Plasma interactions with Be surfaces

R. P. Doerner for members of the PISCES Team

Center for Energy Research, University of California – San Diego, USA

Work performed as part of: Plasma-Surface Interaction Science Center (MIT and ORNL) US-EU Collaboration on Mixed-Material PMI Effects for ITER ITER IO Collaboration on Flash Heating of Be Codeposits

The PISCES-B divertor plasma simulator is used to investigate ITER mixed materials PSI.

• PISCES-B is contained within an isolated safety enclosure to prevent the release of Be dust.

lon flux (cm ² s ⁻¹)	10 ¹⁷ –10 ¹⁹	~10 ¹⁹ - 10 ²⁰
lon energy (eV)	20–300 (bias)	10–300 (thermal)
$T_{\rm e}$ (eV)	4–40	1–100
n _e (cm ⁻³)	10 ¹² –10 ¹³	~10 ¹³
Be Imp. fraction (%)	Up to a few %	1–10 (ITER)
Pulse length (s)	Steady state	1000
PSI materials	C, W, Be	C, W, Be
Plasma species	H, D, He	H, D, T, He

PISCES

ITER (edge)

PISCES-B has been modified to allow exposure of samples to Be seeded plasma

Outline of Technical Presentation

- Erosion in the plasma environment
 - Be erosion from D, He and Ar plasma
 - Chemical sputtering of BeD
 - Redeposition/sticking efficiency
- Retention and release
 - Plasma exposed Be targets
 - Be-rich witness plate codeposits
 - Release due to flash heating
- Be-containing mixed materials (W, C, N, O)
- Spectroscopic issues for Be
- Summary

Significant variations in the Be sputtering yield are measured

PISCES ·

discrepancy between - JET - PISCES-B - ion beam – TRIM - sputter yields (<45%) (<0.4%) (<8%) (<3.5%)

R.P. Doerner et al. | Journal of Nuclear Materials 257 (1998) 51-58

Fig. 2. Energy dependence of the sputtering yield of Be and BeO bombarded with D at normal incidence. Experimental data [6,13,23–26] and results obtained with computer simulation [6,22].

AES reveals a relatively 'clean' Be surface during sputtering yield measurements

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Sputtering of Be with D: discrepancy in total yield

PISCES

High JET yield can be explained by angle, Be self-sputtering & impurities. PISCES yields are a factor of 5-10 lower than TRIM. Why?

sputtering of Be: influence of initial surface morphology

 \Rightarrow no influence within accuracy of the measurement

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

sputtering yield: evolution with time / fluence

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Similar yield evolution with time/fluence is documented in the literature

Plasma atoms remaining in the near surface also can reduce the sputtering yield by a factor of 3-4

Heavy ion bombardment yield agrees with TRIM calculations

- Reason for this behavior is not understood
- Ar on Be results in smooth surface after sputtering
- Ar implantation depth is shorter
- Reflection coefficient of Ar is lower than He or D (more momentum directed into target)
- Ar diameter is larger, perhaps less likely to reside in the near surface region
- Effect is measured for a variety of substrate materials

Chemically-assisted physical sputtering of BeD is temperature dependent

PISCES

From R. Doerner et al, JNM 390-391 (2009) 681.

Similar e-folding distance of BeD and Be I intensity indicate BeD is physically sputtered, not chemically eroded. Beryllium deuteride is not volatile.

MD simulations of D on Be predicted subsequent erosion measurements

Exp. from D. Nishijima et al, PPCF 50(2008)125007. Sim. from C. Bjorkas et al., New J. Physics (2009).

Erosion/deposition balance in Be seeded high flux D discharges

ion fluence: $\approx 10^{22}$ /cm² target temperature < 320K

• Use Be oven seeding to balance surface erosion to test input parameters of material migration models

- Mass loss measures net erosion
- Spectroscopy measures gross erosion (Be I line)
- $Y_{Be \rightarrow Be} \approx Y_{D \rightarrow Be}$, and low concentration of Be
- When incident/seeded Be ion flux = sputtered flux of Be, net erosion should = 0.

No change in mass loss is measured when Be seeding flux equals sputtering of Be by D

D/Be plasma

target temperature < 320K

- ADAS database is used
- Be flux from Be II (313.1 nm) and background plasma flow velocity (E. Hollman JNM, PSI-19)

- Be ion flux is verified during no bias discharges, when weight gain is measured (net deposition)
- Net erosion stays constant, implying gross erosion must increase
- Erosion yield of 0.15% can only be compensated by seeding 2.8% Be

Beryllium seeded He discharges

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Gross erosion increases with increasing Be influx

Gross = net erosion with no Be seeding (λ_{ion} is large compared to r_{plasma} , so redeposition is small)

- Gross erosion increases as Be influx increases, leaving net erosion unchanged
- At large enough Be influx, net erosion begins to decrease and eventually net deposition occurs
- This implies either low sticking coefficient or high re-erosion of Be influx

Retention and release of D from Be

- Quantity retained in plasma exposed surface saturates at low levels ~ 10²¹ m⁻²
- Retention in thick BeO layers is not well defined
- In-vessel accumulation will be dominated by codeposition, and hence depends on erosion rates of Be
- Retention in codeposits shows Arrhenius relation, between RT and 300°C (is higher temp data needed?)
- Release behavior still has some uncertainties
 - Long term baking
 - Release during fast heating events
 - BeO release

Do BeO layers influence the D release?

• Two Be codeposits were collected while venting to replacing one half the sample between codeposition runs

PISCES

W

Jol Color

- Several nm thick BeO will exist between subsequent codeposits
- Release behavior of the multilayer codeposit is almost identical to the sum of the individual codeposits
- Conclusion is that internal BeO layers will not impact the knowledge gained from studying pure Be codeposits

 $c_{\rm S}$ 11 (2000)

PISCES

Reinelt et al. New Journal of Physics 11 (2009) Oberkofler et al. Nuc.I Instrum. Methods 267 (4) (2009)

low flux/fluence implantation at 0.3-3keV with 10^{15} D cm⁻² s⁻¹:

Codeposits grown in different ways (energies, growth rates) show similar release features

In both cases, D/Be retained in the codeposit after 350°C is ~ 0.01

PISCES

This value also holds for net erosion targets and codeposits made by D/Ar sputtered magnetron targets

D release from magnetron sputtered D/Be during long hold baking

Slow release (time constant of hours) is detected during long term baking of codeposits

PISCES -

After long term bake @ 240°C (first wall bake temperature)

 $1.0 \cdot 10^{17}$ D cm⁻² remains after hold or: D/Be = 0.8%

After long term bake @ 350°C (divertor bake temperature)

 $2.5 \cdot 10^{16}$ D cm⁻² remains after hold or: D/Be = 0.2%

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Measure the effectiveness of various heat pulses associated with radiative plasma termination, as a means of tritium removal from Be codeposits in ITER.

- Side-by-side codeposits are created in PISCES-B, one is then flashed, and TDS of both are compared
- A 50 J laser (@1064 nm) is used to vary the temperature of a Be codeposit formed in PISCES-B.
- Laser has a variable pulse length (up to 10 msec), power and pulse shape
- 4-color pyrometer to measure surface temperature

Flash heating of Be codeposits results in little release of retained D

- ΔT is measured to be ~1000 K
- Shape of release curve is nearly identical
- Integrated retention in flashed codeposit is 80% of retention in un-flashed codeposit
- Consistent with Keroack & Terreault JNM 1994.

However, TDS of flashed Be target exposures do show reduction in retention

- Retention decreases by ~50% due to laser flash after D plasma exposure at ~50°C (ΔT ~ 450°C)
- Low temp release peak is reduced, so may just make vessel baking less effective in ITER
- Similar flash after exposure at 200°C reduces retention by 25%, primarily lower temperature release peak

Be-C experiments

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Argon sputtering does not remove the beneficial effect of Be mitigation of carbon chemical erosion

From A. Kreter et al., JNM (2009)

- Chemical erosion (CD band emission) is mitigated during Becontaining plasma interaction with graphite surfaces due to Be₂C layer formation
- ITER will need to inject a radiating species (such as Ar) into the divertor to detach strike point without carbon radiation
- 10% Ar in incident plasma does not effect formation of Be₂C surface layer
- Chemical erosion mitigation is unaffected by Ar sputtering

Be-W experiments

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Stable Be-W alloys are known and have melting points closer to that of Be than W.

• Stable Be-W intermetallics are:

~2200°C (Be₂W)

~1500°C (Be₁₂W)

~1300°C (Be₂₂W)

 Supply of Be to hot W surfaces will likely limit growth rates

Thin Be₂W surface layer does not drastically increase retention in W

A thin (few nm) Be_2W layer forms on the surface of W exposed to D+Be plasma when the Be flux is smaller than erosion, but layer does not act as a permeation barrier to prevent release of implanted D

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Be – N experiments

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Sputter yields are generally lower during D/N plasma, but temperature behavior suggests chemical activity of the surface is important

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Recovery from a nitrided Be surface appears possible, oxygen in background gas competes with surface nitride over time

R. P. Doerner, IAEA TM on Be PSI, Vienna, May 30 & 31, 2011

Be-N summary from T. Dittmar PFMC poster

PISCES

Conclusions

- Running N₂ containing plasmas in the Be environment of PISCES-B is possible without severe consequences regarding machine operation
- Recovery from nitrogen loaded surfaces:
 - possible by prolonged D operation, but not in or after He plasmas
 - in vacuo oxidation of Be can displace/cover nitrided surface
- Chemical processes, probably involving ND₃ and ND_x radicals, play significant role in nitriding and recovery.
- Retention:
 - "deuterated" and nitrided target samples show similar D₂ retention
 - Potentially less D₂ & HD in witness plates deposits, but absolute Be/D ratio and total contribution of ND_x are still to be determined
 - nitriding shifts release to higher temperatures
- No clear evidence of insulating layers on the target samples could be found, whereas Be-N-D deposits on witness plate samples seems to be insulating.

Be line ratio measurements

PISCES

Work continues to understand difference between D and He plasma measurements. Possibly electron temperature distribution effect.

- Erosion physical sputtering yield, chemical erosion (T), reflection coefficient from plasma exposed surface (material migration), role of plasma atoms in surfaces
- Surface morphology formation causes, effect of impurities, fluence, surface temperature, net deposition exfoliation (dust generation)
- Retention in, and release from, thick BeO surfaces
- Release during thermal excursions, heating rate dependence
- Mixed materials

