

+R_{H⁻}(p) n_{H⁻}

© Ursel Fantz

IAEA TM, A+M+PMI, December 15-19,2014

 H_2

I

H(n)

Н

mutual

neutralization

recombination

direct

excitation

Н

н

dissociative

recombination

H₂ dissociative

excitation

Recombining

plasma

H₃

MI, December 15-19,201

H₂ H(n)

excitation

dissociative

recombination

H₂ dissociative

mutual

dissociative

 H_2^+

Н mutual

neutralization

recombination

direct

excitation

H

H

hination

IAEA TM, A+M+PMI, December 15-19,2014

© Ursel Fantz, 15

© Ursel Fantz 16

IPP

IPP

IPP

IPP

Balmer line analysis in negative hydrogen ion sources for fusion

IPP

Collisional radiative model for H with coupling to different particle species: Yacora

Molecular emission in negative hydrogen ion sources for fusion

Collisional radiative model for H and for H₂: Yacora

Important parameter: density ratio H/H₂ obtained from the intensity ratio H₂ / Fulcher band

Beam Emission Spectroscopy (BES): analysis of Doppler-shifted H_{α} line IPP

BES in 2 m distance with 16 horizontal and 4 vertical LOS

IPP Relevance of molecules in ionizing and recombining plasmas Hydrogen plasmas in fusion with molecules (H₂, H₂⁺, H₃⁺) н $H_2(v) + H^+ \rightarrow H_2^+(v) + H$ $H_3^+ + e \rightarrow H + H + H$ н $H_2^+(v) + e \rightarrow H + H(n)$ → H₂ + **H(n)** D. l DT Molecular **Balmer line emission** Assisted Collisional Radiative model Recombination 1 0 3 **Divertor plasmas** Linear plasma devices Ion sources and beams (H⁻, D⁻) area: 0.52 x 0.26 m² Open issue: W surface, N₂ seeding © Ursel Fantz. 22 15-19.2014

IPP

IAEA TM, A+M+PMI, December 15-19,201