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Today’s talk: Update on multiscale integration*

Goal: Discovery science to identify 
mechanisms/clues to W nanofuzz 
formation and synergies between 
He & H exposure that impact H/D/T 
permeation & retention – and 
surface mass loss (dust)

Mechanisms of interest: 
Sputtering (later), surface 
adatom formation, He diffusion, 
bubble formation, growth &
 rupture

Focus on MD & kinetic 
modeling approaches, 
leading to a large-scale continuum-
level reaction-diffusion code for 
plasma materials interactions
-  Outline:
 - MD to KMC to cluster dynamics of He accumulation in W: impact of surface orientation
 - Initial results of Bayesian informed UQ assessment of He-vac thermodynamics & approach
 - Initial results investigating H trapping at sub-surface He bubbles (He-H synergies)
     -



Key MD observations of early stage He bubble evolution

• Helium insoluble but highly mobile and can self-trap (at high 
implantation rates) due to strong He-W repulsion to form highly 
mobile, strongly bound helium clusters

• Significant surface evolution through tungsten adatom formation, driven 
  by trap mutation and loop-punching as tungsten interstitials rapidly 
  diffuse to surface
• As bubbles continue to grow at very high pressure, eventually rupture



A brief word about Molecular Dynamics (MD) calculations



Tungsten surface response to low-energy He exposure 

2.5 µm
• MD* of 100 eV He implanted into W reveals formation 
and growth of over-pressurized, sub-surface He bubbles 
thru self-trapping, trap mutation, loop punching and bubble 
bursting that evolve tungsten surface (hillocks & craters) 
 à Qualitatively consistent with experiments** of W 
surface evolution following 60 eV He on tungsten  
 à Quantitative comparison requires evaluation of rate & 
scale effects (Γ:MD 1026 vs expt 1019; Φ: 1020 vs 1024) 
  

Molecular Dynamics model predictions

Experiment: Γ = 3x1019 m-2s-1

Φ = 3x1024 m-2

** Donovan, Buchenauer, Kolasinksi et al., SNL* Hammond & Wirth, UTK/ORNL



Impact of surface orientation*
Helium distributions at a 
fluence of 1019 He-m−2

Nominal Flux: 
4.0 ×1025 He-m−2 s−1 of 
100 eV He (thermally 
implanted)
Temperature: 933K

Note presence of 
concentrated He layer in 
(111) and (211) cases – 
surface orientation 
strongly influences helium 
retention 

* Hammond and Wirth, JAP 
116 (2014) 143301



Impact of surface orientation*

Helium distributions at a fluence of 3.3x1019 He-m−2

Concentrated near-surface He layer also develops in (100) and (110) surfaces

*Hammond (UM), manuscript in preparation



Interactions of small mobile He clusters with surfaces*
•  Small mobile He clusters, from aggregation of implanted helium in tungsten, migrate to the 

surface by Fickian diffusion and drift due to a thermodynamic driving force for surface 
segregation originating from the elastic interaction between the cluster and the surface. 
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•  As the clusters approach the surface, cluster reactions are activated with rates much higher 
than those in the bulk. The dominant ones are trap mutation (TM) reactions, generating 
immobile helium-vacancy complexes a few layers below the surface plane and tungsten 
surface adatoms: W + Hen → Hen-Vk + k Ws ; k ≥ 1 

Examples: 
He4, He5, and 
He6 near 
W(110) 

He4 near W(211) Hen near W(211) 

* Hu, Hammond, Wirth, and Maroudas, J. Appl. Phys. 115, 173512 (2014);
Maroudas, Blondel, Hu, Hammond, and Wirth, J. Phys.: Condens. Matter, subm. (2015).



Modified trap mutation near surfaces – orientation dependent*
Modified trap mutation (typically happens around He7 in bulk) influences 
retention, He depth profile and bubble distributions

* Hu, Hammond, Wirth, and Maroudas, Surf. Sci. 626 (2014) L21-25.



Impact of surface orientation & He flux on retained He
Temperature is 933K



 KMC simulation of He clustering below W surfaces
T=973K, Flux (Γ) of 100 eV He at 4E25 He m-2s-1

Kinetic Monte Carlo (KMC)
simulations incorporating 
atomistic gas diffusion, clustering 
mechanisms used to extrapolate 
from ultra-fast MD implantation 
fluxes to experimentally relevant 
rates but limited to relatively 
short times O(seconds).

Indicate mechanism boundary of 
gas bubble nucleation 
mechanism f(Γ,T)



 Xolotl-PSI*
• Xolotl (SHO-lottle) is the Aztec god of lightning and death
• Developed from ‘scratch’ for the SciDAC project, designed for HPC 
(current and emerging architechtures – multicore, multicore+accelerator)
 to solve advection – reaction – diffusion cluster dynamics problems 
 within spatially-resolved continuum domain (C++ with MPI and 
 independent modules for physics, solvers and data management)
• 2D and 3D recently implemented
• Model considers continuum concentration of He, vacancies, interstitials and mixed
  clusters at spatial grid points, solving the coupled advection-reaction-diffusion equations

* Available at http://sourceforge.net/projects/xolotl-psi/



Initial results including advection (drift diffusion) & 
modified trap mutation

• Also include modification of Hex -> HexV1 + I1 in which x depends on proximity to 
surface (parameterized based on MD simulation probability tables)

MD simulations                 ΓHe ~ 4E25 m-2s-1 Xolotl simulations

* Maroudas, Blondel, Hu, Hammond, and Wirth, J. Phys. Cond. Matter. submitted



Initial results including advection (drift diffusion) & 
modified trap mutation

Good early agreement does not persist at higher fluence: bubble bursting or 
modifications to the reaction rate constant are suspect. Future detailed comparisons 
of helium-vacancy cluster size distributions to help resolve this

* Maroudas, Blondel, Hu, Hammond, and Wirth, J. Phys. Cond. Matter. submitted

MD simulations                 ΓHe ~ 4E25 m-2s-1 Xolotl simulations



More detailed Xolotl benchmarking to MD
100 eV He, 933 K

• Xolotl comparison/benchmarking to MD quite promising, but Xolotl is still missing (two) 
important physics: 
   - Bubble bursting 
   - Modified trap mutation below (211) implemented as (111)
   - Bubble coalescence

MD simulations                 ΓHe ~ 4E25 m-2s-1 Xolotl simulations



More detailed Xolotl results: (111) surface at Γ~4E25 m-2s-1

Bubble distributions are concentrated just below the surface (where the clusters stay
relatively small) and deeper (~ 10 nm) 

Φ ~ 6.5E18 m-2



Xolotl results at ITER relevant flux of Γ~4E22 m-2s-1



More detailed Xolotl results: (111) surface at Γ~4E22 m-2s-1

Now, at lower flux, the bubble distributions are concentrated just below the surface, 
where nucleation initiates & bubbles begin to grow. Deeper nucleation is delayed  

(111) Surface at Φ ~ 2.6E17 m-2



Bayesian informed approach towards UQ

Atomistic ‘data’ on He-vacancy formation energies

Approach: Create a model (2D Legendre polynomials) of this data to reduce 
memory (no look up table) & provide basis for interpolation & extrapolation



Bayesian informed approach towards UQ



Bayesian informed approach towards UQ

 --  Formation energies turn out not to have impact on our QoI



He-H defect interactions in W
• Interatomic potential(s) derived to describe W-He* and W-He-H** interactions

Ab-initio data of H binding to He-H-V in W*

Atomistic result from potentials –
Validating 
comparison

HeH

Validated potentials used to evaluate H
partitioning to He bubbles
  - He is uniform, but H partitions to the 
bubble surface
  - evaluating H storage capacity as 
function of bubble size & He pressure

* Juslin and Wirth, Journal of Nuclear Materials 432 (2013) 61-66.
** Juslin and Wirth, Journal of Nuclear Material 438 (2013) 1221-1223.

* Becquart & 
Domain, JNM (1999)



H – W potential validation & modification*
• Benchmarking H adsorption energies on W surfaces

 
• But MD doesn’t indicate H2 formation and desorption at 2500 K, so 3-body W-H 
term modified (now called modified Juslin W-H potential), resulting in H2 desorption

*J. Guterl et al., 2014 PSI proceedings

𝐸↓𝑎𝑑𝑠 =2.4𝑒𝑉  (𝐵),  2.3𝑒𝑉  (𝑇),2.1𝑒𝑉  (𝑂),  2𝑒𝑉  (𝐷) 



Preliminary results of He-H synergies & H trapping
• 2 nm diameter, over-pressurized He bubble created 2 nm below W (110) surface
  - populate with He & H (or random H in box), simulated at 1200,1500,1800, 2000 K
   for 100 ps, then quench to evaluate retention and H partitioning using modified Juslin

Green:	  	  Hydrogen
Blue:	  Helium              Magenta:	  Adatoms



H distributions throughout the bubble  

Hydrogen
Helium
Tungsten

After 100 ps
at 1500K
3 He/Vac
0.5 H/vac (~125 H,
~0.7 at%)



Preliminary results of He-H synergies & H trapping
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Preliminary results of He-H synergies & H trapping

Gas Atoms Remaining in Cavity at 1200 K	   Gas atoms in box	   Desorbed from box	  

Concentration	   He	   H	   H %	   He	   H	   He	   H	  

3 He 0.5 H / V	   750	   88	   70.4	   750	   125	   0	   0	  

3 He 1 H / V	   753	   167	   66.5	   753	   251	   0	   0	  

3.5 He 0.5 H / V	   889	   119	   93.7	   889	   127	   0	   0	  

3.5 He 1 H /V	   903	   235	   91.4	   903	   257	   0	   0	  

4 He 0.5 H / V	   996	   117	   93.6	   996	   125	   0	   0	  

4 He 1 H / V	   1008	   229	   90.9	   1008	   252	   0	   0	  

Gas Atoms Remaining in Cavity at 2000 K	   Gas atoms in box	   Desorbed from box	  

Concentration	   He	   H	   H %	   He	   H	   He	   H	  

3 He 0.5 H / V	   762	   118	   92.9	   762	   127	   0	   0	  

3 He 1 H / V	   768	   238	   93.0	   768	   256	   0	   0	  

3.5 He 0.5 H / V	   875	   118	   94.4	   875	   125	   0	   0	  

3.5 He 1 H /V	   889	   250	   98.4	   889	   254	   0	   0	  

4 He 0.5 H / V	   1004	   120	   95.2	   1004	   126	   0	   0	  

4 He 1 H / V	   994	   226	   89.7	   994	   252	   0	   0	  

• Significant H content trapped in bubble and periphery, even at 2000K

Initial bubble (3 He/v,
0.5 H/v, 1200K)



Have we ‘biased’ the H to the bubbles?

0	  ps 1	  ns

He/V	  =3	  	  	  	  	  	  	  	  	  	  	  	  H/V	  =	  1

1800 K, 2 nm diameter He bubble with He/V = 3.  255 H atoms (~1.4 at%) randomly 
distributed throughout simulation cell
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W-H interactions are key uncertainty, MD simulations: 
Γ=2.5x1027 H m-2s-1, 1200K

Juslin Modified 
Juslin

Li



Summary

• Multiscale materials simulations being used to evaluate He bubble nucleation & He-H 
synergies
  - Results clearly indicate highly mobile He self-traps and small mobile He clusters 
undergo trap mutation (Hex –> HexVy + Iy) that immobilizes clusters leading to 
nucleation of growing, highly over-pressurized He bubbles. Bubble growth through trap 
mutation & loop-punching produce substantial surface roughness. Growing bubbles 
eventually rupture
 - Promising results for benchmarking of Xolotl against MD (& KMC, though not shown)
 - Strong influence of implantation flux on bubble size distributions as a function of 
depth – impact of (radiation/thermal) damage still to be resolved

• Initial framework for UQ analysis of the impact of uncertainty in He-vacancy thermo-
kinetics on He bubble nucleation, retention and W surface response

• Preliminary investigations of H trapping at He bubbles indicates quite strong trapping, 
with H preferentially located at bubble periphery, even to high Temperatures beyond 
typical TDS measurements – validity of the potentials is appropriate question to ask. 
Future efforts to validate/refine W-H potential by DFT calculations of H(-He)-defect 
interactions near W surfaces

• Future effort to understand He-H synergies & impact on H/D/T recycling and retention


