

Contents

- 1. Formalisms: (a) the R-matrix method, (b) ExoMol
- Electron collision applications: Technological plasmas Fusion plasmas: BeH, H₂
 Atmospheric: space craft re-entry Astrophysics (interstellar medium)
 Euture projects?
- 3. Future projects?

Н —— Н

J. Tennyson, Electron - molecule collision calculations using the R-matrix method, Phys. Rep., 491, 29 (2010).

> Implementation UKRmol Quantemol-N

Outer region

Inner region

R-matrix boundary

Low-energy electron collision processes

Elastic scattering AB + e _____ AB + e

Rotational excitation

 $AB(N'') + e \longrightarrow AB(N') + e$

Vibrational excitation

 $AB(v"=0) + e \longrightarrow AB(v') + e$

Dissociative recombination/Dissociative attachment $AB + e \longrightarrow A + B$

> Electronic excitation $AB + e \longrightarrow AB^* + e$

> > Impact dissociation

AB + e A + B + e

Impact ionisation (e,2e) $AB + e \longrightarrow AB^+ + e + e$

Increasing Energy

EXOMO

Hot line lists for exoplanets and other astronomical bodies

XIX. H₂¹⁸O, H₂¹⁷O Published in MNRAS I. BeH, MgH, CaH XX. H_3^+ II. SiO XXI. NO III. HCN/HNC XXII. SiH₄ IV. CH₄ XXIII. PO, PS V. NaCl, KCl XXIV. SiH VI.PN XXV. SiS VII. PH₃ XXVI. SN, SH VIII. H₂CO XXVII. AIH IX. AIO XXVIII. C_2H_4 X. NaH XXIX. CH₃CI XI. HNO_3 XXX. $H_2^{16}O$ XII. CS XXXI. C_2 XIII. CaO XXXII. TiO XIV. SO_2 XXXIII. MgO XV. HOOH XXXIV. PH XVI. H₂S XXXV. NH₃ XVII. SO₃ XVIII. VO (Virtually) Complete

In progress C_3 , TiH, SrH, NaO, YO, SiO₂, SO, SiO (UV)

Planned NiH, FeH, ZnO, ZnS etc CaOH

Larger Hydrocarbons, "gasous rock"

J. Tennyson et al, 327, 73, J. Mol. Spectrosc. (2016)

EXOMO

Hot line lists for exoplanets and other astronomical bodies

Published in MNRAS XIX. $H_2^{18}O$, $H_2^{17}O$ I. BeH, MgH, CaH XX. H_3^+

II. SiO III. HCN/HNC IV. CH_4 V. NaCl, KCl VI.PN VII. PH₃ VIII. H₂CO IX. AIO X. NaH XI. HNO₃ XII. CS XIII. CaO XIV. SO_2 XV. HOOH XVI. H_2S XVII. SO₃ XVIII. VO

XX. H_{3}^{+} XXI. NO XXII. SiH₄ XXIII. PO, PS XXIV. SiH XXV. SiS XXVI. SN, SH XXVII. AIH XXVIII. C_2H_4 XXIX. CH₃CI XXX. $H_2^{16}O$ XXXI. C_2 XXXII. TiO XXXIII. MgO XXXIV. PH XXXV. NH₃

(Virtually) Complete HCCH, CrH, MnH

In progress C_3 , TiH, SrH, NaO, YO, SiO₂, SO, SiO (UV)

Planned NiH, FeH, ZnO, ZnS etc CaOH, **BeH₂**?

Larger Hydrocarbons, "gasous rock"

J. Tennyson et al, 327, 73, J. Mol. Spectrosc. (2016)

Low-energy electron collision processes

Elastic scattering AB + e _____ AB + e

Rotational excitation

 $AB(N'') + e \longrightarrow AB(N') + e$

Vibrational excitation

 $AB(v"=0) + e \longrightarrow AB(v') + e$

Dissociative recombination/Dissociative attachment $AB + e \longrightarrow A + B$

> Electronic excitation $AB + e \longrightarrow AB^* + e$

> > Impact dissociation

AB + e A + B + e

Impact ionisation (e,2e) $AB + e \longrightarrow AB^+ + e + e$

Increasing Energy

REACTION MECHANISM: NF₃/O₂

M represents 3rd body.

Diagram ignores ions which are also important.

Plasma chemistries:

Driven by a whole variety of e – molecules Heavy particle reactions

Eg NF₃/O₂ mixture

S. Huang, V. Volynets, J.R. Hamilton, S. Lee, I.-C. Song, S. Lu, J. Tennyson & M.J. Kushner, Insights to Scaling Remote Plasma Sources Sustained in NF_3 Mixtures,

J. Vac. Sci. Technol. A, 35, 031302 (2017)

Process	Rate Coefficient ^o	Reference	$\left \frac{\Delta H}{(eV)^{b}} \right $
Electron Impact NE			
$e + NF_2 \rightarrow NF_2 + e$	c)	[17]	(b
$e + NF_2 \rightarrow NF_2 + F^-$	c), e)	[17]	-1.0
$e + NF_2 \rightarrow NF_2(y) + e$	c), f)		
$e + NE_2 \rightarrow NE_2 + E + e$	c)	[17]	-5.8
$e + NF_2 \rightarrow NF + F + F + e$	c)	[17]	-6.1
$e + NF_2 \rightarrow NF_2^+ + e + e$	c)	[17]	011
$e + NF_2 \rightarrow NF_2^+ + F + e + e$	c)	[17]	-0.5
$e + NF_2 \rightarrow NF^+ + F + F + e + e$	c)	[17]	-4.2
$e + NF_2 \rightarrow F^+ + NF_2 + e + e$	c)	[17]	-1.1 ^{g)}
$e + NF_2 \rightarrow NF_2 + e$	c)	[18]	
$e + NF_2 \rightarrow NF + F^-$	c)	[18]	-0.5
$e + NF_2 \rightarrow NF_2(v) + e$	c), f)	[18]	
$e + NF_2 \rightarrow NF + F + e$	c)	[18]	-5.1
$e + NF_2 \rightarrow NF_2^+ + e + e$	c)	[18]	011
$e + NF_2 \rightarrow NF^+ + F + e + e$	c)	[18]	
$e + NE_2 \rightarrow E^+ + NE + e + e$	c)	[18]	
$e + NE \rightarrow NE + e$	c)	[18]	
$e + NF \rightarrow N + F$	c)	[18]	-0.6
$e + NE \rightarrow NE(v) + e$	c), f)	[18]	
$e + NE \rightarrow NE(^{1}\Lambda) + e$	c), f)	[18]	
$e + NF \rightarrow NF(^{1}\Sigma^{+}) + e$	c), f)	[18]	
$e + NF \rightarrow N + F + e$	c)	[18]	-4.0
$e + NF \rightarrow NF^+ + e + e$	c)	[18]	
$e + NF \rightarrow N^+ + F + e + e$	c)	[18]	
$e + NF \rightarrow F^+ + N + e + e$	c)	[18]	
$e + NF_2^+ \rightarrow NF_2 + F$	1×10^{-7}	est. [29], h)	-11.1
$e + NF_2^+ \rightarrow NF + F$	$\frac{1 \times 10^{-7}}{1 \times 10^{-7}}$	est. [29]	-6.3 ^{g)}
$e + NF^+ \rightarrow N^* + F$	$\frac{1 \times 10^{-7}}{1 \times 10^{-7}}$	est. [29]	-7.1
Electron Impact F ₂ /F			
$e + F_2 \rightarrow F_2 + e$	c)	[30]	
$e + F_2 \rightarrow F + F$	c)	[30]	-1.8
$e + F_2 \rightarrow F + F + e$	c)	[30]	-1.6
$e + F_2 \rightarrow F_2^* + e$	c)	[30]	
$e + F_2 \rightarrow F_2^+ + e + e$	c)	[30]	
$e + F_2^+ \rightarrow F + F^*$	1×10^{-7}	est. [29]	-0.6
$e + F \rightarrow F + e$	c)	[31]	
$e + F \rightarrow F^* + e$	c)	[31]	
$e + F \rightarrow F^+ + e + e$	c)	[31]	
$e + F^* \rightarrow F^+ + e + e$	c)	[31]	
$e + F^+ \rightarrow F^*$	$5.3 \times 10^{-12} \text{ T}_{e}^{-0.5}$	est. [32]	
$e + e + F^+ \rightarrow F^* + e$	$5.12 \times 10^{-27} \text{ T}_{e}^{-4.5}$	est. [32]	
Electron Impact N _x O _y	~		
$e + NO \rightarrow NO + e$	c)	[33]	

ELECTRON IMPACT NF_{x} CROSS SECTIONS

- Electron impact cross sections for NF_x are not well known.
- Few direct measurements of NF₃ cross sections – mostly derived from swarm data.
- No direct (or swarm) measurements for NF₂, NF.
- Ab initio R-matrix method used to computationally generate self-consistent set of electron impact cross sections for NF₃, NF₂, NF.

James Hamilton

NF₂ cross sections obtained using R-matrix method.

J.R. Hamilton, J. Tennyson, S. Huang and M.J. Kushner, Calculated cross sections for electron collisions with NF_3 , NF_2 and NF, Plasma Sources Sci. Technol, 26, 065010 (2017).

Cross sections for electron collisions with methane

M.-Y. Song, J.S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kokoouline, Y. Nakamura & J. Tennyson, J. Phys. Chem. Ref. Data, **44**, 023101 (2015)

Fusion appications: BeH / BeD / BeT

Be coating of walls at JET (ITER)BeD observed productMonitor Be erosion

Daniel Darby-Lewis

BeD spectra measured in JET

Red, green, blue and orange regions are different pulses.

D. Darby-Lewis, J. Tennyson, K.D. Lawson, S.N. Yurchenko, M.F. Stamp, A. Shaw, S. Brezinsek and JET Contributor, Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas, *J. Phys. B: At. Mol. Opt. Phys.*, 51, 185701 (2018)

Step 1 e + BeH (X ${}^{2}\Sigma^{+}$) \rightarrow e + BeH (A ${}^{2}\Pi$) Step 2 BeH (A ${}^{2}\Pi$, v', J') \rightarrow BeH (X ${}^{2}\Sigma^{+}, v'', J''$) + hv

 $e + BeH(X^{2}\Sigma^{+}) \rightarrow e + BeH(A^{2}\Pi)$

D. Darby-Lewis, Z. Masin & J. Tennyson, J. Phys. B: At. Mol. Opt. Phys, 50, 175201 (2017).

Electron impact electronic excitation of the BeH (BeD)

D. Darby-Lewis, Z. Masin & J. Tennyson, J. Phys. B: At. Mol. Opt. Phys, 50, 175201 (2017).

Spectroscopic model for BeH/BeD/BeT

D. Darby-Lewis, J. Tennyson, K.D. Lawson, S.N. Yurchenko, M.F. Stamp, A. Shaw, S. Brezinsek and JET Contributor, Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas, *J. Phys. B: At. Mol. Opt. Phys.*, **51**, 185701 (2018)

New general diatomic code: Duo

S.N. Yurchenko, L. Lodi, J. Tennyson & A.V. Stolyarov, Computer Phys. Comm. 202, 262 (2016).

BeD spectra measured in JET

Red, green, blue and orange regions are different pulses. Spectral fit: black lines. Gives: $T_{rot} = 3800 \text{ K}, T_{vib} = 4700 \text{ K}$

D. Darby-Lewis, J. Tennyson, K.D. Lawson, S.N. Yurchenko, M.F. Stamp, A. Shaw, S. Brezinsek and JET Contributor, Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas, *J. Phys. B: At. Mol. Opt. Phys.*, 51, 185701 (2018)

BeH spectra measured in Julich

Spectrum from a H doped lamp with a Be target: Measured red. Black synthetic generated at $T_{rot} = 540$ K and $T_{vib} = 3440$ K

Step 1 e + BeH (X ${}^{2}\Sigma^{+}$) \rightarrow e + BeH (A ${}^{2}\Pi$) Step 2 BeH (A ${}^{2}\Pi$, v',J') \rightarrow BeH (X ${}^{2}\Sigma^{+},v'',J''$) + hv

Step 1 e + BeH (X ${}^{2}\Sigma^{+}, v', J') \rightarrow$ e + BeH (A ${}^{2}\Pi, v'', J''$) Step 2 BeH (A ${}^{2}\Pi, v', J') \rightarrow$ BeH (X ${}^{2}\Sigma^{+}, v'', J''$) + hv

Step 1 e + BeH (X ${}^{2}\Sigma^{+}, v'$) \rightarrow e + BeH (A ${}^{2}\Pi, v''$) Step 2 BeH (A ${}^{2}\Pi, v', J'$) \rightarrow BeH (X ${}^{2}\Sigma^{+}, v'', J''$) + hv D. Darby-Lewis, PhD thesis

Fusion appications?: H₂/ D₂ /T₂ etc

New UKRmol+ allows study of diffuse targets
Considering collisions going up H(n=3) states
R-matrix sphere with a = 100 a.u. !

Tom Meltzer

$H_2 X \rightarrow b$ state electronic excitation cross sections

$H_2 X \rightarrow b$ state electronic excitation differential cross sections

Future projects:

 BeH_2 ?

Other systems (eg N_2)?

PHYS4ENTRY

PLANETARY ENTRY INTEGRATED MODELS — SEVENTH FRAMEWORK PROGRAMME —

plasmas created on space

pacecraft (rocket) re-entry

Vibrational excitation of key molecule: Venus, Mars, Earth

> R. Celiberto et al, Atomic & molecular data for spacecraft re-entry plasmas, Plasma Sources Sci. Technol, **26**, 033004 (2016).

Electron – CO: ²Π resonance

R-matrix resonance positions and widths

Static exchange plus polarisation (SEP) model

Electron – CO: resonance enhanced vibrational excitation $0 \rightarrow v'$

V Laporte, CM Cassidy, J Tennyson & R Celliberto, Plasma Sources Sci. Technol. **21**, 045005 (2012)

Dissociative attachment + impact dissociation of CO

V Laporte, J Tennyson & R Celliberto, Plasma Sources Sci. Technol., **25**, 01LT04 (2016). Calculations extended to:

 $e + NO(v'') \rightarrow e + NO(v')$

- $e + NO(v") \rightarrow N + O_{-}$
- $e + O_2(v") \rightarrow e + O_2(v')$

V. Laporta, R. Celiberto & J. Tennyson, Plasma Sources Sci. Technol., **22**, 025001 (2013)

$$e + O_2(v^{"}) \rightarrow O + O_{-}$$

 $e + N_2(v'') \rightarrow e + N_2(v')$

V. Laporta, D.A. Little, R. Celiberto & J. Tennyson, Plasma Sources Sci. Technol. **23**, 065002 (2014)

 $e + CO_2(v'') \rightarrow e + CO_2(v')$

V. Laporta, J. Tennyson & R. Celiberto, *Plasma Sources Sci. Technol*, **25**, 06LT02 (2016).

Dissociative attachment of O₂

V. Laporta, R. Celiberto & J. Tennyson, Phys. Rev. A, **91**, 012701 (2015)

Vincenzo Laporta

Cross sections for electron collisions with methane

M.-Y. Song, J.S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kokoouline, Y. Nakamura & J. Tennyson, J. Phys. Chem. Ref. Data, **44**, 023101 (2015)

Static exchange (SE)

Target representation: Frozen 1-state Interaction: static and exchange interactions only

$$\Psi_k = \mathcal{A} \ \sum_j a_{j,k} \phi^N \eta_j + \sum_i b_{j,k} \phi_j^{N+1}$$

 ϕ^N Single Hartree-Fock target state ϕ_i^{N+1} Simple form $\phi^N \times virtual$

Captures: Long-range physics Resonances? Recovers shape resonances (usually too high) No Feshbach resonances Energy range: Unlimited (works at high energy) Other comments: Well-defined model, same answer with all codes

SE plus polarisation (SEP)

Target representation: 1-state

Interaction: polarisation via single excitation from target wavefunction

$$\Psi_{k} = \mathcal{A} \sum_{j} a_{j,k} \phi^{N} \eta_{j} + \sum_{i} b_{j,k} \phi_{j}^{N+1}$$

$$\phi^{N} \text{ Single Hartree-Fock target state}$$

$$\phi_{j}^{N+1} \text{ Complicated } \phi^{N} \times virtual$$

plus 1 hole – 2 particle excitations
Captures: Short-range polarisation effects
Resonances? Good for shape resonance
Can capture Feshbach resonances (no parent states)
Energy range: Only up to first excitation threshold
Other comments: Model implementation dependent
Can be unbalanced (eg resonances too low)

Close-coupling (CC)

Target representation: Many-state, usually CI Interaction: polarisation via coupling between target states

$$\Psi_{k} = \mathcal{A} \sum_{i,j} a_{i,j,k} \phi_{i}^{N} \eta_{i,j} + \sum_{i} b_{j,k} \phi_{j}^{N+1}$$

$$\phi_{i}^{N} \text{ Configuration interaction (CI); orbitals?}$$

$$eg \text{ Complete Active Space CI}$$

$$\phi_{j}^{N+1} \text{ (CAS-CI)}^{N+1}$$

ITES: Short-range polarisation effects

Captures: Short-range polarisation effects, channel-coupling effects

Resonances? Shape resonance (Often less good than SEP) Feshbach resonances (parent states)

Energy range: Only up to first missing excitation threshold

Other comments: Electron impact electronic excitation Hard to recover full polarisation effects

Close-coupling with pseudostates (RMPS)

Target representation: Many physical states + pseudostates Interaction: polarisation via coupling between target (pseudo)states

$$\Psi_{k} = \mathcal{A} \sum_{i,j} a_{i,j,k} \phi_{i}^{N} \eta_{i,j} + \sum_{i} b_{j,k} \phi_{j}^{N+1}$$

$$\phi_{i}^{N} \text{ Complete Active Space CI}$$

+ single excitations to pseudo-orbitals

 ϕ_i^{N+1} (CAS-CI)^{N+1}

+ occupation of pseudo-orbitals

Captures: All polarisation effects, state coupling, ionisation

Resonances? All (+ pseudo-resonances at high energy)

Energy range: Above ionisation

Other comments: Converged treatment of polarisation

Computationally expensive RMPS is R-matrix method; designed to treat many electrons Similar in spirit to convergent close-coupling

H _____ H

J. Tennyson, Electron - molecule collision calculations using the R-matrix method, Phys. Rep., 491, 29 (2010).

Outer region

Inner region

R-matrix boundary

Dominant interactions

Inner region Exchange Correlation

Adapt quantum chemistry codes High l functions required Integrals over finite volume Include continuum functions Special measures for orthogonality configuration generation must be appropriate

Boundary Target wavefunction has zero amplitude

Outer region Adapt electron-atom codes Long-range multipole potential Many degenerate channels Born approx for long-range dipole coupling

R-matrix method for electrons: inner region wavefunction

(within the Fixed-Nuclei approximation)

$$\Psi_k = \mathcal{A} \sum_{i,j} a_{i,j,k} \phi_i^N \eta_{i,j} + \sum_i b_{j,k} \phi_j^{N+1}$$

 $\phi_i^{N=target states} = CI target built from nuclear centred GTOs$ $\phi_j^{N+1} = L^2$ functions

 $\eta_{i,j}$ = *continuum orbitals* = GTOs centred on centre of mass

 \mathcal{A} = Anti-symmetriser

 $a_{i,j,k}$ and $b_{j,k}$ variationally determined coefficients

