Modeling nuclear data relationships with Bayesian networks

ML coffee breakfast club

Collision experiments

Total cross section

Velocity dependence of cross section

Total neutron-induced cross section of Au-197

 $1 \text{ barn} = 10^{-28} \text{ m}^2$

Velocity dependence of cross section

Total neutron-induced cross section of Au-197

Different types of cross sections

Relationship between cross section types

Network of functions

UQ of experimental data

Scenarios in nuclear data evaluation

- Several nuclear physics models need to be consistently combined in an evaluation
- Nuclear models may be combined with nonparametric statistical methods to improve the description of available experimental data
- Sometimes we prefer to not use nuclear physics models and rely heavily on experimental data
- We want to incorporate uncertainty information of experiments into the statistical analysis

Bayesian inference

An inspiration: composability of neural networks

theano

Take simple building blocks (e.g., pooling layers, convolutional layers, etc.) and define their connection structure with a relatively simple language

Can we do the same for Bayesian models?

Bayesian networks

 $P(H_1, H_2, H_3) = P(H_1)P(H_2 | H_1)P(H_3 | H_1, H_2)$

Thomas Bayes

- Enable a more efficient way of storing information
- Enable a more efficient evaluation of the Bayesian update formula
- Preserve the identity of individual components (e.g., normalization errors and associated uncertainties)

Pierre-Simon Laplace

Judea Pearl*

Basic building block

(e.g., model predictions)

(e.g., convoluted model predictions)

Distribution assumption

 $\vec{x} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma})$

Because of $\vec{y} = f(\vec{x})$ the distribution of \vec{y} is not necessarily multivariate normal

Links between nodes

Log-normal distribution (e.g., positive cross section)

$$y_i = \exp(x_i)$$

Truncated normal distribution (e.g., non-negative cross section)

$$y_i = \max(0, x_i)$$

Linear interpolation
(e.g., model mesh to experimental mesh)
$$y_j = \left(\frac{E_{i+1} - E'_j}{E_{i+1} - E_i}\right) x_i + \left(\frac{E'_j - E_i}{E_{i+1} - E_i}\right) x_{i+1}$$

if $E_i \le E < E_{i+1}$

Convolution

(e.g., model mesh to experimental mesh with finite energy resolution)

Combination of nodes

 $\vec{y} = f(\vec{x}) + g(\vec{z})$

For example:

Experimental measurement is the sum of convoluted model prediction and statistical error

Example of Iron-56 between 1 and 2 MeV

More fine-grained modeling

Coupling to experimental data

Final Bayesian network with many more regularizers

https://arxiv.org/abs/2110.10322

MAP estimates of average components

MAP estimates of cross sections

Motivation for another use case of Bayesian networks

- High-quality evaluations take a lot of time
- Final evaluations are stored in nuclear data libraries (JEFF, JENDL, ENDF/B, CENDL, etc.)
- If problems with an evaluation in a nuclear data library are detected (e.g. discovered by new experimental data), it can take again a lot of time to update the evaluation
- **Idea**: Employ Bayesian networks to *quickly and consistently* update evaluations in nuclear data libraries

Construction of Bayesian network, e.g. Ni-58

Prior assumptions

- ENDF/B-VIII.0 cross sections were used as prior mean values
- Prior uncertainty: 30% of prior cross section value
- Introduction of prior for second derivative
 - Prior values of 2nd derivative taken from ENDF/B-VIII.0
 - Prior uncertainty: 30% of 2nd derivative of prior values

Evaluation starting point

- The Ni cross section evaluations in ENDF/B-VIII.0 (MF3) were used as a starting point (i.e., as pior mean values)
- Not considering inelastic level scattering for the time being
- Limited energy range 1 to 20 MeV for this demonstration
 - All data are linear-linear interpolated
 - MT5 is absent in this energy range in all files and in the one where it is present has negligible cross section
- No energy mesh unification was done (for simplicity)
- In total 19704 mesh points (all isotopes and reaction channels)
- Reduced mesh size of elastic and total cross sections by averaging over 0.5 MeV bins (after reduction 3817 mesh points remaining)

Ni-58 evaluation

Ni-58 evaluation: (inl, el, tot)

Ni-60 evaluation

Ni-60

Ni-60 evaluation: (n, alpha)

Ni-60 evaluation: inl, el, tot

Ni-61 evaluation

Ni-61 evaluation: (n,p)

Ni-62 evaluation

energy [MeV]

Ni-62 evaluation: inl, el, tot

Ni-64 evaluation

Ni-64

Connecting the individual Bayesian networks for consistent treatment of nat-Ni data

Evaluation of Ni-0 (coupled)

Evaluation of Ni-0 (coupled): inl, el, tot

Pay attention to how the discrepant data in (n,total) near 1 MeV affects the other isotopes!

Evaluation of Ni-58 (coupled)

Evaluation of Ni-58 (coupled): inl, el, tot

Evaluation of Ni-60 (coupled)

Evaluation of Ni-61 (coupled)

Evaluation of Ni-62 (coupled)

Evaluation of Ni-64 (coupled)

Ni-64

Ideas for discussion

- What is important to consider from the nuclear physics perspective? (e.g., constraints)
- Where do you anticipate difficulties in the application of Bayesian networks in the nuclear data context?
- Ideas for useful building blocks? (linked to experiments, nuclear models, constraints)
- Regarding making Bayesian network inference available as an online service or software package, any thoughts on APIs, frameworks, technology, design for a good user experience?