Beryllium Erosion and Tritium Retention in ITER

Steven Lisgo, S. Carpentier, R. A. Pitts ITER Organisation

with contributions from C. Björkas (U. Helsinki/FZJ), R. Doerner (UCSD)

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

- Status of the ITER Project (3 slides)
- Overview of the ITER device (4 slides)
- Be erosion and deposition modeling activity at ITER (14 slides)
- Model predictions for tritium retention (4 slides)
- Rates used (4 slides)
- Summary (1 slide)

ITER and scale

- Size: moving beyond the "human sc
 - almost all components are "uncomfortably large"
 - can be a challenge for industry
- **Cost**: currently quoted at 15-20 billion US dollars (~7 billion \$US in 2001)
 - difficult for politicians and national science budgets, especially right now
 - project risks are likely to increase as efforts are made to save money (and/or time)
- Time: 10 years for construction, 20 years of operation
 - again, the long timescales can be difficult for politicians (and physicists)
 - long timescales for manufacture (e.g. 5-7 years to build many of the components)
 - maintenance periods are difficult and length 0.5-2 years)
- Complexity: highly integrated compon built built different places
 - large effort to manage "interfaces" and establish and enforce quality assurance (QA) procedures
- Benefit: an important step toward a (reasonably) clean, universally accessible source of energy

Primary project goals / objectives

Current status of the ITER platform

Completed site (2020)

TOKAMAK BUILDING

mm

POWER SUPPLIES Steady 120 MW during operations, up to 620 MW for 30 s periods

OFFICE BUILDING

iter china eu india japan korea russia usa

S. W. Lisgo / IAEA Data for Erosion and Tritium Retention in Be / Vienna / September 26-28

Current ITER experimental programme: D-T in 2027

- Status of the ITER Project (3 slides)
- Overview of the ITER device (4 slides)
- Be erosion and deposition modeling activity at ITER (14 slides)
- Model predictions for tritium retention (4 slides)
- Rates used (4 slides)
- Summary (1 slide)

The ITER tokamak

Overview of major systems

S. W. Lisgo / IAEA Data for Erosion

S. W. Lisgo / IAEA Data for Erosion and Tritium Retention in Be / Vienna / September 26-28

ELECTRON CYCLOTRON H&CD (20 MW) DIAGNOSTICS GAS FUELLING DISRUPTION MITIGATION SYSTEM FUSION POWER SHUTDOWN SYSTEM

ION CYCLOTRON RESONANCE H&CD (20 MW) NEUTRAL BEAM HEATING (33 MW) DIAGNOSTICS TRITIUM BREEDING MODULES (TBMs) REMOTE HANDLING ACCESS DISRUPTION MITIGATION SYSTEM FUSION POWER SHUTDOWN SYSTEM

DIAGNOSTICS GAS FUELLING PELLET LAUNCHERS (FUELLING + ELM CONTROL) DIVERTOR CASSETTE ACCESS IN-VESSEL VIEWING SYSTEM CRYO-PUMPS

BLANKET (NEUTRON SHIELD) DIVERTOR (REMOVABLE) VACUUM VESSEL (DOUBLE WALL) TOROIDAL FIELD COILS (~5 T ON AXIS)

Divertor strategies

Plasma facing materials

No C during DT operation due to tritium retention; also a license condition

iter china eu india japan korea russia usa

- Status of the ITER Project (3 slides)
- Overview of the ITER device (4 slides)
- Be erosion and deposition modeling activity at ITER (14 slides)
- Model predictions for tritium retention (4 slides)
- Rates used (4 slides)
- Summary (1 slide)

Roth tritium retention estimates for ITER

Plasma flux to surfaces: plasma-wall contact

 Long-pulse, large size, and high density operation combine to give a significant increase in the ion fluence to the wall

CHALLENGES 19/26 Nuclear operation: tritium retention by co-deposition

- A 400 s Q=10 pulse will require <u>~50 g of T fuel</u>, but the maximum <u>mobilisable</u> invessel T inventory is <u>limited to 640 g</u> (+180 g in pumps, +180 g uncertainty)
 - nuclear safety (license) issue (and tritium is expensive too)

- Divertor bakeable to 350 °C, main wall to 240 °C → amount removed depends on surface temperature at deposition [J. Roth, 14th DivSOL ITPA, Korea (2010)]
 - (tritium trapped with carbon <u>cannot</u> be removed by a vacuum bake at 350 °C)
- Note: T:Be depends sensitively on deposition rate, incoming particle energy, and surface temperature → complex problem
 - efforts are underway to predict the level of T-retention [S. Carpentier, JNM, 2011]

Shaped ITER wall

- Main chamber plasma-wall interaction is complicated by the close-fitting wall and shaped panels
 - plasma facing panels are replaceable, full change in 1-1.5 years (2-3 months for a single panel)

Local quasi-2D erosion analysis of FWP11 with LIM

- 2D local model (i.e. only one panel represented), with 3D picture assembled from a series of "2D slides"
 - no transport of material across slices
 - benchmark against 3D ERO code [D. Borodin]

"Medium-scale" modeling with DIVIMP

 DIVIMP with "ribbon grid" from field line tracing → quasi-3D representation of plasma contact with shaped wall panels, not fully local

"Medium-scale" model grid and comparison with LIM

Differences between DIVIMP and LIM models:

- \checkmark working directly with the equilibrium,
- ✓ identify all intersection points and keep track of the multiple PFRs (each field line can give many PFRs, depending on how often it intersects the wall),
- ✓ non-analytic calculation of BM-to-BM shadowing (wetted area),
- ✓ can track impurity transport on the "medium scale", i.e. between neighbouring BMs.

"Medium-scale" modeling with DIVIMP

Benchmarked against LIM for FWP11

"Medium-scale" modeling with DIVIMP: upper panel

- Results: erosion and re-deposition on top FWP9: local effect
 - high density case, sputtering <u>BM9</u> row, $T_e = 10 \text{ eV}$, $T_i = 2.T_e$, no flow, $D_{\perp} = 3 \text{ m}^2 \text{ s}^{-1}$

2D global modeling with DIVIMP ("standard model")

- Assume toroidal symmetry, i.e. 2D model where panel shape is not resolved
 - (example data shown here is for iron)

2D global modeling with DIVIMP: Be migration

- If upper panels are W, will they become coated with Be?
 - need improved material migration model and sputtering dynamics → <u>WALLDYN code</u> [K. Schmid,IPP]

Surface temp. calculation with RACLETTE \rightarrow Be evap.

3D global transport

Code extensions to 3D, time-dependent transport underway, i.e. semicomplete model

- model framework established; post-doc starting next month; WALLDYN 3D extensions also planned

FAST CAMERA, UNFILTERED

MAST DISCHARGE 15622 @ 203.7 ms

OSM-EIRENE CODE

- Status of the ITER Project (3 slides)
- Overview of the ITER device (4 slides)
- Be erosion and deposition modeling activity at ITER (14 slides)
- Model predictions for tritium retention (5 slides)
- Rates used (4 slides)
- Summary (1 slide)

Estimates of first wall panel lifetime (circa. 2010)

Large uncertainties in plasma specification and rates

PFC lifetime: [~1500 – 225 000] discharges

(assuming 10 mm Be thickness, steady-state phase ~ 400s)

Estimates of main chamber Be retention (circa. 2010)

<u>IO (LIM) worst-case estimate</u>: 3 gT/h in the <u>main chamber</u> (wall fluxes ~ 2 10²³ s⁻¹)

J. Roth estimates (PPCF 2008, JNM 2009)

- Wall fluxes = $[1.10^{23} 5.10^{23}] s^{-1}$
- Y_{eff} ~1-2 % (?)
- All Be eroded is assumed to be redeposited in PFC line-of-sight ...

• ... with fixed (D+T)/Be ~ 5%

→ T-retention max ~ 0.4 gT/shot (3.6 gT/h)

(all machine)

MIT working group on T-retention (April 2010)

- Wall fluxes = $[1.10^{23} 1.10^{24}] \text{ s}^{-1}$
- Y_{eff}~2%
- Low density case => all the eroded material is assumed to be transported to the divertor
- High density case => 50% of material locally redeposited <u>& associated codeposition not</u> <u>included</u>
- (D+T)/Be = f (T_{surf} , E_{imp} , etc.)
- → T-retention max ~ 0.32 gT/shot (2.9 gT/h) ←

(only divertor)

(final report can be found at:

http://www.psfc.mit.edu/library1/catalog/reports/2010/10rr/10rr004/10r r004_full.pdf

<u>Caveat</u>. The previous approaches and the one developed here are complementary but cannot be linearly combined to estimate a total in-vessel T-retention rate

ITER shot limits from panel lifetime and T retention (LIM)

- <Y_{eff}> ~ 7%, ~50% particles locally re-deposited; net peak erosion ~0.06 mm/h
 → PFC lifetime ~ 1500 shots (representative case)
- ~ 0.083 gT/h for one module ~ 3gT/h for 36 BM11-18 → T-retention* limit ~ 1920 shots
- (assuming: 50:50 D:T plasma, maximum safety limit ~640g)

* 2D estimation of (D+T)/Be = f(T_{surf}, E_{imp} , Γ_D/Γ_{Be}) [PICSES-B scaling law, G. De Temmerman, R> Doerner]

Experimental benchmarking of model required!

✓ JET ITER like wall migration

JET ILW modeling of Be main wall erosion and transport

- Same DIVIMP model as used with ITER design work
 - preliminary results only, incomplete model (no CX sputtering for example)

Be II EMISSION IN THE DIVERTOR

Page 32

- Status of the ITER Project (3 slides)
- Overview of the ITER device (4 slides)
- Be erosion and deposition modeling activity at ITER (14 slides)
- Model predictions for tritium retention (4 slides)
- Rates used (3 slides)
- Summary (1 slide)

Rates

- The D→Be and Be→Be sputtering yields: W. Eckstein, Report IPP 9/132 (2002) Garching (angle-averaged yield)
 - which are consistent with accelerator erosion yield measurements [J. Roth et al., Fus. Eng. Design, 37 (1997) 465-480]
 - and JET divertor data [M.F. Stamp et al., J. Nucl. Mat. (2011), in press]
- Also rates x2 to account (approximately) for surface roughness
- Be molecular effects not included
- Some inconsistency with yields from accelerator measurements...

Be MD sputtering rate calculations

 Molecular dynamics simulations are being performed to refine the codecalculated Be sputtering yields and estimate the molecular fraction

Be sputtering rate: experimental results: PISCES-B

 Results suggest that the sputtering rate of re-deposited material has a significantly higher sputtering rate than the bulk atoms

- Status of the ITER Project (3 slides)
- Overview of the ITER device (4 slides)
- Be erosion and deposition modeling activity at ITER (14 slides)
- Model predictions for tritium retention (4 slides)
- Rates used (3 slides)
- Summary (1 slide)

Summary

- ITER has attempted to estimate Be panel erosion, and the associated T codeposition, using a "progression" of codes
- The initial local, quasi-2D calculations will eventually be superseded by fully 3D, time-dependent simulations that include the wall shape, but the timescales for completion of the work are uncertain
- Panel life time and tritium retention operational limits have a wide range and required further model refinements, improved rate data, and experimental benchmarking
- More accurate specification of the boundary plasma conditions is also needed

