Electron scattering from the molecular hydrogen ion

heavy particle collisions with atoms and molecules

D.V. Fursa, M.C. Zammit, I. Bray, A. Kadyrov, I. Abdurakhmanov, S. Avazbaev

Curtin University Western Australia

Curtin[®]

CCC method for electron-molecule scattering

- Born-Oppenheimer approximation, Fixed-nuclei approximation
- · One-center approach
- one-electron functions: Sturmian basis $f_{n,l}(2\lambda r) \propto (2\lambda r)^{l+1} e^{-\lambda r} L_n^{2l+2}(2\lambda r)$
- Target Hamiltonian H_T is diagonalized

$$\langle \phi_f^N|H_{\rm T}|\phi_i^N\rangle=\epsilon_f^N\delta_{fi}$$
 • N-state multi-channel expansion

$$\Psi_i^{(+)}(\mathbf{x}_1,...,\mathbf{x}_M,\mathbf{x}_p) = \mathcal{A} \sum_{n=1}^N F_n(\mathbf{x}_p) \ \phi_n(\mathbf{x}_1,...,\mathbf{x}_M)$$

integral Lippmann-Schwinger equation for the T-matrix

$$T_{fi}(\vec{k}_f, \vec{k}_i) = V_{fi}(\vec{k}_f, \vec{k}_i) + \sum_{n=1}^{N} \int d^3k \frac{V_{fn}(\vec{k}_f, \vec{k})T_{ni}(\vec{k}, \vec{k}_i)}{E + i0 - \varepsilon_n - k^2/2}$$

- · solved by partial-wave expansion
- · reduced to a system of linear equations

Curtin[®]

CCC method: e-H₂⁺ scattering

Checked that we produce correct

energy levels

	1sσ _g		2po₁		$2p\pi_u$	
R	CCC	[1]	CCC	[1]	CCC	[1]
2.0	-0.601	-0.603	-0.166	-0.168	0.071	0.071

· oscillator strength

	1sσ _g - > 2p	ο σ _u	1sσ _g ->2pπ _u		
R	CCC-L(V)	[1]	CCC-L(V)	[2]	
2.0	0.320(0.311)	0.319	0.461(0.456)	0.460	

· static dipole polarisability

-					
	α_{par}		α_{perp}		
R	CCC-L	[2]	CCC-L	[2]	
2.0	5.084	5.078	1.767	1.758	

[1] D. R. Bates, J. Chem. Phys. 19, 1122 (1951) [2] D. M. Bishop and L. M. Cheung, J. Phys. B 11, 3133 (1978)

Curtin

P

$e^--H_2^+$ dissociative ionization (DI)

Convergence in the combined-nuclei limit (R=0)

Total ionisation cross sections (TICS) for electron scattering from the ground state of He

Basis size 351-state calculation generated with basis $N_l = 17 - l$, $l_{max} = 4$

Outline

- > CCC method for electron-molecule collisions: e-H₂⁺
 - · Formulation of the CCC method for molecules
 - e-H₂⁺: convergence and accuracy for fixed-nuclei calculations
- e-H₂⁺: adiabatic-nuclei calculations: challenges and accuracy
- > CCC method for heavy particle collisions
 - Single-centre approach: antiproton collisions with noble gas atoms and H₂ molecule
 - Two-centre approach: proton collisions with hydrogen atom
- Conclusions

Curtin®

CCC method for electron-molecule scattering: e-H₂⁺

Born-Oppenheimer approximation

$$\Phi = \phi_{Nuclear}(\vec{R})\phi_{Electronic}(\vec{r}, R)$$

Fixed-nuclei approximation, R = 2.0 (fixed)

$$H_T \equiv H_{Elec} = -\frac{1}{2} \nabla^2 - \frac{1}{\left| \vec{r} - \vec{R} / 2 \right|} - \frac{1}{\left| \vec{r} + \vec{R} / 2 \right|}$$

- · One-centre approach: origin at the midpoint
- Target Hamiltonian H_T is diagonalized in a Sturmian (Laguerre) basis
- Basis: $N_l = 17 l$, $l_{max} = 4$ The ls & 2p one-electron orbitals are replaced by accurate $H_2^+ 1s\sigma_g$ and $2p\sigma_u$ orbitals (diagonalized in the basis with $l_{max} = 9$, $N_l = 60$)
- · Leads to 351 states

Curtin®

CCC method: e-H₂+ scattering

Solution of the Lippmann-Schwinger equation:

- partial-wave expansion: from 3D to 1D equation
- · reduction to a system of linear equations using a quadrature rule
- use of conserved quantum numbers (M, S, Π) to reduce the size
- Projectile partial wave expansion: maximum angular momentum $L_{max} = 9$ Analytical Born subtraction technique is used to account for larger partial waves
- Calculations are performed in the body frame.

Appropriate orientation averaging is done to compare with experimental data.

Curtin[®]

P

Basis size convergence for H₂+: target expansion

0.6

Proton production (PP) $\sigma_{pp} = \sigma_{DE} + 2\sigma_{DI}$

Dissociative excitation (DE):

 $e^{-} + H_{2}^{+}(1s\sigma_{g}) --> e^{-} + H^{+} + H(nI)$ Dissociative ionisation (DI):

e- + H₂+(1sσ_g) --> 2e- + H+ + H+

227-state calculation generated with basis $N_l = 17 - l$, $l_{max} = 3$

289-state calculation generated

351-state calculation generated with basis $N_1 = 17 - l$, $l_{max} = 4$

0.5 OLOS 0.3 0.2 Dissociative ionisation (DI)

Proton production (PP)

Curtin®

e-H₂+ dissociative ionization (DI)

Convergence of the partial-wave expansion

Partial-wave expansion is taken to convergence

e-H₂+ dissociative ionization (DI)

Channel coupling: DW is larger than CCC by about 30% at the cross section maximum

P Curtin[®]

e-H₂+ dissociative ionization (DI)

Curtin[®]

P Curtin®

H₂⁺ molecule: adiabatic-nuclei approximation

 ${
m H_2}^+$ ions are produced by ionization of ${
m H_2}.$ Vibrational levels have long lifetimes (106s).

R=2.00.20

El Ghazalv etal. J. Phys. B: 37 (2004) 2467

T-matrix for transition between vibrational states:

$$T_{fi}^{\nu\mu} = \int dR \phi_{f\mu}(R) \ T_{fi}(R) \ \phi_{i\nu}(R)$$

Ionization from vibrational level ν of electronic state i

$$Q_{iv}^{ionization} = \int dR \ Q_{i}^{ionization}(R) \left| \phi_{iv}(R) \right|^{2}$$

$$Q_{ionization}^{ionization} = \sum_{v} Q_{ionization}^{ionization}$$

the same for
$$H_2^+$$
 and its

 $Q_{fi}(R) \propto \left|T_{fi}(R)\right|^2$ $D_2^{\,+},\,T_2^{\,+},\,HD^+,\,HT^+,\,DT^+$

vibrational wave functions are $\phi_{i\nu}(R)$ calculated separately for H₂+, D₂+, T₂+, HD+, HT+, DT+

Busch and Dunn, Phys. Rev. A 5(1972)1726

Details: Zammit etal, PRA 90, 022711 (2014) P

Curtin 9

Curtin[®]

e-H₂+ dissociative ionization (DI)

FC to BD distributions: 2-3%

 $i = \int dR Q^{i}$ $dion(R) |\phi_{-}(R)|^2$

This aspect can be checked against accurate FBA results.
[Peek and Green, Phys. Rev. 183, 202 (1969)]

P

Curtin

e-H₂⁺ dissociative ionization (DI)

To differentiate between DE and DI:

El Ghazaly et al. analysed the kinetic energy release spectrum

P

P

Peart & Dolder measured protons in coincidence

Peart & Dolder, J. Phys. B 6(1973)2409 Ghazaly etal, J. Phys. B: 37(2004)2467

Pindzola etal , Phys. Rev. A 72(2005)012716; J. Phys. B38(2005)L285

e-H₂+ proton production (PP)

 $Q_{PP} = Q_{DE} + 2 Q_{DI}$

 $Q_{\text{TI}} = Q_{\text{DE}} + Q_{\text{DI}}$

Fixed-nuclei to Adiabatic nuclei > 100%

FC to BD distributions: 10-20%

Channel coupling: 50% by comparing with Born results

P

El Ghazaly et al., J. Phys. B 37(2004)246 Dance et al., Proc. Phys. Soc. 92(1967)577 Dunn and Zyl, Phys. Rev. 154(1967)40 Peek, Phys. Rev. A 10(1974)539

e-D₂+ deutron production (DP)

Vibrational cross sections are weighted according to the Franck-Condon (FC) factors

Curtin®

Proton production (PP), deuteron production (DP), and triton production (TP) cross sections for electron scattering from vibrationally excited H₂⁺, D₂⁺, or T₂⁺

Vibrational cross sections are weighted according to the Franck-Condon (FC) factors.

Curtin[®]

Heavy particle collisions with atoms and molecules

1-centre semi-classical CC approach

Antiprotron scattering

- We consider antiproton scattering from noble gases (Ne, Ar, Kr and Xe)
- We describe target wave functions by a model of 6 p-electrons above an inert Hartree-Fock core
- Excited states are obtained by allowing one-electron excitations from the p shell
- Structure code thoroughly tested: e+ on noble gases details: Fursa & Bray NJP 14 (2012) 035002

Curtin®

Antiproton - H2 collisions

H2 structure details: Zammit & Fursa PRA 87(2013) 020701

Single-ionisation cross section PRL 111 (2013) 173201

- Analytical orientation averaging procedure
- Correctly describe the suppression of ionization at low energies compared to atoms

Curtin®

P

2-centre semi-classical approach

Now we consider p-H scattering including electron capture.

Heavy particle collisions with atoms and molecules

1-centre semi-classical CC approach

 $\vec{v}t$

A lab frame: the origin at the target, *z*-axis $\parallel \vec{v}$ and *x*-axis $\parallel \vec{b}$ Projectile position $\vec{R}(t) = \vec{b} + \vec{Z} = \vec{b} + \vec{v}t$

The w.f. is a solution to SC TDSE

$$i\frac{\partial \Psi(\vec{r},t)}{\partial t} = (H_T + V_P)\Psi(\vec{r},t)$$

Expand Ψ in terms of pseudostates of H_T

 $\vec{r} = \{\vec{r_1}, \vec{r_2}, ...\}$ is a collective coordinate of all electrons

Solve for a_{α}

 $i\dot{\mathbf{a}} = \mathbf{D}\mathbf{a}$

Curtin[®]

Single-ionisation of Ne and Ar by antiprotons

Curtin®

The electron distribution dynamics

Curtin

Electron capture and ionisation in p-H collisions

Electron capture and ionisation in p-H collisions

Imax=4 and 5 may be required for ionisation. Calculations in progress

Curtin 💆

Unavally of References

Acknowledgements

Australian Research Council

Curtin University

Electron-molecule: Mark Zammit

Heavy particles: Alisher Kadyrov,

Ilkhom Abdurakhmanov

Sanat Avazbaev Igor Bray

Curtin®

Conclusions

- Molecules pose a serious problem for a straightforward close-coupling approach
- For H₂⁺we could achieve the same accuracy as for atoms for fixed-nuclei calculations and hope that this can be replicated for other diatomic molecules
- One-center approach to molecular scattering proved to be feasible & sufficiently accurate, will work well for hydrates in particular
- Beyond the fixed-nuclei approximation: adiabatic-nuclei approach, extremely expensive computationally, but has to be done if a molecule is not in the ground vibrational state
- heavy particle collisions: demonstrated that CCC method works well for single-centre problems (antiproton scattering)
- heavy particle collisions: first results for two-centre approach are encouraging....
- $\bullet \quad \text{Channel coupling is important, coupling to ionization continuum is important...}\\$
- Even more important is to have a sufficiently accurate target description

Curtin 9

Thank you

Curtin V