IAEA 23rd Meeting of the Atomic and Molecular Data Centres Network

Recent Progress of KAERI Atomic Database

Eunae Kim, Wonwook Lee, and Duck-Hee Kwon

Nuclear Data Center Korea Atomic Energy Research Institute

Presented by Hyun-Kyung Chung (IAEA)

2 November 2015, IAEA Headquarters, Vienna, Austria

- 1. Research Activities of KAERI Atomic Data Center
- 2. KAERI Atomic Database Updates
- 3. Summary and Outlook

Research Activities

1. State-of-the-art calculations for the electron-impact ionization and recombination, and photoionization data which are essential in modeling for laboratory and astrophysical plasmas

2. Spectroscopic measurement in plasma devices and collisional radiative modeling for analysis on the measured spectra

Research Activities

- 1. Electron-Impact Ionization (EII)
 - P-like isoelectronic sequences from P to Zn
 - W ions (W¹⁷⁺ and W⁺)
- 2. Dielectronic Recombination (DR)
 - W⁴⁵⁺
- 3. Photoionization
 - Mg-like isoelectronic sequences from Mg to Ar (except for P)
- 4. Spectroscopic measurement and Collisional Radiative (CR) modeling
 - He I

Electron-impact ionization (EII)

EII pathways

Direct ionization (DI) $A^{q^+} + e \rightarrow A^{(q+1)+} + e' + e''$ Excitation-autoionization (EA) $A^{q^+} + e \rightarrow A^{q^{***}} + e'$ $\rightarrow A^{(q+1)+} + e' + e''$ Resonant excitation-double autoionization (REDA) $A^{q^+} + e \rightarrow A^{(q-1)+**}$ $\rightarrow A^{q^{**}} + e'$ $\rightarrow A^{(q+1)+} + e'' + e'''$ Resonant excitation-auto double ionization (READI)

$$A^{q_+} + e \to A^{(q_-1)+\star\star} \to A^{(q_+1)+} + e'' + e''$$

Cross section

Total EII cross section in an *Independent Process-Isolated Resonance* (IP-IR) approximation is given by

$$\mathcal{O}_{\text{tot}} = \sum_{f} \mathcal{O}_{f}^{\text{DI}} + \sum_{j} \mathcal{O}_{j}^{\text{CE}} \mathcal{B}_{j}^{a} + \sum_{k} \overline{\mathcal{O}}_{k}^{\text{DC}} \mathcal{B}_{k}^{\text{da}}$$

Autoionization (AI) branching ratio (BR) and double AI-BR : All of the branching ratios must be solved for recursively.

$$B_{j}^{a} = \frac{\sum_{s} A_{js}^{a} B_{s}^{r} + \sum_{t} A_{j}^{r} B_{t}^{a}}{\sum_{s} A_{js}^{a} + \sum_{t} A_{jt}^{r}}, \quad B_{k}^{da} = \frac{\sum_{j} A_{kj}^{a} B_{j}^{a}}{\sum_{j} A_{kj}^{a} + \sum_{t} A_{jt}^{r}}$$

EII for P-like ions

EII for W ions

W¹⁷⁺

There are many long lived excited states and parent ion beams are mixed in ground and excited states. Good agreement is shown between theoretical calculation and experiment

D.-H. Zhang and D.-H. Kwon, J Phys. B **47**, 075202 (2014)

W+

D.-H. Kwon, Y. S. Cho, and Y. O. Lee, Int. J. Mass Spect. 356, 7 (2013)

Dielectronic Recombination (DR)

W⁴⁵⁺

D.-H. Kwon and W. Lee, J. Quant. Spectrosc. Radiat. Transfer, submitted.

Photoionization

Eigenchannel R-matrix approach connected with **multichannel quantumdefect theory (MQDT)**

Collisional-Radiative Model

Collision-Radiative model is one of population model of any element (atom, ion, molecule, etc).

$$\frac{d}{dt}n(p) = \sum_{q < p} C(q, p)n_en(q)$$

$$-\left[\sum_{q < p} F(p,q) + \sum_{q > p} C(p,q) + S(p) + \frac{1}{n_e}\sum_{q < p} A(p,q)\right]n_en(p)$$

$$+\sum_{q > p} [F(q,p)n_e + A(q,p)]n(q)$$

$$+\left[\alpha(p)n_e + \beta(p) + \beta_d(p)\right]n_en^+$$
Recombination
coefficient
Recombination
coefficient
A-coefficient
A-

$$\frac{d}{dt}n(p) = 0$$
: quasi steady state (QSS)

formulation I for Helium

$$n(p) = r_0 n_e n^+ + r_1 n_e n(1^1 S) + r_2 n_e n(2^1 S) + r_3 n_e n(2^3 S)$$

formulation II for Helium

$$n(p) = R_0 n_e n^+ + R_1 n_e n(1^1 S)$$

He collisional radiative model has been developed by T. Fujimoto and M. Goto.

We analyzed plasma parameters (T_e, n_e) in low pressure and low temperature plasma with He CR-model based on Goto's paper. (M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76, p331-344 (2003))

Electron Impact Excitation Cross Sections

Modified CR-Model

Modified He CR-Model

RTE (Radiation Trapping effect) is a non-local problem. The emission and induced absorption processes occur the different locations, and are related with each other.

: radiation trapping effect *from ground state*

• Experiment (hot filament discharge)

Hot filament discharge (C. H. Oh, HYU)

KAERI

Experiment condition

- base pressure : 0.05 mtorr,
- operating pressure : 7 mtorr
- discharge power : 118V / 9A

Experiment (hot-filament discharge)

• Diagnostics of plasma parameters (T_e, n_e)

http://pearl.kaeri.re.kr

Atomic Data Center ×		
→ C		Sa 📩
Pearl	Photonic Electronic Atomic Reacti	on Laboratory
Members Research Data Bas	CR-Model Publications Collaborations Photos N	ews and Q/A Useful site

Atomic Numerical Databases

¹Н																	² He
³ Li	⁴ Be											5 _B	6C	7 _N	⁸ 0	9F	¹⁰ Ne
¹¹ Na	¹² Mg											¹³ Al	¹⁴ Si	15p	¹⁶ S	17 _{Cl}	¹⁸ Ar
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 _{C0}	¹²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La	⁷² Hf	⁷³ Ta	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	77 _{Ir}	78Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ Tl	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 _{Fr}	⁸⁸ Ra	⁸⁹ Ac	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Uut	¹¹⁴ Fl	¹¹⁵ Uup	¹¹⁶ Lv	¹¹⁷ Uus	¹¹⁸ Uuc

⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu
⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	⁹² U	⁹³ Np	⁹⁴ Pu	95 _{Am}	⁹⁶ Cm	97Bk	98Cf	99Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr

Select All Unselect All Delete

¢

Selection of Reactions for various ion stages

Flexible and comparable plots for selected ion and reaction

State selected photoionization data

Database Updates (CR modeling on Web)

Atomic data used for CR modeling (for eg. He I case)

Electron Impact Excitation Rate Coefficient

Database Updates (CR modeling on Web)

Input of plasma and atomic parameters

Line Ratio as a Function of T_e/n_e

You can find a figure for relation between line intensity ratio and plasma parameters (Te, Ne). The figure was calculated by the formulation I of He CR-Model. The plasma was assumed as ionizing plasma (R_0 =0).

Enter some parameters at below box and press button.

Gas Temperature(K) :	300	(250~500 K)
Pressure (mTorr) :	5	(0.5~50 mTorr)
Magnetic Field (T) :	0	(0~0.1 T)
2 ¹ S state population density (cm ⁻³):	1e6	(1E1~1E9 cm ⁻³)
2 ³ S state population density (cm ⁻³):	3e8	(1E1~1E9 cm ⁻³)
Sub	mit	

Database Updates (CR modeling on Web)

Contour plot for various line ratios as a function of plasma density and temperature

Atomic [Data Center 🔺 💌	Line Ration	o as a Fui model/co	ne ×	o?Tgas=30	0&Pressure=
Line Ra	atio as a Funct	ion of ⊤,	e/n _e			
20-						
18-						
16-						
14-						
12-						
10-						
8-						
6-						
4-						
2-						
10+8	18+7 18+1	iu 1e	+11	1e+12	1e+15	le+14
0.0	0.5 1.0	1.5	20	2.5	3.C	3.5
				Close		

Gas Temperature(K) 300									
Pre	5.0								
Magnetic Field (T) 0									
2 ¹ S state population density (cm ⁻³) 1e6									
2 ³ S state population density (cm ⁻³)3e8									
Intensity I									
^O 3 ¹ S-2 ¹ P	^O 3 ³ S-2 ³ P	^O 3 ¹ P-2 ¹ S	^O 3 ³ P-2 ³ S						
●3 ¹ D-2 ¹ P	^O 3 ³ D-2 ³ P	0 4 ¹ S-2 ¹ P	^O 4 ³ S-2 ³ P						
©4 ¹ P-2 ¹ S	^O 4 ³ P-2 ³ S	^O 4 ¹ D-2 ¹ P	^O 4 ³ D-2 ³ P						
Intensity II									
●3 ¹ S-2 ¹ P	^O 3 ³ S-2 ³ P	^O 3 ¹ P-2 ¹ S	O 3 ³ P-2 ³ S						
^O 3 ¹ D-2 ¹ P	^O 3 ³ D-2 ³ P	⁰ 4 ¹ S-2 ¹ P	^O 4 ³ S-2 ³ P						
©4 ¹ P-2 ¹ S	O4 ³ P-2 ³ S	^O 4 ¹ D-2 ¹ P	^O 4 ³ D-2 ³ P						
Draw Graph									

Summary & Outlook

1. We have carried out calcultions for EII and DR by FAC and photoionization by non-iterative eigenchannel R-Matrix method.

2. Spectroscopic measurements in various plasma devices and CR modeling have been performed for He I.

3. We have updated the calculated atomic data and implemented CR modeling on our Web DB (http://pearl.kaeri.re.kr).

4. Parallelization for FAC DR calculation will be done.

5. Improving accuracy of FAC collisional excitation calculation for neural atom will be sought.

6. Validation for atomic data and CR modeling will be going on by spectroscopic measurements.

