Current Activities(2014~2015) of Atomic and Molecular Database at NFRI

Jung-Sik Yoon and DCPP members

National Fusion Research Institute, Plasma Technology Research Center, Data Center for Plasma Properties

Main activities of NFRI(DCPP)

2003. 01. Plasma Properties Information System

- with KISTI (Korea Institute of Science, Technology and Information)
- A+M DB for Industrial Plasma Applications

2006. 12. Launch of DCPP Project

- Supported by Ministry of Knowledge Economy
- making Standard Reference Data for Low Temperature Plasmas
- making USER Network
- ISO 9001:2000 / KSA 9001:2001 (Quality Management System)

2008. 09. Construction of APAN Network

- APAN : Asia-Pacific Atomic data Network
- Korea, Japan, Australia, India, China

2010. 05. ADAS Project Steering Committee

- IDL – ADAS Program install & committee activity

2010. 06. Construction of Data User Network

- 3 major Company join DUN, 30 small and medium company
- University-Industry-Institute value chain for Data Business
- 2 Technology Transfer

Main activities of NFRI(DCPP)

2011. 05. IAEA- Coordinated Research Project

 Evaluation of Cross Section for Electron Impact with Hydrogen and Helium and Their Combination Molecules in Fusion Plasma

2012. 09. NFRI-IAEA-Technical Meeting

- The Joint IAEA-NFRI Technical Meeting (TM) on Data Evaluation for Atomic, Molecular and Plasma Material Interaction Processes in Fusion

2013. 01. Organization of Evaluator group

- Group Meeting on Procedures for Evaluation of CH4,C2H2, NF3 Collision Processes

2014. 12. NFRI-IAEA-Technical Meeting

- Decennial IAEA Technical Meeting on Atomic, Molecular and Plasma-Material Interaction Data for Fusion Science and Technology

Research activities

→LTP full-set data + simulation

Data generation(exp. & theoretical) incl. Bio-data ('15)

Data Evaluation

Group evaluation(with IAEA) Evaluation network

→Data Center Network (contrib. to Fusion) AMBDAS support(with IAEA)

HIMIRF (<u>H</u>ighly-charged <u>I</u>on <u>M</u>atter <u>I</u>nteraction <u>R</u>esearch <u>F</u>acility)

→BIG data system for FUSION(KSTAR) Real-time DB+analysis system ('15)

Plasma Processing Gases

- 2~5 gas mixtures are used in semiconductor processing.
- Only few gases are well known and tested.

Process	Gases
Etching	SF6, Cl2, HBr, BCl3, CF4, CHF3, C4F8, C5F8, C4F6, C3F8, CH2F2, NF3, CO, O2, N2, Ar, He,
Deposition	SiH4, WF6, NH3, PH3, N2, O2, H2, He, Ar, TEOS, USG,
Cleaning	CF4, C2F6, C3F8, NF3, Ar,

Relatively well known chemistry

Current Status

- The compilation of database required for understanding most plasmas remains inadequate
- Spectroscopic database (for plasma monitoring)
 - → He, Ar plasmas have been agree well with diagnostic observations
 - → radicals and excited(vibrational and electronic) species : BAD
- Complete and consistent datasets for electron scattering crosssections from most molecular species encountered in commercial plasmas are limited to only a few system

(Hydrogen, Water, Oxygen, Argon, Nitrogen...)

- \rightarrow fluorocarbons for etching has never been compiled(partially done)
- Data for Atmospheric plasmas is even more worse

Reaction path of molecules(QM method)

Calculation of the ionization cross-section on molecules and radicals by electron impact

Research on electron collision with atoms and molecules

- Surko at UCSD has developed a **positron** system based on Malmberg-Penning trap.
- ANU group has adapted the idea to electron system.
- ANU-NFRI-CNU have been closely collaborating to realize this idea.

- Use of the invariance of E_{\perp}/B
- Use of the variable magnetic field ratio $M = B_1/B_2$

Total electron energy $E_T = E_{\parallel} + E_{\perp}$ The RPA measures E_{\parallel} Scattering can change E_{\parallel} .

 $\begin{array}{ll} \mbox{For an initial energy } E_i \mbox{ and } \mbox{ scattered energy } E_S \\ E_S = E_i \mbox{ elastic scattering} \\ \mbox{ or } E_S = E_i - E_{ex} \mbox{ inelastic scattering} \end{array}$

Angular scattering can also occur and change E_{\parallel} $E_{\parallel} = E_{s} cos^{2} q$

$$E_{\perp} = E_{S} \cos q$$
$$E_{\perp} = E_{S} \sin^2 q$$

Research on electron collision with atoms and molecules

Ref) Masashi Kitajima, Ryoji Suzuki, Kazumasa Otoguro, Toshinori Ishihara and Hiroshi Tanaka, Physica Scripta. Vol. T110, 420–423, 2004

: Vp, Vf, Te, ne, ni, EED(P)F

Research on the processing plasma DB

CCP plasma chamber & HIDEN EQP Gas line: CF4 C4F6, CH2F2, CHF3, C4F8

OES

ARCONCRA 11 SHATRI MEMBASS

: Relative radical density

EQP – Mass & Energy (Ion, Neutral species)

: V, I, Phase, Power

GLOBAL SIMULATORS | PLASMA DATABASE

GLOBAL SIMULATORS | PLASMA DATABASE

GLOBAL SIMULATORS | PLASMA DATABASE

○: validated DB
◇: validation is in progress
□: collected full-set DB

Gas	note	Gas	note
Ar	0	C_2F_6	
Cl ₂		CHF ₃	
Cl ₂ /Ar		BCl ₃ /Cl ₂ /Ar	
O ₂		C ₄ F ₆	0
O ₂ /Ar		C ₄ F ₆ /Ar	0
O ₂ /F ₂		CH ₂ F ₂ /Ar	0
CF ₄		C ₄ F ₆ /O ₂ /Ar	0
CF ₄ /O ₂ /Ar		$C_4F_6/C_4F_8/O_2$	0
SiH ₄ /O ₂ /Ar		$C_4F_6/C_4F_8/CH_2F_2/O_2$	0
HBr/Ar	0	$C_4F_6/C_4F_8/CH_2F_2/O_2/Ar$	0
SF ₆		NF ₃ /Ar	\diamond
SF ₆ /Ar		NF ₃ /O ₂	\diamond

Data Evaluation

2006. 12. Launch of DCPP Project

- Supported by Ministry of Knowledge Economy
- making Standard Reference Data for Low Temperature Plasmas
- making USER Network
- ISO 9001:2000 / KSA 9001:2001 (Quality Management System)

Data Evaluation Projects (IAEA)

Data Evaluation Projects

• eMOL project (EU)

- Project to develop methodology for analysing, validating and recommending electron molecule collision data sets.
- Will review 12-15 data sets in three years (2013-2015).
- Aim to provide recommended datasets **self-consistent** and **complete** (entire energy range, all processes).
- The first evaluation $e-H_2O$ (May 2013) one joint day with IAEA TM.
- NFRI group evaluation (Dr. M.-Y. Song)
 - Low temperature gas chemistry data evaluation (2010~ : $C_x F_v / Ar / O_2 / N_2$)
 - e-Methane collisional data evaluation (sample study, 2013~2014)
- IAEA Consultant meetings
 - CM on e-N₂ collision data evaluation with eMOL project (Dec. 2013)
 - CM on Beryllium atomic collisional data planned

Data Evaluation (Experimental Data)

- 1. Cross sections for electron collisions with hydrogen molecules Journal of Physical and Chemical Reference Data, 37 (2), 913 (2008)
- 2. Elastic cross sections for electron collisions with molecules relevant to plasma processing

Journal of Physical and Chemical Reference Data, 39 (3), 913 (2010)

- 3. Electron-impact cross sections for deuterated hydrogen and deuterium molecules Report on Progress in Physics, 73, 116401 (2010)
- 4. Electron impact cross sections of vibrationally and electronically excited molecules *Physics Reports, 543, 199-244 (2014)*
- 5. Collisions of Be, Fe, Mo and W atoms and ions with hydrogen isotopes: electron capture and electron loss cross sections, *Journal of Physics B 47 (2014)*
- 6. Electron-impact ionization of fluoromethanes **Review of experiments** and binary-encounter models,

International Journal of Mass Spectrometry 365-366 (2014)

7. Cross Sections for Electron Collisions with Methane, Journal of Physical and Chemical Reference Data, 44, 023101 (2015)

Evaluated data (2007 ~ 2015)

		TCS	ES	MT	DCS	TICS	PICS	TDCS	NDCS	TACS	DACS	VI	RO	EX
1	H2		С	С						Q		С	Q	Q
2	02	Q	Q	Q		Q	С	Q			С	Q		С
3	N2	Q	Q	С		Q	С	Q				Q	Q	Q
4	Ar	С	Q	Q		С	С							
5	Xe	С	Q	Q		С	С							
6	CF4	С	С	С	С	С	Q	Q	Q	Q				
7	C2F6	С	Q	Q		С	С	Q		Q				
8	C3F8	С	Q	Q		С	Q	Q		Q				
9	C4F8	С	С	С		Q	Q	Q		Q				
10	CF3I	С				Q	Q							
11	CHF3		С	С		С	Q	Q						
12	CCl2F2	Q	Q			С	Q							
13	SF6	С	Q	Q		Q	Q							
14	CCl4	С				С	С							
15	SiF4	С				Q	Q		Q					
16	SiF3					Q	Q							
17	SiF2					Q	Q							
18	SiF					Q	Q							
19	Si					Q	Q							
20	SiH4	С	Q	Q		С	С	Q						
21	Si2H6	Q	Q	Q				Q						
22	NF3	Q	Q	Q		Q	Q				Q			
23	NH3	С	Q	Q		Q	Q							
24	N2O					С	Q			Q	Q			
25	NO2					Q	Q							
26	NO		Q			Q	Q			Q				
27	С						Q							
28	0						Q							
29	Ν						Q							
30	F						Q							
31	Cl						Q							
32	Br						Q							

Evaluated data (2007 ~ 2015)

		TCS	ES	MT	DCS	TICS	PICS	TDCS	NDCS	TACS	DACS	VI	RO	EX
33	I						Q							
34	CFx				Q		Q							
35	NFx						Q							
36	SFx					Q	Q							
37	C2F4	Q	Q	Q		Q						Q		
38	F2					Q	Q				Q			
39	Cl2	С				С	Q							
40	BCI3	Q				Q	Q							
41	CO	С	С	Q		С	С				Q	Q	Q	Q
42	CO2	С	С	Q		С	С				Q	С		Q
43	CF3Cl	С	Q			С	Q							
44	CFCl3	Q					Q							
45	BF3	Q				Q					Q			
46	CS2	Q	Q			Q	Q				Q			
47	SO2	Q	Q	Q		С	Q	Q			Q			
48	CH3I	Q				Q	Q							
49	CH3Br	Q				Q	Q							
50	CH3Cl	Q				Q	Q							
51	CH3F	Q				Q	Q							
52	GeH4	Q	Q	Q										
53	GeF4	Q												
54	GeCl4	Q												
55	H2S	С	Q	Q		Q	Q							
56	SO					Q	Q							
57	HCI	Q									Q			
58	CS						Q							
59	S2						Q							
60	CH2F2					Q	Q							
61	03					Q	Q							
62	SiCl4	Q				Q	Q							
63	SiClx					Q	Q							
64	Si						Q							
65	S						Q							
66	Ge						Q							
67	SiDx						Q							
68	CH4	С	С	С	С	С	Q			Q	Q	Q		

HIMIRF at NFRI (from '13)

» HIMIRF (<u>Highly-charged</u> <u>Ion</u> <u>Matter</u> <u>Interaction</u> <u>Research</u> <u>Facility</u>)

†SMASHI(SC Multi-Application Source of Highly-charged Ions)

Matter Targets:

- Solid surface
- fusion reactor material
- Living cells
- **Biomolecules & Cluster**
- Gases and/or Plasma

HCI-induced products:

- Monoenergetic X-rays,
- EUV,
- Secondary electrons,
- Secondary lons,
- Highly excited neutrals

High Application Potential:

- medicine (cancer therapy)
- nanostructuring
- surface analysis
- micro- and nanolithography
- accelerator techniques a.o

NFRI Superconducting ECR Ion Source

» SMASHI(<u>S</u>C <u>M</u>ulti-<u>A</u>pplication <u>S</u>ource of <u>H</u>ighly-charged <u>l</u>ons) & its LEBT

Purposes of 18 GHz SMASHI at NFRI (1)

- » Development of Advanced high-performance ECR ion source
- 1) Studies on ECRIS Plasma

2) Development of compact high-performance ECR ion sources

for heavy ion therapy and material(surface) interaction

» <u>Highly-charged Ion Matter Interaction</u> by using well-defined ion beams

- 1) Investigation of various highly-charged ion-surface interaction
- 2) Ion beam studies & development of new fusion reactor material (C, Be, W...)
- 3) Highly-charged ion micro-beam irradiation of living cells

Liquid He-free SC ECRIS, SMASHI

» Main features of SMASHI

- I) 2.1 T (B_{inj}), 1.5 T (B_{ext}), 0.4-0.6 T (B_{min}) →"Liquid He-free" SC magnet
- 2) I.3 T of high radial field (PM hexapole)
- 3) Two frequency heating (18, $18 \pm \Delta$ GHz) Max.TWT power=1250 W
- 4) HP-capable Al/S.S. plasma chamber (Ø82×410 mm=2.2 liter)

5) Movable extraction-einzel lens system for low beam emittances

Max. extraction voltage(V_{ext})=30 kV, Mas. Einzel lens voltage=-30 kV

- 6) Capability to generate diverse ion elements from gas to metal
- 7) Two diagnostic ports for diagnosing the extraction region of plasma

First plasmas ('14)

» A Xenon Plasma observed from extraction side (20 W µwave power)

Initial Results of SMASHI

» A Preliminary results of beam charge spectra & their beam intensities

Example of ⁴⁰Ar ion beams

Operation conditions

- Max.TWT Power = 600 W¹ + 300 W²
 B_{ini}=1.7 T (80 %), B_{ext}=1.3 T, B_{min}=0.5 T
- Extraction voltage ≤ 20 kV, $\emptyset 8$ mm aperture
- Biased disk voltage = -200~600 V
- Stainless steel plasma chamber & No gas mixing

Charge	⁴He	³² O	⁴⁰ Ar	¹³² Xe
+	910			
2+	900 *			
3+				
4+				
5+		184		
6+		202*		
7+		43	105	
8+		4.3	200*	
9+			138	
10+			75	
+			31	
12+			9.4	
3+			2	
19+				25
20+				23*
21+				22

(unit: μA)

Big data system for KSTAR

Basic processing flow in KSTAR

Big data system for KSTAR

Fusion energy experiment

- Requirement to access, analyze, visualize and assimilate data between shots in *near real time*, to support decision making
- ➔ It contrasts with other fields, which operate primarily in a batch mode

A typical large facility might take shots at a rate of 2~4 per hour and accumulate about 2,000 shots per year.

Big data system for KSTAR

REQUIREMENTS

- Real-time processing of experimental data
- Enhanced scalability
- Enhanced I/O performance
- Support of modern scientific data formats
- Coherent, integrated view of all data through simple interfaces and tools

Data accessibility/concurrency

- · Concurrent read/write even during pulse acquisition
- Remote participation required
- Flexibility
 - New apps, new research questions
- User-oriented system
 - Visual interfaces + powerful expert interfaces(R, MATLAB, WMS, WCPS, ...)
- Backward compatibility with MDSPLUS and its UIs

Big data system for KSTAR ('15~)

 NFRI

Summary

LTP full-set data + simulation

Data generation(exp. & theoretical)

→Data Evaluation

Group evaluation(with IAEA) Evaluation network

Data Center Network (contrib. to Fusion) AMBDAS support(with IAEA)

HIMIRF (<u>H</u>ighly-charged <u>Ion Matter Interaction Research Facility</u>)

→BIG data system for FUSION(KSTAR) Real-time DB+analysis system ('15)

