IAEA – Vienna – November 2017 Collisional Cascades Database Technical Meeting

EURO*fusion*

Laboratoire Commun

EM²VM

CILLS

eDF

Cascades by molecular dynamics in metals: interatomic potentials and BCA comparison, statistics

Unité Mutériaux Et Transformations

<u>C. Domain¹</u>, C.S. Becquart², P. Olsson³, A. De Backer⁴

¹ EDF R&D

Dpt Matériaux & Mécanique des Composants Les Renardieres, Moret sur Loing, France

> ² UMET, Université de Lille 1 Villeneuve d'Ascq, France

³ KTH, Stockholm, Sweden ⁴ CC<u>FE, Culham,</u> UK

- European network
- EDF Coordinator
- 7 technical areas
- 40 members
- 4 years (starting 1/10/2001)
- Objectives:
 - to prepare new simulation tools by solving key problems and by giving some recommendations...

ITEM Network

• to build the <u>European DA</u>tabase for <u>Multiscale modelling</u> (EDAM) Final report:

Guideline for Multi-scaling Modeling of Irradiation Effects

FIS5-2001-00031

Microstructure modeling evolution: Towards long irradiation

- Modelling complex chemistry + defects (point defects and clusters)
 - → Atomic Kinetic Monte Carlo (AKMC) / OKMC / hybrid / rate theory
 - \rightarrow Data on defect solute clusters mobility & stability
 - → Primary damage
- Primary damage
 - \rightarrow Prediction of empirical potentials
 - → Representative
 - \rightarrow Quantitative
 - → Threshold Displacement Energy

TDE from first principles

TDE simulation characteristics:

- Non-cubic supercells: 504 atoms (6x6x7 bcc cells)
- Born-Oppenheimer MD: electronic convergence for each MD step
- Time step: 2 3 fs
- TDE energy discretisation: 1 eV
- On 2048 cores (IBM BlueGene Q) and 1024 cores (Cray XE6)
- need up to ~2 ps simulated time
- very, very core-hour expensive!!!

Standard minimal potentials

Fe_{sd}= Ar4s¹3d⁷

and the semi-core potentials Fe_{psd}= Mg3p⁶4s¹3d⁷

E _f (eV)	Fe _{sd}		Fe _{psd}		
Config	250	1024	250	1024	
Vac	2.16	2.06	2.16	2.09	
$\langle 110 \rangle$	4.05	3.97	4.31	4.25	
$\langle 111 \rangle$	4.79	4.64	5.12	4.98	
$\langle 100 \rangle$	5.18	5.02	5.54	5.42	
$\langle 110 \rangle$ - $\langle 111 \rangle$	0.74	0.67	0.81	0.73	
FP	6.21	6.05	6.47	6.34	

ROD

[Olsson MRL2016]

EDF R&D – Collisional Cascades Database Technical Meeting – IAEA, Vienna, November 2017

TDE angular anisotropy in Fe

Very similar topology for Fe_{sd} and Fe_{psd} 70 $\mathrm{Fe}_{\mathrm{sd}}$ 60 -e_{psd} Not so similar to EAM (nor AM04 the analytical model of Seeger) Seeder 50 $\langle 110 \rangle$ is hyperbolic in DFT, (V) 40 30 minimal in EAM and maximal in Seeger 20 (111) is strongly maximal 10 in EAM <111> 100 410 210 430 110 441 221 443 111 433 211 411 100 Direction <hkl> Laboratoire Commun <110> <100 EM²VM 챯 [Olsson MRL 2016] ROD 12 mai

EDF R&D - Collisional Cascades Database Technical Meeting - IAEA, Vienna, November 2017

Drag atoms

Quasi-static drag simulations show difference between methods

One atom is dragged through the lattice and the energetic response is recorded without relaxation

ZBL, AM04 and Fe_{psd} are more or less in agreement (equally stiff) for the close packed directions

Fe_{sd} is much softer

Density Functional Theory: Dynamic simulation of defect creation

BCA (SDTrimSP) – MD cross comparison Sub-cascades analysis

1 MeV PKA in W

[De Backer EPL2016]

EDF R&D – Collisional Cascades Database Technical Meeting – IAEA, Vienna, November 2017

Laboratoire Commun

19 mai

CILLS

Sub cascades BCA (SDTrimSP) – MD cross comparison

EM²VM 🍰 EDF R&D – Collisional Cascades Database Technical Meeting – IAEA, Vienna, November 2017

Fe [Ackland 04] – 80 keV PKA

Transition metals comparison (Zr, Fe, Ni, W)

 $E_PKA = 50 \text{ keV}$

Conclusions

Large cascade database

- Defect size distribution(PKA energy, potentials)
- Good comparison and complementarity with BCA
- Effect of potentials: equilibrium & hardening
 - Assessment / hardening of potentials based on DFT
 - Some Similarities for other metals (e.g. Zr, Ni, W, Mo)
- Impact on microstructure modelling
 - Different class of objects formed (e.g. loops)
- Database
 - Potential: tabulated (no functions)
 - All atomic positions (XYZ format)
- Experimental validation
 - TEM invisible defects: HDS, ...
 - Low temperature controlled irradiation, isochronal annealing
 - Modelling of experiments (e.g. TEM, HDS, PA)

