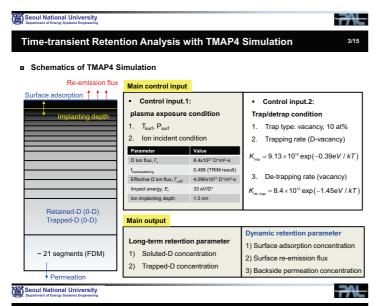
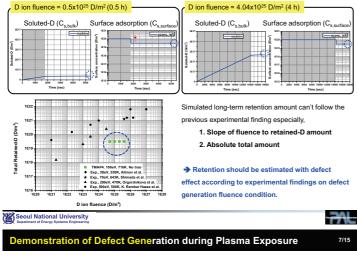
2014.12.16

5/15

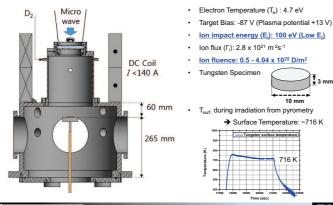

Analysis of Tungsten Long-term Retention and **Re-emission with Ion-induced Defect Generation under** Ion Oversaturation Condition

Younggil Jin, Jae-Min Song, and Gon-Ho Kim

jinjun77@snu.ac.kr

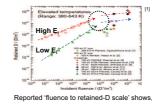

Plasma Application Laboratory

Energy Systems Engineering, Seoul National University, Korea



Long-term Retention Estimation without Defect

No defect condition → Long-term retention = Soluted-D + Surface adsorption



Electron Cyclotron Resonance (ECR) Plasma (1D SOL Simulator)

Previous Long-term retention analysis

- 1) inflection point b/w low and high fluence
- 2) Low retained-D for low Ei case but same infection point, implying that ion-induced defect effect with fluency dependency
- and it generate ion-induced defect due to stress field [2]. Long-term retention is equilibrium phase after dynamic retention and plasma permeation into material. So

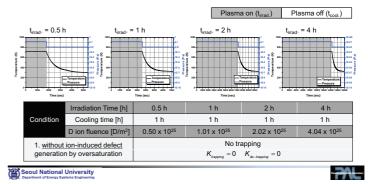
retention analysis is incomplete without dynamic retention analysis with consideration on defect generation. → Present work concentrates on that effect of ion-induced defect generation on dynamic and longterm retention with currently suggested ion-induced defect generation mechanism of oversaturation [1] Z. Tian et al., Journal of Nuclear Materials 399 (2010) 101–107 Con [2] T. Tanabe, Phys. Scr. T159 (2014) 014044 **ML**

Defect generation mechanism Tanabe et al and most PMI research reaches to

consensus on ion-induced defect generation

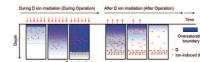
possibility by oversaturation even though low incident ion energy condition (E_i < 200eV). [2]

n (During Operation) After D ion


Diffusion of D atom into bulk induces oversaturation

4/15

Seoul National University

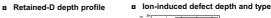

Assumed Input Condition for TMAP4 for No Defect in Tungsten

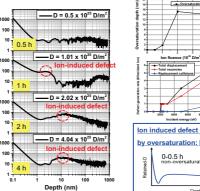
- Simulation condition: D ion fluence 0.5-4.04 x10²⁵ D/m² (0.5 h 4 h)
- Variable for plasma exposure: Exposure time (Fluence with const. flux) → Total simulation time = Plasma exposure time (0.5, 1, 2, 4 h) + Cooling time (1 h)
- Input control variable: Temp., Press., Fluence, Trapping/Detrapping

Current Consensus on Ion-induced Defect Generation Mechanism 6/15

Oversaturation and typical defect type as a D trapping site

D atom diffuse into bulk induced oversaturation. and it generate ioninduced defect due to stress field [3]. → there's no study to estimate the effect of oversaturation on retention.

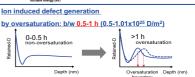

	O TOTOMUTURO						
Category	Typ.conc. [at. %]	Defect type	Generation mechanism	Reemis. energy [eV]	Form of retained-D	TDS peak	Ref.
Intrinsic	4 x 10 ⁻⁴	Point defect,	purity, surface	~ 0.85	D ₂ (pore)	340-560 K	[3]
defect	to 10 ⁻²	grain boundary,	preparation		D (chemisorp.)	600 K	[6]
lon-induced defect	~ 10	dislocation	Cascade collision	0.85	D (dislocation)	~700 K	[5]
		vacancy	Oversaturation	1.45	D (vacancy)	800-900 K	[5]
n-induced defect	~ 1	vacancy clusters, voids	Displacement event	1.8-2.2	D, D ₂ (vacancy)		[4] [6]


Ion-induced defect is most effective long-term retention contributor when there's negligible intrinsic defect and n-induced defect such as ITER condition. And it proportional to ion fluence up to 10 at%.

→ ion-induced defect can be increased up to 10 at% after oversaturation for sufficient ion fluence.

Secul N [3] T. Tanabe, Phys. Scr. T159 (2014) 014014 [5] Ogondnikova O V, Roth J and Mayer M, 2003 J. Nucl. Matter. 313–316 469 Department (4) Joachim Roth and Klaus Schmid, Phys. Scr. T145 (2011) 014031 (9p) (8) Tyburska B, Allmov V Kh, Ogondnikova O V, Schmid K and Ertl K 2009 J. Nucl. Mater 395 150

Threshold D Ion Fluence for Defect Generation by Oversaturation



defect is between 1 nm to 16 nm with similar peak intensity No difference in defect quantity

counts/

Ť

IMS

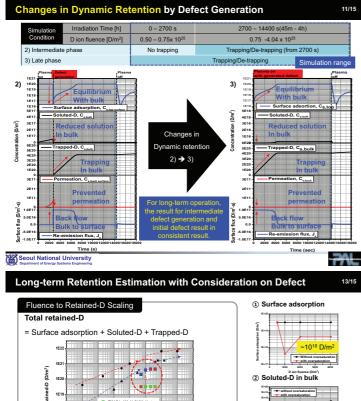
1 3 mm

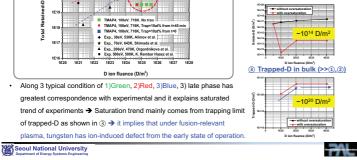
8/15

Condition to Evaluate Defect Generation Effect on Dynamic Retention 9/15

- Defect existence condition → Long-term retention = surface adsorption + soluted-D + trapped-D
- Ion-induced defect generation fluence is assumed as 0.75 x 10²⁵ D/m² from SIMS results.
- 3 typical condition of retention with defect generation in shot-by-shot operation of fusion plasma (Repetition of plasma on-plasma off).

1) Initial phase		2) Intermediate phase		3) Late phase		
			Defe	ect existence		
Plasma on Plasma off		Plasma on	P	lasma off	Plasma on	Plasma off
		Threshold fluence to generate defect				
				Accumulate	d operation time o	f fusion plasma
Simulation	Irradiation Time [h]	0 – 2700 s		2700 – 14400 s(45m - 4h)		
Condition	D ion fluence [D/m ²]	0.50 – 0.75x 10 ²⁵		0.75 -4.04 x 10 ²⁵		
Condition.1) Initial phase		No trapping (No defect)				
Condition. 2) Intermediate phase		No trapping		Trapping/De-trapping (from 45 min)		
Condition. 3) Late phase	Trapping/De-trapping				

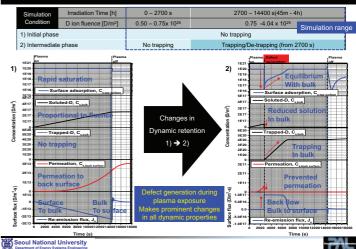

From 1) dynamic retention with no trap case can be understood.

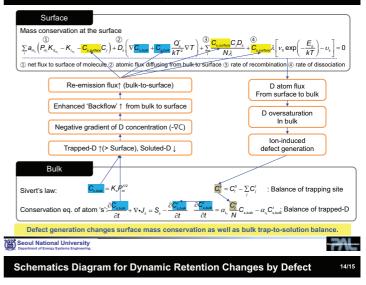

From 2) changes of dynamic retention due to defect generation during plasma-on phase can be analyzed.

TAL

From 3) changes of dynamic retention with tungsten with defect (generated early shot) can be estimated.

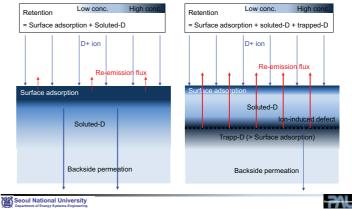
(ä	Secul National University Department of Energy Systems Engineering





- <u>Typical 3 condition was evaluated</u> with different defect generation (existence) time based on threshold fluence of ion-induced defect generation. → For long-term operation, the result for intermediate defect generation and initial defect result in consistent result.
- <u>Saturation trends</u> of previous experimental researches are clarified in this work. The trends comes from mainly trapping limit of defect rather than solubility limit of D in tungsten.
- Additionally, <u>unexpected phenomenon was expected</u>, <u>which is enhanced surface re-</u> <u>emission flux by 'backflow'</u>. It was observed in TMAP4 simulation based on higher bulkto-surface D atom flux due to formation of negative concentration gradient from bulk to surface by trapping.
- This work suggests defect generation affect the changes of on-pulse retention dynamic as well as long-term retention amount. so it is significant to not only <u>safety limit</u> but also <u>operation stability</u>.

Changes in Dynamic Retention by Defect Generation



Effect of Defect Generation on Dynamic Retention Property

n Lower fluence than defect generation fluence ($\Phi_D < 0.75 \times 10^{25} \text{ D/m}^2$)

■ Higher fluence than defect generation fluence ($\Phi_D > 0.75 \times 10^{25} \text{ D/m}^2$)

15/15

10/15

12/15