

Irle Group

Towards accurate approximate density functional theory potentials for beryllium-plasma interactions

Stephan Irle Nagoya University

> **Toyoda Auditorium** Nagoya University

IAEA 1st CRP on "Data for Erosion and Tritium Retention in Be" Vienna, Austria, September 27, 2012

The Group

August 9, 2012

Quantum Chemistry of Complex Systems in Nagoya

Collaborator:

Collaborator:

Yamaguchi (expt) Itami (expt) Others (expt)

Overview

Motivation

DFTB Method

DFTB/MD Applications

DFTB Parameterization

Summary

Overview

Motivation

DFTB Method

DFTB/MD Applications

DFTB Parameterization

Summary

Chemical Sputtering on Be

Little is known about the plasma wall processes on Be surface
 Performing accurate molecular dynamics (MD) simulations is important to extend our knowledge at the atomistic level

Temperature ~ 600 °C

(pure/mixed) Be surfaces

*Bjorkas, C. *et al.*, *New. J. Phys.*, **11**, 123017, (2009).; Ueda, S. *et al.*, *J. Nucl. Mater.*, **258-263**, 713, (1998).; Ueda, S. *et al.*, *J. Nucl. Mater.*, **283-287**, 1100, (2000). **Allouche, A. *et al.*, *J. Phys. Chem. C*, **114**, 3588, (2010).

= Be

= H/D/T, He, H₂O, CH₄, N₂, W,

Getting insights into plasma wall interactions;
Incident energy dependence
(adsorption, reflection, penetration)
Temperature dependence
Conditions of surface structures
(how erosion, retention processes proceed)
Comparison with experimental data and
previous theoretical works (classical MD
simulations* and static DFT calculations**)

6

Method Multiscale Hierarchy

DFTB (density-functional tight-binding) is a well established approximate DFT method but there are no available Be-X parameters. Therefore, we started to develop Be-Be and Be-H parameters at first.

Motivation

Overview

Motivation

DFTB Method

DFTB/MD Applications

DFTB Parameterization

Summary

Alternative to DFT: Approximate DFT

Density-Functional Tight-Binding: Method using atomic parameters from DFT (PBE, GGA-type), diatomic repulsive potentials from B3LYP

Seifert, Eschrig (1980-86): minimum STO-LCAO; 2-center approximation
Porezag, Frauenheim, *et al.* (1995): efficient parameterization scheme: *NCC-DFTB*

Frauenheim

Gotthard Seifert

Helmut Eschrig

- Elstner et al. (1998): charge self-consistency: SCC-DFTB
- Köhler et al. (2001): spin-polarized DFTB: SDFTB

Christof Köhler

Taken from Oliviera, Seifert, Heine, Duarte, *J. Braz. Chem. Soc.* 20, 1193-1205 (2009)

Thomas Heine

Helio Duarte J. Braz. Chem. Soc., Vol. 20, No. 7, 1193-1205, 2009. Printed in Brazil - ©2009 Sociedade Brasileira de Química 0103 - 5053 \$6.00+0.00

Density-Functional Based Tight-Binding: an Approximate DFT Method

Augusto F. Oliveira, *, a, b Gotthard Seifert, b Thomas Heine^c and Hélio A. Duarte *, a

^aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte-MG, Brazil

^bPhysikalische Chemie, Technische Universität Dresden, Mommsenstr, 13, D-01062 Dresden, Germany ^cSchool of Engineering and Sciences, Jacobs University, P.O. Box 750 561, 28725 Bremen, Germany

...open access

Quick review II

Density Functional Theory (DFT)

DFTB Method

1998

at convergence:

$$E\left[\rho\right] = \sum_{i=1}^{M} n_i \left\langle \psi_i \right| - \frac{1}{2} \nabla^2 + v_{ext} \left(\vec{r}\right) + \int \frac{\rho\left(\vec{r}\right)}{\left|\vec{r} - \vec{r}\right|} d^3 r' \left|\psi_i\right\rangle + E_{xc} \left[\rho\right] - \frac{1}{2} \int \int \frac{\rho\left(\vec{r}\right)\rho\left(\vec{r}\right)}{\left|\vec{r} - \vec{r}\right|} d^3 r d^3 r' + \frac{1}{2} \sum_{\substack{\alpha,\beta=1\\\alpha\neq\beta}}^{N} \frac{Z_{\alpha} Z_{\beta}}{\left|\vec{R}_{\alpha} - \vec{R}_{\beta}\right|}$$

$$=\sum_{i=1}^{M}n_{i}\varepsilon_{i}+E_{rep}$$

Various criteria for convergence possible:

- Electron density
- Potential
- Orbitals
- Energy
- Combinations of above quantities

Foulkes + Haydock Ansatz

Phys. Rev. B, 39, 12520 (1989)

$$\rho(\vec{r}) = \rho_0(\vec{r}) + \delta\rho(\vec{r})$$

$$E[\rho_0 + \delta\rho] = \sum_{i}^{M} n_i \left\langle \Psi_i \middle| -\frac{1}{2} \nabla^2 + v_{ext}(\vec{r}) + \int \frac{\rho'_0}{\left|\vec{r} - \vec{r}'\right|} d\vec{r}' + v_{xe}[\rho_0] \middle| \Psi_i \right\rangle$$

$$-\frac{1}{2} \iint \frac{\rho'_0(\rho_0 + \delta\rho)}{\left|\vec{r} - \vec{r}'\right|} d\vec{r} d\vec{r}' - \int v_{xe}[\rho_0](\rho_0 + \delta\rho) d\vec{r}$$

$$+\frac{1}{2} \iint \frac{\delta\rho'(\rho_0 + \delta\rho)}{\left|\vec{r} - \vec{r}'\right|} d\vec{r} d\vec{r}' + E_{xe}[\rho_0 + \delta\rho] + E_{nn}$$

Second-Order Taylor Expansion

Elstner et al. Phys. Rev. B: 58, 7260 (1998)

$$E_{\rm xc}[\rho_0 + \delta\rho] = E_{\rm xc}[\rho_0] + \int \frac{\delta E_{\rm xc}}{\delta\rho} \bigg|_{\rho_0} \delta\rho \, d\vec{r} + \frac{1}{2} \iint \frac{\delta^2 E_{\rm xc}}{\delta\rho\delta\rho'} \bigg|_{\rho_0} \delta\rho \delta\rho' d\vec{r} d\vec{r'}$$
(17)
Note that
$$\delta E_{\rm xc}/\delta\rho_{\rho_0} = v_{\rm xc}[\rho_0]$$

Quick review V

DFTB Method

DFT 2nd Order Energy Expression

Elstner et al. Phys. Rev. B: 58, 7260 (1998)

$$E = \sum_{i}^{M} n_{i} \left\langle \Psi_{i} \right| - \frac{1}{2} \nabla^{2} + v_{ext} (\vec{r}) + \int \frac{\rho_{0}'}{|\vec{r} - \vec{r}'|} d\vec{r}' + v_{xc} [\rho_{0}] |\Psi_{i} \right\rangle$$
$$- \frac{1}{2} \iint \frac{\rho_{0}' \rho_{0}}{|\vec{r} - \vec{r}'|} d\vec{r} d\vec{r}' + E_{xc} [\rho_{0}] - \int v_{xc} [\rho_{0}] \rho_{0} d\vec{r} + E_{nn}$$
$$+ \frac{1}{2} \iint \left(\frac{\delta \rho \delta \rho'}{|\vec{r} - \vec{r}'|} + \frac{\delta^{2} E_{xc}}{\delta \rho \delta \rho'} \right|_{\rho_{0}} d\vec{r} d\vec{r}'$$
$$E [\rho_{0}, \delta \rho] = \sum_{i=1}^{M} n_{i} \left\langle \Psi_{i} \right| \hat{H}_{0} |\Psi_{i} \rangle + E_{rep} + E_{2nd}$$

Approximations

- Get the best possible ρ_0 atomic densities, new ideas possible, e.g. fragment densities etc....
- Reduce number of basis functions as much as possible

 minimum valence basis set (atomic orbitals, optimized local orbitals)
- Ignore (DFTB) or approximate (e.g. as in SCC-DFTB)
 2nd order terms, (add 3rd order terms, DFTB3)
- Introduce further approximations in the Hamiltonian

Approximations

Traditional DFTB concept: Hamiltonian matrix elements are approximated to two-center terms. The same types of approximations are done to E_{rep}.

$$H^{0}_{\mu\nu} = \begin{cases} \varepsilon^{\text{neutral free atom}}_{\mu} & \text{if } \mu = \nu \\ \langle \varphi^{\alpha}_{\mu} | \hat{T} + V^{\alpha}_{0} + V^{\beta}_{0} | \varphi^{\beta}_{\nu} \rangle & \text{if } \alpha \neq \beta \\ 0 & \text{otherwise.} \end{cases}$$
From Elstner et al., PRB 1998
otherwise.

$$V_{eff} [\rho_{0}] \approx V_{ef} [\rho_{A} + \rho_{B}] \qquad (Density superposition)$$

$$V_{eff}[\rho_0] \approx V_{eff}[\rho_{A} + \rho_{B}] \qquad \text{(Density superposition)}$$
$$V_{eff}[\rho_0] \approx V_{eff}[\rho_{A} + V_{eff}\rho_{B}] \qquad \text{(Potential superposition)}$$

Both approximations are justified by the screening argument: Far away, neutral atoms have no Coulomb contribution.

Approximations

Approximations in SCC-DFTB (2nd order expansion only) potential:

$$\begin{split} \delta \rho &= \sum_{\alpha}^{N} \delta \rho_{\alpha} \quad \delta \rho_{\alpha} \approx \Delta q_{\alpha} F_{00}^{\alpha} Y_{00} \\ & E_{2nd} \approx \frac{1}{2} \sum_{\alpha,\beta}^{N} \Delta q_{\alpha} \Delta q_{\beta} \iint \left(\frac{1}{|\vec{r} - \vec{r}'|} + \frac{\delta^{2} E_{xc}}{\delta \rho \delta \rho'} \Big|_{\rho_{0}} \right) F_{00}^{\alpha} F_{00}^{\beta} Y_{00}^{2} d\vec{r} d\vec{r}' \\ & U_{Ai} = \frac{\partial^{2} E_{DFT}^{total}}{\partial n_{i}^{2}} = \frac{\partial \varepsilon_{i}}{\partial n_{i}} \end{split}$$

Note that directional changes of the density are not covered with this approximation.

SCC-DFTB

- All contributions to Hamiltonian and Overlap matrices are pre-computed. At runtime, values have to be interpolated (negligible time for computing matrix elements)
- Total energy is simply computed using KS orbital energies (eigenvalues of the Hamiltonian matrix) and repulsive potential (simple short-range two-body force field)
- 3. Energy gradients are easily calculated (analytical derivative of total energy expression)
- 4. Aiming at large systems, Hamiltonian and Overlap matrices are very sparse. Sparsity can be transferred to energy and energy gradient calculations, as density / energy weighted density matrices are required only where other matrices are non-zero (identical sparsity pattern)
- 5. Typically 1000 times faster than conventional DFT

Overview

Motivation

DFTB Method

DFTB/MD Applications

DFTB Parameterization

Summary

Carbon nanotube growth

DFTB/MD Applications

Nucleation and growth hypothesis:

A. J. Page, Y. Ohta, S. Irle, and K. Morokuma,

In sharp contrast to:

F. Ding, A. Harutyunyan, B. I. Yakobson, Proc. Natl. Acad. Sci. **106**, 2506 (2009)

How Does Graphene Form on Ni(111)?

Gao et al. J. Am. Chem. Soc. 133, 5009 (2011)

•GGA PW91/UPP-PW (VASP) geometry optimizations •individual clusters on Ni(111) C1-C24

Geometries and energetics only **No** information on structure evolution with time (growth)! Want QM/MD Simulations! Graphene growth

DFTB/MD Applications

QM/MD of 30 C₂ on Ni(111), 1180 K

Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, K. Morokuma, SI, JACS (2011)

Graphene growth

DFTB/MD Applications

25

Y. Ohta, Y. Okamoto, A. J. Page, SI, K. Morokuma, ACS Nano 3, 3413 (2009)

QM/MD of 30 C₂ on Ni(111), 1180 K

Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, K. Morokuma, SI, JACS (2011)

Graphene growth

DFTB/MD Applications

QM/MD of 18 $C_2 + C_{24}$ on Ni(111), 1180 K

Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, K. Morokuma, SI, JACS (2011)

Graphene growth

DFTB/MD Applications

QM/MD of 18 $C_2 + C_{24}$ on Ni(111), 1180 K

Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, K. Morokuma, SI, JACS (2011)

of ring

Pentagon-first vs. template effect.
Suppression of heptagons and pentagons

Wang et al., Nano Lett., (2011)

QM/MD of 18 C_2 + C_{24} on Ni(111), 1180 K

Y. Wang, A. J. Page, Y. Nishimoto, H.-J. Qian, K. Morokuma, SI, JACS (2011)

Haeckelite is a Metastable Phase

F. W. Ostwald,
Z. Phys. Chem.
22, 289 (1897)³⁰

Chung et al., Nature Phys. (2008)

Other simulations

DFTB/MD Applications

Methods to propagate molecular systems on a single potential energy surface (PES)

Reactive	Born-Oppen-	- Extended	Liouville-von Neumann MD
iorce neids	heimer MD	Lagrangian MD	Jakowski, Morokuma, JCP 130 , 224106 (2009)
Energy and forces on molecules from exp parameters	Solve electronic Schrödinger Eq. (convergence) at nuclear configuration	Electronic structure propagated classically: not converged integer occ. numbers: metals difficult "Simultaneous"	Electronic structure: <i>Quantum dynamics:</i> <i>mixed states</i> <i>possible</i> $i\hbar \frac{\partial}{\partial t} \psi(r;t) = \hat{H}\psi(r;t)$
Nuclei moved: Newton's laws	Nuclei propagated from gradients (classically)	classical propagation of electrons and nuclei	Nuclei propagated from gradients (classically)
(MM)	(BOMD)	(CPMD)	(LvNMD)

Fullerene Collisions

DFTB/MD Applications

Collision energy: 1.4 eV C_{60}^+

$$\Delta \rho = \rho_{total} - \rho_{C60}$$

Green: $-\Delta \rho$ Blue: $+\Delta \rho$

$$\Delta \rho = \rho_{total} - \rho_{C60}^{2+}$$

Jakowski, SI, Morokuma, J. Phys. Chem. Lett 3, 1536 (2012)

Overview

Motivation

DFTB Method

DFTB/MD Applications

DFTB Parameterization

Summary

Electronic Parameters

DFTB Parameterization

New Confining Potentials

➤Typically, electron density contracts under covalent bond formation.

➢ In standard *ab initio* methods, this problem can be remedied by including more basis functions.

DFTB uses minimal valence basis set: the confining potential is adopted to mimic contraction

Henryk Witek

1). DFT band structure calculations

•VASP 4.6

•One atom per unit cell

•PAW (projector augmented wave) method

•32 x 32 x 32 Monkhorst-Pack *k*-point sampling

•cutoff = 400 eV

•Fermi level is shifted to 0 eV

2). DFTB band structure fitting

Optimization of parameter sets for Woods-Saxon confining potential (orbital and density) and unoccupied orbital energies
Fixed orbital energies for electron occupied orbitals
Valence orbitals : [1s] for 1st row

[2s, 2p] for 2nd row
[ns, np, md] for 3rd – 6th row
(n ≥ 3, m = n-1 for group 1-12, m = n for group 13-18)

Fitting points : valence bands + conduction bands (depending on the system, at least including up to ~+5 eV with respect to Fermi level)

36

Band structure for Se (FCC)

Brillouin zone

Particle swarm optimization (PSO)

Particle Swarm Optimization

1) Particles (=candidate of a solution) are randomly placed initially in a target space.

2) - 3) Position and velocity of particles are updated based on the exchange of information between particles and particles try to find the best solution.

4) Particles converges to the place which gives the best solution after a number of iterations.

Particle Swarm Optimization

Example: Be, HCP crystal structure

Band structure fitting for BCC crystal structures

	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*Lanthanoids		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**Actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Band structure fitting for FCC crystal structures

•space group No. 225

•1 lattice constant (a)

а

*Lanthanoids	*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
**Actinoids	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No

Band structure fitting for SCL crystal structures •space group No. 221 а •1 lattice constant (a) 12 13 15 16 17 Group 3 5 8 9 10 11 14 18 2 Period Transferability checked (single point calculation) Reference system in PSO 1 **Experimental lattice constants** 2 available S 3 Ma 31 19 30 20 26 28 36 Fe Ga 4 39 45 48 46 Pd Мо Tc RI Rh 5 * 56 71 73 75 78 80 84 85 86 76 79 81 83 72 Lu Re Dł Po At Rn 6

	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*Lanthanoids		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**Actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

107

Bh

108

Hs

109

Mt

110

Ds

111

Rq

112

Cn

113

Uut

114

Uua

**

103

Lr

105

Db

106

Sq

104

Rf

88

Ra

87

Fr

7

118

Uuo

117

Uus

115

Uup

116

Uuh

Band structure fitting for HCP crystal structures

•space group No. 194

С

•2 lattice constants (a, c)

a	-0								(0.)	- /									
Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period						Tran	ofore	م. ا: ۱: ۴۰	مامه	مادمه	۲ (۵:۳	مام	noin	taal					
	1																2		
1	Н		Reference system in PSO H															He	
	3	4	Experimental lattice constants 5 6 7 8 9 1															10	
2	Li	Be		available B C N O F N															Ne
	11	12																17	18
3	Na	Mg												AI	Si	Р	S	CI	Ar
	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba		Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg		Pb	Bi	Ро	At	Rn
	87	88	**	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

Band structure fitting for Diamond crystal structures

•space group No. 227

•1 lattice constant (a)

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period						Trop	oford		, oh		d (ai	ممام	nain	taal	مراريد	ion)			
	1																		
1	Н		Reference system in PSO																
	3	4		Experimental lattice constants available $ \begin{array}{ccccccccccccccccccccccccccccccccccc$															
2	Li	Be																	
	11	12																	
3	Na	Mg																	Ar
	19	20		21 22 23 24 25 26 27 28 29 30 31 32													34	35	36
4	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sr	Sb	Те	I	Xe
	55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba		Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	**	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*Lanthanoids		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**Actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Transferability of optimum parameter sets for different structures

DFTB Parameterization

DFT DFTB

Influence of virtual orbital energy (3d) to AI (fcc) band structure

>The bands of upper part are shifted up constantly as $orb\epsilon(3d)$ becomes largers

Influence of W(orb) to Al (fcc) band structure

> The bands of upper part go lower as W(orb) becomes larger

Influence of a(orb) to AI (fcc) band structure

➤Too small a(orb) gives the worse band structure

Influence of r(orb) to Al (fcc) band structure

➤r(orb) strongly influences DFTB band structure

Electronic Parameters

Correlation of r(orb) vs. atomic diameter

>In particular for main group elements, there seems to be a correlation between r(orb) and atomic diameter.

Straightforward application to binary crystal structures

Rocksalt (space group No. 225)

Zincblende (space group No. 216)

B2 (space group No. 221)

Others

- Wurtzite (BeO, AlO, ZnO, GaN, ...)
 Hexagonal (BN, WC)
 Rhombohedral (*ABCABC* stacking sequence, BN)
- ➤ more than 100 pairs tested

Selected examples for binary crystal structures

Further improvement can be performed for specific purpose but this preliminary sets will work as good starting points

BeO

WBe

Description of small neutral beryllium clusters

Geometries of beryllium hydride molecules

Binding energy of beryllium hydride oligomers

Discrepancy of DFTB binding energy from DFT or MP2 is reduced compared with other semi-empirical methods (PM3) •Approximate DFT and DFT methods useful to study quantum chemistry of complex systems

•DFTB Be-X parameters will be used for:

•A) chemical sputtering simulations for calibration/validation of classical potential simulations

•B) structure/energy calculations of amorphous systems

Solution Japan Science and Technology Agency CREST "Multiscale Physics" (2006-2011) CREST "Soft π-materials: (2011-2015)

SRPR tenure track program (2006-2011)

JSPS KAKENHI

