

Uncertainty Quantification for Plasma- and PWI- models

U. von Toussaint, R. Preuss, D. Coster

Max-Planck-Institut für Plasmaphysik, Garching EURATOM Association

IAEA, Vienna 29-31 July 2015

Overview

- Motivation
- Approaches to Uncertainty Quantification
- Example: Vlasov-Poisson-system
- Sensitivity Analysis
- Emulators: Gaussian Processes
- Example: SOLPS-data
- Challenges

Preliminaries

Two types of uncertainties (lack of knowledge) are to be distinguished:

- Isolatable uncertainties eg.
 - electron mass
 - cross-sections from first principles

- non-isolatable uncertainties
 - most non-trivial simulations eg. climate- or plasma-simulation output
 - complex/integrated data analysis

Verification, Validation and Uncertainty Quantification in a scientific software/modeling context:

Simulations provide approximate solutions to problems for which we do not know the exact solution.

This leads to three more questions:

- How good are the approximations?
- How do you test the software?
- '*Predictive*' power?

Motivation

Different Assessment Techniques for Different Sources of Uncertainty or Error

Problem:

Assessment:

- Model(s) not good enough Valie
- Numerics not good enough
 - Algorithm is not implemented correctly
 - Algorithm is flawed
- Problem definition not good enough

- Validation
- Code verification
- Code verification
- Uncertainty quantification

Motivation

Recognized in many other (engineering) fields Example:

V&V process flowchart from the ASME Solid Mechanics V&V guide (2006).

May be to simplistic...

Motivation: Design Cycle

Systematic Uncertainty Quantification in Plasma Physics

- Often still at the very beginning (parameter scans)
- Importance increasingly realized ('shortfall'): V&V&UQ
- connection with 'surrogate' models

Setting up a reference case based on relevant, non-trivial and well understood system in plasma physics:

Vlasov-Poisson-Model

UQ-Model System: Vlasov-Poisson

$$\begin{split} \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial x} + \frac{q}{m} \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right) \cdot \frac{\partial f}{\partial v} &= 0 \\ \rho(\boldsymbol{x}, t) &= q \int f(\boldsymbol{x}, \boldsymbol{v}, t) d\boldsymbol{v} & \nabla \times \boldsymbol{B} &= \boldsymbol{J} \\ \boldsymbol{J}(\boldsymbol{x}, t) &= q \int f(\boldsymbol{x}, \boldsymbol{v}, t) \boldsymbol{v} d\boldsymbol{v} & \nabla \cdot \boldsymbol{E} &= 0 \\ -\Delta \phi &= 1 - \rho(t, \boldsymbol{x}) = 1 - q \int f(t, \boldsymbol{x}, \boldsymbol{v}) d\boldsymbol{v} \\ \boldsymbol{E} &= -\nabla \phi \quad . \end{split}$$

UQ-Model System: Vlasov-Poisson

• Phase-space distribution function f(x,v,t) of collisioness plasma:

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial x} + \frac{q}{m} \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right) \cdot \frac{\partial f}{\partial v} = 0$$

System details:

- 1+1-dimensional (x,v-space)
- Solver: Semi-Lagrangian-solver
- Boundary conditions: periodic
- Negligible B-field contributions
- Static ion-background
- External random E-field contribution E₀(x)

```
Effect of the random E-field?
```


- Sampling
- Spectral Expansion
 - Galerkin Approach
 - Stochastic Collocation
 - Discrete Projection
- Surrogate models (eg. Gaussian processes)

Sampling approach

Use random sample $S = \{\mathbf{x}^{(i)}, i=1,...,N\}$

to compute distribution $p(\mathbf{y})$ and moments :

$var(y) = \langle y^2 \rangle - \langle y \rangle^2$

 $\langle y_j \rangle = \frac{1}{N} \sum_{i=1}^N M(x^i)_j$

+ higher order terms....

Advantages: - Includes all correlations (→ verification) - Parallel & straightforward

Downside: - sample point density: **curse of dimensions**: $\rho \sim \rho_0^{-Dim}$

Results

Sampling approach

Example: Vlasov-Poisson, random external field $E=E_0 + N(\mu=0,\sigma=0.1E_0)$

t=2.8 s

t=0.4 s

Results

Sampling approach

Example: Vlasov-Poisson, random external field $E=E_0 + N(\mu=0,\sigma=0.1E_0)$

t=0.4 s

t=2.8 s

Spectral Expansion (Polynomial chaos expansion)

- Consider a computational model $\mathcal{M} : \mathcal{D} \subset \mathbb{R}^M \mapsto \mathbb{R}$ and a probabilistic model for the uncertainty in the input parameters, say $\boldsymbol{X} \sim f_{\boldsymbol{X}}(\boldsymbol{x}) = \prod_{i=1}^M f_{X_i}(x_i).$
- Assuming that $\mathbb{E}\left[\mathcal{M}(\boldsymbol{X})^2\right] < \infty$ one can represent the random response $Y = \mathcal{M}(\boldsymbol{X})$ in a suitable Hilbert space.
- There exists a countable orthonormal basis $\{\psi_j, j \in \mathbb{N}\}$ such that :

$$Y = \sum_{j=0}^{\infty} y_j \Psi_j(\boldsymbol{X})$$

where :

- y_j : coefficients to be computed (coordinates)
- Ψ_j : basis functions *e.g.* multivariate orthonormal polynomials

> Spectral Expansion

Two different approaches:

Intrusive methods depend on the formulation and solution of a stochastic version of the original model

Nonintrusive methods require multiple solutions of the original (deterministic) model only

Stochastic Collocation

- No need to reformulate governing equations ("non-intrusive")
- gPC-based pseudospectral approach:

Seek $\tilde{Y}_{N}(\boldsymbol{\xi}) = \sum_{|\boldsymbol{k}| < N} \tilde{a}_{\boldsymbol{k}} \Psi_{\boldsymbol{k}}(\boldsymbol{\xi})$ by computing $a_{\boldsymbol{k}} = \int Y(\boldsymbol{\xi}) \Psi_{\boldsymbol{k}}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi}$ $\approx \sum_{j=1}^{Q} Y(\boldsymbol{\xi}^{(j)}) \Psi_{\boldsymbol{k}}(\boldsymbol{\xi}^{(j)}) w^{(j)} \equiv \tilde{a}_{\boldsymbol{k}}$

- Quadrature rule $\left\{\xi^{(j)}, w^{(j)}\right\}_{j=1}^{Q}$ can be sparse (e.g., Smolyak)

				_				r	
						1.11			
								8.0 -	
								20	
								4.0 f	
								4 0.2	
								o	
								• F**	
								5.0-	
								hn- †	
								+.0	
								0.0-	
								8.0-	
								1	
			: : :					1	
						1.1.1	1.1.1.1.1	t	_
	0.6 0	10 20	0	0.0	1.0	9.0	80. 1		
r 8)	0.6 0	0.2 0.4	0	-0.2	-0.4	a.o-	8.0- 1	- r	

- Spectral Expansion Non-intrusive I
 - Computation of multi-dim integrals:

D

- exploit structure (Gaussian $p(\xi)$): Gauss-Hermite quadrature

$$Y(\xi) = \sum_{k=0}^{T} a_k \psi_k(\xi) \quad \text{with} \quad a_k = \frac{\langle Y(\xi), \psi_k(\xi) \rangle}{\langle \psi_k(\xi), \psi_k(\xi) \rangle}$$
$$\langle h_1(\xi), h_2(\xi) \rangle = \int h_1(\xi) h_2(\xi) p(\xi) \mathrm{d}\xi \quad \stackrel{\text{G.H.}}{=} \sum_{l=1}^{L} h_1(\xi_l) h_2(\xi_l) w_l$$

Mean
$$\langle Y \rangle = a_0$$
 and variance σ^2 :
 $\sigma_R = \mathcal{E}(R^2) - \mathcal{E}(R)^2 = \sum_{k=1}^P a_k^2 \langle \psi_k, \psi_k \rangle = \sum_{k=1}^P a_k^2 k!$

Spectral Expansion - Non-intrusive I

Example: Vlasov-Poisson, random external field $E=E_0+N(\mu=0,\sigma=0.1E_0)$

4-th order expansion in excellent agreement with MC in fraction of computing time

Now: **Random field** M(x,t) instead of random variable(s)

Infinite number of random variables ?? Example: E-field fluctuation

Covariance matrix: correlation length essential:

no white noise!

$$C_{ij} = \exp\left\{-\frac{1}{2}\frac{(t_i - t_j)^2}{\lambda^2}\right\}$$

- Let *M* ~ *GP*(μ,*C*)
- Introduce the Karhunen-Loève expansion & truncate:

$$M(\mathbf{x},\boldsymbol{\omega}) = \mu(\mathbf{x}) + \sum_{i=1}^{\kappa} \sqrt{\lambda_i} c_i(\boldsymbol{\omega}) \phi_i(\mathbf{x})$$

- λ_i and $\phi_i(\mathbf{x})$ are eigenvalues/eigenfunctions of $C(\mathbf{x}_1, \mathbf{x}_2)$

$$\int_{D} C(\mathbf{x}_1, \mathbf{x}_2) \phi_i(\mathbf{x}_2) d\mathbf{x}_2 = \lambda_i \phi_i(\mathbf{x}_1)$$
$$- \mathbf{c}_i \sim N(0, 1)$$

• Transform the inverse problem (dim = K << n) $d = \tilde{G}(c) + \eta$

> I) Covariance matrix:

$$C_{ij} = \exp\left\{-\frac{1}{2}\frac{(t_i - t_j)^2}{\lambda^2}\right\}$$

Eigenvectors

Eigenvalues

> Expansion of random field in KL-representation

> Expansion of random field in KL-representation

> Expansion of random field in KL-representation

> Expansion of random field in KL-representation

> Expansion of random field in KL-representation

> Random samples of random field in KL-representation

IDD

Result

- Vlasov-Poisson with fluctuating external E-field: Uncertainty?
- Now multivariate Gauss-Hermite integration:

$$a_k = \frac{1}{k!} \int \dots \int d\xi_1 \dots d\xi_M g(\xi_1, \dots, \xi_M) \psi_k(\xi_1, \dots, \xi_M) p(\xi_1, \dots, \xi_M)$$

j	lpha	$\Psi_{\alpha} \equiv \Psi_j$
0	[0,0]	$\Psi_0 = 1$
1	[1,0]	$\Psi_1 = \xi_1$
2	[0,1]	$\Psi_2 = \xi_2$
3	[2, 0]	$\Psi_3 = (\xi_1^2 - 1)/\sqrt{2}$
4	[1,1]	$\Psi_4 = \xi_1 \xi_2$
5	[0, 2]	$\Psi_5 = (\xi_2^2 - 1)/\sqrt{2}$
6	[3, 0]	$\Psi_6 = (\xi_1^3 - 3\xi_1)/\sqrt{6}$
7	[2, 1]	$\Psi_7 = (\xi_1^2 - 1)\xi_2/\sqrt{2}$
8	[1, 2]	$\Psi_8 = (\xi_2^2 - 1)\xi_1/\sqrt{2}$
9	[0,3]	$\Psi_9 = (\xi_2^3 - 3\xi_2)/\sqrt{6}$

Example: M=2, P=3 $\tilde{Y} \equiv \mathcal{M}^{PC}(\xi_1, \xi_2) = a_0 + a_1 \xi_1 + a_2 \xi_2 + a_3 (\xi_1^2 - 1)/\sqrt{2} + a_4 \xi_1 \xi_2 + a_5 (\xi_2^2 - 1)/\sqrt{2} + a_6 (\xi_1^3 - 3\xi_1)/\sqrt{6} + a_7 (\xi_1^2 - 1)\xi_2/\sqrt{2} + a_8 (\xi_2^2 - 1)\xi_1/\sqrt{2} + a_9 (\xi_2^3 - 3\xi_2)/\sqrt{6}$ $N_{int} = \frac{(M + P)!}{M! D!}$

Sensitivity Assessment

Partial variance

• Consider :

$$D_{i_1...i_s} = \int_{[0,1]^s} \mathcal{M}^2_{i_1...i_s}(x_{i_1}, \ldots, x_{i_s}) \, dx_{i_1} \ldots dx_{i_s}$$

• Then :

$$D = \sum_{i=1}^{M} D_i + \sum_{1 \le i < j \le M} D_{ij} + \ldots + D_{12...M}$$

• The Sobol' indices are obtained by normalization :

$$S_{i_1\dots i_s} = \frac{D_{i_1\dots i_s}}{D}$$

They represent the fraction of the total variance Var[Y] that can be attributed to each input variable $i(S_i)$ or combinations of variables $\{i_1 \dots i_s\}$

Sensitivity Assessment: Example

Computational model

Probabilistic model

Isoprobabilistic transform

Chaos degree

j	${lpha}$	$\Psi_{\alpha} \equiv \Psi_{j}$
0	[0, 0]	$\Psi_0 = 1$
1	[1, 0]	$\Psi_1 = \xi_1$
2	[0, 1]	$\Psi_2 = \xi_2$
3	[2, 0]	$\Psi_3 = (\xi_1^2 - 1)/\sqrt{2}$
4	[1, 1]	$\Psi_4 = \xi_1 \xi_2$
5	[0, 2]	$\Psi_5 = (\xi_2^2 - 1)/\sqrt{2}$
6	[3, 0]	$\Psi_6 = (\xi_1^3 - 3\xi_1)/\sqrt{6}$
$\overline{7}$	[2, 1]	$\Psi_7 = (\xi_1^2 - 1)\xi_2 / \sqrt{2}$
8	[1, 2]	$\Psi_8 = (\xi_2^2 - 1)\xi_1 / \sqrt{2}$
9	[0, 3]	$\Psi_9 = (\xi_2^3 - 3\xi_2)/\sqrt{6}$

$Y = \mathcal{M}(X_1, X_2)$	
$X_i \sim \mathcal{N}(\mu_i, \sigma_i)$	i = 1, 2
$X_i = \mu_i + \sigma_i \xi_i$	i = 1, 2
p = 3, <i>i.e.</i> $P = 10$	terms

Variance

 $D = \sum a_j^2$ j=1

Sobol' indices

$$S_{1} = \left(a_{1}^{2} + a_{3}^{2} + a_{6}^{2}\right)/D$$

$$S_{2} = \left(a_{2}^{2} + a_{5}^{2} + a_{9}^{2}\right)/D$$

$$S_{12} = \left(a_{4}^{2} + a_{7}^{2} + a_{8}^{2}\right)/D$$

$$32$$

Result

- Vlasov-Poisson with fluctuating external E-field: all gentle...
- Initial E-field amplitude more important than E-field variation

Result

Vlasov-Poisson with fluctuating external E-field

Conclusion I

Spectral expansion approach

- intrusive methods: best (only?) suited for new codes
- non-intrusive methods: general purpose approach
 - selection of collocation points
 - sparse methods for larger problems possible
 - influence of input parameter combinations as byproduct: Sobol decomposition
- Proof of principle for 1+1 Vlasov-Poisson Equation
- Validated against MC-approach (and other test cases)
- Some implementations: eg. DAKOTA
- Best suited for medium number of dimensions (O(10)) and moderately expensive simulators (forward models)

Emulators

What if conditions for Spectral expansion do *not* hold? Use of *emulators* as surrogate for *simulators*

- A simulator is a model of a real process
 - Typically implemented as a computer code
 - Think of it as a function taking inputs x and giving outputs y:

 x
 Code

 y(x)
- An emulator is a statistical representation of this function
 - Expressing knowledge/beliefs about what the output will be at any given input(s)
 - Built using prior information and a training set of model runs
- > Focus on *Gaussian Processes*

SOLPS-Data

- Result of GP-interpolation
- Color code: normalized variance

Input-space locations with largest information gain:

- GP-algorithm established
 - Mid size problems: 1000 data points, ~50 dimensions
 - many areas of application, ie. fitting of MD-potentials to DFT-data

but...

- Present data base "insufficient" ...
 - Physic based line-scans (power, density, temperature...)
 - Does not cover space (eg. approx. Latin hypercube)

- GP-algorithm now in routine application
- Present data base **insufficient**
 - Semi-automated data base generation (eg. Bayesian Experimental Design):
- Design Cycle:
 - Determine best location(s) for next simulation(s): Utility
 - Recompute uncertainty estimates
 - Check for design criteria: exit?

- GP-algorithm now in routine application
- Present data base **insufficient**
 - Semi-automated data base generation (eg. Bayesian Experimental Design):
- Design Cycle:
 - Determine best location(s) for next simulation(s): Utility
 - Recompute uncertainty estimates
 - Check for design criteria: exit?
- Challenges: adequate coverage of relevant input space
 - code convergence

Gaussian Processes: Challenges

- Scaling: N^3 : not yet prohibitive
- Correlated output
 - Standard approach: *independent* scalar response variables Drawback: Prediction not satisfactory: co-variance
 - Difficulty: design of pos. def. **cross**-correlation matrices
- **Phase transitions**: 'global' scale of covariance matrix

Conclusion II

- Gaussian Processes are powerful tool for high-dimensional interpolation → fast emulators → UQ
- Analytical formulas for mean and variance \rightarrow exp. Design
- Best suited for scalar output
- Automated experimental design cycle:
 - works on test cases
 - At present: too much human intervention needed for plasma codes
 - Problems appear solvable
- Correlated output: research and tests ongoing

Thank you!

References

- O'Hagan, A. (2006). Bayesian analysis of computer code outputs: a tutorial. *Reliability Engineering and System Safety* **91**, 1290-1300.
- 2. Santner, T. J., Williams, B. J. and Notz, W. I. (2003). *The Design and Analysis of Computer Experiments*. New York: Springer.
- Rasmussen, C. E., and Williams, C. K. I. (2006). *Gaussian Processes for Machine Learning*. Cambridge, MA: MIT Press.

Acknowledgement: Many thanks to C.E. Rasmussen, Y. Marzouk and B. Sudret from which some of the conceptual slides have been adapted or inspired.