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Introduction: Challenges
 

for
 

ITER and beyond

Fusion reaction: T(D,)n

Central Temperature: 20 keV

Typical Density:
 

1020

 

m-3

Fusion Power: 500 MW

Plasma Volume:
 

840 m3

Plasma Current:
 

15 MA

700 m2 Be first wall 

100 m2 Tungsten divertor

50 m2

 

CFC strike point

Beryllium

Tungsten

Carbon
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Nuclear Fusion Reaction
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The role of material walls
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Power flux densities in ITER

ITER: 400 MW in neutrons, 
100 MW from alpha particle heating 
about 50 MW auxiliary heating       
 about 150 W heating power to walls
About 50 % go to divertor, rest to main chamber walls

Main chamber wall: 
700 m2, about 450 to 500 MW, about <1 MW/m2

Divertor:
About 75 MW
Radial extend of power carrying layer O(cm)
Inclined target plates increase strike area by about a factor of

 
6

 Mean power flux density at divertor strike areas in ITER: 10 MW/m2

(in transient events [ELMs, disruptions] up to factor of 10-100 higher) 
 Radiative

 
cooling to distribute power over a larger area

Requires development of 
appropriate plasma-facing 
components

For comparison:
Hot plate

 
0.05-0.1 MW/m2

Oxy-acetylene torch   100 MW/m2
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First 
Wall

Divertor

Particle fluxes
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Material erosion –
 

life time of components and plasma 
impurities
Transport and redeposition of eroded material
Tritium inventory (in particular in redeposited layers)
Handling of power fluxes (plasma-facing components)
Neutron damage and activation of materials

Physical sputtering yield and harmfulness of elements 
in the plasma are main selection criteria for first wall 
material

PSI and PMI topics
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PSI/PMI processes
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Erosion by energetic D ions: physical and chemical sputtering
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4 main topics:

Surface Processes

Tritium inventory

Migration in fusion devices

Materials and components

Devices:
Tandem Acc. Laboratory

AUG, TS, ITER

AUG, JET
High heat flux test facility, GLADIS,

 JET, W7-X

Scientific programme at IPP
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I. Surface Processes

Formation of mixed materials: 
Here: Be –

 
W –

 
O system

•

 

Investigation of surface alloys and mixed phases 
by XPS

•

 

Lab experiments and experiments at BESSY 
(Berlin Electron Syncrotron)


 

Chemical information from peak position


 

Compositional information from intensity


 

Depth information from variation of photon 
energy

•

 

Which chemical phases do form?
•

 

What are reaction temperatures?
•

 

What is the role of diffusion?
•

 

How do these phases interact with the boundary 
plasma?
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Prior work: 
Be –

 
W system and pure Be

•

 

PhD thesis work of Matthias Reinelt


 

H retention in Be single crystals


 

TMAP simulation of desorption spectra
•

 

PhD thesis work of Martin Oberkofler

 (just finished)


 

H retention in polycrystalline Be


 

TMAP simulation of desorption spectra

Reinelt

 

et al., New Journal of Physics 11 (2009)
Oberkofler

 

et al., Nucl. Instrum. Methods 267 (4) (2009)

low flux/fluence implantation at 0.3-3keV:
retention saturates above 1017D cm2

change in release pattern:
low fluence:     only high-T release
high fluence:   + low-T release

II. H retention and release in pure Be



IAEA CRP meeting, © W. Jacob, May 2011 14

II. H retention and release in pure Be

Reinelt

 

et al., New Journal of Physics 11 (2009)
Oberkofler

 

et al., Nucl. Instrum. Methods 267 (4) (2009)

low
 

flux/fluence implantation
 

at 0.3-3keV with
 

1015D cm-2

 

s-1:

supersaturated, structurally
 

modified
(D2

 

in bubbles
 

/ amorphous
 

Be-D, D/Be up to 1)
defects

 
created

 
by

 
the

 implantation
 

cascade
(vacancies)

Be-D2      BeO
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II. H retention and release from mixed materials

Formation of mixed materials: 
Here: Be –

 
W –

 
C system

•

 

Some model systems as 
themodynamically

 

stable phases 
(Be2

 

C and Be12

 

W)
•

 

Deposition of mixed material films with 
arbitrary composition in Romania 
(MEdC, C. Lungu

 

et al.)
•

 

Characterisation at IPP


 

Ion beam analysis


 

XPS

•

 

H implantation in HCS

 600 eV

 

D3
+

 

(200 eV/D)

•

 

Thermal release (TESS)

Thermionic
 

Vacuum
 

Arc
deposition

 
device

C. P. Lungu, I. Mustata, V. Zaroschi

 

et al., Phys. Scr. T128 (2007) 157
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Formation thermodynamically 
stable phases: 

Be2

 

c
•

 

Evaporation of thin C film onto Be substrate
•

 

Annealing at about ? K

Be12

 

W
•

 

Evaporation of thin W film onto Be substrate
•

 

Annealing at about 1200 K

depth

II. H retention and release from mixed materials
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Thermal desorption spectra of D from:

(a) Be and compounds (Be12W and Be2C),

(b) Be and Be-W mixed deposited layers 
(W concentrations of ~10 % and ~60 %) 

(c) Be and Be-C mixed deposited layers (C 
concentrations of ~ 8 % and ~ 50 %). 

For pure Be and Be2

 

C samples the 
temperature was held for

 

20 min. at 623 K 

D implantation to samples was performed

 at room temperature.

II. H retention and release from mixed materials
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Thermal desorption spectra of D from Be and Be2

 

C layers as a function of time

Enhanced
 

retention
 at T > 620 K

II. H retention and release from mixed materials
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Thermal desorption spectra of D from Be layers implanted at different 
temperatures (RT, 423 K and 573

 
K).

Enhanced
 

retention
 at high T

if
implanted
at elevated

 
T

II. H retention and release from mixed materials
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Remaining fraction of D derived 
from TDS spectra of 

(a) Be-W system, 
(b) Be-C system 
(c) Be implanted at different 
temperatures (320 K, 423 K and 
573 K).

Note that each curve is normalized 
to

 
retention

 
in

 
pure Be implanted at 

RT. 
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D remaining fraction at 623 K
 

(350 ºC)  in Be-containing samples as a function of 
each impurity (W or C) concentration in Be.
Note that each number is normalized to retention

 
in

 
pure Be.

II. H retention and release from mixed materials



IAEA CRP meeting, © W. Jacob, May 2011 22



 
Deuterium retention and release behaviour

 
of Be-containing materials were 

investigated for the ITER wall (240 °C, 513 K) and divertor (350
 

°C, 623 K) 
baking temperatures



 
In pure Be loaded with D at T < 340 K, D is predominantly released around 
420-470 K within a relatively sharp desorption peak. 



 
Operation at elevated temperatures reduces the retained D amount, but 
the remaining D is less efficiently out-gassed at 623 K.



 
Admixture of W or C changes the D release behaviour

 
resulting in less 

efficient D removal by baking.



 
Especially the presence of C in Be shifts the D release to higher 
temperature

II. H retention and release from mixed materials



IAEA CRP meeting, © W. Jacob, May 2011 23

Missing information:

•
 

Release at increased holding times (so far max. 20 min)

•
 

Release from thick films (so far only implanted films)

II. H retention and release from mixed materials

New experiments:

•
 

Investigation of redeposited films produced in PISCES and 
magnetron sputtered Be/D films (D/Be ratios up to 0.3) with 
thickness up to 1 μm (Invited talk T. Schwarz-Selinger, PFMC-13)

•
 

Influence of longer holding times at ITER temperatures 
(planned for 2011)
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II. H retention and release
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Further activities at IPP



 
investigation of surface processes in ternary systems (Be –

 
W –

 
O, Be –

 
N)



 
H retention in Be materials



 
Modeling of Be release (TMAP and new code developments) (& collaboration 
with A. Allouche

 
-

 
DFT calculations of e.g. Be migration energies)



 
D retention in mixed materials (increased holding times)



 
Thick film model systems? (collaboration with MEdC

 
Bucharest)



 
MD simulations (W-Be-H potential, first tests performed)



 
Global impurity transport modeling (Schmid

 
/Reinelt) –

 
needs better input data
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III. Needed data (personal view)

Sputtering yields (H, D, T, He, Ne, Ar, N, …)


 
energy dependence



 
flux dependence



 
fluence dependence



 
temperature dependence

Compare plasma erosion vs. ion beams
 more individual ion species in plasma additional neutral species

 e.g., H2

 

plasma: H+, H2
+, H3

+, & H0

laboratory plasmas: H0/Hion

 



 
100

Projectile enrichment in near surface layer (= retention) may lead to reduction of 
sputter yields (e.g., W/N) or enable chemical sputtering (e.g., C/H, enhanced 
yield!)

Don‘t forget possibility of impurity sputtering in plasma experiments

Redeposition in high flux plasma experiments requires proper modeling of net 
yields
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III. Needed data (personal view) cont. …

Different types of redeposited layers


 
Intensive characterization required



 
Stoichiometry (IBA)



 
Chemical states (XPS)



 
Phases, crystalline phases, alloys, …



 
Microstructure porosity, impurities, surface structure and morphology



 
….

Mixed materials!
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