
Atomic Spectroscopic Data and Spectra Modeling for Highly-Charged High-Z lons

Yuri Ralchenko

National Institute of Standards and Technology Gaithersburg, MD 20899, USA

IAEA Technical Meeting, Daejeon, Korea December 16, 2014

Plan

- NIST Atomic Database(s)
- EBIT spectra and modeling
 - X-ray
 - EUV
 - Dielectronic resonances
- · Validation and verification of CR models

HCI atomic physics: peculiarities

Conclusions

Atomic structure

increase...

nl electrons become more

...but "highly-charged" may

still mean "many-electron"

Effect of correlations is still

• Relativistic and QED effects

Forbidden transitions become

MCDHF, RRPA, RMBPT, RMP

W⁵⁰⁺: 3s²3p⁶3d⁶

· Complex (same n)!

very important

(FAC, HULLAC),....

stronger

"hydrogenic" with ion charge

Atomic collisions

- Perturbative methods (distorted waves, Coulomb-
- Born) work very well Relativistic effects may
- become important
 Dielectronic recombination becomes the most important
- recombination channel Charge exchange with neutrals
- in laboratory plasmas may be important RMP (FAC, HULLAC), RDW,
- CB,...

National Institute o

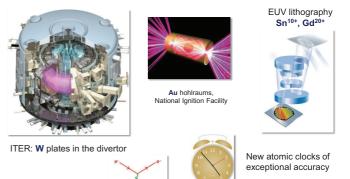
FLYCHK: online CR code at http://nlte.nist.gov/FLY/

Acknowledgements

NIST

- J.D. Gillaspy
- J. Reader
 T. Das
- A. Kramida
- Y.A. Podpaly
- D. Osin
- I.N. Draganić

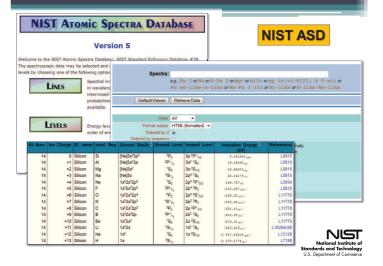
QED tests

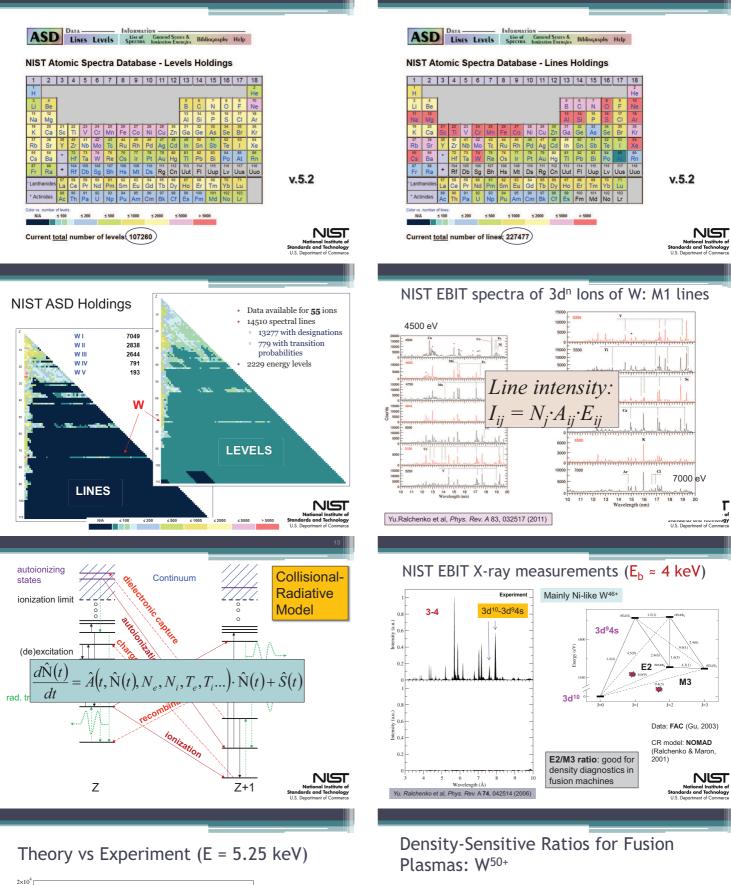

NLTE Code Comparison Workshop Participants

- H.-K. Chung
- R.W. Lee
- S.B. Hansen
 C.J. Fontes
- C.J. Fontes
 C. Bowen
- H.A. Scott
- ...

National Institute of Standards and Technology

National Institute of Standards and Technology


Why highly-charged high-Z elements?



National Institute of andards and Technology S. Department of Commerce

Atomic and plasma data services at NIST

sut PML ▼ Putritrations Topic/Subject Areas ▼ Products/Services ▼ News/ IT Home > PML > Physical Reference Data	Atomic Spectroscopy Databases
Invision Reference Data Invision Reference Data Invision Research Control Provide Researchers Likewatary within a grander by within the Haddings of HST Physical Researchers Likewatary within a grander by within the Research Control Provide Research Resea	 Atomic Spectra Database Handbook of Basic Atomic Spectroscopic Data Energy Levels of Hydrogen and Deuterium Ground Levels and Ionization Energies NITE Databases and Codes FLYCHK Collisional-Radiative Code SAHA Piasma Population Kinetics Database MITE's Plasma Population Kinetics Database MITE's Plasma Population Kinetics Database MITE's Plasma Population Kinetics Database Spectrum of Haitunu Lamp for Ultraviolet Spectrograph Calibration Spectrum of Haitunu Lamp for Ultraviolet Spectrograph Calibration Spectrum of Haitunu Lamp for Ultraviolet Spectrograph Calibration Bibliographic Database on Atomic Transition Probabilities Bibliographic Database on Atomic Energi Levels and Spectra

[Cr] W⁵⁰⁺

19.239/13.13

13.137/12.779

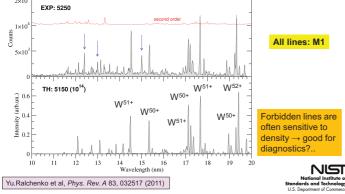
15.363/13.137

19.684/13.137

10¹

10¹⁷ 10

7 133/13 13


0.1 10¹² 10¹³

10¹⁴ 10¹⁵

Electron density (cm⁻³)

Yu.Ralchenko et al, Phys. Rev. A 83, 032517 (2011)

Line Intensity Ratio

Collisional-radiative

model for EBIT can

[Cr] W⁵⁰⁺

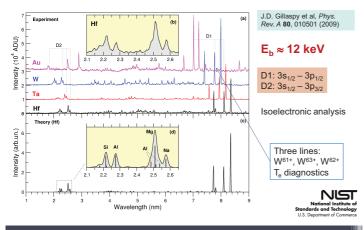
19.239/14.193

9.684/14.193

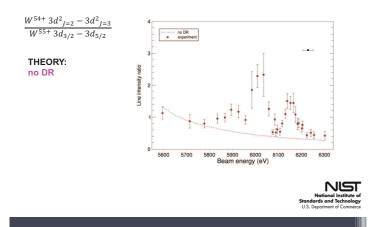
19.239/17.133

19.684/17.133

10¹³ 10¹⁴ 10¹⁵ 1


Electron density (cm⁻³)

10¹⁶


10

D-doublet in Na-like W, Hf, Ta, and Au

Dielectronic resonances in W⁵⁴⁺

Non-LTE Code Comparison Workshops

- GOAL: validation and verification of collisionalradiative codes
- Pre-workshop calculation of plasma population kinetics parameters and spectra for the same plasma conditions
- Pinpoint problems and discuss possible explanations of differences
- 7 workshops since 1996

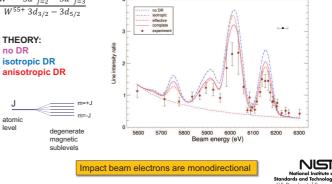
- Typically more than 15 codes
 - Very different structure
 - Averaged atom
 - Superconfiguration
 - Configuration
 - Hybrid
 Detailed level accounting
 - Different sources of atomic data and different
 - data and different approximations

National Institute o Standards and Technology U.S. Department of Commerce

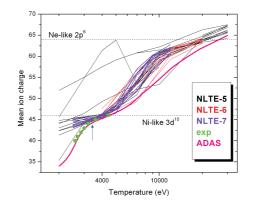
Conclusions

- Significant progress in production and evaluation of basic atomic spectroscopic data for W and other high-Z elements
- Collisional-radiative modeling of highly-charged high-Z ions is currently capable of providing very detailed analysis of measured spectra
- Evaluation of atomic structure data for fusion is in jeopardy because of the lack of funding

Ratios of M1 lines can be used to detect dielectronic resonances


- DRs are normally not important/produced in nearly monoenergetic beams in EBITs: require precise match of energies to produce them
- $3d^n$ ions in W: energies of high abundance are good for LMN $(2p \rightarrow 3l, \epsilon l \rightarrow 4l')$ resonances
- DR shifts ionization balance that can be detected in M1 line ratios
- Goal: measure 10,000 eV resonances with ~80 eV M1 lines in EUV by scanning the beam energy

National Institute of Indards and Technology Department of Commerce


[Ca]/[K]

 $W^{54+} 3d^2_{J=2} - 3d^2_{J=3}$

W at NLTE workshops: example

National Institute of Antional Institute of Antional Technology

