

### 24th Technical Meeting of the International Atomic and Molecular Data Centre Network

IAEA Headquarters, Vienna, Austria 4-6 September 2017

## UPDATE ON ATOMIC, MOLECULAR AND PMI DATA ACTIVITY IN RUSSIA

P.R. Goncharov<sup>1</sup>, A.B. Kukushkin<sup>2,3</sup>



<sup>1</sup> Peter the Great Polytechnic University, 195251, St Petersburg, Russia



<sup>2</sup> NRC Kurchatov Institute, 123182, Moscow, Russia

<sup>3</sup> NRNU Moscow Engineering Physics Institute, 115409, Russia

## Contributors

- A.B. Kukushkin, A.B. Sivak NRC Kurchatov Institute
- Yu.M. Gasparyan, L.B. Begrambekov Moscow Engineering Physics Institute
- V.G. Kapralov, I.A. Sharov Peter the Great Polytechnic University
- M.N. Panov, N.N. Bakharev, V.I. Afanasyev, M.I. Mironov A.F. loffe Physico-Technical Institute
- V.P. Shevelko, I.Yu. Tolstikhina P.N. Lebedev Physical Institute
- A.S. Arakcheev

**G.I. Budker Institute of Nuclear Physics** 

- Generation of atomic and molecular data for fundamental science and controlled nuclear fusion
- Use of atomic and molecular data in controlled nuclear fusion research
- Recent works on plasma-material interaction data
- Conclusions

1. Generation of atomic and molecular data for fundamental science and controlled nuclear fusion

#### A.F. loffe Physico-Technical Institute Division of Plasma Phys., Atomic Phys. and Astrophysics

| Process                                                                                      | Method                                                                                                                                                         | Data Source /                                                                                                                                                                                               | Publications                                                                                                                                                                                                                               | Verification                                               | Problem                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              |                                                                                                                                                                | Code                                                                                                                                                                                                        |                                                                                                                                                                                                                                            | 1                                                          |                                                                                                                                                                                                                                          |
|                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | Application                                                |                                                                                                                                                                                                                                          |
| Screening<br>of Coulomb<br>potential in<br>$D^+ + D$<br>reactions<br>and other<br>collisions | Fitting of<br>calculated<br>data and use<br>of theoretical<br>consideration<br>s to make a<br>simple<br>formula for<br>estimating<br>the screening<br>constant | Could $C.C.Lu,$ $T.A. Carlson et al.,$ $Relativistic$ $Hartree-Fock Slater$ eigenvalues,radial expectationvalues, andpotentials for $atoms, 2 \le Z \le 126$ $At. Data and$ Nucl. Data Tables,vol 3 np 1-31 | A.N. Zinoviev,<br>Interatomic potentials at<br>high, medium and low<br>collision energies,<br>Proc. ISI-2017, vol. 1, p.<br>184<br>A.N. Zinoviev,<br>Nucl. Instr. and Meth. in<br>Phys. Res. B, vol. 406,<br>Part B, pp. 465-469<br>(2017) | Application<br>Comparisons<br>with<br>experimental<br>data | Precise knowledge<br>of the cross-<br>sections of nuclear<br>fusion involving<br>light elements is<br>needed in modeling<br>of nucleosynthesis<br>in the Sun and stars.<br>The presence of<br>electrons affects the<br>potential barrier |
|                                                                                              |                                                                                                                                                                | <u>(1971)</u>                                                                                                                                                                                               | <u>A.N. Zinoviev et al.,</u><br><u>Journal of Surface</u><br><u>Investigation, vol. 10,</u><br><u>pp. 576–578 (2016)</u>                                                                                                                   |                                                            | shape and, hence,<br>the tunneling<br>probability.<br>Astrophysical S-<br>factor was obtained<br>taking into account<br>this effect.                                                                                                     |

#### **Graph from**

A.N. Zinoviev, Nucl. Instr. and Meth. in Phys. Res. B, vol. 406, Part B, pp. 465-469 (2017)



Astrophysical S-factor versus collision energy for <sup>2</sup>H(d,n)<sup>3</sup>He reaction. Comparison with experimental data from <u>U. Greife et al., Z. Phys. A, vol. 351 pp. 107-112 (1995)</u>.

#### A.F. loffe Physico-Technical Institute Division of Plasma Phys., Atomic Phys. and Astrophysics

| Process                              | Method                                | Data Source /          | Publications           | Verification /    | Problem            |
|--------------------------------------|---------------------------------------|------------------------|------------------------|-------------------|--------------------|
|                                      |                                       | Code                   |                        | Application       |                    |
| Electron                             | Target atoms                          | Experimental           | <u>V.V. Afrosimov,</u> | Useful for        | Plasma             |
| capture and                          | were supplied                         | setup described        | <u>A.A. Basalaev,</u>  | checking the      | diagnostics,       |
| electron                             | with an                               | in                     | <u>M.N. Panov</u>      | correctness of    | plasma heating     |
| capture with                         | effusion gas                          | <u>V.V. Afrosimov,</u> | Tech. Phys.            | model potentials  | and current drive. |
| ionization of                        | jet. A                                | <u>A.A. Basalaev,</u>  | <u>Lett. 43 (2017)</u> | used in           |                    |
| Ar by He <sup>2+</sup>               | collimated                            | <u>G.N. Ogurtsov,</u>  | <u>122-125</u>         | calculations of   |                    |
| ions                                 | beam of <sup>3</sup> He <sup>2+</sup> | <u>M.N. Panov</u>      |                        | the interaction   |                    |
|                                      | ions was used                         | <u>Tech. Phys. 59</u>  |                        | of H and He ions  |                    |
| $He^{2+} + Ar \rightarrow$           | with energy in                        | <u>(2014) 642-648</u>  |                        | with              |                    |
| $He^+ + Ar^{n+} +$                   | keV range.                            |                        |                        | multielectron     |                    |
| ( <b>n-1</b> ) <i>e</i> <sup>-</sup> |                                       |                        |                        | atoms of          |                    |
| $n \ge 1$                            |                                       |                        |                        | impurities.       |                    |
|                                      |                                       |                        |                        | Applicable in     |                    |
| and                                  |                                       |                        |                        | numerical         |                    |
|                                      |                                       |                        |                        | modelling of      |                    |
| $He^{2+} + Ar \rightarrow$           |                                       |                        |                        | physical          |                    |
| $He^0 + Ar^{n+} +$                   |                                       |                        |                        | processes in      |                    |
| (n-2) <i>e</i> <sup>-</sup>          |                                       |                        |                        | controlled fusion |                    |
| $n \ge 2$                            |                                       |                        |                        | devices.          |                    |
|                                      |                                       |                        |                        |                   |                    |

#### A.F. loffe Physico-Technical Institute Division of Plasma Phys., Atomic Phys. and Astrophysics

| Process                              | Method                             | Data Source /          | Publications            | Verification /  | Problem               |
|--------------------------------------|------------------------------------|------------------------|-------------------------|-----------------|-----------------------|
|                                      |                                    | Code                   |                         | Application     |                       |
| Mechanism                            | A collimated                       | Experimental           | <u>V.V. Afrosimov,</u>  | Useful for      | Studies of ionization |
| of radiation                         | monokinetic                        | setup described        | <u>A.A. Basalaev,</u>   | probing the     | and fragmentation     |
| damage of                            | beam of                            | in                     | <u>V.V. Kuz'michev,</u> | intrinsic       | of amino acids are    |
| amino acid                           | <sup>3</sup> He <sup>2+</sup> ions | <u>V.V. Afrosimov,</u> | <u>M.N. Panov,</u>      | properties of   | hiological            |
| molecules                            | with energy                        | <u>A.A. Basalaev,</u>  | <u>O.V. Smirnov</u>     | the molecules   | significance.         |
|                                      | 4 keV/u                            | <u>Yu.G. Morozov,</u>  | <u>Tech. Phys. 61</u>   | and tracing     | Glycine was found     |
| He <sup>2+</sup> + Trp →             | intersected                        | <u>M.N. Panov</u>      | <u>(2016) 342-348</u>   | their chemical  | in the interstellar   |
| He <sup>(2-s) +</sup> +              | the effusive                       | <u>et al.</u>          |                         | structure       | space and in dust     |
| Trp <sup>n+</sup> +                  | jet of                             | <u>Tech. Phys. 58</u>  | <u>V.V. Afrosimov,</u>  | changes under   | samples from          |
| ( <b>n-s</b> ) <i>e</i> <sup>-</sup> | molecules.                         | <u>(2013) 1243-</u>    | <u>A.A. Basalaev,</u>   | the ion impact. | comets. This          |
|                                      |                                    | <u>1250</u>            | <u>V.V. Kuz'michev,</u> |                 | of the role of        |
| $He^{2+} + Gly \rightarrow$          |                                    |                        | <u>M.N. Panov,</u>      |                 | extraterrestrial      |
| He <sup>(2-s) +</sup> +              |                                    |                        | <u>O.V. Smirnov</u>     |                 | amino acids in        |
| Gly <sup>n+</sup> +                  |                                    |                        | Tech. Phys.             |                 | the origination of    |
| ( <b>n-s</b> ) <i>e</i> <sup>-</sup> |                                    |                        | <u>Lett. 43 (2017)</u>  |                 | life on Earth.        |
|                                      |                                    |                        | <u>351-354</u>          |                 | Tryptophan is the     |
|                                      |                                    |                        |                         |                 | of serotonin          |
|                                      |                                    |                        |                         |                 | plaving an            |
|                                      |                                    |                        |                         |                 | important role in     |
|                                      |                                    |                        |                         |                 | humans.               |

#### P.N. Lebedev Physics Institute RAS

V.P. Shevelko et al.

| Processes         | Method        | Data                    | Publication                     | Verification /            | Problem               |
|-------------------|---------------|-------------------------|---------------------------------|---------------------------|-----------------------|
|                   |               | Source \                |                                 | Application               |                       |
|                   |               | Code                    |                                 |                           |                       |
| Charge-state      | A combination | New BREIT               | <u>N. Winckler et al.,</u>      | ICF driven by             | Energy losses of      |
| heavy-ion beams   | and quantum   | code for<br>calculating | Meth. in Phys.                  | neavy ion beams.          | depend on their       |
| in matter         | mechanical    | charge-                 | <u>Res. B, vol. <b>392</b>,</u> | Facility for              | interaction cross     |
|                   | approaches    | state                   | <u>pp. 67-73 (2017)</u>         | Antiproton and            | sections with atoms   |
|                   |               | fractions               |                                 | Ion Research              | and molecules of      |
| Uranium ions      |               | ofion                   | <u>V.P. Shevelko et</u>         | (FAIR) in EU and          | the residual gas in a |
| stripping in      |               | beams                   | <u>al., Nucl. Instr.</u>        | Nuclotron-based           | wide energy range.    |
| molecular         |               | passing                 | and Meth. in                    | Ion Collider              |                       |
| hydrogen          |               | through                 | Phys. Res. B, vol.              | <u>fAcility (NICA)</u> in | In heavy-ion          |
|                   |               | matter                  | <b>377</b> , pp. 77-82          | Russia                    | therapy, the          |
|                   |               |                         | <u>(2016)</u>                   |                           | creation of the       |
| Multiple Electron |               | RICODE                  | <u>L. Bozyk et al.,</u>         |                           | secondary             |
| Losses in Uranium |               |                         | <u>Nucl. Instr. and</u>         |                           | electrons due to      |
| Ion Beams         |               | CAPTURE,                | <u>Meth. in Phys.</u>           |                           | multiple ionization   |
|                   |               | ARSENY,                 | <u>Res. B, vol. <b>372</b>,</u> |                           | may be an             |
|                   |               | DEPOSIT                 | <u>pp. 102-108</u>              |                           | important effect.     |
|                   |               |                         | <u>(2016)</u>                   |                           |                       |

#### NRC Kurchatov Institute

#### V.S. Lisitsa, D.S. Leontyev, A.V. Demura, V.A. Shurygin

| Process                                                      | Method                                                                                                                               | Data Source /                                                    | Publications                                                                                                                                                                                                                                                                                       | Verification /                                                                                       | Problem                                                                                         |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                      | Code                                                             |                                                                                                                                                                                                                                                                                                    | Application                                                                                          |                                                                                                 |
| Dielectronic<br>recombination<br>of heavy ions<br>in plasmas | Thomas-<br>Fermi,<br>Brandt-<br>Lundquist,<br>and Rost<br>model of<br>collective<br>oscillations of<br>atomic<br>electron<br>density | The statistical<br>model of the<br>dielectronic<br>recombination | D.S. Leontyev,<br>V.S. Lisitsa,<br>Contrib. Plasma<br>Physics <b>56</b><br>(2016) 846-<br>854<br>D. S. Leontyev,<br>Problems At,<br>Sci. & Techn.<br>40 (2017) 19-22<br>A. V. Demura et<br>al, JETP <b>152</b><br>(2017) (in<br>press)<br>A. V. Demura<br>et al., EPJ Web<br>Conf. 132, (<br>2017) | Comparison with<br>a) data from<br>detailed level-by-<br>level codes, and<br>b) experimental<br>data | Integrated<br>modeling of<br>fusion<br>experiments<br>Diagnostics of<br>thermonuclear<br>plasma |



Dielectronic recombination rate coefficients Q versus electron temperature T
[1] A.V. Demura, D.S. Leontyev, V.S. Lisitsa, V.A. Shurigyn, JETP, 152 (2017) in press.
[2] D. S. Leontyev, Problems At. Sci. & Techn., 40 (2017) 19-22.
[3] A. V. Demura, D. S. Leontyev, V. S. Lisitsa, V. A. Shurigyn, EPJ Web Conf. 132, (2017) XXV-th Congress on Spectroscopy, 2016
[4] Wu Z., Fu Y., Ma X., Li M., Xie L., Jiang J., Dong C. — Atoms 2015, vol. 3, p. 474.
[5] K. Asmussen, K. B. Fournier, J. M. Laming, J. F. Seely, R. Dux, W. Engelhardt, and J. C. Fuchs, Asdex upgrade team, Nucl. Fusion 38, 967 (1998).

Researchers from 4 Russian institutions in Moscow, Tomsk and Snezhinsk are contributing to VAMDC activity



IOP Publishing

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 074003 (18pp)

Journal of Physics B: Atomic, Molecular and Optical Physics

doi:10.1088/0953-4075/49/7/074003

## The virtual atomic and molecular data centre (VAMDC) consortium\*

M L Dubernet<sup>1</sup>, B K Antony<sup>2</sup>, Y A Ba<sup>1</sup>, Yu L Babikov<sup>3,4</sup>, K Bartschat<sup>5</sup>, V Boudon<sup>6</sup>, B J Braams<sup>7</sup>, H-K Chung<sup>7</sup>, F Daniel<sup>8</sup>, F Delahaye<sup>1</sup>, G Del Zanna<sup>9</sup>, J de Urquijo<sup>10</sup>, M S Dimitrijević<sup>1,11</sup>, A Domaracka<sup>12</sup>, M Doronin<sup>1</sup>, B J Drouin<sup>13</sup>, C P Endres<sup>14</sup>, A Z Fazliev<sup>3</sup>, S V Gagarin<sup>15</sup>, I E Gordon<sup>16</sup>, P Gratier<sup>17,18</sup>, U Heiter<sup>19</sup>, C Hill<sup>20</sup>, D Jevremović<sup>11</sup>, C Joblin<sup>21</sup>, A Kasprzak<sup>22</sup>, E Krishnakumar<sup>23</sup>, G Leto<sup>24</sup>, P A Loboda<sup>15,25</sup>, T Louge<sup>21</sup>, S Maclot<sup>12,26</sup>, B P Marinković<sup>27</sup>, A Markwick<sup>28</sup>, T Marquart<sup>19</sup>, H E Mason<sup>9</sup>, N J Mason<sup>29</sup>, C Mendoza<sup>30</sup>, A A Mihajlov<sup>27</sup>, T J Millar<sup>31</sup>, N Moreau<sup>1</sup>, G Mulas<sup>21,32</sup>, Yu Pakhomov<sup>33</sup>, P Palmeri<sup>34</sup>, S Pancheshnyi<sup>35</sup>, V I Perevalov<sup>3</sup>, N Piskunov<sup>19</sup>, J Postler<sup>36</sup>, P Quinet<sup>34,37</sup>, E Quintas-Sánchez<sup>1</sup>, Yu Ralchenko<sup>38</sup>, Y-J Rhee<sup>39</sup>, G Rixon<sup>40</sup>, L S Rothman<sup>16</sup>, E Roueff<sup>1</sup>, T Ryabchikova<sup>33</sup>, S Sahal-Bréchot<sup>1</sup>, P Scheier<sup>36</sup>, S Schlemmer<sup>41</sup>, B Schmitt<sup>8</sup>, E Stempels<sup>19</sup>, S Tashkun<sup>3</sup>, J Tennyson<sup>20</sup>, VI G Tyuterev<sup>42</sup>, V Vujčić<sup>11,43</sup>, V Wakelam<sup>17,18</sup>, N A Walton<sup>40</sup>, O Zatsarinny<sup>5</sup>, C J Zeippen<sup>1</sup> and C M Zwölf<sup>1</sup>

## 2. Use of atomic and molecular data in controlled nuclear fusion research

#### Peter the Great Polytechnic University and A.F. Ioffe Physico-Technical Institute

| Problem                                                                                                         | Task                                                                                                                                                              | Publication                                                                                                                                                                                                                                   | Processes                                         | Data Source                                                                                                                                                                                                                                                                                 | Data Needs                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Numerical<br>modelling and<br>measurements<br>of the ion<br>distribution<br>function on<br>Globus-M and<br>ITER | Calculations of<br>penetration of<br>heating and<br>diagnostic<br>neutral beams<br>into plasma.<br>Formation of<br>the flux of<br>escaping fast<br>neutral atoms. | S.Ya. Petrov,<br>V.I. Afanasyev et<br>al.<br>Design features of<br>neutral particle<br>diagnostic system<br>for ITER<br>Problems of<br>Atomic Science<br>and Technology,<br>Series<br>Thermonuclear<br>Fusion 39 (2016)<br>issue 1, pp. 68-80 | Charge changing<br>reactions involving<br>H, D, T | R.K. Janev et al.<br>Nucl. Fusion 29<br>(1989) 2125-2140<br>S. Suzuki et al.<br>Plasma Phys.<br>Control. Fusion 40<br>(1998) 2097–2111<br>R.K. Janev et al.,<br>Eds. ATOMIC AND<br>PMI DATA FOR<br>FUSION, Suppl. to<br>Nucl. Fusion (IAEA<br>'green books')<br>and other<br>published data | Improved<br>beam<br>penetration<br>model<br>taking into<br>account<br>more<br>impurity<br>species |



### **LENPA and HENPA for ITER**





1 – stripping films;
 2 – LENPA accelerator;
 3 – electromagnets;
 4 – plain capacitors;
 5 – detector arrays;
 6 – adjustable support

| Problem              | Task           | Publication               | Processes          | Data Source         | Data Needs         |
|----------------------|----------------|---------------------------|--------------------|---------------------|--------------------|
|                      |                |                           |                    |                     |                    |
| ITER main            | Measurement    | <u>A.B. Kukushkin,</u>    | All processes      | All for ITER        | Beryllium ion      |
| chamber H-           | accuracy       | <u>V.S. Neverov,</u>      | with $D_2$ and $D$ | <b>B2-EIRENE</b>    | transition         |
| alpha (and           | assessment,    | <u>A.G. Alekseev et</u>   |                    | (SOLPS4.3):         | probabilities in a |
| Visible              | Divertor Stray | <u>al., Fusion Sci.</u>   | All processes      | background plasma   | strong magnetic    |
| Light)               | Light (DSL)    | <u>Technol. <b>69</b></u> | with               | in divertor+SOL     | field              |
| <b>Diagnostic:</b>   | problem,       | <u>(2016) 628-642</u>     | impurities         | EIDENE: poutral D   |                    |
| "Synthetic           | optimization   |                           | (Be, W, etc.)      | volocity            | Hydrogen isotope   |
| <b>Diagnostics</b> " | of optical     | E.N. Andreenko,           |                    | distribution in SOI | molecules          |
| for error            | dumps,         | <u>A.G. Alekseev,</u>     |                    |                     | dissociation with  |
| assessment           | ITER           | <u>A.B. Kukushkin</u>     |                    | LightTools: Balmer- | excited atoms as   |
| and                  | Measurement    | <u>et al. , Fusion</u>    |                    | alpha and Be DSL    | products           |
| hardware             | Requirement    | <u>Eng. Des., in</u>      |                    | intensity           |                    |
| optimization         | flow down      | <u>press (2017)</u>       |                    | ZEMAX: Balmer-      | Beryllium hydride  |
|                      |                |                           |                    | alpha DSL spectrum  | molecules          |
|                      |                | S. Kajita, et al.         |                    | OSM+EIRENE+         |                    |
|                      |                | Nuclear Fusion            |                    | DIVIMP: Be          |                    |
|                      |                | 2017 (accepted)           |                    | emission            |                    |
|                      |                |                           |                    | ADAS, in most of    |                    |
|                      |                |                           |                    | ADAS: In MOSt OI    |                    |
|                      |                |                           |                    | above codes         |                    |



S. Kajita, et al. PPCF 2013. LightTools code, SL intensity (integral in wavelength). Input: D-alpha emissivity from SOLPS (background SOL plasma), OSM-EIRENE-DIVIMP (SOL extended to first wall), ADAS (atomic data) (see Refs. in [1])

ZEMAX code, spectral line shape of the SL. Optimization of optical dumps in [1].

[1] E.N. Andreenko, A.G. Alekseev, A.B. Kukushkin, V.S. Neverov, S.W. Lisgo et al. , Fusion Engineering and Design (2017)



Fine structure of  $1s^24s \rightarrow 1s^23p$  in magnetic field (0.1-10 T): fine structure comparable with Zeeman splitting in

probabilities in a strong magnetic field are **not** present literature. Needed for high resolution spectroscopy of Be in ITER and JET.



| Problem       | Task            | Publication              | Processes     | Data Source              | Data Needs         |
|---------------|-----------------|--------------------------|---------------|--------------------------|--------------------|
| H-alnha       | Verification of | VS Neverov               | All processes | Synthetic                | Similar to needs   |
| diagnostia in |                 | A. D. Kukuchkin          | with D and H  | diagnostic for ITED      | for ITED or g      |
| diagnostic in | п-арпа          | <u>A.B. KUKUSTIKITI,</u> |               |                          | IOF ITER, e.g.     |
| JET-ILW in    | synthetic       | <u>M.F. Stamp et</u>     | in SOL        | A.B. Kukushkin, V.S.     | beryllium ion      |
| support to    | diagnostic for  | <u>al., Nucl. Fusion</u> |               | <u>Neverov, et al.</u>   | transition         |
| ITER main     | ITER in JET     | <u>57 (2017)</u>         |               | Fusion Sci. Tech.,       | probabilities in a |
| chamber H-    | ITER-like Wall  | <u>016031</u>            |               | <u>2016, 69(3), 628-</u> | strong magnetic    |
| alpha (and    | experiments     |                          |               | <u>642</u>               | field              |
| Visible       |                 |                          |               |                          |                    |
| Light)        | Isotope ratio   | V.S. Neverov,            |               |                          |                    |
| Diagnostic    | monitoring in   | A.B. Kukushkin.          |               |                          |                    |
|               | JET main        | KSRprocess               |               |                          |                    |
|               | chamber (with   | software on JET          |               |                          |                    |
|               | account of      |                          |               |                          |                    |
|               | noticeable      |                          |               |                          |                    |
|               | DSL) and        |                          |               |                          |                    |
|               | divertor        |                          |               |                          |                    |
|               |                 |                          |               |                          |                    |
|               |                 |                          |               |                          |                    |
|               |                 |                          |               |                          |                    |
|               |                 |                          |               |                          |                    |
|               |                 |                          |               |                          |                    |

#### H-alpha high-resolution spectroscopy (HRS) on JET

**KSRprocess** code [V.S. Neverov, A.B. Kukushkin] is operating on **JET** data processing cluster for recovering the isotope ratio of hydrogen and deuterium in the SOL and divertor from high-resolution spectrum (HRS) of Balmer-alpha lines. **The HRS and respective atomic databases are critically needed** to separate useful signal (light from **LFS SOL** and **HFS SOL** on the lines of sight in main chamber, tracks 11 and 12 from equatorial ports) from background (divertor stray light, recovered from direct observation of divertor from the top).



V.S. Neverov, A.B. Kukushkin, M.F. Stamp, et al., Nucl. Fusion 57 (2017) 016031

# 3. Recent works on plasma-material interaction data

Development of a fusion-fission hybrid system was mentioned among the priorities of Russian research programme on controlled nuclear fusion E.A. Azizov et al. Update of Russian Federation Roadmap 2nd IAEA DEMO Programme Workshop, 17-20 December 2013 B.V. Kuteev, Yu.S. Shpanskiy and DEMO-FNS Team Status of DEMO-FNS Development 26th IAEA Int. Conf. on Fusion Energy, Kyoto, Japan, 17–22 October 2016 Nucl. Fusion 57 (2017) 076039 This urges vigorous activity on the selection and testing of materials for steady state operation and studies of the underlying PMI processes > 19<sup>th</sup> Russian Conference on Plasma-Surface Interaction 28-29 January 2016, Moscow, Russia http://plasma.mephi.ru/ru/psi2016en > 20<sup>th</sup> Russian Conference on Plasma-Surface Interaction 26-27 January 2017, Moscow, Russia <u>http://plasma.mephi.ru/ru/psi2017en</u> 23<sup>rd</sup> International Conference on Ion-Surface Interactions (ISI-2017) 21-25 August 2017, Moscow, Russia <u>http://isi2017.spbstu.ru/</u> 5th International Symposium on Liquid Metals Applications for Fusion (ISLA-5) 25-27 September 2017, Moscow, Russia http://www.isla2017.mephi.ru/



Russian Conferences on Plasma Surface Interaction are mostly attended by domestic participants reporting on activities in Russia

Selected papers from the 19<sup>th</sup> Conference have been published in a special issue of <u>Journal of Physics: Conference Series (IOP)</u>, vol. 748

Materials of the 20<sup>th</sup> Conference are not yet available in English. Selected papers are expected to appear in a journal later this year (presumably Journal of Physics: Conference Series).

| Processes                                                                                                                                  | Method                                                                                                                                                                                                                               | Publication                                                                                                                                                            | Verification /<br>Application    | Problem                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Deuterium removal<br>from radiation<br>damage in<br>tungsten by<br>isotopic exchange<br>with hydrogen<br>atomic beam                       | W samples were<br>pre-irradiated<br>with self-ions to<br>create radiation-<br>induced defects<br>and then<br>exposed to the<br>$D^0$ beam. The<br>deuterium<br>removal was<br>studied by<br>isotopic<br>exchange with<br>$H^0$ beam. | <u>O.V. Ogorodnikova et al.</u><br><u>Journal of Physics:</u><br><u>Conference Series <b>748</b> (2016)</u><br>012007                                                  | Controlled<br>fusion<br>research | The fuel removal<br>methods from the wall<br>materials need to be<br>developed. One possible<br>method is the isotope<br>exchange. |
| Surface<br>modification and<br>deuterium<br>retention in<br>reduced-activation<br>steels under low-<br>energy deuterium<br>plasma exposure | Reduced-<br>activation<br>ferritic/martensit<br>ic (RAFM)<br>steelswere<br>exposed to low<br>energy D<br>plasma (~20–<br>200 eV per D).                                                                                              | <u>O.V. Ogorodnikova et al.</u><br><u>Nucl. Fusion 57 (2017)</u><br><u>036010</u><br><u>O.V. Ogorodnikova et al.</u><br><u>Nucl. Fusion 57 (2017)</u><br><u>036011</u> | _//_                             | Retention of Hydrogen<br>isotopes in PFMs.                                                                                         |

| Processes                                                                           | Method                                                                                                                              | Publication                                                                                                                         | Verification /<br>Application                                                                                                                         | Problem                                                                                                                    |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Simulation of<br>diffusion of<br>hydrogen<br>atoms in the<br>lattice of<br>tungsten | Calculations<br>using density<br>functional<br>theory (DFT)                                                                         | <u>N.N. Degtyarenko, A.A.</u><br><u>Pisarev, Journal of Physics:</u><br><u>Conference Series <b>748</b> (2016)</u><br><u>012010</u> | Calculated<br>temperature<br>dependences<br>of the<br>diffusion<br>coefficient<br>were<br>compared with<br>experimental<br>data from<br>bibliography. | Behaviour of Hydrogen<br>isotopes in PFMs.                                                                                 |
| Plasma facing<br>elements<br>based on a<br>liquid tin<br>capillary pore<br>system   | The corrosion<br>resistance of<br>Mo, Nb and<br>W in pure<br>liquid tin was<br>investigated.<br>at<br>temperatures<br>up to 1050°C. | I.E. Lyublinski et al. Journal<br>of Physics: Conference Series<br>748 (2016) 012014                                                | It was found<br>that Mo does<br>not corrode in<br>liquid Sn                                                                                           | Selection of alloy base<br>material of the in-vessel<br>tokamak elements based<br>on liquid tin capillary<br>pore systems. |



Newest PMI activities in Russia and in the world were reported at the 23rd International Conference on Ion-Surface Interactions (<u>ISI-2017</u>, 21-25 August 2017, Moscow, Russia)

Selected papers will be published in special issues of

- Bulletin of the Russian Academy of Sciences: Physics (Springer)
- Journal of Surface Investigation (Springer)
- <u>Vacuum</u> (Elsevier )

- Radiation Effects and Defects in Solids (Taylor & Francis)



More than 60 oral presentations, about 50% of them authored by researchers from Russia and others from EU, Japan, Korea, Norway, South Africa, UK, USA, and other countries

#### About 130 poster presentations

- The scope of the conference is broad, covering fundamental science, controlled nuclear fusion, and industry, including 6 sections
  - Sputtering, surface structure, desorption
  - Ion scattering and propagation
  - Emission of ions, e<sup>-</sup>, photons under ion-surface interaction
  - Ion implantation and surface modification
  - Ion-assisted processes in thin films and nanostructures
  - Physics and technology of plasma-surface interaction

#### **ISI-2017** Conference Reports relevant to Controlled Fusion

| Processes                                                                                                                                 | Method                                                                                                                                                | Publication                                                                                                                                             | Verification /<br>Application                                  | Problem                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen and<br>helium retention in<br>tungsten under ion<br>irradiation                                                                  | Experiment                                                                                                                                            | <u>Y. Gasparyan,</u><br><u>Programme of ISI-2017, p. 12</u>                                                                                             | ITER,<br>DEMO-FNS                                              | W, Be, and C are being<br>considered as PFMs.<br>Retention is important in<br>studies of plasma fueling and<br>helium ash removal.                                                                                                                                             |
| Hydrogen trapping<br>into and release<br>from tungsten<br>covered by<br>beryllium/<br>aluminum oxide<br>layer under plasma<br>irradiation | Experiment:<br>Irradiation of<br>tungsten and<br>tungsten covered<br>with Be/Al layers<br>with 50 eV/at ions<br>of $H_2$ +1% $O_2$<br>plasma at 500 K | <u>L. Begrambekov,</u><br><u>A. Kaplevsky,</u><br><u>A. Evsin,</u><br><u>S. Dovganyuk,</u><br><u>A. Zakharov</u><br><u>Programme of ISI-2017</u> , p. 7 | ITER,<br>DEMO-FNS                                              | Sputtering of PFMs, transport<br>of sputtered particles and<br>subsequent deposition may<br>lead to the appearance of<br>coatings.<br>Detritiation of W, Be, and Be-<br>coated tungsten at low<br>temperatures by irradiation<br>with hydrogen plasma with<br>oxygen addition. |
| Removal of<br>deuterium<br>implanted into<br>graphite by<br>consequent<br>irradiation by ions<br>of hydrogen<br>plasma                    | Experiment:<br>irradiation of<br>surface with<br>hydrogen atoms                                                                                       | A.A. Ayrapetov,<br>L.B. Begrambekov,<br>S.S. Dovganuk,<br>A.S. Kapleuski,<br><i>Programme of ISI-2017, p. 12</i>                                        | Laboratory<br>plasma devices,<br>controlled fusion<br>research | Outgassing and detritization<br>of graphite and boron<br>carbide by plasma<br>irradiation at low<br>temperatures.                                                                                                                                                              |

## The Stand for film deposition and material irradiation



L.B. Begrambekov, E.A. Azizov, O.I. Buzhinsky et al. **Proc.** 25th IAEA Fusion Energy Conf. (2014), MPT/P4-17

#### The goals of the Stand construction

- Investigation of conditions of boron carbide (B<sub>4</sub>C) coating deposition on tungsten;
- Testing of materials and thin films under thermal cycles and high power density ion and electron beam irradiation.

#### The method of B<sub>4</sub>C coating deposition

 The B<sub>4</sub>C coating is formed on tungsten substrate through deposition of boron and carbon atoms sputtered by plasma ions from boron and carbon targets

| The conditions of $D_A C$ deposition | The | conditions | of B <sub>2</sub> | <sup>1</sup> C de | position |
|--------------------------------------|-----|------------|-------------------|-------------------|----------|
|--------------------------------------|-----|------------|-------------------|-------------------|----------|

| Residual vacuum            | ≤ 2×10 <sup>-8</sup> Pa |
|----------------------------|-------------------------|
| Energy of sputtering ions  | ≤ 20 KeV                |
| Current of sputtering ions | ≤ 200 mA                |
| Temperature                | 500 - 900°C             |

#### The conditions of high heat load test

Quasy-stationary ion/electron beamwith power density $\leq 40 \text{ MW/m}^2$ Testing cycle frequency $\geq 1 \text{msec}$ Temperature of testing material $\leq 2200^{\circ}\text{C}$ 

#### NRNU Moscow Eng. Phys. Institute

#### L.B. Begrambekov et al.

Amounts of deuterium and hydrogen atoms in the tungsten samples without coatings (W) and with beryllium ( $W_{Be}$ ) and aluminum ( $W_{Al}$ ) layers after deuterium implantation and following irradiation by  $H_2 + 1 \% O_2$  plasma.

|                 | Amount of deuterium atoms,<br>×10 <sup>19</sup> at/m <sup>2</sup> |                                 | Amount of hydrogen atoms,<br>×10 <sup>19</sup> at/m <sup>2</sup> |                         |
|-----------------|-------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|
| 1               | 2                                                                 | 3                               | 4                                                                | 5                       |
|                 | Before irradiation                                                | After irradiation               | Before irradiation                                               | After irradiation with  |
| Sample          | with ions of H <sub>2</sub> +1%                                   | with ions of H <sub>2</sub> +1% | with ions of                                                     | ions of $H_2$ +1% $O_2$ |
|                 | O <sub>2</sub> plasma                                             | O <sub>2</sub> plasma           | H <sub>2</sub> +1% O <sub>2</sub> plasma                         | plasma                  |
| w               | 9.4                                                               | 1.6                             | 0.6                                                              | 0.4                     |
| W <sub>Be</sub> | 16.0                                                              | 3.1                             | 6.5                                                              | 4.1                     |
| W <sub>AI</sub> | 28.0                                                              | 13.0                            | 21.4                                                             | 48.2                    |

#### Scheme of the experiments



#### **G.I. Budker Institute of Nuclear Physics**

| Processes                                                                                         | Method                                                                                                                                                                                 | Publication                                                                                                                                                 | Verification /<br>Application                                                  | Problem                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study of plasma-<br>surface interaction<br>at the GOL-3<br>facility                               | Experiments on<br>GOL-3                                                                                                                                                                | A.A. Shoshin, A.S.Arakcheev<br>et al. Fusion Engineering and<br>Design, vol. <b>114</b> (2017), pp.<br><u>157-179</u><br>(review paper)                     | Comparisons of<br>different<br>facilities for PSI<br>studies are<br>presented. | Experimental studies of PSI<br>and behavior of materials<br>under plasma loads in the<br>multiple-mirror trap of the<br>GOL-3 facility. The energy<br>density in the extracted plasma<br>stream varied from 0.5 to<br>30 MJ/m <sup>2</sup> .                                                                   |
| In-situ imaging of<br>tungsten surface<br>modification under<br>ITER-like transient<br>heat loads | A wide-area long-<br>pulse electron<br>beam was used<br>for transient<br>heating of<br>tungsten. Sample<br>surface was<br>imaged with fast<br>CCD cameras<br>during the beam<br>pulse. | A.A.Vasilyev, A.S.Arakcheev<br>et al. Nuclear Materials and<br>Energy, in press (available<br>online 2016)<br>https://doi.org/10.1016/j.nme.<br>2016.11.017 | ITER and other<br>controlled fusion<br>research projects                       | A specialized test installation<br>for research on material<br>behavior under the impact of<br>the powerful thermal shock<br>was developed at the Budker<br>Institute. It grants new<br>capabilities for experimental<br>simulation of transient heat<br>loads corresponding to ITER-<br>relevant ELMs type I. |

- Generation of A-M data by experimental and computational methods in Russia in the past two years is reflected in a large number of publications in high-rank international journals
- Studies are motivated by astrophysics, biochemistry, fundamental science and controlled fusion research
- Development of ITER diagnostics in Russia reveals new data needs
- Strategic goals of Russian domestic research programme lead to vigorous activity on PMI data
- Generation of new PMI data was reported at several conferences hosted by Russian institutions and published in international scientific journals