Known and unknown in electron-atom and molecule scattering: review talk

Grzegorz P. Karwasz & Kamil Fedus

Institute of Physics Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus , 87100 Torun, Poland

Mi-Young Song Plasma Technology Research Center, National Fusion Research Institute 814-2 Osikdo-dong, Gunsan-si, Jeonbuk, 573-540 Korea

IAEA Decenial Meeting, Daejeon 15.12.2014

R(m

lon Flux (m⁻² s⁻¹)

10²³

Total

C₂H

сн₁

Rationale: edge and divertor plasma

* Collisional Radiative Model.

Guillemaut et al. Nucl.Fusion 54 (2014) 093012

Carbon sputtering by CH_4 and C_2H_y ions

10

8

6

2

0 10²²

The emission rates of CH, CD and C₂ spectral bands and a re-evaluation of th chemical sputtering yield of the JT-60U carbon divertor plates

1.Recombination: $A^+ + e \rightarrow A$

1a. dissociative recombination: AB⁺ + e \rightarrow A^{*} + B

2. Partial cross sections:

vibrational excitation $e+AB(v=0) \rightarrow e+AB(v>0)$

electronic excitation
$$e+A^+ \rightarrow e + A^{+*}$$

double ionization $e+A^+ \rightarrow A^{2+} + 2e$

Outline:

- 1. Rationale: what is needed?
- 2. Experimental methods for electron-molecule cross sections
- 4. Case study: recommended CSs for $e^- + CH_4$
- 5. Semiempirical estimations: C, Be, W like species
- 6. Theoretical progress (for ligth targets)
- 7. Theory for C, Be, W, ...
- 8. Conclusions: how to proceed?

Rationale: electron T and power irradiated

Electron temperature during three points of density ramp: good agreement

Power irradiated (0.5-1.5 MW) simulation: JET-C <10% JET-ILW factor 3!

0 1 -

Guillemaut et al. Nucl.Fusion (2014)

ODEN-ADAS

Data needed: I Neutrals (H, C, C₂, Be, BeH₂, CH₄)

1. Total cross section

2. Partial cross sections:

elastic scattering $e+A \rightarrow e+A$ rotational excitation $e+CH_4$ (J=0) $\rightarrow e+CH_4$ (J=2) vibrational excitation $e+AB(v=0) \rightarrow e+AB(v>0)$ electron attachment (dissociative) $e+AB \rightarrow A^* + B$ electronic excitation $e+A \rightarrow e+A^*$ emission lines: $A^* \rightarrow A + hv$ neutral dissociation $e+AB \rightarrow A + B + e$ emission from dissociation $e + AB \rightarrow A^* + B + e + hv$ ionization $e+A \rightarrow A^* + 2e$ dissociative ionization $e+AB \rightarrow A + B^* + 2^\circ$ ionization into excited states $e + A \rightarrow (A^+)^* + 2e$

Databases

DATA CLASSES	Apr 07 Electron impact ionisation coefficients The data sets are collections of Maxwell averaged electron impact ionisation rate
ADE01	coefficients represented by the reactions
ADF04	$X_{i}^{z+} + e^{-} \rightarrow X_{o}^{(z+1)+} + e^{-} + e^{-},$
ADF07	$X^{\pm+} + \mathrm{e}^- \rightarrow X^{*(\pm)+} + \mathrm{e}^- \rightarrow X^{*(\pm+1)+} + \mathrm{e}^- + \mathrm{e}^-$
ADF08	
ADF09	That is the coefficients combine both direct ionisation and excitation/autoionisation. The tabulations are resolved by initial state i and final metastable ρ , with the initial state also mostly spanning just
ADF38	metastables. The rate coefficients are tabulated as a function of electron temperature. The data sets are togically required in sub-dispetence for a particular element. ADE07 is a fundamental data format. It
ADF39	should be noted that it does not include step-wise ionisation via multiple sequential excitations and then
ADF48	a thai iomising collision. Effective iomisation coefficients, including step-wise iomisation, occur as a derived data output from collisional-radiative modelling and such data are archived as a sub-class of data format ADF11.
DERIVED	
ADF11	Search ADF07 files
ADF12	
ADF13	Ion
ADE15	Element
	Charge

Databases

Databases

Experimental methods: total

attenuation method $I = I_0 \exp(-\sigma nL)$; precision <5%

H. Nishimura et al., J.Phys. Soc. Japan 72 (2003) 1080

M.-Y. Song et al., to be published

Experimental methods: excitation (electronic, vibrational)

I. Linert, M. Zubek (Gdansk) J. Phys. B 39 (2006) M. Khakoo et al. (Fullerton California) M. Allan (Freiburg University)

Experimental methods: elastic

I. Linert, B. Mielewska, G. King, and M. Zubek, PRA (2006)

Experimental methods: electronic, vibrational, DA

M. Allan, O. Zatsarinny. K. Bartschat, PRA (2011) Kr: experiment and Dirac R-matrix

Experimental methods: ionization (1)

R. Basner, M. Schmidt, K. Becker, Int. J. Mass Spectr. 233 (2004) 25

Dissociation into neutrals (CF₄, CH₃F...)

Methane: swarm in mixtures

Review case study: CH₄

1. Total cross section: ±5%

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

Experimental methods: ionization (2)

B. G. Lindsay et al., JCP 129 (2004), S J King nad S D Price, JCP134 (2011) 074311

Diffusion coefficients \rightarrow electronic distribution function $n_{\rm e}(\mathbf{r}, \mathbf{v}, t)$

Acetylene: swarm ↔ beam: vibrational, MTCS

Review case study: CH₄

2. Momentum transfer (and elastic) cross sections: ±15%

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

3. Ionization total: ±10%

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

Review case study: CH₄

3a. Ionization partial: channel resolved

 $\begin{array}{ll} \text{e.g.} & e + CH_4 \rightarrow CH_3^{+} + H^{+} + 2e \\ \text{or} & e + CH_4 \rightarrow (CH_4^{+})^* + e \rightarrow CH_3^{+} + H^{+} + 2e \\ \text{or} & e + CH_4 \rightarrow CH_3 + H^{+} + e \end{array}$

Experimental data (coincidence measurements): Ward et al.. 2011

to be done...

Review case study: CH₄

5. Electronic excitation: reasonable agreement between dissociation into-neutrals experiment and R-Matrix calculation

W. J. Brigg, J. Tennyson, M. Plummer J. Phys. B **47** (2014) 185203 R-Matrix Figure 13. Electron impact dissociation cross section. Theory: red solid line: present work; red dohad line: present work, shifted to lowce energy by 3.2 eV; numbe solid line: Hayashi (1991); orange dashed line: CH, of Zdidlkowski et al (2012); orange dotted line; CH; of Zdidlkowski et al (2012); Experiment: blue squares; CH; of Nakano et al (1991); blue traingdiss: CH; of Nakano et al (1991); green triangles: CH; of Makochelanwa et al (2006); pink triangles: CH; of Makotha and Moore (1998); pupple circles: Wintes (1975).

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

Review case study: CH₄

3a. Ionization partial: ±10%

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

Review case study: CH₄

4. Vibrational: disagreement between swarm, beam, theory

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, to be published

Review case study: CH₄

6. Rotational excitation: experiment (Kochem et al.. 1985) really difficult; cross sections from R-matrix calculations adopted

W. J. Brigg, J. Tennyson, M. Plummer, J. Phys. B **47** (2014) 185203 R-Matrix

M.-Y. Song, J. S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kukooulin, Y. Nakamura, J. Tennyson, work in progress

GK, work in progress

Searching analogies (2): "resonances" in total cross sections

G. Karwasz, K. Fedus, FS&T (2013), experimental data: Szmytkowski and collaborators

Semi-empirical methods: elastic (MERT)

Link between elastic, total, MTCS: in some simple cases, and low energies

K. Fedus, G. Karwasz, Eur. J. Phys. D (2014)

Rotational, very low energy limit (Born):

Semi-empirical methods - zero-energy cross section: Langevin, Voigth-Wannier

Allan et al., Advances At. Mol. Phys. (2004)

Semi-empirical methods: elastic (MERT)

Link between elastic, total, MTCS: in some simple cases, and low energies

K. Fedus, G. Karwasz, Eur. J. Phys. D (2014)

Semi-empirical methods: vibrational (Born)

Normalized energies: $t = E/I_n$: $u_n = E_{kin}/I_n$ Only two values needed from QCh Y.-K. Kim and M. E. Rudd, Phys. Rev. A 50 (1994) 3954 G. Karwasz, P. Mozejko, M.-Y. Song, Int. J. Mass Spectrometry (2014)

Electron detachment(D-M): B₂^{-,} BO⁻, O₂⁻, CN⁻)

Deutsche-Mark formalism

H. Deutsch et al. Int. J. Mass Spectr. 277 (2008) 151

High energies: in search for additivity rule

Swarm analysis: resonances in NO

M. Josic, J. Mechlińska-Drewko, Z. Petrovic, G. Karwasz, Chem. Phys. Lett. (2003)

Theoretical progress - Kohn variational: dissociative attachment (C_2H_2)

S. T. Chorou and A. E. Orel, Phys. Rev. A. 77 (2009) 042079

Searching analogies (1): partitioning into elastic & ionization

G. P. Karwasz, J.Phys. B 28 (1995) 1301-9 A. Zecca, G. P. Karwasz, R. S. Brusa and T. Wróblewski, Int. J.Mass Spectr. 223-224 (2003) 205

Theoretical progress: resonances in NO (R-matrix)

Laporta, ... J Tennyson, Plasma Sources Sci. Technol. 21 (2012) 055018

Overlapping resonances: NO (swarm analysis)

M. Josic, J. Mechlińska-Drewko, Z. Petrovic, G. Karwasz, Chem. Phys. Lett. (2003)

C_2^- – electron detachment, electronic excitation

BeH⁺ – electronic and rotational excitation

broken - without Born correction

Halnova, Gorkenfield, J Tennyson, JPB 41 (2008) UK Molecular R-matrix code: electronic, rotational

BeH⁺ dissociative recombination

Variational Kohn method

BeH: electronic and vibrational excitation

0.99 0.93 1.02 1.05

 σ/E^{b}

R Celiberto, K L Baluja and R K Janev, Plasma Sources Sci. Technol. 22 (2013) 015008 Mott-Massey Schr. eq.

Metal molecules (B₂): electronic excitation

J. S. Rajvanshi & K. L. Baluja, Phys. Rev. A 86 (2012) 032794: R-Matrix

K Chakrabarti and J Tennyson, Eur. Phys. J. D 66 (2012) 31 UK Molecular R-matrix code: electronic, rotational

BeH⁺ – electronic and vibrational excitation

R Celiberto, R K Janev, D Reiter, Plasma Phys. Control. Fusion 54 (2012) 035012 Coulomb-Born approximation: cross sections, excitation rates T=0.1-10,000 eV)

Conclusions – state of art

- 1. Total cross sections (for "easy" molecules) OK
- 2. Elastic (and therefore total also): theory OK
- 3. Vibrational: theory on a promising way
- 4. Ionization: abundant data and models
- 5. Dissociative attachment (and dissociative neutralization) - theory proves OK, work needed
- 6. Electronic excitation (and dissociation)
 - remains the most challenging

Conclusions (2) - perspectives:

- 1. "Physical" cross sections still needed
- 2. "Chemical" cross sections even more
- 3. Reviews for new targets: Be, BeH_2 , W ?
- 4. Simple theories and scalling laws useful
- 5. Advanced theories "at reach"
- 6. Lab experiments still needed
- 7. and ITER-like experiment even more

\rightarrow constructing cooperative networks

Acknowledgments:

Atomic Molecular Data Services Provided by the Nuclear Data Section

Greetings from Toruń!