## **Experimental evaluation of** W recombination and Ionization rates/cross-sections

T. Nakano Japan Atomic Energy Agency

Acknowledgements Dr. N. Nakamura (Univ. of Electro-Communications) Dr. H. Ohashi (Toyama Univ.)

#### Various W atomic data needed for W density measurement



0.0  $\mathcal{W}$ LANL code<sup>2)</sup> ADAS<sup>4)</sup> 0.00  $\geq$ 10<sup>3</sup> 10<sup>3</sup> 104 104  $T_{e}$  (eV)  $T_{\rm e}\,(\,{\rm eV}\,)$ Uncertainty of collisional data ( Ioniz./Recomb. rates ) needed  $\Rightarrow$  Evaluation

1)http://nlte.nist.gov/FLY/ 2)http://aphysics2.lanl.gov/tempweb/lanl/ 3)K. Asmussen, et al., Nucl. Fusion **38** (1998) 967-986 4)T. Puetterich *et al PPCF* **50** (2008) 085016.

### Issue 2: W cooling rate



Shift of the cooling rates originates from ioniz. Eq calculation

# Tungsten: a candidate for PFCs in reactors



# Availability of W atomic data





Introduction

- Motivation
- ➢ Evaluation of W<sup>44+</sup> ionization / W<sup>45+</sup> recombination - in JT-60U tokamak device (thermal electron)
  - in Tokyo EBIT device (mono-energy electron)

JAEA

- Suggestion for diagnostic lines in ITER with evaluation method
- Conclusions

<sup>\*</sup>T Puetterich *et al Nucl. Fusion* **50** (2010) 025012 \*\*T Nakano et al J. Nucl. Mater **415** (2010) S327

# Outline



0.001

≥

10<sup>3</sup>

T<sub>e</sub>(eV)

- Introduction
- Motivation
- ➢ Evaluation of W<sup>44+</sup> ionization / W<sup>45+</sup> recombination - in JT-60U tokamak device (thermal electron)
  - in Tokyo EBIT device (mono-energy electron)
- Suggestion for diagnostic lines in ITER with evaluation method
- Conclusions

Constant excitation rate ratio of W<sup>44+</sup> and W<sup>45+</sup> useful for direct comparison btw Exp and Theory



### Measured W45+/W44+ in JT-60U



FAC calculation reproduced measured W45+/W44+\*



45+ evaluated  $\Rightarrow$  Accuracy of S<sup>44+</sup>

\*T Nakano et al J. Nucl. Mater 415 (2010) S327

\*\* A. Sasaki and I. Murakami, J. Phys. B 46 (2013) 175701

#### W density ratio calculated under ionization equilibrium JAEA Fractional Abundance Ionization equilibrium: 45+ 46+ n<sub>W</sub><sup>44+</sup> S<sup>44+->45+</sup> $= n_W^{45+} \alpha^{45+->44+}$ <u>4</u> 0.1 45 +S44+->45+ 0.0 $n_{W}$ $\Delta \Delta +$ $n_{\rm W}$ $\alpha$ FAC

\* M.F.Gu, Can. J. Phys. 86 (2008) 675

S = Sdirect + Sexcit.autoioniz

 $\alpha = \alpha^{\text{radiative}} + \alpha^{\text{die-electronic}}$ 



#### Ionization/recombination rates calculated with FAC



\*S Loch et al., Phys. Rev. A 72 (2005) 052716 \*\*T Putterich et al., Plasma Phys. Control. Fusion 50 (2008) 085016

# W<sup>63+</sup>(3s-3p,3p-3d) identified in JT-60U\*



\*J. Yanagibayashi, T. Nakano *et al., J. Phys. B* **43** (2010) 144013 \*\*Y. Ralchenko et al *J. Phys. B* **41** (2008) 021003

#### Summary

- (JAEA

Analysis of intensity ratio of W<sup>45+</sup> to W<sup>44+</sup> line in JT-60U (Maxwellian e distribution) and EBIT (Mono-energy e) to evaluate ratios of W<sup>45+</sup> recombination rates/cross-sections and W<sup>44+</sup> ionization rates/cross-sections

by taking advantage of canceling out electron temperature/energy dependence of the rates / cross-sections:

•Rates : <u>quantitative agreement</u>
•Cross-sections : <u>quantitative agreement</u>
except some DR resonant structures
⇒ Needs further analysis.

Suggestion for diagnostic lines for W density in ITER core: The same evaluation technique can be applied for the ratio of <u>W<sup>63+</sup> recombination and W<sup>62+</sup> ionization rates/cross-sections.</u>