• • • • • •

Displacement cascade database for PKA energies up to 50 keV in bcc-Fe

Naoki Soneda

Technical Meeting on A Database of Atomic Configurations Formed in Collision Cascades

IAEA Headquarters, Vienna, Austria

16 - 17 November 2017

Contributors

- Tomas Diaz de la Rubia (Purdue Univ.)
- Shiori Ishino (U. Tokyo)
- Akiyuki Takahashi (Science University of Tokyo)
- Kenji Dohi (CRIEPI)

CASCADE DATABASE

C CRIEPI

Defect production in bcc-Fe

- Observation in low PKA energy cascades -

- Damage energy : Threshold energy ~ 100keV
- SIA-cluster (dislocation loop) formation occurs in the cascades with the PKA energies higher than 10keV.
- No definite clustering of vacancies.
- Sub-cascade formation in the cascades occurs with the PKA energies higher than 20keV.
- A very large diversity in high-energy cascade results.

What is the statistical characteristics?

Objectives

- Characterize defect production due to highenergy cascade in bcc-Fe by performing a number of Molecular Dynamics (MD) calculations
 - □100 runs of 50keV cascade
 - □ 50 runs of 20keV cascade

Calculation

- Johnson & Oh's EAM potential
 - **ZBL** universal potential in a short ranage
- Computation box
 - **2**,000,000 (2x100³) atoms for 50keV cascades
 - **1**,024,000 (2x80³) atoms for 20keV cascades
- Crystal temperature : 600K
- Constant volume
- No electron-phonon coupling
- Clustering criteria :
 - □ 3NN for SIA clusters
 - □ 4NN for Vacancy clusters

Fraction of defects in clusters

Classification of defect formation again

Small SIA & small vacancy cluster

Isolated subcascades

Black dots : vacancies White circles : SIAs

Large SIA & small vacancy cluster

Overlapping of subcascades of similar sizes

Black dots : vacancies White circles : SIAs

Large SIA & large vacancy cluster (1)

Overlapping of subcascades of different sizes

- A very large SIA cluster is formed at the overlap of large and small subcascades.
- Consequently, many vacancies are left particularly at the core of the larger subcascade.

Large SIA & large vacancy cluster (2)

1.87 psec

12.12 psec

One large cascade, and then ...

Black dots : vacancies White circles : SIAs

Large SIA & large vacancy cluster (3)

40.02 psec

Channeling

Black dots : vacancies White circles : SIAs

Direction	50keV	20keV
$\langle 011 \rangle$	2	0
(133)	1	0
(233)	2	0
(111)	0	1
(112)	1	1
(337)	1	0
(113)	1	0
(114)	1	0
(115)	0	1
(116)	1	2
$\langle 001 \rangle$	7	0

- All the events occur on (110) plane.
- PKA is always the channel particle in 20keV cascades.

Dispersed defect production

0.14 psec

Black dots : vacancies White circles : SIAs Gray : replaced atoms _{Case 42}

Direction	50keV	20keV
$\langle 011 \rangle$	1	0
(111)	1	0
(113)	2	0
$\langle 001 \rangle$	1	0

- Similar direction to channeling, but associated with many interactions
- Did not occur in 20keV cascades

Structure of cascades – vacancy –

Size of the largest vacancy cluster in cascade

Structure of cascades – SIA –

Size of the largest SIA cluster in cascade

Structure of cascade

CRIEPI

Cascade-overlap at high doses

Cascade overlap statistics

Conclusions

- Both 50keV and 20keV cascades basically provide small point defect clusters. In 50keV cascade, however, there is a relatively large chance to produce large SIA clusters (~30%) and large vacancy clusters (~10%). These large defect clusters may play an important role in the microstructure evolution.
- "Cascade collapse" in bcc-Fe was observed for the first time by molecular dynamics simulation. 1/100 probability looks consistent with the low defect yield in bcc-Fe in experiments.
- 50keV and 20keV cascades consist of very similar unit structure (small subcascade).

KINETIC MONTE CARLO SIMULATIONS USING CASCADE DATABASE

CRIEPI

Objectives

- Effect of PKA energy spectrum
- Effect of irradiation temperature
- Effect of dose rate

Outline of KMC

KMC tracks all the events.

Input Data

- Database of displacement cascades for a wide range of PKA energies
- Diffusion kinetics such as diffusivities and diffusion modes (1D, 3D...) of point defects and clusters
- Thermal stabilities (binding energies) of point defect clusters

Most of the data can be obtained from molecular dynamics simulations.

KMC Algorithm

Particles & Events

Displacement Cascade Database of bcc-Fe

PKA energies: 100eV, 200eV, 500eV, 1keV, 2keV, 5keV, 10keV, 20keV, 50keV

Diffusion Kinetics of Point Defects in bcc-Fe

Binding Energies of Defect Clusters in bcc-Fe

Binding energy model

© CRIEPI 20070417

N. Soneda, T. Diaz de la Rubia, Phil. Mag. A, **78** (1998), 995.

Finite Periodic Boundary Condition

Effect of Neutron Spectrum

Direct formation of large clusters in cascades looks the key

CRIEPI

Effect of Grain Size

C CRIEPI

Dose Rate Effect in bcc-Fe

600K, Pure Fe, fast n-irradiation

Temp. Effect on V Cluster Size

Temperature Effect in bcc-Fe

Estimation of the Number of Vacancy Jumps

- Diffusion of vacancies leads to the diffusion of solute atoms such as copper.
- Effect of dose rate on the number of vacancy jumps can be a qualitative measure of the dose rate effect on the solute diffusion (and clustering).
- The number of thermal vacancy jumps can be estimated as:

$$n_{th} = t \cdot \frac{6}{\delta^2} \cdot D_0 \cdot \exp\left(-\frac{E_m^v}{kT}\right) \cdot 2\left(\frac{\ell}{a_0}\right)^3 \cdot \exp\left(\frac{S_k}{k}\right) \cdot \exp\left(-\frac{E_f^v}{kT}\right)$$

Effect of Dose Rate on the # of Vacancy Jumps

CRIEPI

Doses Necessary to Achieve a Given # of V Jumps

CRIEPI

Conclusions

- KMC simulations of defect accumulation in bcc-Fe during neutron irradiation were performed using the data set mostly obtained by MD simulations.
- Direct formation of large SIC clusters has some effects on the microstructural evolution.
- Effect of dose rate on the defect accumulation was studied.
 - There is a threshold dose rate below which no (or very small) flux effect is observed on the point defect clustering, maybe due to loss of cascade overlapping.
 - The contribution of thermal vacancies is not negligible at very low dose rates.