

Ongoing and pending data base activities @ FZ Jülich

Detlev Reiter

Forschungszentrum Jülich GmbH Institute for Energy and Climate Research – Plasma Physics, 52428 Jülich, Germany

IAEA Technical Meeting on Technical Aspects of Atomic and Molecular Data Processing and Exchange (23rd Meeting of the A+M Data Centres), Vienna, Nov. 2 - 4 th 2015

OUTLOOK

• Generals: on AM-S data use in fusion plasma models

"internal consistency", completeness (competing processes)

• **Surface Data:** Reflection, Sputtering:

multidimensional distributions: online "TRIM" database maintained, and still occasionally upgraded upon demand.

• AM Data:

FZJ: data evaluation, data generation, database compilation "sui generis" was initiated by Ratko Janev:

- C_xH_y (database is frozen, some low T updates for particle rearrangement collisions are pending),
- SiH_y (database frozen)
- H,H⁻, H₂, H₂⁺, H₃⁺... \rightarrow ongoing, (now mainly: asymptotics, documentation) Be, Be_xH_y : unfinished

• FZJ data activity is now focused on:

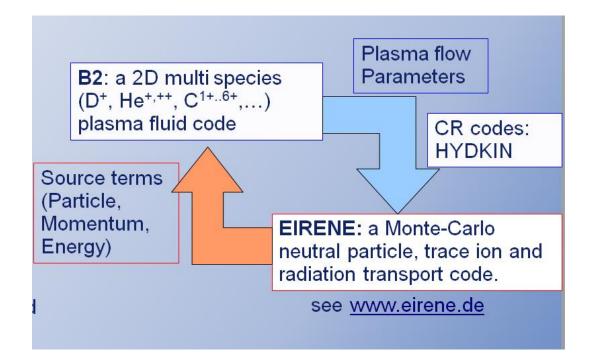
Data processing/formatting, asymptotics, internal CR modules for transport simulations,...,raw data public exposure.

Sensitivity analysis (uncertainty propagation) on linear CR or chemistry models

Status and purpose of current integrated edge models:

No predictive quality, due to "anomalous" cross field plasma transport (laminar? turbulent? blobby??)

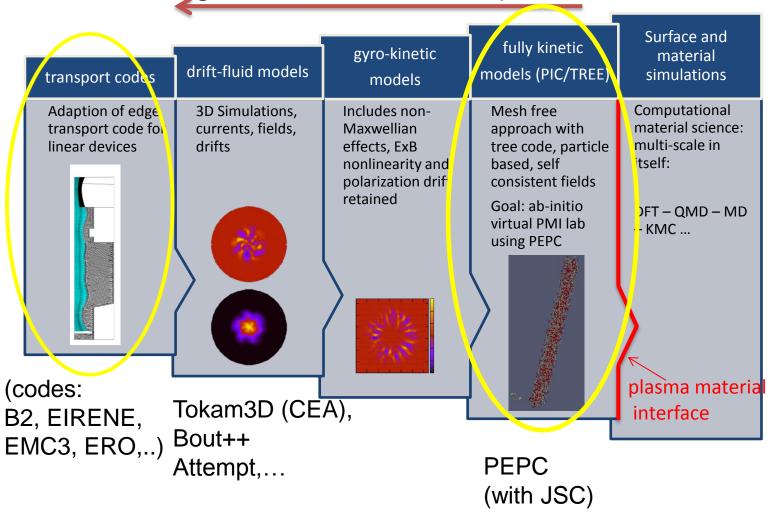
By detailed numerical bookkeeping current edge modelling is the tool to separate the "principal known" (PMI, A&M) from the "principle unknown" (⊥B plasma-transport). If this is successful, then the latter can be isolated and determined experimentally

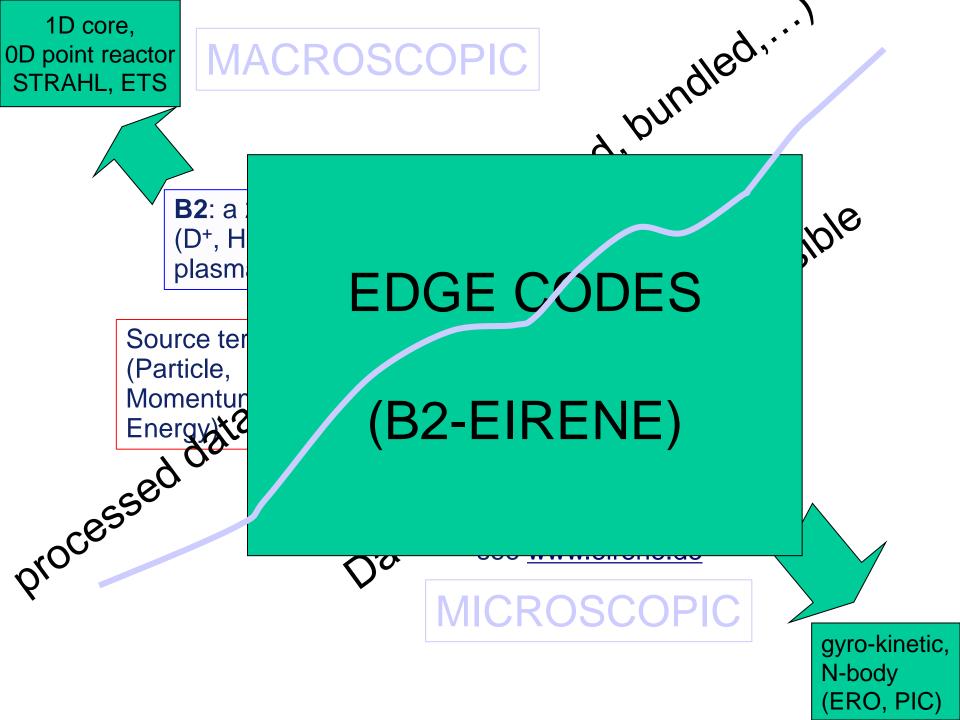

> Institut für Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

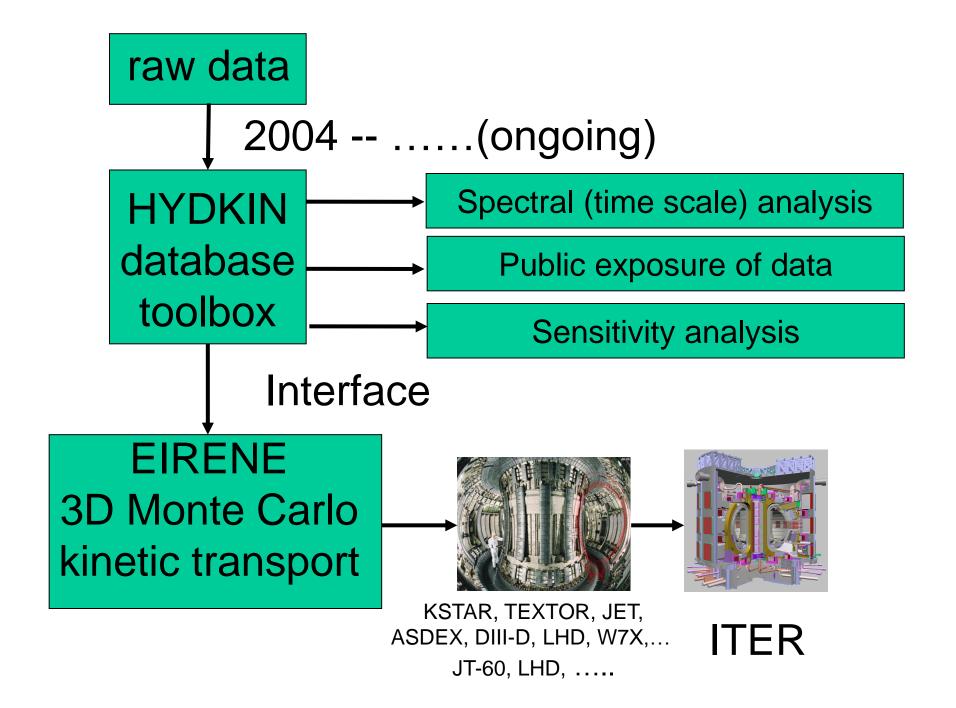
Method: "Operator Splitting"

Advection-diffusion: strongly implicit CFD (macroscopic flows)

Reaction part: explicit (Monte Carlo) (microscopic kinetics)







Simulation of "plasma + wall" – a multi-scale problem

Larger scales in time & space

OUTLOOK

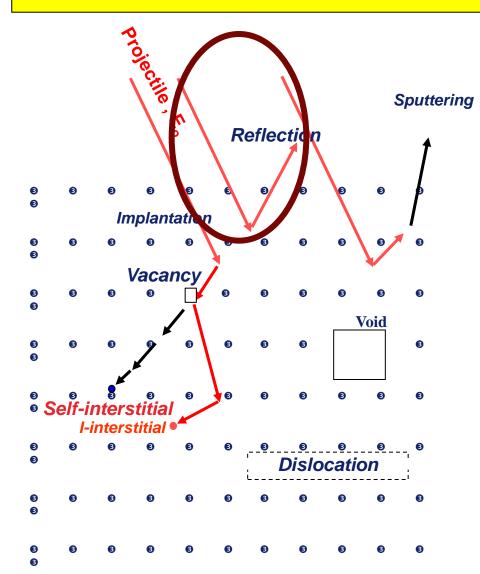
- **Generals:** on AM-S data use in fusion plasma models "internal consistency", completeness (competing processes)
- **Surface Data:** Reflection, Sputtering:

multidimensional distributions: online "TRIM" database maintained, and still occasionally upgraded upon demand.

AM Data:

FZJ: data evaluation, data generation, database compilation "sui generis" was initiated by Ratko Janev:

- C_xH_y (database is frozen, some low T updates for particle rearrangement collisions are pending),
- SiH_y (database frozen)


H,H⁻, H₂, H₂⁺, H₃⁺... \rightarrow ongoing, (now mainly: asymptotics, documentation) Be, Be_xH_y : unfinished

• FZJ data activity is now focused on:

Data processing/formatting, asymptotics, internal CR modules for transport simulations,...,raw data public exposure.

Sensitivity analysis (uncertainty propagation) on linear CR or chemistry models

A: Basic Processes Induced in Materials by Plasma Particle Impact

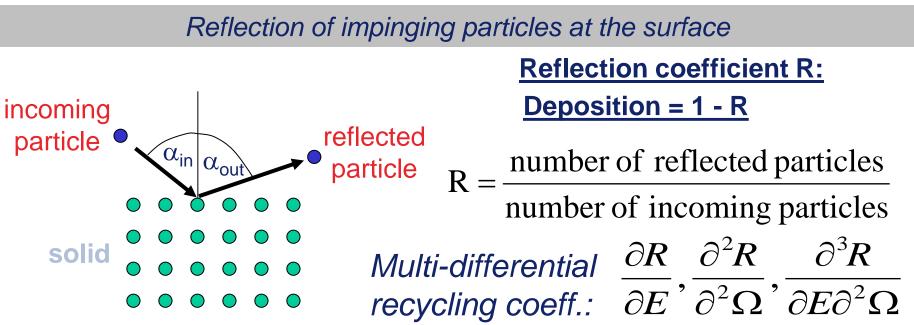
Energy dissipation by elastic (with atoms) and ineleastic (with electrons) collisions

(10⁻¹³ sec, range 10⁻⁷ m, 200 eV D⁺) Recycling: Elastic collisions: Creation of vacancies and intertiection and

therefield feeling for sission (energy-transfer > threshold energy for OT INCIDE analysis) OT INCIDE Analysis (Construction of the second seco

Diffusion de Under Sud interstitials

voids, dislocations, swelling, radiation,

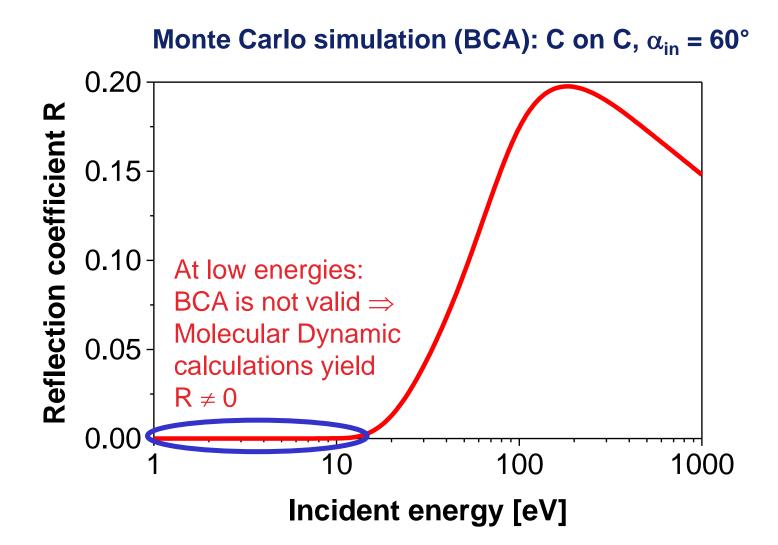

BCA: Binary collision Sputtering of surface atoms approximation (energy transfer > surface binding energy)

Transmutation

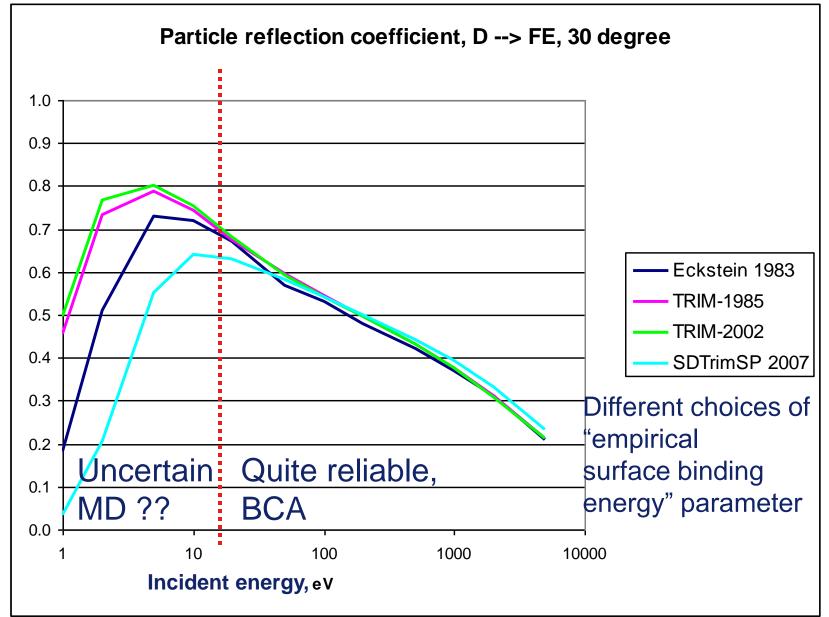
formation of nuclear reaction products (including H isotopes and He)

Plasma-Wall Interaction Processes

Backscattering

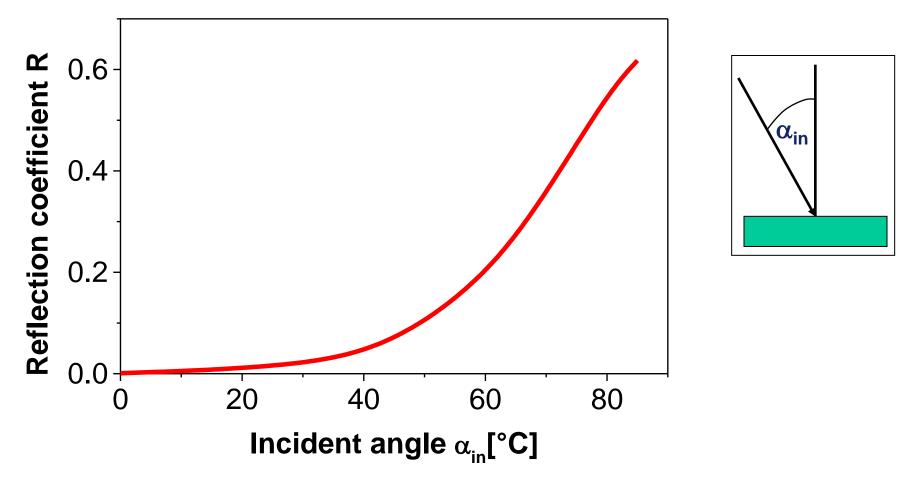


- In most cases: reflected particles are neutrals
- Reflection coefficient depends on:
 - mass of projectile and target
 - energy and angle of incident particles


Plasma-Wall Interaction Processes

Backscattering

Dependency of reflection coefficient on incident energy


Sensitivity of reflection coefficient at low E_{in} (all within BCA, TRIM)

Backscattering

Dependency of reflection coefficient on incident angle

Monte Carlo simulation (BCA): C on C, E_{in} = 100 eV

Backscattering

Energy and angle distribution of reflected particles

Reasonable assumptions (IYMG*):

Energy: exponential decrease for reflected particles if incoming particle energy is Maxwell-distributed

Angle: cosine distribution for reflected particles if isotropic bombardment

Note: Reflection coefficient R can be very different from Recycling coefficient R

Recycling coefficient is typically close to one in magnetic fusion, because wall surfaces are quickly saturated.

* IYMG: If You Must Guess

Surface processes in fusion edge codes: Jargon in edge modelling talks/papers: "we use TRIM code data...." (wrt. "physical sputtering and reflection") which means: BCA (binary collision approximation)

EIRENE

Manual

ABM Data

Holium

Boron

Carbon

Oxyger

Neor

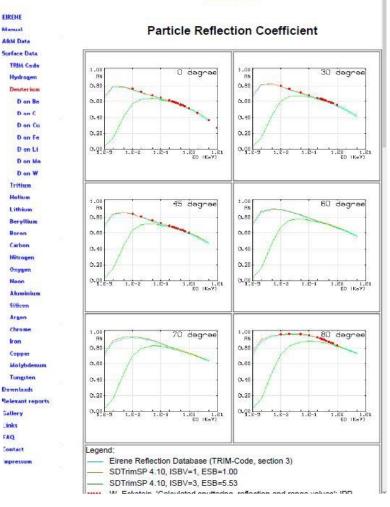
Silicon Arson Chrome

Iron

Gallery

moressu

inks FAQ Contact


Copper

Full 3V distribution of refl. part.

on: www.eirene.de/surfacedata

target projectile	Li	Be	В	С	AI	Si	Cr	Fe		Мо	W
Н	4	4		$\frac{1}{4}$				<u>1</u> 4	2	2	24
D	4	2		1				14 12 24 2		2	24
Т		4		2 4 2				24		2	$\frac{2}{4}$
He				2				2		2	2
Li	4										
Be		3		3							4
В			3	<u>3</u> 4							
С		4	3	3	3	3	3	3	3	3	3
C N O		4		4							4
0		4									4
Ne		2		<u>4</u> <u>2</u>							2 4
AI				34							
Si				<u>3</u> <u>4</u>		<u>3</u> 4		3 4	<u>3</u> 4		
Ar		4		4							4
Cr				3 4 3 4 3 4 3			<u>3</u> 4			3 4	
Fe				3		3					
Cu				3		3					
Мо				3						3	
W		4		3							3

1	TRIM-Code, 1984, W. Eckstein, priv. com.
2	TRIM-Code, 1998, FZJ, , sect. 3
3	TRIM-Code, 2005, FZJ, 7, sect. 6
4	SDTRIMSP, vs. 4.10, 2010, FZJ, different ESB parameters

D on W

H on C

1,00 RN 0,80

0,60

0,40

0,20

0.00

1,00 RN 0,80

0,60

0,40

0,20

0,00

1,00 RN 0,80

0,60

0,40

0,20

0,00

AMJUEL data file

section:

H on C H on W

H on Fe

H on Mo

H on Cu

C on C

C on Al

C on B

C on Cr

C on Cu

C on Fe C on Mo

C on Si C on W

Cu on C

Cu on Si

METHANE data file

1X

D on C

D on W

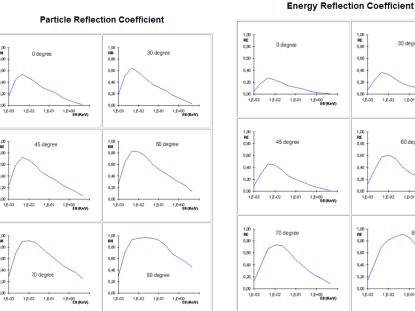
D on Fe

D on Mo

D on Be

Ne on C

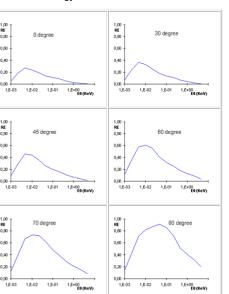
Ne on Be

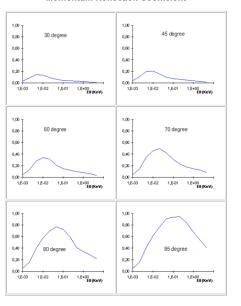

Mo on C

Mo on Mo

W on W

1,E-03

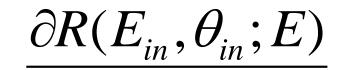

1,E-03

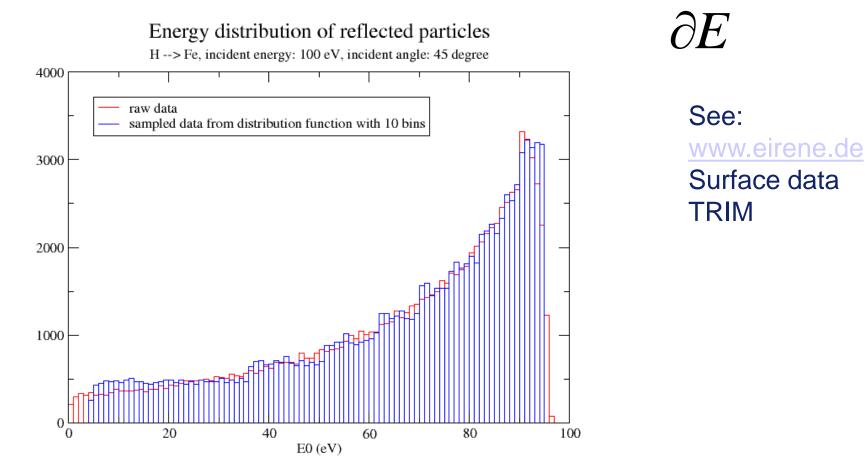


1

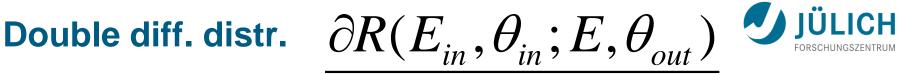
HYDHEL data file

H2VIBR data file

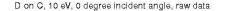


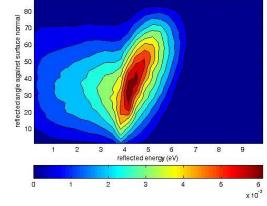

Momentum Reflection Coefficient

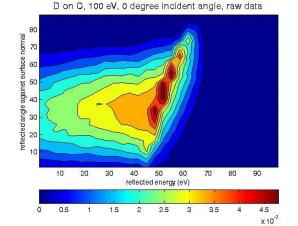
For the following files refer also to the surface data T on C -He on C Be on C B on C B on B He on Mo Be on Be T on W T on Fe He on W T on Mo He on Fe -Si on C Al on C Cr on C Fe on C Si on Cu Cr on Cr Fe on Si Si on Fe Cr on Mo Si on Si W on C


Data files with tables of multiple differential reflection distributions, e.g. for particle simulation codes (conditional quantile format)

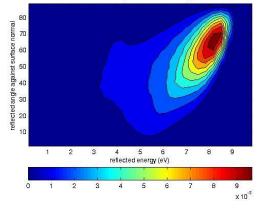
TRIM.xxx: reflected energy spectra red: 200.000 TRIM particles, blue: reconstructed from 10 quantiles

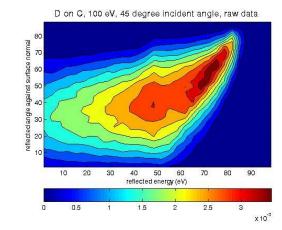



what is the minimal dataset that allows to re-sample the full backscattering (and sputtering) distribution ?

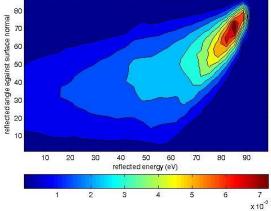

 $\partial E \partial \theta_{out}$

D on C, 10 eV in


D on C, 100 eV in



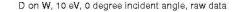
W01 surface r 09 against su 90 reflected angle a 10 3 4 5 6 8 q 2 7 reflected energy (eV) n 0.5 1.5 2 2.5 3 3.5 4 4.5 5 1 x 10⁻³

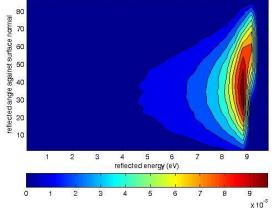

D on C, 10 eV, 45 degree incident angle, raw data

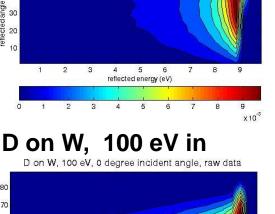
D on C, 10 eV, 60 degree incident angle, raw data

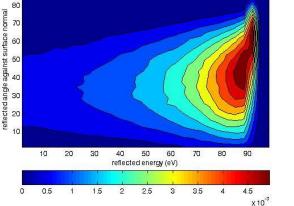
D on C, 100 eV, 60 degree incident angle, raw data

Data formatting and condensation: G. Bateman, PPPL no. 1 (1980)

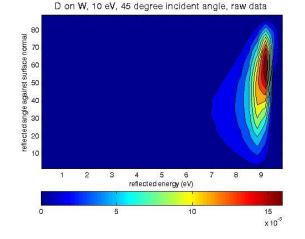

80

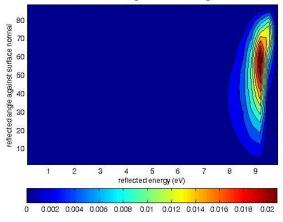




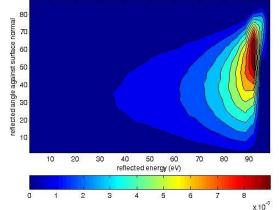


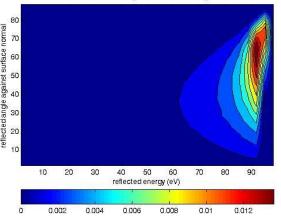
D on W, 10 eV in





surface


refle


D on W, 10 eV, 60 degree incident angle, raw data

D on W, 100 eV, 45 degree incident angle, raw data

D on W, 100 eV, 60 degree incident angle, raw data

Data formatting and condensation: G. Bateman, PPPL no. 1 (1980)

OUTLOOK

- **Generals:** on AM-S data use in fusion plasma models "internal consistency", completeness (competing processes)
- **Surface Data:** Reflection, Sputtering:

multidimensional distributions: online "TRIM" database maintained, and still occasionally upgraded upon demand.

• AM Data:

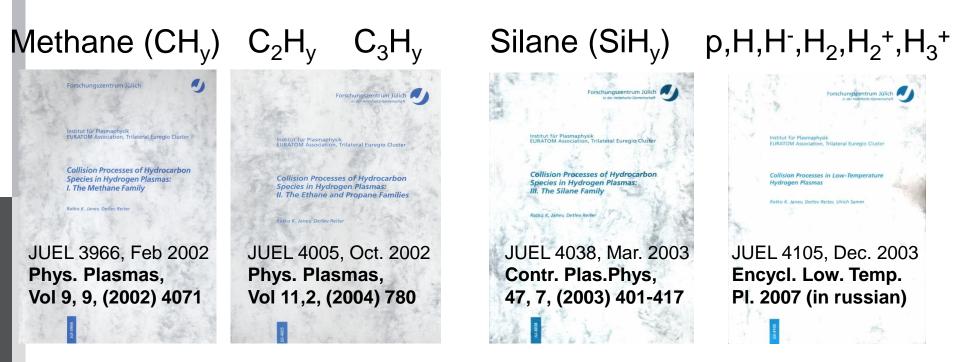
FZJ: data evaluation, data generation, database compilation **"sui generis"** was "initiated" by Ratko Janev:

- C_xH_y (database is frozen, some low T updates for particle rearrangement collisions are pending),
- SiH_y (database frozen)

H,H⁻, H₂, H₂⁺, H₃⁺... \rightarrow ongoing, (now mainly: asymptotics, documentation) Be, Be_xH_y : unfinished

• FZJ data activity is now focused on:

Data processing/formatting, asymptotics, internal CR modules for transport simulations,...,raw data public exposure.


Sensitivity analysis (uncertainty propagation) on linear CR or chemistry models

FZJ homemade "database" for fusion plasma chemistry modelling, is publicly exposed on: www.eirene.de

Reviewed EIRENE database Series 2002-..., (several IAEA CRP's) FZ-Jülich (R. Janev, D. Reiter et al.) <u>www.eirene.de</u> www.hydkin.de

Ratko Janev, Detlev Reiter: H, H_2, H_3^+ ... data compilation. Mostly cross sections, few rate coefficients Today: 471 references, Almost all data fitted. JUEL-report: 2004.

New edition: spring 2016 (CRP H, He)

No	men	<u>clature</u>	D
1	Elec	mentary Processes in Hydrogen Plasmas and their	
1		etics	
	1.1	Hydrogen plasmas and their chemistry	
	1.2	Composition of hydrogen plasmas	
	1.3	Classes of collision and radiative processes in hydrogen plasmas	
	1.4	Quantitative characteristics of collision and radiative processes	1
		1.4.1 Cross sections of collision processes	1
		1.4.2 Rate coefficients of collision processes	1
		1.4.3 Characteristics of photonic and radiative processes	2
	1.5	Reciprocity (time reversal) relations for inelastic collisions	2
		1.5.1 Relations between Maxwellian rate coefficients	2
		1.5.2 Relations between cross sections	2
	1.6	Cross section data assessment criteria and cross section data	
		sources	2
		1.6.1 Accuracies of experimental cross sections	2
		1.6.2 Accuracies of theoretical cross sections	2
		<u>1.6.3</u> Cross section data sources and collections	3
	1.7	Table of processes	3
		1.7.1 Table of processes and cross sections	3
		1.7.2 Table of fitting expressions	3
		1.7.3 Table of cross section terminology	3
2	Col	lision Processes of Hydrogen Atoms	4
	2.1	Electron-impact processes	4
		<u>2.1.1 Excitation</u>	4°
		<u>2.1.2 Ionization</u>	5
		2.1.3 Radiative electron attachment	5'
		2.1.4 $H(n \ge 1)$ formation in electron-proton collisions	
	2.2	Proton-impact processes	6

XIV Contents

4

		2.2.1 Excitation
		2.2.2 Ionization
		2.2.3 Charge transfer
		2.2.4 Three-body diatomic association
	2.3	Atom-atom collision processes
		2.3.1 <i>l</i> -mixing
		2.3.2 Excitation transfer, Penning ionization and spin
		exchange
		2.3.3 Excitation and ionization
		2.3.4 Associative (AI) and non-associative ionization
		2.3.5 Three-body diatomic association
	2.4	Photonic and radiative processes
		2.4.1 Photo-ionization
		2.4.2 Radiative processes in the discrete spectrum
		(bound-bound transitions)
		2.4.3 Radiative processes in the continuum spectrum
		(free-free transitions)
	Call	lister Decourse of H= Long
3	3.1	lision Processes of H ⁻ Ions
	3.1	3.1.1 Electron detachment
		3.1.2 Other processes
	3.2	Proton-impact processes
	0.4	3.2.1 Mutual neutralization of H^+ and H^-
		3.2.2 Associative (AD) and non-associative (Det) detachment 113
	3.3	$\frac{5222}{\text{Collisions of H}^- \text{ with H}} \dots \dots$
	0.0	3.3.1 Resonant charge exchange
		3.3.2 Associative (AD) and non-associative (Det) detachment 117
	3.4	Photo-detachment of H ⁻ 119
	3.5	Collision processes of H ⁻ with molecules and molecular ions 121
		*
4	Col	lision Processes of Electrons with Hydrogen Molecules . 123
	4.1	Basic H ₂ collision physics concepts
		4.1.1 Electronic excitation processes
		4.1.2 Franck-Condon approximation for $v - v'$ resolved
		excitation cross sections
		4.1.3 Franck-Condon factors
	4.2	Vibrational excitation of $H_2(X \ {}^1\Sigma_g^+)$
		4.2.1 Vibrational excitation via $H_2^-(X^2\Sigma_u^+, B^2\Sigma_g^+)$ resonant
		states
		4.2.2 Vibrational excitation via $H_2^*(N^{-1}\Lambda_u)$ excited states 139
	4.3	Excitation of electronic excited states
		4.3.1 Excitation of singlet states from $X {}^{1}\Sigma_{g}^{+}$ 142 4.3.2 Excitation of triplet states from $X {}^{1}\Sigma_{g}^{+}$ 154
		4.3.2 Excitation of triplet states from $X^{-1}\Sigma_{g}^{+}$
		4.3.3 Excitation transitions between excited states

1.00

7.1.1

7.3.1

7.3.2

8.1.1

8.3.1

8

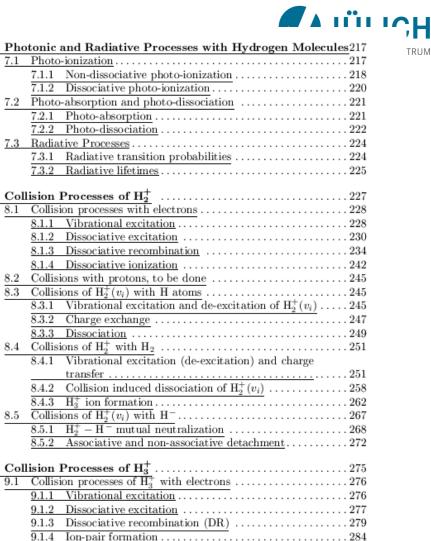
9

9.1

9.1.1

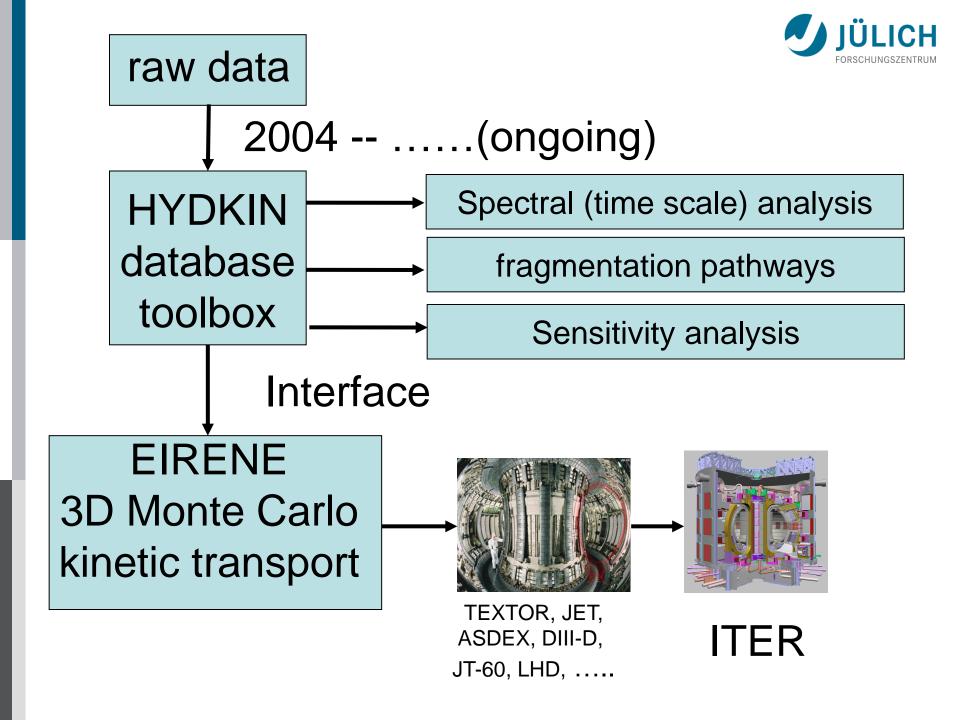
9.1.2

9.3.1


8.1

8.2

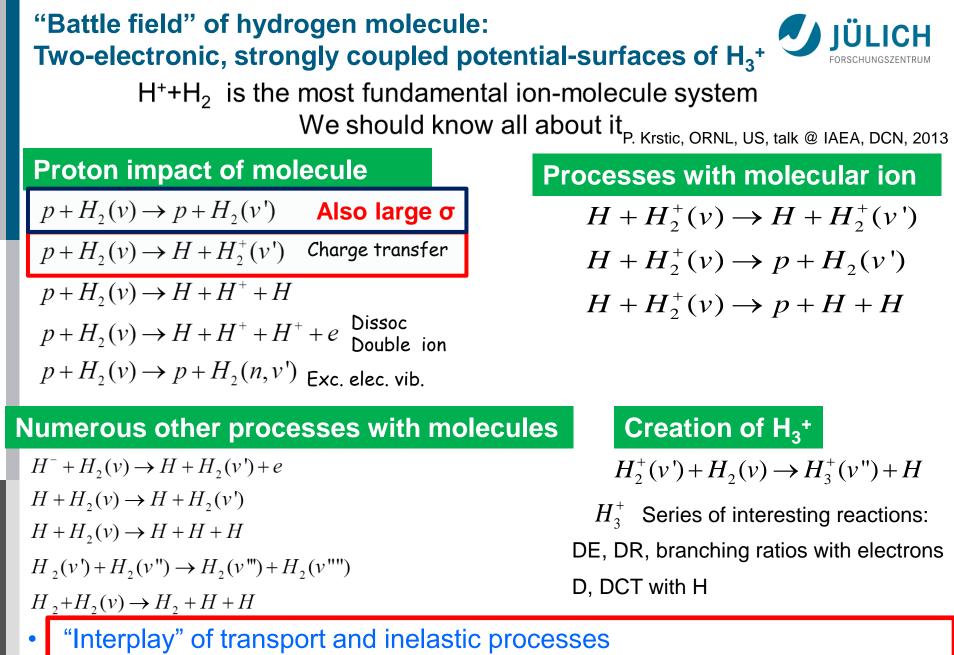
8.3


	4.4	Ionization processes
		4.4.1 Ionization from the ground electronic state, $(X {}^{1}\Sigma_{g}^{+}; v_{0})$ 162
		4.4.2 Ionization from excited electronic states of H ₂ 170
	4.5	Dissociative electron attachment
		4.5.1 Dissociative attachment on $H_2(X \ ^1\Sigma_q^+; v) \dots $
		4.5.2 Dissociative attachment on electronically excited
		$H_2^*(N^{1}{}^{3}\Lambda_{\sigma})$
	4.6	Dissociation and ionization of $H_2^*(N^{1,3}A_{\sigma})$
		4.6.1 Dissociation of $H_2(X^{1}\Sigma_q^+; v)$ via H_2^- resonant states 177
		4.6.2 Dissociation and ionization of H ₂ via doubly excited
		states
		4.6.3 Auto-ionization and pre-dissociation of excited
		electronic states
	4.7	The metastable $(c^{3}\Pi_{u}; v = 0)$ state
		4.7.1 Electron-impact excitation from $(c^{3}\Pi_{u}; v = 0)$
		4.7.2 Ionization of $(c^3\Pi_u; v=0)$ state
		4.7.3 Electron attachment on $(c^{3}\Pi_{u}; v = 0)$ state
-	a 1	
5		lision Processes of Protons with Hydrogen Molecules 189
	5.1	Vibrational excitation
	5.2	Charge transfer processes
		5.2.1 Proton charge exchange with $H_2(X \ ^1\Sigma_g^+; v) \dots \dots 193$
		5.2.2 Proton charge exchange with $H_2(N^{1,3}A_{\sigma}; v), N \ge 2 \dots 198$
	- 0	5.2.3 Dissociative charge exchange and transfer ionization 199
	5.3	Proton-impact dissociation of H ₂
	5.4	1
		5.4.1 Electronic excitation
		5.4.2 Ionization processes
6	Coll	lision Processes of H ⁻ , H and H ₂ with Hydrogen
		lecules
	6.1	
		6.1.1 Electron detachment
		6.1.2 Other processes
	6.2	Collisions of H with H ₂
		6.2.1 Vibrational excitation and de-excitation $(V - T \text{ transfer})207$
		6.2.2 Dissociation
		6.2.3 Ionization
	6.3	$\overline{H_2 - H_2}$ collisions
		6.3.1 Vibrational (V – V) transfer
		6.3.2 Dissociation
	6.4	

т

9.3.2 Collision induced dissociation of H⁺₂ and fast H⁺, H⁺₂

9.3.3 Dissociative electron capture and fast H₂ production . . . 289

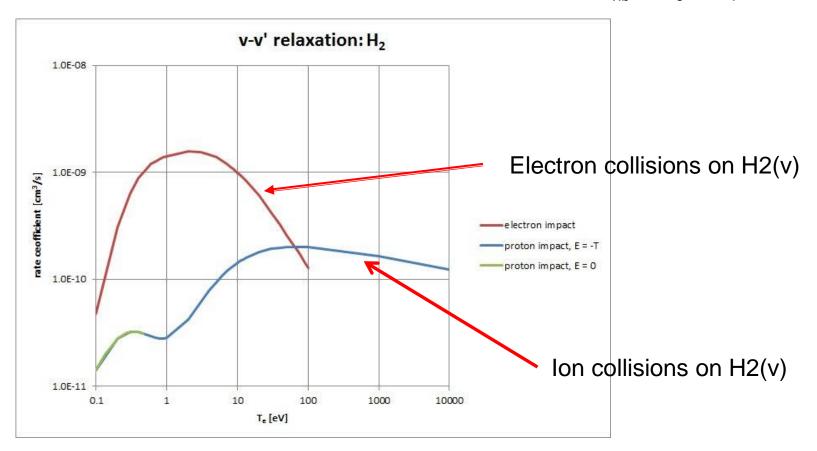


"Battle field" of hydrogen molecule: Two-electronic, strongly coupled potential-surfaces of H₂+ H^++H_2 is the most fundamental ion-molecule system We should know all about it P. Krstic, ORNL, US **Proton impact of molecule** Processes with molecular ion $p + H_2(v) \rightarrow p + H_2(v')$ $H + H_2^+(v) \rightarrow H + H_2^+(v')$ $p + H_2(v) \rightarrow H + H_2^+(v')$ Charge transfer $H + H_2^+(v) \rightarrow p + H_2(v')$ $p + H_2(v) \rightarrow H + H^+ + H$ $H + H_2^+(v) \rightarrow p + H + H$ $p + H_2(v) \rightarrow H + H^+ + H^+ + e$ Dissoc Double ion $p + H_2(v) \rightarrow p + H_2(n, v')$ Exc. elec. vib. Numerous other processes with molecules Creation of H₃⁺ $H^- + H_2(v) \rightarrow H + H_2(v') + e$ $H_{2}^{+}(v') + H_{2}(v) \rightarrow H_{3}^{+}(v'') + H$ $H + H_2(v) \rightarrow H + H_2(v')$ H_3^+ Series of interesting reactions: $H + H_2(v) \rightarrow H + H + H$ DE, DR, branching ratios with electrons $H_{2}(v') + H_{2}(v'') \rightarrow H_{2}(v''') + H_{2}(v'''')$ D, DCT with H $H_2 + H_2(v) \rightarrow H_2 + H + H$

- "Interplay" of transport and inelastic processes
- Rotational analysis is missing
- Isotopic constitution: D₂,T₂, HD, HT and DT, sensitive on vib. energy levels

"Battle field" of hydrogen molecule: Two-electronic, strongly coupled por H^++H_2 is the most fundamenta We should know	tential-surfaces of H ₃ ⁺
Proton impact of molecule	Processes with molecular ion
$p + H_2(v) \rightarrow p + H_2(v')$	$H + H_2^+(v) \rightarrow H + H_2^+(v')$
$p + H_2(v) \rightarrow H + H_2^+(v')$ Charge transfer	$H + H_2^+(v) \rightarrow p + H_2(v')$
$p + H_2(v) \rightarrow H + H^+ + H$	$H + H_2^+(v) \rightarrow p + H + H$
$p + H_2(v) \rightarrow H + H^+ + H^+ + e$ Dissoc Double ion	
$p + H_2(v) \rightarrow p + H_2(n, v')$ Exc. elec. vib.	
Numerous other processes with mole	cules Creation of H ₃ +
$H^- + H_2(v) \rightarrow H + H_2(v') + e$	$H_2^+(v') + H_2(v) \to H_3^+(v'') + H$
$H + H_2(v) \rightarrow H + H_2(v')$	H_3^+ Series of interesting reactions:
$H + H_2(v) \rightarrow H + H + H$ $H_2(v) + H_2(v'') \rightarrow H_2(v''') + H_2(v'''')$	DE, DR, branching ratios with electrons
$H_{2}(v') + H_{2}(v'') \to H_{2}(v''') + H_{2}(v'''')$ $H_{2} + H_{2}(v) \to H_{2} + H + H$	D, DCT with H
 "Interplay" of transport and inelastic 	processes

- Rotational analysis is missing
- Isotopic constitution: D₂,T₂, HD, HT and DT, sensitive on vib. energy levels

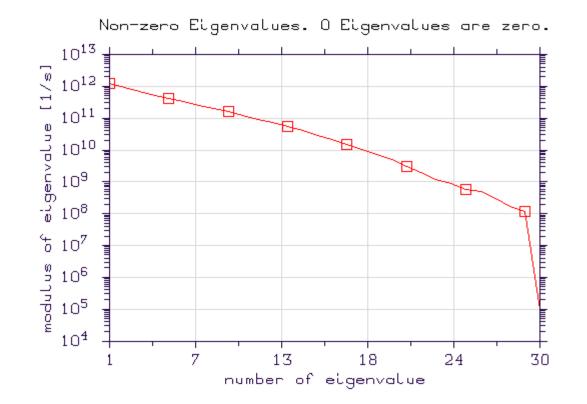


- Rotational analysis is missing
- Isotopic constitution: D_2 , T_2 , HD, HT and DT, sensitive on vib. energy levels

Spectral analysis in CR models: → model reduction

Build v-v' transition rate matrix, for e and p collisions on $H_2 \rightarrow HYDKIN$ \rightarrow slowest timescale (smallest eigenvalue): relaxation of T_{vib} to T_e or T_i

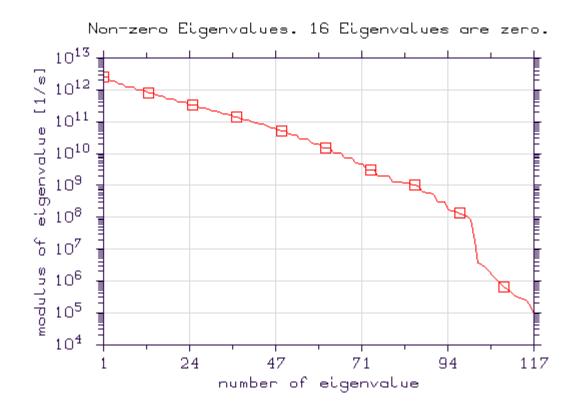
Cross section database is scanty (very, very scanty, to say the least) result from (spectral) analysis:


p+H2(v) cross sections large, effect on fusion plasma negligible compared to e+H2(v) (still good to have, "reserve of knowledge", but: main focus elsewhere

HYDKIN: spectral analysis for reaction kinetics

Warm up: H-atom, CR model: H(1),H*(2),....,H*(30),H+

(I,k-excitation, i-ionization A_ik, and k,i de-excitation



@ Te = 10 eV, ne = 1e13

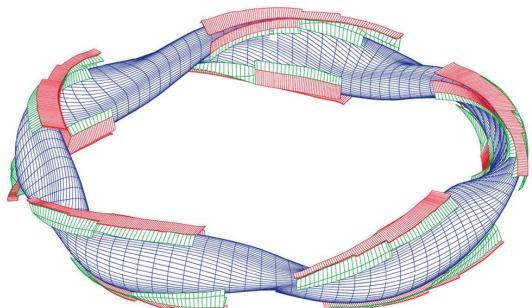
HYDKIN: spectral analysis for reaction kinetics

Coupled H-H⁺-H₂-H₂⁺ CR model, @ 10 eV, 1e13 cm-3 134 species/states, 16 final states, 117 non-zero eigenvalues

H,H⁻,H₂,H₃⁺,....database for fusion edge plasma modelling:

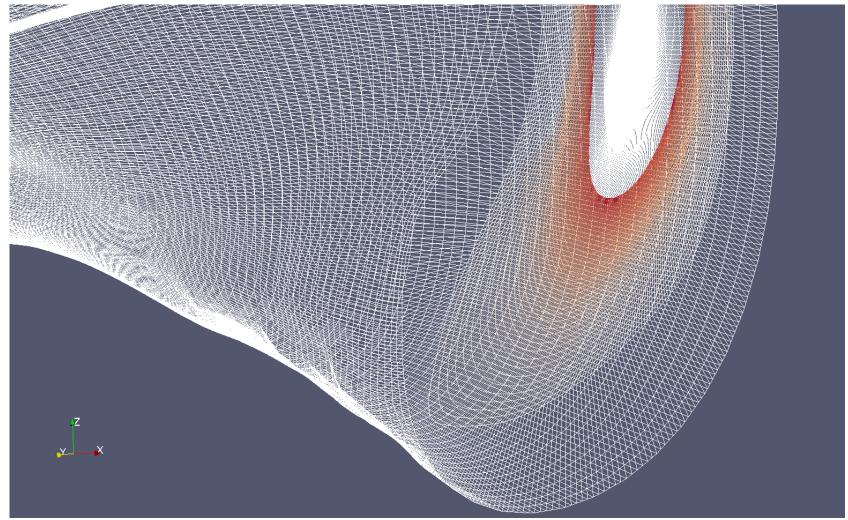
Status: cross sections, CR models, "ok, up 2011.." (at least: compiled, fitted....)

Main issues in transport modelling:


- Multi-parametric dependencies of eff. rates: T_e, T_i, n_e n_{i1}, n_{i2}, E0,.....
- Asymptotic behavior of either: fits or tables (what do complex codes really do with the data ??)
- Our current tendency: integrate CR model solvers inside transport solvers, evaluated CR rates on the fly, cell by cell, fully parallelized (domain decomposition) → very little CPU penalty Available for H, soon for He (W7X), H₂/H (?), and we would hope for: BeH/BeH⁺/Be...
- current applications are:
 - 1. e.g.: ITER diagnostic beam (100 keV) plus Halo
 - (thermal gas cloud around 100 keV beam that forms from charge exchange)
 - 2.) main chamber erosion by neutral CX sputtering, power plant studies

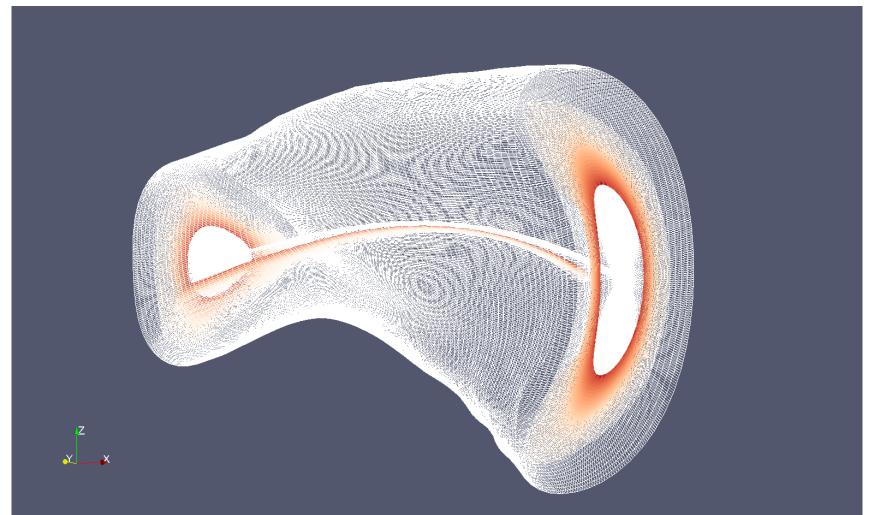
SIMILAR ISSUES: He – He⁺ – He⁺⁺

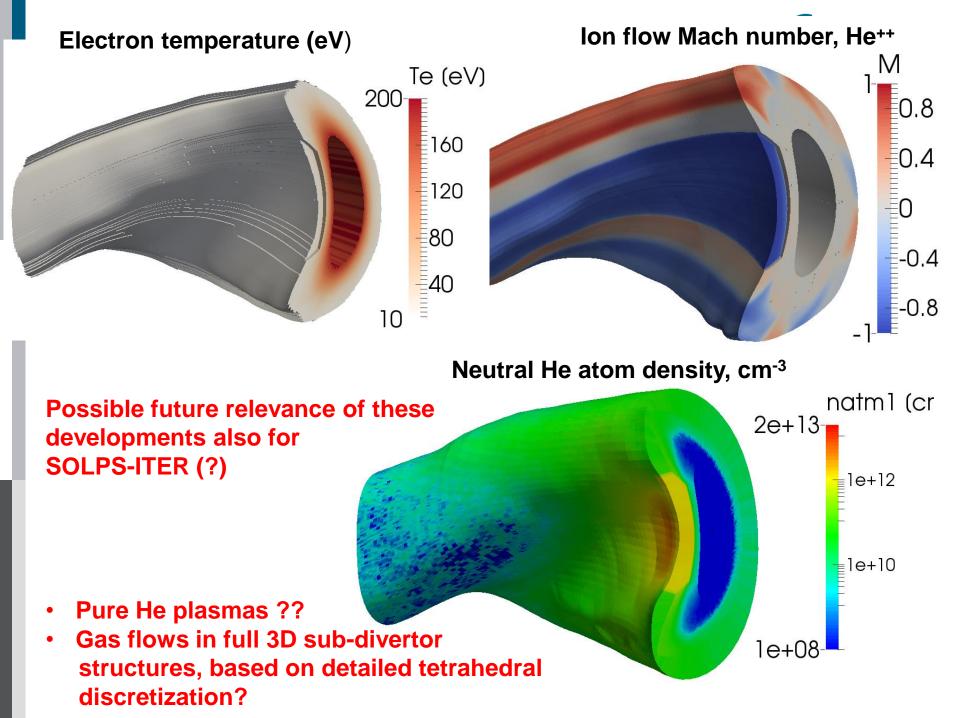
Current FZJ activity:


EMC3-EIRENE: Fully 3D, Helium plasmas He -- He⁺ -- He⁺⁺ by Oct. 2015 ??

EDGE MODELLING EXPRESSIONISM......

W7X: 3 D grid (trilinear hexahedrons): EMC3-EIRENE, 1-3 Mill cells




Full He CR model, 65 states, MS resolved, cell by cell, about extra 1-3 sec. CPU cost on 1028 compute cores (typical value)

EDGE MODELLING EXPRESSIONISM......

W7X, Te profile, 3D.

Starting Hypothesis at W7X Team: Edge Model for He, He+, ignore He++ (until June 2014)
Spring 2015: FLYCHK, (AMDU): case study: must build He – He++ model, with He+ only as tracer.
→ Use EMC3-EIRENE in hybrid fluid-kinetic mode. (M.Rack, D.Reiter, EPS 2015)

Consequences for He - He+ + He++ database:

From a consistent set of cross sections: many datasets are derived: MS resolved, MS condensed, S/XB, rad. loss, Elect. energy loss rates, opacity, etc... A single transition cross section upgrade \rightarrow replace the full set of CR data files.

Solution: Similar to H-COL (built in CR model into transport code) Also build He-COL (a He-CR Model, with matrix solver inside transport code, Condensation, data processing: on the fly.

Database: provide all individual He collision processes needed to build a CR matrix. Issues: asymptotics in rates or cross sections! detailed balancing !

Transport code does not need fits or tables (and their asymptotics) to multidimensional CR data vs.: Te, Ti, E0, ne, ni1,ni2.....)

OUTLOOK

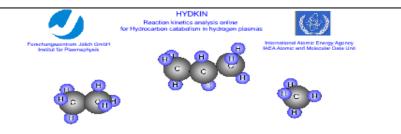
- **Generals:** on AM-S data use in fusion plasma models "internal consistency", completeness (competing processes)
- **Surface Data:** Reflection, Sputtering:

multidimensional distributions: online "TRIM" database maintained, and still occasionally upgraded upon demand.

AM Data:

FZJ: data evaluation, data generation, database compilation "sui generis" was initiated by Ratko Janev:

- C_xH_y (database is frozen, some low T updates for particle rearrangement collisions are pending),
- SiH_v (database frozen)
- H,H⁻, H₂, H₂⁺, H₃⁺... \rightarrow ongoing, (now mainly: asymptotics, documentation)
- Be, Be_xH_y : unfinished

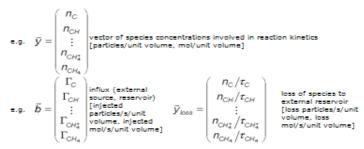

• FZJ data activity is now focused on:

Data processing/formatting, asymptotics, internal CR modules for transport simulations,...,raw data public exposure.

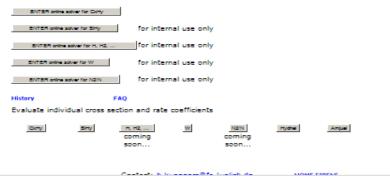
Sensitivity analysis (uncertainty propagation) on linear CR or chemistry models

Basic input for EIRENE: A&M data, (& surface data) / jülici

Goal: publicly expose raw data used in any modelling


Online reaction kinetics analysis, for chemistry in hydrogen plasmas.

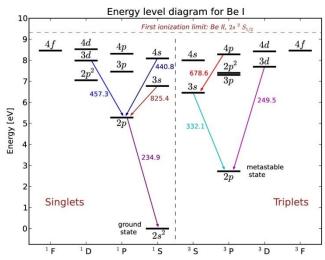
The online solver automatically builds the master rate equation


 $\frac{d\bar{y}}{dt} + \bar{A}\bar{y} = \bar{b} - \bar{y}_{loss}$ \bar{A} : master operator

and solves for $t = [0...t_{max}]$ for a selected number of monoenergetic particle species in a specified hydrogen plasma. Find temporal evolution of transient and absorbing states.

Simulate open $(g_{aus} \neq 0 \lor \delta \neq 0)$ or closed systems $(g_{aus} = 0 \land \delta = 0)$.

For Methane family choose either Janev-Reiter database [1] or Ehrhardt-Langer database [5]. For the Ethane and Propane families the Janev-Reiter database [2] is used.

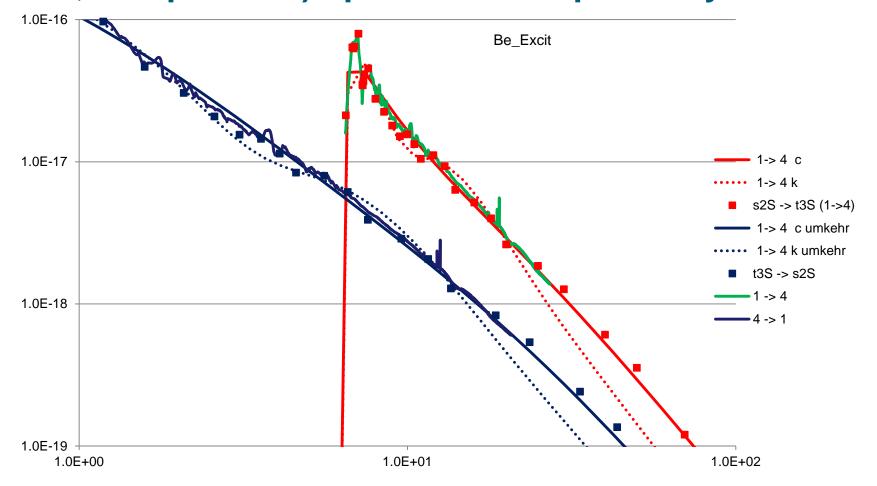

www.hydkin.de

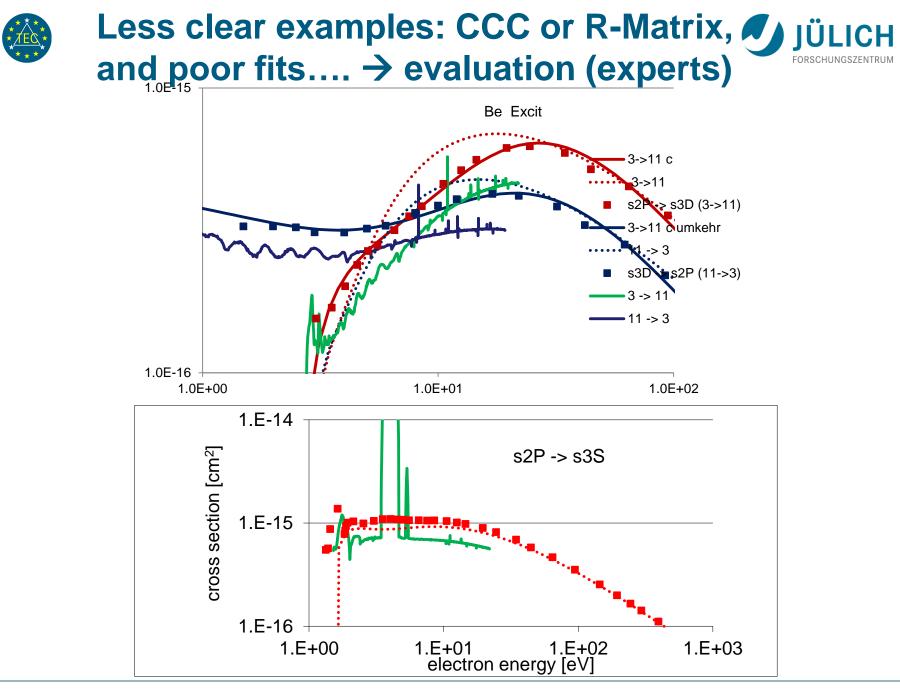
Online data base and data analysis tool-box:

- CR model condensation
- Sensitivity analysis
- Fragmentation pathway analysis
- Reduced models
- Hydrocarbons
- Silanes
- H, H₂, H₃⁺,....
- W, W⁺,W ⁷⁴⁺
- N, N₂, activity stopped, rely on other communities...

Be-BeH-BeH+,

attempted, but expert help needed for cases of doubt


Towards a Be – Be⁺ CR modul for transport simulations


Various sets of CCC cross section data provided by I. Bray, 2013 Complementary set of R Matrix cross section data from C. Balance (2014)

					2s12p11P				2s13p13P											2s14f11F	
			s2S	t2P	s2P	t3S	s3S	S2D	t3P	T2P	s3P	t3D	s3D	t4S	s4S	t4P	s4P	t4D	t4F	s4F	s4D
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2s21S	s2S	1		C 23	K6	C 23	K 22	К22	C 23	К2	K 22	K2	K 22	C 23	K 21 C 22	C 23	K 22 C 5	К2	C 23	K 11 C 22	K 22 C 22
				020				IVEL													
2s12p13P	t2P	2			C 23	K 21	C 23	K2	K1	K21	C 23	K 5	C 23	C 5		C 22	C 23	C 5	C 22	C 23	C 23
2s12p11P	s2P	3				C 23	K 21	К1	C 23	К2	K6	K2	C22	C 23		K 2 C 23	K 21 C 22	C 23	K 2 C 23	C 22	K 6 C 5
														K 21			K2			К2	K2
2s13s13S	t3S	4					K23	K2	C 5	K11	C 23	K 21	K 23	C 22		C 5	C 23	C 22	C 22	C 23	C 23
2s13s11S	s3S	5						К22	C 23		К8	C 23	K 21	C 23	K 5 C 22	K 2 C 23	C 5	К2	C 23	C 22	K 22 C 22
20100110												0.20							0 20		
	S2D	6								K22											
2s13p13P	+2D	7								К5	C 23	C 5	C23	K 22 C 5	C 23	K 1 C 22	C 23	C5	C22	C 23	C 23
28130138	UT									NJ	020	0.5	020	03	023	022	020	0.5	022	020	023
	T2P	8																			
	-20											C 23	C5	K 23	K8	14.0	C 22	K 23 C 23	K 2 C 23	C 22	C 5
2s13p11P	S3P	9										6.23	60	K 23		K2 K11	6.22	K5	K 22	6.22	65
2s13d13D	t3D	10											C 23	C 22		C 5	C 23	C 22	C 5	C 23	C 23
															0.00		K 22	0.00	K2	K 22	0.00
2s13d11D	S3D	11													C 22	C 23	C 5	C 23	C 23	C 5	C 22
2s14s13S	t4S	12											C 23		nur K 22	nur K				nur K 2	
2s14s11S	s4S	13															nur K		nur K 22	nur K	
2s14p13P	t4P	14																	nur K		
	40																			14	
2s14p11P	S4P	15																		nur K	nur K
2s14d13D	t4D	16																			
2s14f13F	t4F	17																			
2s14f11F	s4F	18																			
2s14d11D																					
2014UTID	1340	13		I	1		1			I		1		1	I		l	1			

$e + Be(1) \rightarrow e + Be(4)$ 2 datasets (CCC and R-Matrix), 2 set of fits (2 tasks, c & k, independent): positive example. Easy decision

Detlev Reiter | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ

So: bring on Be – Be+ evaluated cross section database:

with:

- either asymptotically correct fits or
 - recommendations re threshold and high E asymptotics
- consistent forward and reverse processes
- double excited states?
- recombination (radiative, threebody, dielectronic...)

Current Nucl. Fusion N₂ database: obsolete ! see e.g.: Planetary Atmospheric Entries

Dissociative Recombination in Reactive Flows Relative to Planetary Atmospheric Entries

Nitrogen

Species, states and elementary processes

 N_2, N_2^+, N, N^+ and e^-

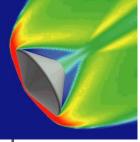
 $\begin{array}{ll} \pmb{N_2} & X^1 \Sigma_g^+(v=0 \rightarrow v_{max}=67), \, A^3 \Sigma_u^+, \, B^3 \Pi_g, \, W^3 \Delta_u, \, B'^3 \Sigma_u^-, \, a'^1 \Sigma_u^-, \, a^1 \Pi_g, \\ w^1 \Delta_u, \, G^3 \Delta_g, \, C^3 \Pi_u, \, E^3 \Sigma_g^+ & \textbf{150 states} \\ \pmb{N_2^+} & X^2 \Sigma_g^+, \, A^2 \Pi_u, \, B^2 \Sigma_u^+, \, a^4 \Sigma_u^+, \, D^2 \Pi_g, \, c^2 \Sigma_u^+ & \textbf{150 states} \\ \pmb{N} & ^4 S_{3/2}^o, \, ^2 D^o = (^2 D_{5/2}^o + ^2 D_{3/2}^o), \, ^2 P^o = (^2 P_{1/2}^o + ^2 P_{3/2}^o), \, ^4 P_{1/2}, \dots \, (63 \text{ states}) \\ \pmb{N^+} & ^3 P_0, \, ^3 P_1, \, ^3 P_2, \, ^1 D_2, \, ^1 S_0, \, ^5 S_2^o, \, ^3 D_3^o, \, ^3 D_2^o, \, ^3 D_1^o \end{array}$

CR Model Database – CoRaM – N₂

Forward rate coefficient

 $k_i(T_{A,e}) = \sqrt{\frac{8 k_B T_{A,e}}{\pi \mu}} \int_{x_0}^{+\infty} x e^{-x} \sigma_i(x) dx$

with $\sigma_i(x)$ the cross section and


 $x = \frac{\varepsilon}{k_B T_{A,e}}$ the reduced collision energy

Backward rate coefficient from Detailed Balance

⇒ 100 000 elementary processes

A. BULTEL Paris - July, 10th 2013

Vibrational $N_2(X, v) + e^- \rightarrow N_2(X, w) + e^ N_2(X, v) + e^- \rightarrow 2 N(^4S^o_{3/2}) + e^$ processes $N_2(X, v) + (N_2 \text{ or } N) \rightarrow N_2(X, w) + (N_2 \text{ or } N)$ $N_2(X, v) + N({}^4S^o_{3/2}) \rightarrow 3 N({}^4S^o_{3/2})$ $N_2(X, v_{max}) + N_2 \rightarrow 2 N({}^4S^o_{3/2}) + N_2$ $N_2(X, v_1) + N_2(X, v_2) \rightarrow N_2(X, w_1) + N_2(X, w_2)$ Electronic $N_2(i) + e^- \rightarrow N_2(j) + e^ N_2(i) + (N_2 \text{ or } N) \rightarrow N_2(j) + (N_2 \text{ or } N)$ excitation $N_2^+(i) + e^- \rightarrow N_2^+(j) + e^ N(i) + e^- \rightarrow N(j) + e^ N(i) + (N_2 \text{ or } N) \rightarrow N(j) + (N_2 \text{ or } N)$ $N^+(i) + e^- \rightarrow N^+(j) + e^ N^+(i) + (N_2 \text{ or } N) \rightarrow N^+(j) + (N_2 \text{ or } N)$ Excitation $N_2(A) + N_2(A) \rightarrow N_2(X) + N_2(B)$ transfer $N_2(A) + N_2(A) \rightarrow N_2(X) + N_2(C)$ $N_2(A) + N_2(B) \rightarrow N_2(X) + N_2(C)$ $N_2(A) + N({}^4S^o_{3/2}) \rightarrow N_2(X) + N({}^2P^o)$ $N_2(B) + N({}^4S_{3/2}^o) \rightarrow N_2(X) + N({}^2P^o)$ $N_2(C) + N({}^4S^o_{3/2}) \rightarrow N_2(X) + N({}^2P^o)$ $N_2(i \neq X) + e^- \rightarrow N(j) + N(k) + e^-$ Dissociation $N_2^+(i) + e^- \rightarrow N(j) + N^+(k) + e^-$ Ionisation $N_2(i) + e^- \rightarrow N_2^+(j) + 2 e^ N_2(i) + (N_2 \text{ or } N) \rightarrow N_2^+(j) + e^- + (N_2 \text{ or } N)$ $N(i) + e^- \rightarrow N^+(j) + 2 e^ N(i) + (N_2 \text{ or } N) \rightarrow N^+(j) + e^- + (N_2 \text{ or } N)$ $N_2(X) + N^+({}^3P_0) \rightarrow N_2^+(X) + N({}^4S^o_{3/2} \text{ or } {}^2P^o)$ Charge exchange $N_2(X) + N^+({}^3P_0) \rightarrow N_2^+(A) + N(4S_{2/2}^o)$ $N_2^+(X) + e^- \rightarrow N(^4S^o_{3/2}) + N(^2D^o \text{ or } ^2P^o)$ Dissociative recombination $N_2^+(X) + e^- \rightarrow N(^2D^o) + N(^2D^o)$ $N_2(B^3\Pi_q) \rightarrow N_2(A^3\Sigma_q^+) + h\nu \ (1^{st} \text{ positive})$ Radiation $N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g) + h\nu \ (2^{nd} \text{ positive})$ Escape $N_2^+(B^2\Sigma_u^+) \rightarrow N_2^+(X^2\Sigma_a^+) + h\nu \ (1^{st} \text{ negative})$ factor $N(i) \rightarrow N(j < i) + h\nu$ $N^+(i) \rightarrow N^+(j < i) + h\nu$

A. Bultel et al., UNIVERSITÉ DE ROUEN, UNIVERSITÉ DE AIX-MARSEILLE (FRANCE)

Thank you