Deuterium Plasma Diagnostics Using Collisional-Radiative Model Including Molecular Effects

K.Park, W. Lee, S.Y.Shim, C.H.Oh

Nonlinear Optics Lab., Hanyang University, Seoul, Korea

In order to diagnose electron temperature (T_e) and electron density (n_e) of deuterium plasma, spectroscopic method (line intensity ratio) based on collisional-radiative method was selected. CR-model based atomic process are configured and some molecular process of the dissociative excitation, mutual neutralization and dissociative recombination process for the low temperature were included in CR-model. Optical emission spectrum was measured by a monochromator (Czerny-Turner type, spectral resolution 0.313nm) and all of optical system including monochromator was calibrated with quartz halogen lamp. The transition lines of Balmer- α : n=3 \rightarrow n=2, 656.101nm, Balmer- β : n=4 \rightarrow n=2, 486.000nm, Balmer- γ : n=5 \rightarrow n=2, 433.928nm) were selected to diagnose the T_e and n_e of deuterium plasma. The diagnosed results by line intensity ratio were compared with electric probe diagnosis.

Collisional-Radiative(CR) Model Atomic processes 1. spontaneous emission (A)

 $D(p) \rightarrow D(q) + hv$

Spectrum measurement and Balmer line intensity ratio

anck constant

requency of emitted light

radiative decay rate

W.L.Wiese & J. R. Fuhr, J. Phys. Chem. Ref, Data, 38, 565 (2009)

 $H(p) + e^- \rightarrow H(q) + e^-$ 2. excitation/de-excitation by electron collision (C) $H(p) + e^- \rightarrow H^+(q) + e^- + e^-$ 3. ionization by electron collision (S) 4. three-body recombination by electron collision (a) $H^+ + e^- + e^- \rightarrow H(p) + e^ H^+ + e^- \rightarrow H(p) + h\nu$ 5. radiative recombination by electron collision (β) R.K.Janev, JUEL-4105 (2003)

Molecular processes

. dissociative excitation (γ) T.Fujimoto et. al, J. Appl. Phys. 66, 2315 (1989) 2. mutual neutralization type 1 (δ_1) M.Stenrup, Phys. Rev. A79, 012713 (2009)

- 3. mutual neutralization type 2 (δ_2) M.J.J.Eerden, Phys. Rev. A51, 3362 (1995)
- 4. dissociative recombination (ϵ) M. Larsson et al, Phys. Rev. Lett. 70, 430 (1993)

 $H_2 + e^- \rightarrow H(p) + H(1) + e^ H^+ + H^- \rightarrow H(p) + H(1)$ $H_2^+ + H^- \rightarrow H(p) + H_2$

atomic

 $H_3^+ + e^- \rightarrow H(p) + H_2$

Rate equation for excited states of atom with molecular processes

ALL

10 11

Typical deuterium spectrum of low temperature plasma in visible range

Plasma diagnostics

Filament (thermal electron source) chamber

The most influent process was mutual neutralization. Population density of n=3 state was the most increased by mutual neutralization (Balmer- α line intensity will be increased).

 $n_e = 5 \times 10^{17} m^{-3}$, $T_e = 3 eV$

Calculated intensity ratio

 \vec{D}_{α}^{3}

2

1E12 Jsity[m⁻³]

<u>0</u> 1E11

1E10

1E9

Atomic processes

6

principal quantum number

7

8

9

Ð,

Atomic and molecular processes

- electron temperture[eV] D_{γ} peak was too small to distinguish signal with noise.
- Electron temperature (T_e) was not diagnosed using atomic CR model.
- T_e was diagnosed to ~1 eV by using CR model included molecular processes (electric probe 1.24 \pm 0.09 eV).

Hollow Cathode Discharge Chamber

Because of Balmer- α line intensity increase by mutual neutralization, intensity ratios were depressed at low electron temperature

Results

We diagnosed electron temperature more precisely by using CR model included molecular processes.

In order to diagnose the plasma parameters more precisely, we will improve accuracy of the CR-model by concerning radiation trapping effect and another process.

Nonlinear Optics Lab. Hanyang Univ.