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The PISCES-B divertor plasma simulator is 

used to investigate ITER mixed materials PSI. 

 PISCES ITER (edge) 
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Ion energy  (eV) 20–300  (bias) 10–300  (thermal) 

Te  (eV) 4–40 1–100 

ne  (cm
–3

) 10
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Be Imp. fraction (%) Up to a few % 1–10 (ITER) 

Pulse length  (s) Steady state 1000 

PSI materials C, W, Be C, W, Be .. 

Plasma species H, D, He H, D, T, He 
 

•  PISCES-B is contained 

within an isolated safety 

enclosure to prevent the 

release of Be dust.  
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PISCES-B has been modified to allow exposure of samples 

to Be seeded plasma  

 

P-B experiments simulate 

Be erosion from ITER wall, 

subsequent sol transport  

and interaction with W baffles 

or C dump plates, as well as 

investigation of codeposited 

materials using witness plates 

PISCES 
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Outline of Technical Presentation 

• Erosion in the plasma environment 

– Be erosion from D, He and Ar plasma 

– Chemical sputtering of BeD 

– Redeposition/sticking efficiency 

• Retention and release  

– Plasma exposed Be targets 

– Be-rich witness plate codeposits 

– Release due to flash heating 

• Be-containing mixed materials (W, C, N, O) 

• Spectroscopic issues for Be 

• Summary 

PISCES 
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Significant variations in the Be sputtering  

yield are measured 

Incident ion energy ~100 eV 

J. Roth et al., FED 37(1997)465. 

PISCES 

discrepancy between - JET  -  PISCES-B   -  ion beam – TRIM - sputter yields 
(< 45%)    (< 0.4%)          (< 8%)      (< 3.5%)  
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AES reveals a relatively „clean‟ Be surface 

during sputtering yield measurements 

Time from plasma shut-off   (s)
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Sputtering of Be with D: discrepancy in total yield 

High JET yield can be explained by angle, Be self-sputtering & impurities. 

PISCES yields are a factor of 5-10 lower than TRIM. Why? 
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before after 

sputtering yield: evolution with time / fluence 

spectroscopy: 

mass loss: 
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 morphology change can account for a 

factor of 2 in reduction of the yield 
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Similar yield evolution with time/fluence 

is documented in the literature 

 morphology change can account for a 

factor of 2 reduction of the yield 

1keV,  H2
+ 

7.3E21 ions/cm2 

Mattox and Sharp, J. Nucl. Mater. 1979: 

PISCES 
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1) “maximum” – static TRIM + MD 

2) “minimum” – SDTrimSP with 50% of D (reasonable limit) 

Plasma atoms remaining in the near surface also can 

reduce the sputtering yield by a factor of 3-4 

From C. Björkas 

PISCES 
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Heavy ion bombardment yield agrees with 

TRIM calculations 
• Reason for this behavior is 

not understood 

• Ar on Be results in smooth 

surface after sputtering 

• Ar implantation depth is 

shorter 

• Reflection coefficient of Ar 

is lower than He or D (more 

momentum directed into 

target) 

• Ar diameter is larger, 

perhaps less likely to reside 

in the near surface region 

• Effect is measured for a 

variety of substrate 

materials 

PISCES 
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Chemically-assisted physical sputtering of BeD is 

temperature dependent 

From R. Doerner et al, JNM 390-391 (2009) 681. 
Exp. from D. Nishijima et al, PPCF 50(2008)125007. 

Sim. from C. Bjorkas et al., New J. Physics (2009). 

Similar e-folding distance of BeD and Be I intensity  

 indicate BeD is physically sputtered, not chemically  

 eroded. Beryllium deuteride is not volatile. 

  

MD simulations of D on Be predicted  

 subsequent erosion measurements 

PISCES 
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Erosion/deposition balance in Be seeded  

high flux D discharges 

• Use Be oven seeding to balance 

surface erosion to test input 

parameters of material 

migration models 

• Mass loss measures net erosion 

• Spectroscopy measures gross 

erosion (Be I line) 

• Y Be→Be  ≈ Y D→Be, and low 

concentration of Be 

• When incident/seeded Be ion 

flux = sputtered flux of Be, net 

erosion should = 0. 
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No change in mass loss is measured when Be 

seeding flux equals sputtering of Be by D 

• ADAS database is used  

• Be flux from Be II (313.1 nm) and 

background plasma flow velocity 
(E. Hollman JNM, PSI-19) 

• Be ion flux is verified during no 

bias discharges, when weight gain 

is measured (net deposition) 

• Net erosion stays constant, 

implying gross erosion must 

increase 

• Erosion yield of 0.15% can only be 

compensated by seeding 2.8% Be 
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Beryllium seeded He discharges 

target: 

bias:  < -40V results in E ≈ 30eV 

He ion flux:   5·1018 cm-2s-1 

Be seeding: nBe/nD = 0 – 4 %  

 

sputter yield He on Be @ 30eV:  

Y = 0.15 % 
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Gross erosion increases with  

increasing Be influx 

• Gross = net erosion with no Be 

seeding (λion is large compared to 

rplasma, so redeposition is small) 

• Gross erosion increases as Be 

influx increases, leaving net 

erosion unchanged 

• At large enough Be influx, net 

erosion begins to decrease and 

eventually net deposition occurs 

• This implies either low sticking 

coefficient or high re-erosion of 

Be influx 
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Retention and release of D from Be 

• Quantity retained in plasma exposed surface saturates at 

low levels ~ 1021 m-2 

• Retention in thick BeO layers is not well defined 

• In-vessel accumulation will be dominated by codeposition, 

and hence depends on erosion rates of Be 

• Retention in codeposits shows Arrhenius relation, between 

RT and 300ºC (is higher temp data needed?) 

• Release behavior still has some uncertainties 

– Long term baking 

– Release during fast heating events 

– BeO release 

 

PISCES 
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Do BeO layers influence  

the D release? 

• Two Be codeposits were 

collected while venting to 

replacing one half the sample 

between codepostion runs 

• Several nm thick BeO will exist 

between subsequent codeposits 

• Release behavior of the 

multilayer codeposit is almost 

identical to the sum of the 

individual codeposits 

• Conclusion is that internal BeO 

layers will not impact the 

knowledge gained from 

studying pure Be codeposits 
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D retention in clean Be (UHV subML O coverage) 

low flux/fluence implantation at 0.3-3keV with 1015D cm-2 s-1: 

defects created by the  

implantation cascade 

(vacancies) 

structural modifications, supersaturated 

(D2 in bubbles / amorphous Be-D, D/Be up to 1) 

Reinelt et al. New Journal of Physics 11 (2009) 

Oberkofler et al. Nuc.l Instrum. Methods 267 (4) (2009) 

 

Be-D2 BeO 
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Codeposits grown in different ways (energies, 

growth rates) show similar release features 

In both cases, 

D/Be retained in 

the codeposit after 

350ºC is ~ 0.01 

 

 

This value also 

holds for net 

erosion targets 

and codeposits 

made by D/Ar 

sputtered 

magnetron targets 
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D release from magnetron sputtered D/Be 

during long hold baking 
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Slow release (time constant of hours) is detected 

during long term baking of codeposits 
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Measure the effectiveness of various heat pulses 

associated with radiative plasma termination, as a 

means of tritium removal from Be codeposits in ITER. 

• Side-by-side codeposits are 

created in PISCES-B, one is 

then flashed, and TDS of both 

are compared 

• A 50 J laser (@1064 nm) is 

used to vary the temperature of 

a Be codeposit formed in 

PISCES-B. 

• Laser has a variable pulse 

length (up to 10 msec), power 

and pulse shape 

• 4-color pyrometer to measure 

surface temperature 
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W samples 
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Exposed area = 0.1 cm2 

Laser hitting sample 
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Flash heating of Be codeposits results in  

little release of retained D 

•  DT is measured to be 

~1000 K 

• Shape of release curve is 

nearly identical 

• Integrated retention in 

flashed codeposit is 80% 

of retention in un-flashed 

codeposit 

• Consistent with Keroack & 

Terreault JNM 1994. 
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However, TDS of flashed Be target exposures  

do show reduction in retention 

• Retention decreases by 

~50% due to laser flash after 

D plasma exposure at ~50°C 

(DT ~ 450°C) 

• Low temp release peak is 

reduced, so may just make 

vessel baking less effective 

in ITER 

• Similar flash after exposure 

at 200°C reduces retention 

by 25%, primarily lower 

temperature release peak 
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Be-C experiments 
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Argon sputtering does not remove the beneficial effect 

of Be mitigation of carbon chemical erosion 

• Chemical erosion (CD band 
emission) is mitigated during Be-
containing plasma interaction with 
graphite surfaces due to Be2C 
layer formation 

• ITER will need to inject a 
radiating species (such as Ar) into 
the divertor to detach strike point 
without carbon radiation 

• 10% Ar in incident plasma does 
not effect formation of Be2C 
surface layer 

• Chemical erosion mitigation is 
unaffected by Ar sputtering 

-50V bias, D plasma, 0.2% Be +, 0 or 10% Ar+  

From  A. Kreter et al., JNM (2009) 
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Be-W experiments 
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2 

Stable Be-W alloys are known and have 

melting points closer to that of Be than W. 
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Stable Be-W alloys 

•  Stable Be-W inter- 

metallics are: 

 

~2200°C  (Be2W) 

 

~1500°C  (Be12W) 

 

~1300°C  (Be22W) 

 

• Supply of Be to hot W 

surfaces will likely limit 

growth rates 
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Thin Be2W surface layer does not drastically 

increase retention in W 

10
16

10
17

10
18

400 600 800 1000 1200

F = 3.6E25 m
-2

F=7.6E25 m
-2

F=1.4E26 m
-2

Temperature (K)

(a)

10
16

10
17

10
18

400 600 800 1000 1200

F = 2.1E25 m
-2

F = 5.0E25 m
-2

F = 1.2E26 m
-2

Temperature (K)

(b)

Pure D plasma on W-200ºC 

D+Be plasma on W-200ºC 

0 5 10 15

0

50000

100000

150000

200000

250000

300000

 

B
e

 c
o

u
n

ts

Depth (nm)

 F = 1.2 E 26 m
-2

 F = 5.0 E 25 m
-2

 F = 2.1 E 25 m
-2

SIMS depth profile of Be on W 

A thin (few nm) Be2W layer forms on the 

 surface of W exposed to D+Be plasma  

 when the Be flux is smaller than erosion, 

 but layer does not act as a permeation 

 barrier to prevent release of implanted D 
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Be – N experiments 
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Sputter yields are generally lower during D/N 

plasma, but temperature behavior suggests 

chemical activity of the surface is important 
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Recovery from a nitrided Be surface appears possible, 

oxygen in background gas competes with surface 

nitride over time  

Switchover from nitride to oxide  

 surface also reported by  

 Oberkofler NF 50(2010) 125001. 
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Be-N summary from T. Dittmar PFMC poster 
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Be line ratio measurements 
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Work continues to understand difference between D and He plasma  

 measurements. Possibly electron temperature distribution effect. 
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What Be PMI issues are still unresolved 

• Erosion – physical sputtering yield, chemical erosion (T), 

reflection coefficient from plasma exposed surface (material 

migration), role of plasma atoms in surfaces 

• Surface morphology – formation causes, effect of impurities, 

fluence, surface temperature, net deposition exfoliation (dust 

generation) 

• Retention in, and release from, thick BeO surfaces 

• Release during thermal excursions, heating rate dependence 

• Mixed materials 
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