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Out line
1. Introduction of unique phenomena of W as an example
2. Abnormal H configuration in W mono-vacancy
application of random sampling
3. Zero point energy calculations



Back Ground of this work

ITER divertor

In fusion reactor (ITER), divertor armor is exposed to extremely large fluence
of plasma particle, H isotopes D, T, heluium (He), and heat flux.

In order to protect the sever irradiation, tungsten (W) is considered as a
plausible candidate for plasma facing materials in fusion reactor.

Advantage of tungsten as plasma facing materials

1. Highest melting point of all the pure metals 3380 °C

2. Low hydrogen solubility +1.1eV par H

3. Low sputtering erosion

4. High thermal conductivity

5. Low induced radioactivity, compared with molybdenum (Mo)



Some unique properties of tungsten are observed by the studies of fusion
reactor materials.

Why do unique phenomena happen in tungsten associated with fusion reactor?
Of course, fusion reactor is an innovative technology.
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1. Negative formation energy
of di-vacancy in tungsten
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Fig. 5. DFT di-vacancy binding energies at first and second nearest-neighbors:
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2. He, migrates more quickly than a

single He atom at T < 400K
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comparison between the results obtained for groups VB (V, Nb, Ta) and VIB (Cr, Mo, Flg' 8. Diffusion coefficient for He interstitials (He"' n= 1_5) In tungsten.
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Fig. 4. Binding energies between two vacancies in Fe at first and second nearest-
neighbor positions: comparison between PWSCF results in a 54-atom cell and the
Mendelev potential results [16]. The binding energy is defined as positive for an
attractive interaction between the two vacancies.
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3. Fibreform tungsten covering 4. Abnormal H confuguration

surface by He irradiation in W mono-vacancy
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Figure 2. (@) and (b) are SEM micrographs of the electrode surface
exposed to the helium plasma in different scale sizes. The surface is

the divertor simulator NAGDIS-II [7,10-15] and PISCES-B [4].
Closed markers represent the cases in which the nanostructure was
formed, while open markers represent the cases where the
nanostructure was not observed. () SEM micrographs under the
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Main subject
Abnormal stable configuration of H atoms in W mono-vacancy

How many hydrogen atoms are
accommodated in a vacancy in
tungsten and other bcc transition
metals ?

What is abnormal stable

onfigurm‘ion of Hydrogen i



lonic compound
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Simulation method

First-principle calculation

Vienna ab-initio simulation package (VASP)

Perdew-Burke-Ernzerhof (PBE) potential

Super cell size 3x3x3 (54) bcc lattice For W, 5x5x5 (432) lattice is also used

Plane wave cau-off energy is 350 eV
Atomic relaxation are iterated until a break condition is satisfied (0.003eV/A)
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Review of Hydrogen in BCC metals
Interstitial H atom prefers T-site in bulk BCC metals.

Tetrahedral interstitial site Octahedral interstitial site
(T-site) (O-site)

T-site is more favorable for H than O-site.

W 0.380eV
Mo 0.265eV
Fe 0.131eV

Nb 0.271



normal stable configuration of H atoms in mono-vacancy in bcc

transition metals
H O-site

~

vacancy

Usually, a maximum of 6 H atoms are trapped. 6H’s regular tetrahedral

This was established theory but we decided to configuration

investigate stable configuration more carefully



Initial H atom positions for ionic relaxation

H atoms are located inner surface of vacancy.

Initial configuration for H atoms are
randomly generated within a area.

Usua"y, 51=0.4d, SZ=0.Zd

The purpose of meeting is uncertainty
quantification. This is an application of
the random sampling.

About 30 % initial configurations arrive
at true ground-state structure.
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Results of application of random generate initial configuration
(a) Stable configurations of multiple H atoms in W mono-vacancy
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[4 H atom in monovacancy]
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[6 H atom in monovacancy] 03
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[12 H atom in monovacancy]
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binding energy of H to vacancy (eV)

Finally, we would like to
answer the first question.

H, Formation

0 2 4 6 8 10 12 14 16

Number of H atoms trapped in vacancy(k)

The total binding energy of multiple H atoms to metal vacancy

e, =E[M, ,V]-E[M, ,VH,]+k(E|M, ,H |-E[M, ])



Short summary of the simulations

Group 5 transition metals (V, Nb, Ta) and Cr and Fe

A maximum of H atoms trapped in mono-vacancy is 6.
Normal stable configuration of the multiple H atom.

W and Mo vacancy can accommodate a maximum of 12 H atoms.
H configurations are abnormal .

New question

Why are so many H trapped in W and Mo vacancy?
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H release large energy when
trapped in vacancy.

W and Mo have large vacancy.

lattice constant
W 3.16A
Mo 3.15A
Cr 2.88A
Fe 2.85A



What is relation of our woks and uncertainty quantification?
Main purpose of this meeting is uncertainty quantification (UQ) activities.

Initial positions of H atoms are determined by assuming a random distribution.
This is an important application of random sampling.

In the present works, we determine the parameter S, and S, appropriately.
But if we perform more complicated simulations, we have to do same optimization of
the method.

. Initial H distribution
O-site




Application: zero point energy calculation

’D+*T—*He(3.52MeV)+'n(14.06MeV)

Abnormal H configurations are applied to calculations of zero point energy.

Ground state Saddle point = unstable

Schematic view of H vibration

We can calculate
vibration energy
from abnormal H
configuration.
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Summary and conclusion

1. The abnormal H atom configurations are found in W and Mo
mono-vacancy by first-principle calculations.

2. A maximum of 12 H atoms can be accommodated in the
vacancy.

3. The abnormal H configurations can be applied to calculations
of zero point energy.

4. H configurations in mono-vacancy of other bcc transition
metal (V, Nb, Ta, Cr, Fe) are normal ones.

E - ! 1
5. A maximum of 6 H atoms are accommodated in it, which are :(5-{ _x,.'- i.
good agreement with established theory. 0/10,
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