Photofragmentation of H₂ and lowenergy H⁺/H⁻ collisions

J. Zs. Mezei, I. F. Schneider, Ch. Jungen, A. Larson

IAEA-Consultancy Meeting-Be2019 Wien, 06.06.2019. 04.06.2019

Photofragmentation of H₂ and lowenergy H⁺/H⁻ collisions

J. Zs. Mezei, I. F. Schneider, Ch. Jungen, A. Larson

IAEA-Consultancy Meeting-Be2019 Wien, 06.06.2019.

Overview

- Introduction and motivations
- Theoretical framework and mechanisms
- Results

Photofragmentation

 Photoionisation of H₂
 Photodissociation of H₂

 Photodissociation of H₂

Conclusions and future plans

Introduction: Cold ionized media

Interstellar molecular clouds

Planetary atmospheres

Cold laboratory plasmas

At the wall of the fusion devices (ITER) project

Hypersonic entry of spacecrafts

Plasma-assisted depollution

Electric-fieldassisted combustion

Broadband Emission (no bias)

Plasma-assistedcombustion

Introduction: H₂ - ITER

b. Plasma de fusion thermonucléaire (JET, ITER)

Combustibles: H, D,

Be: matériau de parois dans les dispositifs de fusion.

Introduction: H₂ (most abundant molecule)

Introduction: H₂ (basic building block of astrochemistry)

 H_2

H(n=2)

e

Introduction: H₂ (kinetic modeling: **direct** vs autoionisation)

Introduction: H₂ (kinetic modeling: direct vs **autoionisation**)

$$\begin{aligned} h\nu + \mathrm{AB}(v_i, N_i) \to \mathrm{AB}^*, \mathrm{AB}^{**} \to \begin{cases} \mathrm{AB}(v_f, N_f) & PhE\\ \mathrm{A} + \mathrm{B} & PhD\\ \mathrm{AB}^+(v_f^+, N_f^+) + e^- & PhI \end{cases} \end{aligned}$$

Overview

- Introduction and motivations
- Theoretical framework and mechanisms
- Results

Photofragmentation

 Photoionisation of H₂
 Photodissociation of H₂

 Anion-cation collisions

• Conclusions and future plans

Theoretical approach: MQDT

Multichannel Quantum Defect Theory

Seaton (1958-1983), Fano, Jungen, Greene, Giusti -Suzor (1970-...),...

MQDT: Molecular data

Wolniewicz et al

1.

2. MQDT: Molecular data

• Rydberg equation

$$U_{np\pi}(R) = U^{+}(R) - \frac{1}{2 \left[n - \mu_{np\pi}(R)\right]^{2}},$$

• Energy dependent quantum defect

$$\mu(\epsilon, R) = \mu^{(0)}(R) + \epsilon \mu^{(1)}(R) + \frac{1}{2}\epsilon^2 \mu^{(2)}(R)] + \frac{m}{M}\mu^{\text{spec}}(R).$$

 Energy dependent dipole moment

$$d(\epsilon, R) = d^{(0)}(R) + \epsilon d^{(1)}(R) + \frac{1}{2}\epsilon^2 d^{(2)}(R),$$

MQDT: The formalism

3.

MQDT: The formalism

Reaction zone

4.

Asymptotic region

Asymptotic region

MQDT: The formalism

6.

Asymptotic region

Overview

- Introduction and motivations
- Theoretical framework and mechanisms
- Results

Photofragmentation

 Photoionisation of H₂
 Photodissociation of H₂
 Photodissociation of H₂

• Conclusions and future plans

Results: H₂ – Photoionization

R (a.u.)

 $H_{2}^{+} X^{2} \Sigma_{-}^{+}$

J = 1 J = 0

Resonances in photoionization: Cross sections for vibrationally excited H₂

Results: H₂ - Photoionisation

Resonances in photoionization: Cross sections for vibrationally excited H₂

J. Zs. Mezei,^{1,2,*} I. F. Schneider,^{1,†} E. Roueff,³ and Ch. Jungen^{2,‡}

a) Photoionization profile

b) Most intense lines

Results: H₂ - Photoionisation

Resonances in photoionization: Cross sections for vibrationally excited H₂

J. Zs. Mezei,^{1,2,*} I. F. Schneider,^{1,†} E. Roueff,³ and Ch. Jungen^{2,‡}

a) Photoionization profile

b) Most intense lines

c,d) Average photoionization cross section

Results: H₂ - Photoionisation

Resonances in photoionization: Cross sections for vibrationally excited H₂

J. Zs. Mezei,^{1,2,*} I. F. Schneider,^{1,†} E. Roueff,³ and Ch. Jungen^{2,‡}

a) Photoionization profile

b) Most intense lines

c,d) Average photoionization cross section

Overview

- Introduction and motivations
- Theoretical framework and mechanisms
- Results
 - Photofragmentation
 - \odot Photoionisation of $\rm H_2$
 - \odot Photodissociation of $\rm H_2$
 - Anion-cation collisions
- Conclusions and future plans

Results: H₂ – Photodissociation

Results: H₂ – Photodissociation - *experiments*

THE JOURNAL OF CHEMICAL PHYSICS 133, 144317 (2010)

Synchrotron vacuum ultraviolet radiation studies of the $D^{1}\Pi_{u}$ state of H₂

G. D. Dickenson,¹ T. I. Ivanov,¹ M. Roudjane,^{2,a)} N. de Oliveira,² D. Joyeux,^{2,3} L. Nahon,² W.-Ü. L. Tchang-Brillet,⁴ M. Glass-Maujean,⁵ I. Haas,⁶ A. Ehresmann,⁶ and W. Ubachs^{1,b)}

- absorption spectra in the 74 94 nm range $(115000 135000 \text{ cm}^{-1})$
- limited by Doppler broadening at 100 K (0.6 cm⁻¹), FT resolution: 0.35 cm⁻¹
- estimated accuracy: 0.06 cm⁻¹ (Q-transition); ~ 0.7 cm⁻¹ (R-transition)

DESIRS beamline SOLEIL

- Fourier transform spectrometer in the VUV
- high resolution and high absolute accuracy

U125/2 beamline BESSY II

- 10m normal incidence scanning monochromator
- ionization, dissociation and fluorescence detection
- spectral resolution 2 cm^{-1}
- absolute intensity measurements

J. Zs. Mezei,^{1,2,a)} I. F. Schneider,² M. Glass-Maujean,³ and Ch. Jungen^{1,4,b)}

Results: H₂ - Photodissociation

Very high spectral resolution (~0.7 cm⁻¹)

Very good agreement with the measurements performed on **SOLEIL** - Dickenson *et al*, JCP (2010) - and **BESSY** – Glass-Maujean *et al*, PRA (2012) synchrotrons

MQDT – global version: I+D Resonances in photoabsorption: Predissociation line shapes in the $3p\pi D^{1}\Pi_{u}^{+} \leftarrow X^{1}\Sigma_{g}^{+}$ system in H₂

J. Zs. Mezei,^{1,2,a)} I. F. Schneider,² M. Glass-Maujean,³ and Ch. Jungen^{1,4,b)}

Results: H₂ – Photodissociation - competition

THE JOURNAL OF CHEMICAL PHYSICS 141, 064305 (2014)

Resonances in photoabsorption: Predissociation line shapes in the $3p\pi D^1\Pi^+_u \leftarrow X^1\Sigma^+_a$ system in H₂

J. Zs. Mezei,^{1,2,a)} I. F. Schneider,² M. Glass-Maujean,³ and Ch. Jungen^{1,4,b)}

Results: H₂ – Photoabsorbtion - *experiments*

THE JOURNAL OF CHEMICAL PHYSICS 144, 084303 (2016)

Absorption, autoionization, and predissociation in molecular hydrogen: High-resolution spectroscopy and multichannel quantum defect theory

M. Sommavilla,¹ F. Merkt,¹ J. Zs. Mezei,^{2,3} and Ch. Jungen^{3,a)}

¹Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 ²Laboratoire Ondes et Milieux Complexes, UMR 6294 CNRS BP 540, F-76058 Le Havre, France ³Laboratoire Aimé Cotton du CNRS, Bâtiment 505, Universite

(Received	16 December	2015; accepte	ed 21 January 2	201
-----------	-------------	---------------	-----------------	-----

INSTITUTE OF PHYSICS PUBLISHING	JOURNAL OF PHYSICS B: ATOMIC, MOI	LECULAR AND OPTICAL PHYSICS
J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 3901-	3921	PII: S0953-4075(02)38026-X

High-resolution laser absorption spectroscopy in the extreme ultraviolet

M Sommavilla, U Hollenstein, G M Greetham and F Merkt

Absorption and photoionization spectra of H₂ have been recorded at a resolution of 0.09 and 0.04 cm⁻¹, respectively, between 125 600 cm⁻¹ and 126 000 cm⁻¹. The observed Rydberg states belong to series (n = 10 - 14) converging on the first vibrationally excited level of the X ${}^{2}\Sigma_{g}^{+}$ state of H₂⁺, and of lower members of series converging on higher vibrational levels. The observed resonances are characterized by the competition between autoionization, predissociation, and fluorescence. The unprecedented resolution of the present experimental data leads to a full characterization of the predissociation/autoionization profiles of many resonances that had not been resolved previously. Multichannel quantum defect theory is used to predict the line positions, widths, shapes, and intensities of the observed spectra and is found to yield quantitative agreement using previously determined quantum defect functions as the unique set of input parameters. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941920]

Q(1)

B(1)

Absorption, autoionization, and predissociation in molecular hydrogen: High-resolution spectroscopy and multichannel quantum defect theory

M. Sommavilla,¹ F. Merkt,¹ J. Zs. Mezei,^{2,3} and Ch. Jungen^{3,a)}

Overview

- Introduction and motivations
- Theoretical framework and mechanisms
- Results

Photofragmentation

 Photoionisation of H₂
 Photodissociation of H₂

 Anion-cation collisions

• Conclusions and future plans

Anion-cation: Reactive collisions

$$A^{+} + B^{-} \rightarrow \begin{cases} A^{+} + B^{-} & \text{EC} \\ A^{-} + B^{+} & \text{CT} \\ A(n) + B(m) & \text{MN} \end{cases}$$

-0.5 $7^{1}\Sigma_{g}^{+}$ **Results:** low energy H⁺ + H⁻ V(R) (a.u.) - $H^+ + H^- \rightarrow H^+ + H^ \stackrel{\bullet \longrightarrow}{\longrightarrow} H^{+} + H^{-} \rightarrow H^{-} + H^{+}$ $\stackrel{\bullet \longrightarrow}{\longrightarrow} H^{+} + H^{-} \rightarrow H(1) + H(1)$ 1e-09 $\bullet H^+ + H^- \rightarrow H(1) + H(2)$ 10 20 $\bullet H^+ + H^- \rightarrow H(1) + H(3)$ R (a.u.) Cross section (cm²) $- - H^{+} + H^{-} \rightarrow H(1) + H(n)$ $H^+ + H^- \rightarrow H_2^+ + e^-$. . e-12 **PES: Molpro** et Wolniewicz et al. – Strict diabatisation Nuclear dynamics: Molecular 1e-15 close coupling method 1e-18 0.01 100 Collision energy (eV) NAC PHYSICAL REVIEW A 82, 014701 (2010) Double charge transfer in low-energy $H^+ + H^-$ collisions 2nd non-crossing J. Zs. Mezei,^{*} M. Stenrup, N. Elander, and Å. Larson

Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm, Sweden

3rd non-crossing 20 40 R(a.u.)

 $H^+ + H$ H(1) + H(3)

H(1) + H(2)

50

40

Conclusions

• MQDT: state-to-state calculations

 Temporary captures into superexcited states: HUGE RESONANT EFFECTS

 Full study on H₂ and other systems (di- and poly-atomics)

Transition energy (cm⁻¹)

PROGRAMME BLANC

EDITION 2009 SUperexcited MOlecular STates of Astrophysical Importance : dissociative recombination and spectroscopy

Acronyme SUMOSTAI

Thank you for the attention!

2018-1.2.1-NKP

OTKA grant KI2862I

Investigation of atomic and molecular processes initiated by ultrashort photon and electron pulses at ELI-ALPS, development of method and instrument