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Preliminaries

Two types of uncertainties (lack of knowledge) are  
 to be distinguished:

 Isolatable uncertainties eg.

- electron mass

- cross-sections from first principles 

- ...

 non-isolatable uncertainties

- most non-trivial simulations eg. climate- or    
   plasma-simulation output

- complex/integrated data analysis



Verification, Validation and Uncertainty Quantification 
in a scientific software/modeling  context:

 Simulations provide approximate solutions to 
problems for which we do not know the exact 
solution.

This leads to three more questions:
• How good are the approximations?
• How do you test the software?
• 'Predictive' power?

Motivation



Different Assessment Techniques for Different 
Sources of Uncertainty or Error

Problem:

• Model(s) not good enough
• Numerics not good enough

• Algorithm is not 
implemented correctly

• Algorithm is flawed
• Problem definition not 
good     enough
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Assessment:

• Validation

 
• Code verification

• Code verification
• Uncertainty 

quantification

Motivation
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Motivation

Recognized in many 
other (engineering) fields
Example: 
V&V process flowchart 
from the ASME Solid 
Mechanics V&V guide 
(2006).

May be to simplistic...



7

Motivation: Design Cycle

physical model of system

mathematical model

numerical model

computer 
simulation

validation

Simulation-based decision making 
e.g. design, control, operations, 

 material selection, planning

scalable algorithms & 
solvers

data/observations

(multiscale) models 

    advanced   geometry &
discretization schemesparameter inversion

data assimilation
model/data error
    control
uncertainty 
    quantification

visualization
data mining/science optimization

stochastic models
uncertainty quantification

verification
approximation / error control
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Motivation

• Systematic Uncertainty Quantification in Plasma Physics

• Often still at the very beginning (parameter scans)

• Importance increasingly realized ('shortfall'): V&V&UQ

• connection with 'surrogate' models

Setting up a reference case based on relevant, non-trivial and 

well understood system in plasma physics:

 Vlasov-Poisson-Model
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UQ-Model System: Vlasov-Poisson

• Phase-space distribution function f(x,v) of collisionless plasma: 

q
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UQ-Model System: Vlasov-Poisson

• Phase-space distribution function f(x,v,t) of collisioness plasma: 

System details:
• 1+1-dimensional (x,v-space)
• Solver: Semi-Lagrangian-solver
• Boundary conditions: periodic
• Negligible B-field contributions
• Static ion-background
• External random E-field contribution E

0
(x)

Effect of the random E-field? 
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Methods in Uncertainty Quantification

Methods applied in Uncertainty Quantification

➢ Sampling

➢ Spectral Expansion 

➢ Galerkin Approach

➢ Stochastic Collocation

➢ Discrete Projection

➢ Surrogate models (eg. Gaussian processes)
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➢ Sampling approach

Use random sample S={x(i), i=1,...,N}

to compute distribution p(y) and moments :

 

Methods in Uncertainty Quantification

〈 y j〉=
1
N
∑
i=1

N

M (x i
) j

var ( y )=〈 y2〉−〈 y 〉2

+ higher order terms….

Advantages: - Includes all correlations (→ verification)
- Parallel & straightforward

Downside:  - sample point density: curse of dimensions: ρ~ρ
0

-Dim
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➢ Sampling approach

Example: Vlasov-Poisson, random external field E=E
0
+N(μ=0,σ=0.1E

0
)

t=0.4 s t=2.8 s

 

 

Results
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➢ Sampling approach

Example: Vlasov-Poisson, random external field E=E
0
+N(μ=0,σ=0.1E

0
)

t=0.4 s t=2.8 s

 

 

Results
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➢ Spectral Expansion (Polynomial chaos expansion)

Methods in Uncertainty Quantification
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➢ Spectral Expansion

Two different approaches:

➢ Intrusive methods depend on the formulation and 

solution of a stochastic version of the original model

➢ Nonintrusive methods require multiple solutions of the 

original (deterministic) model only

Methods in Uncertainty Quantification
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➢ Spectral Expansion – Non-intrusive I 

Methods in Uncertainty Quantification

Stochastic Collocation
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➢  Spectral Expansion – Non-intrusive I

➢ Computation of multi-dim integrals: 

- exploit structure (Gaussian p(ξ)): Gauss-Hermite quadrature

    

Methods in Uncertainty Quantification

with

Mean <Y>=a
0
 and variance σ2:



19

➢  Spectral Expansion – Non-intrusive I

 

Methods in Uncertainty Quantification

Example: Vlasov-Poisson, random external field E=E
0
+N(μ=0,σ=0.1E

0
)

t=0.4 s t=2.8 s

 

 

4-th order expansion in excellent agreement with MC in 
fraction of computing time
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➢  Spectral Expansion – Non-intrusive II

 

Methods in Uncertainty Quantification

Now: Random field M(x,t) instead of random variable(s)

Infinite number of random variables ??

Example: E-field fluctuation
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➢ Covariance matrix: correlation length essential: 

    no white noise!   

Methods in Uncertainty Quantification
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➢ I) Polynomial chaos expansion – Galerkin approach: 

Methods in Uncertainty Quantification



23

➢ I) Covariance matrix: 

Methods in Uncertainty Quantification

Eigenvectors Eigenvalues
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➢ Expansion of random field in KL-representation 

Methods in Uncertainty Quantification
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➢ Expansion of random field in KL-representation 

Methods in Uncertainty Quantification
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➢ Expansion of random field in KL-representation 

Methods in Uncertainty Quantification
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➢ Expansion of random field in KL-representation 

Methods in Uncertainty Quantification
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➢ Expansion of random field in KL-representation 

Methods in Uncertainty Quantification
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➢ Random samples of random field in KL-representation 

Methods in Uncertainty Quantification
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➢ Vlasov-Poisson with fluctuating external E-field: Uncertainty?

➢ Now multivariate Gauss-Hermite integration: 

Result

Example: M=2, P=3
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Sensitivity Assessment

➢ I) Polynomial chaos expansion  
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Sensitivity Assessment: Example

➢ I) Polynomial chaos expansion  
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➢ Vlasov-Poisson with fluctuating external E-field: all gentle...

➢ Initial E-field amplitude more important than E-field variation   

Result
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➢ Vlasov-Poisson with fluctuating external E-field 

Result
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Conclusion I

➢  Spectral expansion approach

- intrusive methods: best (only?) suited for new codes 

- non-intrusive methods: general purpose approach

- selection of collocation points

- sparse methods for larger problems possible

- influence of input parameter combinations as 

  byproduct: Sobol decomposition

➢ Proof of principle for 1+1 Vlasov-Poisson Equation

➢ Validated against MC-approach (and other test cases)

➢ Some implementations: eg. DAKOTA

• Best suited for medium number of dimensions (O(10)) and 

moderately expensive simulators (forward models)
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Emulators

x   Code    y( x)

 A simulator is a model of a real process
 Typically implemented as a computer code
 Think of it as a function taking inputs x and giving 

outputs y:
            

 An emulator is a statistical representation of this 
function
 Expressing knowledge/beliefs about what the output 

will be at any given input(s)
 Built using prior information and a training set of 

model runs

What if conditions for Spectral expansion do not hold?  
Use of emulators as surrogate for simulators

Focus on Gaussian Processes
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SOLPS-Application

SOLPS-Data base: - 1500 parameters
- collected by D. Coster

Idea: exploit for initialization, scans 
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SOLPS-Data

• Result of GP-interpolation
• Color code: normalized variance
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SOLPS-Application

Input-space locations with largest information gain:
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SOLPS-Application

• GP-algorithm established
 

- Mid size problems: 1000 data points, ~50 dimensions
- many areas of application, ie. fitting of MD-potentials to    

   DFT-data

but...



45

SOLPS-Application

• Present data base “insufficient” …
• Physic based line-scans (power, density, temperature...)
• Does not cover space (eg. approx. Latin hypercube)
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SOLPS-Application

• GP-algorithm now in routine application
• Present data base insufficient

 Semi-automated data base generation (eg. Bayesian 
Experimental Design):

• Design Cycle:

 - Determine best location(s) for next simulation(s): Utility

 - Recompute uncertainty estimates

 - Check for design criteria: exit?
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SOLPS-Application

• GP-algorithm now in routine application
• Present data base insufficient

 Semi-automated data base generation (eg. Bayesian 
Experimental Design):

• Design Cycle:

 - Determine best location(s) for next simulation(s): Utility

 - Recompute uncertainty estimates

 - Check for design criteria: exit?
• Challenges: - adequate coverage of relevant input space

- code convergence
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Gaussian Processes: Challenges

• Scaling: N3  : not yet prohibitive

• Correlated output

- Standard approach: independent scalar response variables
Drawback: Prediction not satisfactory: co-variance

- Difficulty: design of pos. def. cross-correlation matrices

• Phase transitions: 'global' scale of covariance matrix
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Conclusion II

• Gaussian Processes are powerful tool for high-dimensional 
interpolation → fast emulators → UQ

• Analytical formulas for mean and variance → exp. Design
• Best suited for scalar output

• Automated experimental design cycle: 
- works on test cases
- At present: too much human intervention needed for 

plasma codes
- Problems appear solvable

• Correlated output: research and tests ongoing
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The End

Thank you!
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