Interatomic potentials with error bars

Gábor Csányi Engineering Laboratory

What makes a potential

Ingredients

- Representation of atomic neighbourhood
- Interpolation of functions

 Database of configurations Desirable properties

- smoothness, faithfulness, continuity
 - flexible but smooth functional form, few sensible parameters

predictive power non-domain specific

What makes a potential

Ingredients

- Representation of atomic neighbourhood
- Interpolation
 of functions

 Database – of configurations Desirable properties

- smoothness, faithfulness, continuity
 - flexible but smooth functional form, few sensible parameters
 - predictive power non-domain specific

Fit a function f(x) based on observations $y \equiv \{y_i\}$ at $\{x_i\}$

$$f(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) \qquad \text{e.g. } k(x, x') = \sigma_w^2 e^{-|x-x'|^2/2\sigma^2}$$

Fit a function f(x) based on observations $y \equiv \{y_i\}$ at $\{x_i\}$

$$f(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x)$$
$$y_j = \sum_{i=1}^{N} \alpha_i k(x_i, x_j)$$

e.g.
$$k(x, x') = \sigma_w^2 e^{-|x-x'|^2/2\sigma^2}$$

Fit a function f(x) based on observations $y \equiv \{y_i\}$ at $\{x_i\}$

$$f(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) \qquad \text{e.g. } k(x, x') = \sigma_w^2 e^{-|x-x'|^2/2\sigma^2}$$
$$y_j = \sum_{i=1}^{N} \alpha_i \left(k(x_i, x_j) + \sigma_v^2 \delta_{ij} \right) \qquad \begin{array}{c} \text{regularised fit:} \\ \text{arbitrary } \sigma, \sigma_w, \sigma_v \end{array}$$

Fit a function f(x) based on observations $y \equiv \{y_i\}$ at $\{x_i\}$

$$f(x) = \sum_{\substack{i=1 \ N}}^{N} \alpha_i k(x_i, x) \qquad \text{e.g. } k(x, x') = \sigma_w^2 e^{-|x-x'|^2/2\sigma^2}$$

regularised fit:
arbitrary
$$\sigma, \sigma_w, \sigma_v$$

$$\mathbf{y} = (\mathbf{K} + \sigma_{\nu}^{2} \mathbf{I}) \boldsymbol{\alpha}$$
$$\boldsymbol{\alpha} = \mathbf{C}^{-1} \mathbf{y}$$

 $y_j = \sum \alpha_i \left(k(x_i, x_j) + \sigma_{\nu}^2 \delta_{ij} \right)$

i=1

N

i=1

$$[\mathbf{K}]_{ij} \equiv k(x_i, x_j)$$
$$\mathbf{C} \equiv \mathbf{K} + \sigma_{\nu}^2 \mathbf{I}$$
$$\mathbf{k} \equiv k(x_i, x)$$

Fit a function f(x) based on observations $y \equiv \{y_i\}$ at $\{x_i\}$

e.g.
$$k(x, x') = \sigma_w^2 e^{-|x-x'|^2/2\sigma^2}$$

regularised fit: arbitrary $\sigma, \sigma_w, \sigma_v$

$$[\mathbf{K}]_{ij} \equiv k(x_i, x_j)$$
$$\mathbf{C} \equiv \mathbf{K} + \sigma_{\nu}^2 \mathbf{I}$$
$$\mathbf{k} \equiv k(x_i, x)$$

$$f(x) = \mathbf{k}^T \mathbf{C}^{-1} \mathbf{y}$$

 $\boldsymbol{lpha} = \mathbf{C}^{-1}\mathbf{y}$

 $f(x) = \sum \alpha_i k(x_i, x)$

 $y_j = \sum \alpha_i \left(k(x_i, x_j) + \sigma_{\nu}^2 \delta_{ij} \right)$

i=1

N

i=1

 $\mathbf{y} = (\mathbf{K} + \sigma_{\nu}^2 \mathbf{I}) \boldsymbol{\alpha}$

Fit a function f(x) based on observations $y \equiv \{y_i\}$ at $\{x_i\}$

$$f(x) = \sum_{\substack{i=1 \\ N}}^{N} \alpha_i k(x_i, x) \qquad \text{e.g. } k(x, x') = \sigma_w^2 e^{-|x-x'|^2/2\sigma^2}$$

regularised fit:
arbitrary
$$\sigma, \sigma_w, \sigma_v$$

$$\mathbf{y} = (\mathbf{K} + \sigma_{\nu}^2 \mathbf{I}) \boldsymbol{\alpha}$$
$$\boldsymbol{\alpha} = \mathbf{C}^{-1} \mathbf{v}$$

 $y_j = \sum \alpha_i \left(k(x_i, x_j) + \sigma_{\nu}^2 \delta_{ij} \right)$

i=1

N

i=1

$$\mathbf{K}]_{ij} \equiv k(x_i, x_j)$$
$$\mathbf{C} \equiv \mathbf{K} + \sigma_{\nu}^2 \mathbf{I}$$
$$\mathbf{k} \equiv k(x_i, x)$$

$$f(x) = \mathbf{k}^T \mathbf{C}^{-1} \mathbf{y}$$

Machine learning framework: Kernel regression

$$\varepsilon(\mathbf{q}^{(i)}) = \sum_{k}^{N} \alpha_k K(\mathbf{q}^{(i)}, \mathbf{q}^{(k)})$$

• Linear regression:

$$K_{\rm DP}(\mathbf{q}^{(i)}, \mathbf{q}^{(k)}) = \mathbf{q}^{(i)} \cdot \mathbf{q}^{(k)} \longrightarrow \varepsilon(\mathbf{q}^{(i)}) = \sum_{j} q_{j}^{(i)} \sum_{k}^{N} \alpha_{k} q_{j}^{(k)} = \mathbf{q}^{(i)} \cdot \boldsymbol{\beta}$$

• Neural networks

$$K_{\mathrm{NN}}\left(\mathbf{q}^{(i)}, \mathbf{q}^{(k)}\right) = -|\mathbf{q}^{(i)} - \mathbf{q}^{(k)}|^2 + \mathrm{const.}$$

Gaussian kernel

$$K_{\rm SE}(\mathbf{q}^{(i)}, \mathbf{q}^{(k)}) = \exp\left(-\sum_{j} \frac{(q^{(i)} - q^{(k)})^2}{2\sigma_j^2}\right)$$

1D example

Gaussians basis functions are wide!

 $f(x) = \mathbf{k}^T \mathbf{C}^{-1} \mathbf{y}$

Generalised input data

- Often direct measurements of y_i not available
- Consider any linear operator $L(\mathbf{y})$ Compute $P(y_{N+1}|L(\mathbf{y})$

L can be built using Σ , $\partial/\partial x$ etc

- Basis functions adapt to input data, e.g. $\partial k(x, x')/\partial x$ for derivative data
- Can deal with gradient data, sums, etc.

- Pair potentials: Lennard-Jones, RDF-derived, etc.
- Three-body terms: Stillinger-Weber, MEAM, etc.
- Embedded Atom (no angular dependence)
- Bond Order Potential (BOP) Tight-binding-derived attractive term with pair-potential repulsion
- ReaxFF: kitchen-sink + hundreds of parameters

$$\varepsilon_{i} = \frac{1}{2} \sum_{j} V_{2}(|r_{ij}|) + \sum_{jk} k(\theta_{ijk} - \theta_{0})^{2}$$
$$\varepsilon_{i} = \Phi\left(\sum_{j} \rho(|r_{ij}|)\right)$$

- Bond Order Potential (BOP) Tight-binding-derived attractive term with pair-potential repulsion
- ReaxFF: kitchen-sink + hundreds of parameters

- Bond Order Potential (BOP) Tight-binding-derived attractive term with pair-potential repulsion

These are NOT THE CORRECT functions. Limited accuracy, not systematic

- Pair potentials: Lennard-Jones, RDF-derived, etc.
- Three-body terms: Stillinger-Weber, MEAM, etc.
- Embedded Atom (no angular dependence)
- Bond Order Potential (BOP) Tight-binding-derived attractive term with pair-potential repulsion

These are NOT THE CORRECT functions. Limited accuracy, not systematic

given by GOAL: potentials based on quantum mechanics

Fundamental limitation of analytic functional form

Carbon (diamond)

$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-|\mathbf{r} - \mathbf{r}_{ij}|^2 / 2\sigma^2\right) = \sum_j \sum_{lm} c_{nlm}^{(i)j} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-|\mathbf{r} - \mathbf{r}_{ij}|^2 / 2\sigma^2\right) = \sum_j \sum_{lm} c_{nlm}^{(i)j} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

• Overlap integral $S(\rho_i, \rho_{i'}) = \int \rho_i(\mathbf{r}) \rho_{i'}(\mathbf{r}) d\mathbf{r},$

$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-|\mathbf{r} - \mathbf{r}_{ij}|^2 / 2\sigma^2\right) = \sum_j \sum_{lm} c_{nlm}^{(i)j} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

- Overlap integral $S(\rho_i, \rho_{i'}) = \int \rho_i(\mathbf{r}) \rho_{i'}(\mathbf{r}) d\mathbf{r},$
- Integrate over all 3D rotations:

cutoff: compact support

$$k(\rho_i, \rho_{i'}) = \int \left| S(\rho_i, \hat{R}\rho_{i'}) \right|^2 d\hat{R} = \int d\hat{R} \left| \int \rho_i(\mathbf{r})\rho_{i'}(\hat{R}\mathbf{r})d\mathbf{r} \right|^2$$

$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-|\mathbf{r} - \mathbf{r}_{ij}|^2 / 2\sigma^2\right) = \sum_j \sum_{lm} c_{nlm}^{(i)j} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

- Overlap integral $S(\rho_i, \rho_{i'}) = \int \rho_i(\mathbf{r}) \rho_{i'}(\mathbf{r}) d\mathbf{r},$
- Integrate over all 3D rotations:

cutoff: compact support

$$k(\rho_i, \rho_{i'}) = \int \left| S(\rho_i, \hat{R}\rho_{i'}) \right|^2 d\hat{R} = \int d\hat{R} \left| \int \rho_i(\mathbf{r})\rho_{i'}(\hat{R}\mathbf{r})d\mathbf{r} \right|^2$$

• After LOTS of algebra: SOAP kernel $k(\rho_i, \rho_{i'}) = \sum_{n,n',l} p_{nn'l}^{(i)} p_{nn'l}^{(i')}$

 $p_{nn'l} = \mathbf{c}_{nl}^{\dagger} \mathbf{c}_{n'l}$

$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-|\mathbf{r} - \mathbf{r}_{ij}|^2 / 2\sigma^2\right) = \sum_j \sum_{lm} c_{nlm}^{(i)j} g_n(r) Y_{lm}(\hat{\mathbf{r}})$$

- Overlap integral $S(\rho_i, \rho_{i'}) = \int \rho_i(\mathbf{r}) \rho_{i'}(\mathbf{r}) d\mathbf{r},$
- Integrate over all 3D rotations:

cutoff: compact support

$$k(\rho_i, \rho_{i'}) = \int \left| S(\rho_i, \hat{R}\rho_{i'}) \right|^2 d\hat{R} = \int d\hat{R} \left| \int \rho_i(\mathbf{r})\rho_{i'}(\hat{R}\mathbf{r})d\mathbf{r} \right|^2$$

• After LOTS of algebra: SOAP kernel

$$k(\rho_i, \rho_{i'}) = \sum_{n,n',l} p_{nn'l}^{(i)} p_{nn'l}^{(i')}$$
$$K(\mathbf{q}, \mathbf{q}') \propto |k(\rho, \rho')|^{\xi}$$

$$p_{nn'l} = \mathbf{c}_{nl}^{\dagger} \mathbf{c}_{n'l}$$

How to generate databases?

- Target applications: large systems
- Capability of full quantum mechanics (QM): small systems

QM MD on "representative" small systems:

sheared primitive cell \rightarrow elasticity large unit cell \rightarrow phonons surface unit cells \rightarrow surface energy gamma surfaces \rightarrow screw dislocation vacancy in small cell \rightarrow vacancy vacancy @ gamma surface \rightarrow vacancy near dislocation Iterative refinement

```
I. QM MD → Initial database
2. Model MD
3. QM → Revised database
```

What is the acceptable validation protocol? How far can the domain of validity be extended?

Existing potentials for tungsten

Building up databases for tungsten (W)

	Database:	Computational cost ^a [ms/atom]	Elastic constants ^b [GPa]	Phonon spectrum ^b [THz]	Vacancy formation ^c [eV]	Surface energy ^b [eV/Å ²]	$\begin{array}{c} \text{Dislocation} \\ \text{structure}^{\text{d}} \; \left[\text{\AA}^{-1} \right] \end{array}$	Dislocation-vacancy binding energy [eV]	Peierls barrier [eV/b]
GAP_1 :	$2000 \times \text{primitive unit cell}$ with varying lattice vectors	24.70	0.623	0.583	2.855	0.1452	0.0008		
GAP_2 :	$GAP_1 + 60 \times 128$ atom cell	51.05	0.608	0.146	1.414	0.1522	0.0006		
$GAP_3:$	$GAP_2 + {vacancy in: 400 \times 53 atom cell, 20 \times 127 atom cell}$	63.65	0.716	0.142	0.018	0.0941	0.0004		
$GAP_4:$	$GAP_{3} + \begin{cases} (100), (110), (111), (112) \text{ surfaces} \\ 180 \times 12 \text{ atom cell} \\ (110), (112) \text{ gamma surfaces} \\ 6183 \times 12 \text{ atom cell} \end{cases}$	86.99	0.581	0.138	0.005	0.0001	0.0002	-0.960	0.108
$GAP_5:$	$GAP_4 + {acancy in: (110), (112) gamma surface} 750 \times 47 atom cell$	93.86	0.865	0.126	0.011	0.0001	0.0002	-0.774	0.154
GAP_6 :	$GAP_5 + \frac{\frac{1}{2}\langle 111 \rangle}{100 \times 135}$ atom cell	93.33	0.748	0.129	0.015	0.0001	0.0001	-0.794	0.112

^a Time on a single CPU core of Intel Xeon E5-2670 2.6GHz, ^b RMS error, ^c formation energy error, ^d RMS error of Nye tensor over the 12 atoms nearest the dislocation core, cf. Figure 2.

Existing potentials for tungsten

Existing potentials for tungsten

Peierls barrier for screw dislocation glide

Vacancy-dislocation binding energy

(~100,000 atoms in 3D simulation box)

He-Vacancy interaction in tungsten - preliminary

- Collaboration with Duc Nguyen-Manh (CCFE)
- Add He-W interaction on top of W potential
- 200 training configurations of He@V, 44 test

He-Vacancy interaction in tungsten

- Needs more He data, other defects
- Do the same with H@W, with Takuji Oda

Self-aware potentials: predicting the error

- Bulk silicon: Diamond and Beta-tin phases
- Predicted error correctly signals where GAP is unreliable

Outstanding problems

- Accuracy on database accuracy in properties?
- Database contents \longrightarrow region of validity ?
- Alloys permutational complexity? Chemical variability?
- Systematic treatment of long range effects
- Electronic temperature