Experience with Be at JET

J P Coad

IAEA meeting 26-28 Sept 2012
Experience with Be at JET

History of Be in JET
- Be evaporation (started 1989)
- Be limiters (1990-1992) and Be divertor (1995)
- Transport of Be and analysis
- ITER-like Wall (ILW) (2011 onwards)

Future plans
- Analysis of tiles removed in 2012
- Opportunities for further experiments
Be evaporation has been used ~every week of operation 1989-2009 and has also been tried during the ILW.

Be Evaporator

Belt limiter

Belt limiters were not successful due to edge erosion (C) and melting (Be) that limited power handling.
SRP plate replaced the septum for the 2001-2004 campaigns

ITER divertor shape (not to same scale)

JET Divertors used in the period 1994 to 2004
Deposition at the JET Mk I divertor

Proved that material deposited in the divertor was eroded from the main chamber. Melt experiment performed on the Be divertor
Beryllium Plasma Spray - Repair

Indication of the possibility to repair the damaged components:

- PS applied on damaged (melted, cracked, contaminated surface)
- Coatings 1 mm to 1.5 mm thick with a porosity level on the order of 7-12% were deposited
- 5 MW/m² for 10 s/60 off pulses applied:
- Survived 500 cycles before cracking was observed, after 680 cycles – hot spots, test was terminated

Note: PS coating on the undamaged Be tiles survived only 10 cycles at 5 MW/m²
ITER divertor shape (not to same scale)

JET Divertors used in the period 1994 to 2004

SRP plate replaced the septum for the 2001-2004 campaigns
RBS of tile 3 removed in 2004 compared with one from 2001

• Much more Be and other metals in 2004
• Much more D and 13C in 2001 (13C comes from injection of methane at top of vessel during last pulses of the campaign)
NRA of tile 3 removed in 2004 compared with one from 2001

- Much more Be in 2004
- Much more D in 2001 and 13C also detectable
2004-9 All tiles made of CFC

For ILW (2011 onwards)
Tiles 1-8 are W-coated CFC,
LBT made with solid W lamellae
Be/C can exceed 1, so film not stabilised by carbide
ITER-Like Wall in JET from 2011
Project Goal - Limits ≥ existing CFC
Example: Wide Outer Poloidal Limiter

- Eliminate bolt holes (power)
- Optimised profile (power)
- Large format tiles (power)
- Single helicity (power)
- Interlocking carriers (power)
- S65J HIP Be (mechanical integrity)

- Segmented construction (eddy)
- Castellation (thermal fatigue)
- Vacuum cast In 625 carriers (strong, high resistivity + low cost)
Long term retention: Main results

All pulses Ip/BT=2.0MA/2.4T
Integral Gas balance: ~10 hours and 10-20 repetitive pulses

<table>
<thead>
<tr>
<th>Pulse type</th>
<th>Carbon Heating Phase (Ds⁻¹)</th>
<th>Be/W Heating Phase (Ds⁻¹)</th>
<th>Carbon X-point phase (Ds⁻¹)</th>
<th>Be/W X-point phase (Ds⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiter (inner)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 MW ICRH (#82626)</td>
<td></td>
<td>1.35×10²⁰</td>
<td></td>
<td>8.9×10¹⁹</td>
</tr>
<tr>
<td>L-mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5-1.5 MW ICRH (#81282)</td>
<td>2.40×10²¹</td>
<td>3.9×10²⁰</td>
<td>1.05×10²¹</td>
<td>2.5×10²⁰</td>
</tr>
<tr>
<td>Type III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 MW ICRH (#81624)</td>
<td>2.40×10²¹</td>
<td>1.9×10²⁰</td>
<td>1.37×10²¹</td>
<td>7.7×10¹⁹</td>
</tr>
<tr>
<td>Type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11MW NBI (#82670)</td>
<td>2.83×10²¹</td>
<td>7.0×10²⁰</td>
<td>1.7×10²¹</td>
<td>4.0×10²⁰</td>
</tr>
</tbody>
</table>

Long term retention has **decreased** by nearly **one order of magnitude**
Marker tiles

IBA can compare thickness of the top layer before and after exposure, using the interlayer as a marker, to determine the erosion of the layer (~bulk)

Before

Ni (or Mo) interlayer

Be (or W)

After

↓ erosion

Be (or W)

Be (or W)
If erosion > thickness of marker layer, change to tile profile is measurable.
After exposure in JET 2004-7 part of the tile was eroded by ~200 microns (principally by limiter phase of the discharge).
To study H-isotope retention and erosion/deposition a sub-set of special marker tiles will be removed during “quick” interventions

Be-10 tracer from a IWGL source tile

Tiles to be removed include:
- A full poloidal set of divertor tiles
- Outer poloidal limiter tiles
- Inner wall guard limiter tiles
- Dump plate tiles
- Inner Wall Cladding tiles
Tile analysis for ILW

- Interventions are planned during the ILW campaign to exchange a limited number of tiles for which spares exist. The first is now underway (end of 2012) and the next is planned for early 2014.
- Tiles will be used to measure erosion/deposition, H-isotope retention, etc.
- The analysis programme will be arranged and co-ordinated through Task Force Fusion Technology (TFFT).
- All Associations are invited to participate, but the final programme will be limited by the number of tiles available.
Possible topics for investigation

• Erosion/deposition and material transport
• H, D, T, He retention in co-deposits and evaluation of composition/properties
• Damage and T-retention in bulk Be and W
• Alloying between deposited Be and W tiles
• Carbideisation (of the W-coated CFC tiles)
• Phase transformation/material property changes in W lamellae and components of the solid-W target unit
• Melt damage