

Collisional-Radiative modeling of the Tungsten spectrum from the **EBIT and EAST Tokamak**

Cunqiang Wu¹, Lirong Lei¹, Peng Yang¹, Yile Liu¹, **Xiaobing Ding^{1*}**, Fengling Zhang², Ling Zhang², Ke Yao³, Yang Yang³, Yunqing Fu³, Fumihiro Koike⁴, Izumi Murakami⁵, Daiji Kato⁵, Hiroyuki Sakaue⁵, Nobuyuki Nakamura⁶, Chenzhong Dong¹

¹Northwest Normal University, China ²Institute of Plasma Physics, Chinese Academy of Science, China

³Fudan University, China ⁴Sophia University, Japan ⁵ National Institute for Fusion Science, Japan

⁶ Institute for Laser Science, The University of Electro-Communications, Japan

dingxb@nwnu.edu.cn

1. Motivation & Background

EBIT(Rev. Sci. Instrum 85, 093301)

- W (Z=74) good candidate of the divertor:
- ♪ Low tritium retention
- W Impurities:

ITER(www.iter.org)

EAST (www.ipp.cas.cn)

3.Result & Dissusion: EUV spectrum of W¹³⁺-W¹⁵⁺ ions in the EBIT

Transition wavelength and rate of W^{13+} ions								
Key	Lower	Upper	λ	λ^{c}_{exp}	A(10 ¹¹ s ⁻¹)			
	$[(4f^{5}_{5/2}4f^{7}_{7/2})_{6}5p_{1/2}]_{13/2}$	$[(4f^{5}_{5/2}4f^{7}_{7/2})_{6}5d_{3/2}]_{15/2}$	18.18		1.26			
	$[(4f^{6}_{7/2})_{6}5p_{3/2}]_{15/2}$	$[(4f^{6}_{7/2})_{6}5d_{5/2}]_{17/2}$	21.03		1.52			
	$[(4f^{5}_{5/2}4f^{7}_{7/2})_{5}5p_{3/2}]_{13/2}$	$[(4f^{5}_{5/2}4f^{7}_{7/2})_{5}5d_{5/2}]_{15/2}$	21.05		1.49			
	$[(4f^4{}_{5/2})_45p_{3/2}]_{11/2}$	$[(4f^4_{7/2})_45d_{5/2}]_{13/2}$	21.07		1.41			
	$[(4f^{5}_{5/2}4f^{7}_{7/2})_{5}5p_{3/2}]_{15/2}$	$[(4f^{5}_{5/2}4f^{7}_{7/2})_{6}5d_{5/2}]_{17/2}$	21.13		1.50			
1	$[(4f^{5}_{5/2})_{5/2}5s^{2}]_{5/2}$	$[((4f^{5}_{5/2})_{5/2}5s_{1/2})_{3}5p_{3/2}]_{5/2}$	24.09 23.87 ^a 24.00 ^c		0.62 0.63 ^a			
2	$[(4f^{7}_{7/2})_{7/2}5s^{2}]_{7/2}$	$[((4f^{7}_{7/2})_{7/2}5s_{1/2})_{4}5p_{3/2}]_{7/2}$	24.17 23.95 ^a 24.06 ^c	24.32	0.55 0.54ª			
3	$[(4f^{5}_{5/2})_{5/2}5s^{2}]_{5/2}$	$[((4f^{5}_{5/2})_{5/2}5s_{1/2})_{2}5p_{3/2}]_{7/2}$	24.61 24.41 ^a 24.57 ^c	24.77	0.53 0.51 ^a			
4	$[(4f^{7}_{7/2})_{7/2}5s^{2}]_{7/2}$	$[((4f^{7}_{7/2})_{7/2}5s_{1/2})_{3}5p_{3/2}]_{9/2}$	24.69 24.53° 24.64°	24.83	0.55 0.61 ^a			
5	$[(4f^{7}_{7/2})_{7/2}5s^{2}]_{7/2}$	$[((4f^{7}_{7/2})_{7/2}5s_{1/2})_{4}5p_{3/2}]_{5/2}$	24.76 24.71° 24.70°	24.91	0.57 0.54ª			
6	$[(4f^{5}_{5/2})_{5/2}5s^{2}]_{5/2}$	$[((4f^{5}_{5/2})_{5/2}5s_{1/2})_{3}5p_{3/2}]_{3/2}$	24.93		0.58			

The spectrum of W^{13+} ions by CRM (a) Transition Rate 5p - 5s 5d - 5p (b) CRM $E_e = 280 \text{eV} n_e = 10^{10} \text{cm}^{-3}$

	Transition way	elength and rate of V	V^{15+}	ions	
Key	Lower	Upper	λ	A(10 ⁻¹⁰ s ⁻¹) Int	
1	$[(4f^{5}_{7/2})_{15/2}5s^{2}]_{15/2}$	$[((4f^{s}_{7/2})_{15/2}5s_{1/2})_{8}5p_{3/2}]_{15/2}$	22.48	5.89	2.36
2	$[(4f^{5}_{7/2})_{11/2}5s^{2}]_{11/2}$	$[((4f^{5}_{7/2})_{11/2}5s_{1/2})_{6}5p_{3/2}]_{11/2}$	22.54	5.59	1.13
	$[(4f^{5}_{5/2}4f^{6}_{7/2})_{13/2}5s^{2}]_{13/2}$	$[((4f^{s}_{5/2}4f^{s}_{7/2})_{13/2}5s_{1/2})_{7}5p_{3/2}]_{13/2}$	22.55	4.26	1.09
3	$[(4f^{5}_{7/2})_{15/2}5s^{2}]_{15/2}$	$[((4f^{5}_{7/2})_{15/2}5s_{1/2})_{8}5p_{3/2}]_{13/2}$	22.66	6.20	2.21
4	$[(4f^{5}_{7/2})_{9/2}5s^{2}]_{9/2}$	$[((4f^{5}_{7/2})_{9/2}5s_{1/2})_{4}5p_{3/2}]_{11/2}$	22.70	6.74	1.38
	$[((4f^4{}_{5/2})_44f^7{}_{7/2})_{7/2}5s^2]_{11/2}$	$[((4f^{4}_{5/2}4f^{7}_{7/2})_{11/2}5s_{1/2})_{5}5p_{3/2}]_{13/2}$	22.70	6.83	1.14
	$[(4f^{5}_{7/2})_{11/2}5s^{2}]_{11/2}$	$[((4f^{s}_{7/2})_{11/2}5s_{1/2})_{5}5p_{3/2}]_{13/2}$	22.70	5.13	1.25
5	$[(4f^{5}_{5/2}4f^{6}_{7/2})_{13/2}5s^{2}]_{13/2}$	$[((4f^{s}_{5/2}4f^{6}_{7/2})_{13/2}5s_{1/2})_{6}5p_{3/2}]_{15/2}$	22.77	5.52	1.67
	$[(4f^{5}_{7/2})_{15/2}5s^{2}]_{15/2}$	$[((4f^{s}_{7/2})_{15/2}5s_{1/2})_{7}5p_{3/2}]_{17/2}$	22.78	7.63	3.61
6	$[(4f^{5}_{5/2}4f6_{7/2})_{6}5s^{2}]_{15/2}$	$[((4f^{5}_{5/2}4f^{6}_{7/2})_{15/2}5s_{1/2})_{7}5p_{3/2}]_{17/2}$	22.92	6.99	1.03

E1 transition wavelength and rate of W^{45+} ions

 $A(s^{-1})$ $A_{other}(s^{-1})$ Pop. Int. Type

2.28(11)ⁱ 1.79(-12) 0.48 E1

4.64(10)ⁱ 1.06(-9) 56.88

2. Method

Multi-configruation Dirac-Fock Hamiltonian.

$$\hat{H}_{DC} = \sum_{i=1}^{N} \hat{H}_i + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{r_{ij}}$$

Radiative Transition Rates.

$$A_{fi} = \left| \left\langle \psi_f \left\| O_M^L \right\| \psi_i \right\rangle \right|^2$$

Collisional-Radiative Modeling. $\frac{dn(p)}{dt} = \sum_{q>p} F(q,p)n_e n(q) + \sum_{p<q} \left[C(q,p)n_e\right]$ $+A(q,p)]n(q) - \left[\sum_{q>p} C(p,q)n_e + \sum_{q>q} F(p,q)n_e + \sum_{p>q} A(p,q)\right] \times n(p)$

6. Conuslion

1. The 5p-5s transition spectra of $W^{13+}-W^{15+}$ ions have

4. Result & Dissusion: EUV spectrum of W⁴³⁺**-W**⁴⁵⁺ **ions in the EAST**

	E1 & M1 transition wavelength and rate of W^{43+} ions									
Кеу	Lower	Upper	λ(Å)	$\lambda_{\text{EXPT.}}(\text{\AA})$	$\lambda_{other}({\rm \AA})$	A(s ⁻¹)	A _{other}	.(s ⁻¹)	Int.	Туре
	4s ² 4p ² P _{1/2}	$4s4p^2 {}^2P_{3/2}$	40.46		40.44 ⁱ 40.2	27 ^j 6.80(9)	6.38(9) ⁱ	5.48(9) ^j	1.03(-3)	E1
	$4s^24p\ ^2P_{1/2}$	$4s4p^2\ ^2S_{1/2}$	40.98		40.92 ⁱ 40.5	81 ^j 5.43(9)	5.91(9) ⁱ	6.28(9) ^j	6.76(-4)	E1
1	4s ² 4p ² P _{1/2}	4s ² 4d ² D _{3/2}	47.56	$47.90^{g} \ 47.69^{i} 47.91^{j}$	47.63 ^h 47.	71 ^j 1.25(12)			50.96	E1
2	$4s^24p\ ^2P_{3/2}$	$4s4p^2 {}^2P_{3/2}$	59.46		59.50 ⁱ 59.	01 ^j 1.06(12)	1.05((12) ⁱ	1.12(12) ^j	0.16	E1
3	4s ² 4p ² P _{1/2}	$4s4p^2 {}^2P_{1/2}$	60.57	$60.61^g 60.61^i 60.63^j$	59.87 ^h 60.58 ⁱ 6	0.20 ^j 7.06(11)	6.79(11) ⁱ	7.47(11) ^j	28.96	E1
	$4s^24p\ ^2P_{3/2}$	$4s4p^2 {}^2S_{1/2}$	60.59		60.56 ⁱ 60.	27 ^j 4.99(11)	4.91(11) ⁱ	5.25(11) ^j	6.21(-2)	E1
4	4s ² 4p ² P _{1/2}	4s4p ² ² D _{3/2}	61.36	61.33^{g} $61.29^{i} 61.35^{j}$	60.82^{h} 61.32^{i} 60.82^{h}	51.11 ^j 3.61(11)	3.63(11) ⁱ	3.62(11) ^j	31.32	E1
5	$4s^24p\ ^2P_{3/2}$	$4s4p^2 \ ^4P_{5/2}$	64.03		63.97 ^h 64.03 ⁱ 6	3.95 ^j 5.58(11)	5.44(11) ⁱ	5.48 (11) ^j	0.20	E1
	$4s^24p\ ^2P_{1/2}$	$4s4p^2 \ ^4P_{3/2}$	68.40		68.36 ^h 68.24 ⁱ 6	8.21 ^j 2.78(9)	2.77(9) ⁱ	2.87(9) ^j	1.09	E1
6	$4s^24p\ ^2P_{_{3/2}}$	4s ² 4d ² D _{5/2}	70.28	h by RELAC 0.12%	70.66 ^h 70.	61 ^j 6.72(10)	9.23	(10) ^j	0.55	E1
7	$4s^24p{}^2P_{3/2}$	$4s4p^2 {}^2P_{1/2}$	116.10	j by MCDF 0.50%, 6.83%	116.50 ⁱ 114	.93 ^j 2.67(10)	2.64(10) ⁱ	2.82(10) ^j	1.10	E1
8	$4s^24p\ ^2P_{3/2}$	$4s4p^2 \ ^2D_{3/2}$	119.06		117.56 ^h 119.04 ⁱ 1	18.28 ^j 1.91(10)	1.91(10) ⁱ	2.01(10) ^j	1.66	E1
m	$4s^24p \ ^2P_{1/2}$	$4s^24p \ ^2P_{3/2}$	126.60	126.29 ^h 126.39 ^j	126.01 ^h 126.23 ⁱ	126.43 ^j 4.31(6)	4.36(6) ⁱ	4.33(6) ^j	13.33	M1
9	$4s^24p \ ^2P_{1/2}$	$4s4p^2 \ ^4P_{1/2}$	128.14	128.17 ^h 128.24 ^j	127.06 ^h 128.17 ⁱ	127.30 ^j 2.96(10)	2.96(10) ⁱ	2.90(10) ^j	16.08	E1
10	4s ² 4p ² P _{3/2}	4s4p ² ² D _{5/2}	134.85	134.81° 135.34 ^j	134.55 ^h 13 ^c	4.20 ^j 1.38(10)	1.38(10) ⁱ	1.41 (10) ^j	2.46	E1

]	E1 &	M1 t	rans	ition wave	ele	ngth	and ra	te of	W^{44-}	+ion	S
ey	Lower	Upper	$\lambda(\text{\AA})$	$\lambda_{\text{EXPT.}}(\text{\AA})$	λ.	other(Å)	A(s ⁻¹)	Aother(s ⁻¹)	Pop.	Int.	Туре
	4s4p ³ P ₁	4s4d ¹ D ₂	44.49	44.52 ^g	44.38	3 ^h 44.49 ⁱ	5.43 (10)	5.53(10) ⁱ	2.57(-11)	1.37	E1
2	$4s^{1}4p^{-3}P_{0}$	4s4d ³ D ₁	47.86		4	47.81 ⁱ	6.02 (11)	6.04(11) ⁱ	8.60(-13)	0.40	E1
	4s4p ³ P ₁	4s4d ³ D ₂	48.54	48.61 ^d	4	8.41 ^h	1.01 (12)	1.02(12) ⁱ	2.22(-12)	2.73	E1
ļ	$4s4p$ $^{3}P_{1}$	4s4d ³ D ₁	49.21		4	19.19 ⁱ	3.18 (11)	3.19(11) ⁱ	8.60(-13)	0.20	E1
5	$4s^2$ 1S_0	4s4p ¹ P ₁	60.90	$\begin{array}{rrr} 60.93^{d} & 60.87^{f} \\ & 60.93^{g} \end{array}$	60.73	^{3g} 60.66 ^h	6.59 (11)	6.85(11) ⁱ	2.23(-10)	1.94(2)	E1
5	$4s4p$ $^{3}P_{2}$	4s4d ¹ D ₂	66.66	66.93 ^d	66.40	5 ^h 66.66 ⁱ	2.00 (11)	1.99(11) ⁱ	2.57(-11)	5.04	E1
7	$4s4p$ $^{3}P_{2}$	4s4d ³ D ₃	68.77		e	58.76 ⁱ	3.77 (11)	3.78(11) ⁱ	1.94(-11)	0.17	E1
	$4s4p \ ^1P_1$	4s4d ¹ D ₂	73.66		73.43	3 ^h 73.86 ⁱ	1.04 (11)	1.06(11) ⁱ	2.57(-11)	2.63	E1
	$4s4p$ $^{3}P_{2}$	4s4d ³ D ₂	76.17			76.15 ⁱ	1.92 (10)	1.94(10) ⁱ	2.22(-12)	0.05	E1
	$4s4p \ ^3P_2$	4s4d ³ D ₁	77.83	i by MCDF 0.13%, 1.3	%	77.82 ⁱ	7.08 (9)	7.12(9) ⁱ	8.60(-13)	0.01	E1
	$4s4p$ $^{1}P_{1}$	4s4d ³ D ₂	85.45			85.69 ⁱ	2.94 (8)	2.87(8) ⁱ	2.22(-12)	7.91(-4)	E1
)	$4s^2 {}^1S_0$	4s4p ³ P ₁	132.97	132.88° 132.75 ^f 132.87 ^g	132.0	7 ^h 132.60 ⁱ	1.73 (10)	1.78(10) ⁱ	3.35(-9)	57.88	E1
1	4s4p ³ P ₁	4s4p ³ P ₂	133.80	134.80 ^e	133.6	0 ^h 133.45 ^e	4.19(6)		1.28(-6)	5.35	M1

5 4d ${}^{2}D_{5/2}$ 4f ${}^{2}F_{7/2}$ 74.34

been calculated by the RCI and CRM. The present theoretical results are in good agreement with the experimental results

2. The transition data and spectra of $W^{43+}-W^{45+}$ ions have been calculated by the RCI method and CRM in different plasma conditions. The present theoretical results are in good agreement with the experimental results and previous theoretical values. All the observed transitions of $W^{43+}-W^{45+}$ ions are assigned according to the present calculation.

3. A reasonable CRM has been constructed to simulate and explain the M1 visible spectrum of W^{13+} ion observed in EBIT. The present calculations are in reasonable agreement with the available theoretical and experimental data. For the first time, the corresponding transitions of the 5 measured lines are identified.

7. References

- [a] Y. Kobayashi et al. Phys. Rev. A 2015 92 022510.
- [b] Wenxian Li et al. *Phys. Rev. A* 2015 91 062501.
- Jonauskas et al. J. Quant. Spectrosc. Radiat. Transf 2013 127 64-69.
- [d] S.B. Utter et al. Can. J. Phys 2002 80 1503.
- [e] Y. Ralchenko et al. J. Phys. B, At. Mol. Opt. Phys 2007 40 (19) 3861-3875.
- [f] R. Radtke et al. *Phys. Rev. A* 2001 64 012720.
- [g] T. Pütterich et al. J. Phys. B, At. Mol. Opt. Phys 2005

38 (16) 3071-3082.

[h] K.Fournier et al. At. Data Nucl. Data Tables 1998 68 [i] L.-H. Hao et al. *Eur. Phys. J. D* 2014 68 (7) 203.

[j] P. Palmeri et al. At. Data Nucl. Data Tables 2007 93 (3) 537–547.

5.Result & Dissusion: The M1 transitions and visible spectra of W^{13+} ion

\mathbb{N}	M1 transition wavelength and rate of W^{13+} ions								
Key	Upper	Lower	λ(nm)	А	I _{Theo}	$\lambda_{Expt}(nm)$			
k	$[(4f^4{}_{5/2})_45p_{3/2}]_{11/2}$	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{5}5p_{3/2}]_{13/2}$	368.83	266.20					
α	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{3}5p_{1/2}]_{7/2}$	$[(4f^{6}_{7/2})_{4}5p_{1/2}]_{7/2}$	385.03	127.20	$\langle \leq$	0.36%			
m	$[(4f^4{}_{5/2})_25p_{1/2}]_{3/2}$	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{2}5p_{1/2}]_{3/2}$	395.02	196.90					
1	$[((4f^{5}{}_{5/2}){}_{5/2}4f^{7}{}_{7/2}){}_{3}5p{}_{1/2}]_{7/2}$	$[(4f^{6}_{7/2})_{4}5p_{1/2}]_{9/2}$	430.19	74.31	0.18	429.03ª			
β	$[((4f^{5}{}_{5/2})_{5/2}4f^{7}{}_{7/2})_{3}5p_{1/2}]_{5/2}$	$[(4f^{6}_{7/2})_{4}5p_{1/2}]_{7/2}$	449.09	144.10					
2	$[(4f^4{}_{5/2})_45p_{1/2}]_{9/2}$	$[((4f^{5}{}_{5/2}){}_{5/2}4f^{7}{}_{7/2}){}_{5}5p{}_{1/2}]_{11/2}$	458.90	132.90	0.22	459.08 ^b			
3	$[(4f^4{}_{5/2})_45p_{1/2}]_{9/2}$	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{5}5p_{1/2}]_{9/2}$	473.82	27.03	0.04	472.68 ^b			
4	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{5}5p_{1/2}]_{9/2}$	$[(4f^{6}_{7/2})_{6}5p_{1/2}]_{11/2}$	494.26	180.40	0.96	495.16ª			
n	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{5}5p_{3/2}]_{13/2}$	$[(4f^{6}_{7/2})_{6}5p_{3/2}]_{15/2}$	495.00	199.80					
5	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{3}5p_{1/2}]_{5/2}$	$[(4f^{6}_{7/2})_{4}5p_{1/2}]_{7/2}$	552.27	27.05	0.31	553.81ª			
6	(4f ⁵ _{5/2}) _{5/2}	$(4f^{7}_{7/2})_{7/2}$	558.21	88.38	1.00	560.25 ^a			
γ	$[((4f^{5}_{5/2})_{5/2}4f^{7}_{7/2})_{4}5p_{1/2}]_{9/2}$	$[(4f^{6}_{7/2})_{4}5p_{1/2}]_{9/2}$	577.79	40.39					

[b] A. Komatsu et al. Plasma.Fusion. Res 2012 7 1201158.

8. Acknowledgement

The work was supported by National Nature Science Foundation of China, Grant No:12274352, U1832126, National Key Research and Development Program of China, Grant No:2022YFA1602500, 2017YFA0402300.

Relevant publications: Xiaobin Ding et al. The M1 transitions and visible spectra of W^{13+} ions. **Phys.Lett.A** 454 (2022) 128500.