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Plasma-wall interactions:  

The rich materials science of plasma-wall 
interactions 

! This is a demanding (and hence fun! " ) range of 

materials physics issues to work on. 

! First stage: collision cascade by single incoming ion 

! Simple view from molecular dynamics 
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Plasma-wall interactions:  

The rich materials science of plasma-wall 
interactions 

! But actually much more is going on.  

! Just for a single ion all of the below may be produced: 

Adatom 

Sputtered atom 
Crater 

Interstitial 

Interstitial-like  
dislocation loop 

Vacancy-like 
dislocation loop 

3D extended defects 

Implanted ion 

Amorphization 
Vacancy 
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! In addition, for multiple ions i.e. prolonged irradiation many more 

things can happen, for instance: 

! Spontaneous roughening/ripple formation  
 

 

 

 
!  Precipitate/nanocluster, bubble, void or blister formation inside solid 

Plasma-wall interactions:  

The rich materials science of plasma-wall 
interactions: high fluences 

[T. K. Chini, F. Okuyama, M. Tanemura, and K. Nordlund, Phys. Rev. B 67, 205403 (2003); 
Norris et al, Nature communications 2, 276 (2011)] 

[Bubbles e.g: K. O. E. Henriksson, K. Nordlund, J. Keinonen, D, Physica Scripta T108, 95 
(2004); Nanocrystals e.g. 75S. Dhara, Crit. Rev. Solid State Mater. Sci. 32, 1 [2007)] 
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Plasma-wall interactions:  

The rich materials science of plasma-wall 
interactions: high fluences 

! Phase changes, e.g. amorphization: 

 

 

 

 

 

! Spontaneous porousness formation, “fuzz” 
- Highly fusion-relevant now, He -> W does it 

 

Amorphous layer 

Highly defective layer 

[http://vlt.ornl.gov/research/201
10119_highlight_doerner.pdf] Kai Nordlund, Department of Physics, University of Helsinki 10 

MD approach for plasma-wall 

Simulation framework to handle all this 
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Molecular  
dynamics 

 
Kinetic Monte Carlo 

Discrete dislocation dynamics 
 

Discrete dislocation dynamics

 
 

Finite Element Modelling 
 
 
 

Rate equations 
 
 

DFT 

Most relevant region for ITER 

[For a review see: K. Nordlund, C. Björkas, T. Ahlgren, , A. Lasa, and A. E. Sand, Multiscale 

modelling of plasma-wall interactions in fusion reactor conditions, J. Phys. D: Appl. Phys. 47, 
224018 (2014), Invited paper for Special Issue on Fundamentals of plasma-surface interactions].  
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MD approach for plasma-wall 

Range of work in our groups 

B
C

A
 

L
e

n
g

th
 

Time 

ps ns !s ms s hours years 

nm 

!m 

mm 

 m 

Classical 
Molecular  
dynamics 

 
Kinetic Monte Carlo 

 
 
 
 
 
 
 
 
 

Finite Element Modelling [Djurabekova group] 
 

Rate equations [Ahlgren associated group] 
 
 

DFT 
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MD potential for fusion reactor Be-C-W-H-He system 

Set of potentials: status in 2012 and now… 

! In 2003 – 2010 we made 

a potential set for the full 

Be-C-W-H system 

! He as pair potential 

! Later Ahlgren in our 

group made improved 

potential for W and 

Guang-Hong Lu’s group 

made improved potential 

for W-H 

! Be-He under 

development 

H He C W Be 

H 

He 

C 

W 

Be 

# 

# 

# 

# 

# 

# 

2002  others # 

# 

[WCH: Juslin et al, J. Appl. Phys. 98, 123520 (2005)] 

# 

# # 

2010 # 

# 

# # # 

2006 # 

# 

[BeCWH: Björkas et al, J. Phys.: Condens. Matter 21 (2009) 445002;  
BeW: Björkas et al, J. Phys. Condens. Matter fast track 22 (2010) 352206] 

# # 
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MD approach for plasma-wall 

Formalism 1: Independent simulations 

5Å 5Å 

….. 

Border  
cooling  
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MD approach for plasma-wall 

Formalism 2: Cumulative simulations 

x 

y 
5Å 
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Interlude: non-Be results briefly 

He fuzz in W: status in 2012 

! We can simulate formation of a nano- 

scale He fuzz with MD and find that  

the growth proceeds as fluence =>  

excellent qualitative agreement with experiments 

 

 

 

 

 

 

 

! But prefactor from MD was (1000x) too large  

! ( " ) 
! ( " ) 

[A. Lasa et al, NIM B 303, 156 (2013)] 
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Interlude: non-Be results briefly  

He in W by KMC simulation 

! During 2012-2013 we developed an entirely new Kinetic 

Monte Carlo (KMC) model and code to model W fuzz 

formation 

BULK 
W box 

 

 

 
Periodic boundaries. 

New incoming ions 
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Interlude: non-Be results briefly  

Results: outcome of typical fuzz OKMC 
simulation 
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Interlude: non-Be results briefly  

Blistering results: W fuzz 

! On very high fluence irradiation, this leads to the 

formation of the W fuzz 

! Fuzz layer thickness scales as !#$% ! 

! Good agreement with experiments! 

[A. Lasa, S. K. Tähtinen and K. Nordlund,  EPL 105, 25002 (2014)] 

(other W grade) 
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Old results on Be sputtering 

Sputtering of initially pure Be by D 

!Our simulations 

agree with plasma 

experiments done at 

the PISCES-B facility 

at low energies 

! At higher energies 

with the rest 

!Sputtering is seen at 

7 eV! 

[C. Björkas, K. Vörtler, K. Nordlund, D. Nishijima, and R. Doerner, New J. Phys. 11, 123017 (2009)] 
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Old results on Be sputtering 

Sputtering of initially pure Be by D 

! The low-E sputtering 

is explained by swift 

chemical sputtering 

Kai Nordlund, University of Helsinki 21 

Old results on Be sputtering 

D irradiation of initially pure Be 

!At low energies a large 

fraction of Be is eroded 

as BeD molecules  

! Chemical 

sputtering! 

!This fraction decreases 

with ion energy 

!This collaboration 

came out of a previous 

IAEA meeting with 

Doerner! 

PISCES-B 
[Björkas et al. 2009] 
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Old results on Be sputtering  

Potential dependence 

$ The sputtering yield of pure Be depends on the potential 

[C. Björkas et al, Plasma Physics and Controlled Fusion 55, 074004 (2012)] 

Pot I vs Pot II: 

Pot I has: 

- Larger cutoff  
- Different elastic 

constants 
- Different 

thermal 
expansion 

- Lower surface 

binding energy  
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Results on Be sputtering by D 

Data collection 

! Since 2012 we have been carrying out a systematic data 

collection effort for Be sputtering by D as a function of ion 

energy, sample temperature and sample composition – 

for ERO parametrization 

! Data on sputtering yields of both Be total and Be in BeDx 

molecules, reflection 

! Cumulative and non-cumulative runs 

! Data for pure Be cells and mixed Be-30% D cells formed 

from the cumulative runs 

! Non-cumulative runs done for more accurate data collection 

 

Since this is a meeting of the Data group, I put in the 
following all the D -> Be data collected – even though 
some of them do not really give new physics insights. 
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Results on Be sputtering by D 

Flux dependence 

! We find some flux dependence even for the very high MD 

fluxes 

! Reason: for highest fluxes defective structure does not 

have time to relax 

[C. Björkas and K. Nordlund, J. Nucl. Mater. 439 (2013) 174] 
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Results on Be sputtering by D 

D on Be cumulative run results: 
Total Be sputtering  yield 
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[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 26 

Results on Be sputtering by D 

D on Be cumulative run results: 
BeDn molecular sputtering  yield 
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[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be cumulative run results: 
D reflection yield 
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[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 28 

Results on Be sputtering by D 

D on Be cumulative run results: 
D release yield 
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[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
Total Be sputtering yield (Energy) at 600 K 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 30 

Results on Be sputtering by D 

D on Be non-cumulative run results: 
Total Be sputtering yield (Energy, Temperature) 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
BeDn sputtering yield (Energy) at 600 K 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 32 

Results on Be sputtering by D 

D on Be non-cumulative run results: 
BeDn sputtering yield (Energy, Temperature) 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
Be sputtering yield (Temperature) 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 34 

Results on Be sputtering by D 

D on Be non-cumulative run results: 
BeDn sputtering yield (Temperature) 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
Total Be yield (Energy, Temperature) 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
Total Be yield (Energy, Temperature) 
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[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
D reflection yield 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 38 

Results on Be sputtering by D 

D on Be non-cumulative run results: 
D2 release 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
D reflection yield (Energy, Temperature) 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
D2 molecule release yield 
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[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] 
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Results on Be sputtering by D 

D on Be non-cumulative run results: 
What molecules are sputtered for 3000 ions? 

0%D_600K_
potI 

0%D_600K_ 
potII 

30%D_600K_ 
potI 

30%D_600K 
_potII 

30%D_800K_
potII 

30%D_1000K_
potII 

30%D_1200K_
potII 

20eV - - 4*BeD 

1*BeD2 

4*BeD 

1*BeD2 

- 4*BeD 

2*BeD2 

3*BeD 

12*BeD2 

50eV 4*BeD 1*BeD 3*BeD 5*BeD 

2*BeD2 

6*BeD 14*BeD 

1*BeD2 

16*BeD 

13*BeD2 

100eV - - 11*BeD 7*BeD 11*BeD 

2*BeD2 

18*BeD 

1*BeD2 

26*BeD 

7*BeD2 

150eV - - 6*BeD 9*BeD 

1*BeD2 

3*BeD 16*BeD 7*BeD 

8*BeD2 

200eV - - 5*BeD 3*BeD 

1*BeD2 

3*BeD 7*BeD 

1*BeD2 

18*BeD 

11*BeD2 

250eV - - 6*BeD 8*BeD 1*BeD 

1*BeD2 

6*BeD 2*BeD 

3*BeD2 

 

 

 

 

 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 42 

Results on Be sputtering by D 

D on Be non-cumulative run results: 
BeD2 sputtering dilemma 

! Apparent dilemma: experiments do not observe any (or 

very little) BeD2 , while these simulations show a lot 

 

! Solution: DFT calculations from Michael Probst’s group 

indicate the BeD2 is fairly unstable and will in a plasma 

likely decay quickly into Be + D2 or BeD + D  

! More from Michael Probst(?) 
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Results on Be sputtering by D 

D on Be results: 
Discussion 

! General overall conclusions of trends in data: 

 

! Sputtering yield of both Be and BeDn increase with 

increasing temperature 

 

! Sputtering yields of both Be and BeDn increase from 20 to 

roughly 100 eV, after that roughly constant (within current 

statistics) 

 

! (At least in our potentials) Be sputters as Be, BeD and 

BeD2, but the last one is likely very unstable 

[E. Safi, A. Lasa,C. Björkas and K. Nordlund, to be published (2015] Kai Nordlund, University of Helsinki 44 

BeW alloy formation 

Be irradiation of W surfaces 

! We have studied systematically also the formation of 

mixed Be-W layers on W 
T=500 K 

[A. Lasa, K. Heinola, and K. Nordlund, Nuclear Fusion 54, 083001 (2014)] 
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BeW alloy formation 

Be irradiation of W surfaces 

! We examined the Be sticking  

coefficient as a function  

of incoming ion angle 

! We constructed a  

geometrical model  

considering scattering  

and shadowing that 

allowed understanding 

the angle dependence 

 

ing 

[A. Lasa, K. Heinola, and K. Nordlund, Nuclear Fusion 54, 083001 (2014)] Kai Nordlund, University of Helsinki 46 

BeW alloy formation 

Structure of the formed layer? 

! We analyzed the structure of the formed Be-W mixed 

layers with angular distribution analysis 

! The bond angle distributions for Be atoms show peaks 

around 60 and 120 degrees indicative that it tends 

towards an HCP-like structure 

! But no crystalline structure forms – probably due to MD 

time scale imitation 

[A. Lasa, K. Heinola, and K. Nordlund, Nuclear Fusion 54, 083001 (2014)] 
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Mixed D, Be bombardment of W 

Surface structures formed: overview 

! We also examined the mixed D, Be bombardment of W 

! Multitude of structures form, examples: 

 

     W gray 
     Be red 
     D blue 

[A. Lasa, K. Heinola, and K. Nordlund, Nuclear Fusi\on  (2014), submitted for publication. Kai Nordlund, University of Helsinki 48 

Mixed D, Be bombardment of W  

Surface structures formed: 33 % Be, 10 eV 

a: Formed after high Be fraction (33% Be) 10 eV 

bombardment 

     W gray 
     Be red 
     D blue 
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Mixed D, Be bombardment of W  

Surface structures formed: 33 % Be, 50 eV 

b: Formed after high Be fraction (33% Be) 50 eV 

bombardment 

     W gray 
     Be red 
     D blue 
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Mixed D, Be bombardment of W  

Surface structures formed: 2 % Be, 50 eV 

c: Low fraction (2% Be) 50 eV bombardment: shows 

dislocation network with D below Be planes 

     W gray 
     Be red 
     D blue 
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Mixed D, Be bombardment of W  

Surface structures formed: 10 % Be, 10 eV 

d: Cluster formation at surface for intermediate Be content 

and low energy (10% Be, 10 eV) 

     W gray 
     Be red 
     D blue 
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Mixed D, Be bombardment of W  

Surface structures formed: 10 % Be, 100 eV 

e: Amorphous W surface layer at 10% Be, 100 eV 

     W gray 
     Be red 
     D blue 
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Mixed D, Be bombardment of W  

D implantation profiles 

! D is implanted in the growing mixed layer: 

! Higher D implantation than for D only -> pure W or pure Be! 

[A. Lasa, K. Heinola, and K. Nordlund, Nuclear Fusi\on  (2014), submitted for publication. Kai Nordlund, University of Helsinki 54 

Mixed D, Be bombardment of W  

W erosion by Be 

! The Be also causes W sputtering (at energies where pure 

D irradiation would not) 

! High Be fractions 

decrease W erosion 

(shielding effect due to Be 

layer formation) 

! Low Be fractions cause 

highish Be sputtering 

yields (since Be has 

higher mass can sputter 

W) 

[A. Lasa, K. Heinola, and K. Nordlund, Nuclear Fusi\on  (2014), submitted for publication. 
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Mixed D, Be bombardment of W  

Comparison of MD and BCA 

! BCA [SDTrimSp by Klaus Schmidt] describes well the Be 

erosion above 50 eV, not below it (chemical effects) 

! BCA does not describe well the D reflection (one energy 

point can be fixed but not all) 

[A. Lasa, K. Schmid, and K. Nordlund, Physica Scripta T159, 014059 (2014)] Kai Nordlund, University of Helsinki 56 

Conclusions 

! MD can be extremely useful for obtaining qualitative 

understanding of what is going on! 

! And this is most important in science! 

! It can also be used to collect lots of data, but one has to 

be careful about reliability… 

! Definitely more reliably than BCA in low-energy regime 

anyway 

! Use at least 2 different potentials to get some idea of 

reliability 
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Outlook 

! D -> Be: Non-cumulative runs with decreasing D 

concentration for increasing T being run: should match 

JET conditions with outgassing better. 

 

! Data to be published …. 

 

! Be-He potential to be made 

 

! D chemical sputtering of Al: 

! Al – H potential does exist [Apostolos and Mishin, Phys. 

Rev. B 82, 144115 (2010)] 

 

! Be-O potential?? Challenge… 


