

Survey of Plasma-Material Interaction and Atomic Data Studies for Fusion in Russia

V.A. Kurnaev^a, A.B. Kukushkin^{b,a}

^aNational Research Nuclear University MEPhI, Moscow Russia ^bNational Research Centre "Kurchatov Institute", Moscow Russia

Decennial IAEA Technical Meeting on Atomic, Molecular and Plasma Material Interaction Data for Fusion Science and Technology, Daejeon, Republic of Korea, 15-19 December 2014

Introduction

My task is

- to take a look at the PMI and A+M data generation battlefield in Russia and main fighters on it.

- to give a brief survey of our experimental and mental possibilities to contribute more effectively to worldwide activity and broaden collaboration in this field.

Listing of studies selectively illustrated with some examples, for a detailed explanation of which, unfortunately, the talk has no enough time.

MEPhI in Leading International and National University Rankings

* among CIS universities in group A only MSU is included

2. Plasma-material interaction (PMI) data generation for plasma facing components in fusion reactors + data use and needs

OUTLINE

- 1. Introduction
- 2. PMI data generation for plasma facing components in fusion reactors, data use and needs
- 3. A+M data generation for integrated modeling of fusion experiments (transport, radiation losses, spectroscopic diagnostics)
- 4. Application of A+M databases and kinetic codes to fusion plasmas (data use and data needs)
- 5. Conclusion remarks

- Plasma Physics Department was organized in 1961 by leading scientists of Kurchatov Institute in hot plasma physics.
- We started PMI research 50 years ago due to the help of Kurchatov institution. Now we have powerful experimental base and 4 scientific groups jointed in one of the Leading Russian Scientific Schools in Physics. In total we have ~30 academic stuff and engineers and ~15 PhD students in this field and collaborate closely with Kurchatov Institute, TRINITI and other Russian foreign institutions

PMI data generation and use

Processes	Method	Data Source	Publication	Verification /	Problem
		\Code		Application	
Atoms diffusion on the surface and nanostructure growth	Analytic model and numeric code		Plasma Phys. Rep., 2012, 38, 996-999	Compared with liner divertor simulators experiment (<u>Nucl. Fusion,</u> 2009, 49 095005)	Fuzz formation on a tungsten surface
Stress in films and particle on the surface	Analytic model		Plasma Physics Reports, 2012, 38, 290–294.	Tokamak T-10 dust data	Mobilization of dust and exfoliation of erosion product films in tokamaks
Tungsten recrystalization and cracking under ITER- relevant heat loads	Analytic model		http://vant.iterru. ru/vant_2013_3/ 3.pdf	Tungsten irradiation by plasma from QSPA-T plasma gun	Test of tungsten for ITER

Yu.V. Martynenko et al. (NRC "Kurchatov Institute")

MOM Computer simulation of erosion and deposition

Processes	Method	Data Source \Code	Publication	Verification / Application	Problem
Erosion and deposition of Be PFC under plasma and CX impact	3D Monte Carlo code	SCATTER	J.Nucl.Mater. 2011,415, 1, S1119-S1122	Compared with experiment and TRIM simulations	Tritium accumulation in deposited Be layer , erosion and redeposition in FW cracks and dips
Redeposition of materials in diagnostics ducts of ITER	3D Monte Carlo code	SCATTER	J.Nucl.Mater. 2013,438, 1, S731-S734	Compared with experiment and TRIM simulations	Evaluation of ITER diagnostic mirros erosion and deposition of impurities

D.Kodut, V.Kurnaev, N.Trifonov (MePhi)

PMI data generation

Processes Fine structure of big carbon molecules (curved- graphene nanoparticles)	Method Modeling of geometry, electronic and mechanic properties with Density Exactional	Data Source Code L.A. Chernozatce Phys. Lett (1992) 37 J.D. Gale, <i>A</i> Rohl, Mol. Simul. 29	e \ onskii, A 170 A.L.	Publication Phys. B: Cond. Matter 2012, 407, 3467-3471	Verification / Application Characterization big carbon molecules and their agglomerat in the hydrocarb film deposits in	Problem of Diagnostics of deposits (particles and films) in fusion facilities
	Theory	(2003).	271		tokamak T-10	
PMI DATA USE						
Problem	Task	Publication	Proce	sses	Data Source	Data Needs
Diagnostics of	Characterization	Chem. Phys.	X-ray	diffraction	Phys. B: Cond.	Curved-graphene
deposits	of big carbon	Lett., 506,	by big	g carbon	Matter 2012,	nanoparticles and
(particles and	molecules and	<u>2011, 265-</u>	mole	cules	407, 3467-3471	their networks
films) in	their	268	(curve	ed-graphene		
fusion	agglomerates in		nano	particles)		Tritium retention
facilities	the					by these
	hydrocarbon					structures for fuel
	film deposits in					control in fusion
	tokamak T-10					experiments
	A B Ku	kushkin et al	(NRC	"Kurchatov	Institute")	

Radiation damage in W

Self-ion damage by 20 MeV W ions (collaboration with IPP):

MAN

- ✓ Defects with detrapping energy of 1.7-2.0 eV play the major role at high temperatures.
- ✓ Remarkable retention even at 800 K
- ✓ Standard model does not describe all features of peaks

>Basic experiments (to determine the binding energy with single defect of different types)

- ✓ MeV electron damage
- ✓ Low fluence keV ion damage
- ✓ Mechanical production of dislocations

>Set of TDS with different heating rates

(Applicability for traps in the bulk has been demonstrated)

MAN

High temperature D release from Be

1.5 1,6 1000/T_m, K⁻¹

C IPP Max-P für Pla

M. Zibrov et al., to be published

1.55 +/- 0.05 e\

rnal of Nuclear Materials, in p

in, et al. Joi

at.2014.11.022

Yu.M. Ga

doi:10.101

Deprotion 0,4

8/T², K¹s⁻¹

1,4 10¹⁸ D/m²s 1,2

1.0

0,8 flux. 0,6

0.2

TDS data after QSPA plasma heat load (1 MJ/m² at 250µC, 10 shots):

➤The main part of deuterium desorbed at high temperatures, in temperature range of 900-1350 K; >Some spectra have small peaks at lower temperatures with the maximum at 650-700 K; ≻The total deuterium amount in the samples

investigated varied from 3x10⁻⁶ to 6.3x10⁻⁵ (estimated as N_D/N_{Be})

High temperature tritium release from Be exposed to neutron flux.

Decrease of peak position with increase of the heating ramp The reason can be cracking of the material at high heating ramps

B. N. Kolbasov. Problems of Atomic Sci. and Techn., 2013, v. 36, is.4, p.3 (http://vant.iterru.ru/vant_2013_4/1.pdf) D.V. Andreev et al. : Fusion Engineering and Design 39–40 (1998) 465–475

D.K. Kogut, N.N. Trifonov, V.A. Kurnaev.. J. Nucl. Mater., 438 (2013) S731-S734.

Hydrogen retention and release (exp.)

Processes	Method	Data Source \Code	Publication	Verification / Application	Problem
D retention in radiation damaged by 20 MeV W	Thermal desorption spectroscopy		JNM, in press, doi:10.1016/j.jnucmat.201 4.11.022 (Collaboration with IPP, Germany)	Calculations with TMAP7 and DIFTRAP code	Tritium retention in PFM
D interaction with single defects (heating rate variation technique)	Thermal desorption spectroscopy		Unpublished data	Calculations with TMAP7 and DIFTRAP code	Tritium retention in PFM
High temperature D release from Be	Thermal desorption spectroscopy		I. Kupriyanov et al. FUSION SCIENCE AND TECHNOLOGY, 2014, V.66, P.171		Tritium retention in PFM
Low temperature D release from Li in the presence of H ₂ O	Thermal desorption spectroscopy		S.A. Krat et al. Vacuum 105 (2014) 111-114		Tritium retention in PFM
D release from Steels with oxidized layers	Thermal desorption spectroscopy		Nuclear Instruments and Methods in Physics Research Section B: Vol. 315(2013), Pages 110–116		Tritium release from SS PFC in fusion devices

MAN

Deuterium retention in W with additives of TaC and TiC

At RT D retention in W+3 3TaC and W +1 1TiC . comparable with retention in pure W. Irradiation at 600K and more with 6×10^{-24} D/m² retention in doped W much more and corresponds to the bulk material

Max-Planck für Plasmap

Experimental base of MEPhI for PMI data generation

Stand The for Deposition and Material Testing (CODMATT) in ITER relevant conditions Coating Material Queasy-stationary ion/electron beam with power density ≤ 20 MW/m² Testing cycle freque ≥ 1ms, T testing ≤ 2200⁰C frequency

plasma deposition control with MEIS

TDS analysis of Li films deposited by magnetron discharge

MON

Deuterium in lithium films

Liquid metals are perspective PFM! There is a lack of PMI data.

Co-deposition of Li and D in magnetron discharge is investigated in MD-2 device (MEPhI) with in-situ thermal desorption spectroscopy

Main observations:

MQU

- Li films can accumulate high amount of D, up to tenths of atomic percent
- Main desorption in a very sharp peak ~700 К
- Intensive chemical reactions and deuterium release during interaction with air at RT. There was no deuterium in films after air exposure
- S.A. Krat et al. Vacuum 105 (2014) 111-114

Hydrogen retention (theory)

Processes	Method	Data Source \Code	Publication	Verification / Application	Problem
Hydrogen transport in media with a continuous distribution of traps over binding energy	Analytical		[S.I. Krasheninnikov, E.D. Marenkov. Physics Letters A, V. 378, I. 21, P. 1526– 1530]	comprision with experiments TORe supra, Jet	Tritium retention in PFM , outgasing rate
H desorption from the first wall during ELMs	Analytical		[Marenkov, E. D.; Smirnov, R. D.; Krasheninnikov, S. I. Plasma physics reports. V. 39, I. 11, P. 867-872]		Tritium retention in PFM
Thermal instability caused by plasma- wall coupling	Analytical		[E. D. Marenkov, S. I. Krasheninnikov et al. Phys. Plasmas 18, 092502 (2011)]		

H desorption from the first wall during ELMs

Both analytical estimates and numerical calculations in FACE code have shown that H outgassing from PFMC can play a significant role in pedestal restoration after ELM crush. However, the effect is pronounced only at low enough temperature of the first wall.

[Marenkov, E. D.; Smirnov, R. D.; Krasheninnikov, S. I. Plasma physics reports, V. 39, I. 11, P. 867-872] (MEPhI, UCSD)

Complex experiment – production of damaged materials and exposure in plasma

Practically in sible to obtain data on materials behavior in neutron flux of $\geq 10^{11}$ neutron/cm2s (fusion reactor case) on actu ing fis lly ex

- nulation of neutron effect on fusion reactor PFMs by irradiation with high-**Experimental** si
- energy ions

U.

- Produce e materials at high level of radiation damage – carbon-based and tung
- Study effect of plasma on damaged materials erosion and deuterium retention em ov, E.V. Sem
- B.I. Khripunov, V.S. Koidan, A.I. Ryazanov, O.K.Chugunov, V.M. Gureev, S.N. Kornienko, S.T.Latushkin, V.B. Petro V.G. Stolyarova, V.M. Unezhev, L.S. Danelyan, V.S.Kulikauskas, V.V. Zatekin in Zarl AtkA Fusion Intergy Conference (FC23), 11:3 October 2010, Deeleon, Papeublic of Kores, CD Rep. FTP/3-3Rb. Journal of Nuclear Materials 415 (2011) 5649-5552. John Hand Michael Workhop on Hydrogen Istopes Ini Fusion Reactor Materials, Pleasanton, California, USA, 31 May 1 June, 2010.
- Barrier Marchanner, Steiner Steiner, Steiner Steiner, Steiner Karlen, Freissenung, Steiner Auflechnick, Vall (Appl.), Science and Fechnology, Visi, Nr. 2, FUSTER (2) 107-117 (2012).

I of Surface Investigation. X-ray, Synchrotron a I of Nuclear Materials 438 (2013) S1014-S1018.

Low T hydrogen isotopes release from SS and W coated by Al_2O_3 due to irradiation by ions in O contaminated hydrogen plasma 2 3

MOH

Irradiation of stainless steel wall of plasma chamber by D-atoms in the (D₂+ xO_2) gas mixture or by ions of $(D_2 + xO_2)$ plasma (0.5≤x≤30%O₂) leads to its outgasing at the room temperature. Dissolved hydrogen release appears to be 4-5 times higher than deuterium trapping

Application. Low temperature outgassing, in particular, tritium release from stainless steel plasma facing and tritium contacting elements of fusion devices.

.. Begrambekov, A Ayrapetov, V Ermakov, A Kaplevsky, Ya. Sadovskiy, P. Shigin. "Hydrogen and oxygen trapping and retention stainless steel and graphile materials irradiated in plasma" luckear instruments and Methods in Physics Research Section E Vol . 315(2013), Pages 110–116

MOU

UCSD

Hydrogen transport in media with a continuous distribution of traps over binding energy

- \checkmark We have developed a model of hydrogen transport in media with continuous distribution of traps over binding energy
- This model is able to describe some experimental observations, such as "anomalous" time dependence of the outgassing flux from tokamak first wall, and broad thermodesorption spectra.

[S.I. Krasheninnikov, E.D. Marenkov. Physics Letters A, V. 378, I. 21, P. 1526-1530] (MEPhI)

MAU

UCSD

Thermal instability caused by plasma-wall coupling

Initial increase in the surface temperature of the wall T results in a strong increase in the hydrogen desorption rate J followed by an increase in heat flux q to the wall due to enhancement of charge exchange and radiation losses which prompt further increase in the wall temperature

Several models of plasma-wall coupling were used to obtain instability region. In practice, it is possible for definite first wall temperature range, typically 400 -700 K.

[E. D. Marenkov, S. I. Krasheninnikov et al. Phys. Plasmas 18, 092502 (2011)]

National Research Center "Kurchatov Institute"

Results on tungsten shortly

- Fast ions from accelerator were used to produce damage in plasma facing fusion materials to simulate neutron effect (12C+++, 4 He++) Damaged materials response to plasma impact was studied.
- Radiation damage level relevant to a fusion reactor reached and tungsten samples produced. 1-600 dpa range of displacement damage was covered
- n in deuterium plasma was studied in simulated tokamak SOL conditions on irradiated Ero materials >
- Displacement damage influence on the erosion found by analysis of deformation, surface modification and erosion data on tungsten. rium retention in tungsten is analyzed in plasma-induced erosion condition at 250 eV of
- leuterium energy
- Deuterium was found in the layer of 100-150 nm for different levels of damage. Maximal deuterium concentration 10% at, was found in 80 dpa layer 2 accumulation was detected by nuclear reactions method at the depth of ion range at 8-
- Swelling effect observed on tungsten with maximal damage. Tungsten showed linear deformation at 2-3 %.
- Efficiency of the proposed method has been demonstrated. Its further progress appears promising for the research of plasma facing materials stability to combined impact of plasma and neutron fluxes.

UCSD

and

New effects and observations

MAN **Unstable plasma-surface interaction** Harmonic oscillations 6000 U, V 4000 CVC without the film I.A - 2 ************** U, V 400 200 -400 200 -1 -2 High voltage pulse from stable regime E CVC with the thin film Instabilities experimentally were observed with both tungsten and

aluminum electrodes can be additional source of oscillations at the presence of thin oxidized layers.

Fast electrons charges the surface, high electric field in the film, high electron emission

Comparison with Lifetime of the Be first

PFCs.

Lifetime of the SS

diagnostic first wal

Testing of the ITER

Tritium accur

by irradiated

Detritization

techniques

materials

experiments on

the electron

and with

numerical

models

beam facilities

PFM behavior under high heat plasma loads

PMI DATA GENERATION

ublication

Nucl. Mater. 438

(2013) S241-S245

N. S. Klimov et al.,

performance under

mitigated disruption

photonic heat loads,

J. Nucl. Mater, In

Plasma facing

ITER-relevant

materials

pres

N. S. Klimov et al., J.

Method

Experiments

guns

on the plasm

U PUUN

PFMs behaviou der ITER-releva

ated disru

ic heat lo

rocesses

Ion sputtering of metals with simultaneous electron irradiation

Sputtering yield Y, steel Cr18Ni10Ti (components & total)

Yu.V. Martynenko, S.N. Korshunov, I.D. Skorlupkin. Proc. 21st Int. Conf. Ion-Surface Interactions, 22–26 August 2013, Yaroslavl, Russia

Similar evidence: erosion increases in plasma as compared with ion beam only (A. Kirschner, Ibid.) Need to reassess sputtering under realistic plasma condition

MOU

Films formation and cleaning

Deposition of C-H films in the gap at the beam collector surface Al collector, discharge in $\rm H_2$ with graphite diaphragm

Deposition of C-H films in gaps in open and shielded regions in RF field presence Cleaning of C-H films in gaps in open and shielded regions in RF field presence in oxygen discharge

✓The presence of RF fields promotes a C:H films deposition in gaps and shielded from plasma regions, but as well promotes the films cleaning in oxygen discharge Experimentally achieved a 1.7 micron film cleaning during 2 hours

	PMI DATA GENERATION				
Processes	Method	Data Source \Code	Publication	Verification / Application	Problem
PFCs erosion under transient plasma events	Experiments on the plasma guns		N. S. Klimov et al., Fusion Science and Technology, V. 66 (2014), #1, P. 118- 124	Comparison with experiments on the electron beam facilities and with numerical models	Lifetime of the Be first wall. Lifetime of the divertor plates. Erosion mechanisms of the Be and W. Testing of the ITER PFCs. Eroded materials accumulation and dust formation.
Deposition of the erosion products under transient plasma events	Experiments on the plasma guns		A. B. Putrik et al., Fusion Science and Technology, V. 66 (2014), #1, P. 70-76.	Comparison with experiments on the magnetrons and with theoretical models	Dust problem. Hydrogen isotopes accumulation into deposited materials in ITER. First mirror contamination.

N. S. Klimov et al. (SRC RF TRINITI)

U TRUIJIU ELMs, disruptions. Exposed Be targets: TGP56-FW, q = 1.0 MJ/m², Δt=0.5 ms

The Be erosion rate significantly increases with initial temperature rising from 250 to 500° C. W melted layer behavior is practically independent from initial temperature in the present range (250 – 500° C) due to very high melt point (3410° C) in contrast to beryllium (1278° C). The experimental results indicate that more effective PFCs cooling may be needed in ITER to prevent melt layer movement and splashing.

Repeated exposure of the steel leads to a regular "corrugated" surface, with hills and valleys, which was clearly observed already after 5 pulses for all investigated steel grades.

Directions of theoretical modeling in Budker NPI

- · Modeling of dust formation during brittle destruction on the basis of scale similarity hypothesis
- · Analytical calculation of stresses causes by pulse heat load for crack formation modeling

A.Arakcheev et al PSI 2014 A 2012. A.S.Arakcheev, K.V.Lotov J.Exp. Theor Phys. 142, 1012.. 271-278.

Processes	Method	Data Source \Code	Publication	Verification / Application	Problem
Generation and properties of B4C protecting layer on OFC (graphite, W)	Experiments on the plasma guns		A.Barsuk et al. 14th PFMC Intern. Conf. Juelich, Germany, May 13 - 17, 2013	Comparison with experiments on the electron beam facilities and with numerical models	W protection from cracking with renewable low Z coverage resistive to sputtering and H retention.
2. Tungsten dust/powder behavior under intensive plasma irradiation.	Experiments at the high plasma density set		L.B.Begrambekov et al., 21st PSI conference (2014J.		Dust mobilization under outgassing and electric field, conglomeration and melting under high heat fluxes

U TRUITIN Hydrogen isotopes retention in deposited erosion products. Results

リアンリアン

Experimental results

Possibility of protecting renewable B₄C coating for PFC protection

A uniform layer of B₄C safety formation on graphite under multi-pulse irradiation by coaxial gun QSPU-T

h Stoichiometric covering after 15 (a) , 50 (b), 100 (c) pulses (1 GW/m², τ = 0.5 s)

The irradiation power ~ expected full-scale ELMs in ITER

No damage, erosion from sputtering only

The cracks are healed under thermal expansion during subsequent pulse, only new ones appear during cooling

NO DESTRUCTION

A.Barsuk, L.Begrambekov, O.Buzhinsky, A.Zhitlukhin, *et al.* 'Behavior of Protecting B4C Coating under Irradiation by Plasma Pulses of QSPA-T'. 14th Intern. Conf. on Plasma-Facing Materials and Components for Fusion Applications, Juelich, Germany, May 13 - 17, 2013

Tungsten dust\powder behavior under heat, electric field and hydrogen ion influence

<u>Powder composition (%)</u>: \geq 99.5 W; 0.2 Mo; 0.18 (Al+P+S+C+As+Si+Ca+Ni+K+Fe+Na); 0,12 (O+H₂O). The powder comprised of two fractions of crystalline micro particles with dimensions: $5\pm1.5\mu$ and $1\pm0.2\mu$ ("large" and "small" particles).

	Influence on the tungsten powder, without modification	Phenomena at the surface			
	Prior any influence (virgin powder)	Three dimensional chains of the large particles (a) and the clusters with geometrical forms of the small particles (b) were observed in the powder			
	Powder heating with low temperature ramp up (5K/s).	Powder out gassing in the temperature range 550-820 K. Approximately 5×10^{19} molecules/m ² release from the sorbed layer on powder particles.			
	Powder heating with high temperature ramp up(100K/s)	Pulse gas release causes emission of dust particles from the surface layers of powder at the temperatures \leq 1250 K.			
	Electric field impact without ion irradiation.	Electric field higher than 350 V/mm (independently of its direction) initiate particle emission from the powder surface at the temperatures \leq 1300 K.			
	Electric field accompanied with ion irradiation.	The threshold electric field for particle emission decreases down to 290, 260, 220 V/mm for 5 KeV, 10A/m ² ; 6 KeV, 30A/m ² ; 6.6 KeV, 50 A/m ² respectively			
	Ion irradiation with higher power density	 c) small particles pasted all over the large ones (2 keV/at, 100 A/m², 1300 K) d) small particles are melted and cover the large ones (2 keV/at, 150 A/m², 1500 K) e) Uniform layer is formed on clusters of the small particles (2 keV/at, 300 A/m², 1800 K) 			
10 10 10 10 10 10 10 10 10 10 10 10 10 1	a b	c d e			

L. Begrambekov*, A.Grunin, S.Vergazov, A. Zakharov Tungsten dust/powder behavior under intensive plasma i Preceedings of 21st International Conference on Plasma Surface Interactions, P1-032

3. A+M data generation for integrated modeling of fusion experiments

Comparison of radiation losses of W impurity in statistical models LPF and EM with results of numerical simulations

EM – electromagnetic model (Vlasov kinetic equation), A.V. Vinogradov, O.I. Tolstikhin, Sov. Phys. JETP 69, 683 (1989); ADPAK - D. Post, et al., PoP 2, 2328 (1995); AIM - averaged ion model, AIM ADPAK D.E. Post, et al., At. Data Nucl. Data Tables 20, 397 (1977); ADAS- H.P. Summers, 1994; ADAS projected, ADAS COWAN/PWB - R. Neu, et al., Nucl. Fusion, 45, 209 (2005); CA-LARGE - T.Putterich, et al., Nucl. Fusion 50, 025012 (2010); Wexp - experimental estimate of radiation losses.

Statistical approach provides an effective data generation for W radiation losses that can be as the fast routine in complex transport codes

electron-loss: $A^{q+} + H \rightarrow A^{(q+m)+} + H + me^-$, $m \ge 1$, A = Be, Fe, Mo, W electron-capture: $A^{q+} + H$, D, T $\rightarrow A^{(q-1)+} + (H, D, T)^+$, A = Be, Fe, Mo

I.Yu. Tolstikhina, M.S. Litsarev, D. Kato, M.-Y. Song, J.-S. Yoon, V.P. Shevelko. J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 035206 (11pp)

Deposited W layer modification under thermal cycling

- Temperature of deposition 500 K.
- Substrate ITER grade tungsten.
 Deposited layer thickness -200 nm.
- 10s heating up to 1500K and 40 s cooling down to 550°C.

# ofl cycling	Deposited layer modification
5	The surface relief became rough (3-4 μ m), cracks 0.1-0.2 μ m and blisters with diameter 2-5 μ m ("big blisters") appeared.
10	Blisters with diameters 0,2-0,4µm ("small blisters") appeared. Their covers had openings. The cracks groove up to 0,2-0,3µm.
15	Covers of some big blisters appeared to be broken. SEM examination of blisters "bottom" showed that they appeared between the deposited layer and substrate
25	Diameters of both small blisters and openings on their covers increased. The neighboring blisters joined each other forming kind of big shapeless blisters
25-60	The covers of "old" and "new" big blisters were flattening. Total destruction of blisters occurred
eposited	W layer practically fully detached within 60 thermal cyc

E.A.Azizov, L.B.Begrambekov O.I.Buzhinsky, N.S.Klimov, V.A.Kurnaev, I.V.Mazul. Protecting B₄C coating for ITER divertor tiles. Deposition, operation, removal of erosion products. Preceedings of 25th IAEA Fusion Energy Conference (FEC 2014). MPT/P4-17.

A+M	DATA	GENERAT	ION

Processes	Method	Data Source	Publication	Verification /	Problem
	linetitot	\ Code		Application	
Line emission of W, including multiply ionized	Analytic theory of a quasi- continuous spectrum photon emission by a plasma-like system	W charge- state distributions (IE balance).	JETP Letters, 98 (2013) 786–789	Comparison with first-principle numerical modeling, experimental database on W line emission	Test of W covering (divertor, first wall) in fusion facilities
lon broadening of Ly-alpha spectral line shape	Comparison of methods	Comparison of all existing codes	E.Stambulchick et al., High Energy Density Phys. 9 (2013) 528-534; Atom 2 (2014) 378-381	Substantial deviations of results	Integrated modeling of fusion experiments (radiative transport + diagnostics, e.g., ITER divertor)

V.S. Lisitsa et al. (NRC "Kurchatov Institute", Moscow, Russia)

$\Delta + M$	δάτα	GENERATION
		GLINLINATION

Processes	Method	Data	Publication	Verification /	Problem
		Source \		Application	
		Code			
Charge-changing	Adiabatic	Codes:	J. Phys. B: At.	Plasma	Influence of the
collisions of tungsten	theory of	ARSENY,	Mol. Opt. Phys.	modeling (near-	isotope effect (mass
and its ions with neutral	transitions in	CAPTURE,	<u>45 (2012)</u>	wall, divertor),	dependence) on the
atoms H, D, T, He, N, Ar	slow	DEPOSIT,	<u>145201</u>	planning and	charge exchange
and W	collisions	RICODE	Physics-Uspekhi,	interpretation	cross sections in
	(hidden		<u>56, 213 (2013)</u>	of future	slow collisions,
Influence of the isotope	crossing		Phys Rev A 84,	experiments	ionization and
effect on the charge	method.),		012706 (2011)	in fusion	charge exchange
exchange in slow	Born			devices using	cross sections in a
collisions of Li, Be, and C	approximatio			tungsten as a	wide energy range,
ions with H, D, and T	n and the			material for the	contribution of the
	classical			plasma-facing	multi electron
Collisions of Be, Fe, Mo	energy-		Submitted to JPB	components.	ionization to the
and W atoms and ions	deposition		(не нашел		total cross sections
with hydrogen isotopes:	model.		публикации)		
electron-capture and					
electron-loss cross					
sections					

Inga Yu. Tolstikhina et.al. (Lebedev Physics Institute RAS, Moscow, Russia)

4. Application of A+M databases and kinetic codes to fusion plasmas (data use and data needs)

A+M DATA USE							
Problem	Task	Publication	Processes	Data Source	Data Needs		
Integrated modeling of ITER scenarios	Fast routine kinetics of hydrogen penetration	<u>Proc. 39th EPS</u> <u>Conference,</u> 2012, P4.093,	All processes with H ₂ and H	Data file AMJUEL: Additional Atomic and	H ₂ dissociation with H* product,		
H-alpha diagnostic in ITER	from the wall in ITER, tested against B2- EIRENE	Proc. 40th EPS Conference, 2013, P1.135.	Charge exchange of neutral H in excited states with protons	Molecular Data for EIRENE	CX(n,I) nl-cascade population		
Thomson diagnostics in ITER divertor (E.E. Mukhin et al., Ioffe Physical Institute, St.	Line and continuum spectral background on diagnostic chords	<u>Plasma Physics</u> <u>Reports, 2012,</u> <u>38, 138–148</u>	IR Hydrogen lines (P-7), Brems and photorec.	NIST ASD			
Petersburg, Russia)	Impurity (nitrogen) line background	Nucl. Fusion 54 (2014) 043007 (13pp)	IR lines, kinetics of 3d levels	NIST ASD, ADAS			

V.S. Lisitsa et al. (NRC "Kurchatov Institute", Moscow, Russia)

A+M DATA USE

Problem	Task	Publication	Processes	Data Source	Data Needs
Charge	Predictive	25th Meeting of	Selective		Cross sections
exchange	modeling, Data	the ITPA Topical	populations of m		for W transitions
recombination	interpretation	Group on	sublevels in an		in visible spectral
spectroscopy		Diagnostics,	atomic beam in a		range
in ITER		October 2013, IO	strong magnetic		
(S.N.		Cadarache	field		
Tugarinov,					
TRINITI,					
Duccie)					

S.N. Tugarinov et al. (TRINITI, Troitsk, Russia),

A+M DATA USE

Problem	Task	Publication	Processes	Data Source	Data Needs
H-alpha (and	Divertor Stray	24th IAEA FEC,	All processes	B2-EIRENE	Hydrogen
Visible Light)	Light problem,	San Diego,	with D ₂ and D	(SOLPS4.3)	isotope
Diagnostic	accuracy	2012, ITR/P5-		simulations of	molecules
in ITER (A.G.	assessment	<u>44</u>	All processes	plasma	dissociation
Alekseev, NRC	(ITER		with impurities	background	with excited
"Kurchatov	Measurement		(Be, W, etc.)	in divertor+SOL	atoms product
Institute",	Requirement			in ITER	
Moscow,	flow down)				
Russia)				EIRENE	
D-alpha	Verification of H-	AIP Conference		simulations of	
diagnostic in	alpha synthetic	Proceedings		neutral D velocity	
JET	diagnostic for	1612, 97 (2014)		distribution in	
	ITER in JET ITER-			SOL in ITER	
	like Wall	25th IAEA FEC,		DUVINAD	
	experiments	St. Petersburg,		DIVINIP	
		2014, EX/P5-20		simulations of	
				Impurities	

A.B. Kukushkin et al. (NRC "Kurchatov Institute", Moscow, Russia)

A+M DATA USE

Problem	Task	Publication	Processes	Data Source	Data Needs
D-alpha line shape	Spectroscopic	Plasma Physics	All processes	ADAS data base	Cross sections
for ion temperature	diagnostics in	Reports 39,	with D atom		energy
determination in	tokamak T-10	(2013) 632-643		Spectra	dependence
CXRS diagnostics				simulation	
C+5 n = 8-7 line		Problems	All processes	codes	nl-model for
intensity in CXRS		atom. sci. and	with C+5 ion		C+5 n = 8-7
diagnostics		technol., ser.	All processes		line intensity
		Nucl. fusion, 37	with C+5 ion		for low energy
		(2014) 60-70;			(100 keV)
		Proc. 25th IAEA			beam
C ⁺⁵ n = 8-7 line shape		FEC (2014)			nlm-model for
for carbon		EX/P1-44			C ⁺⁵ n = 8-7 line
temperature					shape with
determination with	Design of				allowance for
CXRS diagnostics	CXRS for T-15				Zeeman and
	tokamak				Stark effects

Spectral background for Thomson diagnostics in ITER di

Profiles of local emissivity of most intense lines of neutral nitrogen 0,1% 3d–3p (infrared–986.3-1021 nm) transitions calculated using the coronal model and with the use of ADAS data, for diagnostic chord #23 (*n*e and *T*e profiles obtained from a SOLPS simulation appropriate to ITER Q = 10 flat top conditions). x is radial coordinate. Good accordance of simple cor. model with ADAS

E.E. Mukhin, R.A. Pitts, et al. Nucl. Fusion 54 (2014) 043007

Use of A+M data in the Budker INP

Development of sources on ion and neutral beams for fusion

Task	Publication	Processes	Data source	Data need
Control of impurity content in neutral beams	Instruments and Experimental Techniques 53 (2010) 253	Impurities ionization balance and atomic line emission	NIST ASD, ADAS	Impurities (C,O, Cu) excitation in collisions with H_2 Isotopic effects in $H\alpha$ excitation
Doppler-shift measurements of NB species content	<u>JINST 8</u> <u>P05007 (2013)</u> Rev. Sci. Instr. 85 (2014) 02A707	$\begin{array}{l} H\text{+}H_2 \rightarrow H^*\text{+}H_2 \\ \\ H^*\text{+}H_2 \rightarrow H^*\text{+}H^*_2 \end{array}$	ALADDIN ORNL- 6086	Sublevel-resolved cross-sections of hydrogen excitation in collisions with H ₂
Simulation of the beam generation and transport		$\begin{array}{l} H_2+e \rightarrow H+H^{++2e} \\ H_2+H_2 \rightarrow H+H+H_2 \end{array}$		Distribution function of products of dissociation of H_2 (DH, D_2) in collisions with e and H_2

Conferences in Russia relevant to A+M+PMI data studies for fusion research

- XLII Zvenigorod International Conference on Plasma Physics and Controlled Fusion, Zvenigorod, Russia, February 2015
- IX International Conference «Novel methods of plasma diagnostics and their application", November 2014, MEPhI, Moscow
- XVIII conference "Plasma-surface interactions and plasma technologies", 5-6 February 2015, Moscow, National Research Nuclear University MEPhI <u>http://plasma.mephi.ru/ru/en/psi-2015-</u> <u>en/committees.html</u>

Acknowledgement to contributions and fruitful discussions:

V.S. Lisitsa, Yu.V. Martynenko, V.S. Neverov,

A.G. Alekseev, A.Yu. Dnestrovskii, M.B. Kadomtsev, L.N. Khimchenko, B.I. Khripunov, B.N. Kolbasov, S.N. Korshunov, V.A. Krupin, M.G. Levashova, D.Kh. Morozov, A.I. Ryazanov, V.A. Shurygin, I.D. Skorlupkin, V.G. Stankevich, K.Yu. Vukolov, V.E. Zhogolev (Kurchatov Institute)

S.W. Lisgo, A.S. Kukushkin, M. von Hellermann, E. Veshchev (ITER Organization)

- V. Kotov, D. Reiter (Forschungszentrum Jülich)
- M.F. Stamp, S. Brezinsek (JET-EFDA, Culham Science Centre)
- L.A. Chernozatonskii (Inst. Biochemical Phys., Rus. Acad. Sci. (RAS))
- L.A. Vainshtein, I.Yu.Tolstikhina, V.P. Shevelko (Lebedev Phys. Inst. RAS)
- L.B. Begrambekov, Yu.M.Gasparyan, K.Gutorov (Moscow Eng. Phys. Inst.)
- A.M. Zhitlukhin, O.Buzhinsky, N.Klimov (TRINITI, Rosatom)

S.V. Polosatkin, A.V. Burdakov A.S.Arakcheev (Budker Inst. Nucl. Phys. RAS)

V.V. Voloshinov, A.P. Afanasiev, . (Inst. Inform. Transmis. Problem RAS)

Concluding remarks

Conclusions

Various PMI data in Russia obtained at different facilities with various methods. Round robin experiments with the same samples started joining experimentalists and theoreticians of all main laboratories.

More broad collaboration with foreign laboratories is welcomed

The existing A+M data (data storage and exchange for elementary processes and basic, simplest kinetic models) correspond to major needs of fusion research. A number of successful applications is shown.

The ways to improve the efficiency of A+M+PMI data use in fusion plasma diagnostics are: (i) creating the simulators (fast-routine simplified computational models), (ii) atomic kinetic models for real-time diagnostics,