

Development of models for plasma interactions with Be on the basis of dedicated experiments

D.Borodin, A.Kirschner, J.Romazanov, S.Brezinsek, D.Matveev, I.Borodkina

A.Kreter¹, A.Huber¹, M.Köppen, Ch.Linsmeier

Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany

and many other FZJ, UCSD, ITER, TEKES, MEPhI, ADAS, JET and EUROfusion contributors

ERO simulations:

- Be erosion in PISCES-B (He plasma)
- JET ITER-like wall, IW solid Be limiter erosion
 - Density scan experiment
 - Surface temperature scan experiment
 - MAPES (EAST) benchmark connection lengths
- JET OW: ICRH Antenna effect
- Be deposition in JET divertor

New model:

 Kinetic model for D retention in Be and thermodesorption experiments (based on DFT data)

I would live off reported things (e.g. ITER predictions) and concetrate on the recent progress.

Erosion yields: Be exposure to He plasma in PISCES-B

Please, don't warry! Many slides need just 10 seconds like this one.

D.Borodin, D.Nishijima, R.Doerner et al., PSI-2016

16.06.2016

Simulation of axial profiles

Dedicated experiment for ERO benchmark:

- 3 plasma coditions * 4 target biasings
- He plasma (no Be-D release effect)
- Target weight loss + witness plate depositon experiments is expected.

Effective yield

- The angle distribution of sputtering paticles on impact in nearly normal.
- Energy distributions on impact by numeric ERO "pre-simulation" are somewhat different from analytical ones, however both have negligible effect on the effective sputtering yields.

Angle distribution after sputtering

- Despite some confusion in literature, "polar cosine" distribution seems to be the right one for physical sputtering process, it is also necessary to reproduce PISCES-B measurements.
- Moreover, an additional cut-off angle is necessary to get best match for Bell lines.

Simulation of axial profile shapes

ERO&Experiment: plasma 'C2'; optimal release angle cut-off at 30°

The profile shapes and line ratios are in perfect agreement for BeI and in a good agreement for BeII: used ADAS'96 data and intitial angle distributions are very resonable!

Bel 457nm for z in [20..60mm] are very stable against varios assumptions: perfect for producing of the **integrated values!**

Absolute line intensites charachterising sputtering yields

Plasma	At axis, z=150mm	Biasing	ERO 'name'	
'C1'	n _e =12*10 ¹² cm ⁻³ T _e =4.8eV P _{neutrals} =7.3mTorr B=0.0152T	'B1' V=-50V	1) 'C1B1'	
•		'B2' V=-75V	2) 'C1B2'	
		'B3' V=-100V	3) 'C1B3'	
		'B4' V=-125V	4) 'C1B4'	
'C2'	$n_e=6.5*10^{12}$ cm ⁻³ $T_e=7.7eV$ $P_{neutrals}=3.8mTorr$	'B1' V=-50V	5) 'C2B1'	
\circ		'B2' V=-75V	6) 'C2B2'	
		'B3' V=-100V	7) 'C2B3'	
	B=0.0152T	'B4' V=-125V	8) 'C2B4'	
'C3'	n _e =4.0*10 ¹² cm ⁻³	'B1' V=-50V	9) 'C3B1'	
	T _e =11.5eV P _{neutrals} =2.5mTorr B=0.0152T	'B2' V=-75V	10) 'C3B2'	
		'B3' V=-100V	11) 'C3B3'	
		'B4' V=-125V	12) 'C3B4'	

Nearly perfect reproducing of SDTrimSP data (Eckstein 2007 fit by C.Björkas)

....with a coefficient depending on "cut-off" angle

- The initial populations in Be after sputterig seems to be always close to MS:GS=0.33.
- This is independent on target biasing and plasma conditions.
- For D plasma situation is similar (ongoing simulations).

Yields absolute value discussion

The growing with fluence "cone-like structures" are known to intrease the decay length of axial profiles of Be in PISCES-B.

Can it be an explanation for the "cut-off angle"?

Weight loss / wittness plate available only for D plasma (just 1 measurement)

D plasma case simulations though more difficult

BeD_x and D²⁺, D³⁺ ions can help to clarify many issues!

Indispensible to implement the BeDx reaction data (M.Probst)!

A.Kreter et al., Phys. Scr. T159 (2014) 014039

Benchmark at JET ITER-like wall, IW Be limiter

Spectroscopy at inner-wall Be limiter

Be erosion mechanisms

Local Be transport (3D) and light emission (

Bell intensity and fraction coming to the observation chord depends on the erosion mechanism

JET

ÜLICH

Embeded probe measurements

JET

ÜLICH

D spectroscopy and recycling flux

Line ratios in Bell

LICH

T_{surf} scan: spectroscopic observations

Spectroscopic observation under otherwise constant plasma conditions:

Reduction of Bel, Bell and BeD photon flux with increase of surface temperature

- Comparison of BeD A-X band, Bel and Bell provides information on dissociation path
 - Dominant path BeD + e ->Be + D + e (75%) over BeD + e-> BeD⁺ + 2e (25%)

Treating angular part of a sputtering yield

Analytical approach

2) Formula for velocity at the part of trajectory just before the impact

- Energy distribution on impact is somewhat more peaked than ERO one.
- Angular distribution in ERO pre-runs seems to be clearly too peaked:

- Analytic result is in a good agreement with various PIC simulations
- On the other hand, ERO can follow ion thermalization with plasma . . .

S/XB approach – plasma density scan

LICH

Corrections from analytical approach:

+10% for 'ERO-max'

+30% for 'ERO-min'

Dedicated experiment for testing erosion: limiter plasmas shifted towards "our" inner wall guard limiter

- \rightarrow Enormous Be erosion
- \rightarrow Enormous Z-effective

BeD fraction (density scan)

 $f_{all}(BeD) = 70-40/120 \cdot E_{imp} [eV]$ $f_{exp}(BeD) = 85-75/120 \cdot E_{imp} [eV]$

BeD fraction from experiments at JET, PISCES and earlier MD modelling

 $T_e \leftarrow Density scan in limiter plasmas \rightarrow n_e$

- The shape is nearly reproduced.
 - The absolute value within 20%

BeD release – T_{surf} scan

MD simulations for BeDx are really CPU-time consuming. MD strongly overestimates ion flux and hence D diffusion. KMC simulations of D deposition diffusion at realistic fluxes currently underway For now we can do ERO simulations using empiric data.

BeD_x release – MD with KMC

Simulations by E.Safi, MD cumulative + KMC, status 22.04.2016

MD simulations will demand more time . . .

LICH

JE7

	300K	400K	500K	600K	700K	800K
10 eV	1 * BeD ₂	1 * BeD ₂	-	-	-	-
30 eV	1 * BeD	1 * BeD	5 * BeD	3 * BeD	-	2 * BeD
50 eV	2 * BeD	1 * BeD	3 * BeD	1 * BeD	1 * BeD	-
100 eV	1 * BeD	2 * BeD	3 * BeD	2 * BeD	2 * BeD	-
150 eV	1 * BeD	2 * BeD ₂	2 * BeD	1 * BeD	-	-
200 eV	-	4 * BeD 1 * BeD2	4 * BeD 1 * BeD ₂	-	-	-

S/XB approach – Be plasma impurity

JÜLICH

Intrinsic Be concentrations f_{Be} determined from Z_{eff}

T_e in the active light emmission zone is detemined from the Bell line ratios

BeD effect is within errorbars

'ERO-min' for Be←D sputtering agrees with experiment!

Enhanced re-erosion

ERO synthetic emission in the chord

- 1. Self-sputtering assumptions in ERO at low densities are insufficient
- 2. Initial MS population after sputtering is of importance for Bel, but has no effect for Bell
- 3. Absolute values are within a factor of 2, however Bel to Bell ratio is wrong.

In these ERO simulations Be-D was not included . . .

Main points (IW JET limiter)

- 1. The modeling of Be erosion at JET ILW (IW tile, limiter plasmas) was revisited.
 - ✓ The new analytical solution for angles and energies on impact lead to increasing of effective yield by 10-30%.
 - ✓ Corrected plasma parameters (T_e based on embedded probes data) lead to a better agreement for line ratios in Bell, branching in BeD decay reactions etc.
 - ✓ Even 20 times enhanced re-erosion leads to a negligible effect below 10%.
 - ✓ Initial **MS population** is of importance for BeI, but there are no means to determine it.
 - ✓ **BeD light intensity trend** by density scan **reproduced**. Absolute value within 20%.
- 2. JET ILW: "ERO-min" physical sputtering assumption (Eckstein's 2007 fit) is confirmed (Bell passive spectroscopy) to suit well for the plasma-wetted areas with high D content in the interaction layer. Treatment of angle and energy distributions on impact is provided.
- ERO predictions for ITER with "ERO-min" (4200 discharges critical BM life time) can be used as a basis. One should: 1) improve treatment of Be self-sputtering and shadowing (PFCFlux); 2) consider the influence of the Be-D release and updated BM shaping.
- 4. New experiments and further ERO benchmark are necessary (scheduled to 25.07).
- 5. Plasma parameter from **SOLEDGE2D-EIRENE** ongoing (H.Bufferand).

From ERO1.0 to ERO2.0: volume

JET's Iter-like Wall

The limits of ERO1.0

- small simulation volumes of ~(10 cm)³
- typically covering a single PFC part

Benchmark at JET ITER-like wall, OW Be limiter near ICRH antenna

7 papers at PFMC-2015, APS-2015, PSI-2016 by Ch.Klepper, I.Borodikina, A.Lasa, V.Bobkov, D. Borodin.

16.06.2016

Be erosion near ICRH antena

The fractions of Bel and Bell light comming into D13 and D14 sight lines depends on plasma parameters, plasma flow, shadowing pattern and multiple other factors.

Be erosion near ICRH antena – ERO side view

Effective yields from analytical model: biasing (RF) effect

ERO simulations for JET/ITER divertors

A.Kirschner et. al, ITPA DivSol-2015, PET-2015

16.06.2016

L-Mode, strike point on tile 3 – erosion/deposition profiles

- ~80% of incoming Be is reflected
- ~41% of reflected Be is re-deposited on tiles
 - no Be layer formation on tile 3

Rotating collector data reproduced, incoming **beryllium flux** into inner divertor is **small** (about 0.1% relative to D⁺ flux, i.e. about 10 times smaller than C influx in JET-C)

- ~40% of incoming Be is reflected
- ~32% of reflected Be is re-deposited on tiles
 - Large W erosion: W flux at strike point ~100 times larger than Be influx !
- ~92% W re-deposition on tile 3 and 4

ERO: Be migration into ITER divertor

1E+16

- B2-Eirene as input (A. Kukushkin),
- 0.1% Be²⁺ influx to inner divertor

Thermodesorption: kinetic modelling "CRDS"

D.Matveev, Mirko Wensing et al., PSI-2016 (Hydrogen WS)

16.06.2016

Trapping of H in vacancies (DFT: up to 5H)

basal-tetrahedral positions (BT_V)

tetrahedral positions (T_2)

 $\mathsf{BT} \to \mathsf{O} \to \mathsf{BT} \ ... \ \mathsf{BT'} \to \mathsf{T_2} \to \mathsf{BT_V}$

Complex energy landscape Favorable (de-)trapping via T₂ sites De-trapping frequencies not known

Desorption model overview

Reaction-diffusion modelling of fluence dependence of hydrogen retention and release in beryllium

Collaboration with IRSN/PIIM, France:

new DFT data on multiple trapping of hydrogen
(H) in vacancies (V), detailed energy landscapes,
H and V diffusion, stability of di-vacancies

Coupled Reaction Diffusion Systems (CRDS):

- rate equations approach with multiple trapping and surface limited desorption implemented

Important conclusions:

- determinative role of ratio of total H to total V
- with increasing fluence V become populated up to 5 H, then H occupies the surface
- good qualitative agreement with experiments: low-T and high-T peaks evolution reproduced

Open questions and problems:

- available surface sites (pores, open bubbles)
- role of surface hydrides (surface morphology)
- large scatter of experimental data

- The ERO code is a useful bridge allowing benchmarking various Be data with plasma experiments, most of which are difficult to interpret
 - Benchmarks at JET ILW and other devices (both tokamaks and linear devices)
 - Implementation of physical effects (sheath E-field, shadowing, BeD release, etc.)
 - > Testing of atomic, molecular and surface data

- In the focus of current studies:
 - Erosion data including BeD release
 - Interpretation of spectroscopy
 - Influence of 3D geometry of plasma-facing components, fields and plasma parameters configuration

Summary - applications

- JET ILW: Density scan in limiter plasmas confirms 'ERO-min' erosion fit, and effective yield integration procedure (preferable is the analytic solution (AS) for the angle and energy distributions of sputtering particles on impact).
- JET OW L-mode experiments with ICRH antenna influence indicate the correctness of biasing implementation in AS. 'ERO-min' allows to reproduce the observed factor 3 erosion rise by antenna toggling.
- ERO applications to the divertor areas of JET and ITER can help to get an insight into the Be migration and deposition issues.
- PISCES-B He plasma exposure confirms the Eckstein fit based on SDTrimSP data with uncertainties with "cut-off angle" probably related to the surface morphology.
- The new kinetic model CRDS (Coupled Reaction Diffusion Systems) based on DFT data is capable to reproduce some untrivial qualitative features observed in the TDS experiments.

- PISCES-B: simulations for D-plasma exposure.
- Implementation of BeD_x reaction data from M.Probst.
- New experiment is scheduled to measure BeD_x release at 10eV impact energy (close to detached limiter plasmas).
- It would be great to have
 - a) weight loss/ witness plate data for PISCES-B with He plasma.
 - b) updated data for the D plasma exposure case
- The update of the ITER predictive modelling is expected before IAEA conference this year.

Sputter yields assumptions and net erosion

Sputtering data determined the outcome!

The End

Be sputtering yields – BeD fraction

Dependence on surface temperature: clear drop of BeD fraction with the increasing T_{surf} . . .

Be by D⁺ sputtering

