB CAFB 200.03 500 5 7.731 12 Molecule IP (eV) a (Å ³) EA (eV) CF 9.55 ± 0.01 9.725 2.053 2.119 0.45 ± 0.05 0.524 CF2 11.445 ± 0.025 12.055 2.449 2.450 0.180 ± 0.020 0.255 CF3 10.6 11.041 2.631 2.632 1.7 ± 0.2 1.623 CF4 162 ± 0.1 15.699 2.824 2.846 - - C,F2 11.18 11.145 3.542 3.553 - 0.533 C,F2 F 11.18 11.145 3.542 3.553 - 0.533 C,F2 F 11.18 11.145 3.542 3.553 - 0.533 C,F3 - 11.201 - 3.867 2.2550 ± 0.0060 2.317 C,F3 - 11.738 - 4.127 2.	C4F7 C4F7+	180.269 180.269	50	0	5	8.64 8.64	10.6	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4F7-	180.269	50	0	5	8.64	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4F8 C4F8	200.03	50	0	5	7.731	12	
Molecule Exp. Theo. Exp. Theo. Exp. Theo. CF 9.55 ± 0.01 9.725 2.053 2.119 0.45 ± 0.05 0.524 CF2 11.445 ± 0.025 12.055 2.449 2.450 0.180 ± 0.020 0.255 CF3 10.6 11.041 2.631 2.632 1.7 ± 0.2 1.623 CF4 16.2 ± 0.1 15.699 2.824 2.846 - - C ₂ F - 11.785 - 4.451 - 3.098 C ₂ F ₂ (FC=CF) 11.18 11.145 3.542 3.553 - 0.533 C ₂ F ₂ (C=CF ₂) - 11.201 - 3.867 2.2550 ± 0.0060 2.317 C ₂ F ₃ - 11.738 - 4.127 2.06 ± 0.22 2.242 C ₂ F ₄ 10.12 10.276 4.352 1.81 ± 0.15 1.731 C ₂ F ₆ 14.40 13.924 4.838 4.797 - -1.541 2.C ₄ F ₆	Molecule Exp. Theo. Exp. Theo. Exp. Theo. CF 9.55 ± 0.01 9.725 2.053 2.119 0.45 ± 0.05 0.524 CF2 11.445 ± 0.025 12.055 2.449 2.450 0.180 ± 0.020 0.255 CF3 10.6 11.041 2.631 2.632 1.7 ± 0.2 1.623 CF4 16.2 ± 0.1 15.699 2.824 2.846 - - CsF - 11.785 - 4.451 - 3.098 CsF2 11.18 11.145 3.542 3.553 - 0.533 CsF2 - 11.201 - 3.867 2.2550 ± 0.0060 2.317 CsF3 - 11.738 - 4.127 2.06 ± 0.22 2.242 CsF4 10.12 10.276 4.352 4.349 - -0.472 CsF5 10.0 ± 0.1 10.588 - 4.552 1.81 ± 0.15 1.731 CsF6 14.40			ID (aV	<u> </u>	a (1,3)		EA (aV)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Exp. Iheo. Exp. Iheo. Exp. Iheo. CF 9.55 ± 0.01 9.725 2.053 2.119 0.45 ± 0.05 0.524 CF2 11.445 ± 0.025 12.055 2.449 2.450 0.180 ± 0.020 0.255 CF3 10.6 11.041 2.631 2.652 1.7 ± 0.2 1.623 CF4 16.2 ± 0.1 15.699 2.824 2.846 - - C:F - 11.785 - 4.451 - 3.098 C:F2 11.18 11.145 3.542 3.553 - 0.533 C:F2 - 11.201 - 3.867 2.2550 ± 0.0060 2.317 C:F3 - 11.738 - 4.127 2.06 ± 0.22 2.242 C:F4 10.12 10.276 4.352 4.349 - -0.472 C:F5 10.0 ± 0.1 10.588 - 4.552 1.81 ± 0.15 1.731 C:F6 14.40 13.924	Molecule	· —	11 (64)	u(A*)		EA (CV)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF 9.55 ± 0.01 9.725 2.053 2.119 0.43 ± 0.05 0.524 CF2 11.445 ± 0.025 12.055 2.449 2.450 0.180 ± 0.020 0.255 CF3 10.6 11.041 2.631 2.632 1.7 ± 0.2 1.623 CF4 16.2 ± 0.1 15.699 2.824 2.846 - - CyF - 11.785 - 4.451 - 3.098 C_3F2 (FC=CF) 11.18 11.145 3.542 3.553 - 0.533 C_3F2 (C=CF2) - 11.201 - 3.867 2.2550 ± 0.0060 2.317 CyF3 - 11.738 - 4.127 2.06 ± 0.22 2.242 CyF4 10.12 10.276 4.352 4.349 - -0.472 CyF5 10.02 ± 0.1 10.588 - 4.552 1.81 ± 0.15 1.731 CyF6 12.76 12.425 7.73			Exp.	Theo.	Exp.	Theo.	Exp.	Theo.
CF2 11.445 ± 0.025 12.055 2.449 2.450 0.180 ± 0.020 0.255 CF3 10.6 11.041 2.631 2.632 1.7 ± 0.2 1.623 CF4 16.2 ± 0.1 15.699 2.824 2.846 - - C3F - 11.785 - 4.451 - 3.098 C3F - 11.18 11.145 3.542 3.553 - 0.533 C3F - 11.201 - 3.867 2.2550 ± 0.0060 2.317 C3F3 - 11.738 - 4.127 2.06 ± 0.22 2.242 C3F3 - 11.738 - 4.127 2.06 ± 0.22 2.242 C3F4 10.12 10.276 4.352 4.349 - -0.472 C3F5 10.0 ± 0.1 10.588 - 4.552 1.81 ± 0.15 1.731 C3F6 14.40 13.924 4.838 4.797 - -1.541 2-C4F6 12.76 12.425 7.73 7.063 - 0.885 - 0.566 <	CF2 11.445 \pm 0.025 12.055 2.449 2.450 0.180 \pm 0.020 0.255 CF3 10.6 11.041 2.631 2.632 1.7 \pm 0.2 1.623 CF4 16.2 \pm 0.1 15.699 2.824 2.846 - - CyF - 11.785 - 4.451 - 3.098 CyF2 (C=CF) 11.18 11.145 3.542 3.553 - 0.533 CyF2 (C=CF) 11.18 11.145 3.542 3.867 2.2550 \pm 0.0060 2.317 CyF3 - 11.201 - 3.867 2.2550 \pm 0.0060 2.317 CyF3 - 11.738 - 4.127 2.06 \pm 0.22 2.242 CyF4 10.12 10.276 4.352 4.349 - -0.472 CyF5 10.0 \pm 0.1 10.588 - 4.552 1.81 \pm 0.15 1.731 CyF6 14.40 13.924 4.838 4.797 - -1.541 2-CyF6 12.76 12.425 7.73 7.063 - 0.885 - <td>CF</td> <td>5</td> <td>9.55 ± 0.01</td> <td>9.725</td> <td>2.053</td> <td>2.119 0.</td> <td>45 ± 0.05</td> <td>0.524</td>	CF	5	9.55 ± 0.01	9.725	2.053	2.119 0.	45 ± 0.05	0.524
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF3 10.6 11.041 2.631 2.632 1.7 ± 0.2 1.623 CF4 16.2 \pm 0.1 15.699 2.824 2.846 - - CyF - 11.785 - 4.451 - 3.098 CyF - 11.785 - 4.451 - 3.098 CyF - 11.785 - 4.451 - 3.098 CyF2 (C=CF) 11.18 11.145 3.542 3.553 - 0.533 CyF2 (C=CF2) - 11.201 - 3.867 2.2550 ± 0.0060 2.317 CyF3 - 11.738 - 4.127 2.06 ± 0.22 2.242 CyF4 10.12 10.276 4.352 4.349 - -0.472 CyF5 10.0 ± 0.1 10.588 - 4.552 1.81 ± 0.15 1.731 CyF6 14.40 13.924 4.838 4.797 - -1.541 2-CyF6 12.76 12.425	CF ₂	11	.445 ± 0.025	12.055	2.449	2.450 0.1	80 ± 0.020	0.255
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CF ₃		10.6	11.041	2.631	2.632	1.7 ± 0.2	1.623
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2F - 11.785 - 4.451 - 3.098 C3F . 11.18 11.145 3.542 3.553 - 0.533 C3F2 (C=CF3) - 11.201 - 3.867 2.2550 \pm 0.0060 2.317 C3F3 - 11.738 - 4.127 2.06 \pm 0.22 2.242 C3F4 10.12 10.276 4.352 4.349 - -0.472 C3F5 10.0 \pm 0.1 10.588 - 4.552 1.81 \pm 0.15 1.731 C3F6 14.40 13.924 4.838 4.797 - -1.541 2-C4F6 12.76 12.425 7.73 7.063 - 0.885 c-C4F6 - 11.420 7.414 7.362 - 0.566 13-6E4 10.4 9.830 8.345 8.145 - 0.779	CF ₄		16.2 ± 0.1	15.699	2.824	2.846	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2F		-	11.785		4.451	-	3.098
$\begin{array}{cccccccc} C_2F_2 \ (C=CF_2) & - & 11.201 & - & 3.867 & 2.2550 \pm 0.0060 & 2.317 \\ \hline C_2F_3 & - & 11.738 & - & 4.127 & 2.06 \pm 0.22 & 2.242 \\ \hline C_2F_4 & 10.12 & 10.276 & 4.352 & 4.349 & - & -0.472 \\ \hline C_2F_5 & 10.0 \pm 0.1 & 10.588 & - & 4.552 & 1.81 \pm 0.15 & 1.731 \\ \hline C_2F_6 & 14.40 & 13.924 & 4.838 & 4.797 & - & -1.541 \\ \hline 2-C_4F_6 & 12.76 & 12.425 & 7.73 & 7.063 & - & 0.885 \\ -C_4F_6 & - & 11.420 & 7.414 & 7.362 & - & 0.566 \\ \hline 1.3-C_4F_6 & 10.4 & 9.830 & 8.345 & 8.145 & - & 0.279 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂ F ₂ (FC	=CF)	11.18	11.145	3.542	3.553	-	0.533
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂ F ₂ (C=	CF ₂)	-	11.201	-	3.867 2.25	50 ± 0.0060	2.317
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_2F_3		-	11.738		4.127 2.	06 ± 0.22	2.242
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C_2F_4		10.12	10.276	4.352	4.349	-	-0.472
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C_2F_5		10.0 ± 0.1	10.588	-	4.552 1.	81 ± 0.15	1.731
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 C_4 F_6$ 12.76 12.425 7.73 7.063 - 0.885 $c C_4 F_6$ - 11.420 7.414 7.362 - 0.566 1.3 $C_5 F_6$ 10.4 9.830 8.345 8.145 - 0.779	C_2F_6		14.40	13.924	4.838	4.797	-	-1.541
$ \begin{array}{cccc} c-C_4F_6 & - & 11.420 & 7.414 & 7.362 & - & 0.566 \\ 1,3-C_4F_6 & 10.4 & 9.830 & 8.345 & 8.145 & - & 0.279 \\ \end{array} $	c-C4F6 - 11.420 7.414 7.362 - 0.566 1.3-C.Fc 10.4 9.830 8.345 8.145 - 0.279	2-C ₄ F ₆		12.76	12.425	7.73	7.063	-	0.885
1,3-C4F6 10.4 9.830 8.345 8.145 - 0.279	1.3-C.F. 10.4 9.830 8.345 8.145 - 0.279	c-C4F6		-	11.420	7.414	7.362	-	0.566
		1,3-C ₄ F ₆		10.4	9.830	8.345	8.145	-	0.279
$2\text{-}C_4F_8 \qquad \qquad 11.1 \qquad 11.285 \qquad - \qquad 8.466 \qquad 0.79 \pm 0.06 \qquad 0.837$	$2\text{-}C_4F_8 \qquad \qquad 11.1 \qquad 11.285 \qquad - \qquad 8.466 \qquad 0.79 \pm 0.06 \qquad 0.837$	2-C4F8							
c-C4Fs 2/11.6 11.795 - 7.801 0.63 + 0.05 0.597	c-CaFs 2411.6 11.795 - 7.801 0.63 ± 0.05 0.597			11.1	11.285	-	8.466 0.	79 ± 0.06	0.837

Thermodynamic Property Data

	А	В	С	D	E	F	G	н
1				c-C4F8+				
2	Temperature	Cv	CP	H°	H°-H° _{298.15}	S°	-(G°-H° _{298.15})/T	
3	(K)	(J mol ⁻¹ K ⁻¹)	(J mol ⁻¹ K ⁻¹)	(KJ mol⁻¹)	(KJ mol ⁻¹)	(J mol ⁻¹ K ⁻¹)	(J mol ⁻¹ K ⁻¹)	
4	298.15	155.65	163.96	153.42	0.00	432.82	432.81	
5	298	155.61	163.92	153.40	-0.02	432.74	432.81	
6	300	156.20	164.51	153.73	0.30	433.83	432.82	
7	400	182.18	190.49	171.53	18.11	484.88	439.60	
8	500	202.18	210.49	191.63	38.20	529.64	453.22	
9	600	217.28	225.59	213.47	60.05	569.41	469.34	
10	700	228.61	236.92	236.62	83.20	605.08	486.23	
11	800	237.14	245.46	260.76	107.34	637.30	503.13	
12	900	243.64	251.95	285.64	132.22	666.60	519.69	
13	1000	248.66	256.97	311.10	157.68	693.42	535.74	
14	1100	252.60	260.91	337.00	183.58	718.10	551.21	
15	1200	255.72	264.04	363.26	209.83	740.94	566.08	
16	1300	258.24	266.56	389.79	236.37	762.18	580.36	
17	1400	260.29	268.61	416.55	263.13	782.01	594.06	
18	1500	261.99	270.30	443.50	290.08	800.60	607.22	
19	1600	263.40	271.71	470.60	317.18	818.10	619.86	
20	1700	264.58	272.90	497.83	344.41	834.61	632.01	
21	1800	265.59	273.91	525.18	371.75	850.23	643.70	
22	1900	266.45	274.77	552.61	399.19	865.07	654.97	
23	2000	267.20	275.51	580.13	426.70	879.18	665.83	
24	2100	267.84	276.16	607.71	454.29	892.64	676.31	
25	2200	268.40	276.72	635.35	481.93	905.50	686.44	
26	2300	268.90	277.21	663.05	509.63	917.81	696.23	
27	2400	269.33	277.65	690.79	537.37	929.62	705.71	
28	2500	269.72	278.03	718.58	565. 1 6	940.96	714.90	
29	2600	270.06	278.37	746.40	592.98	951.87	723.80	
30	2700	270.37	278.68	774.25	620.83	962.38	732.45	
31	2800	270.64	278.96	802.13	648.71	972.52	740.84	
32	2900	270.89	279.21	830.04	676.62	982.32	749.00	

F

- 4

CFCCF3

Chemical Reaction path

Chemical Reaction

TS

cyclo-C₄F₆

$$k^{GT} = \sigma \frac{k_{b}T}{h} \frac{Q^{TS}(T,s)}{N_{A}Q^{R}(T)} e^{(-V^{\ddagger(s)}/k_{b}T)}$$

	V [‡] (kcal/mol)	Error (%)
Expt. ^a	35.38	
$\omega B97X$ -D / avtz	35.44	0.16
$\omega B97X$ / avtz	37.67	6.48
B3LYP / avtz	34.38	-2.83
PBE0 / avtz	32.56	-8.01
CCSD(T) // wB97X-D / avtz	34.77	-1.73

^a Schlag et al., J. Am. Chem. Soc., 86, 1676 (1964)

T (K)	k_{expt} (s ⁻¹) ^a	<i>k</i> (s ⁻¹)	Error (%)
400	5.025×10^{-8}	8.623×10^{-8}	3.213
410	1.488×10^{-7}	2.570×10^{-7}	3.478
420	4.184×10^{-7}	7.275×10^{-7}	3.767
430	1.121×10^{-6}	1.962×10^{-6}	4.085
440	2.873 × 10 ⁻⁶	5.060×10^{-6}	4.435
450	7.060×10^{-6}	1.251×10^{-6}	4.823
460	1.668×10^{-5}	2.974×10^{-5}	5.254
470	3.801×10^{-5}	6.815×10^{-5}	5.737
480	8.368×10^{-5}	1.509×10^{-5}	6.280
490	1.784×10^{-4}	3.235×10^{-4}	6.896
500	3.689×10^{-4}	6.727×10^{-4}	7.599
510	7.415×10^{-4}	1.359×10^{-3}	8.410
520	1.451×10^{-3}	2.674×10^{-3}	9.355
530	2.768×10^{-3}	5.128×10^{-3}	10.470
540	5.156×10^{-3}	9.602×10^{-3}	11.803

k

0

0

Reaction table

		-	
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
13	3	13	23
6	2	4	11
7	1	9	12
•	•	•	•
•	•	•	•
		•	0
0	0	0	0
● 확보	● 미완	○ 대기	▶ 진행 중
			27

		L-PFCX		L-HFC					
Target	CBr2E2	C4F9I	C6F12O	CHE3	C3H2F6	C5H2F10			
1. 필수 기초물성 데이터		5			Con Lite				
바닥상태 구조	•	•	•	•	•	•			
ZPE	•		•	•	•	•			
IP					•				
EA									
α									
2. 열역학물성 데이터									
E	•	•	•	•	•				
H°	•			•	•				
S.				•					
Co									
CV CV									
3. 전자충돌 특성 데이터									
R									
0									
TICS									
MTCS			Ţ						
ECS									
4 하하바우 트서 데이터									
Reaction nath	4	12	12	2	12	22			
Reaction path	-	6	6	3	13	11			
저이사태 그조	2	7	7	2	4	12			
전에영네 구포	2	,	,		9	12			
E(act)	•				•	•			
IRC	•	•	•	•	•				

Electron collision processes with Molecules

- The collision of electrons atoms and molecules in the reactor is an important phenomenon for the generation and maintenance of plasma.
- The ionization reaction of atoms and molecules by electron collision induces the generation of electrons and ions to maintain the plasma.
- The dissociation reaction of molecules by electron collisions generates reactive radicals and ions, and the chemical reaction of the active radicals is useful for the plasma process It becomes an argument.
- Therefore, it is necessary to understand the reaction principle of atoms and molecules in plasma in order to utilize the plasma state well in the technical field.

BEB Method

$$t = T/B$$
, $u = U/B$, $S = 4 \pi a_0^2 N (R/B)^2$

 $a_0 = 0.5292 \text{ Å}, \quad R = 13.60 \text{ eV}$

at the $HF/\!/\omega B97X\text{-}D/avtz$ level

$$\sigma_{\text{BEB}} = \frac{S}{t+u+1} \left[\frac{\ln t}{2} \left(1 - \frac{1}{t^2} \right) + 1 - \frac{1}{t} - \frac{\ln t}{t+1} \right]$$

by using the BEB model

$$B$$
 = electron binding energy, eV
 U = average kinetic energy, eV

N = electron occupation number

Eur. Phys. J. D (2017) 71: 88 DOI: 10.1140/epjd/e2017-70769-6 THE EUROPEAN PHYSICAL JOURNAL D

Regular Article

Electron impact ionization cross section studies of C_2F_x (x = 1–6) and C_3F_x (x = 1–8) fluorocarbon species^{*}

Dhanoj Gupta^{1,a}, Heechol Choi¹, Mi-Young Song¹, Grzegorz P. Karwasz², and Jung-Sik Yoon¹

¹ Plasma Technology Research Center, National Fusion Research Institute, 37 Dongjangsan-ro, Gunsan, Jeollabuk-do 54004, South Korea

² Institute of Physics, University Nicolaus Copernicus, Grudziadzka 5/7, 87100 Toruñ, Poland

Received 8 December 2016 IOP Publishing

Journal of Physics D: Applied Physics

J. Phys. D: Appl. Phys. 51 (2018) 155203 (10pp)

https://doi.org/10.1088/1361-6463/aab1e3

Electron induced ionization of plasma processing gases: C_4F_x (x = 1–8) and the isomers of C_4F_6 and C_4F_8

Dhanoj Gupta, Heechol Choi, Deuk-Chul Kwon, Jung-Sik Yoon and Mi-Young Song[®]

Plasma Technology Research Center, National Fusion Research Institute, 37 Dongjangsan-ro, Gunsan, Jeollabuk-do 54004, Republic of Korea

E-mail: mysong@nfri.re.kr

Received 9 January 2018, revised 20 February 2018 Accepted for publication 23 February 2018 Published 22 March 2018

Abstract

Abstract The total ionization cross section (Q_{ion}) for C_4F_x (x = 1-8) fluorocarbons and the isomers of C_4F_6 and C_4F_8 molecules are calculated from ionization threshold to 5 keV using the binaryencounter bethe method. The targets are fully optimized using the Hartree–Fock (HF) method and density function theory (DFT) for their minimum energy structure and orbital parameters. The present Q_{ion} with HF parameters showed good agreement with the experimental data for 1,3- C_4F_6 , 2- C_4F_6 , 2- C_4F_8 and 1- C_4F_8 . On the other hand, the Q_{ion} with DFT parameters are in good accordance with the recent theoretical results for 1,3- C_4F_6 and 2- C_4F_6 . The Q_{ion} for c- C_4F_8 showed much variation among the various results. The isomer effect in Q_{ion} is negligible for the isomers of C_4F_6 and C_4F_8 molecules. The calculation of Q_{ion} for C_4F , C_4F_2 , C_4F_3 , C_4F_4 , C_4F_5 , $c-C_4F_6$, C_4F_7 and iso- C_4F_8 is a maiden attempt. The present cross section data are important quantities for low temperature plasma modeling especially related to the fluorocarbon plasmas.

$C_2F_x(x=1-6)$, $C_3F_x(x=1-8)$ and $C_4F_x(x=1-8)$ total ionization

Total ionization cross section for c-C₄F₈

Total ionization cross section for C₄F_x (x=1-8) in Å² with the RHF/UHF orbital parameters

Gupta et al, Eur. Phys. J. D (2017) 71: 88

Correlation plot between maximum

 Q_{ion} and polarizability of the targets.

-C.F

 $- - C_4 F_2$

···· C_F,

---- C₄F₄

 $---C_4F_5$

----- C₄F₇ ---- c-C_F

1000

-1,3-C₄F₆

R-matrix method

Theoretical Methodology

✓ The well-known ab initio R-matrix method through Quantemol-N

CrossMark

- Target models
 - \checkmark The have optimized the structure of CxFy, BeH2, NH using the Density Functional Theory DFT (wB97X-D/aug-cc-pVTZ) using the Gaussian 09

PHYSICS OF PLASMAS 24, 123511 (2017)

An R-matrix study of electron induced processes in BF₃ plasma

Dhanoj Gupta,¹ Kalvan Chakrabarti,² Jung-Sik Yoon,¹ and Mi-Young Song^{1,a)} ¹Plasma Technology Research Center, National Fusion Research Institute, 37 Dongjangsan-ro, Gunsan, Jeollabuk-do 54004, South Korea

²Department of Mathematics, Scottish Church College, 1 & 3 Urquhart Sq, Kolkata 700 006, India

(Received 17 November 2017; accepted 5 December 2017; published online 20 December 2017)

An R-matrix formalism is used to study electron collision with the BF₃ molecule using Quantemol-N, a computational system for electron molecule collisions which uses the molecular R-matrix method. Several target models are tested for BF_3 in its equilibrium geometry, and the results are presented for the best model. Scattering calculations are then performed to yield resonance parameters, elastic, differential, excitation, and momentum transfer cross sections. The results for all the cross sections are compared with the avarimental and theoretical data and a good agreement is crossflat PHYSICS OF PLASMAS 25, 063504 (2018)

Electron impact elastic and excitation cross-sections of the isomers of C_4F_6 molecule for plasma modeling

Dhanoj Gupta,¹ Mi-Young Song,^{1,a)} K. L. Baluja,² Heechol Choi,¹ and Jung-Sik Yoon¹ Plasma Technology Research Center, National Fusion Research Institute, 37, Dongjangsan- ro, Gunsan, Jeollabuk-do 54004, South Korea

²(Formerly) Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

(Received 30 April 2018; accepted 15 May 2018; published online 1 June 2018)

We report the calculations of elastic (along with its symmetry components) and electronic excitation cross sections by electron impact of the three isomers of C_4F_6 , namely, hexafluoro-1,3butadiene $(1,3-C_4F_6)$, hexafluoro-2-butyne $(2-C_4F_6)$, and hexafluorocyclobutene $(c-C_4F_6)$ belonging to the point groups C_2 , D_{3d} , and $C_{2\nu}$, respectively, using the R-matrix approach. The electron energy range is from 0.01 eV to 12 eV. We have employed the cc-pVTZ basis set for C and F atoms to generate self-consistent field molecular orbitals to construct the target states for all the isomers included in our calculations. All the target states are constructed by including correlation effects in a configuration interaction (CI) approach. The target properties such as vertical excitation energies and dipole moment of all the isomers are in reasonable agreement with the literature values. Differences in the cross sections of these isomers are strongly influenced by the effect of correlation and polarization effects and their geometrical extent. We have included the ground state and many excited states of each isomer in the trial wave function of the entire scattering system. The resulting elastic cross sections are compared with the available experimental results. The agreement is reasonably good for energies above 5 eV. The shape resonances detected at 2.57, 2.95, and 3.20 eV for $c-C_4F_6$, 1.3- C_4F_6 , and 2- C_4F_6 isomers are associated with the negative anion formation of C_3F_3 as observed in the mass spectrometry experiments. We have also performed 1state CI calculation for all the isomers that include only the correlated ground state. The position of resonances shifts to lower energies as the number of target states is increased compared to 1-state calculation for all the isomers. The elastic cross section for $2-C_4F_6$ isomer is larger than the other isomers because of its larger spatial extent. The present cross section data are important for plasma simulation and modeling, especially related to fluorocarbon plasma. Published by AIP Publishing. https://doi.org/10.1063/1.5037959

Data Center for Plasma Properties

R-matrix study for electron scattering of beryllium dihydride for fusion plasma

Dhanoj Gupta¹, Mi-Young Song¹, Heechol Choi¹, Deuk-Chul Kwon¹, K L Baluia² and Jonathan Tennyson³

¹ Plasma Technology ResearchCenter, National Fusion Research Institute, 37 Dongjangsan- ro, Gunsan, Jeollabuk-do 54004, Republic of Korea

²Department of Physics & Astrophysics, University of Delhi, Delhi-110007, India

³ Department of Physics and Astronomy, University College London, Gower St., London WCIE 6BT, United Kingdom

E-mail: mysong@nfri.re.kr

Abstract

Received 31 October 2018, revised 22 November 2018 Accepted for publication 11 January 2019 Published 26 February 2019

We report the integral elastic, differential, momentum transfer, dissociative electron attachment and electronic- and rotational excitation cross sections for low-energy electron impact on beryllium dihydride computed using the Quantemol-N interface for driving the UK molecular R-matrix code. The energy of the projectile electron is in the range 0.1-10 eV. The effect of multichannel coupling is investigated by calculating the cross sections with various target models by increasing the number of target states in the trial wave function of the entire scattering system. The cross sections converge for the calculation with more than 15-target states. The vertical excitation energies calculated with the present model give excellent agreement with the EOM-CCSD calculations. Collisional frequencies are determined using the momentum transfer cross section for a Maxwell-Boltzmann distribution. From the collisional frequency, the

- C4F6 The unsaturated fluorocarbons (UFCs) such as C_4F_6 gases with low global warming potential (GWP) have been a good replacement for the perfluorocarbons (PFCs) such as CF_4 , C_2F_6 , and C_3F_8 gases for plasma etching applications.
 - The $1,3-C_4F_6$ isomer can be used for fabricating contact holes in ultra large integrated circuits by ٠ selective etching processes of silicon oxide (SiO_2) on Si and silicon nitride (Si_3N_4) layers.
 - The calculations of elastic (along with its symmetry components) and electronic excitation cross ٠ sections by electron impact of the three isomers of C4F6 belonging to the point groups C_2 , D_{3d} , and C_{2w} respectively, using the R-matrix approach
 - We have employed the cc-pVTZ basis set for C and F atoms to generate self-consistent field ٠ molecular orbitals to construct the target states for all the isomers included in our calculations.
 - All the target states are constructed by including correlation effects in a configuration interaction (CI) approach.

FIG. 2. Cross section of 1,3-C₄F₆ along with the available data for comparison. Solid line: present TCS; dashed line: present elastic (8-state); short dotted line: present elastic (1-state); dotted line: present ²A symmetry; short dashed line: present ²B symmetry; star: Szmytkowski and Kwitnewski⁵ (TCS); circle: Hoshino et al.9 (elastic).

Data Center for Plasma Properties

hed-dotted-dotted line: present ²A₂ symmetry; circle: Hoshino et al.⁹ ,....stic).

FIG. 1. Molecular structures of the targets used in the present calculation for (a) $1,3\text{-}C_4F_6,$ (b) $2\text{-}C_4F_6,$ and (c) $c\text{-}C_4F_6.$

- The shape resonances detected at 2.57, 2.95, and 3.20 eV for c-C₄F₆, 1,3-C₄F₆, and 2-C₄F₆ isomers are associated with the negative anion formation of C₃F₃⁻ as observed in the mass spectrometry experiments.
- The Qexc for 1,3-C₄F₆ and c-C₄F₆ shows a broad and narrow peak at around 9.6 eV, which may be due to the Feshbach resonances detected for these targets at the same energy range.

FIG. 8. Isomer effect in the (a) elastic cross section and (b) first excitation cross section of $1,3-C_4F_6$, $c-C_4F_6$, and $2-C_4F_6$ in a multistate CI calculations. Solid line: present $1,3-C_4F_6$; short dashed line: present $c-C_4F_6$; dashed line: present $2-C_4F_6$.

- WH we calculated the cross sections of low-energy electron impact on BeH2 using the UK molecular R-matrix code(Quantemol-N).
 - The open-shell radical molecule NH has a natural C_{1v} point group having a bond length of 1.958 A° in its equilibrium geometry but used the C_{2v} point group symmetry, which is an abelian, the subset of the C1v point group.
 - We have used the cc-pVTZ Gaussian basis set for the N and H atoms
 - The cross section for the ³∏ state is maximum compared the other excited states because this is a dipole allowed transition and all other transitions are spin forbidden, it has smaller cross sections.
 - The cross sections for the optically allowed transition X-A show a rather good agreement with the Born approximation cross section.

Electronic excitation cross section for the five low-lying excited states of NH

Electronic excitation cross section using the R-matrix method and the Born approximation for the dipole allowed transition. 34

- The ⁵∑⁻ state is purely repulsive in nature, and its excitation cross section is purely dissociative yielding atomic fragments N(⁴S) +H(²S)
- Another contribution for the dissociative cross section arises from the excitation to the c ¹∏ state to the dissociative cross section with atomic fragments N(²P) + H(²S).
- The first-Born dipole approximation is used to calculate the infrared active 0–1 vibrational inelastic cross section for the NH molecule.
- Excitation of transitions with $\Delta j = 1$ is the most likely process which is dipole moment induced transition.

- **BeH2** we calculated the cross sections of low-energy electron impact on BeH₂ using the UK molecular R-matrix code(Quantemol-N).
 - The BeH₂ molecule is a linear, closed-shell system belonging to the C_{2v} point point group symmetry. .
 - The first broad peak around 0.45 eV with a width of 0.40 eV in a 25-state calculation is a ${}^{2}\Pi_{u}$ shape resonance.
 - BeH₂ is a symmetric molecule which does not possess a permanent dipole moment so rotational excitation only involves transitions with ΔJ even.
 - The DEA cross section shows a peak at around 6.2 eV, and overlaps the threshold for the first excitation energy. This peak in the DEA cross section is due to the presence of the resonance detected in the present study at around 6.2 eV

36

Table 1. BeH2 vertical excitation energy computed with the CAS-CI and EOM-CCSD methods; also show are the symmetry-allowed CAS-CI dipole transition moments (and permanent quadrupole moments).

0.0

6.147

6.548

7.046

8.588

8.717

9.744

- The vertical excitation energies calculated with the present model give excellent • agreement with the EOM-CCSD calculations.
- Excitation to the triplet excited states contribute most to the total cross section compared • to other electronic excited states.

Transition moments (au)

0.0, (3.4541)

(-3.1708, 3.3643)

(-2.1279, 3.3201)

(-1.7107)

(0.0872)

(-1.8157)

(-7.3653)

(2.5032)

(-7.1653)(-7.4110)

(-7.3718)

(0.0600)

(0.0573)

(-6.6582)

(-3.7782)

0.0876, (3.0011)

1.3713, (0.0267)

0.0, (-3.5048, 3.4926)

-1.4674, (-0.0927, 3.7184)

 Collisional frequencies are determined using the momentum transfer cross section for a Maxwell–Boltzmann distribution

Momentum transfer cross sections for SE, 1-state, 5-state, 10-state, 15-state, 20-state and 25-state CC calculations.

Effective collision frequency of the BeH₂ molecule ground state as a function of electron temperature.

✓ Published papers

- Dhanoj Gupta, Heechol Choi, Deuk-Chul Kwon, Jung-Sik Yoon, Bobby Antony and Mi-Young Song, "<u>Cross sections for electron collision with Difluoroacetylene</u>" J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 085202.
- Dhanoj Gupta, Kalyan Chakrabarti, Mi-Young Song, and Jung-Sik Yoon" <u>An R-matrix study of</u> <u>electron induced processes in BF₃</u>, *Plasma, Phys. Plasma* 24 (2017) 123511.
- Dhanoj Gupta, Heechol Choi, Mi-Young Song, Kalyan Chakrabarti and Jung-Sik Yoon "<u>Low energy</u> <u>cross sections for electron scattering from tetrafluoroallene</u>", *Eur. Phys. J. D* 71 (2017) 213.
- Dhanoj Gupta, Heechol Choi, Mi-Young Song and Jung-Sik Yoon "<u>Cross sections for electron</u> collision with fluoroacetylene: a comparative study with acetylene and difluoroacetylene along with fluorination", Chem. Phys. Letts. 684 (2017) 333
- Dhanoj Gupta, Heechol Choi, Mi-Young Song, Grzegorz P. Karwasz and Jung-Sik Yoon, "<u>Electron</u> impact ionization cross section studies of C₂F_x (x=1-6) and C₃F_x (x=1-8) fluorocarbon species", *Eur. Phys. J. D* 71 (2017) 88.
- Dhanoj Gupta, Heechol Choi, Deuk-Chul Kwon, Jung-Sik Yoon and Mi-Young Song^{*}, <u>"Study of electron induced ionization for plasma processing gases: C₄F_x (x=1-8) and the isomers of C₄F₆ and C₄F₈ for plasma modeling", J. Phys. D: Appl. Phys. 51 (2018) 155203
 </u>
- Dhanoj Gupta, Mi-Young Song, K. L. Baluja, Heechol Choi, and Jung-Sik Yoon, "<u>Electron impact</u> elastic and excitation cross-sections of the isomers of C4F6 molecule for plasma modeling", Physics of Plasmas 25, (2018) 063504
- Dhanoj Gupta, Mi-Young Song, Heechol Choi, Deuk-Chul Kwon, K L Baluja and Jonathan Tennyson, <u>R-matrix study for electron scattering of beryllium dihydride for fusion plasma</u>, J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 065204
- Dhanoj Gupta , K. L. Baluja, and Mi-Young Song, "<u>Vibrationally resolved excitation, dissociation,</u> <u>and rotational cross sections of NH radical by electron-impact using the Rmatrix method</u>" Phys. Plasmas 26 (2019) 063503

Experimental Measurement

Total Cross Section

Measurement of total cross sections for electron scattering on atomic and molecules using magnetized electron beam

Apparatus

Dissociation Cross Section Ionization threshold spectroscopy method

Elastic Differential Scattering Cross Section (2018 ~2021)

Biomolecule-Electron Collision Data

Total Cross Section

Total electron cross section measurement system

Total electron scattering cross section of argon. The present results are in good agreement with previously measured values, confirming the correct operation of the experiment

Cross-sectional view of the apparatus

Biomolecule-Electron Collision Data

In order to study DNA damage caused by electron collisions in a complex bio-environment, we are experimenting with attaching desired metal ions, quercetin and anti-splash to bio-model molecules.

Cylindrical type Biomolecule-Electron Collision Experiment System

Planar type Biomolecule-Electron Collision Experiment System

Plasma Diagnostic

- We experimented with mounting types of diagnostic devices on the plasma generator to understand the plasma state information of the material.
- In addition, the system is being improved to monitor the reaction of the surface facing the plasma.
- we are developing advanced method of plasma monitoring and plasma process fault detection by OES data analysis using machine learning

Plasma Diagnostic system

NFRI

Plasma diagnostics with optical spectroscopy

• Development of optical emission spectroscopic method for process plasma

Collisional-Radiative model for Ar low-temperature plasma

Development of Collisional-Radiative model for argon low-temperature plasma based on NOMAD code

ne (cm⁻³)

1E11

1E9

1E8

* NOMAD, Yuri V. Ralchenko, time-dependent collisional-radiative plasma kinetics code for non-Maxwellian plasmasen Dersty (art)

Analyze OES Data Using Machine Learning to Predict Plasma State

Accuracy : 90% (Does not include the margin of error, Only when outputting same density value as an input density value.)

International Group Data Evaluation Activities

- This work decide at the Joint IAEA-NFRI Technical Meeting (TM) on Data Evaluation for Atomic, Molecular and Plasma Material Interaction Processes in Fusion in September 2012
- Participants recommended group member and molecule at that time.
- Group Members:
 - Grzegorz P. Karwasz (Poland)
 - ➤ J. Tennyson (UK)
 - Viatcheslav kokoouline(USA)
 - ≻ Y. Nakamura, Y. Itikawa (Japan)
 - ≻ H. Cho M.-Y. Song, J.-S. Yoon (Rep. Korea)
- Our aim of the group evaluation is
- To establish the internationally agree standard reference data library for AM/PMI data
- To reexamine the available cross sections for methane and to establish an up-to-date set of recommended cross sections.

2014
•8-9 January 2014, Seoul, South Korea
•4 -5 July 2014, Cumberland Lodge, UK
•14 December 2014, Deajeon, South Korea

2017
16~17 May 2017, Seoul, South Korea
13 ~ 14 September, Jeju, South Korea.

2015 •14-15 May 2015, University College London, UK •17-19 November 2015, Seoul, Korea

2018 •8~10 May 2018, Seoul, South Korea

2016 •13-16 May 2016, University College London, UK

•27 September 2016, NFRI, South Korea

2019 •8~10 May 2019, Seoul, South Korea

Procedure

Preparatory stage

- Review of previous evaluation paper
- Collection of new paper.
- Define working Scope
- Contents of report
- To shard working part

Evaluation stage

- analysis method of experiment and theory (characteristics, limitation, uncertainty, method)
- Comparisons of different research group
- Combine different collision processes

- Check uncertainty
- Define recommended data of each collision processes
- Agreement of each evaluator

Cross section for electron collisions with NF3

2015 ~2016 : review and assessment

15 December 2017 : published online (J. Phys. Chem. Ref. Data, 46, 043104 (2017))

- Nitrogen trifluoride or trifluoramine (NF3) gas is widely used in plasma processing technology.
- NF3 is used in a number of plasma processes where it is often used as a source of F atoms due to ease of production of these atoms via dissociative electron attachment (DEA) and electron-impact dissociation both from NF3 itself and from NF2 and NF fragment.
- The exothermicity from these dissociative processes also provides an important gas heating mechanism. Use of NF3 in plasma etching, particularly in mixtures with O2, provides a source of F2 ions due to an enhanced DEA process at low (about 1 eV) energies.
- NF3 is also used in the production of thin films and solar cells; it provides the initial gas for the HF chemical laser.
- NF3 is actually a greenhouse gas with a very high global warming potential which has led to concern on how it is used in the various technologies discussed above.

- For the TCS, the MTCS, and the ionization cross section,
 - it is possible to recommend values over an extended energy range with small uncertainties, typically 10%–15%. The situation is significantly worse for other processes.
- For electron-impact rotational excitation,
 - we rely on predictions from ab initial calculations, but these calculations are far from being complete.
- For vibrational excitation cross sections.
 - Theoretical treatments of this process are possible and should be performed by theorists. Some new, reliable beam measurements of this process would be very helpful.
- For the electron impact dissociation
 - It is an important process, but the available measurements are inconsistent with each other, and we are unable to recommend a good set of data for this process. A new study on the problem is needed.
- For the dissociative electron attachment process:
 - We recommend using the recent experimental data and are able to provide the estimated uncertainty to be about 15%.

Cross section for electron collisions with NO, N₂O, and NO₂

- 2016 ~2017 : review and assessment
- May 2019 : to be submitted article (J. Phys. Chem. Ref. Data)
- Nitrogen oxides (NxOy) are easily generated in atmospheric plasma using N₂ and O₂ gas.
 Nitrogen oxides are regulated as corrosive substances, and research on how to remove them is becoming of increasing importance.
- NO(Nitric oxide) accounts for about 95% of the nitrogen oxides generated in the combustion of fossil fuels, and mostly undergoes rapid oxidized to NO₂ (Nitrogen dioxide) which is harmful to both the human body and the natural environment.
- N2O(Nitrous oxide) is not created in the combustion of fossil fuels, but is known to be generated in selective catalytic reduction (SCR) reactions and is a known cause of global warming.

• For the TCS and the ionization cross section,

- the main differences between the three nitrogen oxides are visible in the low energy range (below 5 eV) where the cross sections display the existence of different resonances.
- In particular, <u>this energy region is the one for which</u> <u>biological processes are influenced the most.</u> <u>Experimental (and theoretical) studies are still needed</u>
- Total ionization cross sections are well reproduced by BEB model for all three nitrogen oxides. The optical potential model overestimates slightly (10-15%) the total ionization cross sections for all three targets.

• For the electron impact excitation

- Electronic excitation in the open shell NO molecule shows a number of partially overlapping states, starting from some 4.75 eV;
- it is dominated by two dipole allowed states, visible as broad peaks, centered at 8.5 eV and 9.5 eV in the energy-loss spectra in N_2O .
- A similar proportion is predicted by the present R-matrix calculation for NO_2 in the energy range 9 10 eV.

• For electron-impact rotational excitation

- we rely on predictions from ab initial calculations, but these calculations are far from being complete
- They are clearly visible in the dissociative attachment channel and as an enhancement of the rotational-excitation cross sections at about 2.2 eV as predicted by the present theory.

• For the vibrational excitation cross sections

- We recommend the vibrational excitation cross sections determined from swarm measurements but note that this is only an indirect measurement for which it is hard to establish true uncertainties.
- Our knowledge on electron scattering is broadly satisfactory for NO and $\rm N_2O$ but it has many gaps for $\rm NO_2$
 - for example we are not aware of measurements of the vibrational or electronic-excitation cross sections.
 - for NO and NO₂ we also lack measurements of dissociation into neutrals.

- Figure compares partitioning into different channels of ionization at 100 eV and 1000 eV.
- For neither N₂O nor NO₂ is the parent ion the dominant product (i.e. constitutes over 50% of the ionization events) at energies where other channels are available.
- The NO⁺ dissociated ion is the main ion in the ionization of NO₂ and constitutes about N_2 of ionization events in of N_2O .
- The N⁺ ion is formed with roughly double the probability of the O⁺ ion in NO and N₂O; in NO₂ the O⁺ ion prevails over N⁺.

Evaluation of Collected data

- The most basic, necessary, and first step in the development of those technologies is electron collision with the initially unreactive species to produce the activated species
- As a result, fundamental AMO physics is closely and beneficially connected to technology development.

 $Ar^+ + Si$

Ar	Z1 = 18	=	M1 39.948	Us	Q(2	Z2)	W(Z2)	S			
Si	Z2 = 14	=	M2 28.086	4.63	0.6	56	2.32	2.5			
lon	energy [eV]		Sputte [Atc	ering yie om/ion]	ld	Uncertainty [Atom/ion]					
	80		C	0.060			0.0060				
	100		(0.070			0.007	0			
	200		0.180 0.0180								
	300		(0.310		0.0310					
	400		0.330 0.0330								
	500		C	0.680		0.0340					
	600		C	0.530		0.0530					
	1000		C	0.930		0.0465					
	2000		().950		0.0950					
	2500		1	L.150		0.0575					
	4000		1	L.220		0.1220					
	7000		1	L.470		0.1470					
1	.0000		1	L.570			0.157	0			
2	0000		1	L.550			0.155	0			

⁶⁰ NFRI

Evaluated data

Group	Species	TCS	ES	MT	DCS	TICS	PICS	TDCS	NDCS	TACS	DACS	VI	RO	EX	Sputtering Yield	Н	D	He	Ar	Kr	Xe
atoms	9	2	2	2	2	9	21	0	0	0	0	0	0	0	Count Target	6	6	6	15	15	15
diatomic molecules	10	6	5	4	4	7	29	2	0	4	4	11	7	26	Be						•
															C				•	•	•
triatomic molecules	7	4	4	3	3	7	35	1	0	2	9	3	0	2	Al	•	•	•	•		
tetratomic molecules	4	4	2	2	2	4	9	0	0	1	2	1	1	0	Si	•	•	•	•	•	•
															Ti				•	•	•
pentatomic molecules	7	7	1	1	2	4	18	0	0	0	0	0	0	0	V				•	•	•
CxFy (x=0~4 v=1~8)	28	5	6	5	103	8	45	4	1	4	1	1	0	0	Fe	•	•	•	•	•	•
CHxFy, CClxFy															Ni				•	•	•
(x=1~3, y=1~3)	4	2	2	2	15	4	34	1	0	1	2	2	0	0	Cu	•	•	•			
NFx, Sfy (x=1~3, y=1~6)	7	3	2	2	2	3	20	0	0	0	3	0	0	0	Ge				•	•	•
SixYz	14	4	2	2	4	10	57	2	4	0	0	0	0	0	Zr					•	
(x=1~2, Y=Cl, F, H, D, z=1~6)	14	4	2	2	7	10	57	2	7	0	0	0	0	0	Nb				•		
Total	90	37	26	23	137	56	268	10	5	12	21	18	8	28	Мо				•	•	•
	<u> </u>						1	1							Pd				•	•	•
															Ag	•	•	•	•	•	•
															Та				•	•	•
															W				•	•	•
															Pt				•	•	•
															Au	•	•	•		•	•

NFR

Summary and Future Plan

- Our DCPP web database system reorganization
 - ✓ Electron collision data : ~ 69,371 recodes
 - ✓ Change to user friendly system
 - ✓ Evaluated data: 860 recodes
- AMBDAS update. (supporting IAEA)
 - ✓ AMBDAS Updated until 2018.
 - ✓ Need to change the data searching method to shorten the ti required. → modified key word
 - Data product
 - ✓ We obtained the total electron scattering cross section of electron collision for N2O which is important in atmosphere and plasma becond (next: NH3)
 - ✓ we can calculate the elastic and excitation cross sections of BeH2,NH,C4F6 at low energies along with the detection of resonances using ab initio R-matrix method through Quantemol-N (next :
 - Group Data Evaluation Project
 - ✓ Completed evaluation of NF3 and NxOy molecules by operating an evaluation group (H2O, N2)

Chungnam National University Hanyang University

Seoul National University

Konkuk University

Pusan University

Chonbuk National University

Korea Aviation University

Korea Research Institute of Standards

and Science

Korea Institute of Science and

Technology

Korea Atomic Energy Research

Institute

IAEA A&M UNIT

University of Central Florida, USA

University College London, UK

- University of Strathclyde, UK
- National Institute for Fusion Science, Japan
- ona Sophia University, Japan
- University Nicolaus Copernicus, Poland σ
 - Australian National University,
- nte Australia

Thank you very much for your attention!