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Machine learning framework: Kernel regression

 
 
 
 

• Linear regression:  
 

• Neural networks 
 

• Gaussian kernel
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NX
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1D example

Gaussians basis functions are wide!
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Generalised input data

• Often direct measurements of yi not available 

• Consider any linear operator  
Compute 
 
L can be built using  Σ ,            etc  

• Basis functions adapt to input data, e.g.  
for derivative data  

• Can deal with gradient data, sums, etc. 

L(y)

@/@x

P (yN+1|L(y)

@k(x, x0)/@x



Traditional ideas for functional forms

• Pair potentials: Lennard-Jones, RDF-derived, etc. 

• Three-body terms: Stillinger-Weber, MEAM, etc. 

• Embedded Atom (no angular dependence) 

• Bond Order Potential (BOP)  
   Tight-binding-derived attractive term with  
   pair-potential repulsion 

• ReaxFF: kitchen-sink + hundreds of parameters

"i =
1

2

X

j

V2(|rij |)

"i = �
�P

j ⇢(|rij |)
�



Traditional ideas for functional forms

• Pair potentials: Lennard-Jones, RDF-derived, etc. 

• Three-body terms: Stillinger-Weber, MEAM, etc. 

• Embedded Atom (no angular dependence) 

• Bond Order Potential (BOP)  
   Tight-binding-derived attractive term with  
   pair-potential repulsion 

• ReaxFF: kitchen-sink + hundreds of parameters

"i =
1

2

X

j

V2(|rij |)

"i = �
�P

j ⇢(|rij |)
�

Representation 
is implicit



Traditional ideas for functional forms

• Pair potentials: Lennard-Jones, RDF-derived, etc. 

• Three-body terms: Stillinger-Weber, MEAM, etc. 

• Embedded Atom (no angular dependence) 

• Bond Order Potential (BOP)  
   Tight-binding-derived attractive term with  
   pair-potential repulsion 

• ReaxFF: kitchen-sink + hundreds of parameters

These are NOT THE CORRECT functions.  
Limited accuracy, not systematic

"i =
1

2

X

j

V2(|rij |)

"i = �
�P

j ⇢(|rij |)
�

Representation 
is implicit



Traditional ideas for functional forms

• Pair potentials: Lennard-Jones, RDF-derived, etc. 

• Three-body terms: Stillinger-Weber, MEAM, etc. 

• Embedded Atom (no angular dependence) 

• Bond Order Potential (BOP)  
   Tight-binding-derived attractive term with  
   pair-potential repulsion 

• ReaxFF: kitchen-sink + hundreds of parameters

These are NOT THE CORRECT functions.  
Limited accuracy, not systematic

"i =
1

2

X

j

V2(|rij |)

"i = �
�P

j ⇢(|rij |)
�

given by
GOAL: potentials based on quantum mechanics
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Fundamental limitation of analytic functional form

Carbon (diamond)

DFT

Brenner

Elastic constants:
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How to generate databases?

• Target applications: large systems 

• Capability of full quantum mechanics (QM): small systems

QM MD on “representative” small systems:

sheared primitive cell ➝ elasticity
large unit cell ➝ phonons
surface unit cells ➝ surface energy
gamma surfaces ➝ screw dislocation
vacancy in small cell ➝ vacancy 
vacancy @ gamma surface ➝ vacancy near dislocation

Iterative refinement
 

1. QM MD ➝ Initial database
2. Model MD
3. QM ➝ Revised database 

What is the acceptable validation protocol?  
How far can the domain of validity be extended? 
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Building up databases for tungsten (W)
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Peierls barrier for screw dislocation glide



Vacancy-dislocation binding energy

(~100,000 atoms in 3D simulation box)



He-Vacancy interaction in tungsten - preliminary
• Collaboration with Duc Nguyen-Manh (CCFE) 

• Add He-W interaction on top of W potential 

• 200 training configurations of He@V, 44 test

energy 
error

force 
error



He-Vacancy interaction in tungsten

2-body SOAP-GAP

• Needs more He data, other defects 

• Do the same with H@W, with Takuji Oda



Self-aware potentials: predicting the error
• Bulk silicon: Diamond and Beta-tin phases 

• Predicted error correctly signals where GAP is unreliable 
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Outstanding problems

• Accuracy on database          accuracy in properties?  

• Database contents                region of validity ?  

• Alloys - permutational complexity?  Chemical variability?  

• Systematic treatment of long range effects 

• Electronic temperature


