Atomic processes relevant for high-temperature plasmas

Pedro Amaro

Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Outline of the talk

- High-precision reference-free measurements of x-ray transitions in ECRIS plasma
 - Probe and provide tests of BSQED and relativistic effects
 - x-ray standards.
- X-ray spectroscopy in EBIT plasma
 - Iron x-ray lines of astrophysical interest
 - Accurate measurement of electron collision cross sections
 - Preliminary measurements in tungsten
- Electron impact ionization cross section expression
 - Relativistic Binary Encounter Dipole model
 - Calculations for highly charged Kr and U

The SIMPA ECR Ion Source Laboratory

Double crystal spectrometer

The angle difference between the two peak positions is directly correlated to the Bragg angle of the transition in question according to

 $\theta B = [180 - (\theta disp - \theta nondis)]/2$

High-accurate reference-free measurements

DCS simulations

Method:

P. Amaro, et. al, Phys. Rev. Lett. 109, 043005(2012).

- Exp. Gaussian Broadening (Γ_G);
- Interpolate the simulated output spectra with splines;
- Fit the antiparallel spectra with the parametrized interpolated functions

$$I(\theta - \theta 0) = I \max S(\theta - \theta 0) + a + b\theta$$

Get the χ^2 for each performed fit with the optimized fit coefficients by the the χ^2 minimization.

P. Amaro, et. al, Radia. Phys.s and Chems **98**, 132 (2014).

 4 x-ray transitions have been measured in 3 different argon charged states: He-like Ar: 1s 2p ¹P₁ → 1s^{2 1}S₀
 Be-like Ar: 1s 2s² 2p ¹P₁ → 1s² 2s^{2 1}S₀

J. Machado, et. al, Phys. Rev. A 97, 032517 (2018)

Li-like Ar: 1s 2s 2p ${}^{2}P_{J} \rightarrow 1s^{2} 2s {}^{2}S_{1/2}$, J = 1/2, 3/2

1s 2p 1P1 \rightarrow 1s2 1S0 transition in He-like Ar

1s 2p 1P1 \rightarrow 1s2 1S0 transition in He-like Ar

✓ Presented a high accurate spectrometer
 ✓ Accuracies up to few ppm@keV
 ✓ Reference-free

✓ Provide high-accurate energy and widths

- ✓ He-like, Be-like and Li-like Ar
- ✓ Data for S is currently being analyzed

 ✓ Can be highly profitable in spectra diagnostics based on special x-ray lines, specially metastable ones

X-ray spectroscopy in astrophysics

Perseus galaxy cluster

Cassiopeia A

NASA CHANDRA HETG High Energy Transmission Grating Spectrometer (0.4-10 keV) ~1 eV@1 keV

ESA XMM-Newton RGS - Reflection Grating Spectrometer (0.35-2.5 keV) ~2 eV@1keV

A. Ogorzalek, et al, Monthly Notices of the Royal Astronomical Society, 472 2017

JAXA ASTRO-H/Hitomi/XARM SXS micro-calorimeter (0.3-10 keV) ~5 eV@6keV

- Interpretation relies heavily on atomic data and plasma modeling and provides diagnostics of:
 - Ionic and electron temperatures
 - Densities and elemental abundances
 - X-ray opacities and velocity turbulences
 - Well-known codes: SPEX and AtomDB

de Plaa, A&A, 539, 2012 and refs thererin

XVII Fe L-shell data

Important lines for x-ray opacity diagnostics based on photon resonant scattering

- **3C** $2p_{1/2}^5 3d_{3/2} {}^1P_1$
- **3D** $2p_{3/2}^5 3d_{5/2}^3 D_1$
- 3C/3D ratio
 - Low cascade contributions
 - R. Mewe et al, A&A, 368, 888-900 (2001).
 - 3C collision strengths inconsistent with predictions
 - e.g. G. V. Brown, et al PRL, 96, 253201 (2006)
 - e.g. S. Bernitt, et al, Nature, 472, 225 (2012)

- **3F** $2p_{1/2}^5 3s_{1/2}^3 P_1$
- **3G+M2** $2p_{3/2}^5 3s_{1/2} {}^1P_1 + {}^3P_2$
- 3F/(3G+M2) ratio
 - M2 is optically thinner (M2 transition)
 - J. de Plaa, et al A&A, 539 (2012).
 - Complex cascade contributions
 - No experimental data available
 - Residual theoretical predictions

Experimental setup: electron beam ion trap

• FLASH-EBIT @Heidelberg

Hot plasma with a monoenergetic electron beam

Scan setup

V

- Electron density current constant $n_e \propto I_e/\sqrt{E}$
- Evaporative cooling for a electron energy resolution of 5 eV@900eV

Measurement example

Data analyses

Data analyses

Data

Cross section calibration based on RR

Results for 3C+3D+3E

Region of interest of 3C+3D+3E for the entire scan

Results for 3C+3D+3E

Region of interest of 3C+3D+3E for the entire scan

Results 3C+3D+3E LMM region

Sum over electron energy Preliminary

- FAC-Flexible atomic code
- **Multiconfiguration Dirac-Fock** ٠ (MCDFGME) code of P. Indelicato and J.-P. Desclaux

- J. Nilsen, Atomic Data and Nuclear Data Tables, 41, 131, (1989), multiconfiguration Dirac-Fock
- P. Beiersdorfer et al, ApJ, 793, 99, (2014) relativistic multi-reference Møller–Plesset perturbation theory

Results 3C+3D+3E CE region

- G. X. Chen and A. K. Pradhan, PRL,
 89, 013202 (2002) 30 eV
 broadening ; G. X. Chen PRA, 84,
 012705 (2011) 5 eV broadening.
 Couple-cluster Breit-Pauli/Dirac R-matrix
- S. D. Loch, JPB 39, 85 (2005), 30 eV broadening, relativistic R-matrix calculation
- G. Brown *et al*, PRL, 96, 253201 (2006). Experimental calibrated with RR (E. Saloman et al., At. Data Nucl. Data Tables 38, 1 (1988).)

Results 3F+3G+M2

• Region of interest of 3F+3G+M2

- Complex cascade contribution from forbidden transitions into ground state
- Pronounced contribution of RIES

Electron recombination in tungsten

Energy region of MNN

Summary of the goals

Investigate how the inclusion of the spectator electron after DR converge towards the 3C/3D CE

- LMM structure predicated over the electron energy. Photon energies require further verification
- ✓ No conclusion can be obtain for the 3C/3D conundrum in the CE region within the error bars
- ✓ Pronounced discrepancy on DR after n=4
- ✓ Synthetic maxwellian emission based on experimental centroids to be compared with satellite-mission spectra

✓ Provide data for the 3F+3G+M2 lines

- \checkmark Agreement with theory within error bars
- ✓ RIES mechanism and the complex cascades are predicated

Ionization cross sections

Relativistic Version of Binary-enconter Model

PHYSICAL REVIEW A, VOLUME 62, 052710

Extension of the binary-encounter-dipole model to relativistic incident electrons

Yong-Ki Kim National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423

José Paulo Santos Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, 2825-114 Caparica, Portugal nd Centro de Física Atómica da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portuga

Fernando Parente Departamento Física da Universidade de Lisboa and Centro de Física Atómica da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal (Received 18 May 2000; published 13 October 2000)

$$t' = T/mc^{2} \qquad \beta_{t} = v_{t}/c$$

$$b' = B/mc^{2} \qquad \beta_{b} = v_{b}/c$$

$$u' = U/mc^{2} \qquad \beta_{u} = v_{u}/c$$

 $\beta_t^2 = 1 - \frac{1}{(1+t')^2}$

 $\beta_b^2 = 1 - \frac{1}{(1 - 1)^2}$

 $T \longrightarrow$ Kinetic energy of the incident electron $W \longrightarrow$ Kinetic energy of the ejected electron $a_0 \longrightarrow$ Bohr's radius $R \longrightarrow$ Rydberg's constant $T-W \longrightarrow$ Kinetic energy of the scattered electron

$$\sigma_{RBEB}(t) = \frac{4\pi a_0^2 \alpha^4 N}{\beta_t^2 + \beta_u^2 + \beta_b^2} \left[\frac{1}{2} \left[\ln \left(\frac{\beta_t^2}{1 - \beta_t^2} \right) - \beta_t^2 - \ln(2b') \right] \left(1 - \frac{1}{t^2} \right) \qquad \beta_u^2 = 1 - \frac{1}{(1 + u')^2} + \frac{1 - \frac{1}{t} - \frac{\ln t}{t + 1} \frac{1 + 2t'}{(1 + t'/2)^2} + \frac{b'^2}{(1 + t'/2)^2} \frac{t - 1}{2} \right]$$

Total Ionization of Highly Charged Ions

Modified Binary Encounter Bethe Model

International Journal of Mass Spectrometry 348 (2013) 1-8

Total Ionization of Highly Charged Ions

IOP Publishing

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 144027 (5pp)

ournal of Physics B: Atomic, Molecular and Optical Physics doi:10.1088/0953-4075/48/14/144027

Elastron impact ionization aroos contians for

✓ Provided cross sections based in the MRBEB
 ✓ Several ionization states of Kr
 ✓ H- and He-like U

Test the MBEB/MRBEB expression for the ionization of ions in several charge states

Include results of this expression in a user-friendly website

Thanks for your attention

Results 3C+3D+3E CE region Maxwell distribution

Results 3F+3G+M2

Region of interest of 3F+3G+M2

Fe XVII purity during scan

