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CCC method for electron-molecule scattering

Born-Oppenheimer approximation, Fixed-nuclei approximation

One-center approach

one-electron functions: Sturmian basis S, (2Ar) (22])’4rl e’}”Li]*z (24r)

Target Hamiltonian /; is diagonalized
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N-state multi-channel expansion
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integral Lippmann-Schwinger equation for the T-matrix
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solved by partial-wave expansion

reduced to a system of linear equations
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CCC method: e-H," scattering

Checked that we produce correct

* energy levels ji5cy 2pa, 2p7y
R cee m ccc m ccc m
2.0 -0.601 -0.603  -0.166  -0.168  0.071  0.071
* oscillator strength 1s0,32p0, 15033 2pm,
R CCC-L(V) m CCC-L(V) [21
2.0 0.320(0.311) 0319 0.461(0.456) 0.460
« static dipole polarisability
Cpar perp
R cce-L 2] cce-L 121
2.0 5.084 5.078 1.767 1.758

[1] D. R. Bates, J. Chem. Phys. 19, 1122 (1951)
[2] D. M. Bishop and L. M. Cheung, J. Phys. B 11, 3133 (1978)
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e-H," dissociative ionization (DI)

Convergence in the combined-nuclei limit (R=0)

Total ionisation cross sections (TICS) for electron scattering from the
ground state of He"

Outline

» CCC method for electron-molecule collisions: e-H,"
* Formulation of the CCC method for molecules
* e-H," : convergence and accuracy for fixed-nuclei calculations
* e-H," : adiabatic-nuclei calculations: challenges and accuracy

» CCC method for heavy particle collisions

* Single-centre approach: antiproton collisions with noble gas atoms and

H, molecule
» Two-centre approach: proton collisions with hydrogen atom

» Conclusions

Born-Oppenheimer approximation
D = Gyt B Btecronid P> R)

Fixed-nuclei approximation, R = 2.0 (fixed)
1 1 1
HTEHEIeL:_ivz T =T =
2 [F-R/2| [F+R/2|

One-centre approach: origin at the midpoint

Target Hamiltonian /- is diagonalized in a Sturmian (Laguerre) basis

Basis: N,=17-1, 1, =4
The s & 2p one-electron orbitals are replaced by accurate H," 1sc, and 2po,
orbitals (diagonalized in the basis with /,,,. = 9, N, = 60)
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Leads to 351 states
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CCC method: e-H," scattering

Solution of the Lippmann-Schwinger equation:

partial-wave expansion: from 3D to 1D equation

reduction to a system of linear equations using a quadrature rule

use of conserved quantum numbers (M, S, IT) to reduce the size

Projectile partial wave expansion: maximum angular momentum L, =9

Analytical Born subtraction technique is used to account for larger partial waves

Calculations are performed in the body frame.

Appropriate orientation averaging is done to compare with experimental data.
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Basis size convergence for H,*: target expansion

02

TICS He* 1s . "
o Molecular CCC - ® Basis size )
o Atomic CCC —— 35]-state calculation generated
Peartetal. a

with basis N, = 17-1,1,,,, =4
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e-H,* dissociative ionization (DI)

Cross Section (units of a,?)
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Convergence of the partial-wave expansion

use of plane-wave analytical Born subtraction pu

(ABS) technique

L=5 M=2 CCC + ABS ——

DI H} 1s65 R=2.0
Partial-wave expansion is
taken to convergence

L=5CCC + ABS ——

L=9CCC + ABS —
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e-H,* dissociative ionization (DI)

Cross Section (units of aoz)
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DI H3 1so4 R=2.0
L=5, [M|=2 CCC + UCBA —— 1
L=|M|=5 CCC + UCBA ——
L=|M|=7 CCC + UCBA — 1

L=|M|=9 CCC + UCBA —
TDCC Pindzola etral. O
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« TDCC 15% larger than CCC \_
« TDCCL=5, |M|=2 with UCBA top-up 4

* CCCL=9, [M|=9 with UCBA top-up
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e-H,* dissociative ionization (DI)

Gross Section (units of a,?)
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Errors:
DI H; 150, Fixed-nuclei to Adiabatic-nuclei
R=2.0 CCC == 15%-20%
BD Weighted CCC ==
FC Weighted CCC — FC to BD distributions: 2-3%

Major uncertainty in the calculation comes
from the integration over R

Q‘l‘ﬂm:u/mu: J‘ dR Qj‘muzmmn( R) ‘ 4,(R)|

present model: calculate Q(R) to R=5.5
extrapolate for R > 5.5
error less than 5%
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This aspect can be checked against
accurate FBA results.

[Peek and Green, Phys. Rev. 183, 202
(1969)]
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Cross Section (units of aoz)
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El Ghazaly et al., J. Phys. B 37(2004)2467
Dance et al., Proc. Phys. Soc. 92(1967)577
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e-H," proton production (PP)

BD Weighted Tl Born Peek - -
FC Weighted Tl Born Peek

m
EE g e er = O +2 Oy
R=2.0 CCC -
BD Weighted CCC ——
FC Weighted CCC —

On = Ope+0On

El Ghazaly etal. A
Danceetal. ®
Dunnand VanZyl 4
Tl Peart and Dolder O

Errors:

Fixed-nuclei to Adiabatic nuclei
>100%

FC to BD distributions: 10-20%

Channel coupling : 50%
by comparing with Born results
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Dunn and Zyl, Phys. Rev. 154(1967)40
Peck, Phys. Rev. A 10(1974)539

Cu

e-H,* dissociative ioniz

ation (DI)

Channel coupling: DW is larger than CCC by about 30% at the cross
section maximum
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L=5 M=2 CCC + ABS
L=5 CCC + ABS
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CADW Pindzola etal. 4
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H," molecule: adiabatic-nuclei approximation

H," ions are produced by ionization of H,.
Vibrational levels have long lifetimes (10%s).
R=2.0 R=1.4

T-matrix for transition between vibrational states:

T = [dRg,,(R) T,(R) 4,(R)
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Tonization from vibrational level vof
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the same for H," and its

Figure 5. Vibrational population of 3. Full circles: present measuremens: open circles:
oo on Beschand b (1972 dshd s Pk Conon s o Dnand (R
iv

1(1967).

El Ghazaly etal, J. Phys. B: 37 (2004) 2467
Busch and Dunn, Phys. Rev. A 5(1972)1726

2
R) (T, (R isotopologues
fi fi
D,", T,", HD', HT", DT*

vibrational wave functions are
calculated separately for H,",
D,". T,", HD*, HT', DT'

Details: Zammit etal, PRA 90, 022711 (2014)

Curti

L

e-H,* dissociative ionization (DI)
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CADW Pindzola et al.

analysed the kinetic energy

a
El Ghazaly ctal. &
. release spectrum

Peart and Dolder

Peart & Dolder
measured protons in
coincidence

o
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Peart & Dolder, J. Phys. B 6(1973)2409
Ghazaly etal, J. Phys. B: 37(2004)2467
Pindzola etal , Phys. Rev. A 72(2005)012716; J. Phys. B38(2005)L.285
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e-D,* deutron production (DP)

Vibrational cross sections are weighted according to the Franck-Condon (FC)

factors.

s of a?)
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Proton production (PP), deuteron production (DP), and triton
production (TP) cross sections for electron scattering from ] . ical CC
vibrationally excited H2+, th or T2+ -centre semi-classical approach

Heavy particle collisions with atoms and molecules

A lab frame: the origin at the target, z-axis || v and x-axis || b
Vibrational cross sections are weighted according to the Franck-Condon (FC) factors.

Projectile position R(1)=b+Z=b+t

30 T
PP, DP and TP

K FC Heignted CCC - The w.f. is a solution to SC TDSE
25 - -
e 2 .
N im=(H, +V,)W(F,1)
°20 at
15 Expand W in terms of pseudostates of H,.
g " W(i, 1) = Eaf‘ (t)exp(-ie ), ()
¢ 7 ={i,5,..} isa collective coordinate of all electrons h

e e sohefora,  id=Da
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Heavy particle collisions with atoms and molecules

Single-ionisation of Ne and Ar by antiprotons
1-centre semi-classical CC approach

Antiprotron scattering

gcc = b-Ne 20 gcc — b Ar
=  We consider antiproton scattering from noble gases (Ne, Ar, Kr and Xe) 15 HimBom1 - 60 COW-EIs
IPM-BGM 2 IPM-BGM 1
R i S so b
= We describe target wave functions by a model of 6 p-electrons above an < <
inert Hartree—Fock core S =4
¢ ¢
= Excited states are obtained by allowing one-electron excitations from the - b
p shell
00 10 100 1000 10 100 1000
= Structure code thoroughly tested: e* on noble gases projectle energy (keV) projectile energy (keV)
details: Fursa & Bray NJP 14 (2012) 035002
& &
Antiproton - H, collisions The electron distribution dynamics
H, structure details: Zammit & Fursa PRA 87(2013) 020701 Z=4an Z=1an. 7=0au. Z=l a0, Ze4au
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2-centre semi-classical approach Electron capture and ionisation in p-H collisions

W(r,)= Ea: 091 (F)e ™ + zag(t)(pg(?p)e-izﬂy
“ B

[max=3, Imax-0
25 =10, Imax=0

a3, Imax0
n =0

It is a solution to TDSE

iiwgr”) - HY(,1)
t

roj. R target
R W
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Now we consider p-H scattering including electron capture.
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Conclusions
Electron capture and ionisation in p-H collisions

*  Molecules pose a serious problem for a straightforward close-coupling approach

+  For H,” we could achieve the same accuracy as for atoms for fixed-nuclei calculations and

oxpt: Shah 1981

18 Hexpt: Shah 1987
expt: Shah 1998

16 {Sidky-Lin PRA 2001
Toshima PRA 1999

14 Homax-20, Imax=3 —

hope that this can be replicated for other diatomic molecules

*  One-center approach to molecular scattering proved to be feasible & sufficiently accurate,

will work well for hydrates in particular

*  Beyond the fixed-nuclei approximation: adiabatic-nuclei approach, extremely expensive

computationally, but has to be done if a molecule is not in the ground vibrational state

*  heavy particle collisions: demonstrated that CCC method works well for single-centre

o
nmax=20, Imax=3 _— x
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*  heavy particle collisions: first results for two-centre approach are encouraging....

«  Channel coupling is important, coupling to ionization continuum is important...

Imax=4 and 5 may be required for ionisation.
Calculations in progress +  Even more important is to have a sufficiently accurate target description
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