
INTRODUCTION

 Chemical inertness of Xe makes them befitting candidates
for use in tokamaks, fusion plasma research and diagnosis.

 In the high temperature of the fusion reactor like ITER,
all possible ionization stages of Xe up to helium-like
Xe52+ can exist.

 Xenon ions are a potential extreme ultraviolet (EUV)
laser sources for next generation lithography and their
spectra are also observed in planetary nebula.

 Spectroscopic data on highly charged ions of Xe is essential
to interpret the spectra correctly and to model the
conditions in plasma containing these species.

 Previous results of the lowest 125 levels of Xe49+ are
available.

 Multiconfiguration Dirac-Hartree-Fock (MCDHF) method
is used to calculate the energies, electric dipole (E1)
and quadrupole (E2), magnetic dipole (M1) and quadrupole
(M2) transition parameters for the lowest 255 levels of B-
like Xe49+.

 The Relativistic Distorted Wave theory is implemented to
obtain the electron impact excitation cross sections with our
obtained atomic wave functions.

 The excitation rate coefficients are obtained in the
temperature range of 5 – 100 eV considering the electron
energy distribution to be Maxwellian in nature.

COMPUTATIONAL PROCEDURE
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The atomic state function in  MCDHF
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