Beryllium (Experimental) Prepare for the JET I

 $\mathbf{\mathbf{x}}$

+

<u>S. Brezinsek</u> JET EFDA TaskForce E2 EU TaskForce Plasma-Wall Interaction

- EFDA TF PWI and JET-EFDA program focuses on ITER material mix
- Be is one of the main areas of interest
- Limited number of experiments, modelling activities and working groups
 - JET ILW Be main chamber, Be migration, Be spectroscopy etc.
 - PISCES-B guest scientist from EU (IPP/FZJ) (R. Doerner)
 - JULE-PSI plasma-generator in hot cells (FZJ in 2014/15)
 - JUDITH electron beam facility used for Be PFCs power load tests (FZJ)
 - IPP Be mixed layer analysis, MD, WALLDYN modelling (W. Jacob)
 - FZJ Be erosion, migration, spectroscopy and ERO modelling
 - VR, TEKES, CCFE, FZJ, IPP, CEK-MOL post mortem analysis
 - TEKES, IPP, FZJ, universities MD modelling with Be and mixed systems

IAEA Meeting - Wien 30/05/2011

MedC – production of Be tiles, layers, references etc.

- **ITER-like Wall experiment at JET**
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- **Definition of the JET work program 2011/12**
- **Questions related to Be first wall**
- Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

The Wall Combination for the DT Phase in ITER

Be wall and W divertor in JET

Material combination for the first time usedReplacement of the wall in one shutdown

"Carbon-free" environment

- Reduced material migration to rem. areas
- Reduced tritium retention
- Loss of carbon as main radiator

Change in operational space

- Need for better plasma control
- Need for heat load mitigation schemes

NBI upgrade in JET

Parallel upgrade of neutral beam system

- Maximum power from 20 to 34 MW
- Maximum duration from 10 to 20 s

S. Brezinsek 4

IAEA Meeting - Wien

Important PWI questions for ITER will be addressed in JET with the ILW

Scenario compatibility with the new wall has to be demonstrated:

- Adaption of magnetic shape use of bulk W divertor
- Neutral beam shine through minimum density requested
- Be concentration and plasma dilution– limit Be erosion by larger clearance
 First wall power flux –Be power handling
- W impurity production below physical sputtering threshold
 W concentration in confined region ELM flushing to release impurities
 W accumulation in core region need for central heating
- ⇒ Semi-detached divertor operation favourable ⇒ Impurity seeded plasmas likely to be mandatory for high input power ⇒ Seeding species candidates: N₂, Ar, Ne

- **ITER-like Wall experiment at JET**
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- **Definition of the JET work program 2011/12**
- Questions related to Be first wall Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

Replacement of Wall Components

JET (2009) CFC and Be layer (evapor.)

JET (2011) Be first wall W divertor (simulation)

- All plasma-facing components are only inertially cooled
- Power handling determined by material properties
- W-coated CFC tiles at neutral beam shine through areas
- S. Brezinsek JNM 2011 (PSI)
- G. F. Matthews Phy. Scripta 2009
- V. Riccardo Phy. Scripta 2009

S. Brezinsek 8

Number of installed iter	ns 2880
Number of individual til	es: 5384 Be tiles (~2 tons Be / ~ 1m ³) 1288 W-coated CFC tiles 9216 W-lamellas (~2 tons W / ~ 0.1m ³) 15828 total
Total number of parts:	82273 counting bulk W modules as one part
Bulk W total parts:	191664 including 100080 shims

G. F. Matthews PFMC 2011

Remote Handling in JET

S. Brezinsek 10

EFJET The JET Vessel: 19th September 2010

S. Brezinsek 12

EFFT The ITER-like Wall completed: 8th May 2011

Poloidal Limiter (massive Be)

S. Brezinsek 14

IAEA Meeting - Wien

Ripped Upper Dump Plate (massive Be)

S. Brezinsek 15

Inner Poloidal Limiter (massive Be)

S. Brezinsek 16

W Divertor (top view)

S. Brezinsek 17

- ITER-like Wall experiment at JET
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- Definition of the JET work program 2011/12
- Questions related to Be first wall
- Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

EFJET

ILW: PFC Limits

Solid Be limiters Surface temperature < 900°C 22MJm⁻²s^{-1/2} (impact energy)

W-coating on CFC Temperature <1200°C (carbidisation) ELMs: ~5 MW m-2 s^{-1/2}

W stacks Surface temperature limit <1200°C-2200°C 20-35MJm⁻²s^{-1/2}, Fixings, 350°C, Energy limit ~60MJ/m²/stack

S. Brezinsek 19

Source distribution at the wall and the divertor

- Erosion fluxes: Be, W, BeD
- Recycling flux: D, D₂
- Impurity fluxes: C, O, N, Ar, He, Ne etc.
- Bolometric reconstruction for total radiation in the divertor
- Impurity concentrations from the wall to the core
 - Fuelling efficiency and screening
 - Transport time
 - Bolometric reconstruction for total radiation
- Plasma parameters and ion fluxes in the divertor and main chamber
- Heat and power loads to the divertor and the main chamber
 - Profile information and decay length
 - Peak values

• Migration paths: net erosion and deposition

- Net erosion rates of coatings
- Net deposition rates in remote areas
- Layer location and composition
- Comparison of gross and net erosion (spectroscopy vs. QMBs)
- Fuel retention

Different time scales involved:

Months -- 120 x 500s (campaign); Experimental days -- 500s; Discharges -- ms; ELM resolved - µs

S. Brezinsek 20

Spectroscopic observation of neutrals and low ionisation stages provide the impurity source distribution and the recycling flux

Fibre-coupled spectrometers and photomultipliers
KS3 upgrade improves 'horizontal' and divertor spectroscopy
KS8 upgrade for inboard/outboard source determination

Direct imaging spectrometersKT3 upgrade for complete outer divertor source profile

Endoscope systems

 KL11 will give useful inner and outer divertor source information and tomographic reconstruction

KL1 refurbishment will give useful inner and outer wall source information

Visible channels – fibre-coupled – to VUV systems
KT4/7 new visible views into divertor
KT1 VIS upgrade for inner wall poloidal source profile

IAEA Meeting - Wien

KS8 – Main Chamber Impurity Monitor

Compact Overview Spectrometer (COS) – # 24

- Particle fluxes monitor (impurities)
 - Atomic fluxes (Be, W, C, etc.)
 - Molecular fluxes (BeD, and if present CD, C₂)
- Main chamber recycling flux (D, D₂)
- Impurity source distribution
- Echelle Overview Spectrometer (EOS) #1
 - Inner and outer wall impurity sources by Zeeman splitting analysis
 - Molecular properties

IWGL 7D planned to be W-coated CFC

COS

24 Czerny-Turner spectrometer
Medium spectral resolution
Wavelength span: 380-920nm
Time resolution: typ. 100ms max. 5ms

EOS

- •1 Echelle spectrometer
- spectral resolution: R=20000
- Wavelength span: 363-720nm
- Time resolution: 125ms

6 chords for COS 1 chord for EOS

KL11 - Divertor Endoscope for Spatial Information

View into Octant 2

- Spatial resolution ≤ 3 mm at the object plane
- Suitable for tomographic reconstruction
- Suitable for impurity radiation pattern in the divertor

30/05/2011

S. Brezinsek 24

Deposition monitors and marker tiles give information about net erosion and deposition

*Quartz-micro balances (shot resolved)*Net deposition or erosion rates in remote areas

Rotating collector probes (daily resolved – post mortem analysis)
Robust techniques to measure deposition in remote areas

Sticking monitors (campaign integrated – post mortem analysis)
Sticking probabilities and layer composition

Marker tiles (campaign integrated – post mortem analysis)Erosion rates

Mirror cassettes (campaign integrated –post mortem analysis)Deposition rates and layer composition

Post mortem analysis will also provide the final answer for fuel retention by determining the net transport to the inner divertor leg! Need of an

S. Brezinsek 25

Erosion – Deposition Diagnostics

Divertor

S. Brezinsek 26

EFFER QMB and spectroscopy: Material Migration

- Magnetic configuration
- Power and heat load at the strike-points: steady state and transients
- Particle fluxes at the strike-points: ions and neutrals
- Local surface conditions: soft and hard carbon layers and CFC

Difference in carbon signals: Gross erosion vs. net erosion (=deposition on QMB)
 Quantify material transport to remote areas in the divertor

S. Brezinsek 27

Beryllium Marker Tiles

Be-Marker tiles developed to study net erosion at the main chamber limiters

Micro-structure of Be layer

Micro-structure of marker after HHF test

30/05/2011

Divertor: W coating techniques provides "natural" Mo marker!

S. Brezinsek 29

- ITER-like Wall experiment at JET
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- Definition of the JET work program 2011/12
- Questions related to the Be first wall
- Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

Program Blocks

- Initial scenario development
- H-mode development
- Hybrid development
- Intrinsic impurity characterisation & control
- W- Erosion
- Fuel retention
- Fuel recovery and conditioning
- Material migration and mixing
- Be power handling
- Detachment & divertor heat load mitigation
- Divertor power handling
- Pedestal & L-H threshold
- ELM physics and heat loads
- ELM mitigation
- Disruption studies
- Heating and fuelling
- Monitoring pulses

Maximise operating time and optimise with respect to Headlines and ITER priorities

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2011								C28	C28	C28	C28	C29
2012	C29	C29	C30a	C30a	C30b	C30c			Shutc	lown		

- Restart blocks interleaved with Campaign C28 blocks
- Controlled start with scientific supervision
- C28-C29 (fixed timeline) and C30 (provisional plan)
- C30 to be consolidated in Nov 2011 in a general planning meeting

S. Brezinsek 32

IAEA Meeting - Wien

EFJET

C28 Campaign

	Scenario Development	PSI Relevant Experiments			
R1	1 limiter phase, X-point formation and low shape				
C28a	First ohmic scenario	Initial Be erosion, material mixing and retention			
R2	More shapes + PPCC: HT3, V5, SFE PIW end-to-end tests First NBI box, ICRH, LH	Monitoring pulse preparation L-mode detachment Limiter plasma and heat loads			
C28b	L-mode qualification First H-mode attempts	Intrinsic impurity composition C/Be migration study Fuel retention using AGHS in L-mode First disruption studies First Be & W power handling			
R3	WALLs energy limits Second NBI box + advanced limit setting Increased ICRH + ECT VDE tests	Monitoring pulse preparation W-erosion (steady-state vs. ELMs) W-screening peaking and control Particle balance with N injection			
C28c	H-mode qualification with ILW Baseline H-mode at 2.5MA (1 st)	C/Be migration study Fuel retention using AGHS in H-mode Material migration to remote areas Characterisation of heat load including ELMs Bulk W tile power handling Detachment studies Disruption studies and MGI (incl. heat loads)			

S. Brezinsek 33

IAEA Meeting - Wien

EFJET

C29 Campaign

	Scenario Development	PSI Relevant Experiments		
R4A	Power handling and power system qualification			
	Baseline H-mode at 2.5MA L-H threshold	Monitoring pulse preparation Impurity seeding studies C/Be migration to remote areas		
C29	Vertical target configuration Quasi-double null configuration	Fuel retention using AGHS (including sweeping) Fuelling and seeding studies Type III ELMy H-mode		
	Detachment control and seeding control	Divertor characterisation including detachment		
R4B	Hybrid plasma development	ELM physics and charactrisation W-erosion (steady-state vs. ELMs) W-screening peaking and control ELM mitigation techniques Characterisation of heat load including ELMs Bulk W tile power handling Disruption studies and MGI (incl. heat loads)		
C29		W-bulk melting references		

S. Brezinsek 34

- ITER-like Wall experiment at JET
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- Definition of the JET work program 2011/12
- Questions related to the Be first wall
- Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

Questions related to the Be first wall

- Be erosion: Absolute yields? Angular dependence? Impurity composition?
- Be erosion: Role of BeD? At JET observed only after strong Be evaporation
- BeN formation? Erosion yield?
- Be re-erosion yields?
- Be/W alloys and Be/C mixture formation? Transients?
- => Multidimensional parameter space: fluxes, temperatures, energies, composition
- Be and BeD spectroscopy: photon emission rates (2 eV -100 eV)?
- Role of destruction process of BeD? Recombination into BeD?
- => Multidimensional parameter space: fluxes, temperatures, energies, composition
- Be retention dominated by co-deposition
- Retention in Be/N, Be/C mixtures etc.
- => Multidimensional parameter space: fluxes, temperatures, energies, composition

Dedicated data needed to interpret experimental results experimental results as input for predictive modelling for ITER.

S. Brezinsek 36

- ITER-like Wall experiment at JET
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- Definition of the JET work program 2011/12
- Questions related to the Be first wall
- Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

Material Migration

JET with C/Be material mix:

- Ion and neutral bombardment to the PFCs
 Main chamber is the dominant erosion source
- Material (C and Be) is transport to the inner divertor due to SOL flows
- Multiple step process (C) and transport to remote areas
- Low Be content in remote areas

JET with Be/W material mix:

Does the migration pattern change without C? How strong is C reduced? Flux ratio of Be to C? Impact of seeding gases? Transport to remote areas? Source strength of W sputtering by impurities?

JET Planning Meeting ILW

S. Brezinsek

02/03/2010

First experiment: Evolution of Be Wall Sources

30/05/2011

First ILW experiment: Be and W mixing in the inner divertor leg
ERODEP-DIVIMP modelling – needs input for mixing matrix, erosion yields...

S. Brezinsek 39

EFF Initial Experiment: Experimental Proposal

Ex-1.1.2: First wall Be erosion and Be/W mixing in divertor

- Initial experiment with "new" plasma-facing components
- Period of identical simple ohmic plasmas till steady-state conditions reached => inner divertor covered by Be (expect. time ~500s)
- In-situ determination of Be and W sources via spectroscopy
- Initial quantification of reduction in C fluxes and increase of Be fluxes
- In-situ determination of Be transport to remote areas via QMBs
- Gas balances with AGHS to document wall recycling and fuel uptake

Additional Be migration experiments:

- Transport to remote areas
- Be tracer experiment (¹¹Be)
- Be probe experiment
- Be vs. C erosion, deposition and redeposition
- Two weeks of identical plasmas before tile intervention

EFFE Follow-up Experiment: Monitor Discharge

- Regular monitor/reference discharge (once per day/week)
 - Reference pulse to monitor changes in wall conditions, impurity fluxes and concentrations with time and plasma conditions
 - must be robust and easy to execute
 - configuration identical to "first" ILW experiment
 - plasma evolves with campaigns by addition of reference phases: limiter phase, ohmic phase, L-mode, H-mode phase(s)
 - each reference phase with min. 3s duration
 - reference phases with different ROG/RIG
 - small strike-point sweep at end of phases for LP and spectroscopy

Gas Balance Studies at JET - ILW

Loarer JNM PSI2010

References for Material Migration Studies

Intrinsic carbon transport

Migration in comparable plasma and surface conditions

S. Brezinsek and

inner QMB	outer QMB
0.30 nm/s	0.58 nm/s
0.66 nm/s	0.21 nm/s
4.71 nm/s	-0.28 nm/s
1.46 nm/s	0.37 nm/s
0.58 nm/s	0.45 nm/s
	inner QMB 0.30 nm/s 0.66 nm/s 4.71 nm/s 1.46 nm/s 0.58 nm/s

Carbon tracer experiment

ILW reference plasma in H-mode
Injection into outer divertor
With ILW – SiH₄

S. Brezinsek 43

IAEA Meeting - Wien

- ITER-like Wall experiment at JET
- Installation of the ITER-like Wall in JET
- Limits for ITER-like Wall components and diagnostics
- Definition of the JET work program 2011/12
- Questions related to the Be first wall
- Examples: the very first experiment Be migration and mixing
- Be data needs for ERO

Be data needed for the ERO code

D.Borodin¹, A.Kirschner¹, C. Björkas^{1,2}, ...

¹Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Partner In the Trilateral Euregio Cluster, Jülich, Germany
²EURATOM-Tekes, Department of Physics, P.O. Box 43, FI-00014 University of Helsinki, Finland

D.Borodin | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ

ERO applications involving Be

- 1. ERO for ITER divertor
- 2. ERO for ITER Be first wall
- 3. PISCES-B ERO benchmark
- 4. Outlook: JET ILW

Former: Bohdansky*Yamamura Recently: Eckstein 2007 fit

Data for fit: SDTrimSP, MD, still many uncertainties, empirical data is difficult for interpretation

<u>Be data</u>

- 1. Sputtering yields, including angular part
- 2. Be chemical erosion (Be-H molecules)
 - Be-H release from surface
 - Be-H dissociation, charge exchange, spectroscopy, ...
- 3. Be atomic data (ionization, spectroscopy)
- 4. Be/C/W mixed layers
 - Carbide/alloy formation
 - Influence on sputtering/retention

Recently available

Support from R.Janev

ADAS, including MS

Many experiments, some modelling done (e.g. ERO for PISCES-B). Still, open and complicated issue

Only the 'calculated' data are included!

- 1) "maximum" static TRIM + MD
- 2) "minimum" SDTrimSP with 50% of D (reasonable limit)

Experimental data too much scattered!

- 1) Large deviations: no sense to analyse shape of curves
- 2) Various effects are difficult to separate

Normal incidence! Angle dependence should be taken into the account!

For following BM simulations ERO uses Eckstein 2007 fit.

Sputter yields assumptions and net erosion for ITER U JÜLICH

Important uncertainty, though less important as plasma prameters.

Dependence on surface temperature? Other uncertainties? . . .

Model and data for BeH and products transport in plasma – under development