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Indirect-drive Inertial Confinement Fusion (ICF) at the 
National Ignition Facility (NIF) 

NIF also provides a platform for High Energy Density (HED) experiments 

!  NIF uses 192 laser beams to deliver 1-2 MJ of energy over several ns 

!  ~75% of the energy is converted to X-rays in the hohlraum 

!  Radiation field inside the hohlraum is ~thermal at Tr ~ 300 eV 
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National Ignition Facility (NIF) overview 
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NIF target chamber + positioner 
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Radiation effects: 
 

Wall 

•  Energy balance 

•  Provides smooth X-ray drive on capsule 

Ablated material in hohlraum 

•  Hohlraum energy balance 

•  M-band radiation (preheats fuel) 

Capsule shell 

•  Absorption " ablative drive 

 

Fuel impurities 

•  Emission provides diagnostic information 

Hohlraums and radiation are central to indirect-drive ICF 

Solid DT fuel layer 

Mid-Z-doped 
plastic capsule 

Cryo-cooling ring 

Laser Entrance Hole (LEH) 

9.5-10 
mm 

High-Z hohlraum wall  

Fill tube  

Laser beams 
(48 quads) 

5.75 
mm 
5.75 

Radiation transport is a critical part of simulations  

Lawrence Livermore National Laboratory LLNL-PRES-665501 
7 

Representative parameters 

Wall 

•  T ~ 0-300 eV, ρ ~ 0.1-20 g/cm3 

•  Z = 79, hν ~ 1 keV 
 

Ablated plasma (bubble) 

•  T ~ 1-3 keV, ne ~ 1021-22 cm-3 

•  Z = 79, hν ~ 1-3 keV 
 

Capsule 

•  T ~ 100-300 eV, ρ ~ 1-200 g/cm3 

•  Z = [6,32], hν ~ 1-3 keV, 10 keV 
 

Fuel Impurities 

•  T ~ 1-3 keV, ne ~ 1024-26 cm-3 

•  Z = 32, hν ~ 10 keV 
 

Edge plasma 

•  T ~ 1 eV, ne ~ 1014 cm-3 

•  Z = 1, hν ~ 10 eV 

 

DT solid 

CH+Ge 

LEH 

Au bubble 
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Perturbation growth brings Ge dopant into the hot spot 

temperature 

(6 keV) 
electron density 

(2.5 x 1026 cm-3) 

material density 

(1000 g/cm3) 

gas 

CH 

ice 

50 µm 

•  2D high-resolution HYDRA simulation 
•  Perturbation due to fill tube 

•  ~4 ps before peak compression  

B. A. Hammel, et al, Phys. Plasmas 

18, 056310 (2011) 

CH+Ge 
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The spectrum reflects emission over a wide range of 

conditions and the effects of radiation transport  

!  K-shell emission from hot Ge (>2 keV) 

!  1s"2p absorption from warm Ge (300 eV) 

!  2p"1s fluorescence from cold Ge (200 eV) 

“K-shell” features provide information on mix  
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“He-α” + “Ly-α” 

Ge K-edge fluorescence 

1s"2p 

CH attenuation 

He-β 

2p"1s 
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Experimental spectra show optically thick 

features similar to simulations 

S. P. Regan, et al, Phys. Rev. Let. 

111, 045001 (2013) 
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Photon energy (keV)

10.4 10.6 10.8

2.5

2.0

1.5

1.0

0.5

0.0
B-like Ge

Be-like Ge

Li-like Ge

He-like Ge

Ge Hea + satellite
emission

Ge Ka emission

Fluorescent
inner-shell transitions
of Ne-like to N-like Ge

Ge Lya + satellite emission

2|2 fits

Best fits

•  Capsule doped with Si, Ge, and Cu 

•  Best fit uniform conditions: 

    Te ≈ 3 keV 

    ne ≈ 1025 cm-3 

    (ρR)Ge ≈ 0.3 mg/cm2 

  " τ He-α ≈ 10
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!  Radiation transport equation: 

 

 

•  Equivalent to a Boltzmann equation for the photon distribution function, f 

•  The LHS describes the flow of radiation in phase space 

•  Conserves photon number 

•  The RHS describes absorption and emission 

•  Absorption & emission coefficients depend on atomic physics 

•  Photon # is not conserved (except for scattering) 

•  Photon mean free path 

Radiation transport basics 

   

1

c

∂ I
v

∂ t
+
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Iν =  specific intensity

αν =  absorption coefficient

ην =  emissivity
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Define the source function Sν and optical depth τν:

   Sν = ην/αν  (= Bν  in LTE)     dτν = αν ds

 
Along a characteristic, the radiation transport equation becomes 

 
 

 

This solution is useful when material properties are fixed, e.g. 

postprocessing for diagnostics 
 

Important features: 
•  Explicit non-local relationship between Iν and Sν  

•  Escaping radiation comes from depth τν ~ 1 

•  Implicit Sν(Iν)  dependence comes from radiation / material coupling 

 

Formal solution along characteristics: 

( ) ( )
( ) ( )

0

0
v v v

vv

v v v v v v v v

v

dI
I S I I e e S d

d

τ τ τττ τ τ
τ

′− −−⇒ ′ ′= − + = + ∫

Self-consistently determining Sν and Iν is 

the hard part of radiation transport 
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Example – Hydrogen Ly-α 
Ly-α emission from a uniform plasma 

•  Te = 1 eV, ne = 1014 cm-3 

•  Moderate optical depth  τ ~ 5 

•  Viewing angles 90o and 10o show optical depth broadening 
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Example – Hydrogen Ly-α 
Ly-α emission from a uniform plasma 

•  Te = 1 eV, ne = 1014 cm-3 

•  Self-consistent solution displays effects of 
•  Radiation trapping / pumping 

•  Non-uniformity due to boundaries 
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from T. Mehlhorn 

Absorption / emission coefficients 

Macroscopic description – energy changes 

•  Energy removed from radiation passing through material of area dA, 

depth ds, over time dt

 

•  Energy emitted by material 

 

 

Microscopic description – radiative transitions 

•  Absorption and emission coefficients are 

constructed from atomic populations yi and 

cross sections σij: 

 
 

dE = −α
ν
I
ν
dAdsdΩdν dt

dE = ην Iν dAdsdΩdν dt

αν = σν , ij

i< j

∑ (yi −
gi

g j
y j )  ,  ην =

2hν 3

c
2

σν , ij

i< j

∑
gi

g j
y j
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Population distribution 

LTE:  Saha-Boltzmann equation 

•  Excited states follow a Boltzmann distribution 

•  Ionization stages obey the Saha equation 

NLTE: Collisional-radiative model 

•  Calculate populations by integrating a rate equation 

y
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y
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Timescales for strong atomic transitions 

For Te and ∆E in eV , ne in 1020 cm-3 : 

~ 10
8

(∆E
ij
)

2
 s

−1

~ 10
7
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n
e
∆E( )

1/2

T
e

1/2
 s

−1
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10 n

e
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e

2
 s

−1

Collisional rates increase with density " thermal equilibrium    

Radiative rates increase with Z, ∆E " non-equilibrium 

~ 10
14 n

e

∆E
ij
T
e

1/2
 s

−1De-excitation 

Recombination 

collisional (C) radiative (R) 

Examples 

Wall: T ~ 100 eV, ne ~ 1023 /cm3, ∆E ~ 300 eV    C/R ~ 1   tR ~ 10-13 s 

Fuel Impurities: T ~ 2 keV, ne ~ 1025 /cm3, ∆E ~ 10 keV  C/R ~ 10-2  tR ~ 10-18 s 

Edge plasma: T ~ 1 eV, ne ~ 1014 /cm3, ∆E ~ 10 eV   C/R ~ 10-2  tR ~ 10-12 s 

Radiative timescales << hydrodynamic / transport timescales 

" Requires implicit solution of radiation transport 
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Transport methods need to fulfill 2 requirements 

1.  Accurate formal transport solution which is 

•  conservative, 

•  non-negative 

•  2nd order (spatial) accuracy  (diffusion limit as τ >> 1) 

•  causal (+ efficient) 

 

Many options are available – each has advantages and disadvantages 

2.  Method to converge solution of coupled implicit equations 

•  Multiple methods fall into a few classes 

•  Full nonlinear system solution 

•  Accelerated transport solution 

•  Incorporate transport information into other physics 

•  Optimized methods are available for specific regimes, but no single 

method works well across all regimes 
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LTE : 

•  Coupled to energy balance 

 

 

•  Indirect radiation-material coupling 

through energy/temperature  

•  Collisions couple all frequencies 

locally, independent of Jν 

•  Solution methods concentrate on non-

local aspects 

Coupled equations 

  

dE
m

dt
= 4π α

ν
(J

ν
− S

ν
)∫ dν

α
ν
=α

ν
(T

e
) , S

ν
= B

ν
(T

e
)

   

1

c

∂ I
v

∂ t
+

!

Ω •∇I
v
= −α

ν
( I

ν
− S

ν
) , J

ν
=

1

4π
I
ν

dΩ∫

NLTE : 

•  Coupled to rate equations 

•  Direct coupling of radiation to material  

•  Collisions couple frequencies over 

narrow band (line profiles) 

•  Solution methods concentrate on local 

material-radiation coupling 

•  Non-local aspects are less critical 

   

dy

dt
= Ay , A

ij
=A

ij
(T

e
,n

e
, J

ν
)

S
ν
=

2hν3

c2 S
ij

, S
ij
≈ a + b J

ij

Lawrence Livermore National Laboratory LLNL-PRES-665501 
20 

Advantages – 

 Simple to implement 

 Independent of transport method 

 

Disadvantages – 

 Can require many iterations:  # iterations ~ τ

 False convergence is a problem for τ >> 1 

Solution method 1 – source iteration 

1.  Evaluate source function 

2.  Formal solution of radiation 

transport equation 

3.  Use intensities to evaluate 

temperature / populations 

 source function 

olution of radiation 

t equation 

nsities to evaluate 

ure / populations 

 sou sou

iterate to 

convergence 
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Hydrogen Ly-α revisited 

•  Source iteration (green curves) approaches self-consistent solution slowly 

•  Linearization achieves convergence in 1 iteration 
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Solution method 2 – Monte Carlo 

Implicit Monte Carlo (IMC) for LTE systems [4] provides a semi-implicit solution to the 

radiation transport + energy balance equations 

 
Parameter                          characterizes linearized radiation/material coupling 

 

  " fraction β of absorptions treated as effective scatterings also reduces cost 

 

Advantages – 

     Works well for complicated geometries 

     Not overly constrained by discretizations " does details very well 

 

Disadvantages – 

     Statistical noise improves slowly with # of particles 

     Expense increases with optical depth 

     Iterative evaluation of coupled system is not possible / advisable 

     Semi-implicit nature requires careful timestep control 

 

Notes – 

     Equivalent procedures for NLTE systems have been used for strong lines 

     Symbolic IMC [5] provides a fully-implicit NLTE solution at the cost of a solving a 

 single mesh-wide nonlinear equation 

β = 4aT
3

ρC
v

Lawrence Livermore National Laboratory LLNL-PRES-665501 
23 

Solution method 3 – Discrete Ordinates (SN) 

Discretization in angle converts integro-differential equations into a set of coupled 

differential equations 

 

Effective solution algorithms exist for both LTE and NLTE versions [6] – 

e.g.   LTE – synthetic grey transport (or diffusion) 

         NLTE – complete linearization, accelerated lambda iteration 

 

Advantages – 

     Handles regions with τ<<1 and τ>>1 equally well 

     Modern spatial discretizations achieve the diffusion limit 

     Deterministic methods can be iterated to convergence 

 

Disadvantages – 

     Ray effects due to preferred directions 

          angular profiles become inaccurate well before angular integrals  

     Required # of angles in 2D/3D can become enormous 

     Discretization in 7 dimensions requires large computational resources 

 

This is our preferred method for NLTE systems 

using detailed post-processing of rad-hydro simulations 
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Solution method 4 – Escape factors (NLTE) 

Escape probability [7] averaged over line profile, pe, is used to eliminate 

radiation field from net radiative rate 
 

 
Equivalent to incorporating a (partial) transport operator into the rate equations 

 

Advantages – 
     Very fast – no transport equation solution required 

     Can be combined with other physics with no (or minimal) changes 
 

Disadvantages – 

     Details of transport solution are absent 
     Escape factors depend on line profiles, system geometry 

     Iterative improvement is possible, but usually not worthwhile 
 

Notes – 

     Evaluating pe can be complicated by overlapping lines, Doppler shifts, etc. 
     Many variations and extensions exist in a large literature 

y jRji − yiRij = y jAji pe
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Radiation transport effects with plasma transport [8] 

•  Plasma transport model explicitly treats ion and (ground state) neutral 

atoms 

•  Excited states are assumed to be in equilibrium on transport 

timescales: 

•  Transport model uses effective ionization / recombination and energy 

loss coefficients which account for excited state distributions, e.g. 

•  Tabulated coefficients are evaluated with a collisional-radiative code in 

the optically thin limit 

Optically thin data depend only on n
e
 and T

e

, ,, ( , )g i g i g i

x x g x i x x e en f n f n f f n T= + =

( ) ( ),i n

i i i n r i n n i n r i

n n
n Pn Pn n Pn Pn

t t

∂ ∂
+∇⋅ = − +∇⋅ = − +

∂ ∂
V V
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This generalizes the approach of Stotler, Post and Reiter 
Bul. Am. Phys. Soc. 38 (1993) 1919 

•  Radiation introduces spatial 
dependence into the atomic 
rates through the radiation field 

•  Rates are parameterized by 
the (approximate) optical depth 
of Lyman α: 

•  Tabulated values generated 
with escape factors for 
midpoint of uniform plasma of 
depth 2τ 

Radiation effects are incorporated into the 

 effective ionization and heating rates 

( ) ( )

( )
  s

14

  0

, , , ,   

10 ' '

e e e e

n

P n T P n T

n s ds

τ

τ

→

= ∫

'
e

P n P=
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Detached divertor simulations exhibit large 

radiation effects 

Specifications:  L=2 m, n=1020 m-3, qin=10 MW/m2, β=0.1 

Qualitative description of the detached divertor region remains unchanged, 
Quantitative details of the particle and power balance change dramatically. 

CR     : collisional-radiative tables (optically-thin) 

NLTE : collisional-radiative model w/ radiation transport 

ESC   : parameterized tables 

Flux Qr qout

CR -0.805 +0.195

NLTE -0.555 +0.445

ESC -0.537 +0.463

Qr   : radiative flux 
qout : particle flux 
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Optical depth parameterization allows 

coverage from coronal to LTE regimes 

Coronal regime LTE regime 
( )r,i r,i r,i

' 13.6eV
e

H n H P= − ± ×
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Excited state populations are critical for 

spectroscopic diagnostics 
Determined from ground state and ion densities: 

         n2 = f20ni + f21ng , n3 = f30ni + f31ng 

τ>>1 values can differ by orders of magnitude from τ<<1 values 

Lawrence Livermore National Laboratory LLNL-PRES-665501 
30 

Summary 

•  Radiation transport effects are important to 

•  Energy balance 

•  Ionization balance 

•  Diagnostics 

•  Self-consistency is important for simulations when τ ≥ 1 

•  Acceleration methods can speed up convergence dramatically 

•  Details can usually come from post-processing 

•  Many numerical approaches are possible 
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