LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein. This report has been reproduced directly from the best available copy

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5265 Port Royal Rd., Springfield, VA 22161. NTIS price codes-Printed Copy <u>A13</u> Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL--6551/V2 DE90 000969

Physics Division

ATOMIC DATA FOR FUSION - VOLUME VI

SPECTROSCOPIC DATA FOR TITANIUM, CHROMIUM, AND NICKEL Volume 2. Chromium

W. L. Wiese and A. Musgrove National Institute for Standards and Technology

Date Published - September 1989

Prepared for the Office of Fusion Energy U.S. Department of Energy Washington, DC 20545 Budget Activity No. AT 05 30 04 0

Published by the Controlled Fusion Atomic Data Center H. T. Hunter and M. I. Kirkpatrick, Series Technical Editors at the O.AK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6372 Operated by M.ARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract DE-AC05-840R21400

MACINA ŁB د. از میرون بر این ا**یری از در**ان ا

Series Preface

The primary objective of the Controlled Fusion Atomic Data Center at Oak Ridge National Laboratory is to publish handbooks containing numerical and graphical cross sections and other physical data relevant to fusion energy research. In 1977, a two-volume compilation was published as ORNL reports ORNL-5206 and ORNL-5207. Since that time, a large volume of pertinent data has become available, necessitating an update of the previous compilation. Plans are to include both cross sections and rate coefficients for collisional processes, and to publish the revised series in handbook form. The specific volumes which are in preparation are listed below, with their expected completion dates.

- Vol. 1, "Collisions of H, H₂, He, and Li Atoms and Ions with Atoms and Molecules," C. F. Barnett, ORNL (December 1989).
- Vol. 2, "Collisions of Electrons with Atoms and Molecules," J. W. Gallagher, National Institute of Standards and Technology; and D. C. Gregory, ORNL (December 1990).
- Vol. 3, "Particle Interactions with Surfaces," E. W. Thomas, Georgia Institute of Technology (January 1985).
- Vol. 4, "Spectroscopic Data for Iron," W. L. Wiese, National Bureau of Standards (March 1985).
- Vol. 5, "Collisions of Carbon and Oxygen Ions with Electrons, H, H₂, and He," R. A. Phaneuf, ORNL; R. K. Janev, Institute of Physics, Yugoslavia; and M. S. Pindzola, Auburn University (January 1987).
- Vol. 6, "Spectroscopic Data for Titanium, Chromium, and Nickel," W. L. Wiese and A. Musgrove, Nationa! Institute for Standards and Technology (September 1989).

C. F. Barnett D. C. Gregory H. T. Hunter M. I. Kirkpatrick R. A. Phaneuf

Aostract

Comprehensive spectroscopic data tables are presented for all ionization stages of titanium, chromium, and nickel. Tables of ionization potentials, spectral lines, energy levels, and transition probabilities are presented. These tables contain data which have been excerpted from general critical compilations prepared under the sponsorship of the National Standard Reference Data System (NSRDS).

Spectroscopic Data for Titanium, Chromium, and Nickel – Volume 2. Chromium

W. L. Wiese and A. Mungrove, Editors

Table of Contents

	24 24	je.
	General Introduction	i
Volume 1.	Titanium	
	A. Ionization Energies of Titanium Ions [J. Sugar and C. Corliss] A- B. Prominent Spectral Lines for Tit to Tiv (Wavelengths for Vacuum	1
	Ultraviolet to Near Infrared Regions) [J. Reader and C. Corliss]	1
	Classifications) [R. L. Kelly]	1
	and Transition Probabilities) [V. Kaufman and J. Sugar] D- E. Atomic Energy Levels of Titanium, Ti t through Ti XXII	1
	[J. Sugar and C. Corliss]	1
	[G. A. Martin, J. R. Fuhr, and W. L. Wiese] F-	1
Volume 2.	Chromium	
	 A. Ionization Energies of Chromium Ions [J. Sugar and C. Corliss]	1
	Ultraviolet to Near Infrared Regions) [J. Reader and C. Corliss] B- C. Vacuum Ultraviolet Lines for Cr 1 through Cr XXIV (Wavelengths and	1
	Classifications) [R. L. Kelly]	1
	and Transition Probabilities) [V. Kaufman and J. Sugar]	-1
	[J. Sugar and C. Corlins]	1
	[G. A Martin, J. R. Fuhr, and W. L. Wiese]	-1
Volume 3.	Nickel	
	A. Ionization Energies of Nickei loss [J. Sugar and C. Corliss]	-1
	B. Prominent Spectral Lines for Ni 1 to Ni v (Wavelengths for Vacuum	
	Ultraviolet to Near Intrared Regions) [J. Reader and C. Corissij	1
	Classifications) [R. L. Kelly]	-1
	D. Magnetic Dipole Lines for Nickel Ions (Wavelengths, Classifications,	_
	and Transition Probabilities) [V. Kaufman and J. Sugar] D-	-1
	E. Atomic Energy Levels of Nickel, Ni I through Ni XXVIII [J. Sugar and C. Corliss]	-1
	F. Atomic Transition Probabilities of Nickel, Ni 1 through Ni XXVIII	
	[J. R. Fuhr, G. A. Martin, and W. L. Wiese] F-	-1

¥

General Introduction

This compendium contains a collection of recent spectroscopic data tables for titanium, chromium, and nickel. The tables are issued in three separate volumes, each containing one element. The individual volumes are identified as Oak Ridge National Laboratory ORNL 6551/V1 (titanium); ORNL 6551/V2 (chromium); and ORNL 6551/V3 (nickel). These chemical elements, together with the earlier tabulated¹ element iron, are the principal heavy metals which are widely used as firstwall materials (including limiters, armor plates, etc.) of magnetic fusion research machines, particularly tokamaks. Spectral radiation data for both high and low stages of ionization for Ti, Cr and Ni have thus become important for the assessment and modeling of the effects of impurities on plasma properties and power balance, for the study of plasma-wall interactions as well as for the application of plasma diagnostic techniques.

Numerical data are tabulated for those spectroscopic quantities which are of principal importance for such plasma studies and for plasma diagnostics. The specific spectroscopic quantities are ionization energies, wavelengths of allowed and forbidden lines, atomic energy levels, and atomic transition probabilities. Most of the critical evaluation and compilation work for these data has been done at the National Institute of Standards and Technology, formerly the National Bureau of Standards. The tables are usually parts of larger tabulations²⁻⁷ containing many other chemical elements besides Ti, Cr, and Ni. Excerpting the data from these larger compilations required some modifications in the reprinted material, especially the modification of the introductory remarks with comments and explanations that specifically refer to the Ti, Cr, and Ni spectra. All of the material is quite recent, and is under the sponsorship of the National Standard Reference Data System (NSRDS). Since the various data tables have been completed at different times, there may be occasional slight inconsistencies between overlapping material when the data are based on different sources. Also, sometimes there may be different judgments of independent evaluators on the quality of the source material. For example, wavelengths which are derived from atomic energy levels may be sometimes slightly different from the observed data in the wavelength tables. There also may be slight inconsistencies between the energy level data contained in the wavelength and transition probability tables when compared to the data in the energy level table itself. But any such differences are so small that they do not matter for any plasma applications, and therefore the use of any of the recent tabulations is appropriate. But we generally recommend to use the *primary* tables to obtain data on a specific atomic quantity.

Each of the three volumes of this compendium is divided into six sections which cover:

> Ionization energies, General spectral line lists, Vacuum ultraviolet lines, Magnetic dipole lines, Atomic energy levels, and Atomic transition probabilities.

The editors gratefully acknowledge the cooperation of the data compilers. We also thank NSRDS, the American Institute of Physics, and American Chemical Society for permission to reprint excerpts of these tables.

References

- W. L. Wiese, Editor, Spectroscopic Internation for Iron, ORNL-6089 [1985], Fourth Volume of Oak Ridge Natl. Lab. Series 6086.
- J. Reader, C. H. Corlins, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic lons, Nutl. Stand. Ref. Data Ser., Nutl. Bur. Stand. (U.S.), 68, 415 pgs. [1980].
- R. L. Kelly, Asomic and Ionic Spectral Lines Below 2000 Å (H through Kr), J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).
- J. Sugar and C. Corliss, Atomic Energy Lovels of the Iron-Period Elements: Potassium through Nickel, J. Phys. Chem. Ref. Data 14, Suppl. 2 [1985].
- V. Kanthan and J. Sugar, Forbidden Lines in ns²np^k Ground Configurations and name Excitation Configurations of Be through Mo Asons and Ions, J. Phys. Chem. Ref. Data 15, 321 – 410 [1986].
- G. A. Martin, J. R. Puhr, and W. L. Wiese, Asomic Transition Probabilities-Scandium through Manganese, J. Phys. Chem. Ref. Data 17, Suppl. 3 [1988].
- J. R. Fuhr, G. A. Martin, and W. L. Wiese, Atomic Transition Probabilities-Iron through Nickel, J. Phys. Chem. Ref. Dim. 17, Suppl. 4 [1988].

A. Ionization Energies of Chromium Ions

A. Ionization Energies of Chromium Ions

[Excerpted from: J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985)]

Spectrum	Ground State Configuration	Ground Level	Ionization Energy (eV)
Cr 1	1. ² . 2. ² . 3. ² . 3. ⁵ . 4.	⁷ S ₁	6.76669
Cr 🛛	1 2 2 2 2 2 5 3 2 3 p 3 d 3	5 _{5/2}	16.4858
Сгш	L ² 2 ² 2 ⁶ 3 ² 3 ⁶ 3 ⁴	⁵ D ₀	30.96
Cr rv	L ² 2 ² 2 ⁹ 3 ² 3 ⁹ 3 ³ 3 ³	4F _{1/2}	49.16
Cr v	1s ² 2s ² 2p ⁴ 3s ² 3p ⁴ 3d ²	³ F ₂	69.46
Cr vi	L 22, 20 3, 3, 3, 3,	² D _{3/2}	90.6356
Cr VII	Lr ² 2r ² 2p ⁶ 3r ² 3p ⁶	¹ Se	160.18
Cr VIII	Lr ² 2r ² 2p ⁶ 3r ² 3p ⁵	² P [•] _{3/2}	184.7
Cr IX	Lr ² 2r ² 2p ⁴ 3r ² 3p ⁴	³ P ₂	209.3
Cr 🗴	Lr ² 2r ² 2p ⁶ 3r ² 3p ³	*S*2	244.4
Cr xi	Lr ² 2r ² 2p ⁶ 3r ² 3p ²	³ Pa	270.8
Cr XII	1s ² 2s ² 2p ⁶ 3s ² 3p	² P [•] _{1/2}	298.0
Cr XIII	Lr ² 2r ² 2p ⁶ 3r ²	¹ S ₀	354.8
Cr XIV	1s ² 2s ¹ 2p ⁶ 3s	35 _{1/2}	384.171
Cr xv	Ls ² 2s ² 2p ⁶	¹ S ₀	1010.6
Cr XVI	L ² 2 ² 2 ⁵	² P [•] _{3/2}	1097
Cr XVI	L ² 2 ² 2 ⁴	³ P ₂	1185
Cr XVIII	L ² 2 ² 2 ³	'S *2	1299
Cr xix	¹ لو ² 2 ¹ 2 ¹	³ P.	1396
Cr xx	1, 2, 2, 2,	${}^{2}\mathbf{P}_{1/2}^{\bullet}$	1496
Cr xxx	Lr ² 2, ¹	¹ S ₈	1634
Cr XXII	ե ² 2։	S1/2	1721.4
Cr xxIII	ել	¹ Se	7481.8
Cr XXIV	ե	2S1/2	7894.87

B. Prominent Spectral Lines for Cr I to Cr V (Wavelengths for Vacuum Ultraviolet to Near Infrared Regions)

B. Prominent Spectral Lines for Cr 1 to Cr v

(Vacuum Ultraviolet to Near Infrared Regions)

[Excerpted from: J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 68, 415 pgs. (1980); and J. Reader and C. H. Corliss, in Handbook of Chemistry and Physics, 70th Edition (1989)]

These lists were recently prepared under the auspices of the Committee of Line Spectra of the Elements of the National Academy of Sciences – National Research Council as part of a general wavelength table¹². The tables contain the outstanding spectral lines, – from the far ultraviolet to the far infrared, – of neutral (I), singly ionized (II), doubly ionized (III), triply ionized (IV), and quadruply ionized (V) chromium atoms. The lines are selected from larger lists (see references) in such a way as to include the stronger observed lines in each spectral region.

The data were compiled by Charles H. Corliss, NBS (Cr I – Cr V). For Cr I and II, the following literature references were used as the principal sources of data:

W. F. Meggers, C. H. Corliss, and B. F. Scribner, Nat. Bur. Stand. (U.S.), Monogr. 145, Washington, D.C. (1975).

For Cr III, IV and V, the following references were used:

- F. L. Moore, Thesis, Princeton University (1949).
- J. O. Ekberg, Phys. Scr. 7, 55 (1973).
- J. O. Ekberg, Phys. Scr. 7, 59 (1973).

All wavelengths are given in Angstrom units (Å). Below 2000 Å, the wavelengths are in vacuum; above 2000 Å, the wavelengths are in air. Wavelengths given to three decimal places have an uncertainty of less than 0.001 Å and are, therefore, suitable for the calibration of most spectrometers. The line intensities are normally estimates of the relative strengths of lines which are not greatly separated in wavelength. However, because different sources are involved, based on different scales for the intensity estimates, these intensities are only useful as a rough indication of the appearances of the spectra. Furthermore, in the tables of first and second spectra the intensities of the lines of the singly ionized atoms relative to those of the neutral atom should be used with caution, inasmuch as the concentration of the ions in the light source depends greatly on the excitation conditions.

The descriptive symbols used in the tables have the following meaning:

D - line consists of two unresolved lines

References

- J. Render, C. H. Corlins, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilistics for Atoms and Atomic Ions, Natl. Stand. Rol. Data Ser., Natl. Bur. Stand. (U.S.), 68, 415 pgs. (1980).
- J. Render and C. H. Corlins, in *Handbook of Chemistry and Physics*, 70th Edition (R. C. Weast, Ed.), CRC Press, Inc., Boca Rates, FL (1989).

B - 1

Chromium (Cr)

Z = 24

8

Intensity	y	Wavelength(Å)	Spectrum	Intensity	,	Wavelength (Å)	Spectrum
		Cr I and II		440		2666.02	п
				280		2668.71	п
		Air		350		2671.81	П
				280		2672.83	П
19000		2055.52	п	1800		2677.16	П
14000		2061.49	п	35		2678.16	I
8900		2065.42	п	320		2678.79	п
80	Н	2364.71	I	18		2680.34	п
130		2383.33	1	230		2687.09	U
140		2408.62	I	60		2688.04	I
170		2496.31	I	55		2688.29	п
110		2502.53	I	26		2690.26	I
190		2504.31	I	280		2691.04	П
50		2508.11	I	35		2693.52	Π
60		2508.98	I	35		2697.91	П
40		2513.62	1	180		2698.41	Ц
110		2516.92	ľ	180		2698.69	п
80		2518.71	τ	18		2700.60	I
390		2519.52	1	110		2701.99	I
190		2527.12	1	18		2702.53	T
40		2530.45	1	70		2703.48	I
70		2534.34	п			2703.55	П
50		2545.64	I	35		2703.86	п
160		2549.54	1	18		2705.43	I
40		2553.06	1	60		2708.79	Π
80		2557.15	1	35		2709.31	П
130		2560.69	I	140		2712.31	п
150		2571.74	I	45		2716.18	I
100		2577.65	I	55		2717.51	п
50		2588.20	I	45		2718.43	п
380		2591.85	1	170		2722.75	П
35		2603.57	T	18		2724.04	п
35		2622.86	1	420	Н	2726.51	I
22		2625.32	1	45		2727.26	п
18		2626.60	I	280	Н	2731.91	I
18		2629.82	I	170	Н	2736.47	1
35		2642.12	I	70		2739.38	1
250		2653.59	п	70		2740.10	Π
250		2658.59	۵	95		2741.07	
70		2661.73	Ø	95		2742.03	Ū
320		2663.42	Ø	95		2742.17	
70		2663.68	Π	250		2743.64	- п
			-			_,	14

т п

• •

1700	1700	10	2 d	2000	5	180	B	180	\$	8	83	33	8	35	35	6	610	81	5 5	18	250 H	ä	750 H	3 1 1	750	5 ð T	: E	8	350	ន	ដ	23	35	110 H	30	390	330	110 H	35	Intensity V	
2843.25	2010.02	1940 00	2000.70 7838 70	7876 18	2834.26	2830.47	2826.75	2822.37	2822.01	2818.36	2812.01	2/98.0/	2792.16	2787.84	2787.63	2785.70	2780.70	2780.30	2778.06	2771.45	2769.92	2767.54	2104.33	2763.06	2762.59	2761 75	2759,39	2758.98	2757.72	2756.75	2755.27	2754.90	774 28	2752.88	2751.60	2750.73	2748.98	2748.29	2746.21	Vavelength(Å)	
. =		a =	= F	= =		•	I	•	H		= :	= =		I	Ħ			⇒.		1	I	-	1 L		н.	- 4	Ħ			-	I	- 1	╡.	- 4	-	8	=		8	Spectrum	
26	200	201	is t	\$ 6	2 23	8	8		55	210	2	19 19	8	S	700	5	170	5	8 8	6	180	55	38	160	110	210	8	610	ક્ષ્ટ્ર	8	40	610	3 2	s 8	33	8	120	1200	5	Intensity	
3 2	5	ž	35		2899	2899	2898	2897.	2897	2896	2896	2893	2891	2889	2889	2888	2887	2992	2875	2878	2877	2876	2873	2873.	2871.	2867	2867.	22966	2865	2862	2860.	2858	1280	2855	2855.	2853.	2851.	2849.5	2849.2	Waveleng	
10.90		50.44	A 1.00	.y/	3 के	22	\$	3	5	22	5:	36	di la	<u>8</u>	Ŭ,	24	8	14	E E	5	.8 8	83	88	\$	83	8	10	21	33	51	3	99 8	5:	7 &	9	ង	8	¥	8	ነቴ (Å)	

2843.25 2846.02

Intensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
45	2911.68	П	240	3018.82	1
60	2913.73	I	430	3020.67	I
22	2915.23	л	2800	3021.56	I
22	2915.46	п	1100	3024.35	I
90	2921.24	Π	85	3026.65	π
60	2921.82	ā	170	3029.16	-
60	2927.08	п	710	3030.24	ľ
80	2928.15	П	140	3031.35	1
95	2928.30	Π	28	3032.93	п
26	2929.44	_ _	390	3034.19	-
35	2930.85	- п	555	3037.04	т
26	2932 70	- п	80	3039.78	ı T
55	2933 97	- п	550	3040.85	1
90	2935 14	п		3040.91	, п
45	2940 22	π	55	3041 74	
60	2946 84	π	110	3050 14	
55	2953 36		710	3053.88	
45	2053.50		24	3059.50	1
55	2961 73	π	85	3065.07	ш 1
45	2966.05		28	3067 16	1
480	2967.64		85	2073 68	
480	2071 11	1	55	2077 92	1
210	2971.01	п	28	2005 86	1
480	2975 48		20	3100 24	1
30	2076 72	п	20	2110 84	1
190	2970.72		20	2119.65	1
350	2020 70	ц ,	45	2110.05	ш
1:0	2900.79	1	45	2110 71	1
480	2903.32	<u>ц</u>	420	3117./1	1
1500	2703 03	1	430	3120.57	ш
2100	2700.00	1	470	3124.0U	n
660	2700.47 2088 45	1	4/0	3124.94 3135.03	п
160	2700.0J 7080.10	1	120	3143.02	n
480	2707.17	ц	500	31, 5./U 3133.04	П
	2771.07 7004 07	1	390	3134.UG 3136.69	u
200	4774.07 7006 10	1	140	31,20.08	u
700	277J.IU 2004 60	I	140	314/.23	П
210	4770.38 1000 70	1		5148.44 2166 16	J
1100	2778./9 2000 PG	1	100	3133.15	1
760	2006.04	I	100	5105.76	I
130	3013.00	I	240	3180.70	п
710	3013.03	1	30	3181.43	п
710	3013./1	I	60	H 3188.01	I
1400	3014.70 2014.00	ſ	220	3197.08	п
710	3014.92 2016 10	I	24	3198.11	I
10	3013.19 2017 67	I	50	3208.59	п
420	5017.57	1	170	3209.18	П
430	3018.50	I	140	3217.40	α

 8-4

Intensity	Wavelength(Å)	Spectrum	Intensity	y	Wavelength (Å)	Spectrum
30	3229.20	I	270		3433.60	I
28	3234.06	П	55		3434.11	I
65	3237.73	I	160		3436.19	1
120	3245.54	1	70		3441.12	Ī
130	3251.84	1	140		3441.44	
130	3257 82	-	30		3443 70	
05	3750 02	1	170		3445 67	
75 70	3205 43	· ·	10		2447.02	
24	2207 07		170		2447 42	1
55	2224.06		70		2447 76	1
 	2224.00	ц	100		J99/./0 3463 33	1
40 10	3320.3Y	1	190		3433.33	1
<i>3</i> 0	3328.33	ц	40		5455./4	I
30	3329.00	1	150		3433.00	I
CC	3330.33	Ш	100		3460.43	I
130	3339.80	П	65		3465.25	1
110	3342.59	п	40		3467.02	1
30	3343.34	I	70		3467.72	I
95	3346.02	I	45		3469.59	ĩ
95	3346.74	I	16		3472.76	I
95	3347.84	Ш	24		3472.91	I
65	3349.07	I	40		3473.61	I
55	3349.32	1	70		3481.30	I
30	3351.60	I	55		3481.54	Ī
55	3351.97	Ī	55		3494.97	ī
55 H	1 3353.03	1	40		3495.38	п
	3353.13	п	80		3510.54	1
170	3358 50	<u>п</u>	L L		34 1 84	п
160	3360 20		120		3550 64	
200	3261 77		200		3330.04	-
ເ ເ	2262 21	<u>ц</u>	120		3338.34	1
33	3304.21	1	150		3200.10	I
430	3308.00	п	130		3573.64	I
30	35/0.4U	1	80		3574.04	I
22	3378.34	П	330	H	3574.80	I
30	3379.17	I			3574.94	I
30	3379.37	П	19000		3578.69	I
95	3379.83	П	160	Η	3584.33	1
140	3382.68	Π	130		3585.30	П
95	3391.43	п	17000		3593.49	I
55	3392.99	П	350		3601.67	I
70	3393.84	П	40		3602.57	I
55	3394.30	Ш	85		3603.74	I
30	3402.40	ш			3603.78	Π
170	3403.32	П	13000		3605.33	1
360	3408.76	Π	40		3608.40	-
210	3421.21	Π	40		3609.48	- 1
270	3422.74	 D	40		3610.05	
140	3433 31	- D	70		3612 61	- 1
140		1	1 /0		3012.01	1

Intensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
85	3615.64	ľ	120	3793.29	I
130	3632.64	I	130	3793.88	ī
350	3636.59	ī	85	3794.61	T
630	3639.80	- T	140	3797.13	- T
85	3640.39	I	200	3797.72	-
70	3641.47	ī	530	3804.80	T
220	3641.83	ī	110	3806.83	ī
45	3646.16	ĩ	110	3807.93	ī
85	3648.53	ī	180	3815.43	I
220	3649.00	I	70	3818.48	I
170	3653.91	I	180	3819.56	I
220	3656.26	I	70	3823.52	ī
45	3662.84	I	130	3826.42	I
130	3663.21	I	130	3830.03	I
45	3665.98	I	380	3841.28	I
95	3666.64	I	190	3848.98	ī
55	3668.03	I	140	3849.36	ī
65	3676.32	I	290	3850.04	I
40	3677.68	Π	140	3852.22	I
55	3677.89	U	190	3854.22	ī
40	3679.82	I	110	3855.29	1
19	3681.69	I	140	3855.57	I
120	3685.55	I	260	3357.63	I
130	3686.80	I	70	3874_53	I
130	3687.25	I	660	3883.29	I
75	3687.54	I	50	3883.66	I
19	3688.46	I	570	3885.22	I
75	3712.95	Π	380	3886.79	I
40	3716.53	I	60	3891.93	I
130	3730.81	1	260	3894.04	I
150	3732.03	I	40	3897.65	I
95	3742.97	I	35	3902.11	I
480	3743.58	I	360	3902.92	I
570	3743.88	I	60	3903.16	I
85	3744.49	I	960	3908.76	I
55	3748.61	I	120	HD 3911.82	I
340	3749.00	I		3912.00	I
50	3757.17	I	120	3915.84	I
230	37 57.66	I	10	3916.24	I
60	3758.04	I	35	3917.60	1
24	3767.43	I	1900	3919.16	I
260	3768.24	I	600	3921.02	I
95	3768.73	I	30	3926.65	I
95	3788.86	I	600	3928.64	1
95	3790.45	I	410	3941.49	I
130	3791.38	I	30	3951.10	I
130	3792.14	I	40	3952.40	I

Intensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
35	3953.16	I	70	4165.52	1
1900	3963.69	I	40	41 69 .84	1
120	3969.06	I	35	4170.20	1
1600	3969.75	I	40	4172.77	I
85	3971.26	I	170	4174.80	I
1600	3976.66	I	30	4175.94	I
85	3978.68	I	170	4179.26	I
40	3979.80	I	35	4184.90	I
85	3981.23	I	30	4186.36	I
960	3983.91	I	35	4190.13	I
190	3984.34	I	85	4191.27	I
160	3989.99	I	35	4192.10	I
960	3991.12	I	85	4193.66	I
160	3991.67	I	70	4194.95	I
190	3992.84	I	40	4197.23	I
40	3993.97	I	85	4198.52	I
160	4001.44	I	60	4203.59	ī
120	4012.47	п	40	4204.47	1
30	4014.67	I	35	4208.36	I
85	4022.26	I	110	4209.37	ī
70	4025.01	I	40	4209.76	ī
120	4026.17	ī	40	4211.35	- T
85	4027.10	I	40	4216.36	ī
85	4030.68	I	85	4217.63	ī
190	4039.10	ī	40	4221.57	ī
160	4048.78	I	40	4222.73	ī
120	4058.77	ī	40	4238.96	ī
40	4065.72	ī	60	4240.70	ī
85	4066.94	I	20000	4254.35	ī
35	4074.86	I	70	4255.50	ī
40	4076.06	I	60	4261.35	ī
40	4077.09	1	110	4263.14	ī
40	4077.68	I	30	4271.06	-
40	4104.87	T	40	4272_91	- T
40	4109.58	I	16000	4274.80	- I
40	4120.61	ī	85	4280.40	-
40	4121.82	Ī	10000	4289.72	ī
35	4122.16	ī	40	4291.96	ī
40	4123.39	I	85	4295.76	Ī
140	4126.52	T	70	4297.74	ī
35	4127.30	I	35	4300.51	I
40	4127.64	Ī	50	4301.18	1
40	4131.36	Ī	30	4305.45	1
30	4152.78	ī	35	4319-64	- I
120	4153.82	- 1	60	4325.08	T
85	4161.42	- I	780	4337_57	r T
		•			•

T

8-7

Intensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
380	4339.72	I	380	4530.74	I
60	4340.13	I	50	4535.15	I
1900	4344.51	I	240	4535.72	I
70	4346.83	I	40	4539.79	I
380	4351.05	1	240	4540_50	I
2300	4351.77	I	240	4540.72	I
570	4359.63	I	35	4541.07	I
70	4363.13	I	19	4541.51	I
530	4371.28	ī	24	4542.62	I
70	4373.25	ī	140	4544.62	1
110	4374.16	T	24	4545.34	
70	4375_33	T	600	4545.96	T
50	4381.11	- T	50	4556.17	
530	4384 98		22	4558.66	л
60	4387.50		19	4564.17	1
70	4391 75	1	120	4565 51	
60	4403 50		: 05	4569.64	1
24	4410 30		120	4571 68	1
60	4411.09		27	4575 12	1
35	4412.25		360	4580.06	i t
ŝõ	4413.87		24	4586 14	1
60	4413.07	1	360	4501.30	I T
24	4478 50	1	70	4595 50	1
50	4430.40	1	50	4600 10	1
50	4437 18	1	480	4600.10	1
110	4458 54		50	4601.02	1
30	4450 74	1	240	4001.02	1
30	4465 26	1	240 600	4015.57	1
30	4403.30	1	70	4010.14	1
40	4499.05	1	70	4019.33	1
	4480.05	1	70	4021.70	1
	4407.4/	1	70	4022.49	1
222	4472.31	1	550	4022.70	1
\$000	4470.00	1	550	4020.19	1
70	4500.20	1		4032.18	I
50 50	4500.50	1	40	4037.15	1
- 20	4501.70	1	50	4037.77	I .
24	4301.77	1	50	L 4039.32	I
05	4511.00	1	1(00	4039.70	I
13	4511.90	1	1000	4040.17	I
12	4314.3/	I	24	4040.81	I
55 14	4014.00	I -	24	4048.15	I
24	4021.14	I	24	4048.87	I
290	4320.11	I	30	4049.40	I
300	4320.47	I	570	4031.28	L
/0	4527.54	I	840	4032.10	1
24	4321.41	I	35	4034.74	1
24	4529.85	I	19	4656.19	I

8-8

ntensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
40	4663.33	I	35	4964.93	1
70	4663.83	I	60	5013 32	I
95	4664.80	I	17	5051.90	I
35	4665.90	I	17	5065.91	I
22	4666.22	ī	40	5067.71	1
70	4666.51	I	40	5072.92	ī
50	4669.34	I	30	5110.75	:
40	4680 54	- T	17	5113 13	- T
19	4680 87	- 1	17	5123.46	1
70	4680 37	T	50	5139.65	
60	4007.07		14	5144 67	
24	4695.75		70	5166 23	
<u>60</u>	4073.13	1	25	5172 :2	1
240 F	4077.00	1	35	5177.43 5184 50	
240 L	/ 9070.90 4609.40	1	1 /0	5104.39 \$103.00	
26	4075.02	1	/0	5192.00 6102.40	1
100	4/00.01	1	12	5195.49	1
190	4/08.04	I	85	D190.44	I
240	4/18.45	I	30	5200.19	I
50	4723.10	I	5300	5204.52	I
50	4724.42	I	8400	5206.04	1
50	4727.15	1	11000	5208.44	I
24	4729.7	I	19	5214.13	I
120	4730.71	I	30	5221.75	I
140	4737.35	I	85	5224.94	I
19	4745.31	I	12	5226.89	I
70	4752.08	I	19	5238.97	I
340	4756.11	I	30	5243.40	I
50	4764.29	I	290	5247.56	I
22	4766.63	I	60	5254.92	I
30	4767.86	I	60	5255.13	I
190	4789.32	I	19	5261.75	I
95	4792.51	I	530	5264.15	I
120	4801.03	I	30	5265.16	I
110	4829.38	I	180	5265.72	I
14	4836.86	1	35	5272.01	I
17	4861.20	I	30	5273.44	I
70	4861.84	I	95	H 5275.17	I
140	4870.80	I	35	H 5275.69	I
35	4885.78	Ĩ	70	H 5276.03	Ē
19	4885.96	- 1	19	5280.29	т
130	4887 01	1	10	5287 19	t
19	4888 53	т	340	5296 69	1
35	4903 24	T	70	H 5207 34	r r
260	4972 27		AAA	5298.27	1 1
110	4036 33		85	5300.75	1
70	4942 50	1	17	5300.75	
70	979L.JU	1	1 1/	JJJ=.41	1

Intensity	7	Wavelength (Å)	Spectrum	Intensity	r	Wavelength (Å)	Spectrum
24		5318.78	I	17	ц	6925 20	
340	Н	5328.34	I	17	н	6078 48	
70	H	5329.17	I			6070.97	
17	Η	5329.72	I	11	11	7195 57	1
14		5340.44	I	í	บ	7163.32	1
10		5344.76	I	0	п	7230.20	1
780		5345.81	I	80 120		7333.90	1
380		5348.32	I	150		7400.21	1
30		5386.98	1	150		7402.31	1
22		5387.57	I		11	7942.04	l
10		5390.39	I	5	н	8103.18	I
40		5400.61	t	9		8348.28	I
22		5405.00	1	0		8450.26	T
1400		5409.79	1	3		8455.24	I
12		5442.41	1	6		8548.86	I
19		5463.97	I	40		8947.15	I
19		5480.50	1	19		8976.83	I
24		5628.64	I				
7		5642.36	- I			Cr 🗉	
12	н	5649.37	- T				
24	••	5664.04	т			Vacuum	
7	н	5681 20	•				
7	н	5687 48	- T	20		969 26	ш
24		5694 73	T	40		1000.86	
40		5698 33	T	40		1001.04	
24		5707 31	1	30		1,002.04	ш т
12		571264		SC SC		1002.90	ш ш
74		5717 79	1	50		1017.14	ш
7		5719.87		50		1017.51	ш т
7		5746 43	1	20		1017.37	ш
7		5753 60	1	50		1020.33	ш
12	u	5753.05	1	20		1030.47	ш
- 12 - 6		5791.00	1	50		1030.89	ш
24	- 11 - 11	5701.01	1	50		1033.23	ш
24	п u	5783.03	1	100		1033.43	ш
24	- n - u	5705.00	1	100		1035.09	ш
2 4 10	п u	5785.00	1	50		1035.93	ш
19	п 	5763.62	1	100		1036.03	ш
190	H	5/8/.99	I	30		1040.17	ш
180	н	5791.00	I	40		1040.53	ш
55		03.30.10	I	40		1045.06	ш
12		0.302.87	I	40		1045.14	ш
19		0001.06	I	60		1059.13	ш
11		0009.26	I	60		1060.15	ш
5	H	6881.62	I	60		1061.04	ш
10	H	6882.38	I	50		1062.68	Ш
21	H	6883.03	1	30		1064.32	Ш
27	Н	6924.13	I	30		1064.43	ш

B-10

S0 1066.23 m 80 2047.23 m 80 1006.41 m 100 2113.73 m 30 1100.61 m 100 2113.83 m 30 1101.43 m 50 2114.26 m 30 1102.88 m 50 2114.25 m 30 1132.75 m 100 2114.87 m 30 1132.75 m 100 2114.53 m 50 1161.43 m 80 2139.11 m 50 1164.75 m 100 2141.15 m 60 1205.38 m 80 2147.16 m 80 1221.07 m 50 2147.56 m 40 1221.07 m 50 2147.56 m 30 1225.65 m 50 2149.48 m 30 1226.51 m 50 2163.86 <t< th=""><th>Intensity</th><th>Wavelength(Å)</th><th>Spectrum</th><th>Intensity</th><th>Wavelength (Å)</th><th>Spectrum</th></t<>	Intensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
80 1068.41 m 100 2113.73 m 30 1100.43 m 100 2113.83 m 30 1101.43 m 50 2114.25 m 30 1102.88 m 50 2114.53 m 30 1132.75 m 100 2113.73 m 30 1132.75 m 100 2114.53 m 30 1132.75 m 100 2144.15 m 50 1161.43 m 80 2144.15 m 80 1209.13 m 50 2147.16 m 80 1211.12 m 50 2147.56 m 40 1221.07 m 50 2149.48 m 30 1228.65 m 50 2149.48 m 30 1228.65 m 50 2149.48 m 30 1228.65 m 50 2163.86 m 50 1232.96 m 60 2163.86 m	50	1066.23	ш	80	2047.23	ш
30 1100.61 m 100 2113.83 m 30 1101.43 m 50 2114.26 m 30 1102.88 m 50 2114.25 m 30 1132.75 m 100 2114.57 m 30 1132.75 m 100 2114.57 m 30 1132.75 m 100 2141.55 m 30 1136.67 m 80 2139.11 m 30 1187.65 m 100 2141.15 m 60 1206.38 m 80 2147.16 m 80 1201.12 m 50 2147.56 m 80 1211.12 m 50 2148.48 m 30 1221.50 m 50 2148.48 m 30 1228.45 m 50 2148.48 m 30 1232.96 m 60 2166.25 m 40 1236.20 m 100 2183.71 m	80	1968.41	m	100	2113.73	III
30 1101.43 \mathbf{u} 50 2114.26 \mathbf{m} 30 1102.88 \mathbf{m} 50 2114.53 \mathbf{m} 30 1132.75 \mathbf{u} 100 2117.53 \mathbf{m} 30 1132.75 \mathbf{u} 100 2117.53 \mathbf{m} 30 1136.67 \mathbf{m} 80 213.53 \mathbf{m} 50 1161.43 \mathbf{m} 80 213.91 \mathbf{m} 60 1205.38 \mathbf{m} 80 2141.15 \mathbf{m} 80 1211.12 \mathbf{m} 50 2147.16 \mathbf{m} 80 1221.07 \mathbf{m} 50 2148.65 \mathbf{m} 30 1225.65 \mathbf{m} 50 2148.65 \mathbf{m} 30 123.88 \mathbf{m} 50 2157.6 \mathbf{m} 30 123.56 \mathbf{m} 100 2170.70 \mathbf{m} 40 1236.20 \mathbf{m} 100 2163.86 \mathbf{m} 50 1232.56 \mathbf{m} 100 2170.70 \mathbf{m}	30	1100.61	11	100	2113.83	ш
30 1102.88 rr 50 2114.53 rr 30 1117.19 rr 100 2114.53 rr 30 1132.75 rr 100 2117.53 rr 50 1136.67 rr 80 2133.53 rr 50 1161.43 rr 80 2139.11 rr 30 1187.65 rr 100 2141.15 rr 60 1206.38 rr 80 2144.15 rr 80 1209.13 rr 50 2147.16 rr 80 1221.90 rr 50 2148.65 rr 40 1221.90 rr 50 2152.76 rr 30 1225.65 rr 100 2157.17 rr 30 1232.96 rr 60 2163.26 rr 40 1236.20 rr 100 2187.01 rr 40 1236.20 rr 50 2189.01 rr 50 1252.61	30	1101.43		50	2114.26	m
30 1117.19 m 100 2114.87 m 30 1132.75 m 100 2117.33 m 30 1136.67 m 80 2123.33 m 50 1161.43 m 80 2139.11 m 30 1187.65 m 100 2141.15 m 60 1206.38 m 80 2147.16 m 80 1211.12 m 50 2147.56 m 80 1211.12 m 50 2147.56 m 40 1221.07 m 50 2147.56 m 30 1228.65 m 100 2157.17 m 30 1232.96 m 60 2163.86 m 40 1236.20 m 100 2170.70 in 30 1232.96 m 60 2163.26 m 40 1236.20 m 100 2170.70 in 40 1238.01 m 100 2185.01 m	30	1102.88	TT.	50	2114.53	
30 1132.75 \mathbf{u} 100 2117.53 \mathbf{m} 50 1136.67 \mathbf{m} 80 2123.53 \mathbf{m} 50 1161.43 \mathbf{m} 80 2139.11 \mathbf{m} 60 1206.38 \mathbf{m} 100 2141.15 \mathbf{m} 60 1206.38 \mathbf{m} 50 2147.16 \mathbf{m} 80 1221.12 \mathbf{m} 50 2148.45 \mathbf{m} 40 1221.07 \mathbf{m} 50 2149.48 \mathbf{m} 30 1225.65 \mathbf{m} 50 2149.48 \mathbf{m} 30 1228.65 \mathbf{m} 50 2163.86 \mathbf{m} 50 1232.96 \mathbf{m} 60 2166.25 \mathbf{m} 40 1236.20 \mathbf{m} 100 2185.01 \mathbf{m} 50 1232.96 \mathbf{m} 50 2183.71 \mathbf{m} 40 1236.20 \mathbf{m} 50 2190.09 \mathbf{m} 40 1236.20 \mathbf{m} 100 2191.58 \mathbf{m}	30	1117.19	m	100	2114.87	
S0 1136.67 m 80 2123.53 m 50 1161.43 m 80 2139.11 m 30 1187.65 m 100 2141.15 m 60 1206.38 m 80 2144.15 m 80 1209.13 m 50 2147.16 m 80 1211.12 m 50 2149.48 m 80 1221.90 m 50 2149.48 m 30 1225.65 m 50 2152.76 m 30 1232.96 m 60 2163.86 m 30 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.71 m 50 1252.61 m 100 2185.01 m 40 1264.21 m 100 2191.76 m 30 1262.34 m 100 2191.76 m	30	1132.75		100	2117.53	
S0 1161.43 m 80 2139.11 m 30 1187.65 m 100 2144.15 m 60 1206.38 m 80 2144.15 m 80 1211.12 m 50 2147.16 m 80 1221.07 m 50 2147.56 m 40 1221.07 m 50 2149.48 m 30 1225.65 m 50 2152.76 m 30 1228.65 m 100 2157.17 m 30 123.265 m 60 2163.86 m 50 1232.96 m 60 2160.25 m 40 1236.20 m 100 2170.70 in 50 1232.96 m 100 2185.01 m 40 1238.51 m 50 2183.71 m 50 1232.90 m 50 2190.09 m 40 1261.86 m 1C.0 2190.76 m	50	1136.67	ш	80	2123.53	
30 1187.65 m 100 2141.15 m 60 1206.38 m 80 2144.15 m 80 1209.13 m 50 2147.16 m 80 1221.12 m 50 2147.56 m 40 1221.07 m 50 2148.65 m 30 1225.65 m 50 2149.48 m 30 1228.65 m 100 2157.17 m 30 1232.96 m 60 2166.25 m 40 1238.51 m 50 2183.71 m 50 1232.96 m 100 2185.01 m 40 1238.51 m 50 2180.09 m 40 1236.20 m 100 2185.01 m 40 1236.21 m 100 2185.01 m 50 1252.61 m 100 2197.79 m 30 1261.86 m 100 2191.58 m	50	1161.43	ш	80	2139.11	m
60 1206.38 m 80 2144.15 m 80 1209.13 m 50 2147.16 m 80 1211.12 m 50 2147.56 m 40 1221.07 m 50 2148.65 m 40 1221.90 m 50 2149.48 m 30 1225.65 m 50 2152.76 m 30 1232.86 m 100 2157.17 m 30 1235.65 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1235.11 m 50 2180.09 m 40 1235.11 m 50 2190.76 m 30 1262.34 m 100 2197.78 m 31 1264.21 m 100 2197.82 m 32 1264.21 m 100 2197.82 m 33 1264.21 m 100 2233.21 m	30	1187.65	ш	100	2141.15	ш
80 1209.13 m 50 2147.16 m 80 1211.12 m 50 2147.56 m 40 1221.07 m 50 2148.65 m 40 1221.90 m 50 2148.65 m 30 1225.65 m 50 2152.76 m 30 1232.86 m 60 2163.86 m 50 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.71 m 50 1252.61 m 100 2185.01 m 40 1251.02 m 50 2183.71 m 50 1252.61 m 100 2185.01 m 40 1261.86 m 10.0 2185.01 m 30 1262.34 m 100 2190.96 m 35 1263.61 m 100 2203.22 m	60	1206.38	ш	80	2144.15	ш
80 1211.12 III 50 2147.56 III 40 1221.07 III 50 2148.65 III 40 1221.90 III 50 2149.48 III 30 1225.65 III 50 2152.76 III 30 1228.65 III 100 2157.17 III 30 1232.96 III 60 2163.86 III 50 1232.96 III 60 2163.25 III 40 1236.20 III 100 2170.70 III 40 1235.11 III 50 2183.71 III 40 1259.02 III 50 2190.09 III 40 1261.86 III 100 2197.58 III 30 1262.34 III 100 2203.22 III 30 1264.21 III 100 2203.22 III 30 1264.21 III 100 2203.22 III 30 1635.19 III III	80	1209.13	ш	50	2147.16	Π
40 1221.07 m 50 2148.65 m 40 1221.90 m 50 2149.48 m 30 1228.65 m 100 2157.76 m 30 1228.65 m 100 2157.17 m 30 1232.96 m 60 2165.25 m 40 1236.20 m 100 2170.70 m 40 1236.20 m 100 2183.71 m 50 1252.61 m 100 2183.71 m 40 1238.51 m 50 2190.09 m 40 1259.02 m 50 2190.09 m 40 1261.86 m 17.3 2190.76 m 30 1262.34 m 100 2197.59 m 35 1264.21 m 100 2203.22 m 30 1267.55 m 100 2203.22 m 30 1603.19 m 100 2233.81 m <td>80</td> <td>1211.12</td> <td>ш</td> <td>50</td> <td>2147.56</td> <td>ш</td>	80	1211.12	ш	50	2147.56	ш
40 1221.90 m 50 2149.48 m 30 1225.65 m 50 2152.76 m 30 1228.65 m 100 2157.17 m 30 1232.96 m 60 2163.86 m 50 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1232.51 m 50 2183.71 m 50 1252.61 m 100 2185.01 m 40 1259.02 m 50 2190.09 m 40 1261.86 m 100 2191.56 m 30 1262.34 m 100 2197.59 m 35 1264.21 m 100 2197.59 m 30 1455.27 m 60 2208.70 m 30 1679.25 m 100 2233.81 m 30 1679.25 m 100 2237.59 m	40	1221.07	ш	50	2148.65	Ш
30 1225.65 m 50 2152.76 m 30 1228.65 m 100 2157.17 m 30 1.231.88 m 50 2163.86 m 50 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.71 m 40 1259.02 m 50 2190.09 m 40 1261.86 m 100 2185.01 m 40 1261.86 m 100 2190.76 m 30 1262.34 m i00 2191.58 m 31 1264.21 m 100 2191.58 m 33 1264.21 m 100 2203.22 m 40 1287.05 m 100 2203.22 m 30 1603.19 m 100 2203.22 m 30 1679.25 m 100 2233.81 m <td>40</td> <td>1221.90</td> <td>ш</td> <td>50</td> <td>2149.48</td> <td>ш</td>	40	1221.90	ш	50	2149.48	ш
30 1228.65 m 100 2157.17 m 30 1231.88 m 50 2163.86 m 50 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.01 m 40 1238.51 m 50 2185.01 m 40 1259.02 m 50 2190.09 m 40 1261.86 m 1(7.) 2190.76 m 30 1262.34 m 100 2197.59 m 315 1263.61 m 100 2197.59 m 35 1263.61 m 100 2197.59 m 40 1287.05 m 100 2203.22 m 40 1584.60 m 200 223.81 m 30 1603.19 m 100 223.81 m 30 1690.28 m 200 223.91 m	30	1225.65	ш	50	2152.76	
30 1.231.88 m 50 2163.86 m 50 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.71 m 50 1252.61 m 100 2183.71 m 40 1259.02 m 50 2190.09 m 40 1261.86 m 100 2191.5% m 30 1262.34 m 100 2191.5% m 35 1263.61 m 100 2197.59 m 35 1264.21 m 100 2197.59 m 30 1455.27 m 60 2208.70 m 40 1584.60 m 200 223.81 m 30 1679.25 m 100 2233.81 m 30 1690.28 m 200 2235.91 m 60 1692.89 m 150 2237.59 m	30	1228.65	ш	100	2157.17	m
50 1232.96 m 60 2166.25 m 40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.71 m 50 1252.61 m 100 2185.01 m 40 1259.02 m 50 2190.76 m 40 1261.86 m 17.3 2190.76 m 30 1262.34 m 100 2197.58 m 35 1263.61 m 100 2197.59 m 35 1264.21 m 100 2197.59 m 40 1287.05 m 100 2203.22 m 30 1455.27 m 60 2208.70 m 30 1603.19 m 100 2231.81 m 30 1603.28 m 200 2235.91 m 30 1690.28 m 150 2244.10 m 60 1692.89 m 150 2251.45 m <td>30</td> <td>1231.88</td> <td>ш</td> <td>50</td> <td>2163.86</td> <td>Π</td>	30	1231.88	ш	50	2163.86	Π
40 1236.20 m 100 2170.70 m 40 1238.51 m 50 2183.71 m 50 1252.61 m 100 2185.01 m 40 1259.02 m 50 2190.09 m 40 1261.86 m 11.0 2190.76 m 30 1262.34 m 100 2197.58 m 31 1263.61 m 100 2197.59 m 35 1264.21 m 100 2197.62 m 40 1287.05 m 100 2208.70 m 30 1455.27 m 60 2208.70 m 40 1584.60 m 200 2231.81 m 30 1603.19 m 100 2233.81 m 30 1690.28 m 200 2235.91 m 60 1690.28 m 150 2244.10 m 60 1696.64 m 150 2257.92 m </td <td>50</td> <td>1232.96</td> <td>ш</td> <td>60</td> <td>2166.25</td> <td>œ</td>	50	1232.96	ш	60	2166.25	œ
40 1238.51 III 50 2183.71 III 50 1252.61 III 100 2185.01 III 40 1259.02 III 50 2190.09 III 40 1261.86 III 11°.J 2190.76 III 30 1262.34 III 100 2197.58 III 31 1263.61 III 100 2197.58 III 33 1264.21 III 100 2197.82 III 40 1287.05 III 100 2198.62 III 40 1287.05 III 100 2198.62 III 40 1287.05 III 100 2208.70 III 30 1603.19 III 100 2231.81 III 30 1603.19 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1696.64 III 150 2244.10 III 60 1696.64 III	40	1236.20	ш	100	2170.70	30
50 1252.61 III 100 2185.01 III 40 1259.02 III 50 2190.09 III 40 1261.86 III 117.J 2190.76 III 30 1262.34 III 100 2191.58 III 35 1263.61 III 100 2197.59 III 35 1264.21 III 100 2197.59 III 40 1287.05 III 100 2203.22 III 30 1455.27 III 60 2208.70 III 30 1455.27 III 60 2208.70 III 30 1603.19 III 100 2233.21 III 30 1603.19 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2244.10 III 60 1696.64 III 100 2273.30 III 80 1707.43 III	40	1238.51	Ē	50	2183.71	m
40 1259.02 III 50 2190.09 III 40 1261.86 III 11°.J 2190.76 III 30 1262.34 III 100 2191.58 III 35 1263.61 III 100 2197.39 III 35 1264.21 III 100 2197.39 III 40 1287.05 III 100 2203.22 III 40 1287.05 III 100 2203.22 III 30 1455.27 III 60 2208.70 III 40 1584.60 III 200 2231.81 III 30 1603.19 III 100 2233.81 III 30 1609.28 III 200 2235.91 III 60 1696.64 III 150 2244.10 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.78 III	50	1252.61	ш	100	2185.01	Ξ
40 1261.86 II 1CJ 2190.76 III 30 1262.34 III 100 2191.58 III 35 1263.61 III 100 2197.59 III 35 1264.21 III 100 2197.59 III 40 1287.05 III 100 2197.59 III 40 1287.05 III 100 2203.22 III 40 1584.60 III 200 2208.70 III 40 1584.60 III 200 2231.81 III 30 1603.19 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.78 III 100 2273.30 III 45 1762.81 III <	40	1259.02		50	2190.09	<u>ш</u>
30 1262.34 III 100 2191.55 III 35 1263.61 III 100 2197.59 III 35 1264.21 III 100 2197.59 III 40 1287.05 III 100 2203.22 III 40 1584.60 III 200 2226.72 III 30 1603.19 III 100 2233.81 III 30 1679.25 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2244.10 III 60 1696.64 III 150 2244.10 III 60 1696.64 III 100 2273.30 III 60 1707.43 III 80 2275.43 III 80 1707.78 III 100 2276.33 III 30 1766.92 III 100 2276.38 III 30 1769.17 III	40	1261.86	 	100	2190.76	
35 1263.61 III 100 2197.59 III 35 1264.21 III 100 2197.59 III 40 1287.05 III 100 2203.22 III 30 1455.27 III 60 2208.70 III 40 1584.60 III 200 2226.72 III 30 1603.19 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 30 1690.28 III 150 2237.59 III 60 1692.89 III 150 2244.10 III 60 1696.64 III 150 2251.45 III 80 1707.43 III 80 2257.92 III 40 1707.78 III 100 2276.33 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1769.17 III <t< td=""><td>30</td><td>1262.34</td><td>ш</td><td>100</td><td>2191.58</td><td>m</td></t<>	30	1262.34	ш	100	2191.58	m
35 1264.21 III 100 215%.62 III 40 1287.05 III 100 2203.22 III 30 1455.27 III 60 2208.70 III 40 1584.60 III 200 2226.72 III 30 1603.19 III 100 2231.81 III 30 1679.25 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1695.64 III 150 2244.10 III 60 1696.64 III 150 2257.92 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2276.38 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III <t< td=""><td>35</td><td>1263.61</td><td></td><td>100</td><td>2197 59</td><td>10</td></t<>	35	1263.61		100	2197 59	10
40 1287.05 III 100 2203.22 III 30 1455.27 III 60 2208.70 III 40 1584.60 III 200 2226.72 III 30 1603.19 III 100 2231.81 III 30 1603.19 III 100 2233.81 III 30 1679.25 III 100 2235.91 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2276.38 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2290.66 III 30 1827.26 III <td< td=""><td>35</td><td>1264.21</td><td><u>ш</u></td><td>100</td><td>21%8.62</td><td>ш</td></td<>	35	1264.21	<u>ш</u>	100	21%8.62	ш
30 1455.27 III 60 2208.70 III 40 1584.60 III 200 2226.72 III 30 1603.19 III 100 2231.81 III 30 1679.25 III 100 2233.81 III 30 1679.25 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2276.38 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 2289.23 III <td< td=""><td>40</td><td>1287.05</td><td>ш Ш</td><td>100</td><td>2203.22</td><td><u></u></td></td<>	40	1287.05	ш Ш	100	2203.22	<u></u>
40 1584.60 III 200 2226.72 III 30 1603.19 III 100 2231.81 III 30 1679.25 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 30 1766.92 III 100 2276.38 III 30 1766.92 III 100 2276.38 IIII 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 30 1827.26 III 150 2284.44 III 60 2036.39 III <	30	1455.27	<u>ш</u>	60	2208.70	Π
30 1603.19 III 100 2231.81 III 30 1679.25 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 30 1766.92 III 100 2276.38 III 30 1766.92 III 100 2276.38 IIII 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 2289.23 III 50 2289.23 III 60 2036.39 III <t< td=""><td>40</td><td>1584.60</td><td></td><td>200</td><td>2226.72</td><td>- </td></t<>	40	1584.60		200	2226.72	-
30 1679.25 III 100 2233.81 III 30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 40 1707.78 III 100 2276.38 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 30 1827.26 III 150 2284.44 III 60 2036.39 III 50 2289.23 III 60 2036.39 III 50 2309.99 III	30	1603.19	 	100	2231.81	<u></u>
30 1690.28 III 200 2235.91 III 60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 2289.23 III 50 2289.23 III 60 2036.39 III 50 2309.99 III 60 2036.39 III 50 2309.99 III	30	1679.25	 	100	2233 81	
60 1692.89 III 150 2237.59 III 60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 2289.23 III 60 2295.55 III 60 2036.39 III 50 2309.99 III 60 2036.39 III 50 2309.99 III	30	1690.28	 	200	2235.01	
60 1696.64 III 150 2244.10 III 60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 60 2036.39 III 50 2289.23 III 60 2036.39 III 50 2309.99 III 60 2036.39 III 50 2309.99 III	60	1692.89	 III	150	2237.59	m
60 1701.48 III 80 2251.45 III 80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 60 Air 60 2295.55 III 60 2036.39 III 50 2309.99 III 60 2036.43 III 50 2309.99 III	60	1696.64	 	150	2244.10	m
80 1707.43 III 50 2257.92 III 40 1707.78 III 100 2273.30 III 45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 Air 60 22036.39 50 200 2016.61 III 50 230.99.99	60	1701.48	 	80	2251.45	m
40 1707.78 III 100 2273.30 III 45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 Air 60 22036.39 50 2289.23 60 2036.63 III 50 2314.61	80	1707.43	tr	Ś	2257 92	m
45 1762.81 III 80 2275.43 III 30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III	40	1707.78	 TT	100	2273 30	m
30 1766.92 III 100 2276.38 III 30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III 50 2289.23 III Air 80 2290.66 III 60 2036.39 III 50 2309.99 III 60 2030.63 III 50 2309.99 III	45	1762.81		80	2275 43	m
30 1769.17 III 80 2277.47 III 30 1827.26 III 150 2284.44 III - Air Air 80 2290.66 III 60 2036.39 III 50 2309.99 III 50 2309.99 III 50 2309.99 III	30	1766 92	TT	100	7776 38	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1769 17	m	80	2273.30	
Air 50 2289.23 ш Air 80 2290.66 ш 60 2036.39 ш 50 2309.99 ш 60 2030.63 ш 50 2309.99 ш	30	1827 26	m	150	22, 1.4,	m
Аіг 80 2290.66 ш 60 2036.39 ш 50 2309.99 ш 50 2030.63 ш 50 2309.99 ш		2		\$ 0	22007.00	m
Ал 60 2295.55 ш 60 2036.39 ш 50 2309.99 ш 50 2030.63 ш 50 2309.99 ш		A !			2200 66	m
60 2036.39 III 50 2309.99 III 50 2030.53 III 50 2309.99 III		AIT		- A	2200.00	ш т
	60	2036 39	ш	ŝ	2300 00	m
	ŝ	2030 63	in the second se	20	7314 62	

I.

Intensity	Wavelength(Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
100	2319.07	10	80	630.30	IV
150	2324.88	ш	30	632.62	IV
60	2340.51	ш	30	637.34	rv
50	2456.83	m	50	637.55	rv
100	2472.89	m	50	638.13	rv
100	2479.77	101	30	638.54	IV
100	2483.06	ш	100	666.55	rv
60	2488.26	ш	75	667.30	rv
80	2506.41	ш	40	677.55	ſV
80	2530.99	ш	40	687.12	rv
80	2537.7 3		50	688.46	ſV
80	2544.57	ш	100	693.92	ſV
50	2545.17	ш	50	695.21	īv
80	25fA.76	ш	5)	705.98	rv
80	2616.50	m	0	712.90	īv
100	26.26.08	Ш	80	1055.89	IV
100	2640.73	50	60	1057.85	IV
50	2647_50	 	30	1367.39	īv
40	2655.28	 	40	1375.05	IV IV
40	2916_57	ш	70	1401.82	IV IV
		—	100	1417.42	rv
			30	1485.05	IV IV
	Cr rv		80	1595.04	IV IV
			90 T) 1595 59	rv
	Vacuura		100	1658.08	rv
			120	1672.66	rv
50	575.05	rv	90	1686.07	rv
30	576.24	rv	100	1690.88	rv
30	576.62	ĩv	80	1725.26	īv
30	595.09	rv	20	1727 07	rv
50	612.64	ĩv	100	1732.04	rv
40	613.75	ĩv	40	1733.98	TV
40	614.03	ĩv	80	1734 16	TV TV
40	614.90	ĩv	50	1739 19	rv
30	615.34	rv	70	1746 88	rv
30	615.60	IV IV	8	1747 13	rv
50	616.82	rv	110	1755.64	rv
40	618 23	IV IV	120	1758 51	 TV
40	619.13	rv	100	1769 64	17 TV
100	620.66	rv	100	1777 87	17 TV
60	621 36	rv	40	1791 00	17 TV
40	622.09	rv	140	1802 72	17 TV
30	623 54	rv	130	1812 41	17 TV
40	625 04	rv	60	1810 22	17 TV
40	625.99	 fv	30	1876 21	17 TV
100	629.26	•• ••	20	1976 96	17

. .

B-12

(
1
-
ω

1851.89 1863.11 1863.16 1873.89 1873.89 1883.16 1937.63 19346.59 1946.59	* = = = = = = = =	8 8 8 8 8 8 8	825.60 968.70 1060.65 1112.45	< < < < <
1863.11 1873.89 1873.16 1937.63 1946.59 1946.59	* = = = = = =	88888	968.70 1045.04 1112.45	< < < <
1873.89 1883.16 1937.63 1946.59 1967.18	2 2 2 2 2	8888	1045.04 1060.65 1112.45	< < <
1883.16 1937.63 1946.59 1967.18	2 2 2 2	888	1060.65 1112.45	< <
1937.63 1946.59 1967.18	5 2 3	88	1112.45	۲
1946.59 1967.18	5 2	8		•
1967.18	5		1114.35	<
	14	100	1116.48	<
1972.07	2	8	1117.56	<
1990.25	5	8	1118.16	<
		150	1121.07	<
Ąi		150	1127.63	<
		100	1193.95	<
いちょう 12	! 7	8	1196.04	۲
	. 7	8	1210.50	<
	2	8	1259.99	<
	1	100	1263.50	<
10.00	2	150	1465.86	۲
		8	1481.65	<
	7	8	1482.76	<
	2	8	1484.67	<
		8	1489.71	<
		iye	1497.97	<
Cr v		220	1579 70	< <
Vacuum		170	1591.72	<
		150	1603.19	<
438.62	<	8	1638.50	<
464.02	<	8	1639.40	<
469.64	~	•	1837.44	<
	990.15 Air 1299.21 1299.21 1299.21 1299.29 1299.29 1299.29 1299.29 1299.29 1299.29 1299.29 1299.29 1299.29 1299.29 1299.21 1299.21 1299.29 1299.21 1299.20 1299.21 1299.20 120 1299.20	990.25 Air 2042.91 17 2055.73 17 2055.73 17 2055.73 17 2055.73 17 2055.73 17 2055.73 17 2055.73 17 2055.73 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 2055.73 17 17 17 2055.73 17 17 17 17 2055.73 17 17 17 17 2055.73 17 17 17 17 17 17 17 17 17 17 17 17 17	990.25 IV 50 Air IS0 IS0 2055.73 IV IS0 21299.21 IV IS0 2136.85 IV IS0 2124.06 IV IS0 2124.07 IV IS0 2125 IV IS0 2120 IV IS0 220 IS0 IS0 469.64 V IS0 200 IS0 IS0 200 IS0 IS0 200 IS0 IS0 200 IS0 IS0 <tr< td=""><td>Image: 1990-25 IV S0 1118.16 Air IS IS IS III21.07 Air IS IS III21.07 IS III21.07 3042.91 IV IO II21.07 IS III21.07 3055.73 IV IO II21.07 IS II121.07 3055.73 IV IO II21.07 IS II121.07 3055.73 IV IO II23.95 IS III8.16 3055.73 IV IO II21.07 IS III8.16 3055.73 IV IO II23.95 III8.16 3055.73 IV IO II25.99 III8.16 3012.125 IV IO II26.350 II26.350 302.130 IV IS II481.65 II482.76 302.140 IV IO I482.76 I489.71 303 I484.67 I489.71 I590.37 I590.37 303 I484.67</td></tr<>	Image: 1990-25 IV S0 1118.16 Air IS IS IS III21.07 Air IS IS III21.07 IS III21.07 3042.91 IV IO II21.07 IS III21.07 3055.73 IV IO II21.07 IS II121.07 3055.73 IV IO II21.07 IS II121.07 3055.73 IV IO II23.95 IS III8.16 3055.73 IV IO II21.07 IS III8.16 3055.73 IV IO II23.95 III8.16 3055.73 IV IO II25.99 III8.16 3012.125 IV IO II26.350 II26.350 302.130 IV IS II481.65 II482.76 302.140 IV IO I482.76 I489.71 303 I484.67 I489.71 I590.37 I590.37 303 I484.67

C. Vacuum Ultraviolet Lines for Cr I through Cr XXIV (Wavelengths and Classifications)

ī.

C. Vacuum Ultraviolet Lines for Cr 1 through Cr XXIV

[Excerpted from: R. L. Kelly, J. Phys. Chem. Ref. Data 16, Supplement 1 (1987)]

The following tables, including the introductory comments, are excerpted from a new tabulation by R. L. Kelly,¹ which supersedes and revises his previous tables published with Palumbo in 1973.²

The listed wavelength data are generally from observations, with lines of the helium-like and hydrogen-like ions (Cr XXIII and Cr XXIV) as notable exceptions. But also in some cases where lines have been observed, wavelengths given here are those resulting from a comprehensive analysis of the spectrum rather than the measured values. A few lines have been predicted from unpublished extrapolations along isoelectronic sequences, and some unobserved weak lines in multiplets have been included for completeness. Such predicted values of wavelength are marked by the symbol P in the column labeled "Notes".

The lines are arranged in order of increasing wavelength within each spectrum, and the vacuum wavelengths are given as they are reported in the reference listed first for each line. A complete listing of these references is given at the end of these introductory comments. Where more than one publication reports the wavelength of the line, the decision as to which to retain was based primarily on the present author's judgement of the best value. This judgement was based on consideration of the dates of publication, on probable accuracy from the type of inctrumentation used and the wavelength standards employed, on the spectroscopic source used, and on the comparison of the observations with the wavelengths predicted from the best known values of energy levels as described above.

With respect to the accuracy of the wavelength data, it is conservatively estimated that all wavelengths reported should have uncertainties of ten to twenty in the last digit given.

The listed intensities have been normalized to a maximum of 1000 for convenience in comparing the differen: references. The normalization procedure used was generally a linear o. logarithmic transformation of the intensities reported by the original authors, depending on the particular case. Intensities given by different observers have seldom been found compatible, however, and the tabulated intensities should be used only as a rough estimate.

The transitions are shown in standard spectroscopic notation with the lower level given first, and the energy levels, i.e., energies above the ground state, are presented in units of 1000 cm^{-1} , each value being rounded off to conserve space. Additive uncertainties are indicated by B, C, K, etc. which may be thousands of cm⁻¹. The energy level data are taken from the files of the Naval Postgraduate School Spectroscopic Data Center (and thus do not necessarily agree with those tabulated in Section E of this book). The multiplet numbers assigned by C. E. Moore³ are given in a separate column. The classifications of the uransitions are given in the accepted form, the primary references being the NBS spectroscopy tables.³⁴ For convenience, separate columns are used for showing the configurations, terms, and J-values. In the term column, the symbol g is used to denote the ground term. Otherwise, the term designation follows that of Cowan and Andrew.⁵

The parent terms are given where they are known and where they are not immediately obvious. The older practice of using primes, double primes, etc. to indicate that the parent term of a configuration is an excited state of the next higher ion has been abandoned. But the notation of a, b, c, ... (for even terms) and z, y, x, ... (for odd terms) to indicate the order of appearance of terms of the same multiplicity and same type has been continued.

A few descriptive symbols are used in the "Notes" column which have the following meanings:

- F line is forbidden by electric dipole selection rules
- A line observed in absorption
- Q uncertain classification
- P predicted value of wavelength

There are three classes of predicted lines:

- (a) lines that have been observed but for which calculations of wavelengths from energy levels are superior to the observations as in hydrogenic spectra and in other specific transitions.
- (b) lines which have not been observed but for which Ritz calculations between known levels can be made, as in many of the forbidden lines.
- (c) lines for which one or both of the energy levels have been found by Hartree-Fock type calculations, by interpolation, or by extrapolation.

These three classes are not separately distinguished in the "Notes" column.

References for Introductory Comments

- R. L. Kelly, Atomic and Ionic Spectrum Lines Below 2000 Angstroms (Hydrogen through Krypton), J. Phys. Chem. Ref. Data 16, Supplement 1 [1987].
- R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms: Hydrogen through Krypton, NRL Report 7599 [June 1973].
- C. E. Moore, An Ultraviolet Multiplet Table, NBS Circular 488, Sect. 1 (1950); Sect. 2 (1952).
- J. Sugar and C. Corlise, Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- 5. R. D. Cowaa and K. L. Andrew, J. Opt. Soc. Am. 55, 502 [1965].

C - 1

1.1

General Reference List for Section C

- 9. E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 [1965].
- 47. L S. Bowen, Phys. Rev. 52, 1153 [1937].
- 118. L. Cohen and W. E. Behring, J. Opt. Soc. Am. 66, 899 [1976].
- 180. B. Edien, Z. Phys. 103, 536 [1936].
- 181. B. Edlen, Z. Phys. 104, 188 [1937].
- 182. B. Edlen, Z. Phys. 104, 407 [1937].
- 218. J. O. Ekberg, Phys. Scr. 7, 59 [1973].
- 219. J. O. Ekberg, Phys. Scr. 7, 55 [1973].
- 222. J. O. Ekberg, Phys. Scr. 8, 35 [1973].
- 239. B. C. Fawcett, J. Phys. B 4, 1577 [1971].
- 241. B. C. Fawcett, R. D. Cowan, E. Ya. Kononov, and R. W. Hayes, J. Phys. B 5, 1255 [1972].
- 242. B. C. Fawcett, ARU-R 4 [1972].
- 251. B. C. Fawcett, J. Phys. B 3, 1732 [1970].
- 256. B. C. Fawcett and A. H. Gabriel, Astrophys. J. 141, 343 [1965].
- 260. B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 88, 262 [1966].
- 265. U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 [1967]. 267. B. C. Fawcett, A. H. Gabriel, and P. A. H., Saunders, Proc.
- Phys. Soc. 90, 863 [1967]. 270. B. C. Fawcett and N. J. Peacock, Proc. Phys. Soc. 91, 973 [1967].
- S. Goldsmith, U. Feldman, L. Orea, and L. Cohen, Astrophys. J. 174, 209 [1972].
- 289. G. Goudet, J. Phys. Radium 6, 433 [1935].
- 340. C. C. Kiess, J. Res. Natl. Bur. Stand. 47, 385 [1951].
- 341. C. C. Kiem, J. Res. Natl. Bur. Stand. 51, 247 [1953].
- 375. R. L. Kelly, unpublished work prepared for this report.
- 395. S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 [1975].
- 437. K. P. Dere, Astrophys. J. 221, 1062 [1978].
- 440. S. O. Kastner, A. M. Crooker, W. E. Behring, and L. Cohen, Phys. Rev. A 16, 577 [1977].
- 442. G. D. Sandlin, G. E. Brueckner, and R. Tousey, Astrophys. J. 214, 898 (1977).
- 488. C. E. Moore, U. S. Natl. Bur. Stand., Circ. 488. Sec. 1, 78 pp. [1950], Sec. II, 115 pp. [1952].
- F. L. Moore, Jr., Thesis, Princeton Univ. [1949], available from Univ. Microfilms, Publ. No. 10, 972, 172 pp. [Ana Arbor, Mich.].
- 619. V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 [1977].
- 631. L. A. Vainstein and U. I. Safronova, Preprint No. 6, ISAN [1975].
- V. A. Boiko, A. Ya. Facnov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 [1978].
- 680. S. O. Kastner, A. K. Bhatia, and L. Cohen, Phys. Scr. 15, 259-67 [1977].
- 716. M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B 4, 1747 [1971].

- 726. R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 [1976].
- H. Scoffeld, Report UCID-16848, Lawrence Livermore Lub., Univ. Calif. [1975].
- G. D. Sandlin, G. F. Bruechner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 [1976].
- 766. F. Tyren, Z. Phys. 111, 314 [1938].
- 790. H. E. White, Phys. Rev. 33, 538 [1929].
- 791. H. E. White, Phys. Rev. 33, 672 (1929).
- 850. U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 [1973].
- 851. B. C. Fawcett, R. D. Cowan, and R. W. Hayes, unpublished.
- 854. B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B. 5, 2143 (1972).
- B. C. Fawcett, Advances Atomic and Molecular Physics, Vol. 10, Academic Press [1974].
- 865. G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 63, 1463 [1973].
- 877. B. C. Fawcett and R. W. Hayes, Mon. Not. R. Astron. Soc. 179, 185 [1975].
- 882. M. C. E. Huber, R. J. Sandeman, and E. F. Tubbs, Proc. R. Soc. London, Ser. A 342, 431 [1975].
- 893. J. O. Ekberg, Phys. Scr. 14, 109 [1976].
- 907. J. O. Ekberg, Phys. Scr. 13, 245 [1976].
- 918. A. M. Ermolaev and M. Jones, J. Phys. B 7, 199 [1974].
- 940. U. Feldman and G. A. Doschek, J. Opt. Soc. Am. 67, 726 [1977].
- 947. G. E. Bromage and B. C. Fawcett, Mon. Not. R. Astron. Soc. 138, 591 [1977].
- 949. G. E. Bromage and P. C. Fawcett, Mon. Not. R. Astron. Soc. 178, 605 [1977].
- 956. W. M. Neupert, Sol. Phys. 18, 474 [1971].
- 970. S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides , J. Opt. Scc. Am. 68, 1558 [1978].
- 977. B. Edlen, Phys. Scr. 19, 255 [1979].
- 1042. G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 [1977].
- 1055. B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. R. Astron. Soc. 186, 113 [1979].
- 1058. U. Feldman, G. A. Doschek, C. C. Cheng, and A. K. Bhatia, J. Appl. Phys. 51, 190 [1980'.
- 1089. N. Spector, A. Zigler, H. Zmora, and J. L. Schwob, J. Opt. Soc. Am. 79, 857 [1980].
- 1091. K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313 [1980].
- 1104. B. Edlen, Phys. Scr. 22, 593 [1980].
- 1112. M. Klapisch, A. Bar Shalom, J. L. Schwob, B. S. Fraenkel, C. Breton, C. De Michelis, M. Finkenthal, and M. Mattioli, Phys. Lett. A 69, 34 [1978].
- 1120. E. Hinnov, S. Suckewer, S. Cohen, and K. Sato, Phys. Rev. A 25, 2293 [1982].
- 1131. M. Pinkenthal, E. Hinnov, S. Cohen, and S. Suckewer, Phys. Lett. A +1, 284 [1982].
- 1137. E. Hinnov and S. Suckewer, Phys. Lett. A 79, 298 [1980].

Multiplet Rel. Int.	λ (m Å)	Levels (in 10^3 cm^{-1})	Configurations	Terms	J - J	Noitte	Reference
0	12.201					1	716
0	12.329				1		716
0	12.435				-		716
0	12.589						716
0	12.778			1			716
10	13.217						716
2	12.394						1089
	14.53			,	1		716
10	14.775					i.	716
20	15.21						716
10	15.680						716
80	17.107				÷		716
100	205.82						256
100	206.53	· · · · · · · · · · · · · · · · · · ·					256
300	210.16					1	256
300	215.38				1		256
300	217.19					2	256
200	217.55				1 	1	256
200	217.61						256
100	218.06						256
100	218.15						256
400	219.29						256
200	219.94				÷		256
200	222.16						256
300	226.89						256
	334.95						251
	380.7						251
	419.2						251

CHROMIUM , Z = 24 Unclassified Lines

-					•		our cur ta a
Multiplet Rel. Int	λ _{ve} (in A)	Levels (in 10° cm 1)	Configurations	Terms	J - J	Notes	References
10		0.0 - 60.49342	3d*(a*S)4s = 3d*4s(a*D)6p	ga'S - q'D'	3 - 3	• • • •	490
300	1747 14	0.0 - 57 23750	3d'(a*S)4s - 3d*4s(a*D)0p	ga'S - p'F'	3 - 4		490
	1798 2					A	882
	1798-6					A	882
	1799 7					A	882
	1800 7					A	882
	1800.9					A	882
	1801-1					A	882
	1801.7					Α	882
	1802.4					A	882
	18010					A	882
	1803 7					Α	882

C-4

CR I -- Continued

Multiplet	Rei. Int.	λ _{ee} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		1805.2				1	A	882
		1805.4			1		1	882
		1806.5				1	•	882
		1807.7				1	•	882
		1806.4				1	•	882
		1809.7					•	882
		1810.4				1		ē\$ 2
		1812.2			1	ł	•	882
		1813.7			1			887
		1815.9				1		887
	ļ	1818.4	0.0 - 54,99293	3d Ya Shin - 3d Ya Dhim	$m^{1}S - v^{2}F^{*}$	11-2		887
	1	1835.2	0.0 - 54.4900	3d'(a*S)4s - 3d'(a*S)38p	ga'S - 'P'	3-4	Â	882
	1	1835.4	00 - 54 4840	1444514+ - 144+5127-	-15 1P			
		1975 5	0.0 54 4905	30 (2 3/06 - 30 (2 3/37p 3.4% (5)4. 1.4% (2 3/37p		3-4	1	002
		1633.3	0.0 - 54.4808	dor(2.2) Dr = 34(2.2) Dr		3-4		882
		1835.7	0.0 - 54.4748	Jd (a'S)46 - Jd (a'S)35p	p S- P	3-4	•	882
	1	1835.9	0.0 - 54.4685	3d '(a*S)4s - 3d '(a*S)34p	ga 'S - P	3-4	A	882
	1	1836.2	0.0 - 54.4603	3d²(a*5)4s - 3d²(a*5)33p	ga'S - 'P'	3-4	•	882
	1	1836.4	0.0 - 54.4534	3d'(a'S)4s - 3d'(a'S)32p	ga 'S - 'P'	3-4	•	882
	1	1836.7	0.0 - 54.4450	3d'(a*S)4s - 3d*(a*S)31p	ga'S - 'P"	3-4		882
	1	1837.0	0.0 - 54.4361	3d*(a*S)4s - 3d*(a*S)30o	ca'S - 'P"	3-4		882
	1	1837.4	0.0 - 54.4254	3d '(a*S)4s - 3d'(a*S)29n	m'S - 'P'	1-4		887
	1	1837.8	00-54.4135	3d3(a*S)4a - 3d3(a*S)78n	m'S - 'P'	1.4		887
		1838.2	0.0 - 54 4005	24 Ya 5 Mar - 24 Ya 5 177	-'S - 'P'	1 1		
	5	1838.7	0.0 - 54.3855	3d'(a'S)4s - 3d'(a'S)26p	ga'S - 'P'	3-4	Â	882
		1010 1				ļ		
		1830 3	0.0 44 3494	2414-004- 2414-0004	- Te Tre		^	882
		1837.3	0.0 - 54.3688	30 (8°5)46 - 30 (8°5)25p	p 5 - r	3-4	•	882
	2	1839.9	0.0 - 54.3508	3d'(a'S)4s - 3d'(a'S)24p	ga 'S – 'P	3-4	•	882
	10	1840.69	0.0 - 54.3272	3d'(a°S)4s - 3d'(a°S)23p	ga'S - 'P"	3-4		490
	10	1841.5	0.0 - 54,3036	3d'(a*S)4s - 3d'(a*S)22p	pa'S - 'P'	3-4	•	882
	00	1842.4					•	882
	10	1842.6	0.0 - 54.2711	3d'(a*S)4s - 3d*(a*S)21p	ga'S - 'P'	3-4	•	882
	00	1843.1					A	882
	5	1843	0.0 - 54.2388	3d*(a*S)4s - 3d*(a*S)20p	ga'S - 'P'	3-4		882
	1	1844.6			-	1		887
	10	1845.1	0.0 - 54,1966	3d ³ (a*5)4a - 3d ³ (a*5)19n	m'S - 'P'	3-4		887
	1	1846.4					A	882
	10	1846 8	0.0 - 54 1477	24%+5)4e - 24%+5)18a	m'S _ 'P'	1.4		
	5	1847.2		~~ (* 5/~* - ×* (* 3/16)		1 - 4	Â	882
	00	1847.3	0.0 - 54.13288	3d ⁵ (a*S)4s - 3d*4s(a*D)5p	ga'S - s'P"	3 - 3		882
	10	1848.8	0.0 - 54.0890	3d ³ (a*S)4s - 3d ³ (a*S)17p	ca'S - 'P'	3-4		887
	1	1849.5						887
	10	1851.3	0.0 - 54.0171	3d'(a*S)4s - 3d'(a*S)16p	ga'S - 'P'	3-4	A	\$\$2
	10	1854 3	0.0 - 41 9780	345(=45)4e = 345(=45)14=	m ⁷ S - ⁷ P*	1.		
	14	1868 2	0.0 53 8164	243(48)44 - 247(87)130 243(48)44 - 241(48)44	-10 1mm	3-4		
	1	1860 7	U.U - JJ.8138	30 (1 7 HS - 30 (1 7) 14p		3-4	•	882
		1877.3	0.0 - 33./82/7	30"(a"5)46 - 30"46(a"D)5p	p 5 - 5'D'	3-4		882
	40	1603.2	0.0 - 33.0/14	30'(a'5)46 - 30'(a'5) 3p	ga '5 - 'P'	3-4	•	88 2
	25	1869.7	0.0 - 53.64074	3d'(a*5)4s - 3d*4s(a*D)5p	ga 'S - 1'D'	3-3	Â	882 882
					•			
	25	1869.8	0.0 - 53.4826	3d'(a*5)4s - 3d'(a*5)12p	ga'S - 'P'	3-4	A	882
	50	1873.7				1		882
	1	1874.4					A	882
	1	1878.0						882
	50	1878.4				1		887
								001

CR I Continued

Multiplet	Rel. Int.	λ (in Å)	Levels (m 10' cm ')	Configurations	Terus	1-1	Notes	Referen
	5	1879.1					•	882
	5	1879.2					A	882
	50	1880.39	7.92747 - 61.10795	3d*4s² - 3d*4s(a*D)6p	a'D - r'P*	2-2		341
:	250	1881.87	7.92747 - 61 06596	3d*4s ² - 3d*4s(a*D)6p	a'D - r'P	2-1		341
1	1	1887.6	00-5111754	Idian Side - Idia Didada ("P")	m'S - c'F'	1-4		887
	50	1883.11	8.09521 - 61 19868	3d ⁴ 4s ² - 3d ⁴ 4s(a ⁴ D)in	a'D - r'P"	3-3		341
	1	1884.2	0.0 - 53.07390	3d3(a*S)4s - 3d*(a*D)4e4p(*P*)	ga'S - r'F'	3 - 3	•	152
	00	1885.3	I		1	1	•	882
	50	1885.50	7.59316 - 60.62987	3d'(a*\$)4s - 3d'(a2D)4p	a'S - s'D*	2 - 2	[]	490
	500	1886.34	8.09521 - 61.10795	3d*4s2 - 3d*4e(a*D)6p	a'D - r'P*	3-2		341
	150	1887.60	7.92747 - 60 90484	3d*4e ² - 3d*4e(a*D)6p	a'D - o'F'	2-3		341
	50	1887.85	7.81082 - 60.78125	3d'4s2 - 3d'4e(a'D)6p	a'D-o'F'	1-2		341
		1						
	150	1888.17	8.09521 - 61.05641	3d*4s² - 3d*4e(a*D)6p	a'D - o'F'	3-4		341
	50	1889.20	7.75078 - 60.68353	3d*4s ² - 3d*4e(s*D)6p	a'D - o'F'	0-1]	341
	1	1890.0						882
	50	1890.4	l l		1	i		882
	200	1890 78	8 30757 - 61 19577	_^*4 e ² _ \ ^*4ad=*T)\6=	a'D - o'F'	4- <		341
		1070.70	0.50/3/ - 01.173//	2444624 2446210-	-10-01-			176
		1871.4	<u>v.</u> v - 32. 809 3	dni(c.s) nr - saic s) nr	ga 3 - 7	3-4		נוכ
	50	1892.01	7.92747 - 60.78125	3d*4s² - 3d*4s(a*D)6p	a'D - o'F'	2-2		341
	50	1892.8				1		882
	50	1293.59	8 09571 - 60 90484	3d*4s ² - 3d*4s(a*D)6n	a'D - o'F*	3-3		341
		1894.2						887
1	6	1077-4	1 20262 61 06641	Later Later of Dise	20 25		^	141
		1073.70	•.30737 - 01.030+1	20 m - 20 m a Diah	8D-0F	•-•	i .	
	•	1890.9					•	882
	150	1902.43	7.81082 - 60.37494	3d*4s² - 3d*4e(a*D)6p	a'D - q'D"	1 - 2		341
	50	1903.30	7.75078 - 60.29104	3d*4s2 - 3d*4s(a*D)6p	a'D - q'D*	0-1		341
	50	1903 57	8 09521 - 60 62796	3d*4a2 - 3d*4a(a*D)6m	a'D - a'D*	3-4		141
	100	1906.67	197747 - 60 37494	Hide' - Hiderathion	2D-2D	7-7		341
	100	1007.38	7.92747 - 00.57474		a D - q D	1	+ -	241
	200	1907.20	7.01002 - 00.2413 8.09521 - 60.49342	30 46 - 30 46(2 12)0p 3d*4e ² - 3d*4e(2*12)6p	*D-eD	1-1		341
		1	0.07521 - 00.47542		••••q•	1 2 - 2		
	10%	1909.72	7.92747 - 60.29104	3d*4s2 - 3d*4e(a*D)6p	a'D - q'D"	2 - 1	1	341
		1910.3	0.0 - 52.3488	3d'(a*S)4s - 3d'(a*S)9p	ga'S - 'P'	3-4	P	375
	350	1911.30	8.30757 - 60.62796	3d*4s ² - 3d*4s(a*D)6p	a'D - q'D"	4-4		341
	200	1912.79	8.09521 - 60.37494	3d*4s2 - 3d*4s(a*D)6p	a'D - a'D'	3-2	ł	341
	100	1916 23	8 3075 / - 60 49347	3d*4e ² - 3d*4e(a*D)(m	"D - 0'D"	4-3		141
	10	1924.8						882
	_					}		
	15	1927 1			1	1	•	882
	10	1928.7		_	: 	1		882
	10	1929.60	7 59316 - 39.41701	3d'(a*S)4s - 3d*(a*F)4s4p(*P*)	a'S - r'F"	2 - 3	1	490
	50	1940.45	0.0 - 51.5344	3d3(a*S)4s - 3d3(a*S)8p	ga'S - v'P*	3 - 4	A	882
	50	1940.56	0.0 - 51 5315	3d'(a*S)4s - 3d'(a*S)8p	ga'S - v'P*	3-3	A	182
		1940.64	0.0 - 51.5294	3d'(a*S)4s - 3d'(a*S)8p	ga'S - v'P"	3 - 2	A	882
40	A 0	1048 51	8 00531 60 41301	1444-1 1-44-15-4-4-184-	ID -IET		1	400
		104103	B.07321 ~ 37.41/01	ли тө - ли (агримир(Г))	= U-TF	1 2 - 2	[440
	10	1701 73	A 000 /				-	490
49	200	1989.05	7.92747 - 58.20265	30"4s" - 30"(s"F)4p	1'D - s'F	2-3	P	341
48	750	1989.92	7.51082 - 58.06380	3d"4s' - 3d"4e(s"D)5p	•'D - r'D'	1 - 2		341
48	400	1990.27	7.75078 - 57.99504	3d*4s² - 3d*4s(a*D)5p	a'D - r'D*	0 - 1		341
	750	1991 22	0.0 - 50 2210	3d1(a*\$)4s - 3d1(a*\$)7p	ga'S - 'P*	3 - 4	1	341,37
48	300	1992 12	£ 09571 - 5£ 20267	Mast - Lithars Dife	*D - *'D'	1-4	j	241
49	240	1007 64	7 81061 47 00404				1	141
	400	1774 03						141
45	400	1994.10	7.81UE2 - 37.93842	Jar46" - Jur46(8"D)5p	10 - rD	1-0	1	141
48	750	1994.55	7.92747 - 58.06300	3d*44' - 3d*40(8*D)5p	a'D - r'D'	1 2 - 2	1	341
	250	1995.69	8.09521 - 58.20265	3d*4s ¹ - 3d ⁵ (a ¹ F)4p	s'D - s'P'	3-3	1	341
49				•		1		

1.1

C-5

CR I - Continued

Multiplet	Rci. Int.	λ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
48	500	1997.30	7.92747 - 57.99504	3,"4s2 - 3d*4e(s*D)*;	а'D - г'D'	2 - 1	341
48	600	1997.90	8.09521 - 58.14776	3c**4s² - 3d*4s(:`D)5p	a'D - r'D'	3 - 3	341

$\begin{array}{l} \mbox{CHROMIUM II (Cr $^{1+}$), $Z = 24$ \\ \mbox{Ground State $1s^22s^22p^33s^23p^53d^5($^{5}_{5/2}$) (23 electrons)$ \\ \mbox{Ionization Potential $133 060 cm $^{-1}$; $16.4975 eV$ } \end{array}$

Multiplet	Rei. Int.	λ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	3 - J	Notes	Reference
÷	10	1392.83	19.63128 - 91.42631	3d*(a*D)4s - 3d*(b*P)4p	a*D - u*D*	1-1	;	490
	100	1406.90	20.02418 - 91.10336	3d*(a3D)4s - 3d*(b1F)4p	a'D - w'G'	-1	ł	490
	40	1492.23	0.0 - 67.01228	3d' - 3d'(a'P)4p	ga'S - y'F'	1		490
	20	1504.16	20.02418 - \$6.50738	3d*(a*D)4s - 3d*(a*F)4p	a'D - v'D']-]		490
	20	1604.82	11.96200 - 74.27348	3d*(a*D)4s - 3d*(a*D)4p	a'D - w'F'	1-1	1	490
;	20	1606.67	1203272 - 74.27348	3d*(a'D)4s - 3d*(a'D)4p	a'D - w'F'	$\frac{3}{2} - \frac{3}{2}$		490
1	50	1626.85	25.04310 - 86.51108	3d' - 3d'(a'F)4p	b*D - v*D*	1-1		490
	10	1657.18	31.08311 - 91.42631	3d*(a'F)4s - 3d*(b'P)4p	* s*F - u *D*	1-3		490
	10	1661.02	31.35115 - 91.55654	3d' - 3d'(b'P)4p	a'D - c'D'	1-1	1	490
	20	1665.98	31.53162 - 91.55654	3d° - 3d°(b'P)4p	$a^2D - u^2D^*$	1		490
	70	1696.27	32.60373 - 91.55654	3d' - 3d*(b'P)4p	a'F - u'D'	3-3		490
2	10	1712.85	32.60373 - 90.98631	3d' - 3d'(b'F)4p	a'F - w'G'	3 - 1		490
	70	1727.11	47.46494 - 105.3652	3d*(a*D)4p - 3d*(a*G)5s	z'F' - f'G	1-1		490
	10	1727.78	25.04310 - 82.92003	3d' - 3d'(a'D)4p	b*D - w*P*	1	1	490
	40	1729.79	25.04310 - 82.85400	3d' - 3d'(a'D)4p	b*D - w ² P*	3-1	1	490
	200	1736.63	33.52123 - 91.10336	3d*(a*G)4s - 3d*(b*F)4p	6'G - w'G'	1 1-1	1	490
	20	1754.36	12.49679 - 69 .49827	3d*(a*D)4s - 3d*(a*G)4p	a*D - x*F*	1 - 1		490
224	40	1786.11	35.56902 - 91.55654	3d'(s'F)4s - 3d'(b'P)4p	b'F - u'D'	1-1	P	340
	30	1789.24	21.82482 - 77.71366	3d' - 3d'(a'S)4p	a*P - x2P*	3-3		490
224	40	1791.51	35.60760 - 91.42631	3d*(a'F)4s - 3d*(b'P)4p	b'F - ='D'	1-1		340
	10	1794.47	12.14800 - 67.87568	3d*(a*D)4s - 3d*(a*F)4p	a"D - x"D"	3-3	!	490
18	60	1808.66	19.63128 - 74.92080	3d*(a*D)4s - 3d*(a*D)4p	a'D - x'P'	1 1-1	1	340
	100	1810.08	12.14800 - 67.39380	3d"(a'D)4s - 3d"(a'P)4p	a"D - y"F"	1 - 1		340
	20	1812.91	31.35115 - 86.51108	3d' - 3d'(a'F)4p	$a^2D - v^2D^*$	3-3	P	340
	20	1813.41	12.30398 - 67.44882	3d'(a'D)4s - 3d'(a'P)4p	a*D - y*F*	1-1	P	340
	60	1515.32	19.63128 - 74.71805	3d*(a*D)4s - 3d*(a*D)4p	a*D - x*P*	1 1-1		340
	20	1818.89	31.53162 - 86.51108	3d' - 3d'(a'F)4p	$a^{1}D - v^{1}D^{*}$	1	i -	340
	100	1819.77	12.49679 - 67.44882	3d*(a*D)4s - 3d*(a*P)4p	a*D - y*F*	1-1	P	340
	20	1820.77	12.14800 - 67.07048	3d*(a*D)4s - 3d*(a*P)4p	a"D - y"F"	1-1	1	490
18	80	1820.84	19.79801 - 74.71805	3d'(a'D)4s - 3d'(a'D)4p	a*D - x*P*	3-3		340
	160	1821.58	12.49679 - 67.39380	3d'(a'D)4s - 3d'(a'P)4o	a'D - y'F'	1-1		340
	20	1823.07	19.63128 - 74.48425	3d*(a'D)4s - 3d*(a'D)4p	a*D - x*P*	1-1	1	340
4	60	1825.34	0.0 - 54.78467	3d" - 3d"(a'D)4o	ga*S - z*D*	1-1		340
	20	1828.56	19.63128 - 74.31886	3d*(a'D)4s - 3d*(a'D)4o	a'D - w'F'	1 - 1		490
	60	1828.62	19.79801 - 74.48425	3d*(a'D)4s - 3d*(a'D)4o	8'D - 1'P'	1-1		340
4	100	1830.61	0.0 - 54.62576	3d' - 3d'(a'D)4p	ga'S - z'D'	1-1		340
18	240	1836.23	20.02418 - 74.48425	3d*(a*D)4s - 3d*(a*D)4p	a*D - x*P*	1-1	Ì	340
33	500	1852.13	20.51275 - 74.50451	3d' - 3d*(a'D)4p	8'G - WF	14-1		340
	30	1852.31	20.51833 - 74.50451	3d' - 3d'(a'D)4o	10 - wP	1-1		490
33	60	1852.37	20.51985 - 74.50451	3d' - 3d'(a'D)4o	8'G - W'F'	11-1		340
	20	1854.46	20.51262 - 74.43614	3d" - 3d"(a'G)4o	8'G - x'P'	1 1-1		340
	60	1854.66	20.51833 - 74.43614	3d ³ - 3d ⁴ (a ¹ G)4o	a'G - x'P'	11-1		340

CR II — Continued

- Nubiyit	Rei in	▶_ (= Å)	Levels (in 19° cm-')	Configurations	Terms	1-1	Notes	References
33	400	1855.14	20.51965 - 74.42304	34"- 34"(a"D)%p	a'G#F	1-1		300
33	460	1858.54	20.51262 - 74.31886	3d" - 3d"(a"D)ip	SG-WF	1-1		300
33	300	1858.72	29.51833 - 74.31896	36" - 36"(a'D)tp	a'G-wF	1-1		300
33	240	1000.07	20.51262 - 74.27348	36" - 36"(a'D)(p	s'G-wF			310
	2	1005.00	20.51833 - 74.11448	34° - 34°(a'G)lp	sG-sF	1 - 1		300
		1000.22	32.33374 - 83.59730	36' - 36'(E'T)')p	#F-VG"	5-3		
	20	1870.51	20.02418 - 73.48560	3ette Dyts - 3ette Dytp	1070	1-1	. P	300
	300	1579.05	17 3556 - 85 57741			111		
	120	101106	21 57795 - 74 99493		17-70	1		
	200	100135						
er:	20.	1101.15	31.53162 - 34.604P	H-HETH	D-PT	1.1		30
	120	1007.06	205103-73-0560		The same	I.I		
		100035	21.5285-74,71805		1.9.19			
	1.	1005.92	21.52265-78,66125					
	- 9		215239 - 743564	34 -34 6 COM	T - P	111		
		1907.00	12.09679-66.92639	3416-20/10-3616-27/10	D-YD	i_i	P	30
155	INO	1911.26	32 3998 - BLSTT37	32 - 34's F)ip	dr-dr	1- <u>1</u>	P	300
	1 🔊	1918.30	20.51985 - 72.64879	346-1996	a'G-a'G	1-1		340
155	160	1923.02	32.60373 - 85.60499	34" - 36"(s'F)(p	र्म-नेट	1-1		300
	10	1928.61	34.65948 - 86.51108	3d*(s*P)4s - 3d*(s*F)4p	#P-+D*] -]	1977	
285	240	1929.96	39.74236 - 91.55654	3d" - 3d"(b"P)4p	cF-sD	1-1		340
સું 273 રે.	100	1932.64	39.68400 - 91.42631	3d'(a'G)4s - 3d'(b'P)4p	c'G-s'D'	1-1		340
39	500	1935.63	21.82286 - 73.48560	3d" - 3d"(:-"?))tp	s?-wD	3-3	. P	340
35	400	1937.56	21.82482 - 73.43627	34° - 34' (s' (J))1p	st-wD	3-3		340
37		1938 42	21.32286 - 73.41194	3d° - 3d'(a D)ip	37-wD*	3-3		340
136	120	1939 5	31.35115 - 12.92003	3d° - 3d°(a`.'))ip	aD-wP		· ·	340
275) 177	100	1939.50	39.87728 - 91.42631	3d" - 3d"(b"P){;	cF-sD	1-1		340
130	200	1949.17	31.33162 - 62.92003	3d° - 3d°(a°D)ip	a'D-wT	1-1		340
	200		31.33HD2 - 82.83HUU	30° - 30'(0' D)Np	SD-WT	3-3		340
205	800	1949.00	34.63114 - 85.93950	3d'(a'H)4s - 3d'(a'F)4p	s'H - v'G*	1-1		340
\overline{m}	700	1949.22	37.65400 - 90.98631	3d"(a'G)4e - 3d"(b'F)4p	c'G - w'G'	1-1	1 1	340
111	1000	1950.12	39.82452 - 91.10336	3d"(s'G)4s - 3d"(b'F)4p	c'G - w'G'	1-1	P	340
207	300	1933.93	34.81.500 - 15.73750	3d'(s'H)4s - 3d'(s'F)4p	a'H - v'G'	7-1	i	340
31	440	1985.4?	20.51275 - 70.87995	3d's-3d'(s'G)ip	#H - YU #G - x'G'	;-; ¥_¥	P	340 340
11	240	1005 4	20 51005 23 62007		400 4000			
21	10	1767.0	20.31763 - /0.5/993	JO - JOLE UNP	10-10	1-7		540
14	100	1987 4	17.03160 - 07.73460 17 60171 - 41 01001		TU-YU	1-1		490
234	200	1990 79	36-90373 - 86.72003 35 70766 - 85 83860		STP - WP	1-1		340
11	300	1993 37	20 51775 - 20 47077	24 - 2018 F.199 24 - 144-34134-		7-1		240
31	500	1993.63	20.51985 - 70.67922	3d ² = 3d ² la ³ /Gillo				340
	1					1-1	i I	~~~
_	60	1996.62	20.02418 - 70.10783	3d*(a*D)4s - 3d*(a*F)4p	a'D - y'G'	1-1		340
204	40	1998.14	34.63114 - 84.67739	3d*(a'H)44 - 3d*(a'F)4p	s³H − u³F*	1-1	1	340

6-7

Lei. Int. λ., (m Å) 10.00 Levels (in W cm-) Configurations Terms J - J Notes References 735 30 700 490 748.35 470 470 -755.00 10 t 756 567 17.16856 - 149.34403 34" - 36'(0'D)(p 17-F 893 1-2 763.107 Ł 18.58339 - 149.62630 ¢ 34"-34"0"DHo -F-F 4-4 -767 10 10 4790 10 767.61 470 20 767.83 490 20 768.21 16.77136 - 146.93618 34" - 36"@"DHo 17-Tr 0-1 490 - Dece 30 768.51 18,45184 - 148,57381 34"-34"(P)% #F - 'D' 2-2 490 ÷. 40 709.20 490 30 769.66 **110** 20.70364 - 149.34403 20.99604 - 149.62630 1 777.362 34" - 38"@"D)4p -G-F 3-2 883 777.625 38" - 38"(0"D)ip - F 25 5-4 893 10 777.36 -3d" - 3d"(b"D)(p 3d" - 3d"(b"D)(p 10 778.926 20.85295 - 149.36364 -0-F 4-3 991 778.165 18.56339 - 147.09073 s'F - 'D' 40 4-3 893 4 778.306 18.45184 - 146.93618 34 - 34 6 DHo JF-77 2-1 893 are 1 778.438 25 18.51118 - 146.97333 34" - 34'(1)"DHp F-V 3-2 893 779.A3 10 490 50 700.67 490 40 781.A2 490 490 30 731.88 20 782.26 **ano** 10 782.45 490 10 784.032 25.13887 - 152.03721 34" - 36"(b"D)40 a'G - 'P' 4-3 893 786.90 30 490 10 789.59 **1**7. 10 789.81 490 10 710.65 490 794.246 4 25.78094 - 151.68744 34" - 34"(1-"D)4p *D - 1* 2 - 1 883 796.025 34" - 34"(1"D)4p 10 25.72644 - 151.35127 ۳ - C'a 3-2 893 10 798.31 490 801.04 30 490 10 \$14.71 490 10 \$14.90 410 10 \$15.40 470 10 \$15.99 490 10 816.57 490 10 \$17.87 490 20 821.74 490 4 \$23.971 25.72644 - 147.09073 35" - 36"(D'/D)//p *D - 'D' 3-3 893 825 141 25.78094 - 146.97333 3d" - 3d'(1x"D)4p 1 "D - "D" 2 - 2 893 10 \$25.593 25.84831 - 146.97333 30" - 30"(1"D'49 D-D' 1-2 881 834.131 3d" - 3d"(b"D)4p 32,15199 - 152,03721 4 "D - "" 2-3 893 \$43.37 10 490 10 \$45.90 \$46.977 .35655 - 118.42299 3d" - 3d'(a'D)49 4 21'D - 'D' 3-2 893 10 \$66.19 410 \$69.327 37.00516 - 152.03721 40 34" - 34'(b'D)49 s'F - 'F' 3-3 893 20 \$75.05 18.45184 - 132.73422 30" - 30"(s"F)4p 17 - D' 2-1 410 17-77 4 875.147 17.85118 - 132.11750 3d" - 3d"(#")#p 2 - 3 893 17.39692 - 131.45016 10 876.785 3d" - 3d'(s'F)4p s'H - 'O' 5-5 **993** 200 877.255 17.27370 - 131.26566 3d" - 3d'(s'T')4p •'H - 'O' 4-4 893

CHIRONIUM III (Cr^{2+}), Z = 24 tale to 20'2p" Jo" 3p" Jd" ("D.) (22 electrone) 4 8 on Potential 210 700 cm⁻¹; 30.96 eV 1

100

たいたいのである

77

		•		
* * * *	Υ.			Į
	ชีสิธช 48 ฆธชชีสิธ	58585	***** \$855**	
917.75 918.183 918.571 918.571 918.599 919.200 919.200 920.511 920.511 922.517 922.517 922.517	912.587 912.587 913.172 913.172 914.113 914.113 914.113 914.173 914.173 914.173 914.173 914.173 914.173 914.173 914.173 914.173			A- Gin A) 577.007 578.2007 578.2007 578.2007 578.2007 578.2007
.576.4 - 109.53625 .0622 - 108.067290 0 108.0699 .25.1367 - 108.0699 .18316 - 108.0699 .18316 - 108.0697 .18316 - 108.0756 .18316 - 108.07564 .0622 - 108.66765 .18316 - 108.07564	.57408 - 110, 15449 .11316 - 109, 72279 .0422 - 109,45811 .11316 - 109,57009 .35465 - 109,57009 .57408 - 109,72279	20.70264 - 131.26566 20.97606 - 131.45066 20.65575 - 131.36566 18.45166 - 128.75462 18.45166 - 128.75462 18.55116 - 128.75462 18.55116 - 128.75462 18.55116 - 128.75462 18.55119 - 128.85069 _35465 - 110.15469 25.13467 - 134.88754	18.51118 - 131.2666 13.45104 - 131.11636 .57608 - 113.11521 37.00566 - 148.57201 17.27370 - 128.17001 17.27370 - 128.17001 17.45118 - 128.77013	Levels (in 19 ⁹ cm ⁻¹) 17.53865 - 131.43016 17.37887 - 131.245566 17.27370 - 131.114586 18.58339 - 131.43016
	X - XGANA X - XGANA	#	K-N¢P34 K-N¢P34 K-N¢P34	Configurations 34" - 34%+75% 34" - 34%+75% 34" - 34%+75%
444400 4000 00000 00000 000000 00000	88 8 88 88 55 5 55 55 55 4 4 55 55	दैउँनेनेने नेने देदेदे नंदनंत्रं नं नं देदेदे	न्द्रेहेन् ज देवे न न न देवे	।
N-UN-N N-40-4 111111 11111 NNUUO- N-4-N4				4 4 - 5 4 - 5 5 - 4 5 - 5
				F
233323 333338	\$3383 338 <u>3</u> 33	*****	33333 333333	

Ň

C-10

CR III — Continued

Multiplet	Rel Int	▶_€ Å)	Levels (in 10° cm-')	Configurations	Terms	J-J Notes	References
•	150	923.784	0 308.25009	3d" - 3d"(s"?)1p	-D-T	0 -1	893
	330	924.045	57088 - 988.79584	3d" - 3d"(cT)/p	PD-T	4-3	193
4		901.310		36 - 36 (CT)(p			
	902					3-2	
		90.07				2-1	
2	230	925,487	20.70364 - 128.75662	3d" - 3d'(x"F)(p	#G- 7	3-2	893
7	25	925.945	28.85295 - 128.85849	36° - 38'(x*F)1p	a'G - 'F'	4-4	893
, D	300	926.510	28.85295 - 128.79413	3d" - 3d"(a"F)lp	a'G - 'F'	4-3	893
지 않는 소문	. 🗩	926.785	43.44199 - 151.35127	3d" - 3d'(b'D)lp	1 1 P - 'P"	2-2	193
2	300	927.173	28.99664 - 128.83049	3d" - 3d"(r"F)1p	a'G-T	5-4	193
par lagert i Citate		927.997	43.91677 - 151.68794	34" - 34"\$""Dylp	67-7°	1-1	893
STER C		929.131	44. MILIS - 151. 61766	34"-34"67006	17-7	0-1	203
and the second second	25	538,795	43.9169 - 151.35127	M - M W Dite	12-7	1-2	83
	4	731.571	21.70004 - 132.73622	M - METH	-D-D	2-1	893
		935.575	25.0431 - 132.73622	34" - 34"#T7Hp	-D-D	1-1	893
	4	936.560	25.72644 - 132.09978	3d" - 3d"(#TF)1p	a'D-'D'	3-2	893
		937.040	25.70094 - 132.49976	3d" - 3d"(a ³ F)lp	*D-'D'	2-2	893
	1			ant anti-line.			
		939.320	23.7200 - 132.11730 41.78671 - 140.63630			3-3	
		940.394					
		902 534	43 79671 - 549 38364				
		942 694	43.3053 - 549.36364		SF	2-3	
	159	962.349	43.32217 - 149.38364	3d" - 3d'@*Dylp	VF-F	3-3	893
	150	963.065	43.30453 - 149.34485	34" - 34 ¹ 0/DNo	VF-7	2-2	893
	40	943.204	43.32217 - \$49.34483	3d" - 3d"@"D)4p	VF-TP	3-2	893
	100	953.94					490
	100	954.07					490
	150	963.352	43.28671 - \$47.89073	3d" - 3d"@"D)4p	VF-70	4-3	893
	25	963.683	43.32217 - 147.09073	3d* - 3d*0-7DMp	VF-'D'	3-3	893
	25	964.615	43.30153 - 146.97333	3d" - 3d ¹ 0 ² DMp	VF-70	2-2	893
	130	964.770	43.32217 - 146.97333	3d" - 3d"@"D)%	VF-'0'	3-2	893
	90	964.956	43.30453 - 146.93618	3d" - 3d"(0"D)1p	VF-'D'	2-1	893
	4	965.295	17.85118 - 121.44677	3d" - 3d"(s"P)tp	a'P - 'S'	2-1	893
II .	200	966.238	17.27370 - 120.76726	3d" - 3d"(s"H)4p	s'H - 'G'	4-3	893
11	23	966.430	17.27370 - 120.74955	3d" - 3d"(s"H)4p	s'H - 'G'	4-4	893
11	250	967.555	17.39692 - 130.74955	3d* - 3d*(s ² 50)4p	s'H - 'C'	5-4	893
11	25	964.621	17.39692 - 120.70027	34" - 34 ³ (s ² 16)4p	s'H - 'G'	5-5	893
11	200	969.272	17.53065 - 120.70027	3d" - 3d"(a"5E)4p	s'H - 'G'	6-5	893
	139	969.703	25.72644 - 128.89049	3d" - 3d'(s'P)4p	s'D - 'T"	3-4	893
	90	970.540	25.70014 - 128.78413	3d" - 3d"(a"T")4p	*D - 'P'	2-3	893
	•	971.794	25.84831 - 128.75462	3d" - 3d"(a"P)Ap	*D - 11*	1-2	893
	10	973.374	32.15199 - 134.88754	3d" - 3d"(c ³ F)4p	·D-7	2-3	893
		974.915	17.27370 - 119.84647	3d" - 3d"(a"D)4p	a'H - 197	4-3	893
	90	977.509	49.76865 - 152.89721	3d" - 3d"(b"D)/p	VG-17	4-3	893
	10	984.54	17.85118 - 119.42142	3d" - 3d"(s"D)1p	a'T - 'T'	2-2	490
	10	984.95	.57608 - 102.10076	3d" - 3d"(a"P)4p	10-7	4-4	410
	•	985.189	17.39692 - 118.90053	3d" - 3d ³ (x ³ H)4p	8°H - 'G'	5-4	393
	10	986.250	16.77136 - 118.16515	3d" - 3d"(s"D)49	st - Tr	0-1	893
		967.530	.18316 - 101.44457	3d" - 3d"(d"P)4p	99'D - 'P'	2-2	893
	10	967.611	17.16856 - 118.42299	3d" - 3d"(s"D)1p	87 - D'	1-2	993
	120	992.572	17.85114 - 118.59911	3d" - 3d"(s"D)4p	st - D	2-3	893
	20	994.05			-		410
	-	774.313	17.89116 - 118.42299	36" - 34"(a"D)ip	87-7	2-2	

.

tin in Gilise

16

	X			
ست س س		•••• =••=		
*****	8882 24888	83658 838888 836588		5 5 5 5 5 5 F
1024.349 1027.456 1028.336 1029.567 1029.855 1029.835	1018.942 1019.40 1019.40 1019.40 1020.111 1020.777 1020.777 1020.777 1020.777 1020.777 1021.427 1021.517 1025.577	1004.197 1005.007 1005.444 1005.470 1006.005 1006.005 1006.005 1006.005 1006.005 1006.005 1006.005 1006.005 1006.005	Manager Man	
17.16456 - 114.59914 .35655 - 97.44399 .0622 - 97.30699 16.77136 - 113.39963 .57608 - 97.46399 18.45164 - 115.55428	97.53065 - 115.62074 18.45184 - 116.53295 20.05295 - 118.90053 18.51118 - 116.53295 17.16656 - 116.10215 18.45118 - 116.39166 18.45118 - 116.39166 17.16656 - 116.71679 .10316 - 97.66399	17.25116 - 116.45119 17.25118 - 116.37292 18.51118 - 116.37699 17.39692 - 115.68699 17.27370 - 115.68699 18.45116 - 516.76000 18.45116 - 516.76000 18.45116 - 115.67000 18.45116 - 115.67000 17.27370 - 115.57196	17.5005 - 17.4005 32.5599 - 17.4005 32.5599 - 122.0007 32.5599 - 122.0007 30.5555 - 123.7005 31.5599 - 123.7005 31.5599 - 123.7005 31.5990 - 123.7005 31.5990 - 123.7005 31.5990 - 123.7005 31.7591 - 116.7500 33.5900 - 119.46519 33.5900 - 119.46519	Levels (= 12' cm -') 17.53465 - 117.52349 32.15759 - 132.49976 17.39672 - 117.48675 34.7054 - 124.7575 34.7054 - 124.7575 34.7054 - 124.7575 34.7054 - 124.7575
}4" - }4'(4)*} }4" - 14'(4)*} }4" - 14'(4)*} }4" - 14'(4)*} }49 }4" - 14'(4)*} }49	X- X(479) X- X(4	X - X(1)) X - X(2)) X - X(2))		
1010 1000 1000 1000 1000 1000 1000 100	त्र त्र के के के के के के के के के के त्र त्र के के के के के के के त्र त्र के	में	दे३२दे३ २दंनईदेद हेदे२देहे बददनेव वददनदद नदददनद	तः म्देद्मेन्म् न दददनस्य
N 4 0 - U - 				
333333	383333 333383	33333 333333		885888

5.

CR III — Continued

	Rel Int	▶← Å)	Levels (in 18º cat-")	Onlynning	Terms	1-1	Nutes	References
3	150	1030.052	0 97.97796	31-3147)4	-0-D	0-1		883
1. 7 - 1	-	3030.461	.57688 - 97.62948	36° - 36°(2° 2°)4p	p-D-7	4-5	i i	895
्.⊂3⁼ -		1039.762	.9622 - 97.97796	3d - 3d (s 17)4p	- D- D	1-1		883
2	150	3638.350	_35655 - 97_39981	30° - 30°(17)1p	D-T	3-4		893
		1031.239	18.58339 - 115.55428	36"-36"(17)1p	3F-D	4-3		893
		1051.466		3d" - 3d"(a"F)ip	D-D'	3-2		- 893
						2-3		
		102.005				12-1		
		1052 728				1-4		
		10013 3300				127		
2.	1. 10	1011.411	35675 - 97 12142		50.7	1121		
		n ann an t-airte an t- airte an t-airte an t-ai				1		No.
de Carrie	150	1053.695	17.85118 - 114.39914	31-325.276	17.7	2-2		
		1033.693	.33655 - 97.89628	3 4 - 34 4 276a	-0-0-	3-4		
	0	1003.007	18,45184 - 115,18215	36 - 36 2714	17-7	12-2		
1948 ···	139	1001.976	962-96743	34"- 34"6"Pres	-D-D	11-1		85
	100	101.177	17.16856 - 113.36947	35-366770	17-7	1-0		
	120	1054.428	18.51118 - 115.18215	35-35-27	17-7	3-2		803
				이 지수는 것을 가지 않는 것이다.				
	19	1034.853	.0622 - 96.69397	36" - 36"(s"F)ip	0°-0°-	1-9	1 - E	893
		1035.031	25.78394 - 122.39649	34 - 34 (27)19	aD-7	2-1		893
		1035.212	17.16856 - 113.76713	3d" - 3d"(a"2')(p	27 - D	1-2		893
	250	1035.251	.14316 - 96.77438	3d" - 3d"(a"F)1p	D - D	2-1		893 -
	250	1035.565	.35655 - 96.92382	3d" - 3d"(a"F)1p	- D- D	3-2		893
3 2 -	290	1055.785	.57696 - 97.12142	34" - 36"(#"P)4p	D - T	4-3		893
a j	30	1035.936	.18316 - 96.71404	36" - 36"(s"F)tp	D-D-	2-3		893
1	330	1036.035	.57608 - 97.09828	36° - 36°(4°17)4p	D-D-	4-4		893
an Ngalara	270	1036.334	20.99604 - 117.46895	3d - 3d (s 11) (p	-0-T	5-6		863
on I ngel	770	1037.007	.35655 - 96.71406	30° - 30°(s'P)49	-D-D	3-3		893
7	2	1036.163	.0622 - 96.30631	36" - 36"(s'F)(p	PD-T	1-2		873
		F838.774	20.70394 - 130.30707	36° - 36'(2'D)(p	#G - 7*	3-3		883 , 19
24		1038.976	20.85295 - 117.10156	3d" - 3d"(s"D)(p	#G-7P	4-4		893
		1007.40						017
	130		U 96.14925	36 - 36 W T/Rp	D-7	1-1		873
		1010.175	.3/806 - 76./9404		10-10	4-3		003
14	200	5040 571	20.03273 - 1 (0.70707	30 - 30 (0 (.7)0) 3.0 - 3.0 (0 (.7)0)	10-7	1		873
			20.77004 - 117.90120		80-7	3-4		
2	40	1010.723	.0622 - 96.14925	3d" - 3d"(a"F)1p	D-7	1-1		893
	120	1040.511	20.70364 - 116.78205	3d" - 3d"(a"P)4p	s'G - 'D'	3-2		893
		1041.135	17.45118 - 113.89943	3d" - 3d"(a"P)4p	87-7°	2-1	(. 093
Z	170	1041.345	.35655 - 96.30631	36° - 36°(s'P)ip	D-7	3-2		893
2		1042.034	.18310 - 93.14925	3d" - 3d"(s"P)1p	-D-7	2-1		893
		9092.375	17.45118 - 113.79713	30° - 30°(2°T)1p	87- T	2-2		893
	60	1012.866	17.53065 - 113.41993	3d" - 3d"(a"(3)ip	a'H - 'H''	6-5		893
	40	1043.309	17.27370 - 113.11521	3d" - 3d"(a"G)ip	a'N - 'O'	4-4		873
	25	1043.529	20.70364 - 116.53295	36 - 36 (5'7)49	*G-'D'	3-3		893
	60	1044.729	17.39692 - 113.11521	3d" - 3d"(a"(3)4p	a'H - 'G'	5-4		893
	400	1045.06	20.70364 - 116.39166	3d" - 3d"(s"D)4p	a'G - 'P'	3-2		490
	150	1045.150	20.85295 - 116.53295	3d" - 3d"(a"P)4p	s'G - 'D'	4-3	1	893
	I	1045.306	25.78094 - 121.44677	3d" - 3d"(a"P)4p	s'D - 'S'	2-1		893
	60	1045.719	25.13687 - 120.76726	3d" - 3d'(a'61)ip	a'G - 'G'	4-3		893
	25	1047.061	17.85118 - 113.35704	3d" - 3d"(a"P)4p	s'P - 'S'	2-2		893
	25	1049.152	18.45184 - 113.76713	36" - 36"(s'¥)4p	s'? - 'D'	2-2		893
		1050.494	17.27370 - 112.46701	3d" - 3d"(s"(3)4p	a'H - 'P'	4-3	•	893
	•	1051.532	17.27370 - 112.37288	3d" - 3d"(a"G)4p	a'H - 'P'	4-4		893
CR II -- Centineet

in Muhiph	Rei. Int.	~ 6 Å	Levels (in H ¹ cm ⁻¹)	Configurations	Terms	3-3	Notes	References
	120	1051.905	37.00516 - 132.07071	3d" - 3d"(a"F)1p	a'F-'D'	3-2		893
	•	1652.365	27.37232 - 122.39649	36" - 38"(x 7)%p	a'5-17	0-1		893
an a	25	1052.901	17.39692 - 112.37288	36" - 36"(c'G)(p	SH-T	5-4		
		101.000	16.45104 - 1(1.32000	36 - 36 6 6 99		Z-3		
getalante in transmissione Balante Balante		1004.073	20.70304 - 113.37130		SU-TE	3-4		
		MON.313	20.57000 - 112.00000		EQ- 2	3-0		
h-	1	1054.051	18 58310 - 113 61983	M'- Mirights	- T- 10	4-5		993
ναμβατική πείδας μεταγγάζεις αλληγιατικής που του ποιοιού	150	1054.655	20,85295 - 115,67074	34" - 34"6-"8310	-G-'H	4-5		1993
	25	1055.477	18.58339 - 113.32000	3d - 3d 5 (G)to	- F- F	4-3		893
	25	1055.763	20.05295 - 115.57196	34 - 34 (- 10)10	a'G-TE	4-4		893
		1055.005	25.13007 - 119.00647	3-34204	SG-T	4-3	÷	893
		1056.131	260000 - 128.70027	3 5 - 35 - 100 -	#1- ¹ 6*	6-3		33 3
		1016.270			-1G-18"	5.5		
E.	17	1057.041	8.51118 - 111.11521			3-4		873
	5	107.30	17.27500 - HILESON	M-MACH	-11-10	8-5		
	1	1057.040	H.51399 - 113.11521	34"- 34"4"(1)10	SF-10	4-4		83
	3	1658.63	17.39692 - 111.85697	34 - Maria Gala	#H-'G'	5-5	20	97
No Training	359	1039.116	26.0000 - 528.63237	38" - 38 [*] (r ² 110)	11-7	6-6		113
			17 STAKE _ 111 EVAN					
		1061 005	17 3060 - 111 6665				1	
	1	102.475	- 25.72646 - 119.86667	Mr - Mr Date	5D-77	3-3		813
		1052.660	17.27370 - 11L37609	M [*] - M [*] in GMa	a-11 - 10*	4-3	1	83
		1063.007	25,78994 - 119,84667	34" - 34"ta Dilla	-D-7	2-3		893
17	•	1063.663	18.45184 - 112.46701	34" - 34"(x'G)4p	17-7*	2-3		893
17	380	1064.324	18.51118 - 112.46701	3d" - 3d"telGHo	SF-7	3-3		893
r. `17	390	1064.422	18.45184 - 112.39984	3d" - 3d"(a"G)4p	17-7	2-2	1	893
៍ ក		1065.065	18.51118 - 112.39904	3d" - 3d"(x'G)4p	s 7 - 7	3-2		873
17	90	1065.152	18.58339 - 112.46701	3d" - 3d"(c'G)4p	a 🐨 - 🐨	4-3		893
17 *		1065.398	18.51118 - 112.37288	3d" - 3d"(s'G)4p	s*∓ - '₹*	3-4		893
17 17	300	1066.213	18.56339 - 112.37288	3d" - 3d"(a"G)4p	a 🐨 - 🦖	4-4		89 3
		1066.356	25.84831 - 119.62562	3d" - 3d"(r"D)4p	*D-7	1-0		693
	90	1066.531	25.13007 - 118.90053	3d" - 3d"(s'ii)ip	a'G - 'G'	4-4		893
	120	1067.145	25.78894 - 119.48902	3d" - 3d"(s"D)49	s'D-7	2-1	1	893
-	150	1067.289	25.72644 - 119.42142	3d" - 3d"(a'D)%p	*D-7	3-2		893
	120	1067.910	25.78994 - 119.42142	3d" - 3d"(s"D)4p	s'D-7"	2-2		893
	400	1068.401	26.01409 - 119.61200	3d" - 3d"(#"H)4p	s'i - 'ii'	6-5	1	893
	1	10(6.662	25.84831 - 119.42142	3d" - 3d"(s'D)4p	·D-7	1-2	1	893
	20	1069.45						410
	60	1069.979	25.13007 - 118.99911	3d" - 3d"(a"D)4p	*G - 'D'	4-3	1	893
	30	1070.55	.35655 - 93.76621	3d" - 3d"(a'P)4p	pr'D - 'O'	3-2	[410
16	200	1072.114	18.56339 - 111.85697	36" - 36"(a'G)4p	67 - C	4-5	1	893
			10.31110 - 111.00070	38 - 26 4 0 14		1		•••
	10	1073.993	17.39692 - 110.99718	3d" - 3d"(a'G)4p	a'H - 'H''	5-6		893
- 16	60	1074.546	18.58339 - 111.64676	36 - 36 (s G)4p	a'¥ - 'C'	4-4		893
16	150	1076.147	18.45184 - 111.37609	3d" - 3d"(s"(3)4p	s¶ - 'C'	2-3	1	893
	25	1076.641	17.27370 - 110.15489	36 - 36 (87)49	*N - D'	4-4		873
77 14	170	1076.513	25.72664 - 118.59911 18.51118 - 111.37600	36" - 36"(#"D)49 36" - 36"(#"D)49	100 · 10'	3-3		893
~	-							
32	50	1077.378	25.78094 - 118.59911	36" - 36"(s'D)49	10.0	2-3		973
	10	1011.576	10.771 30 - 107.57082	36 - 36 677 19		0-1		
л ж		1078.799	27.12000 - 110.42207 75.90004 - 110.42207			1 3-2	1	
36		NOTE OT	63.18874 + 118.46677	36° - 36° (1° (1749)		1 4-2		
17		1000 211	75 84811 - 118 47788	M. Warden		11-1		
38	1	1					1	1 978

C-12

Reference		1-1	Jenne	anningan)	[recht (n N' cm-1)	(Y =) = Y	in th	
668		5-9	.H H.*	4(D,4),9(-,9(96005'601 - 99055'£1	39657996	661	Construction of the second sec
568	2	i-i	4-4	444,4,85	13-10129 - 100-23005	1002 2301	a -	
1.445 6.68		1 - 1 1 - 2	T-41	40,48 - M	51991 ULI - 1000 57	1007131	g	2
		. 1	anar			22.500		and services in the second
668		*-*	14-14.0	4(D/3,FC-,FC	52965'601 - 01512'11			
						SC.NON		
						-		an San an Angel An San Angel An San Angel
568		•-s	.H H.ª	40,4,80-,80	52165-601 - 26966-61	HESSE		
000						SZ 1000		
	l I							
000		2-1	1-11	ALAR-A				3.53
500		1-2 c_c	4-4					
600		C+C	4-0*	40AR-A	10111711-1001182		에 이상 19 20년 12일	
566		c-•	4-0-	4048-4	101597211 - S6258702	95 100	a	1283
644			4-01	4(n.1.8)		94.744	è	
66		1-0	4-4	44.9,86-26		LITERI		
660		1-C	4-04	440AR-R	1111-111-111-1111-1111	LICTOR	61	- K
564		5-9	7-4-	4(0,7),8(- ,8(S6196-001 - 46695-81	4551601		
548 548		5-2-1 5-6-1	4-04	940,9,87 - ,91 64(1,8,87 - 14)	60695'911 - 16082'52 66665'911 - 16072'57	11979686	61	l K
568		1-Z	4-04	410,4,H - H	6676351 - 1269139	66879686		
		• • •	~ 37					
566		2-2 5-6	4-4-	944,73,75 - "FC \$4(1.51,85	06746784 - 81158741 64771768 - 46585784	CT / 404		l affer e l'alla Sentra est
568		2-C	Q-Q.	444948-35	SIERCIAL - 14972152	102,0001	•	
666)-c	1-40	4(0,-),	5065601-0111501	929 3684	•	
644		1-2	A-4	4(14)AL-AL	96998'991 - \$1155'11	Che Martin	97.	
<i>64</i> 0		,_,	001	del s de ancientes				
668		1-2	A-4	444,9,85-,95	00044'911 - 16084'SE		•	
544		i-z	2-4-	410,9,81 - 51	19591 EZI - 66151 ZC	157 6601	661	
548 548			2-0-1	90,9,8,7 - ,R 6(1,9,8)S	14950 111 - 90966 UC 60641 911 - 16966 CC	20174404	CALL CALL	1
666		[-c	4-4-	4(4,5),FC - 3K	S6265'911 - 99984'58	196.1011	06	
560)-)	.D D.ª	40.0.4	96999111 - S6258'0C	229'1011	OSZ	a
	'		~~~~~	~ **** ********************************	99663 711 - 79696 36		wii I	Į
568			.01-01	9(0,9,8 ~ ,9(44,4 % ~		105-1011		a
568		2-2	4-00	44(0,4),92 - 32	9916C'911 - 1601L'SZ	069'6011	R	1C
568		i-i	3-4-	44.0.0000	61159/911 - 1099/52	121 2011	•	
548 548		[-9] [-1]	A-04	940(7)#T - #T 64(1)#1 - #T		249'9011	0) 6(1	16
								5
548			H-0-	4(4,0,01 - 01	96115'S11 - 100E1'SE	141.5011	66	
644		1-z	4-00	4(14).81 - 31	60966 TZ1 - 66151 TS	565 2011		
566		[] I-1	4-40	9(4,7),9(- ₁ 9(\$2955'511 - \$99821'52	SOCT111	est a	œ
666		-2	A-4.	44.0.00 - 20	SENSE'SI1 - 10084'SE	1113'071	a	Œ
666	-)-s	JL-00	40.0.4 - 11	S1405'011 - 10165'0E	9417111	est i	a
566		2-2	A-40	44(4,4),9E - ,9E	51281/511 - 99924/52	1967111	()	Œ
566		2-2	4-4-	44(4,4),92 - ,92	51281'511 - 1404/52	195'8111	330	ã
		2-1	a-a-	444,-344 - 44 644,-348 - 48	(1791*11 - 169151 CL		и a	
			A-4	44(4,4),92 - 92		660 1211	6	
- 06		;-+	MI - 04	4(0,1),91 - ,91	36096°601 - 56658°0C	ST211	0 21	a
						1 1	1	

-

3

CR III -- Continued

· · · · · · · · · · · · · · ·

Mahiplet	Rei int	۸_ (a Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	1-1	Notes	References
n an	90	1122.570	43.44199 - 132.49978	3d" - 3d"(r"F)1p	V7-7	2-2		893
	30	1123.37	20.70364 - 109.72279	3d" - 3d"(a'T)%p	*G-D	3-3		490
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	150	1123.587	27.37232 - 116.37292	3 6° - 36°(s'D)%p	13-T	0-1		
		11251.485	25.78774 - 114.71677	36° - 36° 8° 779	PD-10	2-1		879
		11227	25.0431-14.71677			11-1		
		1123.75	ZQ.76504 - 109.39423		80-TT	3-4		
	90	1125.902	25.78094 - 114.59914	3d" - 3d"(x??)/p	*D-7*	2-2		883
		1126.35			1	12.54		
	250	1127.706	43.44199 - 132.11750	3d" - 3d"(a'T')ip	67-0	2-3	i se i s	
1.1		1128.757	4. HIS - 152.75 22		UT-U	19-1		
		1128.576	43.51607 - ISZ 49776		Jer-D	1-2	14. A.	
		1038.3P						
	159	1132.742	25.13887 - 113.41993	34° - 34°(x*(3))p	a'G - 'H'	4-5		893
	90	1133.913	25.13007-113.32000	34" - 34"6-10)14	s'G-T	4-3		103
	` 🔴	1134.256	43.29671 - 131.45016	3 6 - 36 - 7 9	JF-'G	4-5		603 (1995) (19
	* 9	1136.535	- 25.78995 - 113.76713	34" - 34"6"77%	6'D-'D'	2-2		2 003
	- 100	1136.565	25.13887 - 113.11521	3d" - 3d"(s'C)1p	a'G - 'G'	4-4		1973
	- 10	1136.91						
	•	11177 091	A3 37217 - 131 26566	1.1° - 1.1°(-77)4	NF-4G*	3-4		
	ñ	1137.408	75 54531 - 113 76713	M [*] - M [*] (s ² This	and - int	1-2		
Standard (* 1997)	90	1136.797	43.30453 - 131.11636	3d" - 3d"(e"FMe	VF-G	2-3	1.00	893
	10	1139.024	43 32217 - 131 11636	3d" - 3d"(a"F)da	FF-G	3-3	1	893
	10	1141.155	25.72644 - 113.35704	3d" - 3d"(a"P)4p	2D-3	3-2	· · ·	893
	25	1142.226	25.78094 - 113.32880	3d* - 3d*(a2G)4p	₽'D - 'P*	2-3		1973
	150	1143.63				1		490
	250	1144.0%	26.01489 - 113.41993	3d" - 3d"(a'G)4p	a'I - 'H'	6-5	!	893
·	200	1144.308	25.72644 - 113.11521	3d" - 3d"(s ² G)4p	a'D - 'G'	3-4	1	893
	300	1146.335	25.13887 - 112.37288	3d" - 3d3(#2G)4p	a'G - 'F'	4-4		893
29	40	1152.859	25.72644 - 112.46701	3d* 3d*(a*G)4p	a'D - 'P'	3-3	1	893
29	200	1153.500	25.78094 - 112.46701	3d" - 3d"(#3G)4p	₽'D - 'P'	2-3		893
29	200	1154.109	25.72644 - 112.37288	3d" - 3d ³ (s ² G)4p	s'D-'P'	3-4		893
29	13	1154.479	25.70094 - 112.39964	3d" - 3d"(s"G)4p	a'D - 'P'	2-2		893
29	:50	1155.378	25.84431 - 112.39964	3d" - 3d"(s"G)4p	±'D - '₽'	1-2	1	893
	4	1155.710	27.37232 - 113.89943	3d" - 3d"(#2P)4p	a'5 - 'P'	0-1		893
· · ·	20	1156.42				1		490
	25	1159.096	65.76321 - 152.03721	3d* - 3d*(b3D)4p	▶'D - 'F*	2-3		893
	350	1161.428	37.00516 - 123.10584	3d" - 3d ¹ (s ³ D)4o	a'F - 'D*	3-2		893
ļ	10	1162.610	32.15199 - 118.16515	3d" - 3d"(s2D)4p	a'D - 'D'	2-1		893
	10	1166.23					1	490
	25	1168.292	25.79094 - 111.37609	3d" - 3d"(s ² G)4p	*D-'G'	2-3	1	893
	120	1168.726	43.28671 - 128.85049	3d* - 3d3(a2F)4p	67F - 7P*	4-4		893
	25	1169.208	43.32217 - 128.85049	3d* - 3d3(#3F)4p	6'F - 'F'	3-4		893
ļ	90	1170.111	43.32217 - 128.78413	3d" - 3d'(a ³ 1")40	b'F - 'P'	3-3		893
	90	1170.273	43.30453 - 128.75462	3d" - 3d3(a2F)4o	b'F - 'P'	2-2	1	893
	30	1170.64		/ / /				490
	40	1173.19			1	1		490
ſ	50	1173.34			1	1	ł	490
	100	1173.77				1		490
	300	1174.825	49.76865 - 134.88754	3d" - 3d'(s'P)40	6'G - 'F"	4-3		893
	30	1178.55					1	490
Ì	20	1178.80						490
Î	10	1178.99	32.15199 - 116.96909	3d" - 3d3(a2D)4p	a'D - 'F'	2-3	1	490
		, }			1		1	
	30	1179.66						490

and the second s

CR I ađ.

S.

Sec.

						t topo a co	
	an ang anan			6-10			
aan ka shika baday ngabaan da ahaa ahaan ka shika ahaan a Kabaan ahaan ah Kabaan ahaan ah						1.54	
in a start of the second				I III — Continued			
	Rei. int	کـــ (ت Å)	Levels (m 19° cm-')	Cealignerations	Terms	J-J Net	Reference
	ø	1199.61			•		
and the second s		1181.63		an a		c C	
	50	1181.63	32.15199 - 116.78285	34"- 34"4"TMp	a'D-'D'	2-2	
and the second second	90 120	1181.723	32,15199 - 116,77480 32,15199 - 116,45119	32 - 32 6 79 19 32 - 32 6 79 19	*ワ-ツ	2-1 2-1	
		1187.350	32.1589-116.37292	SF-37520	- 10 -1	2-1	193
	250	1187.637	49.76865 - 133.96957	32"- 32"6-776	NG-10	4-4	.
	200	1193.466	25.70094 - 109.57062	32-3352774	-D-T	1 2-1 1 2-1	83
		1193.89	61.17430 - 146.50618 25 0000 - 146.50618	MATH-MODA	3-7	2-1	200
Contention Contention	in s <mark>er</mark> Bressing						
		1195.42		ale and and a lease the second se	公式 保全	10.770 (19.09)	12
		INCOL	25.84(9) - 189.45(1)	ST-38167787	12-2	15	
	50	197.365	12.58339 - 102.10076	34-344749	17-7 7-7	123	
	 	1197.60					(1)
	70	1198.31	65.29238 - 149.34403	3#\(s'G)4 3#\@^D)4e	10-17	3-2	
A SAL PAR	120 S0	1200.567	18,45194 - 191,74621 I	3 8 - 38 (87) ip	87-7	2-3	- 873 - 670
	50	1201.00					
15	300	1201.247	25.72044 - 108.97290 18.51118 - 101.74621	3d" - 3d"(#T)4p 3d" - 3d"(#T)4p	2D-7 27-7	3-2	873 873
		1202.0(3	25.78094 - 108.97290	3d' - 3d'(c '1 140	ייני - סיי	2-2	973
ß	120	1202.460	18.58339 - 101.74621	3d' - 3d'(s'F)4p	87-Y	4-3	873
	20	1203.004	23.78074 - FUS.38475	30° - 30°(¢°7)¶₽	rv-v	2-1	490
ى بەرە ئىلى ئىلى ئىلى بەتلەر يېچىلى . بىلى بەتلەر بىلى ئىلى ئىلى ئىلى بىلى	1	1204.375	32,15199 - 115,18215	3d" - 3d"(#")))p	a'D-'D'	2-2	893
		5 2077770 1277	11,59972 - PAUAESUI	20 – 20 U E MP	FR-U	3-3	e 75
	350	1204.580	25.84831 - 108.86498 18.45184 - 101.44457	3d" - 3d"(#17)4p 3d" - 3d"(#17)4p	*D-D'	1-1	993 1973
	10	1205.15					410
15	120 10	1205.787	18,51118 - 101,44457	3d" - 3d'(s'T)49	eT - T	3-2	893 490
7	570	1206.361	17.53065 - 100.42301	3d" - 3d ¹ (c*F)4p	s'H - 'G'	6-5	893
	30	1206.70	49,62825 - 132,49978	3d'(s'F)4s - 3d'(s ² F)4p	7-70	2-2	490
	20 200	1206.99	25.84831 - 108.69763 25.84831 - 108.69763	3d" - 3d"(s'T)49 3d" - 3d"(s'T)49	* #10 - 10*	1-0	490
_	200	1207.124	37.00516 - 119.84647	3d" - 3d"(#"D)4p	a'F - 'P'	3-3	893
	. 350	1207.540	17.27570 - 100.10000 65.76321 - 148.57381	3d" - 3d"(6"D)4p 3d" - 3d"(6"D)4p	■ H - 'C' ■ D - 'D'	2-2	893 893
·	76	1300 484	16 17 644 - 100 46140				
7	500	1209.133	17.39692 - 100.10066	3d" - 3d"(#7)49	•'H - 'G'	5-4	873
	10	1209.42	65.99238 - 148.57381 49.82891 - 132.49978	3d'(a'G)4s - 3d'(b'D)4p 3d'(a'P)4s - 3d'(b'D)4p	G-10 17-10	3-2	490
7	400	1211.123	17.27370 - 99.84167	3d' - 3d'(s'P)4p	•'H - 'O'	4-3	893
	01	1211.54					490
	\$	1212.96	49.62825 - 132.07071 25.64831 - 108.34080	3d ³ (s*P)46 - 3d ³ (s*P)4p	¹ 7-10'	2-2	***
	10	1213.82	\$J,#***/* * 149/\$J\$97	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		''	410
	100 50	1218.60 1218.99					490
	50	1219.55					490
	F	· ·		1	1	1 1	1

- CR III	- Continued
----------	-------------

14	200 350 10 400 25 30	1220.14 1221.076 1221.45	37.00516 - 118.90053	34" - 34 ³ 6 ³ 1040		1		490
	350 10 400 25 30	1221.076 1221.45	37.00516 - 118.90053	3at - 3at (at Silain			-	
4	10 400 75 30	1221.45			87-U	3-4		893
4	400 25 30	1221 000 1				1]	490
14	25 30	1441.300	18.58339 - 100.42301	3d" - 3d"(a")")%p	∎F-G	4-5	1	893
14	- 30	1223.256	32.15199 - 113.89943	3d" - 3d"(a'P)4p	a'D - 'T'	2-1		893
14		1224.43			1			490
16	300	1225.02	- · ·					490
14	300	1225.263	32.15199 - 113.76713	3d" - 3d"(2" ?)\$p	a'D - 'D*	2-2)	-193
14	150	1225.32						490
	300	1225.645	18.51118 - 100.10966	3d" - 3d'(a'F)ip	∎∓-'G'	3-4		. 893
	10	1226.18				1		470
14	150	1226.735	18.56339 - 100.10066	36" - 36"(s'T)Hp	a't' - 'G'	4-4		773
	20	1227.11	27.37232 - 108.86496	3d" - 3d"(s"?)1p	a'S - 'D'	0-1		110
	10	1228.03						#10
	0	1228.37					1	#0
M	350	1228.647	18.45184 - 99.84167	3d" - 3d"(#17)1p	aT-G	2-3		873
	290	1229.552	18.51118 - 99.84167	3d" - 3d'(a'T)(p	• F - ' G '	3-3		973
	10	1230.35		ан 19				
	10	1230.49	an an an an Arganian an an			1		(10)
21	250	1230.802	20.85295 - 102.10076	3d' - 3d'(#'F)4p	a'G - 'P'	4-4		893
() ()	500	1231.878	32.15199 - 113.32880	3d" - 3d"(#'G)\$p	aD- F	2-3	1	973
21	570 :	1232.975	20.99604 - 102.10076	3d" - 3d"(s'F)4p	*G - T*	5-4	1	973
21	200	1233.919	20.70364 - 101.74621	3d" - 3d ³ (#"F)4p	s'G - 'P'	3 - 3	1	893
21	500	1236.197	20.85295 - 101.74621	34" - 34"(a"F)40	G-F	4-3		893
-	40	1236.424	27.37232 - 108.25089	3d" - 3d"(s"P)to	15-7	0-1		893
	10	1236.51	70.96126 - 151.85212	3d'(s'D)4s - 3d'(b'D)4p	70-7	1-0		490
	10	1236.71				1		490
21	400	1238.529	20.70364 - 101.44457	3d" - 3d"(a"F)4p	a'G - 'F'	3-2	· ·	993
	20	1241.32						490
	10.1	1242.08				1.		490
	20	1243.43					1	490
	25	1243.627	17.27370 - 97.68399	3d" - 3d"(s"F)4p	sH-D	4-3		893
· 1	40	1243.97				1	1	490
	10	1244.41	71.67719 - 152.03721	3d'(s'H)4s - 3d'(b'D)4p	'H - 'P'	4 - 3		490
	100	1244.58	17.27370 - 97.61948	3d" - 3d"(a"F)4p	a'H - 'F'	4-5		490
	90	1245.097	32.15199 - 112.46701	3d" - 3d"(s"())4p	a'D - 'P'	2-3]	893
6	200	1245.231	16.77136 - 97.07796	3d" - 3d"(s"F)4p	s'P - 'D'	0-1	1	893
	100	1246.83	-					490
6	350	1247.846	17.16856 - 97.30659	3d' - 3d'(s'F)4p	s'P - 'D'	1-2		893
	90 20	1248.621	17.53065 - 97.61948	3d" - 3d"(a"F)4p	a'H - 'F'	6-5	1	993 490
							1	
	20	1250.57	17.39692 - 97.35981	3d" - 3d"(s"F)4p	s'H - 'F'	5-4		490
6	250	1251.424	17.16856 - 97.07796	3d' - 3d'(s'F)4p	a'P - 'D'	1-1		893
•	350	1252.616	17.85118 - 97.68399	3d" - 3d"(a"P)4p	e'P - 'D'	2-3	1	1973
	5	1253.87	17.16856 - 96.92202	3,5" - 36"(a"T")4p	87 - D'	1-2		490
70	20	1256.066	20 19295 - 100 47301	20 - 244000	20-101	4-4		047
~		"	24-47277 - (11 6-4674)			•••		
•	250	1258.568	17.85118 - 17.30659	3d" - 3d"(s"F)4p	s'7 - 'D'	2-2		893
20	570	1259.014	20.99604 - 100.42301	3d" - 3d"(s"T)4p	0-0-	3-5	1	173
20	400	1237.467	20.70364 - 100.10066	3d" - 3d"(#"P)4p	10.0	3-4	1	
ļ	250	1237.794	10.77130 - 90.14725	36" - 36"(5"7)49		0-1	1	8773
-	D	1201.73	17.87118 - 97.12142	36" - 30"(8"P)4p		12-3		

÷...

1.5

١.,

.

-

CR W — Contineed

1

1

Multiplet	Rel. Int.	λ (m Å)	Levels (in 10 [°] cm ⁻¹)	Configurations	Terms	J - J	Notes	References
. 6	40	1262.229	17.85118 - 97.07796	3d" - 3d"(a"F)4p	27-70°	2-1		893
	250	1262.347	17.16856 - 96.38631	3d" - 3d'(#17)4p	a7-7-	1-2		893
B	200	1263.064	18.51118 - 97.68399	3d" 3d'(a'F)4p	8F-17	3-3		873
20	300	1263.617	20.70364 - 99.84167	36" - 36"(s'T)%p	aG-6	3-3		873
13	350	1264.206	18.58339 - 97.68399	36" - 36"(a'T')#p	1 F-V	4-3		873
s de la composition de la comp	200	1265.239	18.58339 - 97.61968	3d" - 3d"(a'T*)*p	4 T - T	4-3		875
					1.10 100			
70		1262.000	20.63273 - 77.84167		10-0	4-3		875
$\mathcal{L}_{+}^{(n)}$, $\mathcal{L}_{+}^{(n)}$	300	106.12	17.10530 - 70.19723		ALL MAR			875
		1206.331				1 2 - 1		873
-7		1200.025	17.83110 - 78.79405	2.01 - 300 (4.17) pape 2.01 - 2.01(-415) day		2-3		
		1208.140				2 7		891
P	-	1209.190	14.31116-77.30837	مبر : syst - st		3-2		••••
37	100	1771 636	18 45184 - 97 07784	M ^a - Mia Tita	10-10-10-	2-1		ant .
38 49 38 46 4 5	200	1277 212	17 65118 - 66 26611			2_7		
	190	1775 34	18 \$1118 - 96 9200		45.40*	3_7	}	007
And and the second second	200	1776 76	18 45184 - 96 72438	M ⁴ - M ² (a ⁴ F)da	F-10*	2-1	I	047
	25	1277 174	17.85118 - 96.14925	M' - M's Fis		2-1	÷. ا	893
37	20	1778 71	18.51118 - 96.71404	3d" - 3d"(a"F)4a	F-10	3-3	1	410
	-	1			1	1	1	
12	250	1279.906	18.58339 - 96.71404	3d" - 3d ¹ (a"F)4p	a'F - 10"	4-3	1	893
	1	1281.055	71.32327 - 149.38364	3d'(a2DHs - 3d'(b2DHo	D-1	2-3	i	893
	300	1281.977	43.44199 - 121.44677	34" - 34"(s"#)4p	V7-5	2-1	1	893
	60	1283.132	18.45184 - 96.38631	34" - 34"(s"F)4p	aF-F	2-2	1	993
	200	1284.303	18.51118 - 96.30631	3d" - 3d"(s"F)4p	aF-7	3-2		993
	10	1284.46						410
e		1		а. Ч			1]
	10	1285.90						490
	400	1287.05	18A5184 - 96.14925	3d" - 3d"(x"F)4p	a'F - 'F'	2-1		490
	250	1289.824	43.91659 - 121.44677	3d" - 3d"(4"P)4p	67-5	1-1	1	893
37	300	1290.940	43.30453 - 120.76726	3d" - 3d"(s'H)4p	. VF -'G'	2-3		893
37	60	1291.240	43.32217 - 120.76726	3d" 3d"(a'H)4p	6'F - 'G'	3-3	{	893
37	350	1291.531	43.32217 - 120.74955	3d" - 3d"(a²H)4p	b'F - ' C '	3-4	1	873
		ļ			1	1	1	
37	400	1291.763	43.28671 - 120.70027	3d" - 3d"(a'H)4p	F	4-5	l I	893
	200	1293.569	44.14136 - 121.44677	3d" - 3d'(s'T)(p	67-3	0-1		873
	40	1296.01	-		l	1		490
	40	1299.56					ł	470
	20	1302.45					· ·	470
	•	1302.739	37.00516 - 113.76713	3d" - 3d"(#T)4p	• F - D	3-Z		97 3
				ant antration		1	1	
	2	1302.85	17.27370 - 94.02999	30° - 30° (4° F)99	aH - 10	4-3		
		1303.47		ant automotion			1	
		1305.000		30° - 30° (5° / 90)	FU-T	3-3	1	8775
		1306.100					1	
	100	1307.34	43.30433 - 119.04047	34 - 34 4 C/Ap	UP - P	1	l	
		1301.24	-	1		1	1	
	-	1107 #1		1	1	1	1	
		1307 44	1		1	1		-
	1	1308 27	1	1		1	1	-
24	200	1300 344	25,72646 - 102 10076	34" - 34 ³ (s ⁴ 874a	*D - ***	3-4		993
	6	1.10.179	43,28671 - 119,61280	34" - 34"(s'H)40	5'F - 'H"	4-5	1	893
	150	1314.044	43.44199 - 119.48902	34" - 34"(a'D)4a		2-1	1	893
					1	1		
28	60	1315.450	25.72644 - 101.74621	3d" - 3d"(c"#74m	s'D - 'P'	3-3		013
	350	1316.151	43.44199 - 119.42142	3d" - 3d"(a"D)4a	NP - 7P	2-2		893
25	300	1316.306	25.78094 - 101.74621	3d" - 3d"(s"F)4p	8'D - 7"	2-3		(1)3
	6	1320.844	43.91659 - 119.62562	3d" - 3d"(s"D)4o	69-19	1-0		013
28	40	1321.639	25.78094 - 101.44457	3d" - 3d ¹ (s'F)4p	*D - 1	2-2	1	893
28	250	1322.819	25.84831 - 101.44497	3d" - 3d'(s'T)4p	a'D - '7"	1-2		093
	1	1	1		I	I Í	1	1

CR II -- Continues

Multiplet	Rel. Int.	λ (m Å)	Levels (n 10 ⁹ cm ⁻¹)	Configurations.	Terms	3-3 Notes	References
	10	1323.240	43.91659 - 119.40902	3d" - 3d"(a2D)4p	WP-7*	1-1	893
	250	1324.415	43.91659 - 119.42142	3d" - 3d"(a2D)4p	67-7°	1-2	893
	40	1327.180	44.14136 - 119.49902	3d" - 3d"(a"D)1p	67-7°	0-1	893
	120	1327.806	43.29671 - 118.59911	3d" - 3d (a D)4p	F-D	4-3	873
	75	1328.421	43.32217 - 118.59911	3d" - 3d"(a'D)ip	0F-17	3-3	
	Đ	1328.76	18.31118 - 9 3.70621	30° - 30°(a T/19)	SP-G	3-2	
	70	1338.11			l		
	20	1329.29	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1		
	25	1331.224	43.30453 - 118.42299	3d" - 3d"(a"D)te	WF-D*	2-2	893
	150	1331_543	43.32217 - 118.42299	3d" - 3d"(a"D)to	VF-D	3-2	893
	10	1341.17					490
	40	1342.24					490
nda. Maria da d	100	1345.12					490
	70	1345.46	1				490
	10	1351.94			1	1 1	490
	10	1354.16					470
5	25	1354.735	43.29671 - 117.10156	3d" - 3d"(a2D)4p	6F-7	4-4	893
	10	1356.25			· ·		49C
	20	1356.86					470
36	200	1357.180	43.28671 - 116.96909	3d" - 3d"(a2DHe	F-F	4-3	893
Y A.	20	1357.69	-				490
36	5	1357.85	43.32217 - 116.96909	3d" - 3d'(z2))4p	6'F - 'F'	3-3	
	30	1358.65			1		470
M	20	1356.75					490
	60	1360.40					
	20	1360.56			1		- 450
	40	1360.960	43.30453 - 116.78205	3d" - 3d'(a"P)4p	VF-10	2-2	893
	250	1361.106	43.30453 - 116.77400	3d" - 3d"(a"P)4p	₩F - 'D'	2-1	893
	300	1361.276	43.32217 - 116.78205	3d" - 3d"(s"P)4p	6F-10*	3-2	893
	50	1362.85				ļį	490
	20	1363.73	20.70364 - 94.02999	3d" - 3d'(s"F)4o	*G - 'G'	3-3	490
	50	1364.26					490
	40	1365.06					490
	300	1365.257	43.28671 - 116.53295	3d* - 3d*(s*P)4p	6'F - 'D'	4-3	893
	60	1365.921	43.32217 - 116.53295	3d" - 3d (s"P)4p	6'F - 'D'	3-3	893
	70	1366.06					490
	120	1366.63				li	490
	20	1366.88					490
	40	1367.13	43.30453 - 116.45119	3d" - 3d"(a'P)4p	6'F - 'S'	2-1	490
36	20	1368.23	43.30453 - 110.39166	3d* - 3d'(a2D)4p	6'F - 'F*	2 - 2	490
36	200	1368.563	43.32217 - 116.39166	3d" - 3d'(a'D)4p	6'F - 'F'	3-2	893
	20	1370.20					490
	, 20	1370.74					490
	60	1372.27		`			490
	10	1374.91					490
	60	1376.800	44.14136 - 116.77400	3d" - 3d'(s"P)4p	₽ <u></u> , b	0-1	893
	30	1381.67	r.		1		490
	100	1382.19	:				490
35	350	1383.749	43.28671 - 115.55428	1d" - 3d'(# ¹ P)4p	6'F - 'D*	4 - 3	893
35	60	1384.420	43.32217 - 115.55428	3d" - 3d'(a'P)4p	6'F - 'D'	3 - 3	893
	10	1385.07			1		490
	40	1388.13					490
	20	1388.24					490
	70	1389.55	37.00516 - 108.97290	30" - 3d'(s'P)4 p	8'F - 'P'	3-2	450

.

2

CR III -- Continued

Mahipies	Rei Inc.	λ_ (= Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	J-J	Notes	References
	250	1389.699	25.72644 - 97.68399	3d" - 3d"(s"F)4p	s'D-'D'	3-3		393
	120	1390.760	25.78394 - 97.96399	36° - 36°(s°F)9p	*D-D	2-3		
		1371.247	43.39433 ~ 1*3.14213		07-1J	12-2		873
30	200	1391.300	43.32217 - 113.16213	35-35579	T-D	3-2		873 (11)
		1371.70	AD 63835 - 131 A4677	Jak-The Jak-The	30	1 2 1		
· · ·		1372.40	47.02023 - 121.446//	34 4 F/4 - 34 4 C/4	T-3	1		
	- m	1363.00						
	l m	13973.00		1	1			
		13973.00			1			
	100	1399.139		The second		1		
		1384.58					i i	410
	m	1396.26						410
	-				1	1		
	100	1396.42	× .	}	1	1	1	490
	30	1386.63	*			1		410
		1307.033	25,72644 - 97,38659	3d" - 3d"(a"F)te	a'D - 'D'	3-2		893
	30	1397.40				1		410
	10	1397.69				1	1	490
	30	1397.90			1	1		490
	1			1		1	1	
	150	1396.090	25.78094 - 97.30659	3d" - 3d"(s"F)to	a'D - 'D'	2-2	1	893
	100	1399.05					I	490
en an	60	1399.415	25.84831 - 97.30659	3d" - 3d"(x"F)tp	*D-'D*	1-2	1	893
요즘같이	25	1400.036	57.42340 - 128.85049	3d'(a'F)4s - 33'(a'F)4p	¥F - ¥F*	4-4		893
35	250	1400.316	43.30453 - 114.73679	3d" - 3d"(x"P)4p	VF-D	2-1	[893
	10	1400.62	25.72644 - 97.12142	3d" - 3d"(s"F)4p	s'D - 'P'	3-3	1	490
						1		
	10	1400.72						490
	100	1401.55						490
	30	1402.07						490
	10	1402.589	25.78094 - 97.07796	3d" - 3d"(#"F")4p	a'D - 'D'	2-1		893
	40	1402.985	43.32217 - 114.59914	3d" - 3d"(a"P)4p	VF - 7 *	3-2		893
	10	1403.200	43.91659 - 115.18215	3d" - 3d"(s"P)1p	67 - D	1-2	l	893
	70	1403.42				1.	1	490
	120	1403.906	25.84831 - 97.07796	3d" - 3d"(a"F)4p	*D - D*	1-1		893
	10	1404.50				1	l	490
	30	1405.37	43.44199 - 114.59914	3d" - 3d"(a"P)4p	67-T	2-2		490
		1405.657	25.78094 - 96.92202	3d" - 3d"(#"P)4p	*D-D	2-2	1	893
	20	1405.72	47.62825 - 120.76726	3d (a'F)4s - 3d (a'H)4p	₩-'G'	2-3		
						1		I
		1408.31		1				
		140/.22						
		1407.87		and and have			1	
		1408.477	47.7000 - 120.70720		00-0			
		1404.040	23.1 2000 - 90.1990	30° - 30°(8° F)40	FDD	3-3	1	
		1407.10						
	m	1419 764	25 70004 - 06 71404	24 - 244-4514-	-70-70*	2-1	I	
	1 20	14100	40 \$7501 - 120 7464	1444 - 144 -	10-10-		I	
	m	1410.12	**************************************			1		
	10	1411.53	25.84831 - 96.40307	20 - 24 10 PM	-'D- 'D'	1-0	1	-
	1 10	1412.47						
	50	1413.32						410
	1		-		1		1	
	-	1413.77		1		ł	1	490
	SO I	1414.62						#10
	10	1414.780	43.91659 - 114.59914	3d" - 3d"(a ¹ P)4o	6'P - 'P*	1-2	1	893
	60	1415.235	25.72644 - 96.38631	3d' - 3d'(a'F)4o	*'D - 'P"	3-2	1	893
	10	1415.81				1	1	490
	90	1416.315	25.78094 - 96.38631	34" - 34"(s"F)4o	a'D - 'F"	2-2		893
	1					1	1	[····

CR III -- Continued

Multiplet	Rel. Int.	λ (m Å)	Levels (in 10 ⁴ cm ⁻¹)	Configurations	Terms	1-1	Notes	References
	70	1417.13						490
	25	1417.667	25.84831 - 96.38631	3d" - 3d"(a'F)4p	aD-T	1-2		893
	10	1419.794	43.44199 113.89943	3d" - 3d"(a'P)4p	bT-T	2-1		893
	100	1420.81						470
:		1421.091	23.74094 - 96.14923	36° - 36'(a'F)Ap	aD-7-	2-1		873
	50	1421.20						470
	10	1421.00						490
	- 40	1422.47	25.84831 - 96.14925	3d" - 3d"(s"F)4p	aD-T	1-1		490
	10	1422.5						490
	10	1425.30			1			490
	200	1426.988	49.76865 - 119.84647	3d" - 3d"(a"D)4p	VG-F	4-3		893
	10	1427.20						490
÷				THE TAK STREET				_
		1420.46				4-3		
		1478.49	43.36217 - 113.36 89 9		J FF - F	1 2 - 3	- 1	
		1478.17			1.	1		
		1470 303	A1 01660 _ 111 04147	2.0° _ 2.0°-2004-	1.00	1		
1	4	1430.023	49.49246 119.42142	3d'(a'F)4 - 3d'(a'D)4p	F-	1-2		893
								-
		1454.13			ł			
	: 30	1437142		and take time.	1.00 000	1	i	
		1433.000				1-2		875
	200	1432.230	47.76003 - 117.91200		UU- 1	4-3		375
	10	1434.19						490
		1477 17						
	20	1427 26 -						
	10	1437.70					1	
	, NU	1478.00		· · · ·		1		
	60	1441.06				1		410
	-		1					
	50	1441.90				1		490
	10	1442.78			1	1		490
	20	1443.08			1			490
	50	1443.82						490
	1	1444.305	25.13887 - 94.37629	3d" - 3d"(a"F)4p	a'G - 'G'	4-4		893
	20	1444.54						490
	10	1445.876	43.30453 - 112.46701	3d" - 3d'(s'G)4o	VF-'F'	2-3		893
	90	1446.247	43.32217 - 112.46701	3d" - 3d'(a'GNo	6'F - 'F'	3-3		893
	300	1446.511	49.76865 - 118.90053	3d" - 3d"(a'H)4p	1G - 'G'	4-4		893
	250	1446.673	65.76321 - 134.88754	3d" - 3d (a"P)4p	VD - 'P'	2-3	ļ	893
	40	1447.284	43.30453 - 112.39984	3d" - 3d"(#'G)4p	6'F - 'F'	2-2		893
	20	1447.50	43.28671 - 112.37288	3d" - 3d"(a"G)4p	6'F - 'F'	4-4		490
	4	1448.221	43.32217 - 112.37288	3d" - 3d"(s ² G)is	6"F - "F"	3-4		893
	20	1449.89	49.62825 - 118.59911	Jd'(s'F)4s - Jd'(s'D)4o	'F - 'D'	2-3		490
	5	1450.22					1	490
	10	1450.52				1		410
	10	1451.95		ł				490
	50	1454.00	27.37232 - 96.14925	3d" - 3d'(a'F)4p	a'S - 'F"	0-1		490
	30	1457.22					l	410
	10	1458.17				1	1	490
	10	1458.41			1	1		410
	30	1462.12		ĺ		1	1	490
	10	1463.87				1		410
	1	1443.04				1	t	1

s,

. .

. .

18) 18)

CR III --- Continued

:-

A AN TON AND AND A AND A

Muhiplet	Rei. Int.	λ (in Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	1-1	Notes	References
	50	1467.68			-	t		490
	50	1468.05						490
	50	1469.55			1	1		490
	10	1470.60						490
	60	1471.342	63.17630 - 131.11636	3d'(a'F)4s - 3d'(a'F)4p	7-10	2-3		873
	20	1472.45						490
	30	1473.32						490
		1473.12				1		470
×	50	1476.04				1		470
		14/1349			1			
		14/6.95				1	ł	
1.12		54 / K . 194						470
	380	1480.16						490
	29	HI3.11						490
	10	1483.45			- F		i	490
n an Anna an An	90	1483.75					1	490
	10	1481.39						490
	10	1486.02		:		Į	1	490
1.12	10	1486.54			F			490
		1467.03				1	1	490
	10	1487.96						490
	20	1486.72	T .				I	490
	20	1409.10	49.62825 - 116.78205	3d*(s*F)4s - 3d*(s* P) 4p	ቸ- ነው	2-2	1	490
	20	1489.35						490
	•	1409.93						490
	20	1491.50						490
		1492.05				1		490
	50	1492.98				1		490
	10	1493.462	49.49246 - 116.45119	3d*(#*F)4s - 3d*(#*F)4p	7-5	1-1		893
	10	1493.68						490
	50	1494.45				-		490
	20	1495.01	-			ł	1	490
	20	1495.21	49,49246 - 116.37292	3d*(x*F)4s - 3d*(x*D)4p	₩-₩	1-1	1	470
	20	1495.36						490
	10	1496.47	49.42825 - 116.45119	3d'(s'F)4s - 3d'(s'F)4p	7-5	2-1	i	490
	30	1501.36	65.89238 - 132.49978	3d*(a*G)4s - 3d*(a*F)4p	5-75	3-2		490
	30	1502.57				1		490
	30	1903.65				1		490
	100	1905.76				1	1	490
	10	1506.82			l l	1	1	490
	10	1506.95			1	1	1	490
	30	1507.93					1	490
	200	1508.122	65.76321 - 132.07071	3d" - 3d ¹ (x ³ l")4p	ND - 'D'	2-2		893
	4	1508.740	43.44199 - 109.72279	3d" - 3d"(s"P)1p	67-70	2-3		893
	30	1909.31				1	l	490
	10	1510.05	65.89238 - 132.11750	3d°(a°G)4s - 3d°(a°F)4p	10-10	3-3		490
	10	1510.62				1	1	490
	10	1511.70				1		490.
	300	1512.305	43.44199 - 109.57062	3d" - 3d ¹ (s" ?)4p	67 - 77	2-1		893
	10	1513.18	66.03001 - 132.11750	36'(s*G)4s - 36'(s*P)4p	10-10	4-3		490
	10	1513.39	-				1	490
	20	1515.01			1	1		490
	80	1515.44				1		490
							-	-

Т

7

4

CR III - Continued

	Mahipiet	Rel. int.	λ (in Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J-J	Notes	ľ
		20	1517.85				1		T.
		- 40	1518.48						
		10	1519.66	49.76865 - 115.57196	3d* - 3d3(x2H)4p	6G-7F	4-4	!	
•		70	1520.01				I		Ŀ
		40	1520.79			i	[Ŀ
		10	1521.29						1
		30	1521.59			Í			İ.
		5	1522.29	49.49246 - 115.18215	3d*(a*F)4x - 3d*(a*P)4p	Ŧ-10*	1-2		
		200	1523.133	43.91659 - 109.57062	3d" - 3d ³ (s' P) 4p	6P-7*	1-1		1
			1523-21	43.32217 - 108.97290	3d" - 3d"(s"P)4p	6F-7	3-2		1
2		20	1524.65					1	1
		10	1525.27	43.30453 - 108.86498	3d" - 3d ³ (# *?)4p	6F-'D'	2-1		1
al an se Agrices and		5	1525.42	49 62825 - 115 18215	3d ³ (a ⁴ F)da - 3d ³ (a ³ F)da	* 10	2-2	Í	
7*		150	1525.751	43.91699 - 109.45811	34" - 34 ¹ (a 'PH p	19.90	1-0	Í	
		250	1525.993	43.44199 - 108.97290	34" - 34 (a 'PN o	19-70	2-2	[
enalista por servicio		90	1528.362	44.14136 - 109.57062	3d* - 3d*(d*P)40	17-7	0-1	ł	1
		120	1528.517	43.44199 - 108.86498	3d" - 3d"(s"P)4p	VT-70	2-1	1	1
		20	1528.91						•
and set of the set of		20	1529.16				1		.
		5	1530.59	63.42192 - 128.75462	3d'(a"Phis - 3d'(a"Fhis	70-75	3-7		
an antar e se en el conserva e se el conser El conserva e se el conserv		20	1532.09				1	i	17
		-	1532.517	84.37412 - 149.62630	3d'(a2F)4s - 3d'(b2D)4o	ት ም	4-4		
· .			1532.906	66.03001 - 131.26566	3d'(#2G)4s - 3d'(#F)4p	'G - 'G'	4-4		11
		90	1533.094	69.65974 - 134.88754	3d'(s'G)4s - 3d'(s'F)4p	'G-'F'	4-3		1
		4	1533.176	66.22509 - 1 31.45016	3d ¹ (s ² G)4s - 3d ¹ (s ² F)4n	'G - 'G'	5-5		1.
		80	1534.09				1 .	I	
		10	1534.40				1		
÷		10	1535.66					ļ	
		1	1536.201	37.00516 - 102.10076	3d" - 3d ¹ (s'F)4p	a'F - 'F*	3-4		1,
		150	1537.133	43.91659 - 108.97290	3d" - 3d (s'P)1p	6'P - 'P"	1-2	1	
		- 40	1537 997	43 44199 - 108 44140	3d" - 3dia Phio	100.700	2-2		
		10	1538.43	94.80170 - 159.8033	3d'(a"Fbio - 3d'(a"Fbio	G OF	5-4		
		30	1539.70	43.91659 - 108.86498	3d" - 3d (s'P)4o	PP-1D	1-1	!	Ι,
		90	1540.865	\$4.48476 - 149.38364	3d'(a'F)4s - 3d'(b'D)4o	7-7	3-3	1	۱,
		10	1541.57				'	I	
		10	1542.52						•
		140	1541 645	43 01650 - 108 60761	14" - 14"/-"#14-	NP TY	1_0	ļ	,
			1541 884	43.71037 - 100.07/03 84 57751 - 140 14401		97-10 15-151	1 2 - 2		
		120	1545.031	44.14136 - 108 86498	3.4" - 3.4"(- 2779) 3.4" - 3.4"(- 2779)	h'P _ 'I''	0-1	1	
		30	1546.34	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	V-1		
		30	1546.55			ļ	1		
		30	1547.05						
			1649 84	17 16100 - 04 71404	2.4 - 2.4V_4E\4-				
		10	1549 304	22.12177 - 70.71404 23.91649 - 102.46140	20 ~ 20 (8 F /40) 20 4 − 24% a*934 -	NP - 10*	1-3	İ	
		20	1550.09			07- F			
	·- ·	10	1550.94		i	1	1		
		50	1551.43			1	!	1	
		40	1552.31			i a	· ·		
		- 10	1557 95			1		1	
		40	1553.30				[r 	
		50	1553.38					1	!,
		30	1554.71				-	\$	
		30	1555.94	49.62825 - 113.89943	31'(a*F)4s - 3d'(a'P)4p	'F - 'P'	2 - 1	t	i i
		30	1557.01		-				۰,

٠

- "我是你的吗?"

a and a second sec

CR III -- Continued

Muhiplet	Rei. Int.	کے دے ک	Levels (in 10° cm ⁻¹)	Configurations	Terms	1-1 I	Notes	References
	30	1558.14						490
	10	1559.67	56.65137 - 128.76726	3d (s'F)4s - 3d (s'H)4p	F-'G'	2-3		490
	10	1561.72	109.53425 - 173.5699	3d°(a°G)4p - 3d°(a°H)4d	HrgH	4-5		470
	10	1564.07						490
		1564.32				1 : 1		490
·	20	1565.40						490
	20	1565.54						490
- W. J.		1567.41	-	}				450
	10	1567.00						490
A .	- -	1568.471	56.99388 128.74955	3d*(s*F)4s - 3d*(s*H)4p	F-'0'	3-4		893
	30	1569.07				1 1		490
	29	1569.36				1 F		490
					1	1 1		
	59	1569.51						490
	•	1578.67	199.53425 - 173.2995	3d*(x*G)4p - 3d*(x*E)4d	1 1 - A	4-5		490
ار معرد ما برایه روکنون این کرد این کرد کرد برای کرد	250	1571.055	49.76865 - 113.41993	3d" - 3d"(a"G)4p	FG - H	4-5		893
1868 a.A. 47	20	1571.38			ľ			470
	50	1571.98						490
	20	1572.13	94.02999 - 157.6373	3d*(x*F)4p - 3d*(x*F)5s	'G' - fF	3-3		490
ter and second sec						1. 1		
ala Anna Champeon		1572.54		· · · · · · · · · · · · · · · · · · ·	Į	1		490
1	20	1572.89						470
- 10 C	10	1573.34	49.76865 - 113.32889	3d" - 3d"(a"GHp	1/G - 'F'	4-3		470
	70	1573.47	93.76621 - 157.3032	3d'(s'F)4p - 3d'(s'F)5s	'G' - fF	2-1		470
	. 40	1574.00	94.37629 - 157.9080	3d ³ (a'F)4p - 3d ³ (a'F)5s	'G' - fF	4-4		410
	⁵ - 20	1574.63						490
	20	1576.24						470
્ઝ	100	1577.14	94.02999 - 157.4351	3d'(s'F)4p - 3d'(s'F)5s	'G' - fF	3-2		490,488
	50	1577.36				1 1		490
	10	1578.01	110.59718 - 173.8763	3d'(s'G)4p - 3d'(s'H)4d	76-61	6-7		470
	10	1578.39			1			470
	120	1578.624	49.76865 - 113.11521	3d" - 3d ¹ (a ² G)1p	₩G - 'G'	4-4		893
		1500 114	AD \$7801 - 113 11521	Mile The Advertise	1 Mar _ 102*	12-4		
		1500 34	67 47340 - 130 30077		Jan Jan			
n	200	190171	A 13616 - 157 6173					
	100	1561 15	99.57629 - 157.6575		0-11	[1-3]		490
		1661 57				1		470
	200	1501.57			1	1 1		
	1.50	1304-04				1 1		470
÷	200	1562.93						
	20	1563.70				1		#10
	25	1583.965	69.60150 - 132.73422	3d'(a'P)4s - 3d'(a'F)4a	7-10	0-1		893
	10	1564.09				1 1		410
73	400	1564.60	96.80170 - 157.9080	3d ¹ (s [*] F)do - 3d ¹ (s [*] F)5s	10" - PF	5-4		#10.4H
	30	1584.84						490
	30	1585.01	96.71406 - 159.0033	3d'(s'F)do - 3d'(s'F)5s	70' - 68	3-4		
	150	1586.35	,					
	60	1506 770	45.76321 - 128.78413	30 - 2440-514-	ND - 'P'	2-1		
	10	1547.15						
	20	1567.54	45.76321 - 128.75462	34" - 14 Ya ³ 17 Ma	ND - 'P'	2-2		
	20	1568.00						410
	150	1568.42				!		<i>e</i> 10
	200	1568.87				1 1		
	20	1509.91						
	20	1590.49		1				
		1590.700	65.89238 - 128.75462	MitelGhe - MitelPhe	10-10	11-1		
		,						

1

1

Beatly Market

÷

*

CR III -- Continued

e Tra

> 1. .

anna an Anna an Marthaga

fuitiples	Rel. Int.	λ_ (m Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	J-J Notes	Reference
	180	1992.39					490
	40	1593.16	56.65137 - 119.42142	3d*(a*F)4s - 3d*(a*D)4p	T-T	2-2	470
		1993.36	44 679 170 70 171	sak kno. sak kno.			
		1373.323	98.93001 - 128.70413		U-7	4-3	
		1375.71					410
	-						1 *** 1
	40	1594.474	84.37412 - 147.99873	3d (xT)4x - 3d (xD)4p	F-7	4-3	893
		1373.80	76./(H04 - 137.3/36		1 V - IT	3-3	
		1966.57	40 \$2001 - 112 45704	3456-1536 _ 3456-1636-	1 20.00	1.1	
	m	1796.76	66.72589 - 128.85049	3d'is GNs - 3d'is File	G-F	5-4	410
	120	1997.46					490
		1997 86					
	50	1598.05					410
	30	1598.48				1 1 -	. 490
	30	1599.01			- 1	1 1	(110
	79	1680.62					410
		1600.21					410
	-	1601.57					
	100	1602.17					490
	160	1602.79					490
	300	1603.19	59.69117 - 112.46701	3d*(a*F)% - 3d*(a*G)%p	F-F	4-3	490
	30	1603.93					490
	10	1605.34					490
	20	1605.18					#0
	10	1606.19	96.77438 - 159.0318	3d'(s'F)4p - 3d'(s'F)5s	10°-11F	1-2	490
	60	1606.490	70.46701 - 132.73422	3d*(a*P)4s - 3d*(a*F)4p	7-70	0-1	093
	10	1607.57	70.29286 - 132.49978	3d'(a'P)4s - 3d'(a'F)4p	P-D*	2-2	490
	20	1607.78					490
	30	1607.92		· · · · · · · · · · · · · · · · · · ·			490
	10	1608.19					490
	30	1609.01			1		490
	200	1609.35					490
	150	1609.79	97.66399 - 159.8033	3d'(a*F)4p - 3d'(a*F)5s	10° - 11F	3-4	490
	200	1609.91					490
	10	1610.10	96.92202 - 159.0318	3d"(a"F)4p - 3d"(a"F)5s	10" - 117	2-2	490
	40	1610.56	49.76865 - 111.85697	38" - 3' '(a'G)4p	VG - 'G'	4-5	490
	10	1610.85	96.30631 - 158.4636	3d'(a'F)4p - 3d'(a'F)4d	'P" - e'F	2-3	490
	100	1611.06	111.85697 - 173.9266	3d'(s'G)4p - 3d'(s'H)4d	'G' - g'H	5-6	490
	10	1611.57					490
	30	1612.07					490
	~	1012.37					
	0	1613.02					490
	100	1614.04					470
		1014.17		gate des a strang			970
	0	1013.21	77.12142 - 137.0318			3-2	
	10	1616.661	87.77068 - 149.62630	3d'(s'F)4s - 3d'(b'D)4p	7.7	3-4	673
	-	1617 73					-
	en l	1417 475	70 20266 - 112 11760	Liter Place - Liter Black	18 - 104	2.1	
	<	1617.72	49,22991 - 111 44474	Mar a Laratina	17.10	1.4	
	10	1617.90					490
	25	1619.359	70.96126 - 132.73422	3d'(s'D)4s - 3d'(s'F)4a	יסי-סי	1 1 - 1	893
						11	1

17

Ċ,

I.

-26

CR # -- Ca -

i i bia	bighet Rel. Is	e 2_ (n Å)	Levels (n 10° cm-')	Configurations	Tem	J-J Nete	References
-	25	1620.004	70.34556 - 132.07071	3d'(a'T)4a - 3d'(a'T)4p	7-7	1-2	893
		1628.76					
	30	1621.10					690
	30	1621.87					490
	". . ₁₀	1623.01	87.77868 - 149.38364	3d ¹ (s ² F)4s - 3d ² (s ² D)4p	¥-¥	3-2	
	39	1625.32	97.89628 - 158.6237	3d'(x'F)1p - 3d'(x'F)1d	D'-eF	4-4	490
	100	1626.33					470
		1627.25					
an an an Arrien (1977). Ta an Arriente an Arriente Ta an Arriente an Arriente	150 IS	1628.381 1678.98	71.32327 - 132.73422	3d (a D)4a - 3d (a T)4p	יס - סי	2-1	893
مرد بر میکند. مرد میکند (۱۹۹۹ و میکند در ۱۹۹۰ و میکند) مرد میکند (۱۹۹۹ و میکند (۱۹۹۰ و میکند)	-	1628.98					490
		1629.56	97.09628 - 158.4636	3d'(s'F)(p-3d'(s'F)(d	D'-eF	4-3	
(2) 1.1 (1) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	2	1631.49					
	20	1631.68	96.14925 - 157.4351	3d ² (s [*] F)4o - 3d ² (s [*] F)5s	¥-6	1-2	
		1631.09					470
	24	1632.85	78.58831 - 157.8575	лайтый- жаты	7-17	2-3	410
	20	1633.17					410
	7	1633.00					
	120	1634.12	96.71404 - 157.9080	34"(a"F)4p - 34"(a"F)5s	10'-17F	3-4	490
	100	1635.10	97.3069 - 158.4636	3d'(a'F)4p - 3d'(a'F)4d	D'-eF	2-3	490
	100	1635.48	97.09828 - 158.2418	3d*(a*F)4p - 3d*(a*F)5s	'D' - I'F	4-5	490
	10	1636.69					410
		1637.53					
	100	1637.90					410
	1	1638.10 1638.78	67 30640 - 158 3783	TATIONA - TATIONA	77 25	2.2	
		1639.46	······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			410
	20	1639.90					490
	100	1640.94	97.66399 - 158.6237	3d*(x*P)4p - 3d*(x*P)4d	'D' - e'F	3-4	
	100	1641.56	96.38631 - 157.3032	36'(s'P)4p - 36'(s'P)5c	7-17	2-1	410
		1641.83					#10
	70	1643.07					490
	100	1643.30					
		1643.34					410
	9	1643.86	87 73044 - 148 ST381	Selfer This - Selfer Dide	18.104	3-2	410
		1644.382	71.32306 - 132.11790	3d*(s*D)4s - 3d*(s*T)4p	70-70	3-3	893
	9	1645.36					490
	70	1646.15	71.32306 - 132.07071	3d*(a*D)4s - 3d*(a*P)4p	יס' - ס'	3-2	490
		1010.50 1667.71					790
		1648.36					410
		1699.13					410 410
	_ ^		1	1	1		

÷.

CR III -- Cami

	Mahiplet	Rel Inc.	ک … (⊷ آ د)	Levels (in 10° cm-")	Configurations	Terms	J - J	Notes	References
		100	1640.51		and the address				
			1649.91	7/101740 - 104.0450			2-3		
김 영화 가슴 눈가 다			MAL D	90.00377 - 037.3052	38 (41 F) (41 - 38 (41 F))(4	10-11	•-•		
			1651 56	97 39981 - 197 9999	AND THE ADDR.	1 20.00	<u>a</u> _a		
			1651 92						
			1652.66	96,77633 - 157,3882	Min/Pile - Min/Pile	10-FF	1-1		-
	1	159	1652.46	97.12142 - 157.6373	36°(x°F)4p - 36°(x°F)5s	T-ff	3-3		450
新設構造していたいでの。 「新設計品」にはMarkatana」の「Articles Transition」			1654.23	113.11521 - 173.5699	3d'la'G)lp - 3d'la'H)ld	'G'-g'Ⅲ	4-5		.499
		. 🍽 I	3634.79						400
		70	1655.46	-		I	!		490
		2	1657.45						430
ne i Terle i . 10 sete renieren et			1676.30	37.00516 - 97.30699	36° - 36°(6'F)1p	T-D	3-2		410
						1			-
		1.26	1000.00	4 A 4	:	1			
			1609.00						
			1609.74						
			1600.44	97.42399 157.9000	Ministra - Ministra	20-05	3-4		
and the second sec	an an an an an An an	150	1669.70			F	⁻ '	-	-
		20	1661.58						
			1661.93			i i			410
	2	25	1663.851	56.65137 - 116.78285	3d'(s'F)4s - 3d'(s'P)4p	F-10	2-Z		873
		•	1663.75						490
la 💭 Materia a secondaria 👘 👘		90	1663.926	74.74888 - 134.88754	38'(a:1)%s - 38'(a:12)%p	D-T	2-3		893
			1664.009	49.62525 - 309.72279	3d%(F)% - 3d%(F)%	Ŧ- 77	2-3		893
1 👝 👘 🔒		I			Adv. Jone . Auto. Mitera				
		130	1664.001	113.11321 - 173.2005			4- 2		
e 📕			1444.00			No. NY			
	\$	20	1665 15	94 99170 - 154 9546		100-20			
-		1 70	1665.53			0-00			
		50	1665.62						-
		ł							
		40	1667.337	56.99308 - 116.96909	3d ¹ (s [*] F)4s - 3d ¹ (s [*] D)4p	¥F - 19*	3-3		893
		30	1667.44						490
		250	1667.621	49,49246 - 309,45611	3d*(a*F)4s - 3d*(a*F)4p	7-7	1-0		893
		20	1667.92	97.48399 - 157.4373	3d*(#'F)4p - 3d*(#'F)5s	'D' - fF	3-3		490
		100	1668.24	49.62025 - 109.57089	3d*(s*F)4s - 3d*(s*P)4p	T-7	2-2		490
			1005.33						470
									I
			1449.619			27 - D	3-2		
-		190	1449 97	56.45137 - 116.53295	Later Free - Later Free	10 AT	2-1		
		50	1670.27						
		150	1670.45	94.02999 - 153.8935	3d ¹ (a [*] F)4a - 3d ¹ (a [*] F)4d	10° - e'F	3-2		410
		20	1670.80						410
		1							
		10	1671.40						490
-		30	1671.85				1		490
		10	1672.03						490
		20	1673.00	71.67719 - 131.49016	3d*(a*H)4s - 3d*(a*P)4p	71-10	4-5		410
		2	1073.58	97.46399 - 157.4351	3d"(a"P)%p - 3d"(a"P)%s	17.17	3-2	ì	
		130	1073.784	20.4900e - 110.15489	36'(a'P)% - 36'(a'P)%p	7.0	12-4		873
		-	1471 447		Jakanna Jakanna	70 10-			
			1414 414	44 64117 - 114 17107			2-4		6773
		197	1674.71	64.37620 - 154.0257		N			
-		1	1674.016	49.82891 - 109.53425	M'(a'Phis - M'ra'Ghia	'P - 'H'	3.4		893
		200	1675.72						410
		150	1676.20				1		410
-				1	1	ł	1		ł

C-27

¢

- ·

σ

CR III — Continued

Muhiplet	Rel. Int.	ک_ (= Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	159	1676.955	50.09117 - 109.72279	3d'(a'F)4s - 3d'(a'F)4p	ቸ-ንን	4-3	e.	893
	10	1677.54						470
		1677.95	71 07007 131 0004	Tak-June, Tak-June,	300 3000			470
2	130	1678.75	/LS/01/ - L3LA3006		n -U	•-3		675
	159	1679.375	57,42340 - 116,96909	3dila'F)4s - 3dila'D)4p	ፑ-ፑ	4-3		893
	_	1000		tak me. tak me.	-	I.,		
		1679.537	30.37300 - 190.33273 30.43006 - 100.04000		7-10	3-3		873
1991 - V - 19		1679.97	21 22256 - 131 26666		Jun June			673 ·
		1607 183	71 67719 - 131 11636	Salia Hina - Salia Fida	31 - 17-	4-1		
		1683 560	56.99308 - 116.30166	Mite Flds - Mite Date	1 T . 1	3-2	1	893
	19	1684.82	10.47301 - 199.8833	3d to File - 3d to File	G- PF	5-4		410
	. 180	1604.14		1	1 I			470
	4	1604.277	49.49246 - 108.36498	3d ³ (a [*] F)As - 3d ³ (a [*] F)Ao	7-10	1-1		893
an an an an an an an an an an an an an a	4	1685.072	49.62825 - 108.97290	3d'(s'F)4s - 3d'(s'F)4p	¥-¥*	2-2		893
स्वर्णनेः इ.सम्बद्धाः स्वर्णनेः	- p	1685.36						490
	i (1 59)	1685.85				1		490
${\rm D}_{\mathcal{H}_{\mathcal{H}_{\mathcal{H}}}^{(1)}}, {\rm S}_{\mathcal{H}_{\mathcal{H}}}^{(1)}, {\rm S}_{\mathcal{H}_{\mathcal{H}}}^{(1)}, {\rm S}_{\mathcal{H}_{\mathcal{H}}}^{(1)}, {\rm S}_{\mathcal{H}}^{(1)}, {\rm S}_{\mathcal{H}^{(1)}, {\rm S}_{\mathcal{H}}^{(1)}, {\rm S}_{H$		1686.44				[.		490
	150	1687.85	100 .10066 - 1 59.375 6	34°54'F)4p - 34°54'F)5s	'G' - fF	4-3		490
	70	1687.56	•		1	1		490
	•	1698.134	49.62825 - 108.86498	3d*(a*F)4s - 3d*(a*P)4p	ቸ-ው	2-1		893
		1688.39				[490
	1.	1689.836	49.49246 - 108.69763	3d*(a*F)4s - 3d*(a*P)4p	ቸ- ወ	1-0		893
	•	1689.14	87.77968 - 146.97333	3d'(a'F)4e - 3d'(b'D)4p	Ψ-'n	3-2		490
	200	1689.AS7	99.84167 - 159.0318	3d*(a*F)4e - 3d*(a*F)5s	10 - PF	3-2		873
	80	1689.77					1	490
	30	1690.00					1.	490
71	300	1690.28	93.76621 - 152.9273	3d'(a'F)4p - 3d'(a'F)4d	'G' - c'H	2-3	ľ	490
	20	1690.52		-				490
	10	1690.72						490
	30	1691.09						490
	90	1691.64					1	490
	120	1691.774	57.42340 - 116.53295	3d'(s'F)4s - 3d'(s'F)4p	₩ ₽-10 °	4-3	l	873
	30	1692.31		-				490
	20	1692.63					1	490
	600	1692.89	94.02999 - 153.0991	3d'(s'F)4p - 3d'(s'F)4d	'G' - e'H	3-4		.490
	30	1693.43						490
	20	1693.72			1			490
	70	1694.53			1			490
	70	1694.92						490
	70	1695.77	49.49246 - 108.46140	3d'(s'F)4s - 3d'(s'P)4p	7-7	1-2		490
	000	1075.04	96.37629 - 153.3146	36'(s'P)49 - 36'(s'P)46	G6H	•->		470
	20	1696.85				1	1	490
-		1477.43				1		490
7]	1 📍	1077.34	96.02999 - 152.9273	36'(s'P)4p - 36'(s'P)46	"O" - e"H	3-3	1	470
		1076.03			1	1		470
	10	1699.35				1		410
						ţ		-
		1077.84				1		470
14	240	1200 344	A1 78671 - 100 10056	14 Laketing	Line her	4.4	1	
~	1 30	1701.05	43.244/1 - PUL. PU/4			- •		
14		1701.207	41 12217 - 102 10074	Mr - Latrathan	197 - 197 -	3_4		991
~	600	1701.48					1	
			1	1		1		

~~	-		C	-
		-		

1977 - 21 Mar 2012 - 20

. CQ. .

The second second second second second second second second second second second second second second second se						-		
	Muhipic	Rei. Int.	λ (m Å)	Levels (in 10 [°] cm ⁻¹)	Configurations	Terms	J - J No	es References
	71	80 40	1702.89 1703.73	94,37629 - 153,0991	3di(s*F)4p - 3di(s*F)4d	'G' - e'H	4-4	490 490
		10	1704.79	109.94498 - 168.5823	3d*(a*G)4p - 3d*(a*G)4d	'H' - fH	5-6	490 490
		250	1705.961	75.35163 - 133.96957	3d*(x*H)4x - 3d*(x*F)4p	'H - 'G'	5-4	893
		50 30	1706.15			- · · ·		490
		30	1707_27					490
		40	1707.408 1707.78	56.99308 - 115.55428	3d'(a'F)4x - 3d'(a'F)4p	ቸ-ህ	3-3	490 893 490
		25	1788.495	56.65137 - 115.18215	3d ¹ (s [*] F)4x - 3d ¹ (s ² F)4p	Ŧ-'D'	2-2	893
	71		1708.96	94.89170 - 153.3146	3d'(x"F)4p - 3d'(x"F)4d	GcH	5-5	490
	3 4 - 2	5	1750.366	43.29671 - 101.74621	34" - 34"(s'F)4p	VF-F	4-3	893
	د 14	200	1711.02 1711.25					490
n an	34	290	1711.63	43.32217 - 101.74621	3d* - 3d*(x*F)4p	b ³ F - ³ F*	3 - 3	490
		20	1712.24			1.4		490
		50	1713.43	100.10066 - 158.4636	3d'(s'F)4p - 3d'(s'F)4d	G-eF	4-3	490
		150 10	1714.01 1714.26	100.10066 - 158.4429	3d'(a*F)4p - 3d'(a*F)4d	'G' - e'G	4-4	490 490
. · · · -		40	1714.63	43 44100 101 74631	3.0° - 3.0°-0734-	1.100 - M2*		470
		20	1715.65	-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			490
			1716.21					490
		40.	1716.33	-				470
		200	1717.43	99.84167 - 158.0667	3d'(s'F)1p - 3d'(s'F)1d	'0' - e'G	3-3	490
			1717.92					490
		40	1718.16	100.42301 - 156.6237	3d'(a'F)4p - 3d'(a'F)4d	'0' - e'F	5-4	_410
		120 40	1718.530 1719.735	56.99308 - 115.18215 57.42340 - 115.57196	3d'(a'P)46 - 3d'(a'P)4p 3d'(a'P)46 - 3d'(a'H)4p	17 - 13* 17 - 14*	3-2 4-4	893 893
	34	80	1720.00	43.30453 - 101.44457	3d* - 3d ³ (#*F)\$p	6 ¹ F - ¹ F*	2 - 2	410
	34	80	1720.00	100.10066 - 156.2418	3d ¹ (a ⁴ F)4p - 3d ¹ (a ⁴ F)5e	10°-11F	4-5	410
	34	40	1720.247	57.42340 - 115.55428 \$3.32217 - 101.44457	36"(6"F)46 - 36"(6"F)4p 34" - 34"(6"F)4a	100	4-3	893
		150 10	1721.10 1721.43					490 490
ν.		200	1721.67	115.84458 - 173.9266	3d'(s'H)4p - 3d'(s'H)4d	'H" - 5'H	6-6	410
		150	1722.191	56.45137 - 114.71679	3d ¹ (a ⁴ F)4s - 3d ¹ (a ³ F)4e	77-10*	2-1	470 893
		100	1723.16	115.84458 - 173.8763	3d'(a'H)4p - 3d'(a'H)4d	11-11	6-7	410
		100 10	1723.50 1723.83	100.42301 - 156.4429	3d'(s'P)4p - 3d'(s'P)4d	1040	5-4	490 490
		120	1724.32	115.57196 - 173.5659	3d'(a'H)4p - 3d'(a'H)4d	'H" - 8'H	4-5	410
		150	1725.12	100.10088 - 155.0887	30'(1''')99 - 30'(1''')9d	0.00	4-3	470
		40	1725.40					410
		20	1726.61					490
		10	1727.51		{			470

CR III --- Continued

Multiplet	Rel. Int.	λ_ (m Å)	Levels (in 10' cm - ')	Configurations	Terms	1-1	Notes	References
	10	1727.97						490
	20	1728.24			1		1	490
	. z 80	1721.34						490
	10	1730.34					1	490
	5	1730.92	70.98126 - 128.75462	3d'(a'D)4s - 3d'(a'F)4p	10-1F	1-2		490
ala y shatar taraba Galer (1917) Santar (1917) Santar (1917)	20	1731_53	97.09828 - 154.8496	3d'(s'F)4p - 3d'(s'F)4d	D'-eF	4-5		490
a an an an an an an an an an an an an an	90	1731.76	96.14925 - 153.8935	3d*(a*F)4p - 3d*(a*F)4d	₩-e .	1-2		490
	50	1732.85				1		490
	200	1733.00	97.35981 - 155.0640	3d (a'F)1p - 3d (a'F)1d	T - cD	[4-4		490
	150	1733.13	96.38631 - 154.0857	3d*(a*F)4p - 3d*(a*F)4d	}F −cF	2-3		490
: - J	~	1734.13				I	1	. 490
		1/35,29	- EVI. PHOLI - 177.3730	30 (a r /op - 30 (a r / 36	·F	3-3		470
	10	1735.61	1				l	490
	0	1735,76			1	1.1		:490
AND A STREET	30	1736.49	101.44457 - 159.0318	3d"(a"F)4p - 3d Ya"F)54	T -ff	2-2	11 A.	<i>4</i> 90
	30	1737,AT						490
× ¢ nor∉	120	1731.23	115.67074 - 173.2005	3d'(a'H)4p - 3d'(a'H)4d	'H' - f1	5-5		490
	•	1738.300	71_32305 - 128.85049	3d"(s"D)4s - 3d"(s"T)4p	D-T	3-4		893
	ю	1734.90	96.38631 - 153.8935	3d'(x*F)4p - 3d'(x*F)4d	F-eF	2-2		490
	10	1740.06			1	1 1	1 · · ·	490
같은 것은 것을 못했다.	20	1740.31	71.32327 - 128.78413	3d (a'D)4s - 3d (a'F)4p	'ህ-'ም	2-3	1	490
	0	1740.78	97.61948 - 155.0640	3d'(a'F)4p - 3d'(a'F)4d	F - cD	5-4	1	490
	150	1742.19						490
	20	1742.52						490
	70	1742.96						490
	100	1743.44	97.09828 - 154.4571	3d'(s'F)4p - 3d'(s'F)4d	'D' - e'F	4-4	1	490
•	30	1743.65			1	1	1	490
	30	1743.87	65.76321 - 123.10564	3d" - 3d"(a"D)4p	6'D - 'D'	2-2		490
	20	1744.07	97.12142 - 154.4571	3d'(s'F)4p - 3d'(s'F)4d	'F' - e'F	3-4		490
	30	1744.81						490
ч. С	40	1745.04				ļ		490
	80	1745.55	•			1		490
	120	1745.751	74.75588 - 132.07071	3d'(s'D)4s - 3d'(s'F)4p	'D-'D'	2-2	1	893 -
	10	1746.48					1	490
	200	1,746.77	56.65137 - 113.99943	3d'(a'F)4s - 3d'(a'F)4p	₩ -₩	2-1	1	490
	70	1747.30	97.61948 - 154.8496	3d'(x"F)4p - 3d'(x"F)4d	'F' - e'F	5 - 5		490
	80	1748.74						490
	40	1748.87	96.71404 - 153.8935	3d'(s'F)4p - 3d'(s'F)4d	'D' - e'F	3-2	1	490
	70	1749.67						490
	10	1749.88						490
	20	1750.27						490
	ю	1750.96						490
	100	1751.34				1	1	490
	80	1752.47				1	1	490
	30	1753.23		1	1	1	1	490
	30	1753.60	37.00516 - 94.02999	3d" - 3d"(a"1")1p	a'F - 'G'	3-3		490
	300	1754.76	97.09828 - 154.0857	3d'(s'F)4p - 3d'(s'F)4d	'D' - e'P	4-3		490
	20	1754.94				1		490
	150	1755.24	96.92302 - 153.8935	3d'(s'F)4p - 3d'(s'F)4d	'D' - e'P	2-2		490
	200	1755.46	97.12142 - 154.0857	3d'(a'F)4p - 3d'(a'F)4d	'F' - e'F	3-3	1	490
	100	1755.78	96.77438 - 153.7298	30 (s'T)4p - 30 (s'T)40	'D' - e'F	1-1	1	490
	30	1756.29			1	ì	1 1	490
	10	1756.58			1	1	I	490
	10	1756.97		1	1	1	1	490
	1	1		1	1	1	I I	1

CR III -- Continued

				-	1	1 1	1
	10	1757.45					490
	10	1757.95	101.44457 - 158.3283	3d'(a'F)4p - 3d'(a'F)4d	T-eF	2-2	490
	50	1758.20	101.74621 - 158.6237	3d'(x'F)4p - 3d'(x'F)4d	T-eF	3-4	
	30	1759.19				!	490
	20	1759.34					470
	50	1759.50		7.4			
ļ	10	1760.31	96.92202 153.7298	3d'(a'F)4p - 3d'(a'F)4d	D'-eF	2-1	490
	- 40	1761.38	97.12142 - 153.9935	3d (xT) ip - 3d (xT) id	T-eF	3-2	490
	20	1761.73	37.00516 - 93.76621	3d" - 3d"(#"F)4p	a'F - 'G'	3-2	490
	30	1762.52					70
	70	1763.13	PUI.74621 - 158.4636	3d1a7-)49 - 361a7-)4d	T-eT	3-3	470
	150	1765.77	IUL./4621 - 136,4429	38'\17'P\$ - 38'\17'PH	T -eu	3-4	470
÷	10	1764.16			21 (A)		490
	120	1765.96					490
(1,1)	10	1765.53	-				450
	- 60	1765.739	63.76321 - 122.39649	30" - 30"(# 'P) lip	61D - 17	2-1	875
	10	1765.93					
	i0	1766.05	101.44457 - 158.9667	3d"(a'T')1p - 3d"(a'T')1d	T'-eG	2-3	470
	60	1766.58					490
	300	1766.92	2				490
	10	1767.18	97.30659 - 153.8935	3d'(s'F)4p - 3d'(s'F)4d	D'-eF	2-2	490
	40	1766.32		· · ·			490
	40	1768.50					490
	50	1768.78	43.30453 - 95.84167	3d" - 3d"(a'F)4p	6 F - 'G'	2-3	490
	100	1769.03					490
	300	1769.17	102_10076 - 158.6237	3d'(a'F)4p - 3d'(a'F)4d	'F'-e'F	4-4	490
	30	1770.10					490
	20	1770.35					490
	20	1770.66	•				. 490
	30	1770.96	Σ_{μ}				~ 490
	40	1772.46	117.14585 - 173.5659	3d'(s'H)4p - 3d'(s'H)4d	Ϋ́-g'H	5-5	490
	50	1772.60	N ·				490
	20	1773.32	l l		1	1	490
	10	1773.70	`				490
	20	1774.51					490
	10	1774.89	102.10076 - 158.4429	3d'(s'F)4p - 3d'(s'F)4d	Tr-eG	4-4	490
	30	1775.06	56.99308 - 113.32880	3d'(a*F)4a - 3d'(a*G)4p	'F - 'F'	3-3	490
	40	1777.27]		490
	10	1777.49	•				490
	200	1778.93	96.71404 - 152 9273	3d'(a F)4p - 3d'(a'F)4d	ילי ^י - e'H	3-3	490
	40	1779.91 1779.60					490
		11/7.77					470
	50	1780.14	117.48895 - 173.6628	3d'(s'H)4p - 3d'(s'H)4d	ተ - ሰ	6-6	490
	20	1781.45					490
	10	1781.73				j l	490
	100	1782.07					490
	250	1782.99	117.14585 - 173.2005	3d'(s'H)4p - 3d'(s'H)4d	7 - 11	5-5	490
	150	1784.43		1			490
	50	1764.72					490
	10	1785.53	96.92202 - 152.9273	3d'(a'P')4p - 3d'(a'P)4d	'D' - eH	2-3	490
	30	1780.10	37 16001 141 1 144	Taket Day Taketon or	Same _ter		490
	120	1707.50	77.3 7781 - 173.3140 76.36143 - 191.54444		1 1 - C'H	• - ?	490
	'	\$780.999	/3.33103 - 131.40700	30'(8'11)%6 - 30'(8'1')%9	n- U	>-+	

c

CR II - Continued

Muhiplet	Rel. Int.	λ (m Å)	Level: (in 10 ¹ cm ⁻¹)	Configurations	Terms	J-J	Notes	References
	40	1789.77			1			490
	40	1790.48						470
	10	1790.71			1			490
	30	1791.48						490
		1792.73			ł			490
	10	1793.60						490
	50	1793.75	56.65137 - 112.39984	3d*(a*F)4s - 3d*(a*G)4p	ፑ-ፑ	2-2		490
		1793.95			1			490
	30	1795.56	57.42340 - 113.11521	3d'(a'T)4s - 3d'(a'G)4p	+-G	4-4		470
		17:5.37]				470
		1756.37		i sakonna sakonna	1			470
	<i>A</i>	(171.32	97.30039 - 132.3273	se (a r/m - se va r/me	D-en	2-3		470
to da to Para series	50	1798.33	•					490
	20	1798.97						490
	10	1799.40			1	1	6	490
	10	1990.84			1	1		490
	10	1801.46	• · ·			1		45.
	120	1802.60	56.99308 - 112.46701	3d'(a°F)4s - 3d'(a'G)4p	ት-ተ	3-3		490
	10	1803.47						490
	10	1804.85	56.99308 - 112.39984	3d'(a'F)4s - 3d'(a'G)4p	F-F	3-2		490
	10	1807.AS				1		490
	10	1809.58				1	1	490
	30	1810.14	97.68399 - 152.9273	3d'(a'F)4p - 3d'(a'F)4d	10° - e'H	3-3		410
	30	1810.77						490
	40	1810.72						490
	40	1812.24					1	490
	10	1812.96					1	490
	20	1813.60			1	1	1	490
	80	1815.49				1		490
2	10	1816.09					l	490
	100	1817.16						490
	20	1817.79				1		490
	40	1818.28			1	1		490
	60	1819,853	57.42340 - 112.37288	3d'(a°F)4s - 3d'(a'G)4p	ዥ - ዅ	4-4		893
	20	1821.06				1		490
	60	1822.333	65.89238 - 120.76726)d'(a'G)4s - 3d'(a'H)4p	°0-°0'	3-3		893
	10	1825.28				1	ĺ	490
	10	1825.66			-		i	490
	300	1827.26		a the			1	490
	20	1829.39						490
46	200	1829.761	56.99308 - 111.64476	3d'(a'F)4s - 3d'(a'G)4p	₩ - 'G'	3-4	1	893
	-	1630.34						470
	100	1831.15				1	1	490
	10	1831.40	102.33349 - 156.92993	3d'(b'D)4s - 3d'(b'D)4p	'D - 'P"	2-1		490
	10	1832.34				1		490
	40	1832.87		1				490
	10	1833.00				1	1	490
	1	1833.915	102.40180 - 156.92993	3d'(b'D)4c - 3d'(b'D)4p	'D - 'P"	1-1		893
	10	1834.66						490
	90	1835.693	66.22509 - 120.70027	3d'(s'G)4s - 3d'(s'H)4p	6-6	5-5		893
46	250	1837.099	57.42340 - 111.85697	3d'(s'F)4s - 3d'(s'G)4p	'F-'G'	4-5		893
	30	1838.34	43.28671 - 97.68399	3d" - 3d"(#")")#p	b'F - 'D'	4-3	1	490
	25	1838.933	43.30453 - 97.68399	3d" - 3d'(s"1")4p	5'F - 'D'	2-3		893
	10	1839.72	100.10066 - 154.4571	3d'(s'F)4p - 3d'(s'F)4d	'G' - e'F	4-4		490

-	-		<u></u>	
		-	-	

.

¢.,

hiplet Rel. Int.	λ (m Ā)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J Note	s Referen
0	1840.48	43,28671 - 97,61948	3d" - 3d"(a"F)\$p	6F-'F'	4-5	490
10	1942.09			1		490
160	1943.40				1	490
180	1844.99					490
80	1846.45					490
10	1946.71					490
160	1848.56	÷				490
120	1848.995	65,76321 - 119,84647	3d" - 3d"(a"D)ie	50-'F'	2-3	893
10	1809.76					410
30	1549.99					490
10	1850.45					490
25	1853.021	74.78888 - 128.75462	3d*(x*D)4s - 3d*(x*F)4p	י ד י-סי	2-2	1993
	1853 36	· ·				-
	1854.63					
	1856 30	~		· ·		
20	1857 50				1 1	
	1858.03	Se la				400
10	1866.12	119.61280 - 173.2805	3d*(a*H)4p - 3d*(a*H)4d	Hr - 17	5-5	490
-	1044.43					
	1067.63	63 433401	Life Blds - Life Broom	1 50.30		
1 20	1007.32	43.44174 - 116.74007		1 ***		
	1071.00	63 00034 116 77302	Lake White - Lake Brades	50.00		
	10/3.10					
	1873.32	101.74621 - 133.0640	30 (4 F) 49 - 30 (4 F) 40	1	3-4	
	18/7.95					
20	1878.77	120.70027 - 173.9266	3d'(s'fi)4p - 3d'(s'fi)4d	'С' - g'Н	5-6	490
20	1878.99					470
20	1861.02	56.99308 - 110.15489	3d*(s*F)4s - 3d*(s*P)4p	F-'D'	3-4	490
20	1861.33			1		470
20	1881.73					490
45	1863.32	,				490
5	1894.30	56.65137 - 109.72279	3d'(s'F)4s - 3d'(s'F)4p	۲ ۲ - ۲ ۵	2-3	490
5	1884.49	43.32217 - 96.30631	3d" - 3d"(a"F)4p	6 F - F	3-2	490
10	1998.83					+90
10	1893.30					490
20	1994.05					490
30	1096.09					490
90	1996.406	57,42340 - 110,15489	3d'(a'F)4s - 3d'(a'P)4e	77 - 70*	4-4	893
10	1899.15				1	490
20	1899.56			1		(10)
20	1900.02					(10)
20	1902.19					#10
20	1902.59					490
•	1903.20	54 99306 - 100 51425	Id's Pie - Id's tite	19 _ 14*	3.4	
<u> </u>	1901.070	57.42340 - 100.94498	Min Plas - Interio	1 m	4-4	801
	1904 84	· · · · · · · · · · · · · · · · · · ·			• • •	
	1906.12					
	1910 31		1			
6	1911.263	56.65137 - 108.97290	3d'(s*P)4s - 3d'(s*P)4p	¹ 17 - ¹ 17*	2-2	=
-						
	1714.70					
	1713-07					
0,	1714.57	43 49199 114 49194	Advate the set	1 m 1 m m		4770
HO I	1717.32	93.92176 - 117.7/179		7-75	17-1	470
1 1		71 WE178 # 173 M7966		1 10 - 10	1 1 4 7 1	

÷.

CR III -- Continued

Muhiplet	Rel. Int.	λ (m Å)	Levels (in 10' cm ^{- 1})	Configurations	Terms	J-J	Notes	References
	40	1918.61						490
	30	1919.05					1	490
	20	1922.72	50.09117 - 102.10076	3d (a'T)4s - 3d (a'T)4s	F-F	1 4		4750
	4	1922.790	63,17630 - 115,18215	36'(a'T)4s - 36'(a'T)4p	7-15	2-2		
1	IO	1923.41		•		ł		470
	ю	1925.26						470
	40	1926.64						490
	250	1928.814	69.60150 - 121.44677	3d (a'T)4s - 3d (a'T)4p	7-5	0-1		893
	20	1930.39	56.99308 - 106.79584	3d'(a'F)4s - 3d'(a'F)4p	7-7	3-3		490
-	10	1934.581	50.41006 - 102.10076	3d (a'T)/s - 3d (a'T)/p	F-F	5-4		873
	200	1935.550	67.76187 - 121.44677	36 (a T)46 - 36 (a T)4p	7-3	1		873
1.0	•	1935.918	50.09117 - 101.74621	387,87,98 - 39 7,87 ,99	T - T	4-3		873
	30	1937.84						490
	20	1939.44			1			490
	50	1942.30		14. 1	1	1		490
	10	1942.73					1	490
	5	1944.94	70.98126 - 122.39649	3d'(a'D)4s - 3d'(a'P)4p	'D - 'P"	1-1	1	490
	10	1945.47					1	490
1	150	1949.196	105.62609 - 156.92993	3d'(b'D)% - 3d'(b'D)%	'D - 'P'	2-1	1	893
	60	1950.997	70.19101 - 121.44677	3d'(a'P)4c - 3d'(a'P)4p	7-5	2-1		893
	50	1953.26				1	1	490
	250	1954.874	70.29286 - 121.44677	3d'(s'P)4s - 3d'(s'P)4p	7-5	2-1		893
	40	1956.36	66.03001 - 117.14585	3d'(a²G)is - 3d'(a²H)ip	'G - T	4-5		490
	120	1956.899	70.34556 - 121.44677	3d (s ² P)4s - 3d (s ⁴ P)4p	'P - 'S'	1-1		893
	•	1957.439	65.89238 - 116.96909	3d'(a'G)4s - 3d'(a'D)4p	'G-'F	3-3		893
	1	1956.036	66.03001 - 117.10156	3d'(a'G)4s - 3d'(a'D)4p	`G-₩	4-4		893
	10	1959.224	69.65974 - 120.70027	3d'(a2G)4s - 3d'(a2H)4p	'G - 'G'	4-5		893
	10	1960.18						490
	10	1960.69						490
	5	1962.16	-					490
	10	1962.334	70.48701 - 121.44677	3d'(s'P)4s - 3d'(s'P)4p	7-5	0-1		893
	120	1963.119	66.03001 - 116.96909	3d'(s'G)4s - 3d'(s'D)4p	'G - 'F'	4-3		893
	90 -	1965.031	65.99238 - 116.78205	3d'(s'G)4s - 3d'(s'P)4p	G-D	3-2		893
	200	1965.541	66.22509 - 117.10158	3d'(s'G)4s - 3d'(s'D)4p	16-T	5-4		893
	10	1966.57			1			490
	20	1971.11						490
	100	1972.45						410
	70	1973.20				1	1	490
	50	1974.03	117.92309 - 168.5823	3d'(a'H)4p - 3d'(a'G)4d	<u>ተ - የዝ</u>	7-6	1	490
	60	1974.43				1		490
	10	1974.70	65.99238 - 116.53295	3d ¹ (a ² G)4s - 3d ¹ (a'P)4p	'G - 'D'	3-3	1	. 490
	100	1975.56						490
		1975.902	65.76321 - 116.37292	3d' - 3d'(a'D)4a	5'D - 'P'	2-1		893
	30	1976.07						490
	40	1978.91						490
	120	1980.083	66.03001 - 116.53295	3d'(s'G)4s - 3d'(s'F)4o	'G-'D'	4-3		893
	90	1980.225	65.89238 - 116.39166	3d'(s'G)4s - 3d'(s'D)4o	'G-'F'	3-1	:	893
~	1	1961.558	70.96126 - 121.44677	3d'(a'D)4s - 3d'(a'P)4p	'D - 'S'	1-1		893
	20	1961,82						490
	50	1985.72				1		410
	50	1986.54		1	1	1	1	410
	10	1966.82	50.09117 - 100.42301	3d'(s'F)4s - 3d'(s'F)4o	7-101	4-5		410
	10	1987.00						410
-	200	1987.620	63.06574 - 113.35704	3d'(s'Phis - 3d'(s'Phio	19 - 18*	11-1	1	893

いたのであるというでのに見たいです。

Ċ

CR III Continued

Muhipiet	Rel. Int.	λ 6m Å)	Levels (in 10 ⁴ cm ⁻¹)	Configurations	Terms	J-J	Notes	References
	10	1989.64	· · · · · · · · · · · · · · · · · · ·		1	1		490
		1991.17				1	1	490
	90	1992.556	69.65974 - 119.84647	3d*(a*G)4s - 3d*(a*D)4p	'G-17"	4-3		893
49	25	1992.716	63.17430 - 113.35704	3d'(s'T)4s - 3d'(s'T)4p	7-5	2-2		893
	10	1995.066	71.32327 - 121.44677	3d'(a'D)4s - 3d'(a'P)4p	'D-'S'	2-1	1	893
	10	1996.03						490
	20	1996.70						490
	20	1999.12				1		490
	90	1999.484	50.41006 - 100.42301	3d'(s'F)4s - 3d'(s'F)4p	¥-'G'	5-5		893

CHRQM9UN IV (Cr¹⁺), Z = 24 Ground State 10⁻20⁻20⁺30⁺30⁺30⁺(F₂₀) (21 electrons) Junization Potential [306 000] cm⁻¹; [40.1] eV

÷.

•

Muhiplet	Rel. Int.	λ (m Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J No	tes References
	1	523.808	28.6643 - 211.5740	34" - 34"(s'5)4p	# ² D - π ² 7"	3-3	219
	5	573.356	0.5556 - 174.9674	3d' - 3d'(a'D)ip	ge'F - y'D'	1-1	219
	20	573.758	0.5556 - 174,8449	3d' - 3d'(x'P)4p	gr F - y D'	3-3	219
	160	575.048	0.9456 - 174.8449	3d' - 3d'(s'P)4p	gr T - yD'	3-3	219
	20	575.175	0.2358 - 174.0948	3d' - 3d'(s' ?)1p	ga'F - y'D'	3-3	219
	20	575.850	0.0 - 173.6579	3d' - 3d'(c'P)4p	ga'F - y'D'	3-3	219
	110	576.241	0.5556 - 174.0948	3d' - 3d'(s'P)4p	ga"F - y"D"	3-3	219
	110	576.623	0 2356 - 173.6579	3d' - 3d'(a'P)4p	gaT-yD	3-3	219
	40	579.831	15.0518 - 187.5167	3d' - 3d'(a'G)4p	s'G-x'F	3-3	219
	40	582.824	15.4016 - 186.9788	3d' - 3d'(a'G)4p	s'G - x'F'	3-3	219
	70	595.093	15.4016 - 183.4426	3d' - 3d'(a'G)Ap	s ² G − z ² H [*]	3-3	219
	40	596.569	15.0518 - 182.6777	3d' - 3d'(s'G)4p	a'G - z'H"]]-]	219
	1	601.273	20.6643 - 186.9788	3d ¹ - 3d ² (s'G)4p	s'D - x'F	1-1	219
	5	606.136	19.4386 - 183.8739	3d' - 3d'(a'P)4p	a'P - y'P*	3-3	219
	20	606.713	19.4306 - 183.7187	3d' - 3 d'(s'P)1p	87-y7	3-3	219
	5	609.013	19,5192 - 183,7187	3d' - 3d'(s'P)4p	8 7 - 3 7	\$-\$	219
	110	612.643	20.6499 - 183.8739	3d' - 3d'(s'P)4p	s'D - y'T']-]	219
	110	612.643	14.1771 - 177.4050	3d' - 3d'(z'7)4p	a'P - y'P'	3-3	219
	70	613.746	14.4713 - 177.4050	3d ³ - 3d ² (a ³ P)4 p	8°P - y*P*	3-3	219
	70	614.028	14.0590 - 176.9153	3d' - 3 d'(s'P)ip	a'P - y'P*	1	219
	5	614.480	14.1771 - 176.9153	3d" - 3d"(a"P)4p	a'P - y'P']-]	219
	70	614.903	15.4016 - 178.0281	3d' - 3d'(a'G)4p	a'G - y'G'	3-3	219
	40	615.335	14.1771 - 176.6091	3d' - 3d'(s'P)4p	a'P - y'P*		219
	40	615. 598	14.4713 - 176.9153	3d' - 3d'(s'P)4p	a'P - y'P'	3-3	219
	285	616.819	21.3207 - 183.4426	3d' - 3d'(a'G)4p	$a^{2}H - z^{2}H^{*}$	$\frac{11}{2} = \frac{11}{2}$	219
4		617.047	0.2358 - 162.2996	3d' - 3d'(s'F)4p	ga'F - z'D'	1-1	219
3	20	617.94	0.2358 - 162.0633	3d' - 3d'(s'F)4p	ga'F - z'D'	3-3	P 791
3	70	618.230	0.0 - 161.7548	3d' - 3d'(s'F)4p	ga'F - z'D'	3-1	219
4	70	618.262	0.5556 - 162.2996	3d' - 3d'(a'F)4p	ga'F - z'D'	3-3	219
	160	618.766	21.0659 - 182.6777	3d' - 3d'(a'G)4p	a'H - z'H*	3-3	219
3	110	619.133	0.2558 - 161.7548	3d' - 3d'(a'F)4p	gs*F - z*D*	3-3	219
3	110	619.758	0.0 - 161.3534	3d' - 3d'(a'F)4p	ga'F - z'D'	3-3	219
3	5	620.125	0.2358 - 161.4939	3d' - 3d'(a'P)4p	ga'F - z'D'	3-3	219
3	360	620.665	0.9456 - 162.0633	3d' - 3d'(a'F)4p	gs'F - z'D'		219
3	285	621.358	0.5556 - 161.4939	3d' - 3d'(s'F)4p	gs*F - z*D*	1-3	219
4	220	622.089	0.2358 - 160.9850	3d' - 3d'(s'P)4p	ga*F - z'D*	3-3	219

Т

CR N -- Continued

· (

					a di serie se
			5 5		N N N N
88 <u>5</u> 88-	<u>5 - 5 - 5 - 5</u>		85 - 5 - 8 - 8	358858 555 <u>8</u> 58	5 854 8-8585
	654.688 655.009 655.009 654.065 657.152 659.986	604.127 602.535 662.595 662.595 664.077 664.077 664.077 664.077 661.766 661.766 661.766		620.743 600.201 600.201 600.202 601.209 601.20	
20.6643 - 171.0797 15.0518 - 165.4209 15.4016 - 165.4209 15.0518 - 164.9006 15.4016 - 164.9006 19.4106 - 167.0951	19,4386 - 172,1821 19,5192 - 172,1821 34,3628 - 186,9718 34,5957 - 186,9718 30,6999 - 172,8216 30,6643 - 172,1821	21.3207 - 178.0281 14.4713 - 171.0797 19.4386 - 174.9674 19.4386 - 174.5384 20.4443 - 174.5384 20.4443 - 174.5384 20.4443 - 174.5384 20.4443 - 174.5384 20.4443 - 174.5384 19.5192 - 172.8216 34.5557 - 187.5167	15.0518 - 172.6347 53.1420 - 210.5547 0.0 - 157.3595 0.2254 - 157.3595 14.0059 - 171.0787 21.0659 - 178.00281 14.1771 - 171.0787 21.0659 - 177.5144	0.3556 - 139.3905 0.2358 - 139.4912 32.3753 - 211.3740 0.9556 - 139.4800 0.9556 - 139.4800 0.9556 - 139.4801 0.2358 - 139.4812 0.2556 - 139.461 0.2358 - 139.4525 0.5556 - 139.46275 15.4006 - 173.3664 0.2358 - 157.5311	Lovels (in 10' cm '') 0.9855 - 100.935 0.9855 - 100.935 0.3356 - 100.900 14.0090 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579 14.1771 - 173.4579
X' - X'(6'FM X' - X'(6'FM X' - X'(6'FM X' - X'(6'FM X' - X'(6'FM	34' - 34'6'D)49 34' - 34'6'D)49 34' - 34'6'G)49 34' - 34'6'G)49 34' - 34'6'G)49 34' - 34'6'G)49	34' - 34'6'(0)40 34' - 34'(0)40 34' - 34' - 34'(0)40 34' - 34' - 34' - 34' - 34' - 34' - 34	34' - 34'6'D94 34' - 34'6'D94 34' - 34'6'F94 34' - 34'6'F94 34' - 34'6'F94 34' - 34'6'F94 34' - 34'6'F94	H - HGTM H - HGTM	Configuration H - H - H - H - H - H - H - H - H - H -
		*** *** *** *** *** *** *** *** *** **	977 - 277 977 - 277		
riter ar 10 to the to 10	auto actor actor autor actor fotor 1 1 1 1 1 1 1 1 arter tator turna tatotatatio totor				
٦			٦	ا میں انہوں کے معرفی میں میں انہوں کے معرفی میں میں میں معرفی میں میں انہوں ہے۔ انہ انہ انہ انہ انہ انہ انہ ان روز	Ĩ
		***** ****	22 22 22 22 22 22 22 22 22 22 22 22 22	*****	219 219 219 219 219 219 219 219 219 219

,

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$

		· · · · ·	
	-		

.

lukipict	Rel. Int.	λ (in Å)	Levels (in 10 ⁹ cm ⁻¹)	Configurations	Terms	1-1	lotes	Referenc
	20	673.964	19.5192 - 167.8951	3d' - 3d'(c'T)4p	a'P-2'5'	1-1		219
	5	675.130	14.1771 - 162.2996	3d' - 3d'(s'F)9p	a P-2D	11-11	i	219
	1	67ú.457	14.4713 - 162.2996	3d' - 3d'(s'F)4p	a'P - 2'D'			219
5	20	677.070	14.9590 - 161.7548	3d' - 3d'(a'F)4p	aT-2D	1		219
5	160	677.552	14.4713 - 162.0633	3d' - 3d'(s'F)4p	a P-2D	1		219
5	110	678.808	14.1771 - 161.4939	3d' - 3d'(s'F)4p	a'P-z'D*]-]		219
5	-30	678.904	14.0590 - 161.3534	3d' - 3d'(s'F)4p	a'P-2'D'	1-1		219
	5	679.141	20.6499 - 167.8951	3d' - 3d'(a'P)4p	s'D - 2'5'	1-1		219
5	1	679.455	14.1771 - 161.3534	3d' - 3d'(z'F)4p	1 1 P-2 D	1-1		219
5	40	680.170	14.4713 - 161.4939	3d' - 3d'(z'F)4p	aT-2D	1-1		219
	5	680.619	14.0590 - 160.9850	3d' - 3d'(a'F)4p	a P-rD			219
	160	680.833	34.3628 - 181.2415	3d' - 3d'(x'?)1p	sF-sD*	1-1		219
	20	681.166	14.1771 - 160.9850	3d" - 3d"(x"F)4p	a*P-z*D*	3-3		219
	110	681.568	34.5557 - 181.2763	3d' - 3d'(c'i')4p	オデーオン			219
	20	681.841	15.4046 - 162.0633	3d' - 3d'(c'F)4p	a'G-rD	1-1		219
	40	662.760	14.4713 - 160.9358	3d' - 3d'(s'F)4p	17-2F	1		219
	20	686.338	14.1771 - 160.3099	3d' - 3d'(s'F)4p	ST-27]-]		219
•	285	667.125	15.4016 - 160.9358	3d' - 3d'(s'F)1p	s ² G-z∓	1-1		219
6	220	688.463	15.0518 - 160.3039	3d' - 3d'(s'F)4p	s'G-s'F	3-3		219
,	5	692.705	21.0659 - 165.4299	3d' - 3 d'(s'F)4p	a'H-z'G*	1 1-1		219
•	360	693.924	21.3207 - 165.4299	3d' - 3d'(s'F)4p	s'H-z'G*	14-31		219
9	285	695.208	21.0659 - 164.9086	3d' - 3d'(a'F)4p	a'H - z'G*	1-1		219
	110	696.063	34.3628 - 178.0281	3d' - 3d'(s'G)4p	s ² F - y ² G*	1-1		219
	110	697.554	34.5557 - 177.9144	3d' - 3d'(s'G)4p	s'F - y'G'	3-3		219
	110	699.981	19,4386 - 162.2996	3d' - 3d'(s'F)4p	ar - rD	1		219
	40	702.667	19.4386 - 161.7548	3d' - 3d'(s'F)4p	17-1D	11-1		219
	40	703.060	19.5192 - 161.7548	3d' - 3d'(s'F)4p	s'P - 2'D'	1 4-1		219
5	160	705.975	20.6499 - 162.2996	3d' - 3d'(s'F)4p	BD-2D	1-1		219
	20	706.042	20.6643 - 162.2996	34' - 34'(s'F)4p	s'D - z'D'	1-1		219
	70	706.481	19,4386 - 160,9850	3d' - 3d'(s'F)4p	a'P - z'D'	1-1		219
	70	706.885	19.5192 - 160.9850	3d ¹ - 3d ¹ (a'F)ip	a P - 2 D*	1		219
	40	709.900	19.4386 - 160.3039	3d' - 3d'(s'F)4p	s7-27	1 1-1		219
	5	709.992	20.6499 - 161.4939	3d' - 3d'(s'F)4e	D-20*	1-1		219
	5	710.077	20.6643 - 161.4939	3d' - 3d'(s'F)4p	sD-rD	1-1		219
	5	712.576	20.6499 - 160.9850	3d' - 3d'(s'F)4p	D-TD	11-11		219
	220	712.901	20.6643 - 160.9356	3d' - 3d'(a'F)4p	8°D - 2°F*	1-1		219
	40	716.128	20.6643 - 160.3039	3d ¹ - 3d ¹ (e'F)4o	a D - str	1 2 - 2		219
	1	719.420	34.3628 - 173.3644	3d ¹ - 3d ² (a ¹ D)4e		i_i		219
	1	724.218	34.5557 - 172.6347	3d' - 3d'(a'D)4a		12-11		219
	0	743.271	52.9753 - 187.5167	3d' - 3d'(a'C)4a	PD-rP	11-11		219
	70	744.190	53.1420 - 187.5167	34' - 34'(a'G)4a	VD-rP	12-11		219
	110	745.248	52.9753 - 186.9788	3d" - 3d"(a'G)4p	VD - rP	i-i		219
	110	763.947	52,9753 - 181,8730	34° - 34°(s'Phie	10 - Ja	12-2		219
	1	764.923	53,1420 - 183,8730	34 ¹ - 34 ¹ (+ ¹ 8)4+		11.11		219
	70	765.833	53.1420 - 183.7187	3d ¹ - 3d ² (a ¹ Phin		11.1		219
	40	779.627	52.9753 - 181.2415	34' - 34'(a'P)4=	PD-PD	11.1		219
	5	780.428	53.1420 - 181.2763	36' - 3d'(a'Phin	VD-rD	11-11		219
	20	790.058	34.3628 - 160.9356	3d' - 3d'(s'F)4p	#F - 19	1-1		219
	40	795.241	34,5557 - 140,3030	<u>14</u>) - <u>14</u> 1(2) 8 142	محادر بجلو	12.2		210
	10	\$16.92						410
	1	819.732	52.9753 - 174.9674	3d' - 3d'(a'D)4p	b'D - y'D'	3-3		219
	10	\$20.\$\$	53 1420 - 174.9674	3d' - 3d'(s'D)4p	VD - y'D'	3-3		490
	1	914.714	52 9753 - 162 2996	3d' - 3d'(s'P)4p	VD-rD	3-31		219
	1 1		43 0743 140 0348	محصل ملم و ام و	مسطى خطابة	1 5 21		1

. .

.

-

CR IV - Continued

Multiplet	Rel. Int.	À (= Å)	Levels (in 10 [°] cm ⁻¹)	Configurations	Terms	J-J	Notes	References
	0	933.172	53.1420 - 160.3039	3d' - 3 d'(s'F)4p	b'D-z'F'	1-1		219
	30	1002.39			l l	1		490
	30	1090.97					ł	490
	10	1092.23						490
	10	1076.06			i			490
	ю	1111.17				1		490
						{		
	Ю	1227.43					1	490
	100	1315.00		•	ł			490
	125	1315.69	157.3995 - 233.365	3d*(s'F)4p - 3d*(s'F)4d	z'G' - c'H	1 <u>1</u> - <u>1</u>	P	791
	150	1319.49	157.9311 - 233.718	3d'(s'FMp - 3d'(s'F)4d	z'G' - c'H	1-1	P	791
	200	1324.85	158.6275 - 234.1 7 8	3d*(x'F)4p - 3d*(x'F)4d	z'G* - e'H	1 3-4	P	791
	50	1325.66	157.9311 - 233.365	3d*(a*F)4p - 3d*(a*F)4d	z'G' - e'H	<u> </u> -]	₽	791
-	-		158 6775 - 313 718	Lair-The- Lair-Black	Arr. 184			101
	200	1337.73	150 A000 _ 124 400 `		ACT - ER	li i		771
	50	1336.67	157.7769 ~ 1 31.307 168.6776 _ 733.346		ACT - CH	17-7	5	771
		11784	158.4490 _ 234.349		ACT - CH			771
¢		1346.44	100 4000 - 171, FM		Are and	17-7		771
	5	134144	137,4489 - 233,114	na fa Link - na fa Ling	ru-en	17-1		
		1.548.44						470
	•	1351.63			l			490
	10	1359.93			1	1		490
	10	1364.49	104.6286 - 177.9144	3d'(a'F)4s - 3d'(a'G)4o	VF-yG	I-I	1	490
	150	1367.39						490
	20	1369.58				1		490
	20	1373.46	105.1041 - 177.9144	3d"(a'F)4s - 3d"(a'G)4p	6'F - y'G*	3-3		490
	200	1375.56						410
	10	1363.24			-	1	1	410
	20	1386.49					ļ	450
	30	1395.83			1			410
	10	1399.50						410
	220	1401.822	109.9402 - 181.2763	3d'(a'F)46 - 3d'(a'P)4p	b'F - x'D'	3-3		219
	20	1410 17						
		1417.74				1		
	450	IAITAIR	110 6806 - 181 2415	Lair-Title - Lair-Title	STE	1 2 . 3	1	210
	100	1471 14	10.0.00 - 101.2415	30 (2 F)40 - 30 (2 F)4p		1 2-2		400
	100	1474.47				1	1	470
	1	1476 54			I	l	ļ	
						1		
	10	1429.41						490
	10	1447.03	104.2571 - 173.3644	Jd'(s'F)4s - Jd'(s'D)4p	6°F - y²F*	3-3	ľ	490
	20	1461.04				1.		490
	30	1465.00	105.1041 - 173.3644	3d'(s'F)4a - 3d'(s'D)4p	b*F - y*F*]-]	Q	490
	20	1466.14					!	490
	70	1471.151	109.9402 - 177.9144	3d'(s'F)4s - 3d'(s'G)4p	b'F - y'G'	3-3		219
	ю	1475.10	Ň					410
	20	1482.07				1		490
	20	1482.36	54			I	l	490
	220	1485.052	110.6904 - 178.0281	3d'(s'F)4s - 3d'(s'G)4o	₩F - y'G'	1-1		219
	10	1500.46				1.	1	490
	120	1508.89				Ì		490
	ю	1509.85						490
	20	1533.42				1		410
	ю	1551.20				1		410
	ю	1553.09			1	1		410
	5	1558.745	110.6904 - 174.8449	Mia'FMs - Mia'FMa	WF-VIY	1 4-1		219
	s	1576.691	109.9402 - 173.3644	3dile'Fhis - 3dile'Dhin	100.00	11.1		219
	1					1 1-1	l I	

1.12

CR IV -- Continued

÷.

-

Subiples	Rel. Int.	λ (m Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	3-3	Notes	Referen
	5	1594.739	118.5760 - 181.2763	3d'(a'D)% - 3d'(a'P)%	e'D - r'D'	1-1		219
1	285	1595.039	109.9462 - 172.6347	3d'ún'F)4s - 3d'ún'D)4p	VF-yF	1 2-2		219
1	380	1595.558	110,6904 - 173,3644	3d'(a'F)4s - 3d'(a'D)4p	VF-yF	ξ − ξ		219
	60	1595.622	118.5780 - 181.2415	3d'is"DMs - 3d'is"PMp	c'D-r'D'	1 3-3	P	219
		1998.723	118.7265 - 181.2763	3d'(s'D)4s - 3d'(s'P)4p	c'D-r'D'	1		219
	5	1599.619	118.7265 - 181.2415	3d"(a"D)4a - 3d"(a"P)4p	c'D-x'D'	1		219
	20	1613.14	119.2506 - 181.2415	3d'(s'F)4s - 3d'(s'F)4p	VP-rD*	1-1		470
- 1	40	1657.71	105.1041 - 165.4289	3d'(s'F)4s - 3d'(s'F)4p	VF-rG	<u>]-]</u>	1	490
	450	1658.083	127.2063 - 187.5167	3d'(s'G)4s - 3d'(s'G)4p	VG-zF	1		219
	120	1658.93	104.6286 - 164.9086	3d'(z*F)4s - 3d'(z*F)4p	VF-z'G'	1 1-1		490
1	180	1666.66	173.3644 - 233.365	3d'(a'D)4p - 3d'(a'F)4d	yF - cH	I-I		490
	550	1672.660	127.1939 - 186.9788	3d'(s'G)k - 3d'(s'G)kp	VG-xF	1		219
	160	1673.021	127.2863 - 186.9788	3d'(s'G)4s - 3d'(s'G)4p	₩G - rF	3-3		219
	110	1681.673	124.4092 - 183.8739	3d'(a'P)4s - 3d'(a'P)4p	6°P - y'P*	1 1-1		219
1	40	1685.02						490
	360	1686.072	124,4092 - 183.7187	3d'(s'F)ts - 3d'(s'F)tp	b'P-y'P*	1 3-5		219
	450	1690.861	124.7329 - 183.8739	3d'(s'P)is - 3d'(s'P)ip	UP-yP	1 1-1		219
	160	1695.328	124.7329 - 183.7187	3d'(s'P)4s - 3d'(s'P)4p	67-y7*	3-5		219
	30	1698.55	174.8449 - 233.718	3d'(a'F)1p - 3d'(a'F)1d	yD'-eH	3-3		490
i	110	1699.677	118.5700 - 177.4050	3d"(s"D)4s - 3d"(s"P)4p	c'D-y'T	1 3-3	i	219
1	20	1704.203	118.7265 - 177.4050	3d'(s'D)4s - 3d'(s'P)4p	cD-yT	1 3-3		219
1	10	1704.48			1			490
	50	1709.89			1	1		470
	50	1713.69						490
	30	1715.04						490
1	110	1718.533	118.7265 - 176.9153	3d'(s'D)4s - 3d'(s'P)4p	c'D-y'T'	3-3		219
	450	1719.560	119.2506 - 177.4050	3d'(2'F)4s - 3d'(2'F)4p	6°P - y'P*	3-3	P	219
	70	1722.36	174.8449 - 232.905	3d'(a' F)1 p - 3d'(a'F)1d	y'D' - e'G	1 3-3		490
14	160	1722.857	104.2571 - 162.2996	3d'(s'F)4s - 3d'(s'F)4p	VF-rD	1-1		219
	285	1725.257	118.7265 - 176.6891	3d'(s'D)46 - 3d'(s'P)4p	c*D - y¶*			219
	20	1726.00	174.9674 - 232.905	3d'(s'D)4p - 3d'(s'F)4d	yD - eG	3-3		490
1	360	1727.067	119.0133 - 176.9153	3d'(s'P)4s - 3d'(s'P)4p	6 P - y'P*	1-1		219
13	70	1729.919	104.2571 - 162.0633	3d'(s'F)4s - 3d'(s'F)4p	VF-zD'	3-3		219
13	220	1731.280	103.9947 - 161.7542	3d'(s'F)46 - 3d'(s'F)4p	b'F - z'D'	3-3		219
1	450	1732.043	119.6700 - 177.4050	3d'(s'P)46 - 3d'(s'P)4p	67 - y7*	3-3		219
ł	220	1733.832	119.0133 - 176.6091	3d'(s'P)46 - 3d'(s'P)4p	¥7 - y7*	\$-1		219
14	450	1733.979	104.6286 - 162.2996	3d'(a'F)4s - 3d'(a'F)4p	VF - r'D'	3-3		219
	285	1734.156	119.2506 - 176.9153	3d'(s'P)4+ - 3d'(s'P)4p	67 - y'P'	1		219
1	60	1734.68						410
13	450	1739.193	104.2571 - 161.7548	3d'(s'F)4s - 3d'(s'F)4p	64F - z*D*	3-3		219
	160	1740.988	119.2506 - 176.6091	3d'(s'P)4s - 3d'(s'P)4p	6°P - y'P'	1-1		219
13	160	1741.100	104.6256 - 162.0633	3d'(a'F)46 - 3d'(a'F)4p	6°F - z'D'	1-1		219
	30	1741.93						#10
13	720	1743.421	103.9947 - 161.3534	3d'(s'F)46 - 3d'(s'F)4p	67 - z'D'	1		219
	220	1746.875	119.6700 - 176.9153	3d'(s'P)4s - 3d'(s'P)4p	bTP - y'TP	1 3-3	1	219
13	285	1747.132	104.2571 - 161.4939	3d'(s'F)46 - 3d'(s'F)4p	677 - z*D*	1 3-3	1	219
14	20 110	1754.52	103.9967 - 160.9850	3d'(s'F)4t - 3d'(s'F)4n	WF - r'D'	1 4-1	-	490 219
							[
B	550 50	1755.643	105.1041 - 162.0633	3d'(s'F)4s - 3d'(s'F)4p	677 - z*D*	1 3-3		219
	250	1758.486	124.4092 - 181.2763	3di(s'P)is - 3di(s'P)de	bip - sitte	1 1-1	P	219
13	400	1758.542	104.6286 - 161.4939	Id'(s'F)is - It's'F)is	MF TY			219
	10	1762.52				1 1-1	1	490
i (

CR IV - Continued

Multiplet Rel. Int.	λ (im Å)	Levels (in 10 ^t cm ⁻¹)	Configurations	Terms	J - J Notes	References
360	1764.324	104.2571 - 160.9358	3d'(a'F)4s - 3d'(a'F)4p	6'F - z'F'		219
110	1768.549	124.7329 - 181.2763	3d (a'P)4s - 3d (a'P)4p	Ь [:] Р - я [:] D'	1-1	219
450	1769.635	124 7329 - 181.2415	3d'(a'P)4s - 3d'(a'P)4p	δ ² Ρ − 1 ² D*	<u>i-</u> i	219
360	1773.131	118.5700 - 174.9674	3d (a D)4s - 3d (a D)4p	c'D - y'D'	<u>+-</u> +	219
30	1775.909	103.9947 - 160.3039	3d ta FHs - 3d ta FHp	6'F - z'F'	- P	219
10	1775 972	104.6286 - 160.9358	3d'(a'F)4s - 3d'(a'F)4p	b ' F - z [‡] F'	- P	219
20	1776.992	118.5700 - 174 8449	3d'(a'D)4s - 3d'(a'P)4p	c ² D - y*D*	<u> -</u>]	219
450	1777.821	127 1939 - 183 4426	3d (a G)4s - 3d (a G)4p	b'G - z'H'	$\frac{1}{2} = \frac{1}{2}$	219
110	1778 053	118 7265 - 174.9674	3d ta D)4s - 3d ta D)4p	c D - y D'	÷	219
40	1784 223	104 2571 - 160 3039	3d ta FMs - 3d ta FMp	b'F - z ' F '	- Р	219
220	1791.094	105 1041 - 160.9358	3d (a'FMs - 3d (a'FMo	b"F - z F		219
285	1791.729	118 7265 - 174 5384	3d (a D)4s - 3d (a D)4p	c D - y D	<u>1</u> - <u>1</u>	219
40	1794 790	119.2506 - 174.9674	3d ¹ (a`P)4s - 3d ¹ (a'D)4o	6*P - v ² D*	÷-1	219
70	1796 129	104 6286 - 160 3039	3d (a'F)4s - 3d la'F)4n	h'E - 7'E'		219
טי. חירי	1900 991	119 0133 - 174 5384	Mira PMs - Mira Date	h'P - v ⁻ D*	1_1	219
	1807 340	177 1939 - 187 6777	MilaiGille - MilaiGille	h'G - +'H'	2 = 2	716
470	1807 771	177 2061 - 187 4777	Id to Great Id to Great	50-2H		41 <i>7</i> 710
110	1805 410	119.6700 - 174 9674	3d'(a'P)4s - 3d'(a'D)4p	6'P - y ² D'		219
110	1808 771	119 7506 - 174 5384	Linible Likeling	NB	د_د	210
110	1000 /22	117 2300 - 179 3309 104 6386 - 160 8431	242(4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	or-yD	÷.	217
12 900	1810 444	104 0280 - 129 8021	So ta Pies - So ta Piep	D'F ZF	-	214
/50	1812413	119 6/00 - 1/4 8449	SO (A PMS - SO (A PMP	6"P - y'U		219
12 560	1815.100	104 2571 - 159.3505	3d (a'F)4s - 3d (a'F)4p	67 - 27	3-3	219
10 16 870	1818 90	109 9402 - 164 9086	3d ² (a'F)4s - 3d ² (a'F)4o	b [°] F - z ⁱ G'	ł.:	49 0 219
70	1820 454	118 7265 - 173 6579	3d (a DHs - 3d (a P)4p	c [:] D - y ' D'	$\frac{1}{2} = \frac{1}{2}$	219
12 220	1821 621	103 9947 - 158 8912	3d (a'FMs - 3d (a'F)4p	6'F - 1'F'	÷	219
20	1822.49					490
45 0	1823 341	119.2506 - 174.0948	3d'(a'P)4s - 3d'(a'P)4p	ь'Р - y'D'		219
450	1824 995	118 5700 - 173.3644	3d'(a D)4s - 3d'(a D)4p	c D - y F	-	219
12 750	1826 211	105 1041 - 159 8621	3d'(a'F)4s - 3d'(a'F)4p	6'F - 7'F'	2 - 2	219
I6 650	1826.863	110 6904 - 165 4289	3d'(a'F)4s - 3d'(a'F)4p	bF zG	-	219
12 650	1827 408	104.6286 - 159 3505	3d (a'F)4s - 3d (a'F)4p	6'F - z'F'	-	219
220	1830.010	119 0133 - 173 6579	3d (a'P)4s - 3d (a'P)4p	ь'Р - у'D'		219
12 450	1830 350	104 2571 - 158 8912	3d (a'F)4s - 3d (a'F)4o	6'F - z'F'	4_4	219
10	1833.66		·		•••	490
12 450	1833 812	103 9947 - 158 5259	3d'(a'F)4s - 3d'(a'F)4p	6'F - z'F'	1 - 1 1 - 1	219
1000	1837 400	119.6700 - 174.0948	3d (a P)4s - 3d (a P)4p	6'Ρ - v'D'	÷.: р	219
450	1837 642	119 0133 - 173 4306	3d (a P)4s - 3d (a P)4o	h'P - y'D'	-	219
220	1837 991	119 2506 - 173 6579	3d (a P)4s - 3d (a P)4o	h'P - v'D'		219
11 1000	1840 139	105 1041 - 159 4480	3d (a'F)44 - 3d (a'F)40	5'F 2'G'	1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	219
12 220	1842 686	104 2571 158 5259	3d (a F)4s - 3d (a F)4o	b'F - 7'F'		219
12 220	1842 897	104 6286 158 8912	3d (a F)4x - 3d (a F)4p	b'F 7'F'	-	219
12 220	1843 448	105 1061 - 159 3505	3d°(a'F)ds - 3d°(a F)den	6'F - 2'F'	1	219
40	1844 407	110.6994 164.9086	id (a F)4s - id - F)4n	h F - z G		219
70	1845 705	119 2506 - 171 4306	Id (a'P) A - Id (a'P) An	h'P		219
285	1848 593	118 7265 172 8716	Solita Date - Miter Prop	്വംബം		210
140	1849 632	(18 5700 - 172 6347	dia Dite - Mia Dite	D VF		219
11 1000	1851 890	104 6286 158 6275	3d (a F)4s - 3d (a F)4p	b'F z'G'	,	219
770	1857 277	119.6700 171.6579	Id to Pute Late Dute	NP	1	110
784	1855.017	118 7765 177 6347	auterren auterren tatta Dute tattattata			110
30	1858 449	119 01 33 . 177 8216	ina (arizzen ina) (arizzen) 1a((a)Dala ita(an)Data	- τ <i>ι γ</i> ια Γεία - βαι		217
11 270		104 257E 157 G11	ou (a r pro − ou (a traje) 14 (a 16)4a − 14(a 16)4a	0 Y 7 Y		110
140	1865 744	110 47 00 - 177 1971	τατατρογία τρογιατροβρ Σατατζωμα Σαθλατογία			217
(נסו, הר	1844 484	110 3604 173 4314	10 ta 1204 - 30 ta 1204p	C 17 7 P		219
20		119/2000 172/8210	30'(a 12)44 - 30 (a 12)4p	ሰግ /ዎ	• •	219

|--|

Multiplet	Rei Int	A., (m Å)	Levels (in 10° cm)	Configurations	Terms	J - J	Notes	Reference
	750	1868 344	105 1041 - 158 6275	3di(a'F)4s - 3di(a'F)4p	b'F - z'G'	1-1	• •	219
11	870	1873 892	103 9947 - 157 3595	3d (a'F)4s - 3d (a'F)4p	b 'F - 2'G'			219
11	750	1876 083	104 6286 - 157 9311	3d (a'F)4s - 3d (a'F)4p	b'F - z'G'			219
	I	1880 \$11	119 0133 - 172 1821	3d (a'P)4s - 3d (a'D)4p	6'P - z'P'			219
11	650	1883 156	104.2571 - 157.3595	3d (a'F)4s - 3d (a'F)4p	b'F - z'G'			219
E.	40	1892 960	105 1041 - 157 9311	3di(a'F)4s - 3di(a'F)4p	b'F - 2'G'	1-1		219
11	20	1896 419	104 6286 - 157 3595	3d*(a*F)4s - 3d*(a*F)4p	b"F - z'G"	i-1		219
	400	1904 323	119 6700 - 172 1821	3d (a'P)4s - 3d (a'D)4p	b*P - z*P*	1-1	P	219
	350	1904 410	118 5700 - 171 0797	3d (a'D)4s - 3d (a'P)4p	c ² D - z*S*		P	219
	50	1909 88	109 9402 - 162 2996	3d (a'F)4s - 3d (a'F)4p	b°F - z°D*		P	47
	70	1910 107	118 7265 - 171 0797	3d (a'D)4s - 3d (a'P)4p	c [:] D - z*S*	- <u>i - i</u>		219
	5	1918 542	109 9402 - 162 0633	3d (a'F)4s - 3d (a'F)4p	b'F - z'D'	-		219
	160	1920 620	119 0133 - 171 0797	3d*(a'P)4s - 3d*(a'P)4p	b*P - z*S*	<u>+</u> - - - -		219
	220	1929 422	119 2506 - 171 0797	3d (a P)4s - 3d (a P)4p	6*P - z*S*	- <u>i</u> -i		219
	285	1929 953	109 9402 - 161 7548	3d=(a'F)4s - 3d=(a'F)4p	b'F - z*D*			219
	20	1934 13		•		•••		490
	750	1937 630	110 6904 - 162 2996	3d (a'F)4s - 3d (a'F)4p	bF-rD			219
	110	1939 723	109 9402 - 161 4939	3d (a'F)4s - 3d (a'F)4p	b ² F - z*D*	-		219
	220	1945 160	119 6700 - 171 0797	3d (a'PHs - 3d (a'PHp	b"P - z"S"	1-1		219
	360	1946 549	110 6904 - 162 0633	3d (a F)4s - 3d (a F)4p	b [:] F - 2*D*			219
	20	1948 28						490
	550	1959 060	109 9402 - 160 9850	3d (a F)4s - 3d (a F)4p	b'F - z'D*			219
15	650	1960 950	109 9402 - 160 9358	3d (a'F)4s - 3d (a'F)4p	b'F - z'F'	-		219
	870	1967 181	127 1939 - 178 0281	3d (a'G) is - 3d (a'G) Ap	b'G - y'G'	1-1		219
	360	1968 364	110 6904 - 161 4939	3d (a F)4s - 3d (a F)4p	b'F - z'D*			219
	70	1971 583	127 1939 - 177 9144	3d (a G)4s - 3d (a G)4p	b'G - y'G*	-		219
	650	1972 075	127 2063 - 177 9144	3d (a G)4s - 3d (a G)4o	b'G - y'G'	-		219
15	450	1985 552	109 9402 - 160 3039	3d (a F)4s - 3d (a F)4p	bF-zF			219
15	650	1990 247	110 6904 - 160 9358	3d (a'F)4s - 3d (a'F)4p	b'F - z'F'			219
	45 0	1990 664	124 7329 - 174 9674	3d (a'P)4s - 3d (a D)4p	b'P - y'D'	-	P	219
	20	1997 35						490

.

-

•--

.

. .

.

Multiplet	Rel Int		Levels (in 10° cm -)	Configurations	Terms	J / J Notes	References
	20	433 119	5082 - 231 3929	3d - 3d4p	s'F - 'F'	3-4	- 218
	5	434 180	0 - 230 3163	3d - 3d4p	g F = 'F'	2 - 3	218
	220	434 306	1 1417 - 231 3929	3d - 3d4p	g'F - 'F'	4 - 4	218
	110	435 143	5082 - 230 3163	3d - 3d4p	1'F - 'F'	3 - 3	218
	110	435 636	0 - 229 5517	3d - 3d4p	g'F - 'F'	2 - 2	218
	70	436 351	1 1417 - 230 3163	3d - 3d4p	g'F = 'F'	4 - 3 .	218
	70	437 420	5082 - 229 1208	3d ² 3d4o	g'F - 'D'	3 - 3	218
	40	437 655	0 - 228 4891	34 3440	s'F D'	2 - 2	218
	100	438 593	0 - 228 0018	3d 3d4o	g'F - 'D'	2-1 P	218
	130	438 633	5082 - 228 4891	3d ² - 3d4o	s'F - 'D'	3-2. P	218
	220	438 637	1 1417 - 229 1208	3d ² - 3d4o	₽'F - 'D'	4-3 P	218
	110	441 056	13 1880 - 239 9175	3d² - 3d4p	'D - 'P'	2 - 1	218

CR V - Continued

Mumplet Rel. Int.	λ (m Å)	Levels (m 10 [°] cm ⁻¹)	Configurations	Terms	J - J Notes	References
20	442.243	0 226.1198	3d² - 3d4p	g'F - D'	2 - 2	218
20	445 751	13.1880 - 237.5295	3d - 3d4p	D - F	2 - 3	218
5	446.672	16.0410 - 239.9175	3d ² - 3d4p	'Ρ - 'Ρ'	2 - 1	218
5	451 141	13.1880 - 234.8464	3d - 3d4p	D - 'P'	2 - 2	218
5	451.607	13 1680 - 234.6184	3d - 3d4p	D - 'P'	2 - 1	218
110	456 272	15 6766 - 234 5464	3d - 3d4p	° P - ° P *	1 - 2	218
70	456 357	15 4 JIE - 734 6184	ld - iden	`P_ 'P'	0 - 1	718
70 70	456.637	15 6766 - 734 6685	14 . 144n	'P P'	1-0	210
.0	456 741	15 6766 - 734 6184	Mi - Man	19.19*	1-1	218
ING	457 018	10.0410 - 234 MAN	Min Man	·P - 'P'	2.7	718
,00 70	457 504		34 - 344a	1 - 1 • - 1	7 - 1	210
450	464.015	22 0192 - 237 5295	3d ² - 3d4p	G-F	4 - 3	218
			· · · · ·	.		• •
110	409.311	16 0410 - 229 1208	3d' - 3d4p	P - D	2 - 3	218
220	409.034	L3 1880 - 226.1198	3d - 3d4p	D - D.	2 - 2	218
70	469 893	15 6766 - 228.4891	3d - 3d4p	1 P - 1 D *	1 - 2	218
40	470.567	15 4918 - 228 0018	3d - 3d4p	19 - 10°	0-1	218
20	470 697	16.0410 - 228.4891	3d - 3d4p	"P - "D"	2 - 2	218
5	470 976	15 6766 - 228 0018	3d' - 3d4p	'P - 'D*	1 - 1	218
160	529.742	51 1464 - 239,9175	3d ² - 3d4p	'S - [∞] ₽*	0 - 1	218
110	754.521	226 1198 - 358 6538	3d4p - 3d5s	'D' - 'D	2 - 2	218
1	764 151	226.1198 - 356.9813	3d4p - 3d5s	D' - 'D	2 - 2	218
1	768 251	228.4891 - 358.6538	3d4p - 3d5s	'D' - 'D	2 - 2	218
I	774.079	228.4891 - 357.6759	3d4p - 3d5s	' D' - ' D	2 - 3	218
I	775 308	228.0018 - 356.9813	3d4p - 3d5s	'D' - 'D	1 - 2	218
۲.	776 743	778 0018 - 356 7448	ldan - ldsu	¹ D* - ¹ D	1 - 1	718
INO	777 873	779 1208 - 357 6759	kido - 3d51	́О' - 'О	3-3	218
40	778 253	228 4891 - 356 9813	1d40 - 1d51	'D' - 'D	2 - 2	218
1	779 209	230 3163 - 358 6538	liden - Julis	'E' - 'D	3 - 2	218
40	786 210	229 5517 - 356 7448	1d40 - 3d5s	'F' - 'D	2 - 1	218
110	789.492	230 3163 - 356 9813	3d4p - 3d5s	'F' - 'D	3 - 2	218
140	791 873	111 1070 167 4760	1440 145	۲ ۲۰ 'D	4 - 1	718
.00	171 8/2 814 148	231 3727 - 337.0737	3440 345	r - D 'P' 'D	4-J J.J	218
	814 148	234.8404 - 337.0734	304p - 3035	r - D	2-3	218
,	81/240	239.0189 - 330.9813	304p - 3035	P - D	1-2	218
1	818.803	234.0184 - 336./448	304p - 3035	r - D	1-1	218
1 100	817 133	234.0083 - 330.7448	504p - 5055 144a 145a	D	3.2	- 218
	017 000	2)/ 7277 - 336 0330	X447 - X675			410
1	832 309	237 5295 - 357.6759	3d4p - 3d5s	'F' - 'D	3 - 3	218
1	837 157	237 5295 - 356 9813	3d4p - 3d5s	'F' - 'D	3 - 2	218
20	842 195	239 9175 - 358 6538	3d4p - 3d5s	'P' - 'D	1 - 2	218
220	968 703	226 1198 - 329 3503	3d4p - 3d4d	'D' - 'D	2 - 2	218
1	978 064	228 0018 - 330 2451	3d4p - 3d4d	'D' - 'P	1 - 1	218
1	979 590	228 0018 - 330.0848	3d4p - 3d4d	'D' - 'P	! - 0	218
1	979 934	228 4891 - 330 5368	3d4p - 3d4d	'D' - 'P	2 - 2	218
70	982 736	228 4891 - 330 2451	3d4p - 3d4d	'D' - 'P	2 - 1	218
110	986 035	229 1208 - 330 5368	3d4p - 3d4d	'D' - 'P	3 - 2	218
1	997 709	229 1208 - 329 3503	3d4p - 3d4d	'D' - 'D	3 - 2	218
1	1002 024	229 5517 - 329 3503	3d4p - 3d4d	'F' - 'D	2 - 2	218
70	1029 842	228 0018 - 325 1041	3d4p - 3d4d	'D' ~ 'F	1 - 2	218
110	1011-105	778 4891 - 176 4776	Man - Man	'D' - 'F	1.1	219
	1033 457	279 1708 . 175 8847	Iden - Ided	י - ים 'ה	1.4	218
• • • •	1035 017	778 4891 - 174 IA41	Liden - Lided	່ກ:ີ=	2 - 7	218
ر مد	1043 444	334 6184 - 330 6140	lden lded	ייים: פו יים:	• = • 1 - 7	718
	1045 044	134 8444 - 134 6144	1440 - 1444	יים אם	2.3	310
100	1045 711	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2040 - 2040 144- 1444	27 - 27 104 10	4 - 4 1 - 1	310
5	1045 733	234 6184 - 330 2451	Ja4p - Ja4a	P P	1 - 1	218

CR V - Continue	d
-----------------	---

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10 ³ cm ⁻³)	Configurations	Terms	J - J Notes	References
20	1046.294	234.6685 - 330.2451	3d4p - 3d4d	'P* - 'P	0 - 1	218
40	1046.364	230.3163 - 325.8842	3d4p - 3d4d	'F* - 'F	3 – 4	218
20	1046.542	229.5517 - 325.1041	3d4p - 3d4d	'F" - 'F	2 - 2	218
5	1047.494	234.6184 - 330.0848	3d4p - 3d4d	'P* – 'P	1 - 0	218
20	1048.236	234.8464 - 330.2451	3d4p - 3d4d	'P" - 'P	2 - 1	218
70	1050.901	230.3163 - 325.4725	3d4p - 3d4d	' F * − 'F	3 - 3	218
1	1054.991	230.3163 - 325.1041	3d4p - 3d4d	`F* − ` F	3 - 2	218
110	1058.298	231.3929 - 325.8842	3d4p - 3d4d	'F' - 'F	4-4	218
285	1060.551	237.5295 - 331.8112	3d4p - 3d4d	'F' - 'G	3-4	218
1	1062.933	231.3929 - 325.4725	3d4p 3d4d	' F* – ' F	.: 4−3 ·	218
20	1073.367	226.1198 - 319.2840	3d4p - 3d4d	'D' - 'P	2 - 1	218
5	1089.079	237.5295 - 329.3503	3d4p - 3d4d	'F' - 'D	3 - 2	218
40	1 103.390	228.4891 - 319.1191	3d4p - 3d4d	'D' - 'G	2 - 3	218
160	1104.296	226.1198 - 316.6749	3d4p - 3d4d	'D' - 'F	2 - 3 i	218
20	1105.250	229.1208 - 319.5168	3d4p - 3d4d	' D • − 'G	- 3−4 }	218
5	1106.322	228.0018 - 318.2276	3d4p - 3d4d	,D ,D	1 – 2	218
5	1109.731	228.4891 - 318.6017	3d4p - 3d4d	, D. – , D ,	2 - 3	218
220	1112.452	228.0018 - 317.8938	3d4p - 3d4d	'D' - 'D	1-1	218
285	1114.350	228.4891 - 318.2276	3d4p - 3d4d	' D' - 'D	2 - 2	218
450	1116.478	229.5517 - 319.1191	3d4p - 3d4d	' F* − 'G	2 - 3	218
360	1117.559	229 1208 - 318.6017	3d4p - 3d4d	'D' - 'D	3 - 3	218
220	1118.157	239.9175 - 329.3503	3d4p - 3d4d	'P* - 'D	1 - 2	218
5	1118.518	228.4891 - 317.8938	3d4p - 3d4d	'D* - 'D	2 - 1	218
650	1121.066	230.3163 - 319.5168	3d4p - 3d4d	' F* − 'G	3-4	218
5	1122 255	229.1208 - 318.2276	3d4p - 3d4d	'D' - 'D	3 - 2	218
20	1126.090	230.3163 - 319.1191	3d4p - 3d4d	' F' - 'G	3-3	218
650	1127.631	231.3929 - 320.0744	3d4p - 3d4d	' F' - 'G	4 - 5	218
40	1134.768	231.3929 - 319.5168	3d4p - 3d4d	' F' - 'G	4 - 4 .	218
160	1137.529	234.6184 - 322.5281	3d4p - 3d4d	'P* - 'S	1 - 1	218
20	1138.177	234.6685 - 322.5281	3d4p - 3d4d	'P* - 'S	0 - 1	218
160	1140.489	234.8464 - 322.5281	3d4p - 3d4d	'P* - 'S	2 - 1	218
40	1146.668	231 3929 - 318.6017	3d4p - 3d4d	' F' - 'D	4 - 3	218
450	1193.950	234.8464 - 318.6017	3d4p - 3d4d	' P' - 'D	2 - 3	218
360	1196 042	234.6184 - 318.2276	3d4p - 3d4d	'P* - 'D	1 - 2	218
70	1200.834	234.6184 - 317.8938	3d4p - 3d4d	'P' - 'D	1 - 1 :	218
110	1201.556	234.6685 - 317 8938	3d4p - 3d4d	'P" - 'D	0 - 1	218
70	1204.126	234.8464 - 317.8938	3d4p - 3d4d	'P" - 'D	2 - 1	218
220	1210 499	239 9175 - 322.5281	3d4p - 3d4d	'P' - 'S	1 - 1	218
220	1259 986	239 9175 - 319 2840	3d4p - 3d4d	'P' - 'P	1 - 1	218
450	1263 501	237 5295 - 316 6749	3d4p - 3d4d	'F" - 'F	3 - 3	218
65 0	1465 861	171 6981 - 239 9175	3d4s - 3d4p	'D - 'P'	2 - I	218
5	1477 769	167 1764 - 234 8464	3d4s - 3d4p	'D - 'P'	1 - 2	218
220	1481 651	167 1764 - 234 6685	3d4s - 3d4p	'D - 'P'	I - 0	218
220	1482 757	167 1764 - 234 6184	3d4s - 3d4p	¹ D - ¹ P*	I - 1	218
220	1484 666	167 4910 - 234 8464	3d4s - 3d4p	D P	2 - 2	218
450	1489 711	167 4910 - 234 6184	3d4s - 3d4p	D - P	2 - 1	218
650	1497 966	168 0895 - 234 8464	3d4s - 3d4p	'D - 'P'	3 - 2	218
750	1519 030	171 6981 - 237 5295	3d4s - 3d4p	'D - 'F'	2 - 3	218
1000	1579 696	168 0895 - 231 3929	3d44 - 3d4p	'D - 'F'	3 - 4	218
750	1591 721	167 4910 230 3163	3d4+ 3d4p	D F	2 - 3	218
650	1603 191	167 1764 229 5517	3d4+ 3d4p	D F	12	218
40	1607 035	168 0895 - 230 3163	3d4s 3d4p	'D 'F'	3 3	218
40	1611 330	167 4910 229 5517	3d4s 3d4p	D F	2 2	218
4()	1622.607	167 4910 229 12° ×	3d4s 3d4p	D D'	2 3	218

CR V - Continued

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms	J - J Notes	References
110	1630.989	167 1764 - 228 4891	3d4s - 3d4p	'D - 'D'	1 - 2	218
285	1638.495	168.0895 - 229.1208	3d4s - 3d4p	'D - 'D'	3 - 3	218
220	1639.403	167.4910 - 228.4891	3d4s - 3d4p	'D - 'D'	2 - 2	218
160	1644.053	167.1764 - 228.0018	3d4s - 3d4p	'D - 'D'	1-1	218
70	1652.595	167.4910 - 228.0018	3d4s - 3d4p	'D - 'D*	2 - 1	218
70	1555.639	168.0895 - 228.4891	3d4s - 3d4p	'D - 'D *	3 - 2	218
70	1705.629	167.4910 - 226.1198	3d4s - 3d4p	'D - ' D *	2 - 2	218
20	1705.968	171.6981 - 230.3163	3d4s - 3d4p	'D - 'F'	2 - 3	218
110	1728.497	171 6981 - 229 5517	3d4s - 3d4p	D - 'F'	2 - 2	218
1000	1837.502	171.6981 - 226.1198	3d4s - 3d4p	'D - 'D'	2 - 2 P	218

CHROMIUM VI (Cr ^{5 ·}), Z = 24Ground State 1s²2s²2p⁵3e²3p⁵3d(²D_{3/2}) (19 electrons) Ionization Potential 731 020 cm ⁻¹; 90.636 eV

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
I	144.76	0 690.781	3p*3d - 3p*10f	g D - 'F'	1-1	Р	009
1	144.961	.940 - 690 781	3p*3d - 3p*10f	g D - F	_	i i	222
1	146.776	0 681.307	3p*3d - 3p*9f	g D - 'F'	·		222
4	146 980	.940 - 681.307	3p*3d - 3p*9f	g'D - 'F'	· · ·		222
4	149.706	0 667.973	3p*3d - 3p*8f	g'D - 'F'	: <u>1</u> _1	:	222
12	149.918	.940 - 667.973	3p*3d - 3p*8f	g'D - 'F'	1-1	1	222
30	154.197	0 648.521	3p*3d - 3p*7f	g'D - 'F'	3-3		222
50	154.418	.940 - 648.533	3p*3d - 3p*7f	g'D - 'F'	1		222
80	161.659	0 618.583	3p*3d - 3p*6f	g D - F	3-3		222
80	161.687	.940 - 619.419	3p*3d - 3p'3d('I')*)4s	$g^2D - {}^2D^*$: 1-1	1	222
80	161.836	.940 - 618.849	3p*3d - 3p*6f	g ² D - ² F*	- <u>-</u>		222
12	161.908	.940 - 618.583	3p*3d - 3p*6f	g'D - 'F'	3-3		222
I	161 930	.940 - 618.491	3p*3d - 3p*3d('D*)4s	g'D - 'D'	3-3		222
110	162.565	.940 - 616.079	3p*3d - 3p'3d('F*)4s	$g^2D - {}^2F^4$	1 3-3		222
12	162.764	0 614.385	3p*3d - 3p*3d('F*)4s	8'D - 'F'	1-1	•	222
50	163.014	.940 - 614.385	3p*3d - 3p*3d('F*)4s	g'D - 'F'	- 1-1		222
12	163.514	0 611.568	3p*3d - 3p*3d(*D*)4s	g²D - ²D*	<u></u>	:	222
12	163.801	G = 610.497	3p*3d - 3p*3d('D*)4s	g'D - 'D'	3 - 3		222
4	164 159	0 609.166	3p*3d - 3p*3d(*D*)4s	g2D - 4D*	<u>+</u> - <u>+</u>		222
1	164.301	0 608.631	3p*3d - 3p*3d(*D*)4s	_g'D - ⁴D*			222
12	164.564	.940 - 608 631	3p°3d - 3p'3d('D°)4s	g'D - *D*			222
12	164.833	.940 - 607.615	3p*3d - 3p`3d('D*)4s	g'D - *D*	:]-]		222
11	168.088	0 - 594.926	3p*3d - 3p*3d(*F*)4s	g'D - 'F'	· • • • •		222
4	168.355	.940 - 594.926	3p*3d - 3p*3d(*F*)4s	g'D - 'F'	3-3		222
150	169.435	.940 - 591.137	3p*3d - 3p*3d('F*)44	g'D - 'F'		1	222
12	170.569	0 586 273	3p*3d - 3p*3d('F*)4s	g'D - 'F'	1-1		222
30	171.400	.940 - 584.371	3p*3d - 3p*3d('F*)4s	g'D - 'F'	·]-]		222
4	172.204	0 580.697	3p*3d - 3p*3d(*P*)4s	g'D - 'P	3-3		222
\$0	172.487	940 - 580 697	3p*3d - 3p'3d('P*)4s	$g^2D = {}^2P^4$	<u>_</u>		222
50	172 841	0 - 578.566	3p*3d - 3p*3d(* P*)4 s	gʻD ∈ 'P"	3 - 3		222
4	173 973	940 575 742	3p^3d - 3p^6p	g ² D - ² P*			222
12	174 175	0 - 574 135	3p*3d - 3p*6p	g D - 'P'	<u>+</u> -+		222
150	175 756	0 - 568 9574	3p*3d - 3p*5f	g'D 'F'			222
200	176 037	940 - 568 9930	3p*3d - 3p*5f	g'D - 'F'			222
375	201 007	() 497.495	3p*3d - 3p*(*P*)(3d*(*F))	8,D ,D.			222
250	201.224	0 - 496 .958	3p*3d _ 3p*(*P*)(3d*(*F*))	g'D = 'D'			222

CR VI -- Continued

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J Notes	References
200	201.388	.940 - 197.495	3p*3d - 3p*(*P*)(3d*(*F))	8'D - 'D'	$\frac{2}{2} - \frac{3}{2}$	222
450	201.606	.940 - 496.958	3p*3d - 3p*(*P*)(3d*(*F))	g'D - 'D'	3-3	222
110	202.057	0 494.9112	3p°3d - 3p'(2P°)(3d2(3P))	g'D - 'P'	1-1	222
375	202.442	.940 - 494,9112	3p°3d - 3p'(2P°)(3d2(3P))	$g^2D - ^2P^4$	3-3	222
300	202 739	0 493 2471	$3p^{+}3d - 3p^{+}(^{2}P^{+})(3d^{2}(^{3}P^{+}))$	$\mathbf{r}^{2}\mathbf{D} - \mathbf{P}^{2}$	i_i	222
110	204.682	0 488.5619	3p*3d – 3p*5p	g ² D - ² P ⁴	3 - 3	222
450	205.064	.940 - 488.5619	3p*3d - 3p*3p	g'D - 'P'	2-2	222
375	207.489	0 481.9560				222
450	207.631	.940 - 482.31/1	3p 3a - 3p 4f	g D - T		222
LIO -	207.892	.940 - 481.9360	30°30 - 30°44	FD-F		222
450	226.241	.940 - 442.9434	3p 3d - 3p (*** (3d (***)	CD-F		222
375	227.202	0. – 440,1352	3p*3d - 3p*(*P*)(3d*(*P*))	8.DL	1-1	111
80	227.689	.940 - 440,1352	3p*3d - 3p*(2P*)(3d²(2F))	g ² D - ² F	3-3	222
250	264.078	0 378.677	$3p^{*}3d - 3p^{*}(^{2}P^{*})(3d^{2}(^{1}D))$	g'D - 'F'	3-3	222
12	764 717	940 - 378 677	$3n^{4}3d - 3n^{2}(^{2}P^{*})(3d^{2}(^{1}D))$	$\mathbf{r}^2 \mathbf{D} - \mathbf{F}^2$	1 1 1	222
200	769 776	940 - 371 618	$3n^{4}3d = 3n^{4}t^{2}P^{2}t(3d^{2}t'D)$	*'D - 'F'	1 1 - 2	222
	279 154	940 - 359 145	3-14 - 3-12PY 3-12(1G))	D T	<u>i</u>	222
- 50	279.134	0 356.962	$3p^3d - 3p^3(1^2p^2)(3d^3(1^2G))$	rD-F	3 - 3	222
· • •				• - •		
12	280.879	940 - 356.962	3p*3d - 3p*(*P*)(3d*(*G))	g ² D - ² F*	3-1	222
150	335.123	0 298.3967	3p*3d - 3p*4p	g'D - 'P'	3-3	222
600	336.184	.940 - 298.3967	3p*3d - 3p*4p	g ² D - ¹ P*	3-3	222
450	337.185	0 296.5732	3p*3d - 3p*4p	$g^2D - {}^2P^*$	3-1	222
1	383.575	227.8579 - 488.5619	3p*4s - 3p*5p	² S = ² P [*]	1 - 1	222
1	385.015	227.8579 - 487.5895	3p*4s - 3p*5p	² S - ² P*		222
_						
0	420.499	296.5732 - 534.3817	3p*4p - 3p*3d	·P - ·D	1-1	222
U .	423.339	298.390/-354.489/	sp*4p - sp*3g		1 - 1	222
1	562.572	442.9454 - 620.7005	3p'('P')(3d'('P)) - 3p 'bg	4F - G		222
1	602.011	402.8886 - 568.9930	3p*4d - 3p*5f	'D - 'F'	1 1 - 1	222
30	607 239	296.5732 - 461.2530	3p*4p - 3p*5s	'P" - 'S	1 1 - 1	222
50	614.028	298.3967 - 461.2530	3p*4p - 3p*5s	' P' - 'S	1-1	222
	720.771	481.9560 - 620.6963	30°4(- 30°6g	'F' - 'G	3 - 3	222
Å	723 675	487 5171 - 620 2005	30*4(- 30*6e	F-'G	1_1	222
17	756 786	440 1357 - 577 7773	301(2P*)(342(1F)) - 30*5#	F'-G	111	222
10	771 771	AA7 9454 - 577 5744	$3n^{3}(^{2}P^{*})(3d^{2}(^{3}F)) = 3n^{4}5n^{4}$	F. G	1.1	222
	947 610	204 5737 - 407 6417	$3n^4An = 3n^4Ad$	2P* - 2D		222
600	957.009	298.3967 - 402.8856	3p*4p - 3p*4d	'P' - 'D	1-1	222
300	959.093	298.3967 - 402.6617	3p*4p - 3p*4d	'P' - 'D	1-1	222
12	1066.681	402.8886 - 494.9112	3p*4d - 3p*(*P*)(3d*(*P))	1D - 1P	1 1 - 1	222
12	1103.926	402.6617 - 493.2471	3p*4d - 3p*('P*)(3d*('P))	'D - 'P'	1-1	222
150	1107.225	481.9560 - 572.2723	3p*4f - 3p*5g	² F' - ² G	1	222
200	1114.114	482.5171 - 572.2744	3p*4f - 3p*5g	² F* - ² G	1-1	222
12	1164.146	402.6617 - 488.5619	3p*4d - 3p*5p	۳۰ - D'	3-3	222
110	1167 222	AN7 8886 - 488 5419	30°44 - 30°50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 . 4	777
	1177 440	402 6617 - 487 5895	"A"44 - 30*50	10 - 1P	111	222
100	1755 837	402 8886 - 482 5171	30°44 - 30°46	2D . 15'	1 1 1	222
200	1761 178	402.4000 - 402.3173 407 6617 - 481 0440	Johd - Johd	10.15		222
150	1201.120	402.0017 - 481.7700 407 8884 481 6440	30°44 30°41	10 10		222
. 80	1281.439	572.2744 - 650.3106	3p*5g - 3p*7h	G-'H'	3 - 3 9 - 11	222
-	i., i					
50	1342.741	487.5895 - 562.0641	3p*5p - 3p*6s	¹ P ² - ¹ S	3 - 3	222
50	1300.304	488.3019 - 302.0641	30°96 - 90°96	r - 'S	1-1	222
800	1417.659	227.8579 - 298.3967	3p*4s - 3p*4p	'S - 'P'	1 1 - 1	222
700	1455.282	227.8579 - 296.5732	3p*4s - 3p*4p	'S - 'P'	5 - 5	222
50	1907.462	481.9560 - 534.3817	3p*4f - 3p*5d	'F' - 'D	1-1	222
				104 10		

CR VI - Continued

Multiplet Rel. Int	. λ. _{n.} (m Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J-J Not	es References
12	1932.783	568.9574 - 620.6963	3p*5f - 3p*6g	F'- G]-]	222
30	1933.955	568.9930 - 620.7005	3p*5f – 3p*6g	ÌF"-ÌG	- 1	222

CHROMIUM VII (Cr⁴⁻), Z = 24 Ground State $1s^22s^22p^43s^23p^4(^{1}S_{0})$ (18 electrons) Ionization Potential 1 291 900 cm⁻¹; 160.18 eV

Multiplet Rel. Int.	λ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	្រះ	Notes	R :ferences
·····	71.744	0 1393.84	35 ² 3p° - 3s3p°7p	g'S - 'P"	0 - 1	•	440
I	74.875	0 1335.56	3s'3p* - 3s3p*6p	g'S - 'P'	0 - 1	A -	440
4	81.491	0 1227.13	3s ² 3p* - 3s3p*5p	g ¹ S - ¹ P*	0 - 1	A	440
1	81.980	0 1219.81	3s ² 3p ⁶ - 3s3p ⁶ 5p	g'S - 'P"	. 0 - 1	· A ·	440
1	92.128	0 1085.446	3s ² 3p ⁴ - 3s ² 3p ³ (² P ⁴ _{1/2})6s	g'S - 對了	0 - 1	,	907
5	92.969	0 1075.627	$3s^{2}3p^{4} - 3s^{2}3p^{3}(^{2}P_{3/2}^{*})6s$	$g^1S - \frac{1}{12}$	0 - 1		907
5	95.917	0 1042.568	3s²3p* - 3s²3p*(²P _{1/2})5d	g'S - 鉛	0 - 1	:	907
26	96.760	0 1033.485	3s²3p° - 3s²3p³(²P _{3/2})5d	。 g'S – 對了	0 - 1		907
20	100.593	0 994.105	3s ² 3p* - 3s3p*4p	∃ g'S - 'P"	0 - 1		907
1	101.565	0 984.59	3s ² 3p [•] - 3s3p [•] 4p	g'S - 'P'	0 - 1	•	440
40	104.127	0 960.366	3s ² 3p* - 3s ² 3p ⁵ (² P ⁴ _{1/2})5s	s'S - 11	0 - 1	į	907
40	105.139	0 951.122	3s ² 3p ⁴ - 3s ² 3p ³ (² P ⁴ _{3/2})5s	s'S - ∦]	0 - 1	1	907
285	114.235	0 875.3805	3s²3p* - 3s²3p*(²P* _{1/2})4d	s' S - ∰	0 - 1		907
285	115.407	0 866.5028	3x ² 3p ⁶ - 3x ² 3p ⁵ (² P ⁵ _{2/2})4d	g'S-批	0-1]	907
5	116.654	0 857.2345	3s ² 3p ⁴ - 3s ² 3p ⁵ (² P ⁵ ₂₂)4d	g'S - 批	0-1		907
650	146.497	0 682.6102	3s ² 3p ⁶ - 3s ² 3p ³ (² P ⁶ _{1/2})4s	s'S - 11	0-1	ł	907
450	148.714	0 672.4277	3s ² 3p ⁶ - 3s ² 3p ³ (² P _{1/2})4s	g'S - 招生	0-1	l l	907
20	166.488	341.1793 - 941.811	3s ² 3p ³ 3d - 3s ² 3p ⁵ (² P _{3/2})4f	'P" - 11]	0 - 1		907
70	166.560	342.7735 - 943.1491	3s ² 3p ⁵ 3d - 3s ² 3p ⁵ (² P ⁶ /2)4f	³₽* - ∰]	1-2		907
40	166.936	342.7735 - 941.811	3s ² 3p ³ 3d - 3s ² 3p ⁵ (² P ⁵ / ₂)4f	'P" 113	1-1		907
220	167.020	346.1371 - 944.8667	$3s^{3}3p^{3}3d - 3s^{3}3p^{3}(^{2}P_{1/2}^{*})4f$	'P" - 訳]	2 - 3		907
110	167.496	346.1371 - 943.1491	3s ² 3p ³ 3d - 3s ² 3p ⁵ (² P _{1/2})4f	'P" - 訳]	2 - 2		907
40	168.523	363.0609 - 956.454	3s ² 3p ³ 3d - 3s ² 3p ³ (² P [*] _{1/2})4f	'F* - ₩3	2 - 3		907
5	169.084	357.5437 - 948.9439	3s ¹ 3p ⁵ 3d - 3s ¹ 3p ⁵ (¹ P' _{3/2})4f	乍-扪	4-4		907
5	169.842	360.1719 - 948.9439	3s ² 3p ³ 3d - 3s ² 3p ³ (² P _{2/2})4f	下-訳	3-4		907
5	170.066	357.5437 - 945.4757	3s ² 3p ³ 3d - 3s ² 3p ³ (² P [*] _{1/2})4f	下-協	4 - 4		907
20	170.139	360.1719 - 947.9174	3s ¹ 3p ³ 3d - 3s ¹ 3p ⁵ (³ P ⁵ _{1/2})4f	'F' - []]	3 - 3	1	907
450	170.393	357.5437 - 944.4168	3s ¹ 3p ¹ 3d - 3s ¹ 3p ⁵ (¹ P _{1/2})4f	下	4-5		907
: 285	170.850	360.1719 - 945.4757	3s ² 3p ³ 3d - 3s ² 3p ⁵ (² P [*] _{3/2})4f	'F" - 扪	3-4		907
160	170.982	363.0609 947.9174	3s ¹ 3p ¹ 3d - 3s ¹ 3p ¹ (¹ P _{3/1})4f	'F' - 11)	2 - 3		907
5	174.070	382.7374 - 957.2051	3s ² 3p ³ 3d - 3s ³ 3p ⁵ (² P _{1/2})4f	'D' - [[]	3-4		907
160	174.286	382.6823 - 956.454	3s ² 3p ³ 3d - 3s ² 3p ⁵ (³ P ² _{1/2})4f	'D' - 躳]	2 - 3	1	907
220	175.315	386.6166 - 957.0046	3s ¹ 3p ¹ 3d - 3s ¹ 3p ¹ (¹ P _{1/2})4f	'D' 約	2 - 3		907
70	175.812	385.8283 - 954.623	3s ¹ 3p ⁵ 3d - 3s ¹ 3p ⁵ (¹ P _{2/3})4f	'D' - 们	1-2		907
110	176.053	386.6166 - 954.623	3s²3p³3d - 3s²3p²(²P _{3/2})4f	'D' - 🚮	2 - 2		907
5	176.295	389.2262 - 956.454	36 ² 3p ³ 3d - 36 ² 3p ⁵ (² P _{1/2})4f	'F" - 鉛	3-3		907
285	176.613	382.7374 - 948.9439	3s ¹ 3p ⁵ 3d - 3s ¹ 3p ⁵ (¹ P _{3/3})4f	'D' - [[]	3-4		907
40	176.916	382.6823 - 947.9174	36 ¹ 3p ¹ 3d - 36 ¹ 3p ¹ (¹ P _{3/3})4f	'D' - 🚮	2 - 3	1	907
70	177.694	382.7374 - 945.4757	3s ¹ 3p ¹ 3d - 3s ¹ 3p ¹ (² P _{1/2})4f	'D' - 🚮	3-4		907
70	177.895	382.7374 - 944.8667	3e ³ 3p ³ 3d - 3e ³ 3p ⁵ (³ P _{2/3})4f	'D'- ([]	3 - 3		907
1	178.851	382,6823 - 941.811	36 ¹ 3p ¹ 3d - 36 ¹ 3p ¹ (¹ P _{3/2})4f	'D' - 10	2 - 1		907
5	179.682	386.6166 - 943.1491	3e ¹ 3p ¹ 3d - 3e ¹ 3p ⁵ (¹ P ₁₀)4f	'D' - 11	2 - 2	1	907

CR VII - Continued

shiplet Rel. Int.	λ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	Reference
40	179.776	389.2262 - 945.4757	3s²3p³3d - 3s²3p³(²P _{1/2})4f	'F" - 🚮	3-4	907
870	202.828	0 493.0354	3s²3p* - 3s²3p²3d	g'S - 'P"	0-1	907
; 20	241.393	342.7735 - 757.0358	3s²3p³3d - 3s²3p⁵4p	P" - "P	1-0	907
5	242.461	346.1371 - 758.5721	3s²3p³3d - 3s²3p³4p	'P" – 'P	2 - 1	907
70	242.579	346.1371 - 758.3744	3s²3p³3d - 3s²3p³4p	'P" - 'D	2 - 2	907
20	242.953	342.7735 - 754.3789	3s²3p³3d - 3s²3p³4p	²P* – 'P	1-1	907
5	244.565	342.7735 - 751.6493	3s²3p²3d - 3s²3p²4p	'P" - 'P	1 - 2	907
20	245.431	341.1793 - 748.6293	3s²3p²3d - 3s²3p³4p	ס' - ״ל י	0-1	907
70	246.599	346.1371 - 751.6493	3s²3p³3d - 3s²3p³4p	'P" - 'P	2 – 2	907
40	250.311	346.1371 - 745.6311	3s²3p³3d - 3s²3p³4p	Gʻ- "¶ʻ	2-3	907
20	251.124	360.1719 - 758.3744	3s²3p³3d - 3s²3p³4p	' Γ' - ' D	3 - 2	907
1	252.837	363.0609 - 758.5721	3s²3p²3d - 3s²3p³4p	ቸ - ዋ	2 - 1	907
20	254.177	341.1793 - 734.6053	3s²3p³3d - 3s²3p³4p	'P" - 'S	0 - 1	907
70	255.210	342.7735 - 734.6053	3s²3p²3d – 3s²3p³4p	'P" - 'S	I – I	907
1	255.447	360.1719 - 751.6493	3s²3p³3d - 3s²3p³4p	'F" - 'ዎ	3 - 2	907
40	255.545	363.0609 - 754.3789	3s²3p³3d - 3s²3p⁵4p	'F" - 'P	2 - 1	907
70	257.422	346.1371 - 734.6053	3s²3p³3d - 3s²3p³4p	'P" - 'S	2 - 1	907
450	257.676	357.5437 - 745.6311	3s²3p°3d - 3s²3p³4p	ל' - 'T	4 - 3	907
285	259.181	0 385.8283	3s²3p ⁴ - 3s²3p ⁵ 3d	g'S - 'D'	0 - 1	907
110	259.360	363.0609 - 748.6293	3s²3p³3d - 3s²3p³4p	• 'F' - 'D	2 - 1	907
40	259.432	360.1719 - 745.6311	3s²3p³3d - 3s²3p³4p	Ъ Д.	3 - 3	907
360	259.636	360.1719 - 745.3289	3s²3p³3d - 3s²3p⁵4p	ί Γ' - 'D	3 - 2	907
20	261.598	363.0609 - 745.3289	3s²3p³3d - 3s²3p³4p	'F" - 'D	2 - 2	907
1	266 172	382.6823 - 758 3744	3s²3p³3d - 3s²3p³4p	'D" - 'D	2 - 2	907
70	268.852	386.6166 - 758.5721	3s²3p³3d - 3s²3p³4p	¹ D* - ¹ P	2 – L	907
70	269.038	382.6823 - 754.3789	3s²3p³3d - 3s²3p³4p	'D" - 'P	2 - 1	907
20	269.397	385.8283 - 757.0358	3s ² 3p ¹ 3d - 3s ² 3p ⁵ 4p	'D" - 'P	1-0	907
160	270.897	389.2262 - 758.3744	3s ² 3p ³ 3d - 3s ² 3p ³ 4p	'F" - 'D	3 – 2 '	907
160	271.070	382.7374 - 751.6493	3s²3p³3d - 3s²3p³4p	'D' - 'P	3 - 2	907
5	273.269	382.6823 - 748.6293	3s²3p³3d - 3s²3p³4p	'D' - 'D	2 - 1	907
1	273.952	386.6166 - 751.6493	3s²3p³3d - 3s²3p⁵4p	'D" - 'P	2 - 2	907
1	275 563	382 7374 - 745 6311	3s ² 3p ¹ 3d - 3s ² 3p ⁵ 4p	'D' - 'D	3 - 3	907
5	275.635	385.8283 - 748.6293	3s²3p³3d - 3s²3p³4p	'D' - 'D	1-1	907
I	275 756	382.6823 - 745.3289	3s ² 3p ¹ 3d - 3s ² 3p ¹ 4p	'D' - 'D	2 - 2	907
1	275 792	382.7374 - 745.3289	3s²3p¹3d - 3s²3p¹4p	'D' - 'D	3 - 2	907
5	275 926	389.2262 - 751.6493	3s ² 3p ³ 3d - 3s ² 3p ³ 4p	'F" - 'P	3 - 2	907
1	280.571	389.2262 - 745.6311	3s²3p°3d - 3s²3p ⁵ 4p	'F" - 'D	3 - 3	907
20	280 823	389.2262 - 745.3289	3s ² 3p ⁵ 3d - 3s ² 3p ⁵ 4p	'F' - 'D	3 - 2	907
20	291 738	0 342.7735	3s²3p* - 3s²3p*3d	g ¹ S - ³ P*	0 - 1	907
1	355.012	346.1371 - 627.8267	3s²3p³3d - 3s3p°3d	"P" - "D	2 - 2	907
220	375.425	342.7735 - 609.1427	3s²3p³3d - 3s3p*3d	'P* - 'D	1 - 2	907
70	376 073	342.7735 - 608.6796	3s²3p³3d - 3s3p*3d	'P" - 'D	· 1 - 1 .	907
5	377.687	363.0609 - 627.8267	3s²3p³3d - 3s3p*3d	'F" - 'D	2 - 2	907
360	379.153	346 1371 - 609 8878	3s ² 3p ⁵ 3d - 3s3p ⁶ 3d	'P" - 'D	2 - 3	907
110	380.219	346.1371 - 609.1427	3s ² 3p ⁵ 3d - 3s3p ⁶ 3d	'P' - 'D	2 - 2	907
1	380.897	346 1371 - 608 6796	3s ³ 3p ³ 3d - 3s3p ⁶ 3d	' 'P" - 'D	2 - 1 -	907
450	396.288	357.5437 - 609.8878	3s²3p³3d - 3s3p*3d	'F" - 'D	4 - 3	907
40	400.452	360.1719 - 609.8878	3s²3p²3d - 3s3p*3d	'F" - 'D	3 - 3	907
360	401 658	360.1719 - 609.1427	3s²3p°3d - 3s3p°3d	'F' - 'D	3 - 2	907
70	406 369	363.0609 - 609.1427	3s ² 3p ³ 3d - 3s3p ⁴ 3d	'F' - 'D	2 - 2	907
285	407 138	363.0609 - 608.6796	3s²3p³3d - 3s3p*3d	'F' - 'D	2 - 1	907
220	407 918	382 6823 - 627 8267	3s ² 3p ³ 3d - 3s3p ⁶ 3d	'D' - 'D	2 - 2	907
160	408 019	382 7374 - 627 8:67	3s'3p'3d - 3s3p*3d	'D' - 'D	3 - 2	907

CR VII -- Continued

Multiplet Rel. Int.	λ (in Å)	Levels (m 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
110	419.104	389.2262 - 627.8267	3s ² 3ç ³ 3d - 3c3p*3d	'F'-'D	3-2	907
1	440.121	382.6823 - 609.8878	3s²3p°3d - 3s3p*3d	'D' - 'D	2 - 3	907
285	440.244	382.7374 - 609.8878	3s ⁻ 3p`3d - 3s3p*3d	' D' - 'D	3 - 3	907
70	441.584	382.6823 - 609.1427	3s ² 3p ³ 3d - 3s3p ⁴ 3d	'D' - 'D	2 – 2	907
20	441.680	382.7374 - 609.1427	3s²3p`3d - 3s3p*3d	'D' - 'D'	3 - 2	907
40	447.792	385.8283 - 609.1427	3s ⁻ 3p ³ 3d - 3s3p [*] 3d	'D' - 'D	1 - 2	907
40	447.882	386.6166 - 609.8878	3s [:] 3p [*] 3d - 3s3p [*] 3d	' D' - ' D '	2 - 3	907
110	448.729	385.8283 - 638.6796	3s [:] 3p*3d - 3s3p*3d	'D' - 'D	1-1	907
110	449 386	386.6166 - 609.1427	3s²3p*3d - 3s3p*3d	'D' - 'D	2 - 2	907
20	450.314	386.6166 - 608.6796	3s ² 3p ⁵ 3d - 3s3p ⁶ 3d	'D' - 'D	2 - 1	907
110	453.183	389.2262 - 609.8878	3s ² 3p [*] 3d - 3s3p [*] 3d	' Γ - 'D	3 - 3	907
20	741.889	493.0354 - 627.8267	3s 3p 3d - 3s3p 3d	' P' - 'D	1 - 2	907
40	801.277	734.6053 - 859.4071	3s ² 3p ⁴ 4p - 3s ² 3p ³ (² P ⁴ _{1.3})4d	℅-封丁	1 - 2	907
20	815.474	734.6053 - 857.2345	3s ² 3p ⁴ 4p - 3s ² 3p ⁴ (² P ⁴ ;)4d	'S-∰	1 - 1	907
5	820.239	751.6493 - 873.5655	3s ³ 3p ⁴ 4p - 3s ³ 3p ⁴ (² P ₁)4d	`P - ∰	2 - 2	907
5	821.788	734.6053 - 856.2922	3s ² 3p ³ 4p = 3s ² 3p ³ (² P ⁴ ;)4d	'S - 鈤	1-0	907
20	836.644	745.6311 - 865.1558	3s ² 3p ⁵ 4p - 3s ² 3p ⁵ (² P ¹ ₂)4d	`D-訂	3 - 3	907
20	841.747	745.3289 - 864.1295	3s"3p"4p - 3s"3p"("P";)4d	'D - ∰	2 - 2	907
5	844.989	757.0358 - 875.3805	3s ² 3p ⁴ 4p - 3s ² 3p ⁴ (*P* ;)4d	۲ <u>ا ا</u>	0-1	907
40	848.517	754.3789 - 872.2316	3s'3p'4p - 3s'3p'('P'; ;)4d	'P - 13"	1 - 2	907
160	862.043	745.3289 - 861.1984	3s'3p'4p - 3s'3p'('P',)4d	'D - 打	2 - 3	907
70	865.800	748 6293 - 864 1295	3s-3p'4p - 3s-3p'(*P* ;)4d	'D-打	1 - 2	907
20	869.615	758.5721 - 873.5655	3s 3p 4p - 3s 3p'(*P* ;)4d	`₽ - <u>₩</u>]	1 - 2	907
220	870.980	745.6311 - 860.4443	3s ⁻ 3p ⁻ 4p - 3s ⁻ 3p ⁵ (*P ⁺ ₁)4d	D - 11	3 - 4	907
110	871.296	758.3744 - 873.1461	3s ² 3p'4p - 3s ² 3p'(*P _{1.2})4d	'D - ∰	2 - 3	907
70	881.012	751.6493 - 865.1558	3s ⁻ 3p ⁵ 4p - 3s ² 3p ⁵ (² P ⁵ -)4d	`₽ - <u>4</u> 3	2 - 3	907
20	926.520	758.5721 - 866.5028	3s ² 3p ⁴ 4p - 3s ² 3p ⁴ (² P ⁴ ₂)4d	`₽ - <u>1</u> []"	1 – 1	907
1	936.492	758.3744 - 865.1558	3s 3p 4p - 3s 3p (*P* ;)4d	D-11	2 - 3	907
5	1163.516	672 4277 - 758.3744	3s 3p (*P* ;)4s = 3s 3p 4p	117 - 'D	1 - 2	907
I	1163.947	857.2345 - 943.1491	3s ² 3p ⁴ (² P ⁴)4d = 3s ² 3p ⁴ (² P ⁴)4f	117-113	1 - 2	907
5	1170.143	859.4071 - 944.8667	3s ² 3p [*] (² P [*] ₂)4d = 3s ² 3p [*] (² P [*] ₂)4f	11) - 11)	2 - 3	907
40	1181 920	672.4277 - 757.0358	3s ² 3p ⁴ (² P ⁴ ₁)4s = 3s ² 3p ⁴ 4p	11 - P	1-0	907
5	1186.561	861.1984 - 945.4757	3s ² 3p ⁵ (² P ⁴ ₁)4d - 3s ² 3p ⁵ (² P ⁴ ₁)4f	11-11	3 - 4	907
5	1189.640	873.1461 - 957.2051	3s'3p'('P' ;)4d - 3s'3p'('P' ;)4f	<u>457 - 45</u>)	3-4	907
20	1190.867	860.4443 - 944.4168	3s ² 3p ⁵ (² P ⁴ ₂)4d = 3s ² 3p ⁵ (² r ² ₁₂)4f	10 - 10	4 - 5	907
70	1193.492	865.1558 - 948.9439	$3s^{2}3p^{4}(^{2}P_{1,2}^{*})4d = 3s^{2}3p^{4}(^{2}P_{1,2}^{*})4f$	191 - 19	3 – 4	907
20	1198.481	873.5655 - 957.0046	3s ² 3p [*] (² P [*] _{1.2})4d - 3s ² 3p [*] (² P [*] _{1.2})4f	₩3 1 - ₩31	2 - 3	907
220	1207.866	668.8586 - 751.6493	3s ² 3p ⁵ (² P ⁴)4s = 3s ² 3p ⁴ 4p	打"- 'P	2 - 2	907
360	1302.551	668.8586 - 745.6311	3s ² 3p ⁵ (² P ¹)4s - 3s ² 3p ⁵ 4p	117 - 'D	2 - 3	907
160	1307.696	668.8586 - 745.3289	3s'3, ('P';)4s - 3s'3p'4p	1 - 'D	2 - 2	907
220	1312 307	672.4277 - 748.6293	3s'3p'('P',)4s - 3s'3p'4p	計" - 'D	1 - 1	907
220	1319.885	682.6102 - 758.3744	3s'3p'('P',)4s - 3s'3p'4p	1:1 - 'D	1 - 2	907
110	1393 366	682.6102 - 754.3789	3s ² 3p ³ (² P [*] _{1.2})4s - 3s ² 3p ⁵ 4p	<u>₩</u>]Γ - 'P		907
220	1426.644	678 5347 - 748 6293	3s ² 3p ⁵ (² P [*] _{1.2})4s - 3s ² 3p ⁵ 4p	117 - 'D	0 - 1	907
40	1448.457	682.6102 - 751.6493	3s'3p'('P';)4s - 3s'3p'4p	₩ 1 - 'P	1 - 2	907
	• · •		· · · · ·		• · · · · • -	
CHROMIUM VIII (Cr ⁷), Z = 24 Ground State $1s^22s^22p^43e^23p^5(^2P_{3/2})$ (17 electrons) Ionization Potential [1 490 000] cm ⁻¹; [184.7] eV

Multiplet Rel Int.	λ (m Å)	Levels (m 10° cm ⁻¹)	Configurations	Terms	J - J Notes	Reference
	102.45	0.0 - 976.08	3s²3p° - 3s²3p*('D)4d	g ² P* - ² D	<u>!-</u> !	854
	103 03	0.0 - 970.59	3s²3p° - 3s²3p*('D)4a	g"P" - "P	<u>+</u> -+	854
	103.36	9.8919 - 977.38	3s²3p* – 3s²3p*('D)4d	g P' - `D	<u>+</u> _+	854
	103.48	0.0 - 966.37	3s²3p° - 3s²3p*('P)4d	g'P" - 'S	<u>+</u> -+	854
	103.92	9.8919 - 972.17	3s²3p° - 3s²3p*('D)4d	, g²P* − ²F	1 - 1	854
	105.69	0.0 - 946.16	3s²3p° - 3s²3p°('P)4d	g'P" - 'D	1-1	854
	106 68	9.8919 - 947.27	3s [:] 3p ¹ - 3s [:] 3p ⁴ ('P)4d	g'P" - 'D	$\frac{1}{2} = \frac{3}{2}$	854
200	124 184	0.0 - 805 26	3s*3p* - 3s*3p*(*S)4s	g²P* - ²S	<u><u>+</u></u> − <u>+</u> ′	182
100	125 728	9.8919 - 805.26	3s²3p° - 3s²3p*('S)4s	g ² P* - ²S	$\frac{1}{2} - \frac{1}{2}$	182
700	129.998	0.0 - 769 24	3s [:] 3p` - 3s [:] 3p*('D)4s	g'P' - 'D	$\frac{3}{2} = \frac{3}{2}$	182
600	131.638	9.8919 - 769.55	3s²3p° - 3s²3p*(°D)4s	, g²P* − ²D	<u>+</u> - <u>+</u>	:82
200	132.321	0.0 - 755.74	3s*3p* - 3s*3p*(*P)4s	g'P' - 'P	$\frac{3}{2} - \frac{1}{2}$	182
600	133.395	0.0 - 749.64	3s²3p² - 3s²3p*(*P)4s	g ² P* - ² P	$\frac{1}{2} - \frac{1}{2}$	182
300	134.076	9.8919 - 755.74	3s²3p² - 3s²3p*('P)4s	∴g²P* – ²P	1 - 1 ·	182
400	134.942	0.0 - 741.06	3s²3p* – 3s²3p*(*P)4s	g'P" - "P	<u><u>+</u> <u>+</u> <u>+</u></u>	182
100	135 185	9 8919 - 749.64	3s²3p° - 3s²3p*(`P)4s	g ² P* - ² P	$\frac{1}{2} - \frac{3}{2}$	182
50	135.892	0.0 - 735.88	3s²3p* - 3s²3p*(*P)4s	g'P" - "P	3-3	182
	143.17	135. + D - 833.47 + D	3s [:] 3p*('P)3d - 3s [:] 3p*('P)4f	"D - "F"		854
	146.37	146 335 + S - 829.535 + S	3s²3p4('P)3d - 3s²3p4('P)4f	"F - 'G'	2-2	854
	146.63	142.359 + S - 824.347 + S	3s²3p*(`P)3d - 3s²3p*(`P)4f	₩F-*G*	1 <u>1</u> - <u>1</u>	854
	147.20	145 + S - 824 347 + S	3s²3p*(`P)3d - 3s²3p*(`P)4f	"F - "G"	5 3 - 4	154
	147 30	164. + L - 842.886 + L	3s²3p*('D)3d - 3s²3p*('D)4f	'G - 'H'	2 - 1	854
	147 49	146.335 + S - 824.347 + S	3s²3p*(`P)3d - 3s²3p*(`P)4f	'F - 'G'	· · · · · · · · · · · · · · · · · · ·	854
	201 54	0.0 - 496 17	3s²3p' - 3s²3p*('D)3d	g'P* - 'D	$\frac{1}{2} - \frac{1}{2}$	260
700	205.01	0.0 - 487 78	3s²3p1 - 3s²3p4(°D)3d	g ² P* - ² D	1-1	260,256
400	205.65	9.8919 - 496.17	3s²3p° - 3s²3p⁴('D)3d	g'P' - 'D	1-1	260,256
300	207.07	0.0 - 482 91	3s²3p* - 3s²3p*('D)3d	g ² P* − ² P	1-1	260,256
200	208 63	0.0 - 479 31	3s²3p⁵ - 3s²3p⁴('D)3d	g ² P* - ² P	$\frac{1}{2} - \frac{1}{2}$	260,256
200	211.42	9 8919 - 482.91	3s²3p* - 3s²3p*(*D)3d	g'P" - 'P	$\frac{1}{2} - \frac{1}{2}$	260,256
200	213 03	9.8919 - 479 31	3s²3p` - 3s²3p*('D)3d	g ² P* - ² P	$\frac{1}{2} = \frac{3}{2}$	260,256
400	216 67	00 - 461 54	3s²3p° - 3s²3p⁴(°D)3d	g ² P* - ² S	1 - 1	260,256
200	221 41	9 8919 - 461.54	35²3p* - 35²3p*('D)3d	g ² P* - ² S	$\frac{1}{2} - \frac{1}{2}$	260,256
650	413 112	0.0 - 242.065	3s²3p1 - 3s3p4	`g²₽* − ²S	2 - 2	726
450	430 713	9.8919 - 242.065	3s²3p' - 3s3p*	. g ² P* − ² S	· · · · · · · · · · · · · · · · · · ·	726

CHROMIUM IX (Cr^{4·}), Z = 24 Ground State $1s^22s^22p^43e^23p^4(^2P_3)$ (16 electrons) Ionization Potential [1 688 000] cm⁻¹; [209.3] eV

Multiplet Ral, Int A., (in Å)	Leveis (in 10 ³ cm ⁻¹)	Configurations	Terms	1.1	Notes	References
94 33	7.821 - 1067 9	3s'3p" - 3s'3p'("D")4d	g'P - 'D'	1 - 2		851
96 17	30.284 - 1070.112	3s'3p" - 3s'3p'('D")4d	`'D - 'F'	2-3		854
96.48	30 284 - 1066 771	3s'3p' - 3s'3p'('D')4d	'D - 'D'	2 - 2		854
96 55	66 855 - 1102 576	3s ² 3p ⁴ - 3s ² 3p ¹ 4d	'S - 'P*	0-1		854
97 19	0 1028 91	3s ² 3p ⁴ - 3s ² 3p ¹ (*S*)4d	g'P - 'D'	2 - 3		154
97 97	7 821 - 1028 54	3s'3p' - 3s'3p'(*S')4d	g'P - 'D'	1 - 2	1	854

C-49

CR IX - Continued

Multiplet Rei. Int	እ _ት (៣ Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J Notes	Reference
	98.08	9 549 - 1029 14	3s ² 3p ⁴ - 3s ² 3p ¹ (*S*)4d	g'P - 'D'	0 - 1	854
200	117 435	30.284 - 881.*2	3s 3p* - 3s 3p*(*P*)4s	'D - 'P'	2 - 1	181
6.13	117.942	0 847,87	3s ² 3p ⁴ - 3s ² 3p ³ (² D*)4s	g'P - 'D'	2 - 3	181
200	118 165	0 - 846.26	3s ⁻ 3p* - 3s ⁻ 3p (*D*)4s	gʻP - ʻDʻ	2 - 2	181
400	119.269	7.821 - 846.26	3s [:] 3p* - 3s [:] 3p*(*D*)4s	g`P - `D*	1 - 2	181
200	119.320	7 821 - 845.90	3s'3p* - 3s'3p'(*D*)4s	g'P - 'D'	1 - 1	181
100	119.569	9 549 - 845.90	3s ² 3p ⁴ - 3s ² 3p ¹ (² D*)4s	g'P - 'D'	0 - I	181
600	121 293	30.284 - 854.73	3s ⁻ 3p ⁴ - 3s ⁻ 3p ³ (*D*)4s	D - ' D '	2 - 2	181
400	121 781	0 - 821.07	3s [:] 3p* - 3s [:] 3p ¹ (*S*)4s	g'P - 'S'	2 - 1	181
200	122.720	66.855 - 881.72	3s 3p* - 3s 3p (*P*)4s	"S - "P"	0 - 1	181
200	122 964	7.821 - 821.07	3s 3p* - 3s*3p (*S*)4s	g'P - 'S"	1 - 1	181
50	123 226	9.549 - 821.07	3s 3p* - 3s 3r (*S*)4s	g'P - 'S'	0 - 1	181
	127.31	1028.645 + S - 1814.129 - S	35'3p'('D')3d - 35'3p'('D')4f	Έ Γ - Ό	2 - 3	854
	127.42	1029 323 + S - 1814 129 + S	3s ³ 3p'(² D*)3d - 3s ³ 3p'(² D*)4f	'F' - 'G	3 - 4	854
	127.53	1030 + S - 1814 129 - S	35'3p'('D')3d - 35'3p'('D')4f	'F' - 'G	4 - 5	854
	127 88	879.572 + D - 1661.555 + D	3s ² 3p ³ (*S*)3d - 3s ² 3p ³ (*S*)4f	'D' - 'F	3 - 4	854
	127 95	880 - D - 1661.555 + D	35°3p'(*S*)3d - 35°3p'(*S*)4f	'D' - 'F	4 - 5	854
	129.77	1030. + L - 1800.594 + L	3s ⁻ 3p'(² D*)3d - 3s ⁻ 3p'(² D*)4f	'G* - 'H	5-0	854
	129.99	1170 + R - 1939.289 + R	35 ¹ 37 ¹ (² P*)3d - 35 ¹ 30 ¹ (² P*)4f	F G	4 - 5	854
	131.08	500.00 + K - 1262.89 + K	3s-3p'('D*)3d = 3s-3p'('D*)4f	G - H	4 - 5	851
	176.86	409.00 + X - 965.42 + X	35'3p'("S")3d - 35'3p'("S" Mp	'D' - 'P	4-3	851
	180.57	460 00 + Y - 1013.80 + Y	35-3p'(*D*)3d - 3x*3p'(*D*)4p	G F	5 - 4	851
	208 53	0 479.57	35 30° - 35° 30° (°S°)3d	s'P - 'D'	2 - 2	239
200	209.44	30.284 - 507 75	3s'3p' - 3s'3p'('D')3d	D - F	2 - 3	239,256
	210.62	0 474 79	35'30' - 35'30'(*S*)3d	g'P - 'D'	2 - 3	239
	211 32	9.549 - 482.76	3s ² 3p ⁴ - 3s ² 3p ³ (*S*)3d	g'P - 'D'	0 - 1	239
	211 97	7 821 - 479 57	3s ⁻ 3o ⁴ - 3s ⁻ 3p ⁻ (*S*)3d	g'P - 'D'	1 - 2	239
	215.04	66.855 - 531.88	3s ² 3o ⁴ - 3s ² 3o ⁴ ([*] D*)3d	'S - 'P'	0 - 1	239
	215 97	30.284 - 493.31	3:30" - 3:30'('D')3d	'D - 'D'	2 - 2	239
	220.02	0 454.51	3s ² 3p ⁴ - 3s ² 3p ⁴ (² D [*])3d	g'P - 'P'	2 - 2	239
	223 87	7 821 - 454 51	35 ³ 30° - 35 ³ 30'(² D°)3d	g'P - 'P'	1 - 2	239
i	327.267	0 305.561	Js ² 30 ⁴ - Js30 ⁴	s'P - 'P'	2 - 1	726
110	363.271	30 284 - 305 561	35'30' - 3530'	D - P	2 - 1	720
110	407.637	0 245.317	Js'3p" - Js3p"	g P - P	2 - 1	726
110	414.602	7.821 - 249.016	35'30' - 3530'	s'P - 'P'	1-0	726
160	418.290	0 - 239.068	3s'3p* - 3s3p*	s'P - 'P'	2 - 2	726
70	418 925	66.855 - 305.561	35'30° - 3530'	'S - 'P'	0 - 1	726
110	421 057	7.821 - 245.317	3s'3p' - 3s3p'	s'P - 'P'	1-1	726
70	424.146	9.549 - 245,317	31'30' - 3130'	8 P - P	0-1	726
70	432 440	7 821 - 239.068	35'30' - 3530'	r'P - 'P'	1 - 2	726
	1496	0 - 66 849	3s ² 30 ⁴ - 3s ² 30 ⁴	¢'P	2-0. FP	375.726
	14-24 11	7 871 - 66 849	kilo' kilo'	- 'P		774

CHROMIUM X (Cr $^{\circ}$ -), Z = 24 Ground State 1s²2s²2p⁴3s²3p³(⁴S_{3/2}) (15 electrons) Ionization Potential [1 971 000] cm $^{-1}$; [244.4] eV

Multiplet Rel. Int.	λ., (m Å)	Levels (in 10 [°] cm ⁻¹)	Configurations	Terms	J - J Notes	References
	106.49	0 - 939.055	3s ² 3p' - 3s ² 3p ² ('Piris	g*S* - *P	<u>.</u>	854
	107.14	0 933.358	3s-3p' - 3s-3p'('P)4s	g*S* - *P	± - ±	854
	107.45	37.106 - 967.84	3s²3p' - 3s²3p²(°D)4s	D - D	<u> </u>	854
	107.70	0 928.505	3s ⁻ 3p ³ - 3s ² 3p ² (*P)4s	g*S* - *P	<u>+</u> - +	854
	107.80	39.454 - 966.93	3s ⁻ 3p ³ - 3s ⁻ 3p ⁻ (¹ D)4s	D - D	1-1	854
	109.84	39 454 - 949.78	3s ² 3p ³ - 3s ² 3p ² (³ P)4s	'D' - 'P	<u>1</u> - <u>1</u>	854
	110 37	37 106 - 943.30	3s*3p' - 3s*3p*(*P)4s	D - P	<u>1</u> - 1	854
	111.02	67.163 - 967.84	3s ² 3p ³ - 3s ² 3p ² (*D)4s	'P' - 'D	4-4	854
	111.16	67.163 - 966.93	3s ⁻ 3p ² - 3s ⁻ 3p ² (¹ D)4s	`P' - `D		854
	113.31	67.163 - 949.78	3s ² 3p ³ - 3s ² 3p ² (*P)4s	¹ P* = ¹ P		854
	113 70	63.936 - 943.30	3s 3p' - 3s 3p' ('P)4s	°P* - °P	i _ i	854
	115.29	750 + D - 1617.377 + D	3s ² 3p ² ('P)3d - 3s ² 3p ² ('P)4f	'F - ' G'	\$ - 1	854
	116 75	950 + S - 1806 531 + S	3s ² 3o ² (1D)3d - 3s ² 3o ² (1D)4(G-H.	÷_!	154
	117.09	950 - S - 1804.043 - S	ls:3n-('D)3d = 3s:3n-('D)4f	'G - 'H'	1	154
	716 77	19 454 - 500 88	32 3p (23) 32 3p (23) 4	² D* - ² F	i_/	239
	718.88	43.034 530.53	$3a^{2}ba^{3} = 3a^{2}ba^{2}(1)5a^{2}$	20 - 1 20 - 10	1 1	730
	210.00		$\frac{1}{2} \frac{1}{2} \frac{1}$		1 1	137
	220.42	67.163 - 519.28	3s²3p² - 3s²3p²(`P)3d 3s²3p² - 3s²3p²(`P)3d	² P* - ² D	<u>i</u> _i.	239
	222.04	0 446 71	3-13-1 3-13-14903-4	-46° 40	: 	120
	223.80	U 448.71	35 3p - 35 3p ('P)3d	g 3 - F	1 1	237
	224.74	0 444.90	35'3p - 35'3p'('P)3d	8-3° - "P		239
	226.24	0 442.01	3s*3p' - 3s*3p*(*P)3d	8 S - P	1-1	239
	227.42	37.106 - 476.82	3s 3p' - 3s 3p ('D)3d	'D' – 'D		239
	228 71	39.454 - 476 68	3s²3p' - 3s²3p²('D)3d	'D' - 'D	1-1	239
	231.21	63 936 - 496.43	3s²3p' - 3s²3p²('D)3d	°P" - "P	$\frac{1}{2} - \frac{1}{2}$	239
	232.96	67 163 - 496 43	3s²3p² - 3s²3p²(°D)3d	°P* = °P	1-1	239
	233.80	63.936 - 491.65	3s [:] 3p' - 3s [:] 3p'('D)3d	'₽" - 'P	$\frac{1}{2} - \frac{1}{2}$	239
	247 67	37.106 - 440.87	3s ² 3p' - 3s ² 3p ² ('P)3d	'D' - 'P	3 - 3 .	239
	252.64	37.106 - 432.92	3s²3p` - 3s²3p²(`P)3d	'D" - 'P	<u>₫-</u> ₫ Р	239
	254.15	39.454 - 432.92	3s ² 3p ³ - 3s ² 3p ² (³ P)3d	² D* - ² P	1 - 1	239
70	333.035	37 106 - 337.373	3s ² 3p ³ - 3s3p ⁴	'D' - 'P	$\frac{1}{2} - \frac{1}{2}$	726
5	337 490	37.106 - 333 414	3s ² 3p' - 3s3p'	² D* - ² P	$\frac{1}{2} - \frac{3}{2}$	726
220	340 181	39.454 - 333 414	3s 3p - 3s3p	'D' - 'P	3 - 1	726
1	351 092	63 936 - 348 763	3s 3p - 3s3p	² P" = ² S	<u>i</u> _ i	726
40	355 112	67 163 - 348 763	35 30 - 3530	P - 'S	1 - 1 ·	726
20	365 718	61 916 - 117 171	34'30' - 3610 ⁴	2 P* _3 P	1	726
1	371 086	63 936 - 333 414	35 ⁻ 3p' - 353p'	'Р' - 'Р	i - i	726
1	375 584	67 163 - 333 414	3s'30' - 3s30'	· P * - ⁴ P	ڊ_ڊ	726
340	195 984	17 106 - 289 619	35 10 - 3530*	D' - D	بَ _ بَ	726
450	198 150	39 454 - 290 ALA	hilo's hlo	n' - 'n'		776
40	100 707	10 454 - 780 610	hilo's hilo"	in: in	<u>;</u> ;	776
	377 /g/ All 655	0 343 933	3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	-15' 'B		774
/0	411 000	0 - 242 922	35 3p - 353p	g 5 - P	1 - 1	726
110	410 040	U - 239 987	.drsr - dr.sc	8.2h	<u>; - ;</u>	/20
220	427 551	0 - 233 890	35'3p' - 353p'	g*S* - *P		726
1	443 UB2	03 730 - 287 037		- D	<u> </u>	120
20	447 529	07 103 - 290 014	35' JP - 36 JP	197 - 1D	1-1 -	/20
0	1489 04	0 - 67 1574	34.3b 34,3b	g 5 - P	F	940
	1564 10	0 . 61 0145	le 10 - le 10	-S' P'	1.1 F	940

CHROMIUM XI (Cr¹⁰⁻), Z = 24 Ground State $1s^22s^22p^43s^23p^2(^3P_0)$ (14 electrons) Ionization Potential [2 184 000] cm '; [270.8] eV

B

Multipl-t Re	i. Int.	λ., (m Å)	Levels (in 10 [°] cm ⁻¹)	Configurations	Terms	J-J Notes	References
	•	\$1.02	0 1234.3	3s²3p² - 3s²3p4d	g'P - 'D'	0 - 1	970
		81.18	11.980 - 1243.8	3s ⁻ 3p ² - 3s ² 3p4d	g'P - 'F'	2 - 3	970
		81.23	5.536 - 1236.6	3s²3p² - 3s²3p4d	g`P - 'D'	1 - 2	970
		81.39	5.536 - 1234.3	3s ² 3p ² - 3s ² 3p4d	g'P - 'D"	1 - 1	970
		81.55	11.980 - 1238.2	3s ² 3p ² - 3s ² 3p4d	g 'P - 'D'	2 - 3	970
		82 05	36.994 - 1255.8	3s ² 3p ² - 3s ² 3p4d	'D - 'F'	2 - 3	970
		• 2 21	74 0463 1775 3	Lital Litade		• •	67 0
		03 31	(4,700) - 12/3.3 6 634 1031 064	35 3p - 35 3pmu	J-F	0-1	470
		78.47	3 330 - 1021 038	35 3p - 35 3pms	gr-r	1-2	824
		98.94	0 - 1010.713	35°30° - 35°3045	g r - 'r	0-1	854
		99.10	11.980 - 1021.058	35.3b 32.3bez	g'P - 'P	2 - 2	854
		99.33	306.570 - 1315.4	353p - 35 3p 4	D - F	2 - 3	970
		99.48	5.536 - 1010.713	3s-3p 3s-3p4s	g'P - 'P"	1 - 1	854
		99.67	5.536 - 1008.796	3s²3p² - 3s²3p4s	g'P - 'P"	1 - 0	854
		100.09	306.570 - 1305.7	3s3p ¹ - 3s ² 3p4f	'D' - 'G	2 - 3	970
		100.13	11.980 - 1010.713	3s ² 3p ² - 3s ² 3p4s	g'P - 'P"	2 - 1	854
		100.90	36.994 - 1028.067	3s ⁻ 3p ² - 3s ⁻ 3p4s	"D - "P"	2 - 1	854
		105.26	384.0 + D - 1334.03 + D	3s ² 3p3d - 3s ² 3p4f	'F" - 'G	: 4-5	970
		105.65	378.5 + D - 1325.02 + D	3s ² 3p3d - 3s ² 3p4f	ቸ- ህ	3 - 4	970
		115 13	478 59 - 1347 7	him his him	F.G	1.4	97 0
		117 13	490 35 - 1344 1	leiloid - leilodf	19° ID	5-4	970
		114.15	16 004 - 478 50	hilo; hilold	1 - D	1-2	770
		120.47	0 434 34	35 30 - 35 3030 3-23-2 3-23-14		2-3	237
		230.27	0: - 434.24 6 616 - 436.31	3-23-2 3-23-34		0-1	239
		232.10	3,330 - 430.21	35'3p'- 35'3p3G	gr-D	1-2	239
		233.20	3.330 - 434.24	38.3b 38.3b30	\$P- D	1-1	239
		235.03	0 425.48	3s²3p² - 3s²3p3d	g ³ P = ³ P ⁴	C – 1	239
		235.53	(1.9 8 0 - 436 .55	3s*3p² - 3s²3p3d	g'P - 'D"	2 - 3	239
		235.74	11.980 - 436.21	3s²3p² - 3s²3p3d	g'P - 'D*	2 - 2	239
		237.24	5.536 - 427.09	3s²3p² - 3s²3p3d	g'P - 'D*	1-2	239
		240.76	74.9863 - 490.35	3s ¹ 3p ¹ - 5s ¹ 3p3d	'S - 'P"	0 - 1	239
	;	241.87	5.536 - 418.95	3s²3p² - 3s²3p3d	\$'P = 'P"	1 - 2	239
:	:	245.70	11.980 - 418.98	3s ² 3o ² - 3s ² 3o3d	= = 'P-	2 - 2	239
		256.32	36 994 - 427.09	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	'D - 'D'	2 - 2	239
		280 572	0 - 356 474	le'lo' - le lo'	- P - 'S'	0-1	776
	20	784 988	5 536 - 356 A7A	kilo klo	10 K.		736
	40	200.171	11.990 - 356.434	hilo kloi	- B	1-1	720
	40	104 050	16 004 377 400		5 ID 19*	2-1	720
	~	278.037	30.777 - 372.478	ארפע - אר גע	D- F	2-1	110
		336.121	74.9863 - 372.498	3s²3p² - 3s3p'	¹ S - ¹ P*	0-1	726
	5 -	339.446	11.980 - 306.570	3s ² 3p ² - 3s3p ³	g'P - 'D'	2 - 2	726
		359.203	0 278.394	3s ² 3p ² - 3s3p ³	# P - P	0 - 1	726
	10	366.085	5.536 - 278.698	3s ² 3o ² - 3s3o ¹	* P - 'P	1-2	726
1	5	366.491	5.536 - 278.394	3a ² 3p ² - 3a3p ⁴	P P	I - I	726
	5	366.942	5.536 - 278.059	3s²3p² - 3s3p'	8'P - 'P	1 - 0	726
	1	130.040	16 004 . 304 670	1.11. 1.1.1			776
	-	370.939	30 774 - 300.370	ж.зр [.] - жэр	- D - D	2-2	/26
	N (374.927	11 780 - 278.098	36.30 - 36.3 0	8 P - P	2 - 2	726
		373.302	11.980 - 278.394	36, 3b 323b.	g 'P - 'P'	2 - 1	726
	3	412.629	U 242.346	30'30' - 3830	\$'P - 'D'	0 - 1	726
	20)	422.083	5.530 - 242.456	36'3p' - 363p'	g'P - 'D'	1 - 2	726
	5	422.282	5.536 - 242.346	3s'3p' - 3s3p'	g'P - 'D'	F - F	726
	20	431.154	11 980 - 243 916	3s ² 3p ² - 3s3p ¹	s 'P - 'D'	2 - 3	726
	0	1439.85	5.536 - 74.9863	3s ¹ 3p ¹ - 3s ¹ 3p ¹	g'P - 'S	1-0 F	726,442
		1587 1	11.980 - 74.9863	3s ² 3p ² - 3s ² 3p ²	g'P - 'S	2-0 F.P	375,726
				- ·	-		

CHROMUM XII (Cr¹¹⁻), Z = 24 Ground State $1s^22s^22p^43s^23p(^2P'_{1/2})$ (13 electrons) ionization Potential (2 404 000) cm⁻¹; (298.0) eV

Multiplet Rel. Int.	λ (in Ā)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
200	75.815	0 1319.00	3s²3p - 3s²4d	s ² P" - ² D	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	-	180
300	76.488	12.261 - 1319.65	3s ⁻ 3p - 3s ⁻ 4d	g'P' - 'D	1-1	1	180
	90.86	200.00 + W - 1300.6 + W	3s3p ² - 3s3p4s	· • • • • • • • • • • • • • • • • • • •	3-3		241
	96.11	1200.0 + X - 2240.5 + X	3s3p3d - 3s3p4f	¶F" - "G	1 - 4		241
	96.35	1170.0 + Z - 2207.9 + Z	3s3p3d - 3s3p4f	"F" - "G	- 1-1		241
	96.50	1180.0 + Y - 2216.3 + Y	3s3p3d - 3s3p4f	"F" - "G			241
	101.39	408.66 - 1394.95	¥s²3d − 3s²4f	D - ۲	1-1		241
	101.46	405.84 - 1395.45	35°3d - 35°4f	י ד י - סי	1_;	-	241
	244.70	0 408.66	3s²3p - 3s²3d	g'P' - D	1-1		239
	251.52	12.261 - 409.84	3×3p - 3s ² 3d	g'₽" - "D	i_i	1	239
	252.27	12.261 - 408.66	3s ² .p - 3s ² 3d	s'P' - 'D	<u>i_i</u>	P	267
	294.77	0 339.25	3s 3p - 3s3p	g'P" - 'P	1-1		239
	300.06	0 333.24	3s ² 3p - 3s3p ²	g ² P" - ² P	±-1	P	251
	305.81	12.261 - 339.25	3s ² 3p - 3s3p ²	² g ² P [*] - ² P	1-1		239
	311.55	12.261 - 333.24	3s ² 3p - 3s3p ²	₽'P" - 'P	1 1-1		239
	318.89	0 313.58	3s ² 3p - 3s3p ²	g ² P" - ² S	1 1-1	P	239
	320.20	188.84 + W - 501.15 + W	3s3p ² - 3p	" "P - "S"	1 1 - 1		239
	325.13	193.58 + W = 501.15 + W	3s3p - 3p	*P - *S*	1-1		239
	331.87	12.261 - 313.58	3s²3p - 3s3p²	: g ²₽* - ²S	1-1	P	239
	332.06	200.00 + W - 501.15 + W	3s3p' - 3p'	÷ 7-5	1-1		239
	393.00	0 254.45	3s ² 3p - 3s3p ²	:g²₽* - ²D	1-1	}	239
	410.91	12.261 - 255.62	3s-3p - 3s3p ²	g ²₽* - 2D	1-1	1	239
	412.90	12.261 - 254.45	3s'3p - 3s3p'	g'P' - 'D	1-1	P	239

CHROMIUM XIII (Cr¹²⁻), Z = 24Ground State 1s²2s²2p⁴3e²('S₀) (12 electrons) Ionization Potential (2 862 000) cm⁻¹; [354.8] eV

Multiplet Rel Int	λ.,, (in Å)	Levels (m 10° cm 1)	Configurations	Terms	J - J	Notes	References
······ ····	40.92	0.0 - 2443.80	3s² - 3s7p	g'S - 'P"	0-1		851
	43 75	0.0 - 2285 70	3s ² - 3s6p	g'S - 'P"	0-1		851
	47 26	203 45 - 2319.45	3s3p - 3s6d	⁷ P' - 'D	0 - 1		851
	47 34	207 38 - 2319 78	3s3p - 3s6d	'P' - 'D	1 - 2		851
	47 55	216 57 - 2319 57	313p - 316d	'P' - 'D	2 - 3		851
	49 03	216 57 - 2256 17	3s3p - 3s6s	'P' - 'S	2 - I		851
	49 59	00 - 2016 50	3s' - 3s5p	g'S - 'P"	0 - 1		851
	53 02	590.08 - 2476.18	313d - 317f	D - 'F'	3 - 4		851
	53 39	203 45 - 2076 45	3s3p - 3s5d	'P' - 'D	0 - 1		85i
50	53 506	207 38 - 2076 33	3s3p - 3s5d	'P' - 'D	1 - 2		180
100	53 765	216 57 - 2076 52	3s3p - 3s5d	'P' - 'D	2 - 3		180
	56 37	304 61 - 2078 61	353p - 355d	'P' - 'D	1 - 2		851
	56 96	207 38 - 1963 00	353p - 3555	'P" - 'S	1 - 1		851
	57 24	590.08 - 2337.08	353d - 356f	'D - 'F'	3 - 4		851
	65.04	216 57 - 1754 07	3s3p - 3p4p	'P' - 'S	2 - 1		851
	65 13	216 57 - 1751 97	3s3p - 3p4p	'P' - 'P	2 - 2		851
	65 39	216 57 1745 87	3s3p - 3p4p	'P' - 'D	2 - 3		851
50	65 968	590.08 2105.97	3530 3556	'D - 'F'	3 - 4		180

0

CR XIII -- Continued

						-				150					~	-								4 8	ğ	20					ž	5 g	8								8	i i	8	g
419 76	48.31	417.60	369.13	368-12	363.96	356.07	353.81	351.16	5	328.29	316.60	110.52	276.41	267.73	262.33	261.91	259.68	97.25	8.86	91.42	92.6	92.37	97.01	91.855	91.792	91,749	8.8	90.17	8 2	8 9,99	83.300 86.78	H. 198	54 .616	82,79	76.17	73 31	72.57	72.27	72.13	71.86	71.435	71 104	70 792	883
589.19 - 811.53	540.00 - 010.07 662.24 - 885.30	304.61 - 369.44	590.08 - 860.99	216.57 - 488.22	207.38 - 482.14	207.38 - 488.22	216.57 - 499.21	203.45 - 448.22	X17 18 - 400 71	0.0 - 304.61	569.44 - 885.30	12.1 CB = 12.1	499.21 - 460.99	216.57 - 590.08	207.38 - 588.56	207.38 - 589.19	203.45 - 518.56	662.24 - 1690.71	820.00 + L - 1852.40 + L	\$60.99 - 1931.42	\$60.99 - 1940.79	857.34 + R = 1939.94 + R	1512.11+R - 1938.91+R	590.08 - 1678.75	589.19 - 1678.61	588,56 - 1678,49	824.54 + K = 1925.24 + K	411.53 - 1920.53	105.20 - 1916.06	\$15.59 - 1930.09	499.21 - 1651.51	207.38 - 1345.26	203.45 - 1385.26	483.15 - 1690.71	304.61 - 1617.46	4979.21 - 1871.31 483 15 - 1847 25	488.22 - 1866.22	482 14 - 1865 84	483.15 - 1869.55	499.21 - 1890.81	216.57 - 1616.37	307.38 - 1616.37 316.57 - 1617 17	203.45 - 1616.04	0.0 - 1492 92
3434 - 3p34	prof prof. Dedr Deur	343p = 3p ³	Jerde - Pere	3439 - 3p ³	Js3p - 3p ²	3530 - 3p ²	3530 - 30 ⁷	raf - afst		3s' - 3s3p	Jo ² - Jo2d	Drdrdr	3p ² - 3p3d	343p - 363d	મ્યુન ને મુ	કેર્ડાટ - કેરડેલ	PCN - भेर Prote - भेर		3p3d - 3p4f	362 - 364	jbyf - prd	Jack - proc	3934 - 394f	343d - 344f	ઝેડેવ - ઝેસ્સ	Jave - dese Jave - dese	3034 - 3041	Joga - Joga	Jobd - Joff	3934 - 394f	Jon - Jones	3430 - 3444	Jabe - Jaks	30 ² - 344	9946 - dc45 2010 - d-5	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	20 - 20 C	24 24-C	30 ² - 304d	Padr dr	7747 - 055	100 - 1000	35.3p - 354d	3 3 -6
ַרָּד זְּדַיִּ	ים ב קיים	ק ק ז	ים - ים י	q' - 'q'	q' - 'q'	d d.	di - 10	ų. 1	 Ŧ	- S'B	۲- S - I	٩ - - 	ة ب ة أ	'P'' - 'D	0' - ۴	Ч г - 'D	7 7 0 7	י קיק	۲ <mark>۶</mark> - G	۲ ۵. - ال	ป ุ - บ	טָּ ס כ	ייייייייייייייייייייייייייייייייייייי	0 	ַר קיי	Ŭ ' ' ' '		า ้ - -	า - -	ۍ - ر <u>ا</u>		1 1 1 1 1	S	D T	۲ ۰ - ۲	בי קיי קיי	1 1 1 1 1	P - D,	ב ק	ק' - ק' -	ייקי טיט	ל ד ט ל	- 7 - 0	r'- 2'r
- بر ا ا بر ا - بر ا	2 U 1 1 1		J - J	2 - I p	1-0		2 - 2		- -	1 - 0	0	2-2	2-3 P	2 - 3		1 - 2		- 2 - 3 - 3	3 - 4	3 - 4	ي ا با با	1 - 1	- 0-	5 I I	2 - 3	1 - 0		μι •	2	4 - 5	2-1	-	0	2 - 3			1-2	0-1	2 - 3	2 - 2	2 - 2	 	1-0	
5	15	242	251	270	270	270	270	i i	ž	270.4	5	Ş	251	254	\$	ž	x	ž	141	241	241	241	žž	8	5		141	24	241	241		10	5	1	7 3	2 2	5	5	151	851	8 8	5 8	8	8

CR XIII -- Continued

Multiplet Rel Int	∧ , (m Å)	Levels (in 10° cm -')	Configurations	Terms	J - J	Notes	References
•	482.2	0 0 - 207 38	3s ² - 3s3p	g'S - 'P'	0 - 1	••	[13]
	560 11	304 6E - 483 15	3s3p - 3p	P - D	1 - 2	P	854

CHROMIUM XIV (Cr^{13 ·}), Z = 24 Ground State $1s^22s^22p^43s(^2S_{1/2})$ (11 electrons) Ionization Potential 3 096 500 cm ⁻¹; 384.17 eV

Multiplet Rel. Int	A , (m A)	Levels (m. 10° cm. ¹)	Configurations	Terms	J·J	Notes References
-		0 - 4658 3	2p*3s - 2p*3s ²	g ² S - ³ P ⁴	 	265
	21 770	D = 4593.5	2p*3s - 2p*3s	g S - P	1 - 1	265
0	35 450	0 - 2820.87	2p*3s - 2p*9p	g S - 'P'	÷ - ÷	118
2	36 466	0 - 2742.280	2p*3s - 2p*8p	g'S - 'P'		118
8	38 036	0 - 2629.068	2p*3s - 2p*7p	g S - P	- <u>1</u> _1	E 1 8
0	38 679	242 724 - 2828 105	2p*3p - 2p*9a	² ₽* - ² D	-	118
U	38 899	256 535 - 2827 295	2p*3p - 2p*9d	'P * - ¹ D	<u>+</u>	118
1	39 796	242 724 - 2755 539	2p*3p - 2p*8d	P* - D	<u>+</u> - +	. 118
2	40.018	256 535 - 2755 410	2p*3p - 2p*8d	P - D		118
7	40 782	0 - 2452 062	2p*3s - 2p*6p	g S - P	1-1	118
10	40 800	0 - 2450 980	2p*3+ - 2p*6p	g'S - 'P'	<u>+</u> _+	118
2	41 556	242 724 - 2649 115	2p*3p - 2p*7d	P - D		118
2	41 788	256 535 - 2649 566	2p*3p - 2p*7d	P D	₹ _₹	118
	42 453	256 535 - 2612 081	2p ¹]p = 2p ² 7	P* - S	÷	118
3	44 597	242 724 - 2485 027	2p*3p - 2p*6d	P D	<u>+</u> _+	118
4	44 869	256 535 - 2485 245	2p*3p - 2p*6d	P* D		118
15	45 835	242 724 - 2424 510	2p*3p - 2p*6n	P* - 5		118
1	46 039	589 568 - 2761 639	2p*3d - 2p*8f	D - F*	-	118
5	46 125	256 535 - 2424 510	2p*3p - 2p*6n	P* - S	÷_+	118
55	40 408	0 - 2152 018	2p*3s - 2p*5p	g S - 'P'	4.4	118
12	46 527	0 - 2149 289	2p*3+ 2p*5p	∎S P	i i	118
2	48 3(8)	587 867 - 2658 260	2p*3d - 2p*7f	D F	i_i	118
3	48 338	589 568 - 2658 333	2p*3d - 2p*7(D - F		118
1	50 R21	242 724 - 2210 414	2p*3p - 2p*5d	P* D	-	118
4	51 172	256 535 - 2210 728	2p*3p - 2p*5d	P D	÷. †	118
2	52 321	587 867 2499 145	2p*3d - 2p*6f	D - F'	4.4	118
3	52 363	589 568 - 2499 313	2p^3d 2p^6f	D F		118
25	51760	242 724 - 2102 RTI	2p*3p - 2p*5s	°P* = °S	÷	118
20	54 164	256 535 - 2102 811	2p*3p - 2p*5s	°₽* - 'S	- <u>1</u> -1	118
н	60 699	5H7 H67 2235 25	2p [*] 3d - 2p [*] 5f	D F	-	. 118
10	60 756	589 568 - 2235 28	2p*3d - 2p*5f	D F	ł.;	118
7()	63 324	0 - 1579 180	2p*3+ 2p*4p	g'S P	÷ .	118
60	63 539	0 - 1573 836	2p*3s - 2p*4p	g'S - P	÷_ +	118
4	64 005	589 568 - 2152 OIR	2p*3d - 2p*5p	D - P		118
10	68 594	242 724 - 1700 577	2p*3p - 2p*4d	P* - D		118
20	69 21 3	256 535 - 1701 350	2p*3p - 2p*4d	P D	<u>}</u> - <u></u>	118
10	69 247	256 535 - 1700 577	2p*3p - 2p*4d	·P* - ² D	۽ ۽ ڊ	118
25	80.916	242 724 1478 517	2p*3p - 2p*4s	°₽* - 'S	<u> </u>	118
30	A1 A3A	256 535 - 1478 517	2p*3p - 2p*4s	²₽⁼ ÷²S	- <u>1</u> -1	118
27	86 057	587 867 - 1749 887	2p*3d - 2p*4f	'D - 'F'	- <u>}</u> -}	118
28	86 164	589 568 - 1750 145	2p*3d - 2p*4f	'D ⁴ F'		118
10	101.05	589 568 1579 180	2p*3d - 2p*4p	'D - 'P'	1 - 1	118

CR XIV -- Continued

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J Notes	References
12	101.42	587.867 - 1573.836	2p*3d - 2p*4p	-D - ۲		118
10	187.02	1700.577 - 2235.25	2p*4d - 2p*5f	D-F	<u>+</u> _ +	1091
10	187.30	1701.350 - 2235.28	2p*4d - 2p*5t	D - F	-	1091
30	204.91	1749.887 - 2237.91	2p*4f - 2p*5g	F - G	-	1091
30	205.01	1750.145 - 2237.92	2p*4f - 2p*5g	`F' - `G	-	1091
50	289.735	242.724 - 587.867	2p*3p - 2p*3d	'P' - 'D	<u>1</u> - <u>1</u>	118,437
	300.271	256.535 - 589.568	2p*3p - 2p*3d	₽ - ۵	<u>+-</u>	118
	301 814	256.535 - 587.867	2p*3p - 2p*3d	- 'P' - 'D	÷-÷	118
250	389.81	0 - 256.535	2p*3s - 2p*3p	<u>к</u> 'S - 'Р'	<u>+</u> _+	270,437
200	411.99	0 242.724	2p*3s - 2p*3p	g'S - 'P'	÷-+	270,437

CHROMIUM XV (Cr¹⁴⁺), Z = 24 Ground State 1s²2s²2p⁵('S₀) (10 electrons) Ionization Potential 8 151 000 cm⁻¹; 1010.6 eV

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	13.294	0.0 - 7522.2	2s ⁻ 2p ⁺ - 2s ⁻ 2p ⁺ (·P ⁺)6d	g 'S - ∰	0 - 1	• · · · · •	716
10	13.416	0.0 - 7453.8	2s-2p* - 2s-2p*(-P*_)6d	g'S - 117	0 - 1		716
20	13.862	00 - 72140	2s ² 2p [*] - 2s ² 2p [*] (² P [*] ₁)5d	g'S - 11	0 - 1		716
20	13.991	0.0 - 7147.4	2s 2p* - 2s 2p*(P*)5d	g'S - 11	0 - 1		716
10	15 509	0.0 - 6447.9	2s 2p* - 2s 2p*(*5*)4s	g'S - 'P'	0 - 1		7;6
20	15.788	00-6333.9	2s ⁻ 2p [*] - 2s [*] 2p [*] (*P [*])4s	g S - 'P'	0 - 1		716
100	16.889	0.0 - 5921.0	2s ⁻ 2p* - 2s2p*(⁺ S)3p	g'S - 'P'	0 - 1		716
50	16.971	0.0 - 5894.5	2s 2p* - 2s2p*(S)3p	g'S - 'P*	0 - 1		716
400	18 497	0.0 - 5406.3	2s ⁻ 2p [*] - 2s ⁻ 2p [*] (⁻ P [*] ₋)3d	g'S - ∰	0 - 1		766
200	18 782	00-5324.2	2s ⁻ 2p [*] - 2s ⁻ 2p [*] (⁻ P [*])3d	g'S - ∰	0 - 1		766
5C	19.015	0.0 - 5259.0	2s ⁻ 2p [*] - 2s ⁻ 2p [*] (² P [*])3d	g'S - 11	0 - 1		766
400	20.863	00 - 4793 2	2s ² 2p* - 2s ² 2p*(² P _{1,2})3s	$g^{1}S = (\frac{1}{2}, \frac{1}{2})^{*}$	0 - 1	5	766
300	21 153	0.0 - 4727.5	2s ² 2p* - 2s ² 2p*(² P* ₂)3s	$g^{i}S = (\frac{1}{2}, \frac{1}{2})^{*}$	0 - 1		766
	21.213	00 - 4714.1	2s ² 2p* - 2s ² 2p*(*P* ;)3s	g'S - 封江	0 - 2	F	1112
	52.88	5269.0 + C - 7160.1 + F	2s ² 2p [*] (² P [*])3d - 2s ² 2p [*] (² P [*] ₂)5f	- F" - 招"	4-5	P	1055
	58.02	4714.1 - 6437.6	2s ² 2p*(² P* ₂)3s - 2s ² 2p*(² P*)4p		2 - 3	1	1055
	58 20	4793 2 - 6511.4	2s ¹ 2p*(¹ P* ;)3s - 2s ¹ 2p*(¹ P*)4p	(†.†)* - *P	1 - 1		1055
	62.375	4963.0 + C - 6566.2 + C	2s ⁻ 2p`('P')3p - 2s'2p`('P')4d	'P - 'D'	1 - 2		395
	62 481	4946 1 + C - 6546 6 + C	2s ² 2p ¹ (² P ¹ ₂)3p - 2s ² 2p ¹ (² P ²)4d	'D - 'D'	2-3	1	395
	62 837	4954 1 + C - 6545 5 + C	2s ² 2p ⁵ (² P ⁴ ;)3p - 2s ² 2p ⁵ (² P ⁴)4d	'D - 'F'	3 - 4		395
	62 951	5040.9 + C - 6629 4 + C	2s ⁻ 2p [*] (² P [*] ₁)3p - 2s ² 2p [*] (² P [*])4d	'P - 'F'	1 - 2		395
	63 055	5042.9 + C - 6628.8 + C	2s ⁻ 2p [*] (² P [*] ₂)3p - 2s ² 2p [*] (² P [*])4d	'D - 'F'	2 - 3		395
	63 31	4974 6 + C - 6554 1 + C	2s ² 2p ⁵ (² P ⁶ ;)3p - 2s ² 2p ⁶ (² P ⁶)4d	'P - 'F'	2 - 3	· P	395
	74.70	5255 0 + C - 6593 7 + C	2s ² 2p [*] (² P*)3d - 2s ² 2p [*] (² P* ₂₂)4f	· ₽• - 預引	2 - 2	1	1055
	74.97	5269.0 + C - 6602 9 + C	2s ² 2p [*] (² P*)3d - 2s ² 2p [*] (² P* ₂)4f	'F' - (1)	4 - 5		1055
	75 25	5312.1 + C - 6641.0 + C	2s ² 2p [*] (² P*)3d = 2s ² 2p [*] (² P* ₂)4f	'₽" - <u>(</u> ()	2 - 3		1055
	75 29	5274 3 + C - 6602 5 + C	2s ² 2p ⁵ (² P [*])3d = 2s ² 2p ⁵ (² P [*] ₂)4f	^{- 1} F* - 切	3 - 4		1055
	75 44	5360.5 + C - 6686 I + C	2s ² 2p [*] (² P*)3d = 2s ² 2p [*] (² P [*] _{1/2})4f	: 'F' - 扮	3-3	1	1055
	75 73	5360 5 + C - 6681.0 + C	2s ² 2p [*] (² P*)3d - 2s ² 2p [*] (² P* ₁₂)4f	'F' - 招	3-4		1055
	76 14	52924+C-66058+C	$2s^{2}2\mu = P^{*}$ $3d = 2s^{2}2p^{*}(^{2}P_{1/2}^{*})4f$	'D' - 扪	3 - 4		1055

CHROMIUM XVI (Cr¹⁵⁻), Z = 24Ground State 1s²2s²2p⁵(²P'_{3/2}) (9 electrons) Ionization Potential [8 850 000] cm⁻¹; [1097] eV

Multiplet Rel. Int.	λ.,, (m Å)	Levels (in 10' cm ¹)	Configurations	Terms	1-1	Notes	References
3	13.528	0.0 - 7392 1	2s ² 2p' - 2s ² 2p'('D)4d	g ² P' - ² S	1-1		1089
10	13.556	0.0 - 7376.8	2s ² 2p ¹ - 2s ² 2p ⁴ (¹ S)4d	g'P' - 'D	<u>i</u> <u>i</u> <u>i</u>		716
10	13.953	0.0 - 7166.9	2s ² 2p ⁴ - 2s ² 2p ⁴ ('P)4d	g'P' - 'P	1 1-1		716
10	14.039	0.0 - 7123 0	2s ² 2p' - 2s ² 2p'('P)4d	g ² P' - ² D	1-1-1	Q	716
	14.29	0.0 - 6997.9	2s ² 2p' - 2s ² 2p'('P)4d	g'P' - 'P	1 <u>1</u> <u>1</u>	P	716
	14.47	0.0 - 6910.8	2s ² 2p ⁴ - 2s ² 2p ⁴ (¹ S)4s	g ² P* - ² S	3-1		716
30	17.073	0.0 - 5857.2	2s ² 2p ⁴ - 2s ² 2p ⁴ (*S)3d	g'P' - 'D	1-1		850
50	17.242	70.890 - 587û.7	2s ² 2p ⁵ - 2s ² 2p ⁴ ('S)3d	g'P' - 'D	1-1	1	850
80	17.370	0.0 - 5757.1	2s ⁻ 2p' - 2s ⁻ 2p'('D)3d	g'P' - 'D	1-1	1	850
60	17.438	0.0 - 5734.6	2s ⁻ 2p ⁴ - 2s ² 2p ⁴ (¹ D)3d	g P - S	3-3	1	850
30	17.514	70.890 - 5780.6	2s ⁻ 2p ⁺ - 2s ⁻ 2p ⁺ (⁺ D)3d	g'P' - 'D	1-1		850
20	17.589	70.890 - 5756.2	2s ² 2p ⁴ - 2s ² 2p ⁴ (⁴ D)3d	g ² P* - ² P	1-1		850
50	17.603	0.0 - 5680.8	2s ² 2p ⁴ - 2s ² 2p ⁴ (⁴ P)3d	g ² P * - ² D	3-3		850
20	17 633	0.0 - 5671.2	2s ² 2p ⁴ - 2s ² 2p ⁴ ('P)3d	∶g²P* – ²P	1 - 1	1	850
40	17.671	0.0 - 5659.0	2s ⁻ 2p ⁴ - 2s ² 2p ⁴ (⁴ P)3d	g'P' - 'F	3-3		850
20	17.704	0.0 - 5648.5	2s ² 2p ⁴ - 2s ² 2p ⁴ (`P)3d	g ² P* - ² D			850
30	17.730	0.0 - 5640.2	2s ⁻ 2p [*] - 2s ⁻ 2p [*] ([*] P)3d	: g ² P* - *P	1 - 1		850
50	17 785	0.0 - 5622.7	2s ² 2p ⁴ - 2s ² 2p ⁴ (⁴ P)3d	g P - F	1-1-1		850
20	17.793	0.0 - 5620.3	2s 2p' - 2s 2p'('P)3d	g'P' - 'P	3 - 3		850
20	17 833	0.0 - 5607.7	2s ⁻ 2p [*] - 2s ⁺ 2p [*] (*P)3d	g P - P	- 1-1		850
20	17 856	70.890 - 5671.2	2s ⁻ 2p ⁺ - 2s ⁺ 2p ⁴ ('P)3d	g ² P* - ² P	<u><u>1</u> - <u>1</u></u>		850
20	17 931	70.890 - 5648.5	2s`2p" - 2s`2p'(`P)3d	g ¹ P" - 'D	1 <u>1</u> - <u>3</u>	1	850
30	17 993	70.890 - 5628.6	2s ⁻ 2p ⁺ - 2s ⁻ 2p ⁺ (*P)3d	g ² P" - ² P	<u>+-</u>		850
20	18.017	70.890 - 5620 3	2s ² 2p ⁴ - 2s ² 2p ⁴ (⁴ P)3d	g ² P* - *P	$\frac{1}{2} = \frac{1}{2}$	1	850
300	18 775	00 - 5325 3	2s 2p' - 2s 2p'(S)3s	g ² P* - ² S	<u> </u>	i.	850
80	19.038	70 890 - 5325.3	2s ² 2p* – 2s ² 2p*(*S)3s	g'P' - 'S	1 - 1		850
150	19 255	0.0 - 5193.5	2s ⁻ 2p [*] - 2s ⁻ 2p ⁴ ('D)3s	g ² P* = ² D	<u></u>	1	850
60	19 442	00 - 5143 5	2s ⁻ 2p [*] - 2s ⁻ 2p [*] ('P)3s	g ² P* - ² P	3 - 3	1	850
100	19 51 1	70 890 - 5196 2	2s ⁻ 2p ⁺ - 2s ⁻ 2p ⁺ (⁺ D)3s	g ² P* - ² D	<u></u>		850
100	19 538	0.0 - 5118 2	2s ² 2p [*] - 2s ² 2p ⁴ (*P)3s	g ² P* - ² P	·	-	850
200	19714	70 890 - 5143 5	2s ² 2p ¹ - 2s ² 2p ⁴ (¹ P)3s	$g^2P^4 = {}^2P$	<u> </u>		850
100	19 807	0.0 - 5048 7	2s ² 2p ⁴ - 2s ² 2p ⁴ (¹ P)3s	g ² P* - *P	. <u>1</u> -1	i.	850
10	19 847	70.890 - 5109 4	2s ² 2p ⁴ - 2s ² 2p ⁴ (¹ P)3s	g'P" - "P	· + - +	-	850
60	19 931	937 829 - 5950 3	2s2p* - 2s2p*(`P*)3s	² S - ² P*	<u>+</u>	1	850
20	19 995	70 890 - 5072 4	2s ² 2p ⁴ - 2s ² 2p ⁴ (*P)3s	g'P' - 'P	<u>+</u> - <u>+</u>		850
300	106.629	0 0 - 937 829	2s [.] 7p [*] - 2s2p [*]	g'P" - 'S	<u>;</u> <u>1</u> - <u>1</u>	Р	1104,1091
250	115 348	70 890 - 937 829	2s ² 2p [*] - 2s2p [*]	g ² P* - ² S	$\frac{1}{2} = \frac{1}{2}$	Р	1104,1091
	1410.6	0.0 - 70.890	2s 2p' - 2s 2p'	g ² P* - g ² P*	1 - 1	F,P	1137

CHROMIUM XVII (Cr^{16.}), Z = 24Ground State 1s²2s²2p⁴(²P₂) (8 electrons) Ionization Potential (9 560 000) cm⁻¹; (1185] eV

Multiplet Rel Int A (in A)	Levels (in 10° cm ⁻¹)	Configurations	Terms	1.1	Notes	References
- · · · · · · · · · · · · · · · · · · ·	• 0.0 - 6164.8	2x²2p4 - 2x²2p1(*P*)3d	, g'P - 'D*	2 - 3	+ 1	877
30 16 249	60 378 6214 6	2v 2p ⁴ - 2s ² 2p ⁴ (² P [*])3d	g'P 'D'	1 - 2		877
30 1631	58 146 - 6189 4	2x ² 2p ⁴ = 2x ² 2p ⁴ (² P ⁴)3d	g P 'D'	0-1		877
90 16.455	0.0 6075.3	2v ² p ⁴ - 2v ² p ⁴ (² D*)3d	. g'P ∘ 'D'	2 - 3	:	716
10 16.64	66 178 6070 0	2v 2p* 2v 2p ('D*)3d	g P D	1 - 2	:	877
40 16.675	263.00 6260.3	2s/2p* - 2s/2p*(/P*)3d	'S '₽*	0.1	P	947

CR XVII -- Continued

Multiplet	Rel. Int.	۸ (in Å)	Levels (in 10 ¹ cm ⁻¹)	Configurations	Тстив].]	Notes	References	
	10	16.696	135.10 - 6124.6	2s ² 2p ⁴ - 2s ² 2p ¹ (² D ⁴)3d	'D-'F'	2-3		877	
		16.773	135.10 - 6096.0	2s ² 2p ⁴ - 2s ² 2p ⁴ (² D [*])3d	ים' - ם'	2 - 2	P	877	
	10	16.811	0.0 - 5948.5	2s ² 2p ⁴ - 2s ² 2p ¹ (*S*)3d	g'P - 'D'	2-3		877	
	150	17.957	0.0 - 5568.9	2s ² 2p ⁴ - 2s ² 2p ⁴ (² D [*])3s	g'P - 'D'	· 2 - 3		865	
	50	17.968	135.10 - 5701.0	2s²2p* - 2s²2p*(*P*)3s	¹ D - ¹ P*	° 2 – 1		865	
	150	18.020	0.0 - 5549.3	2s²2p⁴ - 2s²2p³(²D*)3s	g'P - 'D'	2 - 2		865	
	50	18.219	60.378 - 5549.3	2s ² 2p ⁴ - 2s ² 2p ³ (*D*)3s	g'P - 'D'	1 - 2		865	
	200	18.336	0.0 - \$453.9	2s ² 2p ⁴ - 2s ² 2p ³ (*S*)3s	g'P - 'S'	2 – I	;	865	
	50	18.389	263.00 - 5701.0	2s ² 2p ⁴ - 2s ² 2p ¹ (² P ⁴)3s	¹ S - ¹ P*	0-1	ł	865	
	:	18.52	0.0 - 5399.4 + K	2s²2p⁴ - 2s²2p¹(⁴S*)3s	g'P - 'S'	2 - 2	Р	680	
	· 150	18.531	60.378 - 5453.9	2s²2p* - 2s²2p³(*S*)3±	g'P - 'S'	1 - I	1	865	
		18.73	60.378 - 5399.4 + K	2s [:] 2p ⁴ - 2s ² 2p ³ (*S*)3s	g'P - 'S'	1-2	P	680	
	150	89.57	0.0 - 1116.42	2s ² 2p ⁴ - 2s2p ³	g ³ P - ¹ P*	2 - 1		1091	
	10	94.49	58.146 - 1316.42	2s ² 2p ⁴ - 2s2p ¹	g'P - 'P*	0-1	t	1091	
	4	94-69	60.378 - 1116.42	2s ² 2p ⁴ - 2s2p ³	g ³ P - ¹ P *	1 - 1	1	1091	
	30	97.20	858.15 - 1886.95	2s2p' - 2p*	'P' - 'S	1-0	1	1091	
	250	101.91	135.10 - 1116.42	2s²2p⁴ - 2s2p³	'D - 'P*	2 - 1		1091	
	250	116.53	0.0 - 858.15	2s ² 2p ⁴ - 2s2p ⁹	g'P - 'P'	2 - 1		1091	
	110	117.20	263.00 - 1116.42	2s ² 2p ⁴ - 2s2p ³	'S - 'P'	0 - 1		1091	
	200	120.84	60.378 - 887.92	2s ⁻ 2p ⁴ - 2s2p ⁵	g'P - 'P'	1 - 0		1091	
	375	122.91	0.0 - 813.60	2s ² 2p ⁴ - 2s2p ⁴	g'P - 'P*	2 - 2	1	1091	
	150	125.00	58.146 - 858.15	2s ² 2p ⁴ - 2s2p ⁵	g'P - 'P*	0 - 1	i	1091	
	200	125.35	60.378 - 858.15	2s ² 2p ⁴ - 2s2p ⁴	g 'P - 'P*	1 – 1	1	1091	
	200	129.78	1116.42 - 1886.95	2s2p' - 2p*	'P' - 'S	1 - 0		1091	
	250	132.76	60.378 - 813.60	2s ² 2p ⁴ - 7s2p ⁴	g'P - 'P'	1 - 2	1	1091	
	10	147.40	135.10 - 813.60	2s ² 2p ⁴ - 2s2p ⁴	'D - 'P'	2 - 2		1091	
		380.2	0.0 - 263.00	2s ² 2p ⁴ - 2s ² 2p ⁴	g'P - 'S	2 - 0	F,P	375,1091	
		493.8	60.378 - 263.00	2s*2p* - 2s*2p*	g'P - 'S	I - 0	F	1120	
		740.8	0.0 - 135.10	2s²2p* - 2s²2p*	g'P - 'D	2 - 2	F	1120	
		781.9	135.10 - 263.00	2s ² 2p ⁴ - 2s ² 2p ⁴	'D - 'S	2 - 0	F,P	375,1091	
		1299.	58.146 - 135.10	2s ² 2p ⁴ - 2s ² 2p ⁴	g'P - 'D	0 - 2	F.P	375,1091	
		1338	60.378 - 135.10	2s ² 2p ⁴ - 2s ² 2p ⁴	g'P - 'D	1 - 2	F.P	375,1091	
		1656.3	0.0 - 60.378	2s ² 2p ⁴ - 2s ² 2p ⁴	s'P - s'P	. 2 - 1	F	1120	
		1720.	0.0 - 58.146	2s ² 2p ⁴ - 2s ² 2p ⁴	g'P - g'P	2 - 0	F.P	375,1091	

CHROMIUM XVIII (Cr^{17.}), Z = 24Ground State 1s²2s²2p³(⁴S_{3/3}) (7 electrons) Ionization Potential [10 480 000] cm⁻¹; [1299] eV

a sub an a' Ayi a sa'		an an an an an an an an an an an an an a	and the second second second second second second second second second second second second second second second	-	÷ .	, ,	
Multiplet Rel. In	nt À., (in À)	Levels (in 10' cm ⁻¹)	Configurations	Terms	1 · 1	Notes	References
an an an an an ann a	15.501	126.040 - 6577 2 + F	2s ² 2p ² - 2s ² 2p ² (*D)3d	'D' - 'F	• • • •	Р	877
	15.512	00-6446.6+F	2s'2p' - 2s'2p'('P)3d	g*S* - *P	<u>i</u> - <u>i</u>	P	877
10	15.52	0.0 - 6443.3	2s ² 2p ³ - 2s ² 2p ² (³ P)3d	g'S' 'P			877
	15.550	150.776 - 6581.7 + F	2s ² 2p ¹ - 2s ² 2p ² (¹ D)3d	D' P	4-4	Р	877
20	15.587	150.776 - 6564 7	2× 2p' = 2s ² 2p ² ('D)3d	$\mathbf{D}^{*} = \mathbf{F}$		Q	716,877
	15.835	150.776 - 6466.0 + F	2s ² 2p ³ - 2s ² 2p ² (³ P)3d	'D' - 'F	-	P	877
	16.292	264.482 - 6402.5 + F	2s ² 2p ¹ - 2s ² 2p ² (*P)3d	PP	4-4	Ρ	877
50	90.63	0.0 - 1103.35	2s ² 2p ¹ - 2s2p ⁴	g*S* - ¹ P	- <u>}</u> -}		1091
10	93.36	667 56 - 1738.69	2•2p* - 2p*	- *P - * P*			1091
4	94 16	0.0 - 1062.04	2x'2p' - 2x2p'	g'S' - 'S	- <u>}</u> . +		1091
150	95 77	126.040 - 1170.20	2s'2p' - 2s2p*	'D' - 'P	- 1. i		1091
150	102 32	126 040 - 1103 35	2s'2p' 2s2p'	D P	- i, i		1091

	CR	XVIII	- Continued
--	----	-------	-------------

Multiplet Rel. Int $\lambda = (m \hat{A})$	Levels (in 10 cm ⁻¹)	Configurations	Terms	1 - 1	Notes	References
300 104 98	150 776 - 1103 35	2s ² 2p ³ - 2s2p ⁴	² D* - ² P		•	1091
10 105 92	226.068 - 1170.20	2s ⁻ 2p ⁻ - 2s2p ⁴	°P* – °P	1 - 1		1091
150 106.84	126.040 ~ 1062.04	2s ² 2p ¹ - 2s2p ⁴	: D' - S	1 - 1		1091
IO 10837	0.6 - 922.77	2s ² 2p ¹ – 2s2p ⁴	g*S* - [÷] D	<u> </u>		1091
375 11041	264.482 - 1170.20	2s ² 2p ¹ - 2s2p ⁴	² P* – ² P	<u>+</u> - +		1091
110 112 27	922.77 - 1813 47	2s2p4 - 2p*	² D - ² P*	÷ - 1		1091
300 113 99	226.068 - 1103.35	2s ⁻ 2p ⁺ - 2s2p ⁺	² P* - ² P	<u>+</u> - +		1091
110 11921	264 482 - 1103 35	2s ⁻ 2p ⁺ - 2s2p ⁺	·P* - ·P	<u>i</u> - <u>i</u>		1091
200 119.62	226.068 - 1062.04	2s ² 2p ¹ - 2s2p ⁴	°P* - °S	<u>i</u> - i		1091
80 122 56	922.77 - 1738.69	2s2p ⁴ - 2p ⁴	² D - ² P″	<u> </u>	,	1091
250 123 87	931.41 - 1738.69	2s2p* - 2p*	D - P		•	1091
200 125.38	264.482 - 1062.04	2s ⁻ 2p ⁺ - 2s2p ⁺	² P* - ² S	<u>+</u> - <u>+</u>		1091
300 125 51	126.040 - 922.77	2s ⁻ 2p ⁻ - 2s2p ⁺	D' - D	÷_+		1091
375 128.10	150.776 - 931.41	2s ⁻ 2p' - 2s2p ⁺	² D' - ² D	÷_ •	.	1091
150 136.52	0.0 - 732.49	25 ⁻ 2p ¹ - 252p ⁴	s'S' - 'P	₹_ŧ		1091
375 139.87	00 - 714 95	2s ² 2p ¹ - 2s2p ⁴	g'S' - 'P	. i.i		1091
110 140.82	1103.35 - 1813.47	2s2p ⁴ - 2p ⁵	°P - °P*	· 1_1		1091
50 143 53	226.068 ~ 922.77	2s ² 2p ¹ - 2s2p ⁴	'₽* - 'D	<u>1</u> - <u>3</u>		1091
30 147 79	1062.04 - 1738.69	2\$2p* - 2p*	¹ S - ¹ P*	1-1		1091
300 149.80	0.0 - 667.56	2s ² 2p ³ - 2s2p ⁴	g'S' - 'P	- i - i		1091
200 149 94	264.482 - 931.41	2s ⁻ 2p' - 2s2p ⁴	⁷ 'P' - ² D	<u> </u>		1091
80 15546	1170.20 - 1813 47	2s2p* - 2p*	P - P	, <u>i</u> _i	;	1091
200 157.40	1103 35 - 1738.69	2s2p' - 2p'	² P - ² P*	- i_i	1	1091
378.10	0.0 - 264 482	2s ² 2p ³ - 2s ² 2p ⁴	g*S* - ⁻ P*	<u>1</u> - <u>1</u>	F,P	375,1091
442 34	0.0 - 226 068	2s ⁻ 2p ⁺ - 2s ⁺ 2p ⁺	g'S' - ² P'	÷-+	F,P	375,1091
663.24	0.0 - 150.776	2s ² 2p ¹ - 2s ² 2p ¹	g*S* - ² D*	÷_ •	F,P	375,1091
722.32	126.040 - 264.482	2s ² 2p ² - 2s ² 2p ³	D' - P'	÷.i	F.P	375,1091
793 3	0.0 - 126.040	2s ² 2p ¹ - 2s ² 2p ¹	g*\$* - ¹ D*	÷	F	1120
879 46	150 776 - 264.482	2 2p - 2s 2p	D' - P'	<u>i</u> _i	F.P	375,1091
999 72	126 040 - 226 068	2s ² 2p ¹ - 2s ² 2p ¹	'D' - 'P'	<u>-</u>	F,P	375,1091
1328	150 776 - 226.068	2s ² 2p' - 2s ² 2p'	'D' - 'P'	<u>+</u> - +	F.P	375,1091

CHROMIUM XIX (Cr^{10+}), Z = 24 Ground State $1s^22s^22p^2(^3P_0)$ (6 electrons) Ionization Potential [11 260 000] cm ⁻¹; [1396] eV

Multiplet Rel	Int A	. " (in A)	Levels (in 10° cm -')	Configurations	Terms	1.1	Notes	References
•	•	14 802	47 806 - 6803 5 + B	2x 2p - 2x 2p 3d	g'P - 'D'	1 - 2	P	940
		14 809	82 453 - 6835 0 + B	2 2p - 2 2p 3d	g'P - 'P'	- 2 - 2	P	949
	10	14 836	82 453 - 6822 5 + B	25 2p - 25 2p3d	g'P - 'D'	2 - 3	P	949,716
	n	14 925	184 596 - 6885 7 + B	2x 2p 2x 2p 3d	¹ D - ¹ P*	2 - 1	Q	716,949
		15 027	82 453 - 6737 1 + B	2 2p 2 2p 3d	g'P - 'F'	2 - 3	P	949
		15 160	298 87 - 6885 7 + B	2. 2p 2. 2p 3d	"S - "P"	0 - 1	P	949
		15 251	184 596 - 6742 2 + B	2v 2p - 2v 2p.ld	'D - 'D'	2 - 2	Р	949
		15301	686 83 - 7222 3 + F	252p 252p (*P)3d	'D' 'F	3 - 4	P	877
		1591	82 453 6367 6	2s 2p = 2s 2p 3s	g'P - 'P"	2 - 2	P	375
	10	95 62	404.41 1450.73	2×2p 2p*	ŠΥ P	2 - 2		1091
	30)	95 88	47.806 - 1090.68	2 2p 2 2p	g'P 'P'	1 1		1091
1	10	104-18	0.0 959.88	2.2p 2.2p	g'P 'S'	0 - 1		1091

C-59

CR XIX - Continued

Multiplet Rel. Int.	λ., (in Å)	Leveis (in 10° cm -)	Configurations	Terms	J - J Notes	References
200	109.64	47.800 - 959.88	2s [.] 2p ² - 2s2p	g P - 'S'		1091
250	110.37	184.596 - 1090.68	2s 2p - 2s2p	'D - ' P *	2 - 1	1091
50	111.18	686.83 - 1586.24	$2s2p^{2} - 2p^{4}$	D' - D	3 - 2	1091
80	111.88	82.453 - 976.22	2s ² 2p ² - 2s2p ²	g`P - 'D*	2 - 2	1091
300	113.97	82.453 - 959.88	2s ² 2p ² - 2s2p ³	g'P - 'S*	2 - 1	1091
110	118.31	672.77 - 1517.98	2s2p* - 2p*	'D* - 'P	1-0	1091
150	118.67	671.63 - 1514.32	2s2p ⁺ - 2p ⁺	'D' - 'P	2 - 1	1091
110	118.83	672.77 - 1514.32	2s2p* - 2p*	`D" - 'P	1 - 1	1091
50	125.93	0.0 - 794 12	2s ² 2p ² - 2 <u>5</u> 2p ³	g P - 'P'	0 - 1	1091
175	126.30	298.87 - 1090.68	2s ⁻ 2p ⁻ - 2s2p ⁺	'S - 'P"	0 - 1	1091
200	125.33	184.596 - 976.22	2s ² 2p ² - 2s2p ³	¹ D – ¹ D*	2 - 2	1091
4	127.95	804.74 - 1586.24	2s2p ⁺ - 2p ⁴	'₽" - 'D	2 - 2	1091
375	128.43	671.63 - 1450.23	2s2p - 2p4	'D * − 'P	2 - 2	1091
30	128.63	672.77 - 1450.23	2s2p' - 2p*	'D' - 'P	1 - 2	1091
250	130.99	686.83 - 1450.23	2s2p' - 2p*	`D` - `P	3 - 2	1091
10	132.11	47.806 - 804.74	2s ² 2p ² - 2s2p ³	g P - 'P'	1 - 2	1091
250	133.99	47.806 - 794.12	2s ² 2p ² - 2s2p ³	g'P - 'P'	1 - 1 .	1091
80	134.89	47.806 - 789.15	2s ² 2p ² - 2s2p ³	g'P - 'P*	1 - 0	1091
10	137.89	789.15 - 1514.32	2s2p ⁺ - 2p ⁴	' P' - 'P	0 - 1	1091
50	138.15	794.12 - 1517.98	2s2p ⁺ - 2p ⁺	'P" - 'P	i - 0	1091
. 300	138.45	82.453 - 804.74	2. 2p ² - 2s2p ³	g'P - 'P'	2 - 2	1091
4	138.86	794.12 - 1514.32	2s2p ⁺ - 2p ⁺	' P' - 'P	1-1	1091
÷ 30	140.51	82.453 794.12	2s ² 2p ² - 2s2p ⁴	g'P - 'P"	2 - 1	1091
110	140.92	804.74 - 1514.32	2s2p' - 2p*	'P" - 'P	2 - 1	1091
110	143.57	1090.68 - 1787.21	2s2p' - 2p*	" P " = "S	1-0	1091
110	148.64	0.0 - 672.77	2s ² 2p ² - 2s2p ³	g'P - 'D'	0 - 1	1091
30	152.42	794.12 - 1450.23	2s2p' - 2p*	'P' - 'P	1 - 2	1091
30	154.92	804.74 - 1450.23	2s2p' - 2p*	'P' - 'P	2 - 2	1091
10	160.01	47.806 - 672.77	2s ² 2p ² - 2s2p ⁴	g'P - 'D*	1-1	1091
150	160.30	47.806 - 671.63	2s ² 2p ² - 2s2p ³	g'P - 'D*	1 - 2	1091
250	163.94	976.22 - 1586.24	2s2p' - 2p*	' D* - 'D	2 - 2	1091
150	165.46	82.453 - 686.83	2s ² 2p ² - 2s2p ³	g'P - 'D"	2 - 3	1091
4	169.73	82.453 - 671.63	2s ² 2p ² - 2s2p ⁴	: g'P - 'D'	2 - 2	1091
50	179.18	959.88 - 1517.98	2s2p' - 2p4	'S' - 'P	1-0	1091
30	180.37	959.88 - 1514.32	2s2p' - 2p*	'S' - 'P	1-1	1091
10	201.82	1090.68 - 1586.24	2 12p' - 2p'	'P" - 'D	1 - 2	1091
300	203.94	959.88 - 1450.23	2s2p' - 2p'	'S' - 'P	1-2	1091
	310.6	82.453 - 404.41	$2s^22p^2 - 2s2p^3$	g'P - 'S'	2-2 P	375,1091
	398.4	47.806 - 298.87	$2s^{2}2p^{2} - 2s^{2}2p^{2}$	g'P - 'S	1-0 F	1120
	462.07	82 453 - 298.87	$2s^{2}2p^{2} - 2s^{2}2p^{2}$	g'P - 'S	2-0 F,P	375,1120
	541.72	0.0 - 184.596	2s ² 2p ² - 2s ² 2p ³	g'P - 'D	0-2 F,P	375,1120
	731.1	47.806 - 184.596	$2s^{2}2p^{2} - 2s^{2}2p^{2}$	g'P - 'D	1 - 2 F	1120
	875.09	184.596 - 298.87	$2s^{2}2p^{2} - 2s^{2}2p^{2}$	'D - 'S	2-0 F,P	375,1120
]	979 .0	82.453 - 184.596	2s'2p' - 2s'2p'	g'P - 'D	2-2 F	1120
	1213	0.0 - 82.453	$2s^{1}2p^{2} - 2s^{2}2p^{2}$	g'P - g'P	0-2 F,P	375,1120

2

CHROMIUM XX (Cr¹⁰⁻), Z = 24 Ground State $1s^22s^22p(^{2}P_{1/2}^{*})$ (5 electrons) Ionization Potential [12 070 000] cm⁻¹; [1496] eV

Multiplet Rel. Int.	እ _ት (መ Å)	Levels (in 10 ⁴ cm ⁻¹)	Configurations	Terms	J - J Notes	References
3	10.712	0.0 - 9335.3	2s [:] 2p - 2s [:] 4d	g P - D	1-1:	1089
2	10.840	82.950 - 9308 1	2s [:] 2p - 2s [:] 4d	g'P' - ² D	<u></u> - <u></u> - <u></u> - <u></u> - <u></u> -	1089
3	10.940	0.0 - 9145.0	2s [:] 2p - 2s [:] 4s	g'P' - 'S	$\frac{1}{2} - \frac{1}{2}$	1089
5	11.030	82.950 - 9145.0	2s ⁻ 2p - 2s ⁻ 4s	g ²₽" - ²S	1-1	1089
	13.631	0.0 - 7336.2 + F	2s²2p – 2s2p('P)3p	g`P' - 'D	1-1 P	877
	13.683	82.950 - 7391 2 + F	2s²2p - 2s2p(³P)3p	g ² P" - ² D	1-1 P	877
	13.910	0.0 - 7189.1 + F	2s ² 2p - 2s2p(³ P)3p	$g^2P^* = {}^2P$	1-1 P	877
	13.946	82.950 - 7253.4 + i ²	2s ⁻ 2p - 2s2p(`P)3p	, g²P* − ²P	<u>-</u> P	877
2	14.065	861.671 - 7971.6	2s2p ² - 2s2p(¹ P*)3d	°D° - 9′	<u>+-</u> +	1089
I	14.093	653.010 - 7748.8	2s2p ² - 2s2p('P*)3d	<u>'</u> D – ' F '		1089
	14.129	0.0 - 7077.6 + F	2s²2p - 2s²3d	g ² P* - ² D	<u>1</u> -1 P	877
10	14 205	428.13 - 7466.4 + F	2s2p ² - 2s2p('P*)3d	'P - 'P'	Q	716,877
	14.214	428.13 - 7463.4 + F	2s2p ² - 2s2p('P')3d	"P - "D"	- P	877
2	14.261	428.13 - 7440.3	2:2p ² - 2s2p('P')3d	* *P - *F*		1089
	14.447	653.010 - 7574.9 + F	2s2p ² - 2s2p(¹ P*)3d	'D - 'F'	1-1 P	877
	14.524	640.990 - 7526.2 + F	2s2p ² - 2s2p(³ P*)3d	²D - ²F'	2-2 P	877
0	14.641	640.990 - 7470.1 + F	2s2p ² - 2s2p('P*)3d	'D - 'D'	: <u>}-</u> }_Q	716,877
	14.669	653.010 - 7470.1 + F	2s2p ² - 2s2p('P*)3d	'D - 'D'	<u>∃</u> - <u>∃</u> P	877
30	15.061	82.950 - 6724.5	2s²2p - 2s²3s	g ² P* - ² S	1-1 Q	716,375
80	116.05	0.0 - 861 671	2s [:] 2p - 2s2p [:]	g P - P	1 1-1	1091
30	117.95	0.0 - 847.763	2s²2p - 2s2p²	g ² P* - ² P	$\frac{1}{2} = \frac{1}{2}$	1091
10	122.29				•	1091
375	128 42	82 950 - 861.671	2s ⁻ 2p - 2s2p ⁻	g²P* - ²P	3-3	1091
50	129 26	640.990 - 1414.60	2s2p² - 2p ³	² D – ² P *	1 - 1 1 - 1	1091
250	1 30 76	82.950 - 847.763	2s ² 2p - 2s2p ²	g ² P' - ² P	<u>1</u> - 1	1091
150	131 31	653.010 - 1414.60	2s2p ² - 2p ¹	2D - 2P*	3-1	1091
250	131 50	0.0 - 760.410	2s ² 2p - 2s2p ²	g²P" - ²S	1 - 1 ·	1091
150	133 82	352.33 - 1099 51	2s2p ² - 2p ³	'P - 'S'	2-3	1091
110	135 26	640.990 - 1380.28	2s2p ² - 2p ⁴	'D - 'P'	1 - <u>1</u>	1091
250	140 75	389.12 - 1099.51	2s2p ² - 2p ⁴	'P - 'S'	<u> </u>	1091
4	147 62	C1.950 - 760 410	2s ² 2p - 2s2p ²	g ² P [*] - ² S	2-1	1091
250	148.99	428 13 - 1099 51	2s2p' - 2p'	'P - 'S'	. 3- 3 :	1091
30	152 86	760 410 - 1414 60	2s2p - 2p	S - "P"	<u>1</u> - <u>1</u>	1091
200	156.00	0.0 - 640 990	2s ⁻ 2p – 2s2p ⁻	g²P" - °D	<u>1</u> - 1	1091
10	161 33	760 410 - 1380 28	2s2p' - 2p'	·S - 'P'	1 - t	1091
50	164 63	640 990 - 1248 39	2s2p ² - 2p ³	'D - 'D'		1091
200	167 97	653 010 - 1248 39	2s2p - 2p	² D - ² D*		1091
80	169 87	640 990 - 1229.67	2s2p - 2p	D - 'D'		1091
50	173 42	653 010 - 1229 67	2s2p - 2p	² D - ² D*	-	1091
150	175 42	82 950 - 653 010	2s 2p - 2s2p	g'P' - 'D		1091
4	176 42	847 763 - 1414 60	2s2p - 2p	P - 'P'	4-4	1091
50	179 21	82 950 - 640 990	2s ² p - 2s2p ⁻	g'P" - 'D	<u>;-</u> ;	1091
\$()	180.85	861 671 - 1414 60	2s2p - 2p	P - P	4-4	1091
30	187 74	847 763 - 1380 28	2•2p' - 2p'	P - 'P'	1-1	1091
4	192.82	861 671 - 1380 28	2•2p - 2p	·P - P*	1-1	1091
50	213-10	760 410 - 1229 67	2+2p - 2p	S D'	<u>†</u> - †	1091
	2570	0.0 - 389 1.2	2*2p - 2*2p	g P - *P		1058
50	258 57	861 671 1248 39	2*2p 2p	P D'	<u>+</u> - •	1091
10	271 72	861 671 1229 67	252p 2p	P D'		1091
	2#3 H	0.0 352 33	2* 2p 2*2p	g P' ' P	P P	1058
	289 7	82 950 428 13	2× 2p - 2×2p	g P * P		1058
	326.6	82 950 389 12	2×2p 2×2p	g P 'P	1.1	1058
	371.2	H2 950 152 13	2 2p 2 2p	g P P	tot P	1058
	1204.9	0.0 B2 950	2×2p 2×2p	g P' g P	1 + 1 = F	1120

.

CHROMIUM XXI (Cr^{31.}), Z = 24Ground State 1s²2s²('S₀) (4 electrons) Ionization Potential [13 180 000] cm⁻¹; [1634] eV

Multiplet Rel. Int.	λ., (in Å)	Levels (in 10 ^s cm ⁻¹)	Configurations	Terms	J-J No	les References
10	12.909	341.12 - 8087.1 + B	ls ² 2s2p - 1s ² 2p3p	'P' - 'P	1-1 0	716.619
10	12.981	405.03 - 8108.7	ls 2s2p - 1s 2p3p	'P' - 'S	2 - 1	643
0	13.018	405.03 - 8086.8	1s ² 2s2p - 1s ² 2p3p	'P' - 'D	2 - 3	643
0	13.060	318.04 - 7975.1	1s ⁻ 2s2p - 1s ⁻ 2p3m	'P' - 'D	: 0 - 1	643
	13.081	0.0 - 7644.7 + B	ls ⁻ 2s ⁻ – ls ⁻ 2s3p	g'S - 'P'	0-1 F	619
0	13.123	0.0 - 7620.2	ls ² 2s ² - Is ² 2s3p	g'S - 'P'	0 - 1	643
9	13.205	667.23 - 8241.3	ls 2s2p - Is 2s3s	"P" - "S	1-0	643
	13.316	667.23 - 8177.0 + B	!s ⁻ 2s2p - 1s ⁻ 2p3p	'P' - 'D	1-2 F	619
	13.514	318.04 - 7718.0 + B	ls ⁻ 2s2p - ls ⁻ 2s3d	ר - ¶'	0-1 F	619
10	13.55	341.12 - 7721.2	ls ² 2s2p - ls ² 2s3d	'P' - 'D	1 - 2	877
G	13.647	405.03 - 7732.7	is ² 2s2p - is ² 2s3d	' P' - 'D	2 - 3	643
0	13.684	911.09 - 8218.8	1s²2p² – 1s²2p3d	'Р - '9'	1 – 1	643
0	13.752	947.08 - 8218.8	ls²2p² - ls²2p3d	'P - 'P'	2 - 1	643
10	13.760	864.74 - 8134.4	ls [:] 2p [:] – ls [:] 2s2p	'Р - 'D'	0-1 (877
10	13.779	947.08 - 8204.5	1s ⁻ 2p ² - 1s ² 2p3d	'P - 'D'	2 - 3	643
10	13.844	1051.89 - 8275.4	1s²2p² – 1s²2p3d	'D - '9"	2 – 1	643
0	13.870	911.09 - 8121.0	ls² s 2p3d	'P - 'D'	1 - 2	643
0	13.950	1051.89 - 8220.4	ls²2p² – ls²2p3d	'D - 'P'	2 - 2	643
10	14.029	667.23 - 7795.3	ls ² 2s2p - {s ² 2s3d	'P' - 'D	1-2	619,716
0	14.041	341.12 - 7463.2	ls [:] 2s2p - 1s [:] 2s3s	'P' - 'S	1 1 - 1	643
2	14.172	405.03 - 7463.2	ls²2s2p - ls²2s3s	'P' - 'S	2-1 0) 1069
2	14.217	911.09 - 7946.8	is²2p² – 1s²2p3s	'P - 'P"	1-2 0) 1069
	14.244	1254.91 - 8275.4	1s²2p² – 1s²2p3d	'S - 'P"	0-1 1	P 619
	14.457	1051.89 - 7969.0	ls²2p² – ls²2p3s	" D - " P "	2 - 1 1	P 619
a	14.896	1254.91 - 7969.0	ls²2p² - 1s²2p3s	· 'Σ = ' Ρ'	0 - 1 1	619
300	149.87	0.0 - 667.23	is²2s² - 1s²2s2p	' g'S − 'P'	0 - 1	1091
° 50	154.61	405.03 - 1051.89	ls ² 2s2p - 1s ² 2p ²	' P' - 'D	2 - 2	1091
, 80	165.03	341.12 - 947.08	ls²2s2p - 1s²2p²	' P' - 'P	1 - 2	1091
50	168.62	518.04 91L09	$1s^{2}2s^{2}p - 1s^{2}2p^{2}$., b. – , b	0 - 1	1091
50	170.16	667.23 - 1254.91	ls²2s2p – 1s²2p²	'P' - 'S	1 - 0	1091
150	175.45	341.12 - 911.09	1s ² 2s2p - 1s ² 2p ²	'P" - 'P	1 - 1	1091
- 110	184.48	405.03 - 947.08	1s²2s2p - 1s²2p²	: 'P' - 'P	2 - 2	1091
50	190.98	341.12 - 864.74	1s ² 2s2p - 1s ² 2p ²	'P' - 'P	1-0	1091
. 10	197.61	405.03 - 911.09	1s ² 2s2p - 1s ² 2p ²	'P' - 'P	2 - 1	1091
10	259.97	667.23 - 1051.89	1s ² 2s2p - 1s ² 2p ²	'P" - 'D	1 - 2	1091
50	293.15	0.0 - 341.12	1s ² 2s ² - 1s ² 2s2p	g'S - 'P'	0 - 1	437,730

CHROMIUM XXII (Cr^{21.}), Z = 24Ground State 1s²2s(²S_{1/2}) (3 electrons) Ionization Potential 13 882 000 cm ⁻¹; 1721.6 eV

Multiplet	Rel. I	nt.	λ.". (in Å)	Levels (in 10	'cm ')	Configu	rations	Ter	ins.	1.1	Notes	References
	•	···· • ·	2.190	0.0 - 45	662.	15'25 -	1s2s2p	e'S -	7 P*	14	P	631
	ļ	;	7.562	0.0 - 13	224.1	1s'2s -	1s ² 9p	g'S -	'P'	<u></u>	P	643
	1		7.664	0.0 - 13	048.4	1s'2s -	ls'8p	g'S -	¹ P*	1 1-1	Р	643
	i.		1.774	357.49 - 13	220.9	ls²2p -	11190	· P* -	'D	1 1-1	P	643
	Į.	- í	7.817	0.0 - 12	793.6	is'2s -	1s'7p	g'S -	²P*	1 1-1	P	643
	1		7.828	448.40 - 13	223.0	1s'2p -	ls'9d	· · · · P* -	'D	1.1	P	643
	i i			1]]	

CH XXII -- Continued

References	Notes	J - J	Terms	Configurations	Levels (in 10° cm -)	λ _ (m Å)	Multiplet Rel Int
643	P	•	P* - ² D	1s ⁻ 2p - 1s ⁻ 8d	357 49 - 13046.2	7 881	• •
643	P		P - D	Is 2p - Is 8d	448.40 - 13049 2	7 936	
643	P	<u>+-</u> +	P - D	1s ² 2p - 1s ² 7d	357 49 - 12792 2	8 042	
643	P	1 - 1	g'S - 'P'	15-25 - 15-6p	00 - 12398 O	8.066 S	
643	P	<u>; - </u>	P - D	1s ² 2p - 1s ² 7d	448 40 - 12794 1	н 100	
643	P	:-:	P - D	1s 2p - 1s 6d	357 49 - 1240G O	8,304	
643	P	÷_ =	P - D	Is ¹ 2p - Is ¹ 6d	448 40 - 12403 0	8 365	
643	P	<u>†</u> = †	g S - P	Is 2s - Is 5p	0.0 ~ 11743.0	8 516	
643	Р	1-1	P D	Is 2p - Is 5d	357 49 - 11749 6	N 77N	
643	Р		P D	1s 2p - 1s 5d	448 40 - 11751 7	8.847	
977	P	: - :	g S - P	1s/2s = 1s/4p	0.0 - 105397	4 488	
977	Р	<u>:</u> - :	g S - P	1s/2s = 1s/4p	0.0 ~ 10528.3	4 4 98	
977	Р	<u>+</u> -+	₽* - ¹ D	1s/2p - 1s/4d	357 49 - 10555 3	9 506	
977	Р	t – †	P* - S	1s 2p - 1s 4s	357 49 - 10489 0	9.870	
97 7	P		P' D	1s 2p - 1s 4d	448 40 - 10558 6	9 891	
977	Р	• - •	P* - S	1s 2p - 1s 4s	448 40 - 10489 0	9.966	
977,273	P	• • •	g S P	1x 2x = 1x 3p	0.0 - 7928 32	12 613	100
977,273	٢	: - :	g S - P*	Ts 2s - Ts 3p	0.0 - 7901.26	12.656	200
977,273	Р	• - •	"P" - "D	1s 2p - 1s 3d	357 49 - 7966 68	13 142	200
977,273	Р	÷. ÷	P D	1s 2p - 1s 3d	448 40 - 7975 12	13 286	200
977,273	P	÷	P* - S	1s 2p = 1s 3s	357 49 - 7804 86	E3-428	20
977,273	Р	• - •	P' S	18/2p - 18/38	448-40 - 7804-86	13 594	200
977,730	₽	•	g S - P'	18/28 - 18/2p	() () = 448 4 ()	223-045	150
977,730	P	t = t	g S - P*	18/28 - 18/2p	0.0 - <u>357</u> 49	279 731	120

CHROMIUM XXIII (Cr²²), Z = 24 Ground State $1s^2(^1S_0)$ (2 electrons) Ionization Potential 60 349 000 cm 1 ; 7482.4 eV

Multiplet Rel. Int	A , (in A)	Levels (in 10 cm -)	Configurations	Terms	J - J Notes	References
•	1 724	0.0 580231	ls is5p	g S P	0 - 1 P	728
	1 763	0.0 - 56714.4	1s - 1s4p	g S - P'	0 1 P	728
	1.856	0.0 - 53888 2	1s = 1s3p	g'S - P*	0 I P	728
	2 182	0.0 - 45832.0	1s 1s2p	g'S - 'P'	0-1 P	956
L	2 192	0.0 - 45614.9	1s 1s2p	g'S P	0-1 P	856
	2 203	0.0 - 453891	15 - 1525	g'S S	0 - 1 - F.P	375,918
	11.82	45389 1 - 53850 9	1 s2s - 1 s3p	'S - 'P'	I-2 P	375
	12.09	45619 () - 53888 2	1525 153p	'S 'P'	0-1 P	375
	326 26	45389 - 45695 6	1×2× 1×2p	S P*	1-2 P	375
	469 48	45619 0 - 45832 O	1525 - 152p	S 'P'	0-1 P	375
	1154 73	53764 3 - 53850 9	1838 - 183p	'S P*	1 - 2 P	375
	15#2 28	538250 - 538882	1535 153p	S - P*	0 - 1 P	375

.

1

.

C-63

CHROMIUM XXIV (Cr²³⁻), Z = 24 Ground State 1s($^{2}S_{1/2}$) (1 electron) Ionization Potential 63 675 300 cm ⁻¹; 7894.79 eV

Multiplet Rel. Int. A., (in Å)	Levels (in 10° cm ⁻¹)	Configurations	Terms] - J	Notes	Reference
1.603	0.0 - 62385 1385	Is - 7p	g 5 - P		÷ -	1042
1.615	0.0 - 61919 1477	ls – 6p	g S - P	$\frac{1}{2} = \frac{1}{2}$	Р	1042
1 030	0.0 - 61141.5413	ls – 5p	g S - P	:-:	Р	1042
1.675	0.0 - 59715.3160	ls – 4p	g S - P*	<u>i</u> – <u>i</u>	P	1042
1.766	0.9 - 56634 2120	1s – 3p	g S - P	<u>†</u> – †	Р	1042
1 767	0.0 - 56597 5100	1s - 3p	g S - P*		P	1042
2.090	0 0 - 47843 0420	ls - 2p	g S - P	<u>.</u>	P	1042
2.0%	0.0 - 47719 2500	1s - 2p	g S - P	<u>; - †</u>	P	1042
6 820	47722 8200 - 62385 1385	25 - 7p	S - P	t - t	P	1042
6 877	47643 0420 - 62385 1385	2p - 7d	P - D	÷ - †	P	1042
7.044	47722.8200 - 61915.1477	2s – 6p	S - P	<u>:</u> - :	P	1042
7 104	47843.0420 - 61919 1477	2p - od	P* - D	÷	Р	1042
7 452	47722.8200 - 61141 5413	2s - 5p	¹ S - ¹ P*	<u>†</u> – †	P	1042
7.518	47843 0420 - 61144 1334	2p - 5d	P' - D		P	1042
8 339	47722 8200 - 59715 3160	2s - 4p	S - P*		Р	1042
8.419	47843.0420 - 59720.3786	2p - 4d	P* - D	-	Р	1042
11 222	47722 8200 - 56634 2120	2s 3p	S - P		P	1042
11 360	47843 0420 - 56646 2052	2p - 3d	P* - D	<u>†-</u> ‡	Р	1042
17 281	56598 5810 - 62385 1385	35 - 7p	S - P	÷_÷	Р	1042
17 388	56634 2120 - 62385 1385	3p - 7d	P - D	<u>i</u> _i	Р	1042
17 425	50646 2052 - 62385 1385	3d - 7f	² D - ² F*		Р	1042
18 795	56598.5810 - 61919 1477	3s - 6p	S - P		P	1042
18.922	56634 2120 - 61919 1477	3p - 6d	P - D		P	1042
18.965	56646.2052 - 61919 1477	3d - 6f	D - 'F'		P	1042
22 012	56598.5810 - 61141.5413	3x - Sp	² S - ² P*	1-1	P	1042
22 173	56634.2120 - 61144 1334	3p - 5d	'P' - 'D		Р	1042
22.226	56646 2052 - 61145 4279	3d - 5f	D - 'F'	-	Р	1042
32.085	56598.5810 - 59715.3160	3s - 4p	'S - 'P'		Р	1042
32.403	56634.2120 - 59720.3786	3p - 4d	D [:] - "D		· P ·	1042
32 502	56646.2052 - 59722.9060	3d - 4f	² D - 'F'		P .	1042
831.794	47722 8200 - 47843.0420	2s - 2p	² S - ² P*	¥_4	P	1042

D. Magnetic Dipole Lines for Chromium Ions (Wavelengths, Classifications, and Transition Probabilities)

1 I I

[Excerpted from: V. Kaufman and J. Sugar, J. Phys. Chem. Ref. Data 15, 321 (1986)]

1. Introduction

The following tables, including the introductory comments, are excerpted from the above cited compilation of observed and predicted wavelengths of magnetic dipole lines arising within ground configurations of the type ns^2np^4 (n = 2 and 3, k = 1 to 5). The compilation work was done by V. Kaufman and J. Sugar of the National institute of Standards and Technology (formerly the National Bureau of Standards).

All measured lines that are correctly identified are included. Some are only tentatively classified by the authors, but appear to be reasonable on the basis of predictions along isoelectronic sequences.

Also included is a selected group of electric quadrupole lines (E2) that are frequently observed in ns^2np^2 and ns^2np^4 configurations; these are the ${}^1D_2 - {}^1S_0$ transitions. It will probably be difficult to observe the nsnp $({}^3P_{0,1,2} - {}^1P_1)$ transitions in the Be and Mg isoelectronic sequences because the very large electric-dipole transition probability of the $ns^2 {}^1S_0 - nsnp {}^1P_1$ resonant transition will tend to rapidly deplete the nsnp 1P_1 level. Similarly, but to a lesser extent, the ${}^3P_0 - {}^3P_1$ transition can be expected to be weak because of the $ns^2 {}^1S_0 - nsnp {}^3P_1$ transition. However, these magnetic-dipole transitions have been included for the sake of completeness.

Calculations of line strengths and transition probabilities have been made for all of these lines by both relativistic and non-relativistic methods. Preference has been given to the relativistic results. Calculations by both methods for the n = 3 shell differ on the average by only $5\%^{1}$

2. Predicted Wavelengths

For the chromium ions, predicted values for the wavelengths of the M1 and E2 lines were obtained from the known energy levels by the Ritz principle of deriving wavelengths from energy differences. Their uncertainties are derived from the reported level uncertainties. The source of data is given in Sec. 7 below.

3. Observed Wavelengths

The most common laboratory source generating copious forbidden lines is the tokamak, which contains a magnetically-confined, high-temperature plasma with an ion density similar to that of the solar corona. By injecting any impurity element, magnetic dipole lines of that element may be seen in stages of ionization determined by the plasma temperature. Most of the chromium data are from tokamak observations. The other wavelength data are from astronomical sources, including gaseous nebulae, stars and the solar corona.

The sources of observed data that have been credited are those providing the best measurements.

4. Predicted Transition Probabilities

In most cases multiconfiguration Dirac-Fock calculations of line strengths are available. These calculations do not generally converge for neutral and singly ionized atoms, but non-relativistic calculations have been made in every such case. Line strengths for the magnetic dipole lines of the isoelectronic sequences of B I, C I, N I, and F I were taken from Cheng et al.² Those for the Al I, Si I, P I, and Cl I sequences were taken from Huang³⁻⁵ and Huang et al.⁶ The relativistic calculations are not available for the Be, Mg, and S isoelectronic sequences. The transition probabilities for all magnetic-dipole lines of the Be-like, Mg-like, and S-like ions were therefore calculated in the manner described by Sugar and Kaufman.¹ These are non-relativistic calculations in intermediate coupling. They agree within a few percent with relativistic calculations in the n = 3 sequences for which both are available.

Line strengths for the electric-quadrupole lines of $2s^22p^4$ ($^1D_2 - ^1S_0$) [k = 2] and [k = 4] are for the carbon and oxygen sequences from Cheng et al.² The transition probabilities for these lines in the sulfur sequence, $3s^23p^4$, are from Mendoza and Zeippen.⁷

Relations between transition probabilities $A(s^{-1})$ and line strengths S are given explicitly as

$$A = \frac{2.697 \times 10^{13}}{\lambda^3 g} S(M1),$$
$$A = \frac{1.680 \times 10^{10}}{\lambda^3 g} S(E2),$$

where λ is the transition wavelength in Å and g is the 2J + 1 degeneracy of the upper level. S(M1) in Bohr magneton units (μ_0) and S(E2) in atomic units (ea_0^2) are the n...snetic-dipole and electric-quadrupole line strengths, respectively.

The magnetic-dipole transition rate in almost all cases is a few orders of magnitude greater than the electricquadrupole transition rate. The E2 rate has been added to the M1 rate in those cases for which the former is greater than 1% of the latter. This is true only for some of the N I $(2p^3)$ and P I $(3p^3)$ sequence transitions. An asterisk following the transition rate in the tables shows where this occurs.

5. Deta Table Information

The tables contain the predicted and observed wavelengths and predicted transition probabilities for magnetic-dipole transitions within ns^2np^4 (k = 1-5) and nsnp configurations for n = 2, 3. The electric quadrupole transition ${}^{1}D_{2}$ - ${}^{1}S_{0}$ for k = 2, 4 is included because it is frequently observed. The data are presented in order of increasing wavelength. The columns from left to right in order of appearance contain the following information:

Column No.

Description

- Wavelengths (observed and predicted) in Å below 20 000 Å, and in micrometers (μm) between 2 and 1000 μm. Wavelengths given without units are in Å. Wavelengths in vacuum are given below 2000 Å, in air between 2000 Å and 5 μm, and in vacuum above 5 μm. Each wavelength is foilowed by its uncertainty in parentheses. Tentative identifications are preceded by "T". E2 transitions are denoted by "Q".
- 2 Transition probabilities (A) are written as a factor times 10 to a power. The power of ten follows the decimal factor. For example, 2.20 + 4 means 2.20 × 10⁴. An asterisk following the transition probability indicates that the E2 rate for the transition is greater than 1% of the M1 rate and has been added to that value.
- 3 Spectrum.
- 4 Electronic configuration.
- 5 Line classification. Lower level is given first.
- 6 Ionization energy in thousands of electron volts (keV).⁸⁻¹⁰

Column No.

Description

7

References for observed wavelengths. Definitions of symbols are given in Sec. 8, "References for Observed Wavelengths".

6. References to Text

¹J. Sugar and V. Kaufman, J. Opt. Soc. Am. B 1, 218 (1984).

- K. -N. Huang, private communication (1985).
- K.-N. Hunng, At. Data Nucl. Data Tables 32, 503 (1985).
- ²K. -N. Hunng, At. Data Nucl. Data Tables 30, 313 (1984).
- ⁴K.-N. Huang, Y.-K. Kim, K. T. Cheng, and J. P. Desclaux, At. Data Nucl. Data Tables 28, 355 (1983).
- ⁷C. Mendoza and C. j. Zeippen, Mon. Not. R. Astron. Soc. 282, 981 (1983).
- ¹C. E. Moore, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 34, for Be through Ar (1970).
- Sugar and C. Corlins, J. Phys. Chem. Ref. Data 14. Suppl. 2, for K through Ni (1985).
- ¹⁰T. A. Carison, C. W. Nestor, N. Wasserman and J. D. McDowell, At. Data 2, 63, for Cu through Mo (1970).

7. Reference for Energy Levels

Sugar, J., and Corlins, C. (1985), J. Phys. Chem. Ref. Data 14, Suppl. 2.

8. References for Observed Wavelengths

- DH Denne, B., and Hinnov, E. (1984), J. Opt. Soc. Am. B 1, 699.
 FBM Finkenthal, M., Bell, R. E., Moos, H. W., and TFR Group (1984), J. Appl. Phys. 56, 2012.
- HSCS Hinnov, E., Suckewer, S., Cohen, S., and Sato, K. (1982), Phys. Rev. A 25, 2293.
 - Jefferies, J. T. (1969), Mem. Soc. R. Sci. Liege 17, 213.
 - Magnant-Crito, F. (1973), Sol. Phys. 31, 91.

T

M PSS

Sa

- Peacock, N. J., Stamp, M. F., and Silver, J. D. (1984), Phys. Scr. 78, 10.
- SBT Sandlin, G. D., Brueckner, G. E., and Tousey, R. (1977), Astrophys. J. 214, 896.
 - Sockewer, S. (Oct. 1985), private communication.

²K. T. Cheng, Y. -K. Kim, and J. P. Desclaux, At. Data Nuci. Data Tables 24, 111 (1979).

Magnetic	Dipole	Lines	for	Chromium

Way Observed	velength Calculated	A (s ⁻¹)	Spectrum	Config.	Classification	I.E. (keV)	Ref. (obs. H)
	286.51(17)	1 24 +4	Cr XXI	2s 2p	${}^{3}P_{0} - {}^{1}P_{1}$	1.63	
	306.80(5)	7 42 +3	Cr XXI	2s 2p	${}^{3}P_{1} - {}^{1}P_{1}$	1.63	
378.0(3)	378.1(3)	1.61 +4	Cr XVIII	2s ² 2p ³	$s_{3/2} - 2P_{3/2}$	1.30	DH
	381.6(3)	6.56 +3	Cr XXI	2s 2p	$3P_2 - 1P_1$	1.63	
398.4(3)	398.42(16)	6 38 +4	Cr XIX	$2s^2 2p^2$	${}^{3}P_{1} - {}^{I}S_{0}$	1.40	HSCS
442.1(3)	442.3(4)	1 31 +4	Cr XVIII	$2s^2 2p^3$	$4s_{3/2} - 2P_{1/2}$	1 30	DH
4 53 8(3)	493,79(24)	E.42 +4	Cr XVII	2s ² 2p ⁴	${}^{3}P_{1} - {}^{1}S_{C}$	1.19	HSCS
E63 1(3;	663.1(9)	3.22 +2	Cr XVIII	$2s^2 2p^3$	$s_{3/2} - 2_{D_{5/2}}$	1.35	DH
722.1(3)	722.56(16)	1 56 +4	Cr XVIII	$2s^2 2p^3$	$2_{D_{3/2}} - 2_{P_{3/2}}$	1.30	DH
731 1(3;	731 07(8)	5 62 +3	Cr XIX	$2s^2 2p^2$	${}^{3}P_{2} - {}^{1}D_{2}$	1.40	HSCS
740.75(3)	740,75(3)	6 67 +3	Cr XVII	2s ² 2p ⁴	${}^{3}P_{2} - {}^{1}D_{2}$	1.19	PSS
	Q 781.9(6)	4.19 +1	Cr XVII	2s ² 2p ⁴	$1_{D_2} - 1_{S_0}$	1.19	
793 3(3)	793 3(1.3)	6 12 +3	Cr XVIII	2s ² 2p ³	$s_{3/2} - 2_{D_{3/2}}$	1 30	HSCS
	Q 875.6(8)	2.03 +1	Cr XIX	$2s^2 2p^2$	$1_{0_2} - 1_{S_0}$	1.40	
	879.96(23)	5 14 +3	Cr XVIII	$2s^2 2p^3$	$2_{D_{5/2}} - 2_{P_{3/2}}$	1 30	
979 0(3)	979.06(14)	5 93 +3	Cr XIX	2s ² 2p ²	³ P ₂ - ¹ D ₂	1 40	HSCS
	988 5(1.G)	7 59 +1	Cr XIII	3s 3p	${}^{3}P_{0} - {}^{1}P_{1}$	0 35	
	999.6(3)	3,33 +3	Cr XVIII	$2s^2 2p^3$	$2_{D_{3/2}} - 2_{P_{1/2}}$	1.30	
	1028 49(10)	5 63 +1	Cr XIII	3s 3p	${}^{3}P_{1} - {}^{1}P_{1}$	0 35	
	1135.8(1.3)	6.25 +1	Cr XIII	3s 3p	${}^{3}P_{2} - {}^{1}P_{1}$	0.35	
1205.9(3)	1205.9(3)	5.11 +3	Cr XX	2s ² 2p	${}^{2}P_{1/2} - {}^{2}P_{3/2}$	1.50	HSCS
1340,7(4)	1340 09(20)	4.09 +2	Cr XVII	2s ² 2p ⁴	${}^{3}P_{1} - {}^{1}D_{2}$	1.19	FBM
1410 60(2)	1410.62(4)	6.39 +3	Cr XVI	28 ² 2p ⁵	$2_{P_{3/2}} - 2_{P_{1/2}}$	1.10	PSS
1440 01(2)	1440.8(2.1)	3.68 +2	Cr XI	$3s^2 3p^2$	${}^{3}P_{1} - {}^{1}S_{0}$	0.27	SBT
1489 04(3)	1489.05(16)	1.21 +2	Cr X	3s ² 3p ³	453/2 - 2P3/2	0.24	SBT
1564.30(2)	1564.09(17)	5.89 +1	Cr X	$3s^2 3p^3$	${}^{4}S_{3/2} - {}^{2}P_{1/2}$	0.24	SBT
1566.4(1)	1565 (5)	3 38 +3	Cr XXI	2s 2p	³ P ₁ ³ P ₂	1.63	Su
1656 3(3)	1656.29(27)	4 58 +3	Cr XVII	2s ² 2p ⁴	${}^{3}P_{2} - {}^{3}P_{1}$	1 19	HSCS
	1693 9(6)	3 40 +2	Cr IX	38 ² 3p ⁴	${}^{3}P_{1} - {}^{1}S_{0}$	0.21	
2090-9(3)	2090 9(4)	1 81 +3	Cr XIX	$2s^2 2p^2$	$^{3}P_{0} - ^{3}P_{1}$	1 40	HISCS
	2534 1(5)	3 67 -1-	Cr X	$3s^2 3p^3$	$s_{3/2} - 2_{D_{5/2}}$	0.24	
2606 413;	2506 4(3)	3 80 +2	Cr XVIII	20 ² 2p ³	2 _{P1/2} - 2 _{P3/2}	1.30	DH
	Q 2634 (7)	1 03 +1	Cr XI	3s ² 3p ²	¹ D ₂ - ¹ S ₀	0 27	
	2694 4(5)	1 14 +1	Cr X	3s ² 3p ³	*s _{3/2} · ² D _{3/2}	0 24	
	Q 2733 6(1 5)	6 41 +0	Cr IX	3=2 3p4	¹ 0 ₂ - ¹ S ₀	0 21	
2885 4(3)	2885 4(1 2)	4 69 +2	Cr XIX	28 ² 2p ²	³ P ₁ 3P ₂	1 40	HSCS
3178	3177 9(7)	1 77 +1	Cr XI	3. ² 3.p ²	${}^{3}P_{1} - {}^{1}D_{2}$	0 27	м
	3301 1(5)	2 99 +1	Cr IX	38 ² 3p ⁴	³ P ₂ ¹ D ₂	C 21	
	3326 4(8)	6 22 +1	Cr X	30 ² 3p ³	2 _{D3/2} · 2 _{P3/2}	0 24	
	3608 2(9)	2 86 +1*	Cr X	3s ² 3p ³	2 2 P 3/2	0 24	
	3725 8(1 0)	2 82 +1*	Cr X	$3e^{2} 3p^{3}$	² D _{1/2} · ² P _{1/2}	6 24	

Wav Observed	elength Calculated	A (s ⁻¹)	Spectrum	Config	Classification	IE (keV)	Ref Jobs H:
3996.8(4)	3996.6(1.1)	2.60 +1	Cr XI	3s ² 3p ²	³ P ₂ ¹ D ₂	5,27	:
4038.6(3)	4039.(7)	: 27 +2	Cr XVIII	$2s^2 2p^3$	$2D_{3/2} - 2D_{5/2}$	1 30	DH
	4330.(40)	2.38 +2	Cr XXI	2 s 2p	³ P ₀ ³ P ₁	I 63	
	4450.5(1.4)	4 19 +0	Cr IX	3s ² 3p ⁴	³ P ₁ ¹ D ₂	5 21	
8153.8(4)	8153.7(7)	1 66 +1	Cr XII	3s ² 3p	$2_{P_{1/2}} - 2_{P_{3/2}}$	C 30	3
	10106.4(2.0)	1.74 +1	Cr VIII	3s ² 3p ⁵	$2_{P_{3/2}} - 2_{P_{1/2}}$	3 18	
	10878.(120)	1.03 +1	Cr XIII	3s 3p	³ P ₁ - ³ F ₂	0 35	
	12783.(8)	1.04 +I	Cr IX	3s ² 3p ⁴	3 _{P2} . 3 _{P1}	0.21	
	15514.(17)	3.45 +0	Cr XI	3s ² 3p ²	³ P ₁ ³ P ₂	0.27	
	18059.(16)	2.98 +0	Cr XI	$3s^2 3p^2$	3 _{P0} - 3 _{P1}	0.27	
	am (5) 2.54	1.13 +0	Cr XIII	Э в Эр	${}^{3}P_{0} - {}^{3}P_{1}$	0.35	
	3.103(7) μm	2.74 -1	Cr X	3s ² 3p ³	$2_{P_{1/2}} - 2_{P_{3/2}}$	0 24	
	4.250(13) μm	1 28 -1	Cr X	35 ² 3p ³	$2_{D_{3/2}} - 2_{D_{5/2}}$	G.24	
	an (4) مس	1.93 -1	Cr XVII	25 ² 2p ⁴	³ P ₀ - ³ P ₁	1.19	
	5,787(24) µm	2.73 -1	Cr IX	3s ² 3p ⁴	3 _{P1} 3 _{P0}	0.21	

Magnetic Dipole Lines for Chromium - Continued

E. Atomic Energy Levels of Chromium, Cr I through Cr XXIV

1

E. Atomic Energy Levels of Chromium, Cr : through Cr xxxv

[Excerpted from: J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985)].

1. Introduction

The following tables, including the introductory comments, are excerpted from the iron-period compilation of atomic energy levels by J. Sugar and C. Corliss (1985) of the Atomic Energy Levels Data Center at the National Institute of Standards and Technology (formerly the National Bureau of Standards).

Generally, only published papers have been used as sources of data. Unpublished data are included when they constitute a substantial improvement over material in the literature. For many of the higher ions the original papers do not give energy level values, but only classifications of observed lines. In these cases the level values have been derived from the given data.

All energy levels are given in units of cm⁻¹, beginning with a value of zero for the ground level. Ionization energies found in the literature are usually given in eV or cm⁻¹. The conversion factor, 8065.479(21) cm⁻¹/eV, given by Cohen and Taylor (1973), is used here. In a few cases where adequate data were available but the ionization energy had not been derived, this calculation was carried out. For a number of the ions, no suitable series are known. In these cases values obtained by Lotz (1967), by a method of successive differences along isoelectronic sequences, have been quoted. Although uncertainties are not provided with these extrapolated values, it is estimated that they are accurate to 0.2% by comparing them with recently determined values.

Nearly all of the data are based on observations of various types of laboratory light sources. However, the laboratory data are sometimes supplemented by data obtained from solar observations. This is particularly true where spin-forbidden lines are needed to establish the absolute energy of a system of excited levels and where parity-forbidden transitions between levels of a ground configuration are used to obtain accurate relative energies for the low levels. Whenever both solar data and equivalent laboratory data are available preference is generally given to the laboratory measurements.

When no observations are available to connect independent systems of levels, an estimate of the connecting energy is adopted. Those level values affected by the estimate are denoted by +x following the value. The value of x is the systematic error of the estimate.

Included under the heading "Leading Percentages" are the results of calculations that express the eigenvector percentage composition of levels (rounded to the nearest %) in terms of the basis states of a single configuration, or more than one configuration where configuration interaction has been included. First the percentage of the basis state corresponding to the level's name is given; next the second largest percentage together with the related basis state. Sometimes the leading percentage in an alternative coupling scheme is given. Generally, when the leading percentage is less than 40%, no name is given. When the first and second resultant terms are the same and sum to $\geq 40\%$ the first name is given. When the first and second resultant terms are the same but have different parentages, and their share of the eigenvector composition sums to 40% or more, the level will be named as the higher percentage term. In cases where these percentages differ by one or two units (an insignificant difference), either term may be selected for the level name, and the lower percentage may appear first. For the unnamed level, the term symbol follows the percentage. The user should of course bear in mind that the percentages are model dependent, so that the results of different calculations can yield notably different percentages. In the case of Cr, the 1969 results by Roth are adopted. It was intended to use his new 1980 calculations as well, but it was found that the sum of percentages for a number of states exceeded 100 by significant amounts.

For configurations of equivalent *d*-electrons, several terms of the same LS type may occur. These are theoretically distinguished by their seniority number. In the present compilations they are designated in the notation of Nielson and Koster (1963). For example, in the $3d^3$ configuration there are three ²D terms with seniorities of 1, 3, and 5. These terms are denoted as ²D1, ²D2, and ²D3, respectively, by Nielson and Koster. Martin, Zalubas, and Hagan (1978) give a complete summary of the coupling notations used here, tables of the allowed terms for equivalent electrons, etc.

The text for each ion does not include a complete review of the literature but is intended to credit the major contributions. In assembling the data for each spectrum the following bibliographies were used:

- i. Papers cited by Moore (1949, 1952)
- ii. C. E. Moore (1968, 1969)
- iii. L. Hagan and W. C. Martin (1972)
- iv. L. Hagan (1977)
- v. R. Zalubas and A. Albright (1980)
- vi. Card file of publications since June 1979 maintained by the NBS Atomic Energy Levels Data Center

He I Isoelectronic Sequence

Spectra of K, Ca, Ti, and V were obtained by Aglitskii et al. (1974) with a laser-heated plasma in third and fifth orders of a crystal spectrograph. Reference lines of Mg XI and Al XII published by Flemberg (1942) were used, and an uncertainty of ± 0.0005 Å was reported for the lines of the He I isoelectronic sequence, which fall in the range of 2.3-3.6 Å. Flemberg's reference wavelengths were in x-units. The equivalence to Å that he used must be increased by 8 parts in 10⁵, according to the more recent conversion determined by Deslattes and Henins (1973). With this correction, the data of Aglitskii et al. deviate randomly from the calculated wavelengths of Safronova (1981) by ± 0.0008 Å.

In a beam-foil experiment the He-like argon spectrum was observed by Briand et al. (1963a). Their wavelengths for the $1s^{2}$ $^{1}S_{0} - 1s2p$ $^{3}P_{1}^{*}$ and $^{1}P_{1}^{*}$ transitions were 3.9693(3) Å and 3.9491(3) Å, in agreement with the calculated values by Safronova.

The $1s^2s^3S_1 - 1s^2p^3P_2^*$ transition has been measured in Ca XIX by Livingston (1983) and in Fe XXV by Buchet *et al.* (1982). The measured wavelengths are 466.78(8) Å for Ca and 271.04(10) Å for Fe. The corresponding energy difference: are greater than those predicted by Safronova by 1t²(37) and 123(136) cm⁻¹, respectively, or 0.07% and 0.03% of the energy difference. A new calculation of these energies by Hata and Grant (1983) predicted values that were 60 cm⁻¹ lower in Ca and 154 cm⁻¹ lower in Fe than the observed values.

Because of the excellent agreement of Safronova's calculations with the best experimental data available and the paucity of these data, the compilation of this sequence was based on her results. Her calculated energies were quoted for the 1s2s and 1s2p levels of the He I isoelectronic sequence and for the principal ionization energies (with correction to the Rydberg for finite atomic mass). The observed $1s2s {}^{3}S_{1} - 1s2p {}^{3}P_{2}^{*}$ intervals in Ca XIX mentioned above are incorporated in the respective level lists. For n = 3 - 5 the calculated binding energies reported by Ermolaev and Jones (1974) are subtracted from the binding energy of the ground state by Safronova to arrive at energy level values. The uncertainty in the calculated energy levels and the ionization energies is assumed conservatively to be 2 parts in 10°, corresponding to the deviations from the Aglitskii et al. (corrected) observations. (The deviation from the measurements in Ar is 1 part in 10⁴.) The uncertainties in energy differences for levels of the same n-value are estimated to be 2 parts in 10^3 . The deviation of the 1s2p ${}^{b}P_{1}^{a} - {}^{b}P_{1}^{a}$ intervals measured by Aglitskii et al. with resonance lines differ randomly from the calculated values of Safronova by 3%.

The singlet-triplet mixing coefficients for the lang ¹³P^{*} states are quoted from Ermolaev and Jones.

H | Isoelectronic Sequence

No observations of 1s - np transitions have been sufficiently accurate to test the theoretical values. The best measurement available is for the 1s - 2p energies for Fe XXVI with an uncertainty of ± 5000 cm⁻¹, or 1 part in 10⁴, by Briand, Tavernier, and Indelicato (1983b). Erickson (1977) has calculated the absolute binding energies for each of the levels through n = 5 and for the ns and np states through n = 13. An improved calculation of the Lamb-shift effects was reported by Mohr (1983), who gave the energy separations among the n = 1 and 2 levels. Gould and Marrus (1983) have measured the Lamb-shift of the 2s ${}^{2}S_{1/2}$ state of Ar XVIII, obtaining the value 1264(13) cm⁻¹. Their results agrees with the value 1275.8(0.8) cm⁻¹ calculated by Mohr and is three standard deviations lower than Erickson's value of $1301(2) \text{ cm}^{-1}$.

Mohr's results for the energy separations of n = 1 and 2 levels have been compiled, and Ericisson's for n = 3-5 relative to the 2p $^{2}P_{3/2}^{2}$ level. This increases Erickson's values for the levels, or, equivalently, increases the binding energy of the ground state (the ionization energy). Assuming that the uncertainty in these compiled values is mainly due to the error in the Lamb shift, the fractional error is taken as equal to the experimental fractional error in the Ar measurement. This contribution to the level values relative to the ground state is about 4 parts in 10⁶ for the iron period. This is about 10 times the error estimated by Mohr for his calculated by Erickson are lower than those of Mohr by about the same fractional amount.

References for introduction

- Aglitskii, E. V., Boiko, V. A., Zakharov, S. M., Pikuz, S. A., and Faenov, A. Y. (1974), Kvant. Elektron. 1, 908.
- Briand, J. P., Mossé, J. P., Indelicato, P., Chevallier, P., Girard-Vernhet, D., Chetiour, A., Ramos, M. T., and Desclaux, J. P. (1983a), Phys. Rev. A28, 1413.
- Briand, J. P., Tavernier, M., and Indelicato, P. (1983b), Phys. Rev. Lett. 50, 832.
- Buchet, J. P., Buchet-Poulizac, M. C., Denis, A., Desequelles, J., Druetta, M., Knystautas, E. J., and Lecler, D. (1982), Nucl. Instrum-Meth. 202, 79
- Cohen, E. R., and Taylor, B. N. (1973), J. Phys. Chem. Ref. Data 2, 663 Corliss, C., and Sugar, J. (1977), Energy Levels of Manganese, Mn 1
- through Mn XXV, J. Phys. Chem. Ref. Data 6, 1253. Corliss, C., and Sugar, J. (1979a), Energy Levels of Titanium, Ti i
- through Ti xxii, J Phys Chem Ref Data 8, 1
- Corliss, C., and Sugar, J. (1979b), Energy Levels of Potassium, K. i through K. XIX, J. Phys. Chem. Ref. Data 8, 1109
- Corliss, C., and Sugar, J. (1981), Energy Levels of Nickel, Ni i through Ni XXVIII, J. Phys. Chem. Ref. Data 10, 197.
- Corliss, C., and Sugar, J. (1982), Energy Levels of Iron, Feithrough Feixvi, J. Phys. Chem. Ref. Data 11, 135.

- Deslattes, R. D. and Fienins, A. (1973), Phys. Rev. Lett. 31, 972.
- Erickson, G. W. (1977), J. Phys. Chem. Ref. Data 6, 831.
- Ermolaev, A. M., and Jones, M. (1974), J. Phys. B7, 199
- Flemberg, H. (1942), Ark. Mat. Astron. Fys. 28, 1
- Gould, H., and Marrus, R. (1983), Phys. Rev. 28, 2001.
- Hagan, L. (1977), Bibliography on Atomic Energy Levels and Spectra, July 1971 through June 1975, Natl. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl 1 (U.S. Gov't Printing Office, Washington, D.C.)
- Hagan, L., and Martin, W. (1972), Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971, Natl. Bur. Stand. (U.S.) Spec. Publ. 363 (U.S. Gov't Printing Office, Washington, DC). Hata, J., and Grant, I. P. (1983), J. Phys. B16, 523
- Kelly, R. L. (1985), Alemac and Ionic Spectrum Lines Below 2000 Angstroms Vol II-Potassium through Zinc, J Phys Chem. Ref. Deta
- Kelly, R. (1979). Atomic Emission Lines in the Near Ultraviolet: Hydrogen through Krypton, Sections Land II, NASA Technical Memomedum \$0268
- Livingston, A. E. (1983), private communication
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873
- Martin, W. C., Zalubus, R., and Hagan, L. (1978), Atomic Energy Levels - The Rare Earth Elements, Natl. Stand. Ref. Data Ser., Natl. Bur, Stand. (U.S.), 60
- Martin, W. C., and Zalubus, R. (1979), Energy Levels of Aluminum, Al i through Al XIII, J. Phys. Chen. Ref. Data 8, 817.
- Martin, W. C., and Zalubas, R. (1980). Energy Levels of Magnessum, Mg i through Mg xii, J. Phys. Chem. Ref. Data 9, 1
- Martin, W. C., and Zalubas, R. (1981), Energy Levels of Sodium, Na 1 through Na XI, J. Phys. Chem. Ref. Data 10, 153.
- Martin , W. C., and Zalubas. R. (1983), Energy Levels of Silicon, Si t through Si xiv, J. Phys. Chem Ref. Data 12, 323.
- Meggers, W. F., Corliss, C. H., and Scribner, B. F. (1975), Natl. Bur. Stand. Monugr. 145.
- Mohr, P. J. (1983), At. Data Nucl. Data Tables, 29, 453.
- Moore, C. E. (1952), Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol. II (reissued in 1971 as Natl. Bur. Stand. (U.S.) Natl. Stand. Ref. Data Ser. 35, Vol. 11)

- Moore, C. E. (1969), Bibliography on the Analyses of Optical Aton Spectra, Section 2, Natl. Bur. Stand. (U.S.), Spec. Publ. 306-2 (U.S. Gov't Printing Office, Washington, DC).
- Moore, C. E. (1968), Bibliography on the Analyses of Atomic Spectra, Section 1, Natl. Bur. Stand. (U.S.) Spec. Publ. 306 (U.S. Gov't Printing Office, Washington, DC).
- Moore, C. E. (1949), Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol. 1 (reissued in 1971 as Natl. Bur. Stand. (U.S.) Natl. Stand. Ref. Data Ser. 35, Vol. i).
- Nielson, C. W., and Koster, G. F., Spectroscopic Coefficients for the p*, d", and f" Configurations, 275 pp. (M.I.T. Press, Cambridge, MA. 1963).
- Reader, J., and Sugar, J. (1975), Energy Levels of Iron, Fe I through Fe XXVL J. Phys. Chem. Ref. Data 4, 353.
- Roth, C. (1969), J. Res. Natl. Bur. Stand. (U.S.) 73A, 497.
- Roth, C. (1970), J. Res. Natl. Bur. Stand. (U.S.) 74A, 141.
- Roth, C. (1980), At. Nucl. Data Tables 25, 95.
- Sefrenova, U. I. (1981), Phys. Scr. 23, 241.
- Sugar, J., and Corliss, C. (1977), Energy Levels of Chromium, Cr 1 through Cr xxrv, J. Phys. Chem. Ref. Data 6, 317.
- Sugar, J., and Corliss, C. (1978), Energy Levels of Vanadia m. V 1 through V xxiii, J. Phys. Chem. Ref. Data 7, 1191.
- Sugar, J., and Corliss, C. (1979). Energy Levels of Calcium, Ca t through Ca xx, J. Phys. Chem. Ref. Data 8, 865.
- Sugar, J., and Corliss, C. (1900), Energy Levels of Scandium, Sc 1 through Sc XXI, J. Phys. Chem. Ref. Data 9, 473.
- Sugar, J., and Corliss, C. (1981), Energy Levels of Cobalt, Co I through Co XXVII, J. Phys. Chem. Ref. Data 10, 1097.
- Sugar, J., and Corlins, C. (1985), Atomic Energy Levels of the Iron-Period Elements: Potassium through Worked, J. Phys. Chem. Rel. Data 14. Suppl. 2.
- Zulubes, R., and Albright, A (1980), Bebliography on Atomic Energy Levels and Spectra, July 1975 through June 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 2 (U.S. Gov't Printing Office, Washington, DC).

Cr I

Z = 24

Ground state: 1s²2s²2p³3s²3p³3d³4s⁵S₃

Ionization energy = 54575.6 ± 0.3 cm⁻¹ (6.76669 ± 0.00004 eV)

The early contributions to the analysis of this spectrum are summarized by Catalán and Sancho (1931), who give a list of over 700 classified lines. Kiess (1953) remeasured the spectrum in the range of 11 610–189° Å with a wavelength accuracy varying from ± 0.005 Å to ± 0.05 Å. About 4400 lines are given, 80% of which are classified, including Zeeman patterns for 10% of them. This constituted a significant extension of the analysis and provided improved values for all the known levels with an estimated uncertainty of ± 0.05 cm⁻¹. Kiess obtained a value for the ionization energy of 54 570 cm⁻¹.

An absorption spectrum below 2000 Å was observed by Huber, Sandeman, and Tubbs (1975) with an accuracy of ± 0.004 Å. They identified the $3d^3$ (*S)np 'P* Rydberg series for n = 8 and for n = 12-38 with an uncertainty of ± 0.1 cm⁻¹, from which they derived a value for the ionization energy of 54 575.6 ± 0.3 cm⁻¹. Improved wavelengths are given for the multiplets $a^{-3}D - q^{-3}D^{*}$, $a^{-3}D - o^{-3}F^{*}$, and $a^{-5}D - r^{-3}P^{*}$ reported by Kiess.

Further observations of the absorption spectrum at lower wavelengths were reported by Connerade, Bsig, and Newsom (1981) with an accuracy of ± 0.05 Å. They identified five $3d^3$ (*S)4s 'S – $3d^4$ (*D)4s (*D)np series for n = 6 to n = 28. For n = 6 the term structure is identified by means of a diagonalization of the energy matrices of the $3d^44s6p$ configuration, as well as by quantum defects. Their results contradict the assignment by Kiess of terms to $3d^44s6p$, which we have therefore dropped. The levels identified by Connerade, Baig, and Newsom with this configuration and their percentage compositions are given. They have also observed the principal series $3d^3$ (*S)np 'P* reported by Huber et al. and have identified the missing 7p, 9p, 10p, and 11p terms.

Mansfield (1977) reported the observation in absorption of the $3p^{5}({}^{2}P)3d^{3}({}^{*}S)4s^{2}{}^{7}P^{*}$ term.

Most of the g-factors for the levels are obtained from Catalán and Sancho, supplemented by Kiest' threedecimal-place values. The more accurate values for the $3d^{3}(*S)4p$ 'P' and 'P' levels were measured in an atomic beam by Budick, Goshen, and Marcus (1964), and those for 3d³(*S)4s 'S and 3d⁴4s²³D were obtained by Childs and Goodman (1965).

The alphabetic prefixing of terms with lower case letters for distinguishing repeating terms of the same type has been retained from Kiess except where the levels were reinterpreted by Roth (1970) on the basis of his theoretical treatment.

Roth has calculated the odd-parity configurations $3d^34p$, $3d^44s^4p$, and $3d'4s^24p$ with configuration interaction. His percentage compositions and designation changes for the experimental levels are adopted here. Roth distinguished repeating terms of the 3d' core by the letters, a, b, ... rather than by seniority. The percentages include the sum of seniority states contributing to the term.

Fischer, Hansen, and Barwell (1976) pointed out that an error in Roth's calculation arising from insufficient precision in his diagonalization routine resulted in an incorrect mixture of the $z^{-}D^{+}$ and $y^{-}P^{+}$ terms. Revised percentages were provided for these terms and for $z^{+}P^{+}$ by Hansen.

Percentages for the configuration $3d^24s$ were taken from an ab initio calculation by Vizbaraite. Kupliauskis, and Tutlys (1968).

References

Budick, B., Goshra, R. J., and Marcus, S. (1964), Bul. Am. Phys. Soc. 9, 90

- Catalan, M. A., and Sancho, P. M. (1931), An. R. Soc. Esp. Fis. Quim. 29, 327.
- Childs, W. J., and Goodman, L.S. (1965), Phys. Rev. A148, 447
- Connerade, J. P., Baig, M. A., and Newson, G. H. (1981), Proc. R. Soc. London, Sor. A378, 445.
- Fucher, C. F., Hansen, J., and Barwell, M. (1976), J. Phys. B9, 1841.
 Huber, M. C. E., Sandeman, R. J., and Tubbs, E. F. (1975), Proc. R. Soc.
 London, Sar. A342, 431.

Kiess, C. C. (1953), J. Res. Notl. Bur. Stand. (U.S.) 51, 247

Mansfield, M. W. D (1977), Proc. R. Soc. London, Ser. A398, 253

Roth C. (1970), J. Res. Natl. Bur. Stand. (U.S.) 74A, 157.

Vizbaraste, J., Kuphauskas, Z., and Tutlys, V. (1968), Lietuvos Fizikos Rinkinys 8, 497.

<u>-</u>	
LT.	R

Configuration	Term	J	Levei (cm ⁻¹)	8		Leading percentages
3d ³ (*S)4s	a ⁻ S	3	0.00	2.00183	100	
3d ⁶ (*S)4s	a 'S	2	7 593.16	2.005	100	
2,44 9,2	a ` D	0	7 750 78			
JU 45	av	1	7 810 82	1 50060		
		9	7 997 17	1.50060		
		3	8 095 21	1.50060		
i		4	8 307.57	1.50060		
	50	-				
34°(*G)4s	2 G	2	20 517.40	0.37	100	
i		6	20 519.60	1.33	182	
		3	20 520.92	0.93	100	
		4	20 523.69	1.13	100	
		5	20 523.94	1.25	100	
3d ⁶ (⁴ P)4s	a P	3	21 840.84	1.6	56	
		2	21 847.88	1.847	96	
:	i •	1	21 856.94	2.500	100	
314 202	q ¹ P	0	23 163 27			
	. . .	ĩ	23 512 00			
		2	24 093.16			
a 15 60 .						
3d°("S)4p	z P =	2	23 305.01	2.334	67	3d"("D)4s4p("P
		3	23 386.35	1.9176	67	n
		4	23 498.84	1.7510	67	31
3d ⁴ 4s ²	a H	4	23 933.90			
	1	5	24 056.11)		
		6	24 200.23			
3d ⁶ (⁴ D)4a	6 ⁵ D	0	24 277.06		100	
		4	24 282 34	1.51	100	
		i	24 296 54	148	100	
1	1	2	24 299 89	1.51		
		3	24 303.94	1.55		
2.4.40	- Jes	•	04 000 00			_
	au	3	24 553.00	!]	100	
		5	25 038.61		190	
3ar 4e	a T	2	24 940.61			
		3	25 177 29			
i		•	20			
3d*(*D)4e4p(*P*)	2 ⁷ P*	0	24 971.11		100	
		1	25 010.64	1.52	100	
		2	25 089.20	1.50	100	
	1	3	25 206.02	I.49	100	
		4	25 359.82	1.51	100	
I	1	5	25 548.64	1.51	100	
		6	\$\$ 771.40	1.53	100	
30 ⁴ (*\$)4p	z 'P'	3	26 787.50	1.670	92	
-		2	26 796.28	1.830	91	
	1	1	26 801.9 3	2.512	92	
	•					
				!		
			1			

E	•	

Cr t---Continued

Configuration.	Term	J	Level (cm ⁻¹)	8	Leading percentages		
3d ⁵ (*P)4s	6'P	0	27 163.20		100		
		1	27 176.22		100		
		2	27 223.05		50		
3d ⁴ (⁵ D)4e4p(³ P*)	z ^T D*	1	27 300.19	3.01	59		
		2	27 382.18	1.99	99		
		3	27 500.37	1.76	99		
	i	4	27 649.71	1.66	99		
		5	27 825.45	1.61	100		
3d ⁴ 4s ²	6 G	3	27 597.22				
		4	27 703.84				
		5	27 816.88				
3d*(5D)4s4p(3P*)	y ⁷ P*	2	27 728.87	2.341	66	13	3d ⁶ (⁶ S)4p ⁷ P*
-		3	27 820.23	1.929	66	33	
		4	27 9 3 5.26	1.761	67	22	
3d ⁶ (⁴ D)4s	a ³ D	3	28 637.00		100		
		1	28 679.43		100		
		2	28 682-18		96		
3d ⁴ (⁵ D)4e4p(³ P)	y 'P'	1	29 420.90	2.513	\$5		
•		2	29 584.62	1.836	95		
		3	29 824.75	1.669	*		
3d*(⁵ D)4s4p(³ P*)	z ^s F	1	30 787. 30	0.002	56		
		2	30 858.82	0.997	×		
		3	30 965.46	1.245	×		
		4	<i>31 106.37</i>	1.345	\$5		
	ļ	5	JI 280.35	1.396	\$6		
3d ⁶ (2D3)4s	D, 9	3	31 009.00		56	18	(² D1) ² D
		2	31 028.33		50	24	(*F)*F (*F)50
	i I	1	31 048.85		45	41	(' F) 'F
3d ⁶ (² I)4s	a ³ I	7	31 048.00		160		
		6	31 049.33		100		
		5	31 055.35		100		
3d ⁶ (4F)4s	a F	1	31 352.42		50	31	(² D3) ³ D
		2	31 355.21		74	12	
		3	31 364.33	}	86	6	
		4	31 377.96		100		
		Э	31 393.40		100		
3ct* 4e ²	۵'G	4	31 987.06				
3d ⁴ 4s ²	a ⁱ I	6	32 097.36				
3d ⁶ (² F1)4s	9°F	2	33 040.10		79	14	(² D3) ³ D
		3	33 060.74		82	13	
		4	33 113.27		100		
3d ⁴ (³ D)4e4p(³ P*)	z 'D'	Û	\$\$ \$\$8.20			8	Ъ.
	1	1	33 493.79	1.499	92		
	1	2	33 542.11	1.497			
	1	8	JJ 6 71.55	1.497	97		
	1	4	JJ 8/6.04	1.499	97		

I.

			(cm ⁻¹)	ε	•	coost	, percentages
Id"("D) Is Ip("P")	z ³ P*	0	33 762.56	·	88	8	<u></u> . ۳
		•	33 897.26	1.49	52		
		2	34 190.49	1.55	96		
d ² (-1)4s	<i>b</i> 'I	6	33 762.74		190		
d* 4s ²	c ³ D	1	33 906.65				
1	-	3	33 934.88	1			
1	1	2	33 935.65				
ť i	C ⁱ D	4	35 396.02				
:		3	35 501.26				
	i	2	35 572.94				
•		1	35 618.51				
4		0	35 640.69				
d ⁶ (⁴ F)4s	c ³ F	2	35 807.90		189		
	į	3	35 813.73		100		
	1	4	35 862.82		98		
t [°] (- ² H)4s	<i>ь '</i> н	4	35 870.53		56		
	1	5	35 884.40		98		
1	ł	6	35 934.02		100		
f [*] (⁵ D)4s4p(⁴ P*)	z ³ F*	2	35 89 7.87		95		
•	;	3	36 034.22		95		
		4	36 212.1 5		95		
f [°] (² F2) 4s	d 'F	3	36 552 13		100		
		2	36 558.55		180		
		4	36 577.73		100		
d ¹ ("S)ās	e'S	3	36 895.73				
d'(-'G2) is	c ¹ G	3	37 205.88		*		
		5	37 233.50		56		
	:	4	37 244.17		56		
d ⁵ (⁴ S)5∉	e 'S	2	37 883.34				
d ⁵ (2 H)4s	a 'H	5	38 537.68		94		
d ⁴ (¹ D)4s4p(³ P*)	z ³ D*	1	38 597.06		94		
-		2	38 730.67		*		
1		3	38 911.33		*		
d ⁶ (² G2)4s	b ¹G	4	39 158.63		98		
d*(*D)4s4p(*P*)	v 'P'	1	10 906 16	0.004	94	12	3df (G) 4n SP.
		2	40 971 29	1.28		12	and a comparison
		3	A1 086.26	1.246	2	12	
1		4	<i>41 224.78</i>	1.360	#2	12	
		5	41 393.47		82	14	
1*(*D)4560(*P*)	r 'P'	1	40 990 3 1	2 455	4	7	30 ⁴ (*P)4n ⁵ P*
	~ •	2	AO 989 97	1 76	4	, 7	ou crisp r
		-		=. IV		,	

I.

Cr I-Continued

Cr 1-Continued

Configuration	Term	J	Level (cm ⁻¹)	8	-	Leading	g percentages
3d*(5D)4s4p(1P*)	v ⁵ D*	0	41 224.80		52	14	30° i *P 140 5D*
-	•	1	41 289.17	1.503	54	14	-
		2	41 409.03	1.504	56	13	
		3	41 575.10	1.503	58	13	
		4	41 782.19	1. 500	e e	14	
3d4(3H)4s4p(3P)	z ⁵ H*	3	42 025. 60		61	29	3d ⁶ (*G)4p ⁵ H*
		4	42 079.81		55	19	3d ⁶ (*G)4p *H*
		5	42 153.74		48	17	3d (G)4p H
		7	42 587.52		65	24	3d"("G)4p "H"
3d4(a 3P)4e4p(3P*)	τ ⁵ τ	0	42 218.57		43	25	3d*(5D)4e4p(1'P*) 5D*
1		1	42 292.96	1.501	47	26	
1		2	40 458.82	1.494	43	21	
		3	42 643 26	1.498		2	
		4	42 908.57	1.497	45	29	
3df("S)5p	x ⁷ P*	2	42 238.04				
		3	42 254.11				
		4	42 275.20				
3d*(3H)404p(3P*)		6	42 252 .17		ж ⁵ Н	' 2 5	3d ⁶ (*G)4p *G*
3d*(*S)4d	e ⁷ D	I	42 253.42				
		2	42 254.52				
		3	42 256.25				
		4	42 258.37				
		5	42 251.06	1.55			
3d ⁴ 1 G14p	z *G*	2	42 515.25	0.35	61		3d ⁴ (³ H)4e4p(³ P*) ⁵ G*
		3	42 558.81		57	19	3d*(³ H)4o4p(³ P*) ⁵ G*
		4	42 564.85		53	18	3d*("H)4e4p("P") 5G"
		5	42 589.25	1.23	दा	16	3d*(*H)4e4p(*P*) *G*
		6	42 605.81	1. 32	\$7	21	3d*("H)4o4p("P") "H"
3d ⁴ (*P)4p	z *S*	2	43 124.88	1. 93	4	46	3d ⁴ (a ³ P)4o4p(³ P*) ⁵ S*
3d*(*S)4d	e ⁵ D	4	44 050.87				
		3	44 068.72				
		2	44 080.90				
		1	44 055.92				
		•	44 002.80				
3d ⁴ (*S)5p	# ³ P*	1	44 195.90	2.74			
		2	44 186.92	1.79			
		3	44 259.96	1.68			
3d*(*H)404p(*P*)	з ⁴ Т*	4	44 246.70				
-		5	44 307.96	-			
		6	44 393 .10		90		
		7	44 514.44		50		
		8	14 660 .55		100		
3d*(a *F)404p(*P*)	y ¹ G*	2	44 299.98	0.85			
-		3	44 873.84	0.93			
		4	44 594.46		•	10	7
		5	44 591.46	1.25		2	T
		6	44 746.96	1.84	*	5	3d"("G)4e4p("P") "C"

~		<u></u>		-
•••				
_	•	_	_	

Configuration	Term	J	Level (cm ⁻¹)	8		ļ	Leadin	e percentages
3d*(a 3P)404p(3P*)	с ³ Р*	1	44 666.74	2.47	78			3d ⁴ (*D)4p ⁵ P*
		2	44 875.19		76		9	•
		3	45 113.22	1.65	70		13	
34 (a "F) 404p("P")	x ⁱ F	1	45 201.84				2	3d ⁶ (*G)4p *F*
		2	45 225.20				77	3d6(*G)40 5F
		3	45 255.51		58		35	3d*(*G)4= 5F*
		4	45 286.08		50		2	3d*(*G)4p *P*
3d ⁴ (a ³ F)4o(p(³ P [*])		5	45 306 45	1.41	37	'G'	34	۳ -
3d ⁶ (*G)4n	, ³ H'	6	45 348 78				16	51.7-
		5	15 254.18				22	
		4	45 358.63		59		5	
2016.140			15 505 00	0.57			-	2.4/3EI \A_A_/3EP+ 3EP+
321 (J/sp	уп	J	45 614 88	V.AC				
		5	45 661 92				-	34 ⁴ (4C)4n ² H ²
		6	45 707 96					24 ⁶ (4C)Ap 25
		7	45 761 49	129	14		*	34 (34) And a (30') 34'
			40 141.40	1.40			-	
3d ⁶ (⁴ S)6s	ſ	3	45 643.38	2.05				
3d ⁶ (*P)4p	у 'Р *	1	45 71 9.20		45		24	3d*(a *P)404p(*P*) *P*
;		0	45 722 59				31	
		2	45 734.82		•		20	
3d ⁶ (4G)4p	v ³ F*	2	45 966.45		75			3d4(a 3F)4a40(3P*) 3F*
		3	16 000.35					
		4	46 058.20				1	
3d ⁶ (*\$)6s	/ ⁵ S	2	45 96 7.81					
3d*(*P)4p	1	1	\$6 077.09		2	יטי	19	3d ⁴ (*D)4p *P*
3d ⁴ (a ¹ F (Js4p) ¹ P [*])	μ: ⁱ D'	0	AG 081.27				25	3d ⁴ (a ³ P)4a4a(³ P) ⁵ D
		ī	A6 298.32					
		2	16 319.50				22	
		3	46 368.35	1	35		27	
		4	46 422.46	I			34	
3d ⁶ (*P)4p		2	\$6 109.26	1.24	2	יני	14	3d ⁴ (*D) 4p ⁵ F*
2d ³ / *P)4p		3	46 174.40	1.33	37	ъ	15	3d*(a *F)404p(*P*) *D*
3d ⁴ 4s5s	([†] D	1	46 448.60	2.99				
	, -	2	46 524.84	1.99				
		3	46 637.21	1.77	1			
		4	46 783.06	1.63				
		5	46 958.98	1.61	1			
3d": "G Astor "P"	11. TP	2	16 677 DE		1 20		18	3d ⁴ (*D)4n ⁵ F*
		ī	46 678.35		21		19	
		3	46 688.24	1.25	23		22	
		5	46 704.98	1.37	22		30	
		4	46 720.54	1	23		24	
		-	···	1				
					ţ			
					•			

1

I

.

I I

Cr t-Continued

Configuration	Term	J	Level (cm ⁻¹)	8		Leadin	e percentagen
3d ⁴ (³ H)4e4p(³ P*)	z *G*	3	46 846.77		e	29	3d*(a 3F)4040(3P*) 3G*
-		4	46 505.05		•	21	3a'(a T)404p("P") "G"
		5	46 985.8 7		H	20	3d*(*G)4p 3G*
3d ⁶ (*P)4p	а ⁵ Р*	3	46 878.61	1.68	a	20	3 ሮ [‡] (*D)ፋዎ ⁵ ዎ*
		2	45 957.70	1.84	51	20	
	1	1	\$7 021 .75	2.42	55	20	
3d*(*H)4e4p(*P*)	x 'G'	2	47 067.67	0.45	ត	15	3d ⁴ (*G)4p *G*
			4/ 123./0	V.30		14	
		6	47 103.07	144		13	
		5	47 228.80	1.27	9	16	
3d ⁵ (4G)4p	, ³ G•	3	47 068 LB		73	12	3d ⁴ (³ H)4e4e(³ P*) ³ G*
	-	4	47 054.91		•	16	
	Ì	5	47 055.31		Q	24	
3d ⁴ (a ³ P)4s4p(³ P*)	2 ³ 5'	1	47 0 88.40		72	8	3d ⁶ (*P)4p *S*
3d*(*H)4e4p(*P*)	z 'T '	5	47 586.06		61	28	3d ⁴ (³ G)4eip(³ P*) ⁵ H*
		6	47 630.43		57	34	
		7	47 692.63		52		
3d*(3G)4e4p(3P*)	x ⁵ H'	3	47 621.31		79	12	3d*(*H)404p(*P*) *H*
		4	47 688.51	1	#2	11	3d"("H)4e4p("P") "H"
		2	47 733.82		56	*	3d"("H)404p("P")"]"
		7	48 140.18			а 42	3d*("H)4e4p("P") "I" 3d*("H)4e4p("P") "I"
34 ⁴ (⁵ D)(4-5-n(⁵ P*)		1	A7 699 66				
	•••	2	47 691.51				
		3	47 636.25	1			
		4	47 659.84	1.34			
		5	47 644.76				
3a ⁴ (*S)6p	w 'P	2	47 69 7.44				
		3	47 708.59		1		
		4	47 719.08				
3d ⁶ (⁶ S)5d	<i>∎</i> ⁷ D	1	47 700.18				
		Z	47 700.95				
			47 702.30				
		5	47 709.80				
3d ⁴ (*P)4n	<i>u</i> 5Dr	1	A7 779.90	1.27		*	2dt (a 2 P) data (2 P) STr
Ψ		2	\$7 786.10	1.20		24	
		0	47 788.08			27	
		3	47 814.40	1.53		26	
		4	47 866.48	1.50	52	23	
3d ⁴ (*G)4p		1	47 877.55	0.00	15 SP *	15	3d4(a 3F)4s4p(3P*) 3P*
3d ⁴ (*G)4p	u 'P'	2	47 917.95	1.04	35	19	3d*(a *F)4e4p(*P*) *P*
	1	3	47 974.55	1.26	26	20	
	1	5	47 985.76 48 014.40	1.78	30 39	ಸ 2	
		4	48 04 2 80				

E-11

Configuration	Term	J	Level (cm ⁻¹)	8		Leadin	g percentages
3d*(a *F +4s4p(*P*)	יםי	1	48 210.04	 -	59	7	3d ⁵ (⁴ G)4p ⁵ F*
-		2	48 217.83	1	61	6	
		3	48 251.91		64	5	
3d4(a P)4stp(P)	x 'P'	0	48 226.36		29	24	3d ⁶ (*P)4p ³ P*
		1	48 331.30		23	15	
		2	48 458.67		42	19	
$3d^4(^3H)$ 4e4p($^3P^*$)	y 'H'	4	48 288.37		76		
		5	48 310.39				
		6	48 445.35		5 3		
3d ⁴ 4s5s	סי ן	0	48 488.23		1		
		1	48 507.56				
		Ż	48 558.57				
		3	48 661.59	1.46			
		4	48 824 50	1.46			
	x G.	3	48 515.08				
		4	48 562.16	-			
		5	48 786.39	1			
3d*(a *F)4s4p(*P*)	۳	3	48 636 .14		60	15	3d*(*G)404p(*P*)**P*
3d ⁴ (a ¹ P)4s4p(¹ P*)	т ³ D*	1	48 839.90			29	3d ⁵ (*P)4p ³ D*
		2	49 027.58			14	-
1		3	49 310.86		61	7	
3d*(*S)7s	s 's	3	49 177.83				
3d"("S)7s	8 ⁵ 5	2	49 32 1.51				
3d*1 a 3F) 4s4p(1P*)	<i>w</i> ¹ G'	3	49 570.70			,	3d*(*H)4o4p(*P*) *G*
		4	49 453.94		•	13	
		5	49 538.06		51	17	
3d*('G)4e4p('P*)	տ ՝G'	2	49 466.77			18	3d ⁶ (*G)4p *G*
		3	49 519.72	1.04	58	14	
		4	49 573.05		4	19	
		5	49 6]7.6]	1 25	70	17	
		v				.,	
3d*(*P)4p	y 'S '	1	\$9 \$77.06		73	17	3d ⁴ (a ³ P)404p(³ P*) ³ S*
	· **	2	49 586.28				
		3	49 717.88				
		4	49 863.50				
3d ⁶ (*D)4p	۲۳	1	49 588.97	2.48			3d ⁶ (*P)4p *P*
-		3	49 812.46	1.77	31	25	·
3d*(a 3F)4e4p(3P*)		2	49 598.08	1.88 .7	30 ¹ D*	14	3a*(*D)4p *P*
30 ⁴ (⁴ D)40	л ³ Р*	4	49 620.69		54	15	3d*(*G)4040(*P*) *P*
-		3	49 650.22		43	18	•
		2	49 652.76		37	18	
3d*(a *P)4e4p(*P*)	y 'S'	2	49 82 <u>1.5</u> 9	2.00	31	30	3d ⁴ (*P)4 p *S'

E-	1	2
----	---	---

Cr 1-Continued

Configuration	Configuration Term	Level (cm ⁻¹)	8	Leading percentages			
34*(*11)40	. 55-	,	50.018.90	<u>+</u>			Rate Strate (Strate) Stra
	••	2	50 057 61				ad (Graphper) p
		3	50 102.04	1.27	4	2	
		4	50 210.87	1.25	30	21	
		5	50 253.27	1.39		33	
3d*(*D)4p	₩ ³ D*	1	50 105.54			11	3d ⁶ (*P)40 ³ D*
		2	50 184.10		57	14	
		3	50 264.48		51	18	
3d ⁶ (*S)7p	[†] P*	3	50 185				
		4	50 197				
3d ⁴ (*D)4p	۳ ,D.	4	50 557.56	1.54	4	15	3d ⁶ (*D)4p ⁵ F*
		3	50 628.11	1.54		7	3d4(*P)40 D*
		2	50 654.76	1.51	6	8	3d*(*P)4c *D*
		0	50 661.20			10	3d*(*P)4p *D*
		1	50 662.77	1.46	71	9	3d ⁶ (*P)4p ⁵ D*
3d*(3G)404p(3P*)	w ³ F	2	50 890.15		41	27	3d ⁶ (*D)4p ³ F*
		3	50 950.42	1	et 1	26	-
		4	51 059 .79		-	21	
3d ⁶ (⁶ S)8s	4 ⁵ S	2	51 035.6 8				
3d ⁶ (*D)4p	۳ [°] ۳	0	51 176.88		71	11	3d*(a 3P)4e4o(3P*) 3P
•		1	51 246.87				3d ¹ (a ³ P)4elo(³ P [*]) ³ P
		2	51 286.52		45	12	3d ⁴ (a ³ P)4olp(³ P*) ¹ D
3d ⁴ (³ H)4ø4p(³ P*)	2 'H'	5	51 401.24		•	11	3d ⁶ (² I)4p ¹ H
3d ⁴ (*S)8p	7 P *	2	51 529.4				
		3	51 581.5	1	1		
		4	51 584.4				
3d*(3D)4e4p(3P*)	(*D *	0	51 999.62				
-		1	52 003.06				
		2	58 019.44		95		
		3	52 051.72		92		
		4	52 064.3 7		#1		
3d ⁶ (*S)9p	' P''		58 841				
3d*(11)4etp(3P*)	y *I*	5	52 591.94			25	3d ⁶ (*1)4p *1*
		6	52 660.61		8		-
		7	52 677.88			30	
2d*(³ G)404p(³ P*)	'C'	4	58 790.07		77	14	3d*(*H)4ø4p(*P*) *G*
3d ⁴ (⁴ 8)10p	" P "		52 857.3				
3d ⁴ (a ¹ G)4e4p(³ P*)	x "H"	5	52 845.59		5 7	27	3d ⁴ (*1)4p *H*
-		6	58 914.94	1		35	-
		4	58 963.44		41	25	
3d*(3D)4040(3P*)	19	1	59 011.65			•	8d ⁶ (*D)40 *F*
-	-	2	58 087.58	I		í.	
		. 8	55 073.90			•	
		4	59 117.54	1	01	6	
		5	58 179.58	1.42		7	

~	~	
CT I	COI	203

Configuration	Term	J	Level (cm ⁻¹)	8]	Leading percentages
3d ⁴ lold	e 'G	1	53 148.35		<u> </u>	<u></u>
		2	53 177.87			
		3	53 225.49			
		4	53 298.90			
		5	53 393.50		Į –	
		6	53 517.85			
		7	53 662.64			
3d* 4o4d	۲D م	2	53 195.03			
		3	53 284.34			
		4	53 375.46		1	
		5	53 627.75			
3d * tol d	e 'F	1	53 215.40			
		2	53 279.80			
		3	53 384.72			
		4	53 526.22			
		5	53 706.06			
		6	53 927.47			
3d ⁶ (*S)11p	⁷ P*		5\$ \$17.0			
3d ⁶ (⁶ S)12p	⁷ P*		58 484.5			
3d ⁴ 4e5p	۰°D	2	5\$ 541.25			
		3	53 640.74		l I	
		4	58 782.77			
3d ⁶ (*S)13p	⁷ P*		5\$ 671.4			
3d ⁴ (⁴ F)4s ² 4p	₽ G.	3	53 804.84		28	22 3d ⁶ (*F)4p ³ G*
		4	5 3 92 7.59		26	2
		5	54 078.13		25	2
3d ⁶ (⁴ S)14p	⁷ P*		5\$ 815.8			
3d ⁶ (*S)15p	⁷ P*		5 3 .928 .0			
3d ⁴ 4s5p	s'P'	1	53 961.05			
	Í	2	54 032 63			
		3	54 132.88			
3d ⁶ (⁶ S)16p	⁷ P*		54 017.1			
3d ⁶ (*S)17p	⁷ P*		54 089.0			
3d ⁴ (*S)18p	⁷ P*	- 	54 147.7			
3a ⁴ (*S)19p	7 P *		54 1 96.6			
3d* 4ø5p	a 'P	1	54 198.25			
	'	2	54 259 19			
		3	54 998 05		1	
		4	54 195 90			
	-	5	54 536.53			
3ct ⁴ (*S)20p	' P -		54 23 7.7			
	1					

I

I.

E-14

Cr 1-Continued

Configuration	Tem	J	Level (cm ⁻¹)	8		Lording	percentages
	e T	1 2 3 4 5	54 296.76 54 383.36 54 476.29 54 572.84 54 660.31				
3d*(*S)22p	'P*		54 302.4				
3d ⁶ (² [)4p	: *K *	6 7 8	54 316.83 54 404.94 54 498.9 7		54 54 59	42 46 41	3d ⁴ ('1)4otp(³ P*) ³ K*
3d ⁴ (*S)23p 3d ⁴ (*S)24p 3d ⁴ (*S)25p 3d ⁴ (*S)25p 3d ⁴ (*S)27p	च च च च		54 527.2 54 349.5 54 368.6 54 385.5 54 400.5				
3d ⁶ (⁴ S)28p 3d ⁶ (⁴ S)29p 3d ⁶ (⁴ S)30p 3d ⁶ (⁴ S)31p 3d ⁶ (⁴ S)32p 3d ⁶ (⁴ S)33p 3d ⁶ (⁴ S)35p 3d ⁶ (⁴ S)38p	ਚੱਚੱਚੱਚੱਚੱਚੱਚੱਚੱ ਚੱ		54 418.5 54 425.4 54 425.4 54 445.0 54 445.0 54 452.4 54 461.7 54 468.5 54 468.5 54 474.8 54 480.6 54 485.4 54 485.4 54 497.2				
Сг II (⁴ S _{3/2})	Limit		54 575.6				
34 455	6 ,D	0 1 2 3 4	54 646.2 0 54 671.90 54 818.55 54 906. 82 55 209 .01				
3d ⁴ (³ H)4e4p(¹ P*)	w 'H'	4 5 6	54 7 96. 55 54 7 99.18 54 886.82		42 41 42	20 21 24	3d ⁴ (*1)4p *H*
3d*('1)4e4p('3P*)	۶K.	6	54 800.25		55	40	3d ⁶ (² 1)4p ³ K*
3a ⁴ 4s5s	de aD	1 2 3	54 804.69 54 974.64 56 204.79				
3a ⁶ (*G)5p	v ² H*	4 6 5	54 810.94 54 844.57 54 929.72				
3d ⁴ (³ D)4e4p(³ P*)	v *D *	1 2 3	54 956 .59 55 1 52.63 55 451.64		23 30 30	25 25 19	3a ⁶ (a ²D)4p ³D°
3d ⁴ (² I)4p	z ¹ K'	7	54 970.23		79	10	³К •

.
Level (cm⁻¹) Configuration Term J Leading percentages 8 3d°(a D)4p v 'F 54 992.93 2 3d*(a 2F)4p 2F 30 20 3 55 101.87 22 15 4 55 207.40 39 18 3d*(*G)5p и ³Г 55 190.77 4 3 55 352.72 2 55 473.67 3d*(*1)4p 6 ۲ 55 51**6.69** 3d4(11)4e4p(3P*) 3H* 35 28 3d*(*1)4p л Л. 5 55 686.46 29 39 3d*('I)4e4p('P*) 'T 6 55 741.11 34 30 7 55 799.10 22 30 и ³Н' 3d*(1)4e4p(2P*) 3d*(*H)4p *H* 5 55 874.98 61 12 3d*(*H)4p *H* 4 55 915.50 67 ۰. $3d^4(^{1}I)4e4p(^{3}P^{*})$ 6 55 908.12 'n 3d*(*1)4p 'I* 37 31 3a3(21)4p y 'H' 5 55 945.08 3d4(3G)4e4p(3P*) 1H* 43 12 v ⁵G* 3d6(4F)4p 2 56 155.12 3d4 (*F)4e24p 5G* 46 44 3 56 209.81 ø 38 4 56 279.56 51 40 5 56 361.86 55 38 6 56 449.10 59 34 3d⁴(³D)4s4p(³P*) v *P* 3d⁶(a ²D)4p ³P* 2 56 591.88 42 18 3d*(*D)4e4p(*P*) *P* 56 722.60 1 40 10 3d"(a 2D)40 P 0 56 802.50 56 19 'G' 3d*(3D)4e4p(3P*) 3F* 3d*(a 3F)4s4p(1P*) 3 56 985.67 **21** 16 $3d^4(a^{-3}F)4a4p(^{1}P^*)$ u G 3d*(3H)4e4p(3P*) 3G* 4 57 033.60 24 15 57 088.25 3d4(3H)4e4p(3P*) 3G* 5 25 23 $3d^4(a^{-1}S)4a4p(^{3}P^*)$ и ³Р* 3a*(a 2)40 2P* 2 57 087.70 43 22 57 152.59 1 40 21 0 57 154.59 22 40 p 5**F*** 1 57 096.62 2 57 100.66 3 57 186.60 4 57 237.50 5 57 327.66 3 57 141.85 3d⁴(³D)4e4p(³P*) 2 -7 344(4F)4e24p 3P* 57 220.67 14 24 Ť 3d4 (4F)4024p 3P* 3d*(*F)4p 3 57 276.42 10 10 .4ر 3d4(4F)40260 F 3d*(*F)4p 57 335.47 4 16 13 3d4(4G)5e e 'G 57 850.65 2 3 57 361.24 4 57 372.78

57 382.93

57 389.32

5

6

Cr I-Continued

Cr I-Continued

Configuration	Term	J	Level (cm ⁻¹)	E]	Leading	percentages
3d ⁶ (a ² F)4p	t ³ G*	3	57 557.05				14	3d ⁵ (⁴ F)4p ⁵ F
		5	57 702.35		58		79	3d"(a "F)4elp("P") "G"
3d ⁵ (a ² F)4p		4	57 587. 36		21	Ъ.	18	3d ⁵ (*F)4p ⁵ F*
3d ⁴ 4s5p	r ⁵ D*	0	57 958.42					
:		1	57 995.04					
		2	58 063.80					
		3 4	58 147.70 58 291.62					
ł	e G	3	57 984.94					
		5	57 990.23					
		4	57 992.15					
3d ⁶ (a ² F)4p	s ³ F*	2	58 162.84		25		15	3a ⁵ (a 2D)4p 2F*
		4	58 167.89		25		29	
		3	58 202.65		25		23	
3d ⁶ (*F)4p		1	58 7 25.28		n	ኴ	18	3d ⁶ (*F)4p *D*
3d ⁶ (² H)40	ε'H"	4	58 728.29		23		16	3d ⁶ (² I)40 ³ H*
		5	58 754.58		24		17	
		6	58 775. 36		25		17	
3d ⁶ (*P)5p	1 ³ D'	2	58 772.03					
		1	58 870 .9 0					
		3	58 924.12					
3d ⁶ (⁴ F)4p	и ³ D*	2	58 8 0 0. 1 3				28	3d ⁴ (³ D)4e4p(³ P*) ³ D*
		3	59 1 22 .15		25		25	3d*(*D)4e4p(*P*)*D*
3d" 4s("D)6p	7 F *	2	59 290					
		3	59 310					
		•	39 AAJ					
3d" 4s("D)6p	' P *	2	59 280					
		3	59 442					
		4	59 659					
3d ⁴ (a ³ F)4o4p(¹ P*)	r 'F'	2	59 357,90		51		រា	ቆሮ ⁴ (⁴ ም) ፋዎ ⁸ ም
		3	59 417.01					
		4	59 48 7.71				9	
3d* 4e(*D)6p	7 D *	2	59 487		1			
		8	59 661					
		4	39 8 77		l			
3d ⁴ (³ H)4o4p(¹ P*)	w T	5	59 806.27		4		16	3d*(*H)4p *T*
		7	59 957.46		1 7		13	
Set An (BD) for	-10-	9	59.946					
	r	8	60 197					
2a*(a 2G)4p		5	#0 005.#0			4G.	18	8d ⁴ (*H)4p 'H*
Set (B) And al 10-1	<u>, 1e</u> ,	1	an neu ne				10	- Hg.
on (n. L.) and (L.)	¥ .9.		an nat'na				12	7

I.

Cr I-Continued

Configuration	Term	J	Level (cm ⁻¹)	8			Leadin	g percentages
	q ³ D*	0	60 238.04		1			
		1	60 286.59					
		2	60 372.86					
		3	60 491.22		1			
		4	60 625.6 5					
	q ³ F-	2	60 253.00					
		3	60 326.04					
		4	60 367.38					
3d ⁶ (² H)4p	с Ч	5	60 427.63		59		16	3d ⁶ (a ² G)4p ¹ H*
-		6	60 527.55		74		11	3d ⁶ (a ² G)4p ³ H [*]
		7	60 656.97		85		6	3d ⁴ (² 1)4p ² 1*
3d ⁶ (² H)4p	x ¹ I*	6	60 44 1.42				17	3d ⁴ (a ² G)4p ³ H*
3d ⁶ (a ² G)4p		5	60 467.85			'G'	21	3d ⁶ (² H)4p ³ T
3d ⁰ (a ² G)4a	s ¹G∙	4	6 0 50 3 9 4				•	34 ⁶ (² H)47 ² C*
		_				_	•	
3d°(a 'G)4p		3	60 518.16		11	• G•	16	3d ⁶ (a ² F)4p ¹ F
3d ⁶ (*¥)4p		3	60 615.84		24	, D,	17	3d ⁶ (a 2D)4p 2D
3d ⁶ (11 ² D)4p	ຸ ປີ ເ	2	60 629 .87		25		24	3d*(a 1D)4e4p(3P*) 3D*
	1	1	60 678 .12		29		2	3d*(a D)4e4p(3P*) D*
	oF	1	60 678.53					
		2	60 777.85					
		3	60 902.33					
		4	61 052.53					
		ð	61 19 3.9 8		-			
3d ⁶ (b ² F)40	₽ ³ F*	3	60 819.50		- 40		21	3d4(1F)4440(3P) 3F
		4	60 960 .58				24	
2 day a 2 Carlo	_ JET.		60 970 63					Out BELLAND IDA DEL
au lu crisp	* 11	5	60 870.03 61 009 07		32		13	2.4 (31) 4.4 m (10+) 311+
		J	01 000.07		••			or (El and (E) E
	r P	I	61 065.96		į.			
	1	2	61 107.95					
	ł	3	61 1 98.6 8					
$3d^{6}({}^{2}H)4p$	r G.	3	61 078.28		24		19	3d*(b 2P)40 3G*
		4	61 123.20		19		15	3d4(b 2F)4p 3G
3d ⁶ (² H)4p		5	61 161.35		15	'G'	15	3d ⁴ (a ² G)4p ³ H*
3d ⁶ (a ² G)4p		6	61 191.64		25	"Н.	27	3d ⁶ (² H)4p ¹ I*
3d*(a 'D)4e4p('P*)	t ³ P*	0	61 387.86		77		7	3a ⁴ (a ² D)4p ³ P*
-		1	61 527.34		66		8	3a ⁴ (a ² D)4p ³ P
	F 5	2	61 675.72		58		8	3a ⁴ (4 F)4s ² 4p 5 F *
3d ⁴ 4ø5ø	e P	1	61 558.17					
		2	61 687.56					
	1	2	£1 950 17		1			

1 I I

i i i i

Cr I-Continued

Configuration	Term	J	Level (cm ⁻¹)	8	Leading percentages						
3d ⁶ (*F)4p	q ³ G'	3	61 350.05		-	15	3d*(*G)4o4p(*P*)*G*				
3d ⁶ (*F)4p		4	61 976.50		₽2 ¹ G'	30	<u>ን</u> ያ ⁶ (* F)4# ² 4p ⁵ ም				
3d ⁴ 4o ²	f'F	3	62 034.44		-						
+	1	4	62 188.83								
		5	62 472.80								
		6	62 658.38								
3 ₫ ⁶ (*£ [•])4p		5	62 057.60		an ^a G*	15	3d*(*G)4ø4p(*P*)*H*				
3d ⁶ (*G)4d	/'G	2	62 646.60								
		3	62 661.96								
		4	62 671.00								
		6	62 673.92	l i							
		5	62 690.96								
3d ⁴ lelp	r H	4	62 762.06								
		5	62 830.26	ł							
	1	6	62 903.03								
	q H.	4	63 116.80								
		5	63 144.35								
		6	63 182.94								
3d ⁴ 4p	р ³ Н'	4	63 841.81								
		5	63 927.27								
		6	63 997.86								
3d ⁴ 4sõs	e'H	3	64 712.04	ļ							
	ł	4	64 751.42	l							
		5	64 802.08								
		6	64 896.30	1							
		7	64 940.28								
3d ⁶ 4p	p *G*	3	66 008.9 5								
	1	4	66 084.06	1							
		5	66 180.34								
3p ³ 3d ⁶ 4s ²	⁷ P*	4	\$11 990								
		8	314 290								
		2	316 890								
	<u> </u>	A	L	.	L						

Cr N

V t isoelectronic sequence

Ground state: 1s²2s²2p³s³3o³3d³S₁₀

Ionization energy = $132.966 \pm 10 \text{ cm}^{-1}$ (16.4858 $\pm 0.0710 \text{ eV}$)

Kiess (1951) carried out the principal analysis of this spectrum using his extensive measurements of wavelengths and Zeeman-effect data. Changes in several of his term designations for the 3d*4p configuration suggested by Roth (1969) on the basis of theoretical calculations have been adopted here.

Johansson (1983) has reobserved the spectrum, extending the observations into the infrared. All the previously known level values were redetermined, and the new configurations 3d 34s 4p. 3d 4f. Sp. 5d. 5f. 5g. 6s. 6p. 6d. 6g. and 7s as well as a few levels of 3d⁴8s and 9s were found. In addition, new levels of $3d^44s$, 4p, and 5s were added. Altogether 450 new levels were reported. The level value determinations are still in a preliminary stage. The results are given here with an uncertainty of ± 0.05 cm⁻¹.

From the 6-member 3d*(*D)as *D_{1/2} series, Johansson (1983) determined a new value for the ionization energy.

The percentage compositions for $3d^44p$ are by Roth. Repeating terms of the 3d⁴ core are labeled in alphabetical order rather than by seniority. Shadmi, Oreg, and Stein (1968) have calculated the 3d³, 3d⁴4s, and 3d³4s¹ configurations but give percentages only for a^2H and b^{2} H, apparently the only highly mixed terms. No changes of designations were made except for the e^2G and e^2D terms. The percentages represent the sum of seniority states contributing the same core term.

References

Johansson, S. (1963), private com accelline. Kiem, C. C. (1951), J. Res. Natl. Bur. Stand. (U.S.) 47, 385. Roth, C. (1969), J. Res. Natl. Bur. Stand. (U.S.) 73A, 125. Rumell, H. N. (1950), J. Opt. Soc. Am. 40, 615. Shadmi, Y., Oreg., J., and Stein, J. (1968), J. Opt. Soc. Am. 58, 909.

|--|

Configuration	Term	5	Level (cm ⁻¹)	£	Leading percentages
3d ¹	a *S	72	0.00		
3d ⁴ (⁷ D)4s	a "D	1/2 3/2 5/2 7/2 9/2	11 961.81 12 032.58 12 147.82 12 303.86 12 496.44	3.323 1.867 1.669 1.578 1.554	
3d ⁴ (⁵ D)4s	a 'D	1/2 3/2 5/2 7/2	19 528.25 19 631.17 19 797.88 20 024.01	0.000 1.192 1.370 1.427	
3a ⁶	a G	72 11//2 7/2 9/2	20 512.06 20 512.10 20 517.83 20 519.33	0.599 1.278 0.994 1.161	
34	a 'P	₹72 172 172 172 172	21 822.52 21 823.84 21 824.11	1.590 2.693 1.717	
3a ^r	6 *D	7/2 1/2 372 5/2	25 023.70 25 035.40 25 042.81 25 046.76	1.432 -0.045 1.207 1.381	
3d ^a (³ P)4e	6 'P	1/2 3/2 4/2	29 961.88 90 307.44 30 864.46	2.685 1.756 1.572	

Z = 24

I
N
0

	Configuration	K .	34°(7H)+4	3d*(*F)46	r,	X ,	К.	34 ⁴ (°C)44	3d ⁴ 1 ³ H)4e	3d*(³ P)4e	3d*(³ F)4e	24	2 4	34"('D)44	34"("Ū)44	34"(a ¹ C) 4 e	34*
	5	a 4	a H	n T	å	a 17	ل م لم	۰ ۵	a ^î H	a Ţ	4° 4	H, 9	۰ ۵	ਚੇ	9°6	ĉ	्रो व
	•	, F. F	NERCONN'	المجلوم المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ	,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ม ^ม ัตวะ'	N ⁴ N ⁴ N ⁴ N ⁻¹	12 ¹² 12 ¹⁴ .3 ⁻¹ 12 ⁴	11/2 7	13 4 12	n-17.	11771 18	4 ⁷⁹ 4 ⁷⁴	N ⁻	2 ¹⁹ 2) ⁻¹	1 ⁹ 1 ⁷⁴	
Ç Î		30 142.30 30 149.83	30 156.79 30 218.81 30 296.51 30 391.83	31 082.94 31 117.39 31 168.58 31 219.35	31 350.90 31 531.24	22 155.68 32 603.40	22 836.63 22 844.76 22 854.91 22 854.95	33 417.99 33 521.11 33 618.94 35 694.15	14 600.95 14 812.95	14 660 12 15 155 19	35 5 69 29 35 607 50	35 610.35 35 707.49	36 101.58 36 272.54	38 209,59 38 314,96 38 342,43 38 346,23	38 508.93 38 563.01	39 683.75 39 824.38	39 742.09 39 877.07
Continued	•		0.667 0.978 1.162 1.234	0.418 1.032 1.246 1.340				0.588 1.024 1.185 1.276		0.570 1.331	0.876 1.144				0.910 1.100		
									ងខ			8 5					
									2 8			23					
	percentes								34° H			3d"(³ H)46 ³					
												H					

-

Cr	n-Costissed
----	-------------

Configuration	Term	J	Level (cm ⁻¹)	8	1	Lendin	ng percentag
3d ⁴ (¹ 1)4s	67	ц,	40 202.12		<u>†</u>	·	
	•	11/2	40 228.33				
3d ⁴ (¹ S)4s	a ² S	^y 2	40 415.09				
3d ⁴ (³ D)4s	₫ d² đ	57,	42 897.99				
	÷ .	¥,	42 986.62				
316	6 2S	¹ /2	44 307.09				
3d ⁴ (¹ D)4s	c ² D	7,	45 669.37				
	:	72	45 730.58				
3d*(3D)4p	z ' F'	¥2	46 823.39	-0.689	100		
		72 5	46 905.17	1.124	100		
		-/2 -/2	17 397 21	1.314	100		
	4	2	47 464 55	1.316	100		
		11/2	47 751.62		100		
3 <i>d</i> [°]	d ² D	72	47 354.44				
		*₂	47 372.53				
3d*(*D)4p	z *P*	7,2	48 39 8. 9 5	2.382	83		
		7,2	48 491.10	1.875	*		
		7 ₂	48 6 32 .12	1.710	100		
3d ⁴ (³ D)4p	z 'P'	¹ /2	48 74 9.36	2.844	67	31	(ኘጋ) "ጋ"
		72	49 005.93	1.802	55	42	
	:	72	49 70 6.33	1.624	71	27	
3d*(`D)4p	z D'	72	49 351.80	1.628	73	26	(⁵ D) 'P '
		^{7/2} 1.	49 492.77	3.155	•	31	
		7/2	49 564.60	1.824	58	41	
		•/2 •/2	49 838.38	1.570			
2-4-15-14-	<i>d</i> ² ₽	- -,	50 667 94				
-342 · F / 448	ur	72 72	50 687.62				
3d ⁴ (³ D)4p	z *P*	₹,	51 584 15	0.406	57		
•		7	51 669.48	1.025	97		
		1/2	51 788.88	1.248			
		%₂	51 942.70	1.338	56		
3a ⁴	d²G	7/2	52 297.81				
		"/ ₂	52 32 1.01				
3d ⁴ 4o ²	c *F	₹. 	53 051.35				
		72	36 Z11.UV				
		9/2 9/2	53 923.60		1		
3d ⁴ (`D)4p	z ⁴ D*	1/2	54 418.02	0.007			
	,	<u>y</u> ,	54 499.52	1.178	.16		
	1	y ₂	54 625.62	1.376	98		
	1	"/2	54 784.48	1.430	96		

E-22

Cr #---Continued

Configuration	Term	J	Levei (cm ⁻¹)	•		Leadin	s percentages
3d*(3F)4s	d Ŧ	at at at	54 867.61 54 868.62 54 883.54 54 887.97				
3d ⁴ (³ P)4e	c P	2.2.2.2. 2.2.2.2.2.	55 621.19 55 336.74 55 626.21				
3d ⁴ (³ P)4s	6²₽	372 172	59 130.36 59 526.73				
\$d ⁴ (³ F)4¢	e F	1/2 1/2	59 570.10 59 577.66				
3d ⁴ (³ G)4s	e'G	972 772	62 688.95 62 701.67				
3d ⁴ (³ H)4p	2 'H '	7/2 9/1 11/2 13/2	63 600.91 63 7(4.30 63 848.74 64 030.53	0.690 1.030 1.138 1.234	82 80 80 81	16 16 15 13	(¹ G) 'H'
3d4(a ³ P)4p	y *D*	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	63 801.88 64 061.73 64 448.81 64 924.52	0.000 1.199 1.290 1.411	57 36 35 30	7 8 10 14	۵ (۲ ۴ ع)
30" (a "P)4p	z ² 5'	42	6 5 0 29 .43		73	7	(a ³ P) *P*
3d ⁴ (a ² F)4p	2 *G*	572 71/2 972 11/2	65 156.56 65 256.88 65 381.95 65 709.50	0.593 0.920 1.120 1.265	79 70 59 73	14 12 10 13	(¹ G) ¹ G*
3d ⁴ (*H)4p	z *]*	972 1172 1372 1372	65 217.55 65 419.56 65 617.99 65 912.56		95 95 96 180		
3d*(*H)4p	2 ² G'	™2 ™2	65 542.93 65 670.08		4 1	22 31	(a *) *G*
3d ⁸ 4e ²	d *P	^ب ر م ب ₂ ب ₂	65 882.58 66 010. 39 66 256.75				
3a4(a ³ P)4p	y* P *	1/2 2/2 2/2 2/2	66 256.47 66 354.83 66 726.81	2.545 1.671 1.502	76 90 92	13	(a ³ P) ² S'
3d ⁴ (a ³ P)4p	z ² P*	₩2 1/2	66 649.38 66 871.93		53 79	15 14	(a ³ F) ² D' (a ³ P) ² S'
3d ⁴ (a ³ F)4p	y 'P'	572 372 172 972 972	67 012.10 67 070.45 67 393.51 67 448.57		71 51 76 63	13 21 10 18	(a ³P) ³D' (a ³P) ³P" (³H) *G" (³H) *G"

E	-	2	3	

Cr II-Continued

Configuration	Term	J	(cm ⁻¹)	8		Leading	; percentages
 ط ^{ار ا} ال	• ' C'	·	67 333.13				(e ³ F) ⁴ F*
		۶ ,	67 344.03		66	13	(a F) G
	1	٩,	67 151.29		St	22	(a F) F
		ıÿ,	67 369.14		65	22	(a 'F) 'G'
fia Film	, Tr	¥.	67 379 L7				(a ³ E) *F*
- · · · · · · · ·		72	67 387.16		59	11	
а ⁴ (¹ Н)40	2 ² T	¹¹ / ₉	67 506.13		50		
•		цу ₂	67 588.90		95		
14(a 7F)4p	x *D*	۲,	67 859.61			11	(a ¹ 2) *D*
-	1	7	67 867.82		π	13	
		₹,	67 870.24		84	12	
		1/2	67 875.42		•	19	
'(a 'P)4p	:5	* 2	68 305 .64	1.978	70	17	(a ³ P) ² P*
Г ⁽⁻ Н)4р	2 ² H*	7,	68 476.92		\$ 1	12	(a 1G) H
-		172	68 737.82		84	10	
'a Filp	225	۶ <u>م</u>	68 58.9.34		50	21	(¹ G) **
-		<i>7</i> 2	68 759.89		59	18	
G:40	y 'H'	¹ /2	63 843.30		63	16	(² H) ⁴ H'
- 7	1 - 1	7	68 992 40		12	14	· · ••
		ily.	69 170.59		12	13	
		13/2	69 388.25		86	13	
a "P)40	²D*	4	69 248./8		66	2	(a]F) D
•		572	69 954.09		66	2	
'G+4p	* F *	ት,	69 477.95		71	11	(³ D) *F*
•		۶,	69 498.28			13	(a)P) 2G*
		1/	69 506.08				(6 P) G.
		7	69 658.65		\$1	13	(*D) * 7*
a *F +40	, ²G∙	74,	69 903.55		42	25	(³ H) ² G*
· · ·		7,	70 107.67		37	3	·/ •
3G)40	x ℃G •	۶,	70 \$16.90		-	17	(³ H) ⁴ G*
		₹∕,	70 427.05		61	19	('H) 'G'
		5	70 \$79.15		4	22	(² G) ² H'
		14	70 879.80		41	*	(³ G) ³ H'
¹ G)4p	y ² H·	7,	70 394 90		S 1	19	(¹ G) ⁴ G*
-		14	70 398.87		41	34	
Gián	20-	\$ 7.	70 584 17		A4		(
	7 *	1/2 1/2	70 852.23		 5#	20	
C.M.	- 10.	- 7,	70 010 10		-		11. 200
• • • • • •	3.0.	*/2 */2	72 648.52 72 716.72		79 75	11 1 3	("N) "U"
2014		- 1/	70 (07 00		~		
· Disp	w "U"	⁷ 2 27					
		6, ²	13 411.70 70 1 42 17		18 		
		1/2	1 1 4 3 9 .[/ 70 1 85 84		••		
	i - 1	/9	1 13 403.99	1			

I.

Cr II-Continued

Configuration	Term	J	Level (cm ⁻¹)	8	1	Leading	percentages
3d ⁴ 1a ¹ G)4p	ı²₽*	7. 7.	74 114 .39 74 4 36 .15		64 77	19 7	ــطو ((لو) ــطو ((لو)
ld⁴(ᢪD)↓p	æ 'F	**************************************	74 273.31 74 318.83 74 423.67 74 504.17		82 48 50 56	13 40 6 13	ናቸር ነ ም ም (ሆኑ) ም (ሆኑ) ም (ሆኑ)
3d ⁴ (11)4p	ት	""/2 ""/2	74 421.80 74 74 3.2 8		85 64	12 35	(a ¹ G) ² H* (¹ I) ² K*
ld ⁴ ('I)4p	² K •	نگر نگر	74 424 19 74 958.80		100 62	33	" T " (I ¹)
d ⁴ (a ¹ G)4p	x ² H*	*** "'''	74 455.82 74 707_48		82 72	11 11	"H ^c (H ^c) "I ^c (I ⁱ)
3ct ⁴ (³ D)4p	х Ч Р	72 72 72 72	74 483.96 74 717.59 74 920.44		53 51 55		۳۹۴ (۵ <mark>۴</mark>)
3d ⁴ (³ D)4p	y ²₽*	יין ייי יייי	74 853.85 74 964.78		56 61	40 13	(e ¹ S) [±] ₽*
3d ⁴ (e ¹ G)4p	# ² G*	1/2 8/2	75 716.55 75 810.04		82 80	8 12	• 3² (3²)
3d*(*D)4p	w ² F*	1/2 72	76 879.01 76 987.70		73 72	12 13	(a ¹ G) ²F *
3d*(`I)4p	w ² H*	"'y ₂ \$y ₂	77 078.92 77 270.25		88 3.	8	(¹ G) ¹ H*
3d*(o 18)4p	x "P"	₹ <u>7</u> 1/2	77 718.98 77 777.93		31 48	55 22	י סי (סי) ייפי (סי)
3d ⁴ (³ D)4p	*D*	7. 7.	77 985.25 78 100.56		64, 6	35 22	(a ¹ D) ² D" (a ¹ S) ² P"
3d ⁴ (a ¹ D)4p	w ² D*	₹. ₹.	80 588.05 80 490.90		74 66	13 21	• ت وٹ (روٹ)
3d ⁴ (a ⁱ D)4p	o *7 *	يد 1/2	8 \$\$\$.95 8 455.95				
3d ⁴ (*7*)4ø4p(*7**)	y*D*		8] 649.19 8] 7.7.87 8] 816.29 8] 978.08 82 192.59				
2c ⁴ (*7) lolp (*P*)	y r g-		81 755.08 81 824.40 81 962.29 82 143.15 82 963.19 82 963.19 82 612.69				

Cr n—Continued

Configuration	Tem	J	Level (cm ⁻¹)	8		Lendin	g percentages
3df(5D)5e	e'D	У,	82 632.06		<u> </u>		
	_	2	82 763.75				
		5	82 881.17				
	1	Ϋ́,	83 941,58				
		72	83 249.41				
3d ⁴ (a ¹ D)4o	- *P*	2	NT 851 85			•	(² D) ² 8*
		7	82 919.90		78	n	
3d ⁴ (⁵ D)5s	eD	¥.	84 209,68				
		1	84 329 21				
	1	5	84 455.70		1		
	1	14	84 726.71				
3. ⁴ (¹ F)4n		5 .	84 694 84				
eu (r Ap		1/2 1/2	84 677.13		57		
Self (TE) Ladard ^S D*)	- 50*	ų	85 LBC 91				
			00 400.14		1		
	1	4	85 778 48		1		
		7	65 //6.69 86 ATR 40		1		
		12	00 V/8.3V				
3d*(*F)4p	₽ ² G*	4	85 573.17		95		
		7₂	85 938.N		97		
3d*(*D)4d	e'S	¥2	86 165.30				
3d ⁴ (¹ F)40	c ² D*	¥,	86 507.31		75	L3	(6 ³ P) 2D*
•		₹.	86 919.01		79	12	
3d ⁴ (*F)4e4p(*P*)	" *G*	¥.	86 566.55				
- •		7	86 797.55		1		
		9	87 092 65		i		
		ii,	87 450 47				
	,	72	,				
3d*(`D)4d	e G	7,	86 594.23				
		7,	86 654.18		[
		· ·/2	86 738.27				
		7,	86 847.03		ļ		
		11/2	85 980.10		ļ		
		172	87 137.08				
3d*(*D)4d	e'P	3,	86 667.73				
		7,	86 691.55				
		4	86 782.04				
3d ⁴ CD)4d	(*D	4	87 452 50				
	, -	7	87 670 58		1		
	·	5	87 514 82		1		
			87 588 00		1		
		٧,	87 687.52				
2-1 ⁴ (¹ T) (1-1	4P	4	87 504 58				
		i,	87 644 %				
		5, S	97 760 00		i		
		<i>;</i> ?	97 959 KL				
		2	01 000.00		i		

.

I I

Cr u-Continued

Configuration	Term	J	Level (cm ⁻¹)	8		Leading	; percentages
3d ² (*F)4e4p(*P*)	a *F*	at at 1.5 at	87 628.74 87 768.61 87 916.67 88 073.49				
3d ⁸ (*F)4ø4p(*P*)	* ² D*	** **	89 604.34 89 164.64				
3d*(*D)4d	e P	×~ *~ *	89 254.56 89 277.95 89 336.89				
3d*(*D)4d	e*G	72	89 056.02 89 174.08 89 325.32 89 508.55				
3d*(6 ³ P)4p	у *Р*	******	89 422.36 89 455.21 89 507.94		11 12 51	6 7	ሚ (ዋ ² ሪ)
3d*(5D)4d	ϥ)	3.7 3.7 3.8 3.4 3.7 3.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	89 651.66 89 724.27 89 812.42 89 885.08				
3a4(b ³ P)4p	₽*D*	1. 1. 3. 1.	50 218.49 50 258.50 50 450.62 50 475.48		60 51 61 70	25 29 24 35	(8 <mark>3</mark> F) 4D.
3d ⁴ (b ³ F)4p	0 F	37.37.37 37.37.1.X.87.1	90 262.13 90 441.78 90 489.86 90 588.59		97 58 56 58		
3d ⁴ (⁵ D)4d	e 7	472 572 71/2 972	90 512.56 90 608.99 90 725.87 90 850.96				
3d4(b 3P)4p	(² F *	572 71/2	90 706.82 90 830.79		86 87	\$ \$	(ቆ ³ም) ⁴G* (ቆ ¹ G) ³ ም*
3d*(6 *P)4p	₩ G.	72 74 74 74 74 74	9] 073.72 9] 122.82 9] 189.51 9] 189.51 9] 292.16		56 16		
3d ⁴ (b ³ P)4p	۳D° ا	₹ <u>,</u> ₹	91 4 26.06 91 556.40		50 52	18 21	(¹ F) ³ D* (δ ³ F) ² D*
3d ⁴ (*F)4o4p(*P*)	ℓ ² G*	"/2 "/2	91 759.97 92 144.24				
3d*(*D)4d	e*8	۶,	91 955.39				
3d ⁸ (*P)4ø4p(*P*)	r *P*	*** *** */2	92 235.35 92 417.93 92 653.28				

l

|--|

Cr II-Continued

·S · <u>·</u>	92 6 12.28		
- y	(((((((((((((((((((34	
	97 988 83		
1	92 047 31		
7	971498		
2	09 975 96		
s, ²	A 4 4 4 4 7		
试			
12	22 047.40		
D 1%	\$\$ \$31.69	73 Z7 (b ³ P) ⁴ D ⁴	
5	93 671.00	72 72	
7	93 770 10	72 21	
7	SJ 500.39	72 21	
-			
	93 574.44		
7.	\$\$ 776.15		
12	93 966.4 5		
"₂	94 177.18		
kr. 2		-	
	33 441.30	7	
72	33 801.40	7	
	97 740 40		
\$ ²	Q. 971 04		
12			
F 12	97 790 64		
1/2	94 218 66		
77			
Dr 1/2	95 968 .70		
7,	94 098.13		
۶,	94 265.99		
1,	94 452.57		
1,2	94 656.24		
. ! .			
72	94 007.56		
72	34 144.43		
12	94 363 .57		
	AL 456 07		
\$ ²	06 145 10		
j 1 7	04 600 01		
9, ²			
12	79 193.60		
P 1,	94 333.20	N	
1	94 624.72	92	
- 1/2	94 839.27		
7	94 932.95		
7,	95 076.72		
1/2	95 250.69		
S · 1/2	96 145.33	31	
G' 72	97 071.15		
1/2	\$7 187.28		
	97 JJJ.28		
' ¹ 2	97 493.70		
	F G G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1

I.

Cr II-Continued

$ \begin{aligned} & 3d^{2}(\frac{1}{2}) \log_{2}(\frac{1}{2}) & = \frac{1}{2} & \frac{1}$	Configuration	Term	J	Level (cm ⁻¹)	£	Leading percentages		
$ \begin{aligned} & \Delta^{4}(b^{1}G)(4\rho) & \sigma^{2}H^{2} & \frac{9}{14} & \frac{9}$	3d*(*P)4ø4p(*P*)	w *P*	47 57 27 27 27	97 168.48 97 182.54 97 294.06				
$ \begin{aligned} & \Delta^{4}(b^{1}C) \Delta \phi_{1}(T^{2}) \\ & \Delta^{4}(t^{2}) \Delta \phi_{2}(t^{2})^{2} \\ & Z^{2}S \\ & Z$	3d ⁴ (b ¹ G)4p	v Hr	۶ <u>م</u> الب ₂	97 480.08 97 899.41		86 97	12	(8 ¹ G) ² G [.]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3d ⁴ (b ¹ G)4p	₽²G'	™2 %2	97 728.25 97 904.44		97 86	12	(b 'G) ² H'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^{4}(^{4}P)4a4p(^{3}P^{*})$	z *5 *	5∕2	9 7 875.00				
$ \frac{2d^2({}^{2}G) 4dq({}^{2}F')}{24} + \frac{1}{2}F_{2} + \frac{39}{2} + \frac{39}{2} + \frac{572.50}{38.41.83} \\ \frac{38}{38.512.67} \\ \frac{34}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{39}{29.09.59} \\ \frac{39}{39.242.97} \\ \frac{34}{32} + \frac{1}{2} $	3d4(b ³ F)4p	* ² D*	572 372	98 207.36 98 314.99		71 70	3 3	(6 ² P) ² D*
$3d^4(b^3G)4p$ r^3F^* $\overline{7}_2$ 5906529 rr s $(b^3F)^3F^*$ $3d^4(a^3P)5s$ $f'P$ $\frac{1}{7_2}$ 99677.33 1000402.22 1000650.52 s s s $3d^4(^3H)5s$ e^3H $\frac{7}{7_2}$ 1000650.52 100052.13 100022.13 s s s $3d^4(^3P)4sdp(^3P^*)$ r^5D^* $\frac{7}{7_2}$ 100067.54 101022.13 s s $3d^4(^3P)4sdp(^3P^*)$ e^3P $\frac{1}{7_2}$ 100067.54 101077.54 101077.54 101077.54 101077.54 101077.54 s s $3d^4(^3P)4sdp(^3P^*)$ u^3P^* $\frac{1}{7_2}$ 100067.54 101554.69 s $3d^4(^3P)4sdp(^3P^*)$ u^3P^* $\frac{1}{7_2}$ 101077.54 101192.80 s $3d^4(^3P)4sdp(^3P^*)$ u^3P^* $\frac{1}{7_2}$ 1011170.83 101192.80 s $3d^4(^3P)4sdp(^3P^*)$ u^3P^* $\frac{1}{7_2}$ 1011245.00 $\frac{1}{7_2}$ 1011245.00 1011221.83 $101192.82.97$ s $3d^4(^3G)4sdp(^3P^*)$ u^3P^* $\frac{1}{7_2}$ $1010000000000000000000000000000000000$	3d⁸(²G)4s4p(³P*)	:* F *	₹ 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	98 578.50 98 641.88 98 719.40 98 812.67				
$3d^4(a^3P)5a$ $f'P$ V_a $\frac{7}{7_a}$ $99 677.93$ $100 040.22$ $100 040.22$ $100 040.22$ $100 040.22$ $100 040.22$ $100 040.22.13$ $3d^4(^3P)4\omega4p(^3P)$ e^{-PH} $\frac{7}{7_a}$ $\frac{7}{7_a}$ $\frac{7}{7_a}$ $100 040.85$ $100 040.85.82$ $100 022.134$ $100 022.134$ $3d^4(a^3P)5a$ e^{-PH} $\frac{7}{7_a}$ $\frac{7}{7_a}$ $100 640.80$ $100 022.134$ $100 022.134$ $3d^4(a^3P)5a$ e^{-PH} $\frac{1}{7_a}$ $\frac{100 192.84}{101 194.83}$ $3d^4(^4P)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{101 194.83}{101 194.83}$ $3d^4(^4P)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{7}{101 101 100.82}$ $3d^4(^4P)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{7}{101 101 100.82}$ $3d^4(^4Q)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{7}{101 101 100.82}$ $3d^4(^4Q)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{7}{101 101 1000.82}$ $3d^4(^4Q)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{7}{101 100 1000.82}$ $3d^4(^4Q)4\omega4p(^4P)$ u^{-PH} $\frac{7}{7_a}$ $\frac{7}{101 1000000000000000000000000000000000$	3d*(b ¹ G)4p	,* * *	⁷ /2 572	99 069.29 99 243.99		87 56	8 6	(b ³ F) ² F*
$3d^4({}^{3}H)5s$ $e^{e}H$ $\frac{7}{7_{2}}$ 100 068.86 100 135.82 100 221.64 100 574.55 101 574.55 	3d*(a 3P)5e	/ ' P	1/2 3/2 5/2	99 677.93 100 040.22 100 650.52				
$3d^2({}^2P)4\omega4p({}^3P')$ r^*D' $\frac{7}{7_2}$ $100 491.90$ $3d^4(a^{-3}P)5s$ $e^{-2}P$ $\frac{7}{7_2}$ $100 792.80$ $3d^4({}^{-3}P)5s$ $e^{-2}P$ $\frac{7}{7_2}$ $100 792.80$ $3d^4({}^{-3}H)5s$ $e^{-2}H$ $\frac{7}{7_2}$ $101 021.84$ $3d^4({}^{-2}P)\omega4p({}^{+}P')$ $u^{-2}P'$ $\frac{7}{7_2}$ $101 194.88$ $3d^4({}^{-2}P)\omega4p({}^{+}P')$ $u^{-2}P'$ $\frac{7}{7_2}$ $101 170.38$ $3d^4({}^{-2}D)\omega4p({}^{+}P')$ $u^{-2}P'$ $\frac{7}{7_2}$ $101 126.00$ $\frac{7}{7_2}$ $101 246.00$ $\frac{7}{7_2}$ $101 246.00$ $\frac{7}{7_2}$ $101 245.00$ $101 221.83$ $101 382.97$ $101 382.97$ $101 382.97$ $3d^4({}^{-2}D)\omega4p({}^{+}P')$ $u^{-2}H'$ $\frac{7}{7_2}$ $3d^4({}^{-2}G)\omega4p({}^{-2}P')$ $p^{-2}P'$ $\frac{7}{7_1}$ $101 392.37$ $101 392.37$ $3d^4({}^{-2}G)\omega4p({}^{-2}P')$ $p^{-2}P'$ $\frac{7}{7_1}$ $2d^4({}^{-2}G)\omega4p({}^{-2}P')$ $p^{-2}P'$ $\frac{7}{7_1}$ $101 362.50$ $101 362.51$ $101 362.51$ $2d^4({}^{-2}G)\omega4p({}^{-2}P')$ $p^{-2}P'$ $\frac{7}{7_1}$ $100 362.51$ $101 362.51$ $101 362.51$	3a ⁴ (³ H)5s	e H	7/2 9/2 11/2 13/2	100 068.86 100 135.82 100 221.64 100 322.13				
$2d^4(a^{-3}P)5a$ $e^{-3}P$ $\frac{1}{2}_{a}$ 100792.80 101492.84 $2d^4(^{-3}H)5a$ $e^{-3}H$ $\frac{9}{2}_{a}$ 101021.84 101194.83 $3d^4(^{-3}P)4a4p(^{+}P)$ $u^{-3}P^{-}$ $\frac{9}{2}_{a}$ 101157.49 $3d^4(^{-3}H)4a4p(^{+}P)$ $u^{-3}H^{-}$ $\frac{101170.38}{7_{a}}$ 101157.49 $3d^4(^{-3}H)4a4p(^{+}P)$ $u^{-5}H^{-}$ $\frac{101170.38}{7_{a}}$ 101157.49 $3d^4(^{-3}T)5a$ $f^{-4}P^{-}$ $\frac{3}{2}_{a}$ 1011245.00 $\frac{10112016.00}{101201.82}$ $3d^4(^{-3}D)4a4p(^{-3}P)$ $u^{-3}H^{-}$ $\frac{9}{2}_{a}$ $3d^4(^{-3}G)4a4p(^{-3}P^{-})$ $u^{-3}H^{-}$ $\frac{9}{2}_{a}$ $3d^4(^{-3}G)4a4p(^{-3}P^{-})$ $u^{-3}H^{-}$ $\frac{9}{2}_{a}$ $3d^4(^{-3}G)4a4p(^{-3}P^{-})$ $u^{-3}H^{-}$ $\frac{9}{2}_{a}$ $3d^4(^{-3}G)4a4p(^{-3}P^{-})$ $p^{-3}P^{-}$ $\frac{7}{2}_{a}$ $3d^{-3}G^{-3}(a)4a4p(^{-3}P^{-})$ </td <td>3d⁴(³P)4ø4p(³P*)</td> <td>۰۳۳</td> <td>72 72 72 72</td> <td>100 691.80 101 074.56 101 514.29</td> <td></td> <td></td> <td></td> <td></td>	3d ⁴ (³ P)4ø4p(³ P*)	۰ ۳ ۳	72 72 72 72	100 691.80 101 074.56 101 514.29				
$2d^4({}^3H)5s$ $e^{2}H$ $\frac{9}{7_2}$ 101 021.84 101 194.88 $3d^4({}^2P)4o4p({}^3P^*)$ $u^{2}P^*$ $\frac{9}{7_2}$ 101 157.49 $3d^4({}^2H)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{7}{7_2}$ 101 170.38 $3d^4({}^2H)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{7}{7_2}$ 101 170.38 $3d^4({}^2H)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{7}{7_2}$ 101 170.38 $3d^4({}^2H)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{7}{7_2}$ 101 170.38 $3d^4({}^3T)5s$ $f'^{4}F$ $\frac{9}{7_2}$ 101 245.00 $\frac{7}{7_4}$ 101 245.00 $\frac{7}{7_4}$ 101 321.83 $3d^4({}^2G)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{9}{7_4}$ 101 832.97 $3d^4({}^2G)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{9}{7_4}$ 101 832.97 $3d^4({}^2G)4o4p({}^3P^*)$ $u^{2}H^*$ $\frac{9}{7_4}$ 101 832.97 $3d^4({}^2G)4o4p({}^3P^*)$ $p^{2}T^*$ $\frac{7}{7_4}$ 101 832.97 $3d^4({}^2G)4o4p({}^3P^*)$ $p^{2}T^*$ $\frac{7}{7_4}$ 101 844.17 $103 145.65$ 103 145.65 103 145.65 103 145.65	3d4(a 3P)5e	۴P	"/2 "/2 "/2	100 792.80 101 492.84				
$\frac{3d^{2}({}^{4}\mathbf{P})}{3d^{2}({}^{3}\mathbf{P}')} = \frac{1}{2} \frac{101}{2} \frac{157.49}{101}$ $\frac{3d^{2}({}^{3}\mathbf{H})}{4d^{2}d^{2}({}^{3}\mathbf{P}')} = \frac{1}{2} \frac{101}{2} \frac{170.32}{101} \frac{101}{290.00}$ $\frac{1}{1} \frac{1}{2} \frac{101}{101} \frac{1290.00}{101} \frac{1}{290.00}$ $\frac{1}{1} \frac{1}{2} \frac{101}{101} \frac{1900.32}{101} \frac{101}{200.00}$ $\frac{1}{1} \frac{1}{2} \frac{101}{101} \frac{101}{245.00}$ $\frac{1}{2} \frac{1}{2} \frac{101}{21} \frac{245.00}{101} \frac{1}{21.83}$ $\frac{1}{2} \frac{101}{101} \frac{101}{322.32}$ $\frac{3d^{2}({}^{3}\mathbf{G})}{104d^{2}({}^{3}\mathbf{P}')} = \frac{1}{2} \frac{1}{2} \frac{101}{101} \frac{606.90}{11/2}$ $\frac{101}{101} \frac{101}{392.37}$ $\frac{3d^{2}({}^{3}\mathbf{G})}{104d^{2}({}^{3}\mathbf{P}')} = \frac{1}{2} \frac{1}{2} \frac{101}{101} \frac{101}{392.37}$ $\frac{3d^{2}({}^{3}\mathbf{G})}{104d^{2}({}^{3}\mathbf{P}')} = \frac{1}{2} \frac{1}{2} \frac{101}{101} \frac{101}{392.37}$	3d ⁴ (³ H)5s	e 'H	*/2 11/2	101 021.84 101 194.88				
$\frac{3d^{2}(^{2}H) 4\omega 4\rho(^{2}P^{*})}{3d^{2}(^{2}H) 4\omega 4\rho(^{2}P^{*})} \qquad \omega^{4}H^{*} \qquad \frac{7}{2} \qquad \begin{array}{c} 101 170.38 \\ 77 \\ 117 \\ 117 \\ 117 \\ 117 \\ 117 \\ 117 \\ 117 \\ 117 \\ 117 \\ 101 300.82 \end{array}$ $\frac{2d^{4}(a^{-3}T)5\omega}{2} \qquad \int^{4}T^{*} \qquad \begin{array}{c} \frac{7}{7} \\ \frac{7}{7} \\ \frac{7}{7} \\ 101 21.83 \\ \frac{7}{7} \\ 101 322.83 \\ \frac{7}{7} \\ 101 382.97 \end{array}$ $\frac{2d^{4}(^{2}G) 4\omega 4\rho(^{3}P^{*})}{2} \qquad u^{-2}H^{*} \qquad \begin{array}{c} \frac{7}{7} \\ \frac{7}{7} \\ \frac{101}{7} \\ 101$	3d*(*P)4ø4p(*P*)	u ⁹ P*	*/2	101 157.49				
$2d^4(a^3T)5s$ $\int f'T$ $\frac{7}{7_2}$ 101 245.00 $\frac{7}{7_2}$ 101 276.60 101 321.83 $\sqrt{1}_1$ 101 322.83 $\sqrt{7}_2$ 101 382.97 $3d^6({}^3G)4s4p({}^3P^*)$ $u^{-2}H^*$ $\frac{7}{7_2}$ 101 696.90 101 101 392.87 101 392.97 $3d^6({}^3G)4s4p({}^3P^*)$ $p^{-3}T^*$ $\frac{7}{7_2}$ 101 894.17 $3d^6({}^3G)4s4p({}^3P^*)$ $p^{-3}T^*$ $\frac{7}{7_2}$ 101 145.65	3d ⁸ (² H)4o4p(³ P*)	ω *H*	7/2 9/2 11/2 13/2	101 170 .38 101 296.6 0 101 7 83.2 0 101 900.82				
$\frac{3d^{6}({}^{3}G)}{4a4p}({}^{3}P^{*}) = \frac{u^{2}H^{*}}{1} \frac{\frac{9}{2}}{101} \frac{101}{392.37} \frac{398.90}{101} \frac{101}{392.37} \frac{3d^{6}({}^{3}G)}{4a4p}({}^{3}P^{*}) = \frac{p^{2}P^{*}}{\frac{9}{2}} \frac{\frac{9}{2}}{\frac{101}{3}} \frac{\frac{9}{3}84.17}{102} \frac{101}{145.65} \frac{384.17}{102} \frac{102}{145.65} 102$	3d ⁴ (a ³ 7)5e	/7	₹/2 572 7/2 €/2	101 245.00 191 276.60 101 321.83 101 382.97				
3d⁶(³C) 404p(³ P [*]) p ³ T [*] ⁷ / ₂ 101 884.17 ⁵ / ₂ 102 145.65	\$d ⁴ (² G)\$ø\$p(³ ₽*)	u ² H*	", ",",	101 696.9 0 101 932.2 7				
	8d ⁴ (*G)4o4p(*P*)	p *7 *	7/2 9/2	101 864 .17 108 145.65				

Configuration	Term	,	Level (cm ⁻¹)	2	Leading percentage:
d ² (² G)4s4p(³ P*)	r ² G'	*7 ₂	101 938.04		
-		∛₂	102 121.92		
3(2D)4e4p(3P*)	≠ ⁴ F	7,	101 \$87.19		
		۶ <u>,</u>	102 297.15		
		1/2	102 492.60		
		"₂	102 725.66		
1 ⁴ (a ³ F)5s	/ ' F	572	102 148.81		
		⁷ /2	102 243.22		
t ^a (⁴ P)4e4p(³ P*)	g *D*	₹,	102 602.40		
-		4,	102 619.58		
		7,	102 655.95		
		"∕₂	102 831.62		
d ² (⁴ F)4s4p(¹ P*)	₽ ' G'	¥,	102 679.00		
•		Ϋ,	102 915.01		
		%	103 199.80		
		¹¹ /2	10 5 51 3.6 7		
d ⁸ (² P)4e4p(³ P*)	x *S*	72	102 684.02		
d ⁴ (³ G)5e	/'G	\$/,	103 627.02		
		¹¹ /2	103 736.99		
t' sa	74	9/	103 755 48		
		11/	103 843 33		
		13/	103 948.26		
		15 72	104 069.62		
d* 4d	<i>(</i> 'Н	7/2	103 949.27		
		₹/ ₂	104 023.95		
		11/ ₂	104 106.35		
		"72	104 190.63		
d ³ (² D)4s4p(³ P*)	0 *D*	3/2	104 274.62		
-		1/2	104 467.83		
		1/2	104 680.78		
1 ¹ (⁴ F)4s4p(¹ P*)	p *D*	1/2	104 439.77		
-		3/2	104 616.27		
		7,	104 8 69 .1 3		
		1/2	105 206.69		
$d^{3}({}^{4}\mathbf{F})\mathbf{4e4p}({}^{1}\mathbf{P}^{*})$	r *F *	*/2	104 446.50		
-		4/2	104 630.01	1	
		1/2	104 875.34		
		"∕₂	105 203.46		
f* 4d	a *K	¹¹ /2	104 460.28		
		13/2	104 539.92		
		15/2	104 633.04		
	j	''/2	104 734.37		
at Sa	₽ ² G	1/2	104 543.17		
			¥		

.

Cr II---Continued

Configuration	Term	3	Level (cm ⁻¹)	8	Leading: percentages
3df4(5D)6e	*D	4	105 098.94		
		2	105 168.82		
		72	106 285.37		
		72 72	105 447.05 105 650.58		
3d ⁴ (⁵ D)4f	*	72	105 1 22.25	1	
- •	1	7,	105 283.47		
	1	72	105 392.48		
3d ⁴ 4d	a ² K	13y 13y 13y	105 124.90		
		7.			
3d° 47	T	1/2 2	105 173.47	1	
		72	105 408.73		
3df (5D)4f	•H.	7/2	105 197.38		
		3	105 263.52		
		14/2	105 367.93		
		15	105 205.05		
		12	100 001.02		
3d ⁴ 4d	8 H	¥,	105 198.98		
		7 /2	105 255.34		
		118/	105 337.97	1	
		72	100 454.42		
3d*(*D)4f	'H ·	1/2	105 282.58		
		%	105 406.99		
		12,	105 559.58		
		12	109 /42.92		
3d* 1d	8 G	1/2	105 365.50		
		1 ¹¹ /2	105 423.32		
3d*(*D)4f	*D*	*/2	105 \$98.27		
	1	1/2	105 420.09		
		72	105 595.35		
3d ⁴ (⁵ D)4f	₫G•	3	105 438.32		
		72	105 609.47		
		72	105 623.64		
		14	105 245,04		
		11/2	105 898.12		
34 ⁽¹ D)4	4TP*	7/2	105 507 59		
		72	105 552.18		
3ď ⁴ (⁵ D)4 /	4 F -	372	105 577.19		
24 50 40	69.	11/2	105 699 84	ļ	
1.00 1.00 mg	•	1/2	105 823.86		
		1/2	105 870.43		
24 ⁴ (⁶ D)44	4C+	5%	105 877 49		
		1/2	105 794 77	{	
		11/2	108 032.24		
		1/2	106 045.52		

Cr II-Continued

Configuration	Term	J	Level (cm ⁻¹)	8	Leading percentages
kd ⁴ ('D)4/	۴ F ۰	»/2	105 790.06		
		7,	105 903.05	ł	
	1	1/2	105 985. 63		
64 ⁴ (³ T1)64	40	١.	105 923 4		
	U	1/2 1/	105 020.4		
		12 Sy	106 095 64		
		12	106 975 94		
		12	100 213.24		
3d* 4d	۲ ⁴	"/2	106 145.26		
		13/2	106 342.95		
	. žrm	112	100.100.10		
3d*(*H)4s4p(*P*)	<i>в -</i> Н-	.72	106 163.16		
		71	106 165. 3	1	
3d ² (² H)4e4p(³ P)	r*G*	۶,	106 719.38		
		7,	106 779.14	1	
		2,	106 791.84		
		11/2	106 827.42		
	400	L	105 205 05		
3d*(*P)4s4p(*P*)	w 5	72	100 /20.00	ļ	
3d*(⁵ D)5d	' G	7,	106 877.20	i i	
		۶,	106 929.42		
		7/.	107 006.29		
		<i>*</i> /	107 111.84		
		uý,	107 246.87		
		11/2	107 412.09		
3d* 4d	i²G	•/ ₂	106 923.98		
3d ⁴ (⁵ D)5d	45	4	106 924 84		
	-	· Z			
3d*(*D)4s4p(*P*)	0 °F	7,	107 022.33		
		1/2	107 153.15		
いだいしょう	4 0	5,	107.025.24		
	r	1, 1,	107 066 52		
	ł	-, ²	107 114 75		
		12	10/ 1:4.75		
3d ² (*P)4s4p(*P*)	a ² D*	7,	107 212.29		
	• -	72	107 355.52		
o atologica e	-	•			
34"("D)54	Ŧ	7/2	107 259.87		
		7,	107 309.38		
		1/2	107 386.22		
		72	107 455.55		
		.,,	107 701.34		
3df('D)5d	' G	37,	107 400.84		
		1/2	107 500.27		
	k I	9/2	107 632.26		
		11/2	107 794.15		
automaticat	· •	3.	109 11 20		
90 (D) 90	עי	72	107 414.68		
	1	72	107 519.44		
	1	19	10/ 62/.40		
	1		100 000 0-	1	

1

P

Cr II-Continued

3a ⁴ 1 ⁵ D15a	۴F		· · · · · · · · · · · · · · · · · · ·	 ••••••••••••••••••••••••••••••••••••••
		72	107 516.77	
		37 <u>-</u>	107 726.82	1 1
		2	107 850.60	:
		?/ ₂	107 948.05	
d4(5D)5d	*D	5 _{/.} ,	107 597.65	
		7	107 716.30	
d* 4d	₽ ⁴ I	9/_	107 706.84	<u>!</u>
	•	11,	107 760.85	i
	İ	11/2	107 846 75	
	1	1572 1572	107 981.81	
(³ (² H)Ardp(³ D [*])	- ² C:	9,	107 7 99 40	
	qu	12	107 918 19	
Ì		'2	10/ 510.45	
id ⁴ 4d	ь' Н	1/2	107 829.54	
		<i>"</i> ,	107 922.41	
		· ·/ ₂	108 017.98	j .
		··7 ₂	108 104.01	
ld ² (² H)4s4p(³ P*)	π ² I*	11/4	107 850.50	
•		11/2	108 031.16	
w ⁴ (*D)5d	4 C	5,	109 394 47	
	3	'2	105 354.41	
d ⁴ (⁵ D)6p	'F	1/2	109 564.97	
		¥2	109 611.24	
		72	109 694.38	
1		¹ /2	109 812.06	
		1/2	109 965.71	
1		"/ ₂	110 154.04	
ld ⁴ (³ D)6ρ	*P-	₹/2	109 661.41	
-		72	1 09 9 74.05	
3d ⁴ (⁵ D)60	"P"	3/2	109 772 15	
	•	57	109 864 95	
		1/2	110 097.11	
20 4 - 4 - 1 300 V	- 200	3,	100 01/ 00	
	ρυ	5,2 5,7	109 914.00	
		12	109 943.37	
Sd ⁴ (⁵ D)6p	ъ	1/2	109 923.45	
[7,	110 007.57	
		7,	110 1 38.26	
		1/2	110 272.15	
	1	"/ ₂	110 385.80	
3d*(5D)6p	۲۳ ۰	¥,	110 \$15.08	
		1/2	110 471. 38	
		%	110 665.54	
la ⁴ (⁵ D)60	• ۵۰	3,	110 931.72	
	-	۶,	111 082.38	
		1/,	111 269.22	
1				

E-33

Cr	n	Continued
----	---	-----------

Configuration	Term	J	Level (cm ⁻¹)	2	Leading percentages
لط ^و ر ⁵ D)5/	'H '	7,	115 208.37		
		?∕₂	115 288.81		
		1/2	115 309 .16		
		ų,	115 396.86		
		14,	115 546.61		
		1572	115 734.85		
r ^t (⁵ D)7s	ъ	4	115 234.53		
		7	115 301.92		
	1	7	115 417 88		
	1	1/2	115 581 62		
		972	115 788.38		
ም ር ት በነናና	6 D+	7/	115 040 91		
2 (10) 34		12	113 243.31		
	1	\$ ²	112 /4/.03		
		72	115 767.13		
r(*D)5/	*P*	₹2	115 298.53		
r*(*D)5/	ъ	72	115 309.64		
	1	3/2	115 393 47		
	l	7	115 430.93		
	1	7/2 	115 591.20		
46D.154	21.4.)	9,	115 271 96		
· 100.082	: [¶]	7/2	115 371.29		
	1	-			
*(*D)5/	'H'	1/2	115 398.46	1	
	:	"₂	115 4 3 0.45		
		uy ₂	115 598.97		
		¹¹ 7 ₂	115 7 82 .87		
t ⁴ (³ D)5∳	'G'	57,	115 408.15		
•		1/2	115 627.76		
		u,	115 916.22		
	1	₹/2 ²	115 9 2 7.40		
fti ⁵ Di)5a	²r#1	\$/_	115 411 99		
a . P.1.48	[#]	7/2	115 419 17	1	
		.2	1 10 110.11		
d ⁴ (⁵ D,)5e	F[5]	"/,	115 444.00		
		٩/,*	115 444.02		
₫1 ⁵ D)5/	"G"	1/2	115 447.64		
		72	115 461.80		
	1	11/2	115 585.21		
	1	٩,	115 592 13		
	;	: 5 /2	115 836.61		
1. D. 150) 4151	tiy -	115 554 DE		
- 2. 5	, s ə)	•, ²	115 EEE AF		
		12	119 999'09	1	
1 ⁴ 1 ⁵ D-150	41	٩,	115 556 20		
		7,2	115.556 +4		
		' 2	110 000.99	1	
d ⁴ ³ D₀)5ø	2(6)	13/	115 560 97		
	141	11/2	115 541 07	1	
		'2	よんり パリル・リト	1	

.

E-34

Cr II-Continued

Configuration	Term	J	Level (cm ⁻¹)	8	Leading percentage
ld ⁴ (³ D)5∕	۴۳	57,2	115 570.91		
		7,	115 605.95		
		¥,	115 797 28		
	1	7,	115 824 49		
		11/2	115 840.45		
al, āno, a		1		4	
dr(~D)7s	TD D	72	115 640.42		
		72	115 818.49		
		'' <u>2</u>	116 047.90		
a ⁴ (3D)56	45-	37	115 679 91		
	F	-1 ²	115 0/2.04	(
		12	113 882.21		
(D.)50	2(7)	15	115 723 70		
		uy.	115 793 90	[
		7	···· · 64.00		
. ⁴ (⁵ D ₃)δg	² [3]	⁷ /2	115 732.06	Į	
		5. 12	115 732.23		
	1	-	_	ł	
f"("D3)5g	² [4]	74	115 738.43		
at in	20-3	12		ł	
r(-D ¹)98	-[6]	·72	115741.12		
	Ì		115 741.30		
4(³ D.)5e	2(5)	117	115 749 90		
(nJ) all	[9]	», ²	115 749 55		
		12	110 142.00		
[#] (³ D)5∕	' D'	5,	115 810.54	1	
-	_	•			
₫ ⁴ (⁵ D ₄)5g	²(8)	17/2	115 927.17		
		15/2	115 927.30		
at inc	7.43	τ.		1	
"("D ₄)5g	' [2]	72	115 926.78		
A TO MAN TOP	the	1/	115 a/a r		
C PINAPP PI	F	22	113 343./		
		72 50	115 966.7		
		1	110 (41.7		
(⁵ D ₄)5g	2[3]	7/.	115 945 47		
	(*)				
f ⁴ (³ D ₄)5g	² [4]	7,	115 962.72		
		7/2	115 962.84		
-					
a"("D ₄)5g	² [7]	1472	115 968.86		
		172	115 969.19		
	2000	11/			
r(-D ¹)28	-[5]	2	115 975.22	1	
		72	119 9/5.44	1	
4(⁵ D.)5#	2[6]	134_	115 979 21		
	[0]	11/2	115 979 59	ļ	
		- 2		ĺ	
f*(³ D)6d	'C	7,	116 171.71		
	\$ 	7,	116 213.38		
		7	116 291 95		
	1	9/	116 299 06	I	
		i Z	116 601 06		
		12	110 361.20		

i.

ī.

Cr II-Continued

Configuration	Term	J	(cm ⁻¹)	8	Leading percentages
3d ⁴ (¹ D)6d	۴P	¥,	116 253 35		
		7,	116 295.06		
		7.	116 385.67		
3a ⁴ (*D)6a	' S	7₂	116 355.55		
3d ⁴ : D16d	'F	1/2	116 360.98		
		1/2	116 429.23		
		7,	116 477.51		
		1/2	116 572.42		
		"₂	116 601.65		
		:'/ ₂	116 829.01		
d" D 6d	۲D	₽ ₂	116 581.74		
		7,	116 687.20		
		7	116 790.31		
		∛₂	116 831.84	i i	
3d*(`D)6d	۰G	7,	116 877.15		
		7,	116 985.30		
		٩,	117 141.58		
		· · · / ₂	117 342.41	•	
หน้าการส	۴D	57.	117 072 93		
		1	117 263 48		
		· Z			
d ⁴ (¹ D)6d	۴F	۶,	117 228.51		
		",	117 488.50		
		1/2	117 520.75		
verinner	۰p	3	117 391 64		
		s,2	117 481 24		
		12			
1d*(`D)6d	' S	72	117 672.56		
ld ¹³ (⁴ P)4 s 4p(¹ P*)	4D.	₹/,	118 6 22.6		
		7,	118 640.08		
		1/2	118 661.4		
		⁷ / ₂	118 75 3.64		
lat ⁴ (⁵ D)8e	ъ	4	120 702.6		
	_	4	120 757.1		
		4	120 870.78		
	1	1/2	121 036.43		
		9/2	121 246.83		
64 ⁴ (⁵ T).364	2(5)	11/2	120 820 04		
ALI DI ME	(9)	2	120 820.09		
ld ⁴ (¹ D ₂)6g	4[6]	13/2	120 938.67		
4.500.0	214.	15,	101 105 01		
60° (°D3) 68	-[7]	12	121 105.81		
		·72	121 105.04		
15D. 160	4(6)	13,	121 114 05		
na i na indita	i (a)	-12	121 114 06		
	1	12	161 114.60		
				ļ	
a*(1.4.)6#	²[5]	14	121 115.31		

I.

П

,

E	3	6
---	---	---

	d	iii C	tis	Coe	8-	Cr	
--	---	-------	-----	-----	----	----	--

Configuration	Term	J	Level (cm ⁻¹)	8	Leading percentages
d"(⁵ D ₄)6g	²[8]	17/2 15/2	121 315.57 121 315.83		
λα ⁴ (⁵ D ₄)6g	² [4]	9. 	121 32 5.13 121 335.25		
3d*(³ D ₄)6g	²[7]	نځې نکې ۲	121 338.36 121 338.68		
3d ⁴ (⁵ D ₄)6g	²[6]	13, 11,2 11,2	121 344.81 121 345.09		
32 ⁴ (⁵ D)9₽	G	7/2 972	124 310.74 124 523.96		
Cr m (*D ₀)	Limit		132 966		

E-37

Cr m

Z = 24

Ti i isoelectronic sequence

Ground state: 1s²2s²2p³3s²3p³3d⁴³D_p

lonization energy = $249700 \pm 200 \text{ cm}^{-1}(30.96 \pm 0.02 \text{ eV})$

The analysis was begun by White (1929) who found systems of triplet and quintet terms, which were later unified by Bowen (1937). F. L. Moore considerably augmented this work and provided his unpublished results to C. E. Moore (1952) for inclusion in her compilation. Ekberg (1976) has remeasured the spectrum in the region of 750-2700 Å with an uncertainty of ± 0.005 Å and established 76 new levels while rejecting 26 of those found by Moore.

We give the results of Ekberg for the $3d^4$, $3d^34s$, and $3d^34p$ configurations, including his calculated percentage compositions for the levels. The level uncertainty is ± 0.1 cm⁻¹. The $3d^3({}^{*}F)Ad^{-3}H$ term is from White. The other terms of $3d^{-3}dd$ and those of $3d^{-3}Ss$ are from the analysis by Moore. The uncertainty of these levels is ± 0.5 cm⁻¹.

Johannson and Ekberg (1982) discovered three terms of the $3d^24s4p$ configuration and gave their results in a preliminary report.

The ionization energy was derived by Catalán and Velasco (1952) from the 2-member $3d^3ns$ series.

References

Bowen, I. S. (1937), Phys. Rev. 52, 1153.

Catalón, M. A and Velasco, R. (1952), An. R. Soc. Exp. Fis. Quim. 48A, 247.

Ekberg, J. O. (1976), Phys. Scr. 14, 109.

- Johannson, S., and Ekberg, J. O. (1982), Atomic Spectroscopy Annual Report, University of Lund.
- Moore, C. E. (1952), Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol. II (reissued in 1971 as Matl. Bur. Stand. (U.S.) Natl. Stand. Ref. Data Ser. 35, Vol. II).

White, H. E. (1929), Phys. Rev. 33, 914.

Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percer	itages
34	ď	0	0.00	100		· · · · · · · · · · · · · · · · · · ·
		1	62.22	100		
		2	183.16	100		
		3	356.55	300		
		4	576.08	100		
3ď	°P2	0	16 771.36	58	41	P 1
		1	17 168.56	50	41	
		2	17 851.18	50	41	
34	'n	4	17 273.70	59		
		5	17 396.92	59		
		6	17 530.65	180		
3d*	* P 2	2	18 451.84	π	22	'F 1
	1	3	18 511.18	77	22	
		4	18 583.39	π	21	
3d*	5	3	20 703.64	×		
	i	4	20 852.95	99		
		5	20 996.04	50		
3d*	'G2	4	25 138.87	64	35	¹ G1
3d*	ď	3	25 726.44	100		
		2	25 780.94	100		
		1	25 848.31	100		
3ď	ľ	6	26 014.89	100		
30"	'S2	0	27 372.32	π	22	¹ S1

Cr III

Cr m-Continued

Configuration	Term	J Level Leading percentages			a J Level (cm ⁻¹)		Alages
3d*	¹ D2	2	32 151. 99	π	22	¹ D1	
3ď	۴	3	37 00 5.16	100			
3d*	771	4	43 286.71	79	21	°F2	
		2	43 304.53	π	22		
		3	43 322.17	75	2		
3ď	' P1	2	43 441.99	9	41	* P2	
		1	43 916.59	59	41		
		0	44 141.36	59	41		
3d ² (*F)4s	Ŧ	1	49 492.46	160			
		2	49 628.25	100			
		3	49 828.91	100			
		5	50 410.06	140			
3d ⁴	'G1	4	49 768.65	65	55	'G2	
a di tre a	-						
301112146	Ŧ	Z	56 651.37	100			
		3	57 423 40	100			
		•					
3d ² (³ P)4s	۳	1	63 045.74	100			
		2	63 174.30	50			
		3	68 4Z1.9Z	100			
3ď	'D1	2	65 7 63 .21	78	22	'D2	
3d ⁴ (² G)4e	ЪС	3	65 892.38	100			
		4	66 0 9 0.01	100		-	
		5	66 225.09	39			
3d ⁴ (*P)4e	٩٢	0	69 601.50	50	41	(² ₽) ³ ₽	
		1	69 781.89	56	34		
		Z	70 292.86	71	15		
3d ² (2G)4e	¹ G	4	69 659.74	5 2			
3d ⁴ (² P)4s	٩	2	70 191.01	a	25	4 ⁶ (4 ⁸)	
		1	70 345.56	52	41		
		0	70 487.01	50	41		
3d ^a (2D2)4s	מי	1	70 981.25	45	19	(² D1) ³ D	
		3	71 323.06	79	21	(² D1) ³ D	
		2	71 323.27	50	21	4 ⁶ (4 ¹)	
3d ⁴ (² H)4e	ЪН	4	71 677.19	9 7			
		5	71 787.56	**			
		6	71 870.17	100			
3d ² (2P)4s	¹ P	1	73 881.54	×			
3d ⁴ (2D2)4e	¹ D	2	74 788.88	π	2	(² D1) ³ D	
3d ² (² H)4a	Ч	5	75 351. 63	1/10			

Cr III-Continued

Configuration	Term	J	Level (cm ⁻¹)	Lend	ing percer	ka g es
3d · F 4s	iÈ.	4	R4 374.12			
		3	84 484.76	140		
		2	84 572.53	I		
ld ^{*i, *} F i ts	F	3	87 770.68	190		
d' 'F - Ip	'C'	2	93 766.21	100		
		3	94 029.99	100		
		4	94 376.29	1.40		
		5	94 801.70	100		
		6	95 JO <u>6 0</u> 9	199		
ld'∈ ¹ E≥4p	Ť	1	96 149.25	52	35	(*F) [*] D*
		2	96 386.31	44	29	(*F) D*
		3	97 121.42	6 1	Т.	(T) D'
		4	97 J59.81	73	5	(*F) ⁵ D*
		5	97 619.48	59		
3d ^{1, 3} F · 4p	D.	0	96 69.J.9 7	97		
		3	96 714.04	51	35	('F) 'F'
		1	96 774.38	79	1A	
		2	96 9 22.02	56	42	
		4	97 098.28	72	西	
ld'c'F+4p	'D'	1	97 077.96		30	(*F) *F*
		2	97.306.59	6 7	13	('F) 'F'
		3	97 68J.99	79	,	('F) D
⊌/÷°F+4p	'C'	3	99 841.67	93	5	(*G) *G*
		4	100 100.66	90		
		5	100 423.01	\$2		
d ^{1,4} F+4p	'F'	2	101 444.57	*		
		3	101 746.21	95		
		4	102 100.76	95		
ld ⊆D1+4s	۲ D	3	102 236.46	79	21	(² D2) ³ D
		2	102 333.49	78	22	
		1	102 401.80	77	23	
ld*∈²D1 ÷4s	. D	2	105 626.89	78	2	$(^{2}D2)^{-1}D$
id" [,] "P+4p	P	1	108 250.89	**		
	t .	2	108 461.40	3 0		
	•	3	108 795.84	59		
lat'+*P+4p	'D'	0	108 697.63	56	27	("P) ³ P"
		1	108 864.98	40	14	
		2	109 570.89	50	11	
		3	109 722.79	94		
		4	110 154.89	3 7		
id ^{∶, +} P+∔p	'P'	2	108 972.90	52	30	(*P) ⁵ D*
		0	109 458 11	47	41	
		1	109 570.62	54	រា	
3d'+4G+4p	'H'	4	109 534 25	45	13	('H) 'H'
		5	109 944.98	63	14	
		6	110 507 18	4 4		

1

1

Cr m-Continued

.

Contigeration	Tern	J	(cm ⁻¹)	Leadi	ng perces	utages -
3d ³ (-G)4p	'C'	3	111 376.09	86		(*F) * G*
	1	4	111 644.76	89	5	
	! [5	111 856.97	85	5	
3d ² (*G)4p	۲ ۰	4	112 372.88	2	1 7	(*G) ¹ G*
		2	112 399.84	73	13	(*D2) *F*
		3	112 467.01	70	8	(² D2) *F*
3d ² (*G)4p	'G'	4	113 115.21	59	39	(² G) ³ F*
3d*(*G)4p	¹ P*	3	113 328.80	72	12	(² D2) ¹ F
3d ² (*P)4p	'S'	2	113 357.04	55		
3d ² (*G)4p	'H'	5	113 419.93	π	18	(² H) ¹ H*
3d ² (² P)4p	'D'	2	113 767.18	4	2	(² D2) ¹ D*
3d ² (2P)40	'72'	0	113 861 47	Ø	77	(² D2) ³ P*
	-	ī	113 899 1 1	57	29	
	1	2	114 599.14	5. 61	2	
3d*(-*P)+60	'D'	1	114 716 79	78	12	(ግ ቦ) ³ በታ
- 7	-	2	115 182.15	5	 21	
		3	115 554.28		31	
3d ⁴ (² H) 40	'H'	4	115 571.96	22	13	(² G) ³ H*
-		5	115 670.74	85	14	
		6	115 844.58	85	15	
3d*(*D2)4p		1	116 372.92	ж ^к Р"	28	"D" (P)
3d ² (2D2)40	38-	2	116.297.66	-	5	*Tf (4*)
•	-	4	117 101.58	6	17	(² D1) ³ F*
3d*(*P)4p	's:	I	116 451.19	•	13	•₽) ³ D*
34 ⁴ (⁴ P) An	٦nr	2	116 5 99 65			(Ser. 3)
and the state		2	116 782.05	•• 34	31	(³ P) ³ D ⁴
3d ⁴ (² P)4p		I	116 774.00	12 ¹ S'	2 1	"C" (T")
3d ² (2D2)4p		3	116 969.09	77° 78	#	*0* (¶*)
3d ⁴ (² H)40	4 -	5	117 145.85	*		
· · ·		6	117 188.95			
		7	117 923.89	100		
3d ⁴ (² D2)4p	' 0'	L	118 145.15		17	(² D2) ³ F*
-		2	118 422.99	72	16	
		3	118 599.11	71	15	
3a ⁴ (*H)4p	'G'	4	18 900.53	81	15	(⁸ ₽) ¹ G*
3d ⁴ (2D2)4p	·4,	2	110 421.42	41		• 4 • (4 •)
· T		I	119 489.02	42		
		0	119 625.62	4	36	

1

Configuration	Tenn	Ferm J Level Leading p (cm ⁻¹)				8 percentages		
3d ⁴ (2D2)4p	¹ F*	3	i 19 846.4 7	61	18	(² D1) ¹ F		
3d ² (² H)4p	'T	6	120 432.99					
3d ³ (2H)4p	°C.	5	120 700.27					
		4	120 749.55					
_		3	120767_26	\$				
3d ² (*P)4p	35	1	121 446.77	87				
3d ² (² P)4p	¹ P*	1	122 396.49	71	17	(² D2) ¹ F"		
3d ² (² D2)4p	^י Dי	2	123 105.84		41	(² P) ¹ D ⁴		
3d ² (² F)4p	³ F*	2	128 754.62	5				
		3	128 784.13	N				
		¢	128 850.49	94				
3d ² (² F)4p	,C.	3	131 116.36	52	5	(² H) ³ G*		
			IJI 285.60	\$2	5	("H) "G"		
		Э	131 450.16	\$6				
3d ⁴ (² F)4p	'D'	2	132 070.71	67	18	(² D1) ¹ D*		
$3d^{3}({}^{2}\mathbf{F})4p$	יטי	3	1 32 117.50	9	5	(² D1) ³ D*		
•		2	152 199.78	91	5			
		ī	152 754 22		5			
3d ⁴ (² F)4p	'G'	4	1 33 969 .57	83	15	(² H) ¹ G*		
3d ⁴ (² F)4p	' F	3	184 887.54	54				
3d ⁴ (² D1)3n	¹ Dr	1	148 098 18	_	••	(200) Jan		
	U	2	140 000.10	<u>"</u>				
	1	3	140 373.33		19			
			14/ 030.73	П	17			
3d*(*D1)4p	·D-	2	148 57 3 .81	53	20	(² D2) ¹ D*		
3d*(*D1)4p	¹ F*	2	149 344.03	C2	20	(² D2) ³ F*		
		3	149 383.64	73	23			
		4	149 626.30	75	2			
$3d^3(^2D1)4n$	³ P*	2	151 351 97	76	33	(² D2) ³ D*		
	-	ī	151 687 44		24			
	÷ • *	Ō	151 859.12	75	24			
3d²(2D1)4p	¹ F *	3	152 0 3 7.21	π	20	(² D) ¹ F*		
3d*+*F+4d	'n	3	152 927 3					
		4	153 099 1					
	1	5	153 314 6					
		6	1525717					
		7	153 871.7					
3d ⁴ (² D1)4p	P*	1	156 929 9.3	75	24	(² D2) ³ P*		

• • •

.

ł

Cr III-Continued

-

=

E-4	2
-----	---

Cr nt-Continued

Configuration	Tem	J	Level (cm ⁻¹)	Lending percentages
3d ⁸ (*F)5c	۶r	1	157 303.2	
		2	157 435.1	
		3	157 637.3	
		4	157 908.0	
		5	158 241.8	
3d ² (*F)4d	G	3	158 066.7	
		4	158 442 9	
3d [#] (*F)5e	34	2	159 031.8	
		3	159 375.6	
		4	159 803.3	
3d ² (*F)4d	34	3	158 463.6	
		4	158 623.7	
3d ⁸ (² H)4d	31	5	173 200.5	
	-	6	173 662.8	
3d ² (³ F)4e4p(³ P*)	⁵ G'	2	175 965.9	
		3	176 274.8	
		Ā	176 684.7	
		5	177 196.0	
	Į	6	177 803.9	
3d ² (³ F)4e4n(³ P*)	5p-	1	177 292.3	
		2	177 466.1	
		3	177 724.9	
		4	178 063.9	
		5	178 473.5	
3d ² (³ F)4e4p(² P*)	۶Dr	0	179 815.5	
		1	179 863.2	
		2	179 951.6	
		3	180 100.8	
		4	180 334.0	
Cr IV (4P22)	Limit		249 700	

Cr IV

Z=24

Sc 1 isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p⁴3d³⁴F_{1/2}

Ionization energy = $396500 \pm 400 \text{ cm}^{-1}(49.16 \pm 0.05 \text{ eV})$

The initial analysis was by White (1929) and was later extended by Bowen (1937). Ekberg (1973) reobserved the spectrum and extended the analysis but reported no levels above 211 574 cm⁻¹. With new observations Ekberg and Engström (1982) greatly increased the range of known energy levels by establishing 59 of the 67 possible $3d^24d$ levels and 15 of the 16 3d²5s levels, is well as the 3d²(1S)4s ²S_{1/2} level. The uncertainty of the energy level values is ± 0.4 cm⁻¹. Percentage compositions for all the known levels were obtained by these authors.

From the $3d^{2}({}^{3}F)$ as terms for n = 4,5 and an extrapolated value for the change in effective quantum number between them, Ekberg and Engström determined the value for the ionization energy.

References

Bowen, J. S. (1937), Phys. Rev. 52, 1153. Ekberg, J. O. (1973), Phys. Scr. 7, 55. Ekberg, J. O., and Engström, L. (1982), Phys. Scr. 25, 617. White, H. E. (1929), Phys. Rev. 33, 672.

Cr	ĩ۷
_	

Configuration	Term	J	Levei (cm ⁻¹)	Lead	ing percer	ntages
3d ⁴	4F	3/2	0.0	100		
		542	237.4	100		
		1/2	556.4	100		
		%_	945.5	100		
3d ²	4P	1/2	14 059.9	100		
		3/2	14 177.5	99		
		₩2	14 472.2	100		
3d ⁴	²G	1/2	15 053.6	100		
	1	9/ ₂	15 402.4	100		
3d ⁴	²P	\$/2	19 439.4	83		
		1/2	19 520.8	100		
3d ⁴	²D2	3/2	20 651.0	72	22	²D1
		₹,	20 665.5	78	22	
3d ⁴	² H	•/,	21 066.9	100		
		¹¹ / ₂	21 321.1	100		
3a ⁴	۶	1/2	34 364.3	100		
		\$/2	34 556.9	100		
3d ⁴	* D1	4	52 976.4	78	22	* D2
		₩,	53 143.8	π	23	
3d ⁴ (*F)4s	'7	3/2	103 996.5	100		
		1%	104 258.6	100		
		1/4	104 630.2	100		
		₹,	105 105.7	100		
8d ⁴ (* ?)4e	'n	7,	109 941.5	100		
		1/2	110 69 1.8	100		
8a ⁴ (¹ D)4s	¹ D	·%	11.9 571.5	6 5	85	(⁸ P) ⁴ P*
		1 1/2	115 727.8	54	42	

E-	4	4
----	---	---

Cr IV-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leadin	ig perces	tages
3d ² (³ P)4s	ЧР	ч,	119 014.6	100		
		3/2	119 252.0	58	42	$(^{1}\mathbf{D})^{-2}\mathbf{D}^{*}$
		5/2	119 671.3	65	35	(¹ D) ² D *
242, 3D) Ar	3 D	1/	194 410 5	100		
JEL V E PRO	•	1/2 1/2	124 734.4	99		
3d ² (¹ G)4s	² G	1/2	127 195.7	100		
		¹ /2	127 208.3	100		
3d ² (1S)4s	²s	1/2	155 354.4	100		
$3d^2({}^3F)4p$	⁺G•	57,	157 361.4	96		
-		7,	157 933 3	97		
		%	158 629.5	96		
		11/2	159 449.2	100		
$3d^{2}({}^{1}F)4p$	'F-	1/2	158 527.7	97		
		57,	158 892.7	98		
	1	1	159 352.0	96		
		3/ ₂	159 863.6	99		
34 ² (³ F)40	2 F -	šy.	160 305 4	79	t	(¹ D) ² F
	-	· · 2 · /2	160 937.4	79	14	(³ F) ⁴ D*
34213F140	²D*	3/2	160 986 5	15		(³ E) 4De
ou (r/mp		57	169 901 4	8	44	
		'2	102 001.4	•••	22	
3d ² (³ F)4p	4D.	1/2	161 354.8	94	6	(³ P) ⁴ P*
		72	161 49 5. 3	67	15	$({}^{3}F) {}^{2}D^{*}$
		3/2	161 756.3	52	36	$({}^{3}F) {}^{2}D^{*}$
		1/2	162 064.9	81	13	$({}^{3}F) {}^{2}F^{-}$
$3d^2({}^{3}\mathbf{F})4p$	² G'	7/2	164.909.7			
	-	1	165 4.900	96 96		
				~		
3d ² (³ P)4p	<i>"</i> S"	¹ /2	167 896.5	59		
3d ² (³ P)4p	*S'	3/2	171 081.3	91	9	(¹ D) ² P*
2.4 JD . 4-	20-	3,	170 101 0	•-	_	
aan Dinp	r	12	172 164.0	54	3	(P) 5
		12	172 823.2	*		
$3d^{2}(^{1}D)4p$	2 F .	\$72	172 636.4	87	1	(³ F) ² F*
		7/2	173 366.0	84	7	(³ P) ⁴ D*
344 (3D) An	4D*	1/2	179 491 0	64		(⁸ 8) 404
	-	i, i	179 650 1			(³ E) ⁴ D*
		\$7	174 086 9	72	2	
		1/2	171 916 0			(17) 2P*
		'2	114 044.4		'	
3d ² (¹ D)4p	²D*	1/2	174 539.7	82	6	(⁹ F) ⁹ D*
-		3/2	174 968.6	82	6	
3d ² (³ P)4p	'P'	1/2	176 690.9	*		
•	1	3/2	176 916 7	**		
		5/2	177 408.5	\$6		

Level (cm⁻¹) Configuration Term J Leading percentages 7/2 9/2 3d²(¹G)4p ۰G. 177 916.5 **5**5 178 030.0 **5**5 3d²(³P)4p ³/2 3∕2 <u></u>, 181 243.1 (³F) ²D* 81 12 181 277.9 79 10 3d2+3G+4p %_ 11/2 "H" 182 679.2 **9**9 183 444.2 100 1/2 1/2 1/2 3d P + 10 ²P* 183 720.3 99 183 875.6 **9**7 7.2 5%2 3d - G (4p ²F⁻ 186 980.8 96 187 519.0 97 1/ 3/2 3d (S)4p 2**P*** 210 559.2 98 211 575.9 98 $3d^{2}({}^{3}\mathbf{F})4d$ ۰G 5/2 /2 9/2 /2 9/2/2 232 566.1 $({}^{3}F) {}^{2}F$ 88 12 232 896.6 87 (³F) ⁴H 11 233 236.7 82 (³F) ⁴H 18 233 647.0 80 19 (³F) ⁴H ", √2 3d²('F)4d ŕF 233 117.3 (³F) ⁴G 82 12 233 637.6 89 Ή 3d*(*F)+d ·/2 9/2 11/2 13/2 233 358.8 (³F) ⁴G 89 11 233 708.5 82 16 234 100.1 80 20 234 500.9 100 1/2/2/2/2 3d 'F Hd ۴D 233 618.4 97 233 798.9 98 234 085.2 98 234 502.1 95 $^{2}\mathbf{P}$ 1/2 1/2 3d F + 1d 235 743.0 $(^{1}D)^{2}P$ 88 7 236 491.4 89 6 3d²(³F)4d 'P 1/2 3/2 5/2 237 798.2 (³P) ⁴P 86 13 238 100.4 85 13 238 447.1 84 14 ·/2 •/2 ad' Fild ²G 237 999.5 (¹D) ²G 84 12 238 561.3 84 12 3/2 5/2 $3d^2({}^3F)4d$ ²D 239 541.4 (¹D) ²D 78 18 239 822.2 75 19 9/2 11/2 3d2('F)4d ²H 239 582.8 (¹G) ²H 91 9 240 268.8 90 9 3d'('F + 4d 1/2 1/2 1/2 9/2 ٩F 240 967.9 96 241 182.5 95 241 472.8 95

241 832.5

95

E-45

Cr IV-Continued

. .

Cr tv-Continued

ł

Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percer	lages
3d ² (³ P)4d	2p	372 142	247 099.1 247 765.0	50 59	40 ¹ . 36	(¹ D) ² P
3d ² (¹ D)4d	Ŧ	572 7/2	247 239.3 247 546.7	84 86	15 11	(³ P) ² F
3d ² (1D)4d	ጜ	₹72 7/2	249 932 .5 250 007.7	75 79	8 8	(¹ G) ² G
3d ² (³ P)4d	۴F	572 7-1/2 9/2	250 535.2 250 752.7 251 093.1	91 36 36	6 8	(³ P) ⁴ D , ¹ G) ² G
3d ^e (*P)4d	*D	ay 2 3√2 3√2 7√2	251 017.3 251 095.6 251 137.8 251 342.7	97 39 34 33	5	(³ P) ۴ F
3d ² (³ F)5s	۴F	ay 572 772 7√2 9√2	251 563.9 251 8(7.0 252 198.3 252 694.5	140 97 95 160		
3d ² (³ P)4d	²F	\$y ₂ -7/2	252 464.8 252 532.8	54 56	37 36	(¹ G) ² F
3d ² (³ F)5s	²F	⁵ 72 7/2	253 476.1 254 212.1	97 98		
3d ² (³ P)4d	4P	5/2	254 534.6	81	13	(³ F) ⁴ P
3d ² (³ P) 4 d	²D	4 ₂ 5 ₇₂	255 662.3 255 836.9	25 28	27 35	G¹ (U ¹)
3d ²⁽¹³ D)4d	²P	¹ / ₂ 3/ ₂	255 803.6 256 306.2	51 43	34 31	(³ P) ² P (³ P) ² D
3d ²⁽¹ G)4d	21	¹¹ / ₂ 13/ ₂	256 853.2 256 885.4	100 100		
3d ²⁽¹ G)4d	Ϋ́	"/2 9/2	257 588.6 257 714.4	88 87	7 7	(³ F) ² G
3d ²⁽¹ G)4d	²H	•/2 11/2	259 755.4 259 799.6	91 91	9 9	(² F) ² H
3d ² (¹ G)4d	2 F	7/2 5/2	263 875.9 263 971.0	62 51	21 27	(³ P) ² F
3d ²⁽¹ D)5s	²D	5/2 2/2	265 031.6 265 048.6	96 96		
3d ² (¹ G)4d	²D	3/2 5/2	266 878.0 266 931.7	64 64	32 33	([*] P) [*] D
3d ² (³ P)5s	۴P	1/2 2/2 5/2	266 946.6 267 130.4 267 469.0	100 99 95		

Configuration	Tem	J	Level (cm ⁻¹)	Leading percentages
3d*+ P+5s	P	3, ²	268 458 1 268 813.4	100 Se
3d ⁴ + ¹ G+5s	Ġ	2/ -/2 -/2	273 865.3 273 866.6	100 100
$Cr V + {}^{3}\mathbf{F}_{2}$	Limit	• • •	396 500	

Cr v

Ground state: 1s²2s²2p⁺3s²3p⁺3d²³F₂

lonization energy = $560\ 200 \pm 300\ \text{cm}^{-1}(69.46 \pm 0.04\ \text{eV})$

The initial analysis is due to White (1929) who reported levels of the $3d^2$, 3d4s, 3d4p, and 3d4d configurations. Additions and revisions were made by Cady and Edlén and were communicated to Moore for inclusion in her AEL compilation (1952). The spectrum was completely reobserved in the range of 400-1800 Å by Ekberg (1973) whose results are quoted here. The uncertainty in his level values is given as ± 0.5 cm⁻¹. He added the ${}^{1}S_{0}$ level of $3d^2$ and all the known levels of 3d4d and 3d5s. The one term of 3d4d due to White was found to be false. The ionization energy was derived by Ekberg from the series 3d 4s and 3d 5s.

References

Ekberg, J. O. (1973), Phys. Scr. 7, 59.

Moore, C. E. (1952, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol. II (reinsued in 1971 as Natl. Bur. Stand. (U.S.) Natl. Stand. Ref. Data Ser. 35, Vol. II).

White, H. E. (1929), Phys. Rev. 33, 538.

Configuration	Term	J	Levei (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
34	٩٤	2	0.0	3d 4d	¹ F	3	316 674.9
		3	508.2				
		4	1 141.7	3d 4d	סי	1	317 893.8
-						2	318 227.6
3d [#]	D'D	2	13 188.0			3	318 601.7
3d ⁴	'n	0	15 491.8	3d 4d	¹ G	3	319 1 19.1
		1	15 676.6			4	319 516.8
		2	16 041.0			5	320 074.4
3d ⁴	۱G	4	22 019.2	3d 4d	¹ P	1	319 284.0
34	۶	0	51 146.4	3d 4d	*5	1	322 528 .1
3d 4s	' D	1	167 176.4	34 44	37	2	325 104.1
		2	167 491.0			3	325 472.5
		3	168 089.5			4	825 884.2
3d 4e	¹ D	2	171 698.1	3d 4d	ď	2	829 350.3
3d 4p	¹ D*	2	226 119.8	34 44	'n	lo	330 064.8
						li	320 245.1
3d 4p	' 0'	1	228 001.8			2	830 536.8
-		2	228 489.1			-	
		8	229 120.8	3d 4d	¹ G	4	331 811.2
3d 4p	·¶	2	\$\$9 551.7	3d 5a	*D	1	856 744.8
-		3	250 516.5		_	2	856 961.3
		4	23] 392.9			8	857 675.9
3d 4p	¹ P*	1	234 618.4	3d 5e	ם'	2	358 653.8
-		0	234 668.5			[-	
		2	234 846.4				
3d 4p	1 P -	8	23 7 5 29 .5	Cr vi (² D _{1/2})	Limit		560 200
8d 4p	¹ P*	1	239 9 17.5				

Cr v

Cr vi

K I isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p⁴3d²D_{1/2}

Ionization energy = $731020 \pm 6 \text{ cm}^{-1} (90.6356 \pm 0.0007 \text{ eV})$

The first known terms were found by Gibbs and White (1926, 1929) who reported the positions of the 3p⁴3d ²D, 4s ³S, and 4p ²P^{*} terms. The nf ²F^{*} series for n = 5-10 was identified by Alexander, Feldman, and Traenkel (1965) and the missing 4/2F* by Gabriel, Fawcett, and Jordan (1965) who replaced the false levels of this term given earlier by Kruger and Weissberg (1937). The 4p 2P"-4d ²D multiplet was found by Fawcett (1970). Observations of open 3p⁴-core configurations were first reported by Feldman and Fraenkel (1966) who identified the $3p^{4}3d - 3p^{5}3d$ 4s transition array. Some of these lines were classified by Cowan (1967). Gabriel, Fawcett, and Jordan (1966) classified six lines of the $3p^43d - 3p^53d^2$ group.

The spectrum was reobserved in the range of 400-2500 Å by Ekberg (1973). He interpreted a considerable number of new lines and verified the earlier work. His revisions of the values for the known levels and his additions to the analysis are quoted here. Levels obtained from transitions to the ground term from 350 000 to

700 000 cm⁻¹ are given to the units place and have an uncertainty varying from ± 5 to ± 20 cm⁻¹. The rest have an uncertainty of ± 1 cm⁻¹. The ionization energy is derived by Ekberg from the nh series with an estimated uncertainty of ± 6 cm⁻¹.

References

Alexander, E., Feldman, U., and Fraenkel, B. S. (1965), J. Opt. Soc. Am. 55, 650.

Cowan, R. D. (1967), Astrophys. J. 167, 377.

Ekberg, J. O. (1973), Phys. Scr. 8, 35.

Fawcett, B. C. (1970), J. Phys. 83, 1732.

- Feldman, U., and Frazukel, B. S. (1966), Astrophys. J. 145, 959.
- Gabriel, A. H., Fawcett, B. C., and Jordon, C. (1965), Nature 206, 390. Gabriel, A. H., Fawcett, B. C., and Jordan, C. (1966), Proc. Phys. Soc. (London) \$7, \$25.
- Gibbs, R. C., and White, H. E. (1926), Proc. Natl. Acad. Sci. (U.S.) 12, 675.

Gibbs, R. C., and White, H. E. (1929), Phys. Rev. 33, 157.

Kruger, P. G., and Weinsberg, S. G. (1937), Phys. Rev. 52, 314.

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3p ⁶ (¹ S)3d	*D	*/2 */2	0 940	3p ⁵ (² P*)3d ⁴ (³ P)	°P*	1/2 1/2 1/2	493 247.1 494 911.2
3p ⁴ (¹ S)4s	²s	¹ / ₂	227 857.9	$3p^{5}({}^{2}P^{*})3d^{2}({}^{3}F)$	*D*	*, *,	496 958 497 495
Зр⁴('S)4 р	*P*	"/2 "*/2	296 573.2 298 396.7	3p ⁴ (¹ S)5d	'nD	۶ <u>,</u>	534 381.7 534 489.7
3p ⁵ (² P*)3d ⁴ (¹ G)	* F *	₹72 7/2	356 962 359 165	3p ⁶ (¹ S)6e	²S	۲ ₂	562 064.1
$3p^{\delta}({}^{2}\mathbf{P}^{*})3d^{2}({}^{1}\mathbf{D})$	² F *	7/2 \$72	\$71 618 \$78 677	3p ⁶ (¹ S)5f	°F-	72 72 72	568 957.4 568 993.0
8p ⁶ (¹ S)4d	'nD	**_ **_	402 661.7 402 888.6	3p ⁶ (¹ S)5g	۰C	"/2 "/2	572 272.8 572 274.4
3p ⁵ (² P*)3d ⁴ (⁸ P)	² ŗ -	₩2 1/2	440 135.2 442 945.4	3p ⁶ (¹ S)6p	*P*	1/2 1/2 1/2	574 135 575 742
3p ^{\$(1} S)5e	²S	1/2	461 253.0	3p ⁶ 3d(³ P*)4s	'P'	1/2	578 566
3p ⁴ (¹ S)4f	² ŗ-	₩7 <u>2</u> 172	481 956.0 482 517.1	3p ^{\$} 3d (³ F*)4s	4F*	72 7/2	580 69 7 584 3 71
3p ^{\$} (¹ 8)5p	²₽*	1/2 8/2	487 589.5 488 561.9			\$72	586 273

Cr vi

Z = 24

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3p ⁵ 3d(³ F*)4a	29-	74 94	591 157 594 926	3p ⁶ ('S)6h	ЪĻ	°∕ <u></u> 11⁄2	621 162.9
\$p ^{\$} 3c! (³ D*)4e	*D*	1/2	607 615	3 µ ⁶ (¹S)7f	*	72 72	648 521 648 553
		72 72 72	609 651 609 166	3p⁶('S)7k	'nr	*× ¹¹ ∕2	650 310.8
39 ⁵ 3d(¹ D*)4e	*0*	42 42	610 497 611 568	3p ⁶ (¹ S)8f	34	43 ⁷ /2	667 973
3p⁸ 3d (¹ P*)4e	2 7 *	7.	614 385	3p ⁶ (¹ S)9f	27°	5% 5.72	681 307
8-5 8-1(⁸ 1)*).4-	217	1 ¹ 2 52	616 079	3 p*("S)10y	••	731/2	690 781
op 01: D 3m		32 32	619 419	Cr VII (¹ S ₆)	Limit		731 020
3p⁵(¹S)6 f	2°F*	72 7/2	618 583 618 849				
3p ⁶ (¹ S)6g	¹ G	"/₂ ?/₂	620 696.3 620 700.5				

Cr VI-Continued
Cr va

Z = 24

Ar t isoelectronic sequence

Ground state: 1s²2s²20⁶3s²30⁶¹Sn

Ionization energy = $1291900 \pm 600 \text{ cm}^{-1} (160.18 \pm 0.07 \text{ eV})$

Most of the levels are taken from an extensive analysis by Ekberg (1976) who observed the spectrum in the range of 90-2000 Å with an accuracy of ±0.01 Å. The few earlier identifications are noted in his work. Relative to the ground state the level uncertainty is ± 10 cm⁻¹. Among the excited levels the relative uncertainty is ± 0.5 cm⁻¹. The designations and percentage compositions for the levels are from Ekberg. A value for the ionization energy of 1 291 900 (600) cm⁻¹ was derived by him by extrapolation. The same value may be derived from the 3-member as series.

The terms $3s 3p^44p^{-3}P_1^*$, $5p^{-1}P_1^*$ and $^{-3}P_1^*$, $6p^{-1}P_1^*$, and 7p 'P' were determined by Kastner, Crooker, Behring, and Cohen (1977) from observations of absorption in a spark between 70 and 100 Å. The level uncertainty obtained from these data is ± 100 cm⁻¹.

References

Ekberg, J. O. (1976), Phys. Scr. 13, 245.

Kastner, S. O., Crooker, A. M., Behring, W. E., and Cohen, L. (1977), Phys. Rev. A16, 577.

Cr	VII
----	-----

Configuration	Term	J	Level (cm ⁻¹)	Les	ling perce	stages
3e 3p	¹ S	0	0.0			
le ² 3p ² 3d	· ·P·	0	341 179.3	160		
•	1	1	342 773.5	100		
		2	346 137.1	59		
se 3p 3d	ዮ	4	3 57 5 43 .7	100		
•	1	3	360 '71.9	97		
		2	363 060.9	56		
3a ² 3p 3d	¹ D*	2	382 682.3	π	19	ሚ
3e ² 3p ² 3d	'U'	3	382 787.4	74	25	۲ ۳-
	1	1	385 828.3	99		
		2	386 616.6	78	20	'D'
30° 30° 3d	1 F -	3	389 126.2	72	25	ሚ
30° 30' 30	¹ P*	1	493 035.4	100		
3e3p* 3d	ď	1	608 679 6	100		
-		2	609 142.7	100		
		3	609 887.8	100		
3e3p* 3d	ď	2	627 826.7	100		
30° ("P12)40	² [3/2]*	2	668 858.6	100		
- ••		1	672 427.7	85	15	$({}^{2}\mathbf{P}_{1/2}^{*}) {}^{2}[1/2]^{*}$
3e ² 3p ⁵ (² P _{1/2})4e	2[1/2]*	0	678 534.7	100		
-		1	682 6 10.2	85	15	$({}^{2}P_{3/2}^{*}) {}^{2}[3/2]^{*}$
3e² 3p ^{\$} 4p	3	1	734 605.3			

I.

Cr vtt-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages			
- 3p ³ 4p	³ D	2	745 328.9				
		3	745 631.1				
	1	1	148 0.29.3				
3p ⁵ 4p	ЪР	2	751 649 .3				
	•	0	757 035.8				
		1	758 572.1				
Зр⁵ 4 р	[:] Р	1	754 378.9				
3p ³ 4p	¹ D	2	758 374.4				
30 ⁵ (² P;)4d	-1/2;*	0	856 292.2	190			
		1	857 234.5		20	(² P _{3/2}) ⁻² [3/2	
توريغ م <mark>لك</mark> ر من الم	212-21-	9	858.407 1	at		.2me . dra.a	
op (132)44	(0, 2)	ĩ	866 502.8	80 79	15	$({}^{2}\mathbf{P}_{1,2})^{-}(4/2)$	
<i></i>		-					
3p*(*P _{3 2})4d	²[7/2]*	4	860 111.3	100			
	1 	3	861 [98.4	93			
3p ³ P 14d	·[5/2]*	2	864 129.5	9 9	11	(² P [*] ,) ² [5/2	
		3	865 155.8	-16 -	5	$({}^{2}\mathbf{P}_{3,2})^{2}[7/2$	
Bo ³ (² Pt) Id	-15-91-	•)	877 771 6			2 D • 12(5.0	
3	() () ()	3	873 146.1	92	7	$({}^{2}\mathbf{P}_{1,2}) {}^{2}(5/2)$	
5 m .							
lp'(*P*₂)4d	²[3/2]°	2	873 565.5	R5	15	(² P_{3 2}) ² [3/2	
		1	873 300.3	20			
3p ³ (2P _{1,2})4/	²{3/2}	1	941 811				
		2	943 149.1				
30 ⁵ (² P1),4/	2[9/2]	5	944 416.8				
		4	945 475.7				
2-2-2De		2	044 966 7				
	[3/2]	3 2	954 623				
		-					
$3p^{5}(^{2}\mathbf{P}_{1,2}^{\bullet})4f$	² [7/2]	3	947 917.4				
	1	4	948 943.9				
ip ⁵ (² P _{3/2})5s	² [3/2] [•]	1	951 1 22				
30 ⁵ (2D+)46	217/21	3	956 454				
ogo (F1.2)4/	("""	4	957 205.1				
		_					
3p ³ (*P [*] _{1,2})4/	*{5/2}	3	957 004.6	-			
3p ⁵ (² P _{3/2})5e	²[1/2]*	τ	960 366				
o ⁴ 4p	۰d	1	984 590				
p ⁴ 4p	' P *	1	994 105				
3p ⁵ (² P _{1/2})5d	2[3/2]*	1	1 033 485				
	2(2,014	1	1 040 580				
op"("P _{1/2})5d	[[3/2]]	1	1 042 308				

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages							
3s ² 3p ³ 1 ² P _{1,2} 16s	²[3/2]*	1	1 075 627								
3e ² 3p ⁵ 1 ² P ² 216e	²[1/2]*	1	1 085 446								
3e3p ⁶ 5p	³Р •	1	1 219 810								
3e3p° 5p	·P•	1	1 227 130								
Cr VIII (² P _{1/2})	Limit		1 291 900								
3 63p* 6p	¹ P*	1	1 335 560								
3 63 p ⁴ 7p	¹ Р•	1	1 393 840								

T.

I.

Cr vn-Continued

Cr vm

Z = 24

CI i isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p⁵²P'₂₂

Ionization energy = $1490000 \pm 3000 \text{ cm}^{-1} (184.7 \pm 0.4 \text{ eV})$

All the known levels are derived from transitions to the 3s23952P° ground term. Edlén (1937) identified lines originsting from all levels of the 3s13p44s configuration except for the *P1/2. Earlier, Weissberg and Kruger (1936) had reported lines from the ²P term of this configuration as well as from the ²S term of $3s_3p^4$. The transitions from 3s23943d were identified by Gabriel, Fawcett, and Jordan (1966) and by Fawcett and Gabriel (1966). The parent states for the terms 3s²3p⁴3d ²P and ²D are changed to 3p⁴ (³P) as indicated by the calculated states of Fe x by Bromage, Cowan, and Fawcett (1977). Transitions from 3s²3a⁴4d were given by Fawcett, Cowan, and Hayes (1972). Line identifications in the $3p^43d - 3p^44f$ transition array were also given in this paper but cannot be used to derive energy levels because they do not combine with known levels.

The recent measurements of the $3s^23p^3 - 3s^3p^4$ doublet by Smitt, Svensson, and Outred (1976) are used to determine the ground term interval with an uncertainty of $\pm 2 \text{ cm}^{-1}$ and the $3s 3p^{+2}S_{1/2}$ level with an uncertainty of $\pm 10 \text{ cm}^{-1}$. The uncertainty in the values of the higherlying levels is estimated to be $\pm 100 \text{ cm}^{-1}$.

The ionization energy is an extrapolated value by Lotz (1967).

References

Bromage, G. E., Cowan, R. D., and Fawcett, B. C (1977), Phys. Scr. 15, 177.

Edlén, B. (1937), Z. Phys. 104, 407.

Fawcett, B. C., and Gabriel, A. H. (1966), Proc. Phys. Soc. 88, 262. Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. 85, 2143.

Gabriel, A. H., Fawcett, B. C., and Jordan, C. (1965), Nature 206, 390. Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Smitt, R., Svensson, L. A., and Outred, M. (1976). Phys. Scr. 13, 293. Weissberg, S. G., and Kruger, P. G. (1936). Phys. Rev. 49, 872.

Term	3	Level (cm ⁻ⁱ)	Configuration	Term	J	Level (cm ⁻¹)					
² P*	³ / ₂ ¹ / ₂	0 9 892	3e ² 3p ⁴ (¹ D)4e	² D	\$72 \$72 \$72	769 240 769 550					
²S	¹ /2	242 065	3e ² 3p ⁴ (¹ S)4e	²S	۲ <u>،</u>	805 260					
² s	1/2	461 540	3s² 3p ⁴ (³ P)4d	²D	۶ ₇₂	946 200					
²P	³ √ ₂ ¹ √ ₂	479 310 482 910	3e ² 3p ⁴ (¹ D)4d	25	72 ¹ /2	947 300 966 400					
²D	572 372	487 780 496 170	3e ² 3p ⁴ (¹ D)4d	² P	³, ',2	970 600 972 200					
'P	572 372	735 880 741 060	3e ² 3p ⁴ (¹ D)4d	ď	\$%2 \$%2	976 100 977 400					
2 P	¹ / ₂ ¹ / ₂	749 640 755 740	Cr DX (³ P ₂)	Limit		1 499 000					
	Term ² P ² ² S ² S ² P ² D ⁴ P ² P	Term J $^{2}p^{-}$ $\frac{3}{2}$ $^{2}p^{-}$ $\frac{3}{2}$ ^{2}S $\frac{1}{2}$ ^{2}S $\frac{1}{2}$ ^{2}p $\frac{3}{2}$ ^{2}p $\frac{3}{2}$ ^{2}p $\frac{3}{2}$ ^{2}p $\frac{3}{2}$ ^{4}p $\frac{5}{2}$ ^{2}p $\frac{3}{2}$	Term J Level (cm ⁻¹) $^2P^{-}$ 3r_2 0 1r_2 9 892 2S 1r_2 242 065 2S 1r_2 461 540 2P 3r_2 461 540 2P 3r_2 482 910 2D 3r_2 487 780 3r_2 496 170 4P 5r_2 735 880 3r_2 749 640 1r_2 749 640 1r_2 755 740	Term J Level (cm ⁻¹) Configuration $^2P^*$ 3r_2 0 $3e^2$ $3p^4$ (¹ D) 4e 2S $^{1}r_2$ 242 655 $3e^2$ $3p^4$ (¹ D) 4e 2S $^{1}r_2$ 242 655 $3e^2$ $3p^4$ (¹ S) 4e 2S $^{1}r_2$ 461 540 $3e^2$ $3p^4$ (¹ D) 4d 2P $^{3}r_2$ 479 310 $3e^2$ $3p^4$ (¹ D) 4d 2P $^{3}r_2$ 487 780 $3e^2$ $3p^4$ (¹ D) 4d 2D $^{5}r_2$ 487 780 $3e^2$ $3p^4$ (¹ D) 4d 4P $^{5}r_2$ 735 880 $3e^2$ $3p^4$ (¹ D) 4d 4P $^{5}r_2$ 749 640 Cr (x (³ P ₂) ^{2}P $^{3}r_2$ 749 640 Cr (x (³ P ₂)	TermJLevel (cm ⁻¹)ConfigurationTerm $^2\mathbf{p}^{*}$ $\frac{3}{7_2}$ 0 9 892 $3e^2 3p^4({}^1\mathbf{D})4e$ $^2\mathbf{D}$ $^2\mathbf{S}$ $\frac{1}{7_2}$ 242 065 $3e^2 3p^4({}^1\mathbf{S})4e$ $^2\mathbf{S}$ $^2\mathbf{S}$ $\frac{1}{7_2}$ 242 065 $3e^2 3p^4({}^1\mathbf{S})4e$ $^2\mathbf{S}$ $^2\mathbf{S}$ $\frac{1}{7_2}$ 461 540 $3e^2 3p^4({}^1\mathbf{D})4d$ $^2\mathbf{D}$ $^2\mathbf{P}$ $\frac{3}{7_2}$ 479 310 $\frac{1}{7_2}$ $3e^2 3p^4({}^1\mathbf{D})4d$ $^2\mathbf{S}$ $^2\mathbf{D}$ $\frac{3}{7_2}$ 487 780 $\frac{3}{7_2}$ $3e^2 3p^4({}^1\mathbf{D})4d$ $^2\mathbf{P}$ $^4\mathbf{P}$ $\frac{5}{7_2}$ $735 880$ $\frac{3}{7_2}$ $3e^2 3p^4({}^1\mathbf{D})4d$ $^2\mathbf{D}$ $^2\mathbf{P}$ $\frac{3}{7_2}$ $749 640$ $\frac{755 740}$ $Cr \operatorname{tx}({}^3\mathbf{P}_2)$ $Limit$	Term J Level (cm ⁻¹) Configuration Term J $^2P^{+}$ $\frac{3}{2}$ 0 $3e^2 3p^4({}^1D) 4e$ 2D $\frac{3}{2}$ 2S $\frac{1}{2}$ 242 065 $3e^2 3p^4({}^1D) 4e$ 2D $\frac{3}{2}$ 2S $\frac{1}{2}$ 242 065 $3e^2 3p^4({}^1D) 4d$ 2D $\frac{3}{2}$ 2S $\frac{1}{2}$ 461 540 $3e^2 3p^4({}^1D) 4d$ 2D $\frac{3}{2}$ 2P $\frac{3}{2}$ 461 540 $3e^2 3p^4({}^1D) 4d$ 2D $\frac{3}{2}$ 2P $\frac{3}{2}$ 479 310 $3e^2 3p^4({}^1D) 4d$ 2D $\frac{3}{2}$ 2D $\frac{3}{2}$ 487 780 $3e^2 3p^4({}^1D) 4d$ 2P $\frac{3}{2}$ 2D $\frac{5}{2}$ 486 170 $3e^2 3p^4({}^1D) 4d$ 2P $\frac{3}{2}$ 4P $\frac{5}{2}$ 735 880 $3e^2 3p^4({}^1D) 4d$ 2D $\frac{5}{2}$ 2P $\frac{3}{2}$ 741 060 $3e^2 3p^4({}^1D) 4d$ 2D $\frac{5}{2}$ 2P $\frac{3}{2$					

Cr IX

Z=24

S 1 isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p⁴³P₂

Ionization energy = $1688000 \pm 3000 \text{ cm}^{-1}(209.3 \pm 0.4 \text{ eV})$

Edlén (1937) provided the initial spectral classifications by identifying the $3p^4 - 3p^34s$ transitions. Both singlet and triplet levels were detected but not the connection between them.

Classifications in the $3p^4 - 3p^{3}3d$ transition array were made by Gabriel, Fawcett, and Jordan (1965) and by Fawcett and Gabriel (1966). Some new measurements were later provided by Fawcett (1971) as well as two newly classified lines of this group. The $3x 3p^3$ configuration was found by Fawcett (1970). Classified lines of the $3p^4 - 3p^{3}4d$ and $3p^{3}3d - 3p^{3}4f$ arrays were reported by Fawcett, Cowan, and Hayes (1972). The latter array could not be used to derive $3p^{3}4f$ levels because of the lack of transitions to known levels.

Smitt, Svensson, and Outred (1976) give improved measurements of the $3s^23p^4 - 3s^3p^5$ transitions, obtaining an uncertainty of ± 5 cm⁻¹ for the levels, except for the $3s^23p^4$ ¹S₀ determined from a blended line. They also found the intersystem line ${}^{3}P_{2} - {}^{1}P_{1}^{*}$ and identified the ${}^{1}S_{0} - {}^{1}P_{1}^{*}$ line. The uncertainty in the levels above the $3s 3p^{5}$ configuration is ± 100 cm⁻¹.

The ionization energy is an extrapolated value by Lotz (1976).

References

Edlén, B. (1937), Z. Phys. 201, 188.

- Fawcett, B. C., and Gabriel, A. H. (1966), Proc. Phys. Soc. 88, 262. Fawcett, B. C. (1970), J. Phys. 83, 1732.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.
- Gabriel, A. H., Fawcett, B. C., and Jordan, C. (1965), Proc. Phys. Soc. 87, 325
- Lotz W. J. (1967), J. Opt. Soc. Am. 57, 873.
- Senitt, R., Svensson, L. A., and Outred, M. (1976), Phys. Scr. 13, 293.

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3e ² 3p ⁴	٩٤	2	0	3e ² 3p ³ (² P ⁻)3d	¹ P*	1	531 880
		1	7 821	4			
	1	0	9 549	3e ² 3p ³ (⁴ S*)4e	*S.	1	821 100
3e ² 3p ⁴	'D	2	30 284	3e ² 3g ³ (² D*)4e	*D*	1	845 900
•						2	846 260
3e² 3p4	¹ S	0	66 855			3	847 870
3e3p³	19-	2	259 068	3a ² 3a ³ (² D*)4a	יםי	2	854 730
		l ī	245 317		-	_	
		Ō	249 016	3e ² 3p ³ (² P ⁻)4e	ⁱ P*	1	881 810
3e3ø ⁵	1.04	1	305 561	302 303 (4S*)4d	3D.	2	1 028 500
					-	3	1 028 900
3e ² 3p ³ (² D [*])3d	3P.	2	454 510			1	1 029 100
3e² 3p²(²D*)3d	¹ D*	2	493 3 10	30° 30° (2D°)4d	¹ D*	2	1 066 800
3e ² 3e ² (*S*)3d	*0*	2	A74 790	302 303 (2Dr) 4d	ig-	8	1 070 100
	-	2	179 570			-	
		1	482 760	3s² 3p³ 4d	'P'	1	1 102 600
3e ² 3p ² (² D*)3d	1 F*	3	507 750	$Cr \ge ({}^{4}S_{1/2}^{*})$	Limit		1 658 000

Cr ix

Z=24

P 1 isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p³⁴S^{*}_{1/2}

Ionization energy = $1\,971\,000\pm4000\,\mathrm{cm}^{-1}\,(244.4\pm0.5\,\mathrm{eV})$

The levels of $3s3p^4$ are due to Smitt, Svensson, and Outred (1976) who gave improved measurements and additional classifications in the $3s^23p^3 - 3s^3p^4$ array, previously interpreted by Fawcett and Peacock (1967) and by Fawcett (1970). The important "S"-2P" forbidden lines of the $3s^23p^3$ configuration, which unify the term systems, were identified by Feldman and Doschek (1976) in solar coronal spectra. The uncertainty in these level values is $\pm 5 \text{ cm}^{-1}$. Transitions from $3p^23d$ to the ground configuration were identified by Gabriel, Fawcett, and Jordan (1966), Fawcett, Gabriel, and Saunders (1967), and most completely by Fawcett (1970). The level value uncertainty is ± 100 cm⁻¹. Lines of the $3s^23p^3 - 3s^23p^24s$ array were classified by Fawcett, Cowan, and Hayes (1972), giving a level uncertainty of ± 300 cm⁻¹. These authors also identified lines arising from the $3p^24f$ configuration but the lower levels have not been determined.

The ionization energy was obtained by Lotz (1967) by extrapolation.

References

Fawcett, B. C., Gabriel, A. H., and Saunders, P. A. H. (1967), Proc. Phys. Soc. 90, 863.

- Fawcett, B. C., and Peacock, N. J. (1967), Proc. Phys. Soc. 91, 973. Fawcett, B. C. (1970), J. Phys. B3, 17¹2.
- Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.

Feldman, U., and Doschek, G. A. (1977), J. Opt. Soc. Am. 67, 726.

- Gabriel, A. H., Fawcett, B. C., and Jordan, C. (1966), Proc. Phys. Soc. 87, 825.
- Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Smitt, R., Svensson, L. A., and Outred, M. (1976), Phys. Scr. 13, 293.

Configuration	Term	J	Level	Configuration	Term	J	Level
<u> </u>	ļ		((
le ² 3p ³	'S'	"₂	0	$3e^2 3p^2(^1D) 3d$	² D	5/2	476 680
2 - 1	2704	L				72	476 820
er sp	ישי	⁷ 2 51	37 103	2.2.2.2.10.2.4	200	L .	401 650
		12	39 430	ar sp ("Disa	P	1/2 2/	491 650
le ² 3p ³	2P-	4,	63 935			12	100 100
•	1	₹,	67 157	$3e^{2} 3p^{2}(^{3}P) 3d$	² F	1/2	500 880
			}				
6 3p*	P	72	233 890	$3e^2 3p^2(^{\circ}\mathbf{P})3d$	D D	7/2	519 280
		72	239 987			72	520 820
		12	242 922	302 302 30 140	40	4	928 500
e30 ⁴ ² D	2D	3/	289 637	Se op (r) e	F	3/2	933 400
		5%	290 606			5%	939 100
						•	
63p*	P P	1/2	333 412	$3a^2 3p^2(^3P) 4a$	² P	1/2	943 300
		1/	327 270			∛ ₂	949 800
		12	331 310	2-22-2010	200		007 000
le3p ⁴	2'S	1/2	348 760	se sp ("D) a	10	3	967 900
•		•				1	
le ² 3p ² (³ P)3d	² P	3/2	432 830				
		1/2	440 870				
22.2.10.01	10	s ,	442.010	$\operatorname{Cr} XI ({}^{2}P_{0})$	Limit		1 971 000
se sp-(*r)8d	1 1	34	442 010				1
		1/2	446 710				

Cr xi

Z = 24

Si I isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p²³P₈

Ionization energy = $2184000 \pm 4000 \text{ cm}^{-1} (270.8 \pm 0.5 \text{ eV})$

Fawcett (1970, 1971) gave the first interpretation of the $3s^23p^2 - 3s^3p^3$ array. The level values were later revised by Smitt, Svensson, and Outred (1976) on the basis of their more accurate measurements with an estimated uncertainty of ± 0.008 Å or better. The connection between the singlet and triplet systems results from this later work and from the solar coronal line at 3996.8 Å (air) identified by Jefferies (1969) as arising from the forbidden ${}^{1}D_{2} - {}^{1}P_{2}$ transition in $3s^23p^2$. The uncertainty in these level values is estimated to be ± 5 cm⁻¹.

The levels of $3s^23p 3d$ are from Fawcett (1971). Those of $3s^23p 4s$ and the 3D_3 and 4F_3 of $3s^23p 4d$ are due to Fawcett, Cowan, and Hayes (1972). In table I of this reference the line given as 98.48 Å must be changed to 99.48 Å to fit its classification. Kastner et al. (1978) added to the known levels of $3s^23p 4d$ and the ¹G of $3s^23p 4f$. The uncertainty in the 3d level values is ± 100 cm⁻¹ and for the others 300 cm⁻¹.

The ionization energy was obtained by Lotz (1967) by extrapolation.

References

Fawcett, B. C. (1970), J. Phys. B3, 1732.

Fawcett, B. C. (1971), J. Phys. B4, 1577.

Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.

Jefferies, J. T. (1969), Mem. Soc. Roy. Sci. Liege, Collect. 17, 213.

Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J. (1978), J. Opt. Soc. Am. 69, 1558.

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Smitt, R., Svensson, L. A., and Outred, M. (1976), Phys. Scr. 13, 293.

Configuration	Term	3	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3e ² 3p ²	'np	0	0	3e ² 3p3d	*D*	1	\$\$\$ 240
•		1	5 536			2	436 210
	}	2	11 980			3	436 550
3e ² 3p ²	¹ D	2	36 994	3e² 3p3d	1 F -	3	478 590
3e3p ³ ³ D ⁴	*D*	1	242 346	3e ² 3p4e	₽₽•	0	1 008 800
	2	242 456		1	1	1 010 700	
		3	243 916			2	1 021 100
3.3.7.3 3.7	3p.	0	278 059	3e ² 304e	¹ P*	1	1 028 100
		1	278 394			_	
		2	278 698	3 ² 3p4d	*D*	1	1 234 300
						2	1 236 600
3e3p ³	'D'	2	306 570			3	1 237 900
3e3p ³	²s∙	1	356 424	3e ² 3p4d	°P*-	3	1 243 800
3e3p ³	¹ P*	1	372 498	3s² 3p4d	ⁱ F*	3	1 255 500
20 ² 203d	sp.	2	A18 980	8+2 3041	¹ G	4	1 347 200
a grad	-	1	425 480		-	-	
				$Cr XII (^{2}P_{1,2}^{*})$	Limit		2 184 000
3e² 3p3d	¹ D*	2	427 090				

Cr XI

Z = 24

Al t isoelectronic sequence

Ground state: 1s²2s²2p⁴3s²3p²P^{*}_{1/2}

Ionization energy = $2404000 \pm 5000 \text{ cm}^{-1} (298.0 \pm 0.6 \text{ eV})$

The 3p-4d doublet was identified by Edlén (1936). Thirty years later new observations of this spectrum by Gabriel, Fawcett, and Jordan (1966) resulted in the discovery of the 3p-3d doublet. The non-diagonal line of this multiplet was identified by Fawcett, Gabriel, and Saunders (1967) by means of a laser-produced plasma. The uncertainty in the 3d and 4d level values is ± 100 cm⁻¹.

The ²P and ²D terms of the low-lying $3s_{3}p^{2}$ configuration were first reported ¹ y Fawcett and Peacock (1967) again utilizing a laser plasma. Fawcett (1970) revised the classification of the $3s_{3}p^{2}P^{*} - 3s_{3}p^{2}D$ multiplet and added the ²P^{*} - ²S lines. He also reported the ⁴P - ⁴S^{*} lines of the $3s_{3}p^{2} - 3p^{3}$ array. The quartet term position relative to the doublet system is not observed or predicted and therefore cannot be included here.

Fawcett (1971) later revised the wavelengths of the $3s^23p - 3s 3p^2$ array from new plates taken with the theta pinch source. His value of 412.46 Å for the ${}^2P_{3/2}^{*} - {}^2D_{3/2}$ line is inconsistent with the ${}^2P_{1/2}^{*} - {}^2D_{3/2}$ principal line and was not used here. He also reported the 3p - 3d doublet of the same array. Calculated wavelengths enabled Fawcett, Cowan, Kononov, and Hayes (1972) to identify more

lines from the theta pinch spectrum. They classified the 3d-4f doublet and several quartet transitions unconnected with the doublets. The uncertainty of the level values of $3s 3p^2$ is ± 50 cm⁻¹.

The ground term ¹P^{*} splitting is obtained from the solar coronal line 8153.8 Å classified by Jefferies (1969) and has an uncertainty of ± 1 cm⁻¹.

The value for the ionization energy was obtained by extrapolation by Lotz (1967).

References

Edlén, B. (1936), Z. Phys. 103, 536.

- Fawcett, B. C., Gubriel, A. H., and Saunders, P. A. H. (1967), Proc. Phys. Soc. 90, 863.
- Fawcett, B. C., and Pencick, N. J. (1967), Proc. Phys. Soc. 91, 973. Fawcett, B. C. (1970), J. Phys. 83, 1732.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W.
- (1972), J. Phys. **B5**, 1255. Gabriel, A. H., Fawcett, B. C., and Jordan, C. (1966), Proc. Phys. Soc. **87**, 825.
- Jefferies, J. T. (1969), Mem. Soc. Roy. Sci. Liege, Collect. 17, 213. Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3e ² 3p	² P*	¹ / ₂ 37 ₂	0 12 261	3e ² 4d	²D	₹ \$72 \$72	1 319 000 1 319 660
3 e3p²	²D	3/2 5/2	254 450 255 620	3e ² 4f	²F-	⁵ γ ₂ γ ₂	1 395 000 1 395 400
Se3p ²	² S	¹ / ₂	313 600				
3e3p²	²₽	¹ / ₂ 27 ₂	333 240 339 250	Cr XIII (¹ S ₀)	Limit		2 484 990
3e² 3d	²D	\$/2 \$/2	408 700 409 840				

Cr XII

Cr xm

Z = 24

Mg 1 isoelectronic sequence

Ground state: 1s²2s²2p⁴3s² Sn

Ionization energy = $2.862000 \pm 6000 \text{ cm}^{-1} (354.8 \pm 0.7 \text{ eV})$

The $3s^{21}S_0 - 3s4p^1P_1^*$ resonance line was identified by Edlén (1936). He also reported two unconnected triplet systems, one containing levels of 3s3p, 3s4s, 3s4d, and 3s 5d, and the other 3s 3d, 3s 4f, and 3s 5f. The analysis was resumed 30 years later by Fawcett, Gabriel, and Saunders (1967) who unified the triplets by discovering the $3s 3p^{-3}P^{-} - 3s 3d^{-3}D$ multiplet. They also identified the resonance line $3s^{2-1}S_0 - 3s^{2}p^{-1}P_1^*$ at 328.29 ± 0.03 Å. The intersystem transition $3s^2 {}^{1}S_0 - 3s 3p {}^{3}P_1^{\circ}$ was observed at 482.2±0.2 Å in a tokamak plasma by Finkenthal, Bell, and Moos (1982). These two lines were measured in a tokamak plasma by Peacock, Stamp, and Silver (1984), who obtained the more accurate values of 328.267 ±0.004 Å and 482.17 ±0.02 Å, or level uncertainties of ± 4 and ± 9 cm⁻¹. The uncertainties in the rest of the levels of the above configurations is ± 100 cm⁻¹.

The analysis was extended to $3p^2$ by Fawcett and Peacock (1967) who identified the $3s 3p^3 P^6 - 3p^{23} P$ multiplet. Fawcett (1970) later found the ${}^{1}S_0$ of $3p^2$, the ${}^{1}D_2$ of 3s 3d and all the levels of 3p 3d presently known. The uncertainty of these level values is ± 100 cm⁻¹.

The analysis was augmented by Fawcett, Cowan, Kononov, and Hayes (1972) with their identification of transitions from 3s4f ¹F₃, 3s4d ¹D₂, and levels of 3p4f. Some of the last group are not connected to known levels and are therefore not used here.

Improved measurements of the 3s 3p ³P^{*} – 3s 3d ³D multiplet were made by Fawcett, Cowan, and Hayes (1972). In addition, they reported the ¹D₂ of 3s 3d and the ¹D₂ of $3p^2$.

The ionization energy is an extrapolated value obtained by Lotz (1967).

References

Edlén, B. (1936), Z. Phys. 103, 536.

- Fawcett, B. C., Gabriel, A. H., and Saunders, P. A. H. (1967), Proc. Phys. Soc. 90, 863.
- Fawcett, B. C., and Peacock, N. J. (1967), Proc. Phys. Soc. 24, 973. Fawcett, B. C. (1970), J. Phys. B3, 1732.
- Fawrret, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (15 4), J. Phys. B5, 1255
- Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143.
- Finkenthal, M., Bell, R. E., and Moos, H. W. (1982), Phys. Lett. 88A, 165.

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Peacock, N. J., Stamp, M. F., and Silver, J. D. (1984), Phys. Scr. T8, 10.

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
352	¹ S	0	0	8p3d	• P •	2	805 220
				l l		3	811 550
3ø3p	3P.	0	203 470	1	4	4	818 9 10
	}	1	207 400				
		2	216 590	3p3d	P"	2	857 23 0
3e3p	¹ P*	1	304 630	3p3d	*D*	3	861 010
3p ²	'n	0	482 160	3p3d	ip.	1	885 300
		1	488 250		1		
		2	499 220	3040	*8	1	1 385 290
3p ²	۲D	2	483 170	201 p	¹ P*	1	1 492 920
30 ²	's	0	569 460	Seld	* D	1	1 616 060
4	-					2	1 616 460
3e3d	' D	1	588 580			8	1 617 190
	_	2	589 210				
		3	590 100	3etd	ם ^י	2	1 617 500
3e3d	מי	2	662 240	3041	**	2	1 678 240
	-	1				8	1 578 630
						4	1 678 770

Cr XIII

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
304/	¹ F*	3	1 690 800	3e5d	מי	2	2 076 350
•			i i			3	2 076 540
304/	¹ F	3	1 916 140			_	1
4 1		_		365/	38-	4	2 105 990
3 <i>041</i>	¹ G	4	1 920 560		-		
	_	5	1 930 140				
				$Cr XIV (^2S_{reg})$	Limit		2 862 000
3p4/	۶F	4	1 931 440				
3046	'n	3	1 940 840				

Cr xIII-Continued

UT XIV

Z = 24

Na I isoelectronic sequence

Ground state: 1s²2s²2p⁴3s ²S_{1/2}

Ionization energy = $3.098520 \pm 200(384.171 \pm 0.020 \text{ eV})$

Edlén (1936) reported three independent systems of doublets: 3s - np, 3p - nd (and 3p - 4s), and 3d - nf. These were unified by Fawcett and Peacock (1967) who identified the 3s - 3p and 3p - 3d doublets. New observations by Peacock, Stamp, and Silver (1984) of the 3s - 3p doublet in a tokamak plasma were reported at 389.804 and 412.051 Å. We use these and the improved values for the 3p - 3d doublet by Edlén (1978). The 4s, 4p, 4d, 4f, 5d, 5f, and $6f({}^{2}F_{1/2})$ terms are from the identifications and measurements of Edlén (1936). The uncertainty of the n = 3 levels is ± 5 cm⁻¹, and the higher ones ± 200 cm⁻¹.

The additional series members 5s - 6s, 6p - 9p, 6d - 9d, and 7f - 8f were identified by Fawcett, Cowan, and Hayes (1972). Improved measurements by Cohen and Behring (1976) in the range of 35-70 Å were used. They estimate their measurement uncertainty to be ± 0.005 Å although their measurements differ from those of Edlén (1936) by about + 0.02 Å. The $2p^{3}3s^{2}P^{2}$ term was found by Feldman and Cohen (1967).

The value for the ionization energy was derived by Edlén (1978) from core polarization theory applied to the nf series.

References

Cohen, L. and Behring, W. E. (1976), J. Opt. Soc. Am. 66, 899. Edlén, B. (1936), Z. Phys. 189, 621.

Edlén, B. (1978), Phys. Scr. 17, 565.

Fawcett, B. C., and Peacock, N. J. (1967), Proc. Phys. Soc. 91, 973.Fawcett, B. C., Cowan, R. D., and Hayes, R. W. (1972), J. Phys. B5, 2143

Feldman, U., and Cohen, L. (1967), J. Opt. Soc. Am. 57, 1128. Peacock, N. J., Stamp, M. F., and Silver, J. D. (1984), Phys. Scr. 78, 10.

Configuration	Тегт	J	Level (cm ⁻¹)	Configuration	Term	3	Level (cm ⁻¹)
2p ⁶ 3s	² S	1/2	0	2p ⁶ 6s	' S	¹ / ₂	2 424 470
2p ⁶ 3p	²P*	"/2 "/2	242 688 256 500	2р" бр	²P.	1/2 7/2	2 450 99 0 2 452 060
2p ⁶ 3d	*D	*/2 */2	587 810 589 505	2p ⁴ 6d	² D	372 572	2 484 990 2 485 240
2p ⁶ 4s	²S	¹ / ₂	1 478 580	2p ⁴ 6f	ty-	5/2 7/2	2 499 090 2 499 260
2 p⁶ 4 p	²p-	1/2 3/2	1 574 180 1 579 550	2p ⁶ 7s	*8	1/2	2 612 050
2p ⁴ 4d	*D	372 572	1 701 150 1 701 940			5	2 649 530
2p ⁶ 4f	* F -	₩2 1/2	1 7 49 830 1 750 080	2p ⁴ 7f	, <u>1</u> .	₹72 1/2	2 658 200 2 658 270
2p ⁴ 5s	2S	·/2	2 102 780	2p* 8p	*P*	₩ ₂ , Ϋ ₂	2 742 280
2p ⁶ 5p	²₽•	1/2 3/2	2 149 290 2 152 020	2p* 8d	7 D	7 ₂ 5 ₂	2 755 510 2 755 380
2p ^{\$} 5r'	²D	3/2	2 210 730	2p ⁶ 8/	2 7 -	¹ / ₂	2 761 580
2-656	28-	7 ₂	2 211 080	2p* 9p	·P·	72,72	2 820 870
<i>५</i> २ अ		¹ / ₂	2 235 280 2 235 440				

Cr xiv

Cr xiv-Continued

Configuration	Tern	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
2p" 9d	⁻ D	\$, 1. '2	2 827 260 2 828 076				
Cr XV (¹ S _n)	Limit		3 098 520				
2p ³ 3e ⁻	² P*	3 .'2 .' 2	4 593 500 4 658 300				

Cr xv

Z = 24

Ne t isoelectronic sequence

Ground state: 1s²2s²2p⁺⁴S₀

Ionization energy 8 151 000 \pm 5000 cm⁻¹ (1010.6 \pm 0.6 eV)

Only resonance lines are classified for this ion. Tyren (1938) identified the lines due to the $2s^22p^33s$, 3d and 4d as well as the 2s2p*3p levels. Swartz, Kastner, Rothe, and Neupert (1971) identified 5d, and 6d. The magnetic quadrupole transition $2p^{+1}S_0 - 2p^{+3}s^{-3}P_2^{+}$ was identified in the spectrum of a tokamak plasma by Klapisch et al. (1978). They confirm the wavelengths of Tyrén for 2p³3s ³P, and ¹P. and $2p^{1}3d^{-3}D$, to within ± 0.003 Å, but give the value 18.488 Å for 2p^{*}3d ¹P. compared with Tyren's value of 18.497 A used here. The uncertainty in the level values is estimated to be ± 2000 cm⁻¹.

Kastner, Behring, and Cohen (1975) identified transitions between 2p³3p and 2p³4d but there is no connection with known levels.

The percentage compositions were calculated by Bogdanovich et al. (1980).

We derived the ionization energy from the $2s^2 2p^3 nd^{-3}D_1^*$ series for n = 3, 4, 5. The n = 6 term does not fit well to a series calculation.

References

- Bogdanovich, P. O., Bogdanovichene, M. I., Grudzinskas, I. I., Rudzikas, Z. B., Tutin, V. J., and Shadzhjuvene, S. D. (1980), "Spectroscopy of Multiply Charged Ions," USSR Acad. of Sci., Sci. Counc. on Spectr
- Kastner, S. O., Behring, W. E., and Cohen, L. (1975). Astrophys. J. 199, 777
- Klapuch, M., Bar Shalom, A., Schwob, J. L., Fraenkel, B. S., Breton, C., de Michelis, C., Finkenthal, M., and Mattioli, M. (1978), Phys. Lett. 69A. 34.
- Swartz, M., Kastner, S. Rothe, E., Neupert, W. (1971), J. Phys. 84, 1747
- Tyren, F. (1938), Z. Phys. 111, 314

Cr	xv
<u> </u>	~ *

Configuration	Term	J	Levei (cm ⁻¹)	La	iding percen	tages	
2s- 2p^	S	0	0				
2s ² 2p ² 3s	' P -	2 1	4 714 100 4 727 500	100 50	50	۲ ۳ -	
2e ² 2p ² 3e	'P -	I	4 7 93 200	50	50	'P'	
2e-2p-3d	'P'	1	5 25 9 000	м			
2a 2p 3d	'D*	I	5 524 200	13	12	" P "	
2s 2p 3d	' P -	I	5 406 300	**			
2 s2p * 3p	'P"	1	5 894 500	92	Ņ	¹ P *	
?s2p [€] 3p	۲ ۳ -	1	5 921 000	92	н	°P*	
2s² 2p 4d	¹ D*	1	6 576 000	53	41	¹ P*	
2s' 2p 4d	'P*	1	6 641 000	50	34	'D"	
2st 2p 5d	'D'	l	7 148 000				
2s² 2p 5d	' P *	I	7 215 000				
2a² 2p [°] 6d	'D'	I	7 452 000				
2s² 2p [°] 6d	' P *	1	7 524 000				
Cr XVI (² P* ₁₂)	Limit		8 151 000				

Cr xvi

Z = 24

F 1 isoelectronic sequence

Ground state: 1s²2s²2p¹²P₃

lonization energy = $8\,850\,000\pm18\,000\,\mathrm{cm}^{-1}$ (1097±2 eV)

The ground term splitting was obtained by Fawcett (1971) from his identification of the $2s^22p^2 - 2s^2p^2$ doublet. It was observed directly from a magnetic dipole transition at 1410.6 \pm 0.3 Å in a tokamak discharge by Hinnov et al. (1982). The present value is taken in the more accurate measurement of 1410.60 \pm 0.02 Å by Peacock. Stamp. and Silver (1984) in a similar light source, giving an uncertainty of 2 cm⁻¹ for this interval. The $2s^2p^{-2}S_{1/2}$ from the measurements of the resonance doublet by Doschek et al. (1974), and has an uncertainty of ± 200 cm⁻¹.

The $2s^22p^2 - 2s^22p^43s$ and 3d arrays were first analyzed by Cohen, Feldman and Kastner (1968). This work was revised and extended by Feldman et al. (1973) from whose classified lines we derived the energy levels. Their reported wavelength accuracy is ± 0.01 Å. The convequent level uncertainty is ± 6000 cm⁻¹.

The $2s 2p^{\circ 2}S_{1,2} - 2s 2p^{\circ}3s^{-2}P^{\circ}$ multiplet is from Feldman et al. (1973).

Bogdanovich et al. (1980) calculated the percentage compositions of the levels.

The ionization energy was obtained by extrapolation by Lotz (1967).

References

- Bogdanovich, P. O., Bogdanovichene, M. L. Grudzinska, I. L. Rudnkas, Z. B., Tutlis, V. L. and Shadzhjuvene S. D., "Spectroscopy of Multiply Charged Ions", USSR Acad. of Sci., Sci. Counc. on Spectr. (1980).
- Cohen, U., Feldman, U., and Kastner, S. O. (1968), J. Opt. Soc. Am. 58, 331
- Dirichek, G. A., Feldman, U., Cowan, R. D., and Cohen, L. (1974), Astrophys. J. 188, 417

Fawcett, B. C. (1971), J. Phys. B4, 981

- Feldman, U., Doichek, G. A., Cowan, R. D., and Cohen, L. (1973). J Opt. Soc. Am 63, 1445
- Hinnov, E., Suckewer, S., Cohen, S., and Sato, K. (1982), Phys. Rev. A25, 2293

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873

Peacock, N. J., Stamp, M. F., and Silver, J. D. (1984), Phys. Scr. 78, 10

Configuration	Tens	J	Level (cm ⁻¹)	Lead	ing perce	KABCS	
2s- 2p	P	1/2 1/2	0 70 892			<u></u>	
2s2p`	ŕs	1/2	937 940				
2#*2p*(*P)3#	*P		5 048 700 5 072 300 5 109 300	94 56 94	42	(⁴ P) ² P	
2s² 2p³(³ P)3s	- P	1/2 1/2	5 118 200 5 143 400	49 94	4	(³ P) ⁴ P	
2# ² 2p ⁴ (³ D)3#	²D	57 ₂ 37 ₂	5 193 500 5 196 100	94 90			
2s² 2p⁴(`\$)3s	²S	¹ / ₂	5 323 500	90			
2# ² 2p ⁴ (³ P)3d	۴P	1/2 1/2 1/2 1/2 1/2	5 607 600 5 620 600 5 640 200	72 64 37	13 In 34	(³ P) ² P (³ P) ² D (³ P) ⁴ F	
2s ² 2p ⁴ (³ P)3d	'P	⁵ / ₂	5 622 700	48	21	(³ P) ² P	
2# 2p*(*P)3d	'P	1/2 1/2	5 628 500 5 671 200	42 52	32 23	(³ ₽) ⁴ D (¹ D) ² P	
2# ² 2p ⁴ (³ P)3d	۲ D	14 ₂ 14 ₂	5 648 100 5 680 800	2% 49	17 17	(³ D) ² D	

Cr YVI

Configuration	Term	J	Level (cm ⁻¹)	Land	ing perces	
22 2p4 (3P)3d	Ŧ	۲ ₂	5 659 000	*	36	
la ² 2p ⁴ (1D)3d	²S	Ψ2	5 734 600			
ls ² 2p ⁴ (¹ D)3d	ቅ	₽ ₂	5 756 200	67	24	(³ P) ² P
s ² 2p ⁴ (¹ D)3d	đ	72 72 72	5 757 100 5 780 500	56 65	24 29	(³ P) ² D
r ² 2p ⁴ (¹ S)3d	υ	بر بر بر	5 857 200 5 870 600	50 83		
£2p ³ (³ ₽*)3£	*P~	₹7.2 1./2	5 950 200 5 986 600	83 50		
r xvii (³ P ₂)	Limit		8 850 000			

Cr xv1-Continued

•

Cr xvu

Z = 24

O t isoelectronic sequence

Ground state: 1s²2s²2p⁴³P₂

Ionization energy = $9560000 \pm 19000 \text{ cm}^{-1} (1185 \pm 2 \text{ eV})$

Several magnetic dipole transitions within the $2s^22p^4$ ground configuration were observed by Hinnov et al. (1982) in a tokamak light source with an accuracy of ± 0.3 Å. They are ${}^{3}P_{2} - {}^{3}P_{1}$ at 1656.3 Å, ${}^{3}P_{2} - {}^{1}D_{2}$ at 740.8 Å and ${}^{3}P_{1} - {}^{3}S_{0}$ at 493.8 Å. The ${}^{3}P_{1}$, ${}^{3}D_{2}$, and ${}^{3}S_{0}$ levels are derived from these data. Peacock, Stamp, and Silver (1984) obtained the value 740.75±0.03 Å for the ${}^{3}P_{2} - {}^{1}D_{2}$ in a similar light source. The $2s^{2}2p^{4} - 2s^{2}2p^{3}$ array was first interpreted by Fawcett (1971). It was reobserved by Lawson and Peacock (1980) who extended the anaiysis. The $2s2p^{\pm}P_1^*-2p^{\pm}S_0$ transition was identified by Doschek et al. (1975). Both lines of this array were observed by Lawson and Peacock. Their measurements are used here to derive the levels of $2s 2p^3$, $2p^4$ and the 3P_0 of $2s^22p^4$ with an uncertainty of ± 300 cm⁻¹. The percentage composition of these levels was provided by Kaufman and Sugar (1982). Their calculation includes configuration interaction between $2s^22p^4$ and $2p^6$.

The transition array $2s^22p^4 - 2s^22p^3$ and 18 Å was analyzed by Doschek. Feldman, and Cohen (1973), and the $2s^22p^4 - 2s^22p^3d$ at 16 Å by Fawcett and Hayes (1975). Both report a measurement uncertainty of ± 0.01 Å, resulting in level uncertainties of ± 3000 cm⁻¹. Levels of $2p^23s$ with question marks were derived from doubly classified lines by Doschek et al. (1973). Some revisions of the 2p³3d levels due to Bromage and Fawcett (1977) are included.

The two levels of $2p^{3}4d$ are from Spector et al. (1980) with an uncertainty of ± 3000 cm⁻¹.

The value for the ionization energy was derived by Lotz (1967) by extrapolation.

References

- Bromage, G. E. and Fawcett, B. C. (1977), Mon. Not. R. Astron. Soc. 178, 591.
- Doschek, G. A., Feldman, U., and Cohen, L. (1973), J. Opt. Soc. Am. 63, 1463.
- Doschek, G. A. Feldman, U., Davis, J., and Cowan, R. D. (1975), Phys. Rev. A12, 980.

Fawcett, B. C. (1971). J. Phys. 84, 981

- Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astron. Soc. 170, 185
- Hinnov, E., Suckewer, S. Cohen, S. and Sato, K. (1982). Phys. Rev. A25, 2293
- Kaufman, V. and Sugar, J. (1982), private communication.
- Lawson, K. D. and Peacock, N. J. (1980), J. Phys. B13, 3313
- Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873
- Peacock, N. J., Stamp, M. F., and Sulver, J. D. (1984), Phys. Scr. 78, 10 Spector, N., Zigler, A., and Zmora, H. (1980), J. Opt. Soc. Am. 70, 857

Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percer	itages
2 s ² 2p ⁴	- P ^t	ż	0	93		¹ D
	1 .	0	58 070	86	13	¹ S
		1	60 376	100		
2s² 2p4	[:] D	2	134 998	92	7	³ P
2 s ² 2p ⁴	S	0	262 890	84	14	'P
2s2p`	JP.	2	A I 3 540	190		
		1	858 1 20	96	2	°P*
		0	887 920	100		
2 s 2p ³	'P'	1	I 116 380	94	2	" P *
2 p *	'S	0	1 886 920	94	2	2#-2p' S
2# ² 2p ³ (⁴ S* (3#	'S'	I	5 455 000?			
2s ² 2p ³ (² D*)3s	"D"	1	5 546 800?			
		2	5 549 400			
		3	5 568 900			

Cr xvii

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
2s ⁺ 2p ⁺ (- ² D*)3s	D.	2	3 388 700?	
2s* 2p* (* P*)3s	` P -	1	5 700 700	
21 2p S 3d	' D '	3	5 948 500	
2s ² 2p ³ (*D*)3d	'n	2 3	6 070 000 6 074 000	
2a ² 2p ⁴ (- ² D*)3d	F	3	6 124 400	
2s ² 2p ¹ (*P*)3d	'P -	2	6]]] 000	
2s ⁻ 2p ⁴ (- ² P [*])3d	'n	3 1 2	6 164 800 6 189 000 6 214 600	
2s ² 2p ¹ ² P* 3d	۶ ۲	3	6 JA 000	
2r ² 2p ³ ² P* +4d	¹ D*	2	7 882 000	
2a ² 2p ⁴ (² P*)4d	'F'	3	. 7 960 000	
Cr xvm (*Star	Limit		9 560 000	

Cr xvii-Continued

Cr xvm

Z = 27

N t isoelectronic sequence

Ground state: 1s²2s²2p³⁴S¹.

Ionization energy = $10.480.000 \pm 21.000 \text{ cm} = (1299 \pm 3 \text{ eV})$

Four lines of the $2s^{2}2p^{-1}D^{1} - 2s^{2}p^{4}(P, {}^{2}D)$ multiplets were classified by Fawcett (19⁻¹). The analysis of this transition array was extended and partly revised by Doschek, Feldman, Cowan, and Cohen (1974). The ${}^{2}S_{-2}$ of $2s^{2}p^{4}$ was later reported by Feldman. Doschek, Cowan, and Cohen (1975). Fawcett and Hayes (1975) classified the resonance line arising from $2s^{2}2p^{2}(P)3d^{4}P_{-2}$ and observed the $2s^{2}2p^{2}(D)3d^{-2}F_{-2}$ level of the doublet system. They also located the $2p^{2}$ configuration from transitions to $2s^{2}2p^{-2}D$. The ${}^{2}D_{-2} = {}^{2}P_{-2}^{1}$ line of this multiplet was reported by Doschek, Feldman, Davis, and Cowan (1975).

The $2s^22p^3 - 2s^2p^4$ and $2s^2p^4 - 2p^3$ arrays were remeasured by Lawson and Peacock (1980) who found four intersystem lines. We used their wavelengths, accurate to ± 0.03 A, to determine the energy levels with an uncertainty of ± 200 cm⁻¹. Magnetic dipole transitions within the ground configuration were observed in a tokamak plasma by Hinnov, Suckewer, Cohen, and Sato (1982). They reported privately the wavelengths 4038.6 Å for $^{2}D_{1,2}^{1} - ^{2}D_{2,2}^{1}$ and 2606.4 Å for $^{2}P_{1,2}^{2} - ^{2}P_{2,2}^{1}$ both in air with uncertainties of ± 0.3 Å. With these measurements and their published wavelength of 793.3 Å for the ${}^{4}S_{12} - {}^{2}D_{12}$ transition, we obtained the position of the ${}^{2}D$ term with an uncertainty of \pm 50 cm 12 , and the fine structure of the ${}^{2}P$ term with an uncertainty of \pm 4 cm 12

The percentage compositions for the $2s^22p^3$, $2s^2p^4$, and $2p^3$ configurations were provided by Kaufman and Sugar (1982). The calculation included configuration interaction between $2s^22p^3$ and $2p^2$.

The ionization energy was obtained by Lotz (1967) by extrapolation.

References

- Doschek, G. A., Feldman, U., Cowan, R. D., and Cohen, L. (1974), Astrophys. J. 188, 417
- Doichek, G. A., Feldman, U., Davis, J., and Cowan, R. D. (1975), Phys. Rev. A12, 980
- Fawcett, B. C. (1971), J. Phys. B4, 981
- Fawcett, B.C., and Hayes, R.W. (1975), Mon. Not. R. Astron. Soc. 170, 185
- Feldman, U., Doschek, G. A., Cowan, R. D. and Cohen, L. (1975). Astrophys. J. 196, 613
- Humov, E., Suckewer, S., Cohen, S., and Sato, K. (1982), Phys. Rev. A25, 2293

Kaufman, V. and Sugar, J. (1982), private communication

Lawson, K. D. and Peacock, N. J. (1980), J. Phys. B13, 3313 Lotz, W. (1967), J. Opt. Soc. Am. 57, 873

Configuration	Terma J		ferm J Level (cm ⁻¹)		Leading percentages		
2s ² 2p'	*S*	",₂	0	93	6	² P •	
2 s' 2p '	²D•	, ,	126 060	AD.	17	²P*	
		⁷ 2	150 814	100			
2 s' 2p '	² P*	: _{1/2}	226 100	94	2	2p ⁵ 2 P *	
	1	3,	264 456	76	20	2a ² 2p ³ ² D	
2s2p4	'P	5% ₂	667 560	9 04	2	²D	
		1/2	714 950	99	1	²D	
	 	¹ / ₂	732 490	97	3	' S	
2s2p ⁴	² D	2 _{/2}	922 800	96	3	'P	
		۶ ₂	931 420	941	2	'P	
2 a 2p ⁴	4S	¹ /2	1 062 040	77	21	²P	
24204	2 P	3/2	1 103 370	54	3	2D	
	-	1/2	1 170 200	79	20 20	25 25	
2 0 5	2p-	3/1	1 738 700		2	9e29e1 200	
7	-	1,	1 813 490	98	2		

Cr	XVIII—Continued	
----	-----------------	--

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
2s ² 2p ² (³ P)3d	*P	572	6 443 900	
ぷ ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	Ŧ	7/2	6 555 000	
Cr xix (³ P ₄)	Limit		10 450 000	

Cr xix

Z = 24

C t isoelectronic sequence

Ground state: 1s²2s²2p²³P₀

Ionization energy = $11260000 \pm 22000 \text{ cm}^{-1}$ (1396 $\pm 3 \text{ eV}$)

Transitions between the $2s^22p^2$ and $2s2p^3$ configurations were identified by Feldman et al. (1975). The spectrum was reobserved by Lawson and Peacock (1980) in the range of 95-203 Å with an accuracy of ± 0.03 Å. They identified many more lines of this array, including several intersystem lines, and classified the $2s2p^3 - 2p^4$ array as well.

The levels of the $2s^22p^2$ ground configuration are determined from the magnetic dipole transitions observed in a tokamak plasma by Hinnov. Suckewer, Cohen, and Sato (1982). Their wavelengths, ranging from 398-2885 Å, have an uncertainty of ± 0.3 Å. The uncertainty in the ³P and ¹D levels is ± 10 , and for the ¹S ± 100 cm⁻¹. With the exception of the $2s2p^{3/2}S_{\pm}^{2}$ level, the rest of the levels are due to Lawson and Peacock with an uncertainty of ± 200 cm⁻¹. Edlen (1984) has compared the known values of the 'S⁴ level in the isoelectronic sequence with theoretical predictions. He concluded that the values given by Lawson and Peacock are inconsistent with the trend. We give Edlén's predicted value in brackets. The percentage compositions were provided by Kaufman and Sugar (1982). The calculation includes configuration interaction between $2r^22p^2$ and $2p^4$.

B: omage and Fawcett (1977) have given predicted wavelengths of the $2s^22p^2 - 2s^22p$ 3d array.

The value for the ionization energy was obtained by extrapolation by Lotz (1967).

References

Bromage, G. E. and Fawcett, B. C. (1977), Mon. Not. R. Astron. Soc. 178, 605

Edien, B. (1984), private communication.

Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L. (1975), Astrophys. J. 196, 613

Hunnov, E., Suckewer, S., Cohen, S., and Sato, K. (1982), Phys. Rev. A25, 2293.

Kaufman, V. and Sugar, J. (1982), private communication

Lawson, K. D. and Peacock, B. C. (1980), J. Fitys B13, 3313.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873

Configuration	Term	J	Level (cm ⁻ⁱ)	Lead	ing percer	itages
2s ² 2p ²	'P	. 0	0	92	 7	¹ S
		1	47 811	99	1	2p⁴ ³₽
	i i	2	82 458	83	16	$2s^2 2p^{2-1}$ D
2s² 2p²	'nD	2	184 597	×3	16	'P
2s 2p	S	0	298 800	K9	9	³ P
2s2p*	۶۰	2	[403 270]	9M	2	³ P*
2s2p ³	¹ D'	2	671 630	Miji	12	³ P*
	i I	1	672 770	90	я	
	1	3	686 8 3 0	100		
2 s2p '	³ P*	0	789 160	100		
		1	794 130	#9	ж	⁻¹ D*
		2	804 750	42	12	
2#2p ⁴	³ S'	1	959 880	46	12	⁵ P*
2#2p ¹	[;] D*	2	976 220	945	4	'P*
2#2p*	P*	I	1 090 660	×,	12	'S
20*	'P	2	1 450 230	91	н	2p* 'D
•		1	1 514 320	29	1	2# ² 2y ⁻³ P
	ļ	0	1 517 990	(66)	-	2p' ¹ S

Cr XIX

Cr XIX-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages		
 2¢	D 2	1 586 230	91	Ŕ	³ P	
<i>2</i> ₽'	[:] S	0	1 787 180	84	9	³P
Cr xx (P	Limit		11 269 808			

Cr xx

B t isoelectronic sequence

Ground state: Is²2s²2p ²P^{*}_{1.2}

Ionization energy = $12\,070\,000\pm 24\,000\,\,\mathrm{cm^{-1}}\,(1496\pm 3\,\,\mathrm{eV})$

The splitting of the ground ${}^{2}P^{*}$ term was determined with an uncertainty of 20 cm⁻¹ from a magnetic dipole transition at 1205.9 \pm 0.3 Å observed in a tokamak plasma by Hinnov et al. (1982).

The treation arrays $2s^22p - 2s^22p^2$ and $2s^22p^2 - 2p^3$ were classified by Lawson and Peacock (1980). They observed the spectrum in the range of 116-271 Å with an accuracy of ± 0.03 Å. The level values have an uncertainty of ± 200 cm⁻¹. The percentage composition for these levels was provided by Kaufman and Sugar (1982). Their calculation includes configuration interaction between $2s^22p$ and $2p^3$.

The higher lying levels are from line identifications by Spector. Zigler. Zmora, and Schwob (1980) from laserproduced plasmas observed in the 10-14 Å range. The uncertainty in their values is ± 3000 cm⁻¹.

The value for the ionization energy was obtained by extrapolation by Lotz (1967).

References

Hinnov, E., Suckewer, S., Cohen, S., and Sato, K. (1982), Phys. Rev. A25, 2293.

Kaufman, V and Sugar, J. (1982) private communication.

Lawson, K. D. and Peacock, N. J. (1980), J. Phys. B13, 3313.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873

Spector, N., Zigler, A., Zmora, H., and Schwob, J. L. (1980), J. Opt. Soc. Am. 70, 857

Configuration	Тетт	J	Level (cm ⁻¹)	Leadi	ng percen	tages
2s ² 2p	-'P'	1/2 3/2	0 240 48	 9#	2	2p ^{* 2} P*
·)e·)n ²	4D	1/ 1/	254 570	3,	3	<i>le</i>
		3/2	391 360 430 650	900 100	<u>.</u>	2 2
2820-	-'n	'2 3/	540 980	9, ar	3	-р -
	2	3/2 1/2	652 990	97	3	*P
2s2p ²	²P	1/2 3/2	769 400 861 660	55 97	43 3	²S ²D
2s2p ²	²S	42	847 750	55	45	²P
2 p '	' S'	3/2	1 101 840	95	4	²₽•
2 p ¹	۲D.	14 14 14 14 14 14 14 14 14 14 14 14 14 1	1 2 29 660 1 248 3 80	68 100	10	²₽•
2 p ³	²₽•	"/2 2/2	1 3 80 270 1 414 5 90	98 84	2 11	2# ² 2p ² P* ² D*
2s2p(³ P*)3d	۴۳ -	7/ ₂	7 443 000			
2s² 4s	²S	¹ /2	9 145 000			
2s ¹ 4d	² D	⁵ /2 ³ /2	9 308 000 9 335 000			
Cr XXI (¹ S _n)	Limit		12 070 960			

Cr xx

Cr xxi

Z = 24

Be t isoelectronic sequence

Ground state: 1s²2s²¹Se

Ionization energy = $13 180000 \pm 26000 \text{ cm}^{-1} (1634 \pm 3 \text{ eV})$

Widing (1975) identified the $2s^{2} {}^{1}S_{0}-2s 2p {}^{3}P_{1}^{*}$ intersystem line in a solar flare spectrum at 293.11±0.03 Å. The ${}^{1}S_{0}-{}^{1}P_{1}$ transition was found in a tokamak plasma at 149.90±0.03 Å by Hinnov (1979). The uncertainty of the ${}^{3}P_{1}$ is ±50 cm⁻¹, and of the ${}^{1}P_{1}$ ±150 cm⁻¹. The transition array $2s2p - 2p^{2}$ was observed by Lawson and Peacock (1980) in a laser-generated plasma. They obtained a level uncertainty of ±200 cm⁻¹. They identified the intersystem line $2s2p {}^{3}P_{2}^{*}-2p^{2} {}^{1}D_{2}$, which confirms the solar identification of Widing.

The higher configurations are from the line classifications of Boiko et al. (1977) at 13 Å. A measurement uncertainty of ± 0.003 Å is reported, giving a level uncertainty of ± 2000 cm⁻¹. The two terms of $1s2s2p^2$ above the limit are from the observations of Boiko et al. (1978) at 2 Å, with a level uncertainty of $\pm 10\,000$ cm⁻¹.

The ionization energy was obtained by extrapolation by Lotz (1967).

References

- Boiko, V. A., Pikuz, S. A., Safronova, U. I., and Facnov, A. Y. (1977), J. Phys. B10, 1253.
- Boiko, V. A., Chugunov, A. Y., Ivanova, T. G., Facnov, A. Y., Holin, I. V., Pikuz, S. A., Urnov, A. M., Vainstein, L. A., and Safronova, U. I. (1978), Mon. Not. R. Astron. Soc. 385, 305.

Hinnov, E. (1979), Astrophys. J. 230, L97.

Lawson, K. D. and Peacock, N. J. (1980), J. Phys. B13, 3313.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Widing, K. G. (1975), Astrophys. J. 197, L33.

Configuration	Term	J	Levei (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
2s ²	¹ S	0	0	2p3p	³ D	3	8 087 000
2 s 2p	ъ Ъ.	0	\$18 080 \$41 170	2р3р	¹ P	1	8 022 000
		2	105 070	2p3p	'n	2	8 109 000
2#2p	¹ P*	1	66 7 110	2 p3 d	' D'	2 1	8 121 000 8 134 000
2p²	٩٤	0	864 780 911 130			3	8 204 000
		2	947 130	2p3d	P*	1,2	8 219 000
2p²	¹ D	2	1 051 810	2p3d	¹ P*	1	8 275 000
2p²	¹ S	0	1 254 790	2 p3d	1 7-	3	8 275 000
2838	¹ S	1	7 463 000	Cr XXII (² S _{1/2})	Limit		13 189 999
2s 3p	¹ P*	1	7 620 000	1s2s2p²	۶D	2	45 550 000
203d	•D	2 8	7 721 000 7 733 000	1s2s2p²	۲D	2	45 800 000

Cr XXI

Cr xxn

Z = 24

Li t isoelectronic sequence

Ground state: 1s²2s ²S_{1/2}

Ionization energy = $13\,882\,000\pm2900\,\mathrm{cm}^{-1}\,(1721.4\pm0.4\,\mathrm{eV})$

The resonance lines $2s^2S - 2p^2P_{1/2}^*$, $^2P_{3/2}^*$ were observed in the solar corona at 222.99 Å and 279.69 Å by Sandlin, Brueckner, Scherrer, and Tousey (1976). We use the laboratory measurements of Lawson and Peacock (1980) with an uncertainty of ±0.03 Å, giving a level uncertainty of ±50 cm⁻¹. Hinnov (1979) reported observing these lines in a tokamak plasma.

The 2s - 3p and 2p - 3s, 3d transitions were reported by Goldsmith, Feldman, Oren, and Cohen (1972). These series were remeasured and extended by Boiko. Faenov, and Pikuz (1978) to 4p and 4d by measurements in the range of 9-13 Å with an uncertainty of ±0.003 Å. The uncertainty of these high-lying levels is ± 3000 cm⁻¹.

The ionization energy was determined by Edlén (1979) from the 2p -nd series.

References

- Boiko, V. A., Faenov, A. Y., and Pikuz, S. A. (1978), J. Quant. Spectr. Rad. Trans. 19, 11.
- Edlén, B. (1979), Phys. Scr. 19, 255.
- Goldsmith, S., Feldman, U., Oren, L., and Cohen, L. (1972). Astrophys. J. 174, 209.
- Hinnov, E. (1979), Astrophys. J. 230, L197.
- Lawson, K. D. and Peacock, N. J. (1980), J. Phys. B13, 3313. Sandlin, G. D., Brueckner, G. E., Scherrer, V. E., and Tousey, R.
- (1976), Astrophys. J. 285, L47.

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
28	²s	1/ ₂	0	3d	² D	1/2 72	7 963 000 7 972 000
<u>°</u> p	² P ~	3/2 3/2	\$57 470 448 470	4 <i>p</i>	² P *	1/2, 1/2	10 534 000
3.6	'S	¹ /2	7 826 000	4d	²D	3/2 5/2	10 552 000 10 585 000
3 p	² P*	1/2 272	7 896 000 7 922 000	Cr xxm (¹ S ₀)	Limit	-	13 882 999

Cr	XXII	

Cr xxm

Z = 24

He tisoelectronic sequence

Ground state: Is S

Ionization energy = $60.344\,000 \pm 12\,000 \text{ cm}^{-1}$ (7481.8 $\pm 0.6 \text{ eV}$)

Because of the excellent agreement of the calculated energies of the n = 2 shell by Safronova (1981) with the few well-measured spectra in the He I sequence, we have compliled her results for the n = 2 levels and for the ionization energy. Detailed comparisons are given in the Introduction. Levels of the n = 3-5 shells are from the calculated binding energies by Ermolaev and Jones (1974) subtracted from Safronova's value for the binding energy of the ground state. We have assumed an uncertainty of 2 parts in 10⁴ for the excited levels relative to the ground state, and for the ionization energy (see Introduction). For differences between excited levels where $\Delta n = 0$, we assumed an uncertainty of 2 parts in 10³.

Observations by Neupert (1971) of a solar flare spectrum place the 1s2p ³P^{*}₁ level at 45 540 000 cm⁻¹ and the 1s 2p ³P^{*}₁ at 45 890 000 cm⁻¹ with an estimated uncertainty of $\pm 60000 \text{ cm}^{-1}$.

Percentage compositions are from Ermolaev and Jones.

References

Ermolaev, A. M., and Jones, M. (1974), J. Phys. 87, 199 Neupert, W (1971), Sol. Phys. 18, 474 Safronova, U. L. (1981), Phys. Scr. 23, 241

CI AAB

Configuration	Term	J	Levei (cm ⁻ⁱ)	Lead	ing percer	lages	
ls ²	S	0	0				
ls2s	Ϋ́S	I	[45 383 500]				
52p	' P'	0	[45 595 080]				
		1	[45 610 130]	94	6	·P-	
		2	[45 691 379]			•	
ls2s	S	0	[45 614 430]				
к2р	P	I	[45 827 110]	94	5	" P *	
sits	S	I	[53 75 9 820]				
s:3p	'P'	. 0	[53 818 410]				
		1	[53 822 120]	93	.	1 P-	
		2	[53 846 400]			•	
i siša	'S	0	(53 820 510)				
1 <i>1:30</i>	¹ P*	1	[53 883 700]	53	7	" P "	
[sis	'S	1	[56 658 460]				
1140	'P'	0	[56 682 840]				
-	l	1	56 684 380]	95	;	1 P *	
	Ì	2	[56 694 650]				
1545	S	0	[56 683 050]				
1 14 p	' P'	1	[<i>56 709 860</i>]	93	7	'P'	
เสรีส	'S	1	[57 992 520]				

Cr xxm—(Cont	inued
----------	------	-------

Configuration	Term	J	Level (cm ⁻¹)	Leadia	ng percen	Cages	
lsās	ⁱ S	0	[58 004 800]				
lsāp	'nPr	0 1 2	[<i>58 004 840</i>] [<i>58 005 640</i>] [<i>58 010 900</i>]	92	ė	¹ P *	
ไรจัด	¹ P*	1	[<i>58 018 580</i>]	92	8	ም	
Cr XXIV (² S ₁₂)	Limit		60 344 000				

Cr xxiv

Z = 24

H 1 isoelectronic sequence

Ground state: Is ²S_{1/2}

Ionization energy = 63 675 900 ± 200 cm ⁻¹ (7894.87 ± 0.02 eV)

Swartz. Kastner. Rothe, and Neupert (1971) identified the 1s - 2p unresolved pair of lines in a solar flare spectrum at 2.08 Å.

We give calculated values by Mohr (1983) for the n = 2shell and by Erickson (1977) for n = 3-5 relative to the 2p ²P⁺₂ level. Further details are given in the Introduction. Relative to the ground state, the level uncertainty is estimated to be 5 parts in 10. The uncertainty in the excited states relative to $2\rho^{-2}P_{1/2}^*$ is 1 part in 10°.

References

Erickson, G. W. (1977), J. Phys. Chem. Ref. Data 6, 831 Mohr, P. J. (1963), At. Data Nucl. Data Tables 29, 453. Swartz, M., Kastner, S., Rothe, E., and Neupert, W. (1971), J. Phys. B4, 1747.

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
 Is	ŕs		0	4/	²F'	¹ / ₂	[59 720 924]
2р	- 'P-	12 14 2	[47 719 7 90] [47 8 43 596]	5. 5.	² P *	12 11/2 17/2	[61 134 179] [61 142 095]
<u>2</u> s	ŕs	¥2	[47 723 241]	5e	²s	۰ ب	[61 134 411]
3р	² P •	"/2 "/2 "/2	[56 598 064] [56 634 766]	5d	²D	1/2 5	[61 142 061]
3s	²s	¹ /2	[56 599 135]	5/	2 F *	72 37	[6] 144 687] [6] 144 687]
3d	² D	¥2 ¥2	[56 634 700] [56 646 759]	~		·/2	[61 145 982]
∔p	² P*	·/2	[59 700 397]	5 8	°G	•/2 •/2	[61 145 979] [61 146 758]
		⁷ 2	[59 715 870]	1) 14	Limit		63 675 900
4 5	-5	⁷ 2	[59 700 850] [59 715 942]				
+U	-D	72 72	[59 720 933]				1

Cr XXIV

F. Atomic Transition Probabilities of Chromium, Cr I through Cr XXIV

F. Atomic Transition Probabilities of Chromium

[Excepted from: G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Supplement 3 (1988)]

1. Introduction

The following tables, including the introductory conments, are excerpted from the above cited compilation of atomic transition probabilities by G. A. Martin, J. R. Fuhr, and W. L. Wiese of the Data Center on Atomic Transition Probabilities at the National Institute of Standards and Technology (formerly the National Bureau of Standards).

is is part of the third major critical compilation by the NBS Data Center on Atomic Transition Probabilities. A first tabulation¹ containing transition probabilities for about 4,000 spectral lines of the elements hydrogen through neon, atomic numbers Z = 1 through 10, including the neutral atoms as well as their various jons, was published in 1966. A second data volume² was issued in 1969, containing data for about 5,000 lines of the elements sodium (Z = 11) through calcium (Z = 20), again for all stages of ionization for which data were available. The data compilation work then continued with a series of smaller tables for the atoms and ions of the elements of the iron group, i.e., Sc and Ti²; V, Cr, and Mn⁴; Fe, Co, and Ni²; and the forbidden lines of all these elements.⁴ From the beginning, it has been the intention to integrate these smaller tabulations into a single volume for the iron-group elements, in updated and expanded form. Unexpectedly, a great deal of new data were generated for these elements during the past few years, often with much improved accuracy, so that the revisions and additions became very extensive. Thus it took a much longer time than anticipated to complete these largely new data tables, and the greatly expanded tabulations had to be split into two separate volumes. Chromium is included in a volume that contains the material on the elements Sc (Z = 21) through Mn (Z = 25), and a companion volume⁷ contains the material on Fe (Z=26)through Ni (Z = 28).

In the present compilation, the scope and format of the earlier tabulations is maintained, i.e., critically evaluated atomic transition probabilities of allowed and forbidden discrete transitions of all stages of ionization are presented for which reliable data are available. Data are listed for at least the more prominent lines of each spectrum, even if some of these data are of low accuracy. Furthermore, transition-probability data are also presented for weaker transitions if the accuracy of these data has been estimated to be better than $\pm 50\%$

The original literature is continually monitored by this NBS Data Center, and a master reference list is maintained from which all literature sources for this compilation have been taken.

2. Method of Evaluation

For the compilation of data on a critical basis, the central task is the evaluation of the data accuracy and the subsequent choice of the most accurate material. In order to a-complish this task in a consistent manner, general guideposts were established for each experimental and theoretical approach in earlier compilation work, and these criterin were maintained in this work. Specifically, each original literature source was judged by the following principal criterin:

- A general evaluation of the capabilities and reliability of the applied experimental or theoretical method.
- (2) The asthor's consideration of the major critical factors in his approach that enter into the results.
- (3) The degree of agreement and general consistency between the author's results and other reliable data.
- (4) The degree of fit of the data into established systematic trends and, if deviations exist, the reasons for such disagreements.
- (5) The author's estimate of his uncertainties.

The general evaluations of each experimental and theoretical method have been discussed in considerable detail in the introductions to previous tabulations.¹⁴ Thus, these publications are to be consulted for further details. However, it should be pointed out that in this tabulation, particularly interesting situations are illustrated by providing comparison tables or graphs in the introductions to individual spectra.

With respect to error estimates, one should note that the theoretical literature sources, which provide a large part of the data, generally contain no error estimates, since no reliable assessment of the uncertainties introduced by the various approximations is possible. But even for the experimental papers, where error estimates may often readily be made, the statements by some authors are too imprecise and also incomplete, so that they are not particularly useful as presented. Sometimes only statistical measurement errors have been given, without allowance for systematic errors. It therefore became essential to judge each paper by the principal factors 1-4 listed above, in addition to utilizing the author's error estimate (point (5)) whenever appropriate.

F - 1

3. General Arrangement of the Tables

The same general arrangement of the tables is used as in earlier volumes,¹² i.e., data are included which serve to identify the spectral lines, as well as the actual transition probabilities (and related quantities), accuracy estimates, and references to the sources of the compiled material. However, for most of the spectra of neutral and singly-ionized atoms of the iron-group elements, the transition array column was dropped. Instead, in order to identify the lower and upper levels of a transition, the level designation scheme of C. E. Moore⁴ was adopted, who affixed lower-case letters (a, b, c, ..., x, y, z) to the term designations. This convention is also retained in the very recent tables of "Atomic Energy Levels" by J. Sugar and C. Corliss.9 In other special cases, the notation was adapted to the special coupling situations encountered in those spectra, as, for example, the J_{1j} coupling encountered in Ne-like ions and J_{ij} and J_{i} coupling for Ar-like jons.

Material pertaining to spectral-line identifications has been taken from the comprehensive wavelength tabulations of Reader and Corliss,¹⁰ Kelly,^{11,12} and Kelly and Palumbo,¹³ the multiplet tables of C. E. Moore,^{14,15} and the recent energy-level compilation of Sugar and Corliss⁹ (this last reference supersedes earlier compilations by Sugar and others^{14,17}). The wavelength and energylevel data from these sources have been supplemented by original literature data when needed in the course of preparing the transition-probability tables.

Wavelengths and energy levels which are the results of theoretical calculations, or which were either calculated from experimentally determined data or interpolated or extrapolated from data on similar (e.g., isoelectronic) species, are placed in square brackets in order to distinguish them from the usually more accurate experimental material. For each transition-probability table which contains a minimum of twenty distinct wavelength values, a "list of tabulated lines," has been provided, in ascending order of wavelength, of the spectral lines contained therein, along with an index to the multiplet number (or numbers) in which each is to be found. Wavelengths that are printed in italics in the transition-probability tables are not included in these line lists.

The uncertainties in the atomic transition-probability data are denoted by letters as follows:

- A.. for uncertainties within 3 percent,
- B... for uncertainties within 10 percent,
- C.. for uncertainties within 25 percent,
- D., for uncertainties within 50 percent,
- E... for uncertainties greater than 50 percent.

The word uncertainty is used here with the connotation "estimated extent of the deviation from the true value." The estimation procedure is based on the evaluation of random errors as well as estimates of the maximum effect of possible systematic errors. Often, further distinctions were made in the uncertainty labels by assigning plus or minus signs to some transitions to indicate that these lines are estimated to be somewhat better or worse than similar lines. These should, therefore, be the first or last choice among similar transitions.

A summary of the abbreviations and special symbols used in the tables is given in Section 4. Included there for convenience are formulas which relate various properties of individual spectral lines to those for entire multiplets. In Table 1, the conversion factors are provided which have been used throughout this compilation to convert from transition probabilities to oscillator strengths and line strengths, and vice versa.

	Aki	fu	S
			$\frac{E1}{\frac{2.026_1 \times 10^{18}}{g_k \lambda^3}}$
			$E2$ $\frac{1.679, \times 10^{10}}{g_{4}\lambda^{5}}$
Au	1	$\frac{6.670_3 \times 10^{15}g_i}{g_k \lambda^2}$	$\frac{M1}{\frac{2.697_4 \times 10^{13}}{g_4 \lambda^3}}$
			$\frac{M2}{\frac{6.626_5 \times 10^{12}}{g_4 \lambda^5}}$
fa.	<u>1.499₂ × 10⁻¹⁶λ²Z±</u> &:	1	$E1 \\ \frac{303.7_{s}}{g_{i}\lambda}$
	E1 4.935 ₅ × $10^{-19} g_{\pm} \lambda^3$	E1	
5	E2 5.952 ₆ × $10^{-19} g_{\pm} \lambda^5$	$3.292_1 \times 10^{-3} g_i \lambda$	1
	M1 3.707 ₃ × $10^{-14} g_{\pm} \lambda^3$		
	M2 $1.509_1 \times 10^{-13} g_k \lambda^5$		

TABLE 1. Conversion factors The factor in each box converts by multiplication the quantity above it into the one at its left.

The line strength (S) is given in atomic unity, formulas and values for these quantities in SI units are as follows:

For E1 transitions, $a_{e}^{2} = 7.188_{3} \times 10^{-9} \text{ m}^{2} \text{ C}^{2}$ For E2 transitions, $a_{e}^{2} = 2.012_{9} \times 10^{-79} \text{ m}^{4} \text{ C}^{2}$ For M1 transitions, $\mu_{d}^{2} = (ch/4\pi m_{e})^{2} = 8.600_{7} \times 10^{-67} \text{ J}^{2} \text{ T}^{-2}$ For M2 transitions, $\mu_{d}^{2} a_{e}^{2} = 2.408_{5} \times 10^{-67} \text{ J}^{2} \text{ m}^{2} \text{ T}^{-2}$.

where $a_h e, m_r$, and h are the Bohr radius, electron charge, electron mass, and Planck constant, respectively, and μ_0 is the Bohr magneton.

The transition probability (A_{kl}) is in units of s^{-1} , and the *f*-value is dimensionless. The wavelength (λ) is given in Augstrom units, and g_i and g_i are the statistical weights of the lower and upper level, respectively.

[Note: the definition of the line strength for E2 transitions, which is used by some authors, yields an S-value that is 50% higher than that employed here and in earlier NBS transition-probability compilations. Such line strengths have been multiplied by $\frac{2}{3}$ before tabulating them here, and this fact is indicated in the short introductions to the pertinent data tables.]

For the atomic constants entering into the relations given in this table, the recommendations of the CODATA Task Group on Fundamental Constants (E. R. Cohen and B. N. Taylor, Rev. Mod. Phys. 59, 1121 (1987)) have been used. The 1967 values were not available at the time that most of the data was compiled for this publication; however, differences between these and the earlier (CODATA Task Group, 1973) values of the fundamental constants were utilized, which amount to only 0.002% or less for the E1 transitions and 0.05% or less for the M1, E2, and M2 (forbidden) transitions and have therefore not affected the tabulated data.

4. Key to Abbreviations and Symbols Used in the Tables

- 1. Symbols for indication of accuracy:
 - A uncertainties within 3 percent,
 - B uncertainties within 10 percent,
 - C uncertainties within 25 percent,
 - D..... uncertainties within 50 percent,
 - E uncertainties greater than 50 percent.
- 2. Abbreviations appearing in the source column of allowed transitions:
 - *ls* = *LS* coupling rules applied
 - n = normalized to a scale different from that of the author (as explained in the introductory remarks to the pertinent spectrum).
 - interp. derived by an interpolation technique, rather than taken directly from the literature.
- 3. Special symbols used in the wavelength and energy level columns:

The number in parentheses under the multiplet designation refers to the sequence number of Ref. 14 (Revised Multiplet Table). If letters "uv" are added, they refer to the sequence number of Ref. 15 (Ultraviolet Multiplet Table).

Numbers in italics indicate multiplet values, i.e., weighted averages of *line* values.

Numbers in square brackets indic..:e approximate calculated or extrapolated values.

Useful Relations

(A) Statistical weights:

The statistical weights are related to the inner quantum number J_L (for one-electron spectra: j_i) of a level (i.e., initial or final state of a *line*) by

$$g_L = 2J_L + 1,$$

and to the quantum numbers of a term (initial or final state of a multiplet) by

$$g_M = (2L + 1)(2S + 1).$$

(The "multiplet" values g_M may also be obtained by summing over all possible "line" values g_L . S is the resultant spin.)

- (B) Relations between the strengths of allowed lines and the total multiplet strength:
 - 1. Line strength S:

$$S(i,k) = \sum_{J_k, J_k} S(J_k, J_k)$$

or

S (Multiplet) = ΣS (line)

(k denotes the upper and i the lower term).

2. Absorption oscillator strength f_{μ} :

$$f_{ik}^{\frac{1}{2k+1}} = \frac{1}{\tilde{\lambda}_{ik}} \sum_{f_i}^{\Gamma} (2J+1) \sum_{J_k J_k} (2J_i+1) \times \lambda (J_{i\nu} J_k) \times f(J_{i\nu} J_k).$$

The mean wavelength for the multiplet, $\bar{\lambda}_{ik}$, may be obtained from the wayhed energy levels. Often the wavelength differences for the lines within a multiplet are small, in which case the wavelength factors may be neglected.

3. Transition probability A_{μ} :

$$A_{ki}^{\frac{1}{2}} = \frac{1}{(\tilde{\lambda}_{ki})^{3}} \sum_{J_{k}}^{\Sigma} (2J_{k}+1) \sum_{J_{k}J_{k}} (2J_{k}+1)$$
$$\times \lambda (J_{ii}, J_{k})^{3} \times A (J_{ii}, J_{k}).$$

Relative strengths $S(J_i, J_k)$ of the components of a multiplet are listed for the case of LS coupling in C. W. Allen, Astrophysical Quantities, 3rd ed. (The Athlone Press, London, 1973); H. E. White and A. Y. Eliason, Phys. Rev. 44, 753 (1933); B. W. Shore and D. H. Menzel, Principles of Atomic Structure, p. 447 (John Wiley & Sons, Inc., New York, 1968); L. Goldberg, Astrophys. J. 82, 1 (1935) and 84, 11 (1936).

5. References

- ¹W. L. Wiese, M. W. Smith, and B. M. Glennon, "Atomic Transition Probabilities – Hydrogen through Neon," Vol. I, NSRDS-NBS 4 (1966).
- ⁵W. L. Wiese, M. W. Smith, and B. M. Miles, "Atomic Transition Probabilities - Sodium through Calcium," Vol. II, NSRDS-NBS 22 (1969).
- ¹W. L. Wisse and J. R. Puhr, J. Phys. Chem. Ref. Data 4, 263 (1975).
 ⁴S. M. Youngar, J. R. Puhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 7, 495 (1978).
- ³J. R. Pubr, G. A. Martin, W. L. Wiese, and S. M. Younger, J. Phys. Chem. k.d. Data 10, 305 (1981).
- M. W. Smith and W. L. Wiese, J. Phys. Chem. Rel. Data 2, 85 (1973).
- ¹J. R. Puhr, G. A. Martin, and W. L. Wiese, "Atomic Transition Probabilities-Iron through Nickel," J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).
- ⁴C. E. Moore, "Asomic Energy Levels," Vols. I and II, NSRDS-NBS 35 (1971). (Reprints of NBS Circ. 467, originally insued in 1949 and 1952.)

- ¹⁷. Sugar and C. Carlins, "Atomic Energy Levels of the Iron-Pariod Elements: Potantium through Nickel," J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- ¹⁰J. Bonder and C. Corlin, CRC Handbook of Chemistry and Physics, 67th Ed. (1986-87), pp. B-187 to B-313 (CRC Press, Inc., Boca. Raton, FL).
- ¹⁰R. L. Kelly, "Atomic Emission Lines in the Near Ukraviolet; Hydrgen through Krypton," Sects. I and II, NASA Techn. Memorand. 80268 (1979).
- ¹²R. L. Kelly, "Atomic and Jonic Spectrum Lines Below 2000 Ångströms: Hydrogen through Krypton," J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).

.

- ¹⁰R. L. Kelly and L. J. Painmbo, "Atomic and Ionic Emission Lines Below 2000 Ångströms – Hydrogen through Krypton," Navel Res. Lab. Rept. 7599 (1973).
- ¹⁴C. E. Moore, "A Multiplet Table of Astrophysical Interest," Revised Bdition, NSRDS-NBS 40 (1972).
- ¹⁵C. E. Moore, "An Ultraviolet Multiplet Table," NBS Circ. 488, U. S. Government Print. Off., Washington, D.C. (1968).
- ¹⁴J. Sagar and C. Corlin, J. Phys. Chem. Ref. Data 6, 317 (1977); 7, 1191 (1976); 9, 473 (1980).
- ¹⁷C. Cotins and J. Sugar, J. Phys. Chem. Ref. Data 6, 1253 (1977); 8, 1 (1979).

Chromium

Cri

Ground State: 1s²2s²2p⁴3s²3p⁴3d³4s⁷S₃

Ionization Energy: $6.76669 \text{ eV} = 54575.6 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
1999.95	51	2703.48	32	3163.76	92	4065.71	173
2095.00	7	2716.18	31	3169.58	92	4061.74	68
2095.40	7	2726.50	15	3237.73	91	4097.69	82
2095.83	7	2731.90	15	3238.09	91	4109.58	69
2354.30	50	2736.46	15	3351.97	5	4111.33	82
2364.73	G	2751.58	30	3379.17	5	4126.51	57
2365.91	6	2752.85	30	3578.68	4	4165.52	193
2366.81	6	2757.09	30	3593.48	4	4203.59	57
2375.06	49	2761.74	30	3605.32	4	4204.48	168
2383.30	49	2764.36	30	3615.65	3	4211.48	90
2385.72	49	2769.90	30	3635.28	3	4213.18	115
2389.21	48	2780.70	30	3639.80	61	4222.75	104
2408.GC	46	2871.63	29	3730.81	2	4230.49	104
2408.72	47	2879.27	29	3732.03	2	4232.23	188
2479.14	45	2887.00	29	3743.89	60	4234.52	126
2492.57	43	2889.22	29	3744.49	60	4235.99	103
2495.08	42	2893.25	29	3757.17	60	4237.72	103
2496.30	43	2894.17	29	3757.66	60	4238.96	102
2499.84	43	2896.76	29	3758.04	60	4242.84	102
2502 55	44	2899 20	29	3768.24	60	4248.34	102
2504.31	43	2905.48	29	3768.73	60	4252.24	102
2508.11	41	2909.05	29	3804.80	105	4254.33	1
2508.97	41	2910.89	29	3849.54	25	4255 50	89
2513.62	41	2911.15	29	3852.22	25	4257.35	102
2527.11	41	2967 64	28	3883.29	24	4261.35	81
2538.95	17	2971.10	28	3885.24	24	4261.63	127
2544.70	17	2975.48	28	3886.80	24	4262 37	114
2549.55	40	2980.78	28	3894.04	24	4263 15	161
2560.70	40	2988.64	14	3902.91	24	4268 79	167
2571.74	40	2991.88	28	3903.17	24	4269 96	114
2577.66	40	2994.06	14	3908.76	24	4271.07	114
2579.14	38	2995.09	13	3916.25	24	4272.93	HL
2584.67	39	2996.57	28	3919 17	24	4274.81	1
2588.19	38	2998.78	14	3921.03	24	4275.98	155
2591.84	40	3000.88	28	3928.65	24	4280.42	161
2603.56	38	3005.06	28	3941.50	24	4280.89	145
2618.27	36	3013.72	27	3963.69	59	4283.00	187
2620.48	34	3015.20	26	3969.75	59	4288.40	124
2622.87	35	3020.67	26	3976.02	59	4289.73	1
2525.32	37	3021.58	26	3981.24	70	4291.97	145
2626.60	35	3024.36	27	3983.90	59	4293.58	81
2629.82	36	3029.17	27	3991.12	59	4296.11	200
2669.36	32	3030.25	26	4001 44	165	4296.30	124
2671.98	32	3031.35	26	4039.10	162	4296.63	161
2673.64	32	3034.19	27	4039.29	162	4297.06	67
2678.15	32	3037.05	26	4042.25	58	4297.75	161
2640.33	32	3040.84	26	404H.7H	162	4298.05	200
2690.25	32	3053.87	27	4049.78	162	4299.72	81
2596.53	16	3148.44	92	4050.03	58	4300.52	145
2700.59	31	3155.16	92	4057.83	162	4301.19	145
2701.99	33	3160.62	92	4058.78	162	4302.78	199

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
4395 47	81	4442.28	86	4578.33	159	4727.13	83
4307.67	198	4443.72	152	4580.05	12	4729.84	119
4309.73	186	4459.75	99	4582.40	171	4730.69	108
4312.48	125	4460.76	66	4583.90	97	4737.33	108
4317.91	186	4462.79	99	4584.10	122	4741.09	183
4319.66	81	4464.66	99	4584.76	97	4743.12	177
4321.25	74	4465.37	99	4584.94	134	4745.31	64
4321.02	125	4401.01	90 33	4585.10	144	4752.07	178
4323.08	194	4413.30	- 80 - 65	4501.41	122	4/04./3	811
43230 76	113	4480 27	135	459255	190	4756.09	108
4332.57	124	4490.36	15)	4595 60	179	4757 31	177
4337.25	185	4482.88	135	4600.11	55	4757.58	149
4337.57	23	4490.55	164	4600.75	22	4704.28	149
4338.80	136	4491.69	80	4601.02	55	4764.65	94
4339.45	23	4491.86	74	4606.36	191	4767.26	149
4339.74	23	4492.31	135	4611.06	84	4767.86	149
4340.14	67	4495.2 8	174	4611.96	134	4770.68	94
4341.46	67	4496.85	12	4613.36	22	4775.12	148
4343.17	67	4498.73	71	4614.51	158	4789.32	52
4344.51	23	40029	112	4616.12	22	4792.49	118
4340.00	130	4201.79	71 901	4017.37	71	4796.15	176
4340.03	00 77	4506.84	18:	4013.34	150	4/7/.00	110
4351.06	23	4510.02	197	4622.76	71	4806.25	64
4351.77	23	4511.90	112	4625 91	157	4810 71	107
4353.94	136	4514.36	181	4626.18	22	4814.25	107
4356.77	101	4515.44	96	4628.48	128	4816.13	196
4357.51	136	4524.84	172	4633.27	128	4819.30	170
4359.65	23	4526.44	56	4639 .52	128	4823.90	195
4362.97	73	4527.33	56	4639.70	150	4825.50	107
4363.13	87	4527.45	76	4641.49	184	4831.63	143
4368.25	101	4529.84	56	4641.96	157	4836.85	107
4368.90	130	4530.48	85	4646.15	22	4838.42	194
4310.10	160	4000.08	00 64	4040.50	109	4870.79	105
4371.28	27	4520.02	96	4648 12	120	4890.04	117
4373.26	23	4531 24	96	4648 23	84	4995 77	52
4373.65	192	4535.13	56	4651.29	22	4885.97	106
4374.17	88	4535.69	56	4652.16	22	4887.01	106
4375.34	87	4535.75	56	4654.76	128	4903.25	52
4376.80	192	4539.76	56	4656.18	109	4922.28	106
4377.55	74	4540.49	56	4656.82	202	4936.34	116
4379.77	101	4540.72	112	4663.33	128	4942.49	11
4381.11	67	4541.06	56	4665.90	150	4944.57	156
4382.86	67	4541.51	111	4666.20	88	4953.73	116
4384.9/	23	4543.73	85	4669.34	128	4954.81	116
4291 76	23	4545.22	00 54	4060.80	120	4764.92	11
4293.54	86	4545.95	12	4007.30	92	6700.80 6012 21	130
4397.24	100	1'A9 85	180	469514	92	5022 64	180
4399.82	100	4553.95	172	4697.04	65	5084 65	189
4410.31	100	4554.82	123	4697.28	123	5045.04	189
4410.97	86	4555.31	144	4698.46	128	5051.90	10
4411.11	100	4556.18	123	4698.94	110	5072.98	10
4412.25	23	4563.24	159	4699.59	183	5112.50	20
4413.00	204	4563.43	72	4700.60	65	5123.47	21
4413.86	152	4563.66	122	4706.09	120	5139.60	142
4422.70	152	4564.17	203	4707.73	133	5177.42	137
4424.10	75	4566.51	22	4708.02	128	5192.01	137
4424.29	100	4009.63	123	4717.67	120	5198.50	141
4420.06	162	40/0.89 4671 10	128	4/18.48	125	0196.45	142
4422.16	71	4571 47	54 54	4722.00	141	5200.20	101
TTOPITY		1011.01		4120.00	100	0204.51	

List of tabulated lines - Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
5208.42	9	5300.74	19	5581.60	139	6630.00	18
5214.14	131	5304.19	147	5588.05	139	6661.10	175
5238.97	62	5312.88	147	5628.64	138	6669.27	175
5241.47	62	5318.79	147	5642.40	154	6882.40	146
5243.38	137	5328.36	79	5648.25	154	6883.05	146
5247.58	19	5329.17	79	5649.38	154	6925.22	146
5261.76	153	5329.76	79	5694.72	154	6978.46	146
5264.16	19	5340.46	147	5702.30	138	6979.81	146
5265.73	19	5344.77	147	5719.82	93	6980.91	146
5272.01	147	5345.77	19	5783.11	129	7170.56	169
5287.19	147	5348.30	19	5783.89	129	7355.93	78
5293.38	132	5400.58	130	5785.02	129	7400.22	78
5296.69	19	5409.78	19	5787.97	129	8916.24	16.
5297.37	79	5442.40	140	5838.68	93	8939.21	163
5297.99	79	5548.61	139	5844.60	93	8955.76	163
5298.29	19	5566.55	139	6330.13	8	и Н	

For this spectrum, we have utilized seventeen data sources, which are all fairly recent experiments. These include the absorption measurements of Bieniewski¹ and Blackwell and co-workers^{15,16}; anomalous dispersion (hook) measurements (plus a few absorption measurements) of Huber and Sandeman²; emission experiments performed with a shock tube by Wolnik et al.,^{9,10} with a hollow cathode by Cocke et al.,¹¹ and by Tozzi et al.,¹ and with a wall-stabilized arc by Wujec and Weniger¹³; shock tube absorption studies of Huber and Tobey¹²; and six lifetime determinations^{4-1,19} from which oscillator strengths could be directly derived. Another source that we used in this compilation is that of Kostyk,14 who derived log gf-values from solar spectra. The measurements of Cocke et al. were restricted to "branching ratio" determinations, which were then converted to transition probabilities by using available beam-foil lifetimes.

Accurate lifetime measurements are those by Marek,⁶ by Measures and co-workers,⁵⁴ and by Hannaford and Lowe,⁵⁹ who all selectively populated the levels under

study by means of dye laser excitation and then measured the corresponding radiative lifetimes. Other reliable lifetimes were measured by Becker et al.,4 who employed the level-crossing (Hanle) method, and by Marek and Richter,5 who used the phase-shift technique. It is possible to intercompare oscillator strengths derived from these lifetime sources for lines of the multiplets $a^{T}S - z^{T}P^{*}$ and $a^{T}S - y^{T}P^{*}$. This comparison, also including the absolute scale of Bieniewski, who has performed very careful absorption measurements with an electric furnace, is presented in Table 1. In converting the lifetimes to f-values, we did not include the contributions of non-resonance transitions because of lack of data. However, Huber and Sandeman estimated that these additional decay modes have a practically negligible effect (≈ 0.5 %) on the lifetimes involved. We consider the averaged f-values for these two multiplets to be accurate to within ten percent, as supported by the excellent mutual agreement among the selected data sources.

Multiplet	۸(Å)	f (Bieniewski≐)	f* (Becker et al *)*	("* (Marek and Richter*)*	("* (Marek") ^d	f.* (Measures et al `r ^e	f,," (Kwong and Measures")"	f,,* (Hannaford and Lowe *)*
a 'S - z 'P'	4254 33	- 0.106	. 0111	. 0111	0 110	0 112		•
(1)	4274 81	0.082	0.0849	0 0841		0.0849		
	1289 73	0.059	0.0616	0.0646		0.0627	0 0633	
a 'S y 'P'	3578 68	0 34	0 355	0 402				
(4)	3593 48	0.28	0 271	0.319				
	3605 32	0.21	0 2 2 0	0.244				

TABLE I Comparison of absorption and lifetime data

'Listed oscillator strengths have been derived from lifetime measurements.

"Level-crossing technique

Phase shift method

"Later excitation technique
The most reliable general /-value sources for this spectrum are those of Blackwell et al.^{15,16} and Tozzi et al.¹⁷ Blackwell's group obtained relative oscillator strengths by using their well-known absorption technique with an electric furnace. Their relative values were placed onto an absolute scale either by direct normalization to accurate radiative lifetimes or by comparing their newer measurements (at higher excitation potentials) to their earlier absolute data, via photoelectric pyrometry. Tozzi et al. measured branching ratios in emission, using a hollow-cathode discharge as a source and a Fourier transform spectrometer for the spectral recordings. These authors normalized their relative data to lifetimes meaared by Kwiatkowski et al.3 We estimate that the data of Refs. 15, 16, and 17 are generally accurate to within ten percent.

Another source providing accurate data is the work of Huber and Sandeman.² These authors normalized their relative data to the lifetimes of Ref. 4. Since these lifetimes are very close to our adopted absolute scale, we have tabulated the data of Ref. 2 without change or renormalization. We have also followed their carefully documented error estimates throughout. The data of Wolnik *et al.*,^{9,10} which are systematically lower than those of Huber and Sandeman, have been increased by a factor of 1.35 to be consistent with our absolute scale. The data of Cocke *et al.*¹¹ agree quite well with those of Ref. 2 for overlapping lines, so that we have left their oscillator strength scale unchanged.

Another compehensive data source that have utilized in this compilation is that of Wujec and Weniger. These authors employed a wall-stabilized arc to measure the oscillator strengths of 275 lines in the wavelength range 4220-4850 Å. They measured the line intensities erd-on with a photographic detection system. To determine the plasma conditions, Wujec and Weniger used a variety of spectroscopic techniques. These techniques revealed some significant inconsistencies in the experiment, although the f-values for overlapping lines agreed quite well with those of an earlier NBS compilation (Ref. 14). For example, a PLTE analysis and Stark broadening study of Art lines performed by Wujec and Weniger indicated high electron densities, with corresponding temperatures of about 11000 K. On the other hand, three other methods used by these authors vielded much lower temperatures (\approx 8000 K) for the same experimental runs. These latter methods also produced consistently lower temperature determinations, even for runs performed at 50% higher arc currents. Because of these inconsistencies, we have assigned "D" accuracies to the data of Ref. 13 and have tabulated them only for unblended lines and only if no other data source was available.

Wujec and Weniger presented two different sets of transition probabilities, corresponding to their different plasma analyses. In this compilation, we have chosen the set of data that was determined by assuming an arc temperature derived from the scale of Younger *et al.*,^µ since this scale is based on reliable oscillator strengths.

Another reference providing reliable f-values is the work of Kostyk.¹¹ His oscillator strengths are derived from solar data on line depths of Cr 1 lines, taken from the Liege solar atlas.²⁰ For 45 lines, Kostyk's data overlapped with data from either Blackwell *et al.*^{13,16} or Tozzi *et al.*¹⁷ For the 45 lines in common, data for 28 lines agreed within 25 percent, and data for 43 lines agreed within 50 percent.

References

- ¹T. M. Bieniewski, Astrophys. J. 208, 228 (1976).
- ²M. C. E. Huber and R. J. Sandeman, Proc. R. Soc. London, Ser. A 367, 355 (1977).
- ³M. Kwistkowski, G. Micali, K. Werner, and P. Zimme, mann, Astron. Astrophys. 103 (1981)
- U. Becker, H. Bucka, and A. Schmidt, Astron. Astrophys. 99, 145 (1977).
- ³J. Marek and J. Richter, Astron. Astrophys. 26, 155 (1973).
- ⁴J. Marek, Astron. Astrophys. 44, 69 (1975).
- ⁷R. M. Measures, N. Drewell, and H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
- "H. S. Kwong and R. M. Measures, Appl. Opt. 19, 1025 (1980).
- 'S. J. Wolnik, R. O. Berthel, G. S. Larton, E. H. Carnevale, and G. W. Warea, Phys. Fluids 11, 2002 (1966).
- ¹⁶S. J. Wolank, R. O. Berthel, E. H. Carnevale, and G. W. Wares, Astrophys. J. 197, 983 (1969).
- ¹¹C. L. Cocke, A. Stark, and J. C. Evans, Astrophys. J. 184, 653 (1973).
- ¹³M. Huber and F. L. Tobey, Jr., Astrophys. J. 152, 609 (1966).
- ¹⁵T. Wujec and S. Weniger, J. Quant. Spectrosc. Radiat. Transfer 25, 167 (1961).
- ¹⁵S. M. Younger, J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 7, 495 (1978).
- ¹⁵D.E. Blackwell, S. L. R. Menon, and A. D. Petford, Mon. Not. R. Astron. Soc. 207, 533 (1984).
- ¹⁴J. M. Bridget, private communication (1976).
- ¹⁷G. P. Tozzi, A. J. Brunner, and M. C. E. Huber, Mon. Not. R. Astron. Soc. 217, 423 (1985).
- ¹⁰R. J. Kostyk, Astrometriya Astrofiz. 46, 3 (1961).
- ¹⁹P. Hannaford and R. M. Lowe, J. Phys. B 14, L5 (1981).
- ³⁰L. DeBouille, L. Nevez, and C. Roland, "Photometric Atlas of the Solar Spectrum from 3000 to 10,000 Å," (Institut d'Astrophynique de l'Universite de Liege, Observatoire Royal de Belgique, Liege, Belgique, 1973).

Cr t: Allowed transitions

o. Mul	tiplet 	λ (Å)	E. tcm ¹)	<i>E</i> . (cm ⁻¹)	8.	g,	A. (10" s ⁻¹)	ſ.,	S (at. u.)	log gf	Accu- racy	Source
• •			•		-					0.074		
1. a S	- z P* 13	4 <i>2</i> 69.6	0	23415	7	21	0.312	0.256	25.2	0.254	в	1,4,5,6,7 8,19
		4254.33	0	23499	7	9	0.315	0.110	10.8	0.114	B	1,4,5,6,7 19
		4274.81	0	23386	7	7	0.307	0.0840	8.27	-0.231	в	1,4,5,7
		4249.73	0	23305	7	5	0.316	0.0622	6.15	- 0.361	В	1,4,5,7,8
2 e S	- z P 21											
		3732.03	0	25788	7	7	0.0016	3.31 - 4P	0.029	-2.63	C+	17
		3730.81	0	26796	7	5	0.0016	2.4(- 4)	0.020	- 2.78	C +	17
3 a S	- z D* 3)											
		3615.65	0	27650	7	9	5.1(-4)	1.3(-4)	0.011	- 3.05	C	2
		3635.25	0	27500	7	7	1.5(- 4)	3.5(-5)	0.0026	- 3.67	C	2
		12000	^	180.00	-	<u>.</u>		0.00*	70.0	0 900	-	
4 a S (- y P 4)	J389.9	0	27848	4	21	1.52	0.881	72.9	0.790	в	1,4,5
		3578 68	0	27935	7	9	1.48	6. 366	30.2	0.409	В	1,4,5
		3593 48	0	27820	7	7	1.50	0.290	24.0	0.307	B	1,4,5
		3605 32	0	27729	7	5	1.62	0.225	18.7	0.197	B	1,4,5
5. a S	-y P* 51											
		3351 97	0	29425	7	7	0.0012	2.01 4)	0.015	- 2.86	В	17
		3379 17	0	29585	7	5	9.9t 4)	1.21 – 4)	0.0095	- 3.07	C+	17
6 a'S 'u	- x 'P" v 1)	2365.6	U	<i>\$2259</i>	7	21	0.057	0.014	0.78	- 1.00	С	2
		2264 72	0	12275	7	9	1057	0.0057	0.21	1 40	c	.,
		2365.91	0	42254	;	7	0.055	0.0046	0.25	- 1.40 1.49	c	2 2
		2366 81	0	42238	7	5	0 069	0.0041	0.22	- 1.54	č	2
• •-	•				-						_	
. a S (u	- w P" v 2)	2095 <i>.</i> †	0	\$7710	7	21	0.0114	0.00226	0.109	- 1.90	С	2
		2095-00	0	47719	7	9	0.012	9.9r 4)	0.048	- 2.16	C	2
		2095.40	0	47709	7	7	0.011	7 31 - 41	0.035	- 2.29	С	2
		2095.83	0	47697	7	5	0.011	5 3 (- 4)	0.026	- 2.43	С	2
H. a S (- z "P" 61	:	•		,	: 1					:	
		6330-13	7593	23386	5	7	2.9(< 4)	2.4(- 4)	0. 025	2.92	D	18
9 a'S	- z `P 7)	5 206.9	7593	267 93	5	15	0.509	0.621	53.2	0. 492	B	15,17
	÷	520# 42	7502	24794		7	0 504	0.299	247	0169	R	16 17
1	1	5206.02	7593	2.796	5	5	0.500	0.209	17.9	0,019	B	15.17
	l	5204.51	7593	26802	5	3	0.509	0.124	10.6	- 0.208	B	15.17
ţ.	1							1			- 1	

Crt: A	llowed	transitions	-(Contin	ued
--------	--------	-------------	----	--------	-----

No.	Multiplet	ک (الح) :	E, (cm ⁻¹)	E . (cm ⁻¹)	8.	B.	A⊾ (10° s ^{−1})	f	S (at. u.)	log gf	Accu- racy	Sour
10.	a ⁵ S - z ⁻ D* (8)											
		5051.90 5072.93	7593 7593	27 3 82 27 300	5 5	5 3	5.41(- 4) 0.00159	2.07(- 4) 3.69(- 4)	0.0172 0.0 30 8	-2.985 -2.734	B B	15 15
11.	a 55 - y P (9)				•						3 - F	
		4942.49 4964.92	7593 7593	27820 277 29	5 5	7 5	0.00196 0.00161	0.00102 5.94(4)	0.0827 0.0486	- 2.294 - 2.527	B B	15 15
12.	a ^s S - y ^s P* (10)	45 29.6	7593	29664	5	15	0. 029	0.027	2.0	0.87	B	15,17
	, ,	4496.85 4545.95	7593 7593	29825 29585	5 5	75	0.033 0.027	0.014 0.0085	1.0 0.64	-1.15 -1.37	B B	15,1° 15,1°
13		4580.05	7593	29421	5	3	0.024	0.0045	0.34	- 1.65	B	17
10.	(uv 3)											
14.	а ¹ 5 - х ¹ Р	2995.09 1992 .5	7593 7593	40971 41000	5	5 15	0. 43 0.41	0.058 0.16	2.8 8.1	-0.54	D	2
	(uv 4)	2988 64	7593	41043	5	7	0 52	0.098	4.8	-0.31	с	2
		2994.06 2998.78	7593 7593	40983 40930	5 5	5 3	0.25 0.407	0.034 0.0329	1.7 1.62	-0.77	E B	2 15
15.	a ⁵ S - w ⁵ P' (uv 7)	27 3 0.3	7593	44.208	5	15	0.76	0.256	11.5	0.107	c	2
		2725.50 2731.90	7593 7593	44259 44187	5 5	7 5	0.75 0.78	0.12 0.087	5.3 3.9	-0.23 -0.26	C C	22
16.	a ¹ 8 - v ¹ P	2736.46	7593	44125	5	3	0.75	0.050	2.3	-0.60	D	2
	(uv 8)	2696.53	7593	44667	5	3	0.12	0.0076	0.34	-1.42	D	2
17.	a ⁵ 8 - u ⁵ 8* (uv 9)											
		2544.70 2538.95	7593 7593	46879 46968	5 5	7 5	0.11 0.11	0.014 0.010	0.61 0.44	-1.14 -1.28	D- E	2 2
18.	a "D - a "P" (16)											
		6630.00	8906	23385	9	7	6.0(- 5)	8.1(-5)	0.00 6 0	- 3.56	D	18

Cr	Ľ	Allowed	transitions	- Continued	

No.	Multiplet	λ (Å)	E , (cm ⁻¹)	E	8.	8.	A⊾ (10° s ¹)	f	S (at. u.)	log gf	Accu- racy	Source
1 9 .	a ⁵ D - z ⁵ P" (18)	5\$\$5.2	8090	26793	25	15	0.096	0.022	9.7	-0.26	B	15,17
					-	-			•			
		5409.78	8508	25788	9		0.052	0.021	3.4	-0.72	В	15,17
		5345.77	8095	26796	7	2	0.049	0.015	1.8	0.96	B	15,17
		5230.09	1921	26802	2	3	0.031	0.0079	0.69	- 1.40	B	15,17
		3348.30 5000-00	8095	20188	1	4	0.017	0.0073	0.90	- 1.29	B	12,17
		3230.23	1921	20/30	2	2	0.033	0.014	1.2	-1.10	B	15,17
		5209.10	70-97	20002	3 5	37	0.001	0.0016	0.00	-1.23	D	10,17
		3300.74	7921	20188		<u></u>	0.0025	0.0015	0.13	- 2.12	B D	15,17
		5247.58	7751	26196 26802	1	3	0.019	0.0039	0.31	-1.15	B	15,17
20.	a ^s D - z ⁻ D* (19)									-	,	
		5112.50	8095	27650	7	9	5.7(- 5)	2.9(-5)	0.0034	- 3.70	D	18
21.	a ³ D - y ⁹ P* (20)											
		5123.47	8308	27820	9	7	4.0(-4)	1.2 - 4)	0.018	- 2.96	D	18
22.	a ³ D - y ³ P (21)	4633. 9	80 90	29664	25	15	0.11	0.022	8.2	- 0.27	B	15,17
		4646.15	8306	29825	9	7	0.087	0.022	3.0	- 0.70	B	15,17
		4652.16	8095	2.585	7	5	0.058	0.013	1.4	- 1.03	B	17
		4651.29	7927	29421	5	3	0.036	0.0070	0.54	1.46	B	15,17
		4600.75	8095	29825	7	7	0.025	0.0079	0.84	- 1.26	В	15,17
		4616.12	7927	29585	5	5	0.041	0.013	0.99	- 1.19	B	15,17
		4626.18	7811	29421	3	3	0.050	0.016	0.73	- 1.32	B	15,17
		4565.51	7927	29825	5	7	0.0041	0.0018	0.14	- 2.05	В	15,17
		4591.41	7811	29585	3	5	0.011	0.0060	0.27	-1.74	В	15,17
		4613.36	7751	294 21	I	3	0.022	0.021	0.32	1 68	B	15,17
3	a D-z F 221	43 50.4	80 9 0	31070	25	35	0.117	0.0466	16.7	0.067	с	2,15
		4351.77	8308	31290	9	11	0.12	0.040	5.2	0.44	с	2
		4344.51	8095	31106	7	9	0.11	0.040	4.0	- 0.55	С	2
		4339.45	7927	30965	5	7	0.0692	0.0274	1.95	- 0.864	B	:5
		4337.57	7811	30859	3	5	0.0548	0.0258	1.10	- 1.112	В	15
		4339.74	7751	30787	1	3	0.0440	0.0372	0.532	- 1.429	В	15
		43H4.97	8308	31106	9	9	0.027	0.0079	1.0	1.15	D	2
		4371.28	8095	30965	7	7	0.041	0.012	1.2	1.09	С	2
		4359.65	7927	30859	5	5	0.054	0.016	1.1	1.11	С	2
		4351.06	7811	30787	3	3	0.0418	0.0119	0.509	- 1.449	B	15
		4412.25	8308	30965	9	7	9.86(4)	2.24(4)	0.0293	2.696	В	15
		4391.76	8095	30859	7	5	0 00288	5.96(- 4)	0.0603	- 2.380	B	15
		4373.26	7927	30787	5	3	0.00524	9.021 - 4)	0.0649	2.346	R	15

Crt: Allowed	transitions — (Continued
--------------	-----------------	-----------

No.	Multiplet	Å.	B , (cm ⁻¹)	B ₀ (cm ⁻¹)	e.	6	A_ (10 ⁰ s ⁻¹)	<i>[</i> -	S (at. u.)	red	Асси- гасу
24.	e "D - z "D" (23)	\$910.5	8090	\$36 55	5	ద	0.12	0.928	8.9	-0.16	c -
	İ	9910 17	67900					0.041			
		3919.17	9065	33519	7	7	0.992	0.021	25	-0.72	C
		3902.91	7927	33542	5	5	0.035	0.000	0.51	-140	
		3903.17	7811	33424	1	3	0.018	0.0041	0.16	-1.91	D -
		3941.50	8308	33672	9	7	0.028	0.0061	0.59	-1.34	C -
		3928.65	8095	33542	7	5	0.052	0.0086	0.78	-1.22	С
		3921.03	7927	33424	5	3	0.058	0.0080	0.51	-1.40	C
		3916.25	7811	33338	3	1	0.097	0.0075	0.29	-1.65	C
		1991 70	7977	33619		7	0.022	0.0050	0.36	-1.34	C-
		3995 24	7811	33542	3	5	0.039	0.015	0.56	-1.36	c_
		3894.04	7751	33424	1	3	0.039	0.026	0.34	-1.58	Č-
25 .	a "D - z "P" (24)										
		3849.54 3852.22	7927 7811	33897 33763	5 3	8 1	0.023 0.070	0.00 3 0 0.0062	0.19 0.20	-1.82 -1.81	e e
26 .	a "D - y "F" (27)										
			0.000								
		3021.58	2751	41393	9	11	2.91	0.487	43.6	0.642	B
		3015.20	8308	40300	9	3	1.05	0.005	6.8	-0.175	
		3030.25	8095	41086	7	7	1.1	0.15	10	0.02	č
		3020.67	7811	40906	3	3	1.5	0.21	6.1	-0.21	D -
		3040.84	8095	40971	7	5	0.74	0.073	5.1	-0.29	D
		3031.35	7927	40906	5	3	0.31	0.026	1.8	-0.89	E
2 7.	a 'D - x 'P' (26)										
		3053 87	8308	41049	•	7	0 797	0.0446	7 84	_0.108	
		3029.17	7927	40930	5	3	0.38	0.032	1.6	-0.80	E
		3034.19	8095	41043	1	1	0.35	0.048	3.4	-0.47	D
		3024.36	7927	40963	5	5	1.27	0.174	8.65	- 0.061	B
		3013.72	7811	40983	8	5	0.83	0.19	5.6	-0.25	С
28 .	a ⁵ D - y ⁵ D* (uv 11)										
		2005-06	8308	A1575		7	0.92	0.097	86	_0.06	C-
		2000.88	8095	41409	7	5	1.6	0.15	10	0.02	C -
		2996.57	7927	41289	5	8	2.0	0.16	7.8	-0.10	Ċ
		2991.88	7811	41225	8	1	3.0	0.14	4.0	- 0.39	D
		2967.64	8095	41782	1	9	0.39	0.067	4.6	-0.33	D
		2971.10	7927	41575	5	7	0.71	0.13	6.5	-0.18	C
		2010.48	7811 7751	41950	1	2	0.510	0.20	5.8 2.00	-0.20	R R
				41000	1		0.010	0.200	2.00		

T

Cr I: Allowed transitions -- Continued

No.	Multiplet	λ (Å)	E, (CBB ¹)	E , (cm ⁻¹)	8.	8.	A_ (10" s ¹)	f.	S (at. u.)	log gf	Асси- гасу	Source
-		:			~	~~					_	
Z9 .	a 10 - x 10" (uv 12)	2893.5	8090	42640	25	5	0.93	0.117	27.9	0.467	C-	2
		2889.22	8306	42909	9	9	0.66	0.082	7.1	-0.13	с	2
		2893.25	8095	42648	7	7	0.52	0.065	4.4	-0.34	С	2
		2896.76	7927	42439	5	5 ;	0.30	0.037	1.8	-0.73	C -	2
		2899.20	7811	42293	3	3.	0.15	0.019	0.55	-1.24	D-	2
		2911.15	8306	42548	. 9	- 1 - 5	0.25	0.025	22	-0.64	9 0	2
		2910.89	7927	42993	5	3	0.54	0.051	25	_0.59	Č	2
		2905.48	7811	42218	3	1	1.3	0.053	1.5	-0.80	D	2
		2871.63	8095	42909	7	9 :	0.12	0.018	12	-0.89	D -	2
		2879.27	7927	42648	5	7	0.21	0.036	; 1.7	-0.74	D	2
		2887.00	7811	42439	3	5	0_27	0.055	1.6	-0.78	D	2
		2894.17	7751	42293	1	3	0.33	0.12	1.2	-0.91	D-	2
30 .	a D-w P (uv 15)							: : :	- - - -			
		2780 70	6200	44750	•		3.4	A 12	,,	0.07	c	9
		2769 90	8095	44187	7	5	11	0.13	58	-0.20	c	2
		2761.74	7927	44126	5	3 -	0.68	0.047	2.1	0.63	Ď	2
		2764.36	8095	44259	7	7	0.37	0.042	2.7	-0.53	D	2
		2757 09	7927	44187	5	5	0.68	0.078	3.5	-0.41	С	2
		2752.85	7811	44126	3	3	0.87	0.098	2.7	-0.53	D	12
		2751.58	792.	44259	5	7	0.069	0.011	0.50	- 1.26	D	2
31	a 'D - e 'P' (uv 17)									;		1 5 7 1
		2716.18	8308	45113	9	7	0.11	0.0092	0.74	- 1.08	с	2
		2700.59	8095	45113	7	7	0.075	0.0082	0.51	-1.24	Ď	2
32	a 'D - x 'F' (uv 18)										1	•
		2678.15	7927	45256	5	7	0.12	0.018	0.79	~ 1.05	с	2
		2671.98	7811	45225	3	5	0.12	0.022	0.57	- 1.19	Ď-	2
		2669.36	7751	45202	1	3	0.12	0.039	0.34	- 1.41	ε	2
		2703 48	H30H	45296	9	9	0.063	0.0069	0.55	- 1.21	D	2
		2590 25	H(F3);	45295	7	7 5	0.085	0.0092	0.57	~ 1.19	D	2
		2673 64	7927	45202	3	3	0 19	0.011	0.51	1.27	D F	. 2
33	a 'D - (**							0.010		1.24	Ľ	-
		2701 99	K30 K	45306	9	11	0 21	0.024	22	0.60	с	2
34	a 'D - 1 * 1											-
		2620 4×	7927	460777	ŗ,	3	0 19	0 012	0.50	- 1.24	E	2
35	a D - w D' (uv 21)											
		2622 H7	READER	46422	9	9	0 13	0 013	10	0 92	D	2
		2626-60	KSOK	46368	9	7	0 093	0.0075	0.58	1 17	E	2
36	a D - (**											
		2629 M2	8095	46109	7	5	0 10	0.0077	0 46	1 27	E	2

1

1 I I

Cr t: Allowed transitions --- Continued

No.	Multiplet	<u>)</u> (Å)	E , (cm ⁻¹)	<i>E</i> . (cm ⁻¹)	E.	8.	AL (10 ⁶ s ⁻¹)	ſ.	S (mt. u.)	loc ef	Асси- гасу	Source
37.	a ¹ D - (*)*											
		2625.32	8095	46174	7	7	0.091	0.0094	0.57	-1.18	E	2
3 8.	e ⁵ D - w ⁵ F (uv 22)											
		2603.56 2588.19	8308 8095	46705 46721	9	11 9	0.062 0.068	0.0077 0.011	0.5 9 0.68	-1.16 -1.10	E	2 2
		2579.14	7927	46688	5	7	0.11	0.015	0.64	-1.12	D-	2
39 .	a ¹ D - 2 ¹ G' (uv 23)											
		2584.67	8306	46986	9	11	0.061	0.0075	0.58	-1.17	E	2
40.	a ⁵ D - u ⁵ P* (uv 24)											
		2591.84	8306 8306	46879	9	7	0.65	0.051	3.9	-0.34	C	2
		2571.74 2577.66	8095	46968	7	57	0.64	0.045	1.5	-0.50	D-	2
		2560.70 2549.55	7927 7811	46968 47022	5	5	0.43	0.042	1.8	-0.68	D	2
41.	a ⁵ D - v ⁵ D* (uv 30)						•.••					-
		2527.11	8306	47866	9	9	0.53	0.051	3.6	-0.34	2	2
		2508.11 2508.97	7927 7927	47786 47772	5	5	0.21	0.020	0.81	-1.01	D- C-	2
		2513.62	8095	47866	7	9	0.11	0.014	0.81	- 1.01	C	2
42.	a 5D - (*)*											
		2495.08	7811	47878	3	3	0.27	0.025	0.62	-1.12	C	2
43.	a ^s D - u ^s F" (uv 31)											
		2504.31	8095	48014	7	9	0.45	0.054	3.1	-0.42	C	2
		2496.30 2492.57	7927	47915	8	5	0.56	0.073	3.0 1.7	-0.44	C C	2
		2499.84	7927	47918	5	5	0.16	0.015	0.61	- 1.13	E	2
44.	a 5D - (*)*											
		2502.55	8095	49043	7	9	0.22	0.025	1.5	-0.74	D	2
45 .	a *D - *D*							1				
		2479.14	7924	48252	5	7	0.098	0.018	0.51	- 1.20	D	2
46.	a ¹ D - <i>t</i> ¹ P' (uv 36)											
		2498.60	8306	49812	9	7	0.67	0.045	3.2	- 0.39	D	2
47.	a "D - (")"											
:		2408.72	8096	49606	7	5	0.29	0.018	1.0	0.90	D-	2

1

F-15

Cr t Allowed transitions - Continued

No.	Multiplet	х (Å)	E , (cm ⁻¹)	<i>E</i> , (cm ⁻¹)	8.	84	A_ (10 ⁶ s ⁻¹)	1.	S (at. u.)	ioe ef	Асси- тасу	Source
48.	a ¹ D - x ³ F" (uv 37)											
		2389.21	7811	49653	3	5	0.23	0.033	0.77	- 1.01	D-	2
49.	a ³ D - s ³ F (uv 39)											
		2383.30 2385.72 2375.06	8308 8308 7927	50253 50211 50019	9 9 5	11 9 3	0.41 0.17 0.17	0.042 0.014 0.0085	3.0 1.0 0.33	0.42 0.89 1.37	D– D– E	2 2 2
50 .	a ⁵ D - u ⁵ D* (uv 40)											
		2354.30	8095	50558	7	9	0.061	0.0086	0.47	-1.22	D -	2
51.	a ⁵ D - r ⁵ D* (uv 48)											
		1 999.95	8306	58293	9	9	1.4	0.082	4.9	-0.13	D -	2
52.	a ⁵ G - y ⁵ F* (31)							1		•		:
		4789.32 4903.25	20520 20517	41393 40906	13 5	11 3	0.114 0.074	0.0331 0.016	6.79 1.3	- 0.366 - 1.10	B D	16 10n
53 .	a ² G - x ³ P' (30)					I • •					i •	
		4885.77	20521	40983	7	5	0.0492	0.0126	1.42	- 1.055	В	16
54.	a 'G - z 'H' (32)			- - -							1 1 1	
		4571.67 4648.12	20520 20517	42387 42026	13 5	15 7	0.036 0.018	0.013 0.0082	2.5 0.62	0.77 1 39	D D	13 13
55.	a 'G - (**											
		4601.02 4600.11	20524 20520	42252 42252	11 13	13 13	0.015 0.016	0.0056 0.0051	0.94 1.0	1.21 1.18	D D	13 18
56.	a G - z G (33)	4533.7	20522	42573	45	45	0.205	0.0633	42.5	0.454	В	16,17
		4526.44	20520	42606	13	13	0.175	0.0538	10.4	- 0.156	В	17
		4535.69	20524 20524	42585	11	11	0.158	0.0486	7.98	0.272	B	17
		4540.49	20521	42539	7	7	0 150	0.0465	4.87	-0.487	B	16,17
		4544.60	20517	42515	5	5	0.169	0.0523	3.91	0. m 2	B	17
		4529.84	20520	42589	13	11	0.011	0.0030	0.58	~ 1.41	C+	17
		4535.75 4541.06	20524 20524	42565	11	9 7	0.025	0.0063	10	116	C+	17
		4545 33	20521	42515	7	5	0.034	0.0075	0.79	1.14	ß	10,17
		4527-33	20524	42606	n	13	0.021	0.0077	13	1.07	B	17
		4530 68	20524	42589	9	11	0.036	0.014	I H	0.91	B	17
		4535.13	20521	42565	7	9	0.038	0.015	1.6	0.98	B	16,17
		4539-76	20517	42539	- 5	7	0.032	0.014	10	1/15	В	16,17

Cr L Allowed transitions -- Continued

No.	Multiplet	ίλ (λ)	E , (cm. ⁻¹)	E , (cm ⁻¹)	8.	84	A _b (10 ⁶ s ⁻¹)	<i>[</i>]	S (ant. 12.)	log gf	Асси- тасу	So
57.	a 'G - y 'G' (35)											
		4126.51 4203.59	2052 9 205 17	44746 44300	1 3 5	1 3 5	0.0671 0.057	0.0171 0.015	3.03 1.0	~0.652 -1.12	B D	16 10
58.	a ⁵ G - x ⁵ F* (36)											
		4042.25 4050.03	20524 20517	45256 45202	9 5	7 3	0.0088 0.012	0.0017 0.0017	0.20 0.12	-1.82 -2.06	D D	18 18
59 .	a ⁵ G - y ⁵ H* (38)											
		3963.69 3969 75	20520	45741 45707	13	15 13	1. 3 1.2	0.36	61 50	0.67 0.58	D- D-	2
		3963.90	20521	45615	7	9	1.05	0.82	29	0.35	C-	11
		3991.12 3976.02	20517 20520	45663	5 13	11	0.0923	4.6(-4)	0.078	-2.22	D	11
60 .	a ¹ G - x ¹ G' (43)											
		3743.89	20520	47222	13	13	0.761	0.160	25.6	0.818	B	10
		3768.24	20521	47047	5	5	0.510	0.109	6.74	-0.255	B	16
		3758.04 3768.73	20524 20521	47125 47047	9	7	0.116 0.119	0.0192 0.0181	2.14	-0.768	B	16
		8744.49 9757 17	20524 20517	47222	11	18	0.0501 0.0516	0.0124	1.69	-0.864	B	16
61.	a ¹ G - u ¹ F" (47)	0 101.11	20011	41120			0.0010	0.0102				
		3639.80	20620	47985	18	11	1.8	0.30	67	0.59	D	12
62	a 'P - x 'P' (59)											
		5241.47 5238.97	21857 21848	40930 40930	8	8	0.0067	0.0028	0.14	-2.08	D B	18
63.	a 'P - y 'D' (60)											
		5013.31	21841	41782	7	9	0.085	0.017	2.0	- 0.92	D	10
64.	a 'P - x 'D' (61)											
		4745.31 4806.25	21841 21848	42909 42548	7 5	9 7	0.020 0.0056	ර.0087 0.0027	0.95 0.21	-1.22 -1.87	D D-	10
65.	6 'P - z '8' (62)											
		4697.04	21841	48125	7	5	0.063	0.012	1.2	- 1.06	D	11
		4700 60	21857	43125	3	5	0.0336	0.0185	0.860	- 1.255	B	1

i i i

1

т. 1

Cr I: Allowed transitions - Continued

No.	Multiplet	λ (Å)	<i>E</i> , (cm ¹)	<i>E</i> , (cm ¹)	g.	g.	An (10° s ⁽)	f.s	S (ant. u.)	log gf	Accu- racy	Source
**	n ∃D tu ∃D*										9 - : :	
00.	63)										ļ	
		4460.76	21848	44259	5	7	0.015	0.0065	0.48	-1.49	D	18
		4477 05	21894	44187	3	Ð	0.013	0.0065	0.29	-1.41	D	18
67.	a P - c P (64)									:	•	
		4341.46	21848	44875	5	5	0.0064	0.0018	0.13	- 2.04	E	13
		4382.86	21857	44667	3	3	0.030	0.0086	0.37	- 1.59	D-	13
		4340.14	21841	44875	7	5	0.12	0.024	2.4	~ 0.77	D	13
		4381.11	21848	44667	5	3	0.10	0.018	1.3	- 1.05	D	10 n
		4251.06	21848 21857	45113	э 3	7	0.048	0.019	1.3	- 1.03 - 1.29	ע	13
		1.710.17	•••••	4010		.,	0.000		0.10			
6 8.	аР- w D* (66)							- 	• : :	-		
		4091.74	21857	46350	3	5	0.012	0.0050	0.20	1.82	D	18
69 .	a P - (*)								•		-	
		4109.58	21848	46174	5	7	0.031	0.011	0.74	- 1.26	D	18
70.	а Р – µ Р (67)											-
		3981.24	21857	4696H	3	5	0.11	0.045	1.8	- 0.87	D	1 0 n
71.	a 'P - y 'P' (81)									•		- - -
		4619.54	24093	45734	5	5	0 16	0.051	39	-0.59	D	13
		4501.79	23512	45719	3	3	0.10	0.030	1.4	- 1.04	D	13
		4622 76	24093	45719	5	3	0.11	0.021	1.6	- 0.98	D	- 18
		4498.73	23512	15734	3	5	0.079	0.040	1.8	0 92	D	18
		4432-16	23163	45719	1	3	0.18	0.16	2.3	- 0.80	D	18
72	a 'P - y 'F'											
		4563.43	24093	46000	5	7	0.0055	0.0924	0.18	1.92	D	13
73	a 'P - (*/*											
		4362 97	23164	46077	- 1	3	0 032	0.027	0 39	1.56	D -	13
74	a 'P - w 'D' (83)											
		4491 86	24093	46350	5	5	0.034	0 010	0.76	- 1 29	D	18
		43H7.3H	23512	4629H	3	3	0.054	0.016	0.68	1-33	D	13
		4377.55	23512	46350	3	5	0.033	0.016	0.69	1 32	D	18
		4321 25	23163	46298	1	3	0.034	0 029	0 41	1.54	D.	13
75	a 'P - (**											(1
;		4424 10	23512	46109	3	5	0.057	0.020	1.2	- 1 08	D	13
76	a 'P - ('P								i	1	i	
ļ	* 1	4527 45	24093	45174	5	7	0 062	0 027	2.0	0.87	D	13

i I

Cr E Allowed transitions - Continued

No .	Multiplet	х (Å)	E, (cm ⁻¹)	<i>E</i> , (cm ⁻¹)	8.	E 4	A _b (10 ⁶ s ⁻¹)	<i>f</i>	S (at. u.)	log af	Асси- гасу	So
Π.	a 3P - z 3S*											
		4347.49	24093	47068	5	3	0.019	0.0032	0.23	-1.79	D	13
78.	z [†] P* - e [†] S (93)											
		7400.22 7355.93	23386 23305	36896 36896	7 5	7 7	0.135 0.0914	0.111 0.104	18.9 12.6	-0.111 -0.285	B B	16 16
79 .	z "P" - e "D (94)											
		5328.36 5297.37 5329.17	23499 23386 23499	42251 42258 42258	979	11 9 9	0.62 0.388 0.225	0.32 0.210 0.0969	51 25.6 15.1	0.46 0.167 -0.064	D B B	9n 16 16
		5329.76	23499	42256	9	7	0.0538	0.0178	2.81	-0.795	B	16
80.	ε [†] P* - f [†] S (95)											
		4491.69 4475.36	21396 21305	45643 45643	7 5	7 7	0.044 0.0 9 0	0.013 0.013	1.4 0.93	- 1.0 3 - 1.20	D D	18 18
81.	z 'P" - /'D (96)											
		4261.35 4272.93	23499 22385	46959 46783	9	11	0.965	0.922	2.8 1.6	-0.70	DD	11
		4294.58 4299.72	23499 23395	46783 46637	9	9	0.025	0.017	0.80 1.7	-1.20	D	18
		4305.47 4319.66	21305 21305	46525 46449	5 5	5	0.076 0.18	0.021 0.030	1.5 2.1	-0. 93 -0.82	D D	10
82.	z [†] P* - g [†] D (97)					l				F		
		4007.60 4111.33	23305 23386	47702 47702	5	777	0.053 0.12	0.019 0.061	1.3 2.9	-1.03 -0.67	D D	18 18
88.	a "H - 1 "H" (99)											
		4727.13 4693.94	24290 24055	45348	13	13 11	0.051 9.064	6.017 0.011	8.4 1.9	-0.66	D D	10
		4666.29 4 695 .14	23054 24055	45340	9 11	9 13	0.096 0.015	0.012	1.6 1.0	-0. 56 -1.18	D D	11
84.	a ™ - y ₩*											
		4617.37 4648.33	240 65 24200	45707 45707	11 13	13 13	5.1(-4) 0.0015	1.9(-4) 4.9(-4)	0.002 0.007	-2.67	D- D-	
		4611.06	23054	45615	•	•	0.0920	6.4(-4)	0.087	- 2.24	D-	11
86 .	а "Н - у "7" (100)											
		4543.73	24065	44064	11		0.010	0.0025	0.42	-1.56	D	11

T T

I.

I I

Crt	Allowed transitions Continues	d
		-

No	Multinlet))	E	E.	.		A -		S	lar ef	Accu-	Sourre
		(Å)	(Cm , ⁻¹)	(cm ⁻¹)			(10° s ⁻¹)		(at. u.)		racy	
86 .	a 'H - w 'F											
	(102)											
		4442.28	24200	46705	13	11 .	0.019	0.0048	0.90	-1.21	D	13
		4410.97	24056	46721	11	· 9	0.023	0.0055	0.88	-1.22	D	13
		4333.34	23334	90000	3	•	0.007	0.002	V.2	-1.0	E	13
57 .	a "H - z "G" (103)					:						
		4375.34	24056	46905	11	9,	0.072	0.017	2.7	-0.73	D	10m
		4363.13	23934	46847	9	7	0.16	0.036	4.6	0.50	D	13
88.	a "H - y "G" (104)				1					•		1
	-									:		
		4374.17	24200	47055	13	11	0.103	0.0250	4.68	-0.488	C-	11
		4325.06	24050	47055	. 9	7	0.090	0.021	3.3	-0.56	D	13
89 .	a ³ H - z ³ I* (105)				•				• • • • •	:		
		4255.50	24200	47693	13	15	0.061	0.019	3.5	-0.60	D	13
90.	a "H - x "H" (106)							,				
		4211.48	24056	47794	11	11	0.0071	0.0019	v.29	- 1.68	D	18
91.	a 'H - v 'H' (114)											
		3238.09	24056	54930	11	11	0.20	0.032	3.7	- 0.46	D	12
		3237.73	23934	54811	9	9	1.3	0.20	19	0.25	D	12
92.	a 'H - x 'I' (115)											
		3163 76	24200	557 99	13	15	0.60	0.10	14	0.13	В	17
		3155 16	24056	55741	11	13	0.57	0.10	11	0.04	B	17
		3148 44	23934	55686	9	11	0.56	0.10	9.5	- 0.04	B	17
		3169.58 3160.62	2 4200 24056	55741 55394	13	13	1.022	0.0033	0.45	-1.37	Е Р-	17 17
		** 5 U T . U.a	5-8(1·10)	-AKA70	**	* *	0.021	0.0041	U.90	~~ }	u -	**
93	6 D - y D* (119)											
		5844.60	24304	41409	7	5	0.0068	0.0025	0.33	- 1.76	D	18
		5719.62	24304	41782	7	9	0.00496	0.00313	0.412	- 1.660	B	16
		5438 68	24287	41409	3	5	0.0065	0.0055	0.32	- 1.78	D	18
94	b D - x F* (124)											
		4764 65	24304	45286	7	9	0.0073	0.0032	0.35	-165	D	13
		4770 68	24300	45256	5	7	0.0098	0.0047	0.37	1.63	Ď	18

1

C ++	Albuma	 المستغمين
UT E		

-

No.	Multiplet	Å Å	E , (cm ⁻¹)	E. (cm ⁻¹)	6	4	A⊾ (1€ ⁶ s ^{−1})	<i>f</i> .	S (at. 11)	he af	Accu- racy	8.
95 .	\$D-(7											
		4755.14	24282	45386	,	n	0.0056	0.0010	0.56	-1.45	D	11
56 .	6 °D - # °D* (126)											
;		4515.44 4539.93 4531.24	24282 24304 24287	46422 46368 46359	9 7 8	9 7 5	0.422 0.3065 0.910	0.0057 0.0029 0.0051	0.30 0.21 0.23	-1.22 -1.85 -1.81	D D D	14 14 14
9 7.	\$D-(7											
		4584.76 458 3.90	24304 24300	46100 46109	7 5	5 5	0.9975 0.916	0.0017 0.0050	0.18 0.38	-1. 53 -1. 60	D- D-	11
96 .	6 D - (7											
		4571.10	24304	46174	7	7	0.4095	0.0000	0.31	-1.68	D -	u
.	(127)											
		4459.75 4465.37 4462 70	24304 24300	46721 46688	75	97	0.064	0.032	3.3 1.8 0.74	-0.65 -0.91	DDD	
		4461.51 4464.66	24300 24287	46678	53	5	0.037 0.049	0.011 0.015	0.81 0.65	-1.26	D D	11
100.	б ⁵ D - к ⁵ Р* (129)											
		4424.29 44 11.11	24282 24 3 04	46879 46968	97	7	0.21 0.13	0.048 0.027	6.3 2.8	-0. 3 7 -0.72	D D	
		4390.82 4428.52	24300 24304	47022 46879	575	37	0.098	0.017	1.2 1.7	-107	DDD	
		4410 31 4697.24	24287	47022	3	3	0.10	0.029	1.4	-1.06	D	1
101.	δ D - x G (130)											
		4356.77 4368.25	24282 24304	47229 47190	97	11 9	0.022 0.021	0.0077 0.0077	0.99 0.78	-1.16 -1.27	D D	11
102.	δ ¹D - υ ¹D * (131)	4519 ,11	24300	4/126	Ð		0.019	0.0078	0.56	-1.42	D	1
		4228.96 4252.24	24282 24304	47866 47814	9	97	0.074	0.020 0.014	2.5 1.4	-0.74	D D	1
		4248.34 4257.35	24282 24304	47814 47786	9	7 5	0.028 0.029	0.0059 0.0057	0.74 0.56	-1.28 -1.40	D D	1:
103.	6 'D - (")	4242.84	24304	47956	7	9	0.018	0.0062	0.61	- 1.36	D	1 Li
		4235.99	24277	47878	1	0	0.066	0.053	0.74	-1.27	D	1:
		4235.99 4237.72	24277 24287	47878 47878	1 3	3 3	0.066 0.040	0.053 0.011	0.74 0.45	-1.27 -1.49	D D	

1 I I I

-21

Cr r Allowed transitions -- Continued

No.	Multiplet	۸ ۱۸۱	E, (cm ¹)	E. (cm ¹)		81	A_ 110° s 5	f.	S (at.u.)	log gf	Acca- racy	Sous
	Kin								:	4		
14 5.	(132)								•			ļ
		4222.75	24300	47975	5	7	0.056	0.021	1.5	-0.98	D	18
		4230.49	24257	41318	3	5	0.051	0.023	GC.U	- 1.16	D	LJ
05 .	5 D-#D (139)									••		
		3904.90	74787	50558	9		0.69	0 15	17	0.13	D	94
~											: -	
FD .	a G - 2 H (143)		· :			i t t		,	i. k			1
		4922.28	25039	45349	i n	13	0.40	0.17	30	0.27	D	S n
		4887.01	24898	45354	9	11	0.32	0.14	20	0.10	D	9m
		4870.79 4885.97	24834 24898	45359 45359	7	9 . 9 .	0.35 0.0244	0.16 0.00874	18 1.27	0.05 - 1.104	B B	9 m 16
07 .	a 'G - y 'H'										t.	
	(144)											
		4836 85	25039	45707	11	13	0.0160	0.00665	1.16	- 1.136	В	16
		4814.25	24898	45663	: 9	11	0.0161	0.0068	0.98	- 1.211	C-	11
		481071 4825.50	24834 24898	45615	9	9	0.0036	0.0071	0.19	- 1.95 - 1.95	D -	11
W .	a 'G - y 'F' (145)									•		
		4756.09	25039	46058	11	9	0.40	0.11	19	0.09	D	18
		4737.33	24/19/1	46000	9	7	0.338	0.0685	12.4	- 0.099	B	16
		47.50.59 4724 40	248.54	45058	9	ວ 9	0.385	0.0205	2.88	- 0.132	B	16
		4723 06	24834	46000	7	7	0.093	0.031	3.4	- 0.66	D	10m
09 .	a 'G - w 'D' (147)											
		4656 18	24898	46364	9	7	0.0327	0 00826	1.14	- 1.129	В	16
		4646.50	24834	46350	7	5	0.058	0 013	1.4	- 1 03	D	13
10	a 'G - 1 **											
		4696.91	24534	46109	7	5	0.022	0.0052	0.56	- 1.44	D	13
н	a 'G - 2 'G' (149)											I
		4541-51	24834	46447	7	7	0.038	0.012	1.2	- 1 OK	D	13
12	a (G - y (G) (150)											
		4540 72	25039	47055	11	п	0314	0 0 97 0	159	0.028	B	16
		4511.90	24898	+7055	9	9	0 165	0.0504	674	0 343	B	16
		4:000 22	24434	47048	. 7	7	021	0.064	9 D	0 35	D	13
13	a G - u P											
		4330 76	24834	47918	7	5	0.014	0.0028	0.28	171	D	13

1

Т

No.	Multiplet	۵ دلم	E , (cm ⁻¹)	£ , (cm ^{−1})	B.	8	AL (10 ⁴ s ⁻¹)	1.	S (at. u.)	ion of	Асса- гасу	Source
114.	s ³ G - y ³ H" (154)											
		427, 1.07 4269.96 4262.37	25039 24896 24834	48445 48310 48288	11 9 7	13 11 9	0.053 0.052 0.024	0.5;7 0.911 0.9664	2.6 1.4 0.83	-0.73 -1.92 -1.23	D D D	1 0. 13 13
115.	e ¹ G - x ² G" (155)											
		4213.18	24834	48562	7	9	0.075	0.027	2.6	-0.72	D	10.
116.	e 'F - 2 'H' (166)											
		4954.81 4996.34 4953.73	25177 25106 25177	45354 45359 45359	97	11 9	0.12 0.14	0.056 0.065	8.2 7.5	-0.30	D	10n 75a
117.	e Ŧ - y H (167)	1000.10										
		4880.04 4874.65	25177 25106	45663 45615	9 7	11 9	0.0081 0.0069	0.0035 0.0032	0.51 0. 36	- 1.50 - 1.66	D D	18 11
118.	a "F - y "F" (168)											
		4754.73	24941	45966	5	5	0.026	0.0088	0.69	-1.36	D	13
		4901.02 4792.49	25177 25106	46000 45866	7	7 5	0.306	0.0822	7.1	-0.131	BD	16 10n
119.	a*F - (**											
		4729.84	24941	46017	5	3	0.17	0.035	2.7	-0.76	D	1 0 n
1 20 .	<i>ል ᢪ</i> F − ₩ ⁵ D* (170)											
		4717.65	25177	46368	9	7	0.0077	0.0020	0.28	-1.75	D-	13
	•	4680.95	24941	46296	5	2	9.16	0.031	2.4	-0.81	D	18
1 21 .	a¥F-(**											
		4722.65	24941	46109	5	5	0.0069	0.0023	0.18	-1.94	D	13
122.	a '¥ - z 'G' (172)											
		4584.10 4586.15 4562.66	25177 25106 24941	46986 46905	9 7 8	11 9	0.021	0.0081	1.1 1.2 0.75	-1.14 -1.12 -1.20	DD	13 13
		4908.00				1	0.066	0.010	V.10	- 1.40		10
123.	• ▼ - y G (172)						1					

4554.82

4569.62 4556.18 4570.99

I.

25106

25177 25106

25177

0.020 0.082 0.077

0.0048

0.0080 0.026 0.024

0.0010

0.84

8.5 2.5 0.14

-- 1.25 -- 0.64 -- 1.78 -- 2.08

D D D 2

Cr : Allowed transitions - Continued

I I

T

- -

F-23

Cr E Allowed transitions - Continued

					_							
No.	Multiplet	λ (Å)	E, (cm ⁻¹)	E. (cm ⁻¹)	8.	8.	A⊾ (10 ⁴ s ^{−1})	<i>ſ</i> .	S (at. u_)	log gf	Accu- racy	Source
124	ልፕ-ህ			-		:			1 0 1 1	4 1	- 	3.
		19-19	AC 177	-0959		-	0.001	0.0046	C 50	1 19	; 	19
		4325.65	251/7 25106	4825Z 48218	7	5	0.021	0.0056	0.59	-1.41	D	13
		4296.30	24941	48210	5	3	0.032	0.0053	0.38	-1.58	D-	13
		4288.40	24941	48252	5	7	0.028	0.011	0.76	-1.27	D	13
125.	a Ŧ-y Ħ (177)			-		:		• • • •		• • •		
		4321 67	25177	45310	9	11	0.017	0.0058	0.74	-1.28	D	13
		4312.48	25106	48288	7	9	0.017	0.0061	0.61	-1.37	D	13
	. 30 . 101				•	; ;			-			
120.	(178)				•			* *		1		2 2 2
		4234.52	25177	48786	5	11	0.922	0.0072	0.91	1.19	D	13
127.	a 'T - 'T'		•			:	1	1		:	•	
				:								
		4261.63	25177	48636	9	7	0.064	0.014	1.7	0.91	D	13
128.	z "F" - f"D (186)										•	
		4718.43	25771	46959	13	11	0.34	0.095	19	0.09	D	18
		4708.02	25549	46783	11	9	0.431	0.117	20.0	0.110	B	16
		4698.46	25360	46637	9	. 7	0.22	0.057	7.9	- 0.29	D	13
		4669.34	25549	4695 0	11	· ə	0.23	0.034	5.02	-0.42	B	16
		4663.33	25011	46449	3	3	0.20	0.065	3.0	-0.71	D	13
		4628.48	25360	46959	9	11	0.012	0.0045	0.62	- 1.39	D	18
		4639.52	25206	46637	5	3	0.020	0.0082	3.3	0.67	D	18 10n
		4546.80	25011	46525	3	5	0.078	0.042	1.9	0.90	D	13
		4654.76	24971	46449	1	3	0.091	0.089	1.4	- 1.05	D	13
129	z 'P' - e 'D (188)											
		5787. 9 7	26796	44069	5	7	0.235	0.165	15.7	0.063	в	16
		5785. 02	26788	44069	7	7	0.119	0.0596	7.94	- 0.380	B	16
		5783.89 5783.11	25796 25802	44081	53	5 3	0.202	0.101 0.11	9.65 6.0	0,295 0.50	D R	16 18
130	b ''P - y ''P' (191)								0.0			
		5400 58	27223	45734	5	5	0.16	0.068	6.0	- 0.47	a	10n
131	δ ³ P − <i>u</i> ^{−3} D* (193)											
		5214.14	27176	46350	3	5	0.089	0.061	31	- 0.74	D	TH.
132	6 'P - 1 * P	.			_	_					_	
		5293.38	27223	46109	5	5	0.021	0.0087	0.76	136	D	[H

1 1 1

I.

No. 	Multiplet	λ (Å)	E, (cm ⁻¹)	E, (cm ⁻¹)	B .	81	A	<i>f</i> .	S (al. u.)	log af	Acca- racy	Source
133.	6 "P - x "P" (195)				2							
1		4707.73 4697.38	27223 27176	49459 48459	5 3	5 5	0.631 0.631	0.010 0.017	0.80 9.79	-1.29 -1.29	D D	13 13
34.	6 "P - x "D" (196)											
		4575.11 4611.96 4584.94	27176 27163 27223	49028 48840 49028	3 1 5	5 3 5	0.068 6.080 0.439	0. 036 0.077 0.012	1.6 1.2 0.93	-0.97 -1.12 -1.21	D D D	18 13 13
35 .	b "P - y "S" (197)											
		4492.31 4482.88 4480.27	27223 27176 27165	49477 45477 49477	5 3 1	3 3 3	0.447 6.30 0.10	0.0811 0.090 0.090	6.00 4.9 1.3	-0. 292 -0.57 -1. 94	B D D	16 10a 13
36.	b ³Р – иг ³D * (1 98)									-		
		4338.80 4345.08	27223 27176	50264 50184	5	75	0.070 0.096	0.028 0.046	2.0 2.0	-0.86	DD	13 18
		4353.94 4368.90	27223 27223	50184 50106	5	5 3	0.13 0.068	0.037 0.010	2.7 0.72	-6.73 -1.30	D D	18 18
37.	z [†] D" - / 'D (201)											
		5243.38 5177.42	27382 27650	464.69 46868	5	3	0.239	0.0542	4.68	-0.567	BD	16 10m
		5192.01 5200.20	27382 27300	46637 46525	5	7	0.14 0.11	0.081 0.073	69 17	-0. 30 -0.66	D D	10m 18
28.	b ¹ G - z ¹ H" (203)											
		5702.30 5628.64	27817 27597	45 349 45 359	11 7	1 3 9	0.0 340 0.0 395	0.0196 0 0241	4.04 8.13	-0.667 -0.772	B B	16 16
.29.	6 °G - у ЧІ°											
		5588.05 5566.55	27817 27704	45707 45663	11	1 3 11	0.0011	6.1(-4) 8.5(-4)	9.12	-2.17	2 D	11
		5548.61 5581.60	27597 27704	45615 45615	7	9	0.0019 0.0019	0.0011 8.9(-4)	0.14 0.15	-2.10 -2.10	D- 2	11 11
L 40 .	b "G - y "P" (204)											
		5442.40	27597	45966	7	5	0.039	0.012	1.6	- 1.06	D	18
141.	6 °G ~ x °G* (206)											
		5193.50	27597	46847	7	7	0.067	0.027	3.2	- 0.72	D	10m

T

I I

.

I.

ŝ,

.

	•								-		
	50	s í í					 				
		(F-2€	•	-	:	\$		
	:	-	-	-							
		c			• • • •		•	. .			
				rr Al'ow	ed transitio	ms Continu					
0.	Multiplet	A A	E	E,	8 8.	A	· •	S S	log gf	Accu-	Sour
		(A)			••••••••••••••••••••••••••••••••••••••	יין אייען) ביגב ה (הוווייה		1.86. 91.) 	ا میں ا میں میں میں میں میں میں میں میں میں میں	racy	•
	-		- *,						•		
12.	6 C - y G		4 . <u>1</u> 9		4 					,	
	(277)		•		1						
		-5496.45	27817	47055	11 11	4.12	53.5-	9.1 5 8 1	- 6.27	D	11
		212200	21391	-610-629		, U.14 	0.000	3 4 7	- 0.48	U	
13.	6 'G - y 'H'					T. (25)		i e i	E.		ı
	12001			-				5	:	,	r.
		- 1 (-)	27597	49288		E TRIE	2 0.005 :		-1.42	D	13
46 . ¹	6 G - 1 F		Ę						1	1	
	(+212)							4 - 1	*	•	1 1
	~	4587 10	2:817	49627	17 9	yant	1 2055	4	- 1.03	D	18
	-	4555.31	27704	19679	· · · · · · · · · · · · · · · · · · ·	0.029	4.90%	.9.95	- 1.26	D	18
45.	39 × # P		ί.	1				-		:	•
٠.	2.4	4301 19	97617 C	51000	11.44	6 %	2.04.78	: : 97	_0.19	n	: 13
÷		4390.52	27785	500 54	9.7	·	0.441	5.2	- 0.43	D	13
		4291.97	27597 77587	2 36830		8.24 #016	2 95-77 2 0 9052	4.7	- 9.48	D	13
	- -		2.431	- George							
16.	y 'P' - e 'D	C		ے آیا ہے۔ سر	, ,		€r a j	-	ļ	•	•
	****			پ ب	4 • `*_ • `*_		6	-	;		1
		6978.46 6979.61	27905		29 H	0.173	0.154 ~	319	0.142	B	16
-		6925.22	27820	1754	7 -7	6.993	0.167	11	-0.33	Ď	18
		66952.40 66952.01	27729	42255	5 5	F.L19	0 3843	9.55	-0.375	B	16
		6883.05	21545	2258	5 -	0 178	0.6760	8.61	- 0.420	B	16
-	in (n				Ş	يو د اسراد د د	5	. :	_		
47.1	(225) (225)			Ĵ					1	1	
		5-17% A1	27,020	117.101		- 0.101	0.0641	6 57	0.422		16
		27 19	27729	466.5		0.0422	0.0248	2.16	-0.907	B	16
-		5364.19	27935	673	<u> </u>	0.4535	0.0226	3.55	- 0.692	B	16
-		5312.88 5312.79	21820	4(5)51 -	\$ 5 5	0.0925	0.0410	3.59	- 0.562	B	16
		5344 77	27820	1450	\$ 7 7 5	0.041	0.012	1.5	- 1.06	D	18
		5340.46	2,729	464.49	[∂], 3 ,	. 9.145	0.0372	3.27	-0,731	В	16
49. :	a 'D - w G	•							1		
÷	(230).		•			1 1 1	ł	1	1		
•		4775 12	256.17	495.33	7 9	0.029	0.013	1.4	- 1.05	D	18
		6797.6H	20007	49520	5.7	0.013	0.0063	0.50	- 1.50	D	13
49	a D - 1 F				1	1			ĺ	ļ	
	(23!)	:					1	1			
. !		4764.28	244.57	49621	7 9	0.17	0.075	8.2	- 0.28	D	18
		4767.86	2422	49650	5 7	0.12	0.059	4.6	- 0.53	D	18
+		4757 -4	206.2	49650	. 7 . 7	0.061	0017	1 19	1 . 0 97	1 D	1 1 2

÷

.

. .

(n

.

`.

.

I.

Т

T

No.	Multiplet	λ (Å)	E , (cm ⁻¹)	E , (cm ⁻¹)	8.	84	A⊾ (10° s⁻¹)	ſ.	S (m. u.)	log d	Асси- гису	Source
150.	a 3D - w 3D*											
	(233)											
		4622.47 4665.90	29637 29679	50264 50106	73	7	0.41 0.30	0.13 0.056	14 4.5	-0.04 -0.53	D D	18 1 3
		4639.70	28637	50184	7	5	0.077	0.018	1.9	-0.91	D	13
151.	a ™ - #**											
		4490.36	28637	50950	7	7	0.035	0.011	1.1	-1.13	D	13
152.	e ™- = *								Ì			
	(234)											
		4413.86 4443.72	28637 28679	51 28 7 51177	7	5 1	0.27 0.45	0.057 0.044	5.8 1.9	-0.40	D D	18 13
		4422.70 4429.93	28682 28679	51 287 51 24 7	5	5	0.27 0.24	0.075	5.8	-0.40	D	13
153	- 12" - 40					-						-
	(237)											
		5261.76	29825	48825	7	9	0.13	9.569	8.4	-0.22	D	104
154.	ε ⁵ ₽° - f ⁵ D											
	(239)										ļ	
		5694.72 5642.40	31106 31105	48662 48625	9 9	7	0.14 0.034	0.054 0.016	9.2 2.7	0.31	DD	18 18
		5649.38 5648.25	30965 30859	48862 48558	7	7	0.851	0.024	8.2 1.9	-0.77	D	18
155	• '8" - e ¹ 8											-
	(240)											
		4275.98	31280	54660	11	11	0.22	0.060	9.3	-0.18	D	13
156.	δ ³ D - ω ³ P* (250)											
1		4944.57	31028	51247	Ę		0.13	0.029	2.4	-0.84	D	18
		4966.80	31049	51177	3	1	0.30	0.087	1.8	-0.95	D	18
157.	a 7 - y T (244)											
		4625.91 4641.96	31049 21055	52661 52582	13	18	0.12	0.055	7.5	-9.\$1	D	18
154	a 1 - 10-					[
		1614 51	91055	60700			0.077					
	-	4014.91	51000	3E (20		,	9.087	0.010	2.9	-0.79		1
1 59 .	a "1 - 1 "H" (246)											
		4578.33	31049	52885	13	11	0.040	0.011	2.1	-0.86	D	18
	1	4563.24	31065	52963	11	•	0.10	0.026	4.3	-0.54	D	18

1 1

1

T

I.

1 1 1 1

~

Cr E Allowed transitions --- Continued

						_						
No.	Multiplet	۵ (آم)	£ (cm ⁻¹)	E, (cm ⁻¹)	8	ł	AL (10° s 1)	f.	S (at. u.)	log gf	Accu- racy	Source
160.	• 1 - + G										•	
		4370.87	31055	53926	n	9	0.050	0.012	1.9	- 11.89	D	13
1 6 1.	e 1 - z K (217)											
		/962.15	11049	54,008	15	37	0.64	0.90	19	0.07	_	i 19
		4280.42	31049	54405	13	15	0.47	0.15	27	0.29	D	10a
		4297.75	31055	54317	11	13	0.49	0.16	25	0.25	D	10m
		4296.63	31049	54317	13	13	0.028	0.0077	1.4	- 1.00	D	13
162	e ግ - x ግ (251)											
												1
		4039.10	31048	55799	15	15	0.67	0.16	33	0.39	B	17
	; i	4048.78	31049	55696	13	13	0.64	0.16	Z/ 24	0.31		17
		4057.83	31049	55686	13	iii	0.0072	0.0015	0.25	-1.71	D	in
		4039.29	31049	557 99	13	15	0.060	0.017	29	0.66	D	17
1		4049.78	31055	55741	11	13	0.056	0.016	2.4	-0.75	D	1?
1 63 .	a 'F - 2 'G'		1 1			1						
		8916.24	31393	42606	11	13	0.0025	0.0035	1.1	-1.41	D	17
		8939.21	31355	42539	5	7	9.9(-4)	0.0017	0.24	-2.08	D	17
		8955.76	31352	42515	3	5	0.0020	0.0040	0.35	- 1.92	D	17
164.	a F - s D (257)		· · ·		•	• • •	•	4 1 2 2 4 4 5	• • •			
:		4490.55	31378	53641	9	1	0.39	0. 09 2	12	- 0.08	D	13
165.	a T - v G* (268)						2 4 -		9 7 8 1			
		4001.44	31378	56362	9	11	0.68	0.20	24	0.26	D	10n
166 .	a "I - z "K"	4370.76	32097	54970	13	15	0.025	0.0083	1.5	- 0.97	D	13
167 .	a 11 - (14							1	1	-	4 2	-
		4268.79	32097	55517	13	13	0.17	0.046	8.5	- 0.22	D	13
1 6 9.	a 'I - u 'H' (272)				- - 	- - - -	-					
		4204 48	32097	55875	13	11	0.31	0.070	13	- 0.04	D	18
169.	6 17 - y G*							1		i.	•	1
	-	9190 50	641 · • ·				A AAAA					-
		4140.56	43113	47055	У	11	U.UU25	0.0024	0.50	. - 1.67	Ľ	
170	8 ₽ - v G				:					* • •	1	÷ •
		4819.30	33061	53805	7	7	0.13	0.045	5.0	- 0.50	D	13
171	6 'F - e 'H'				1					: -		1
		4582.40	33113	. 4930	. 9	11	0.032	0.012	1.7) — () "dó	D	13

1 1 1 1 i L

L

•

Cr E Allowed transitions -- Continued

No.	Multiplet	, L	E , (cm ⁻¹)	E _t (cm ⁻¹)	£	8	An (10 ⁶ s ^{- 1})	f.,	S (at. =.)	log of	Асси- гису	Source
172.	6 T - v T (275)											
		4524.84 4553.95	33113 33040	55297 54993	9 5	9	0.11 0.12	0.054 0.057	4.5 2.8	-0.52 -0.73	D D	13 13
173.	8 ₽ - t G (279)											
		4065.71	33113	57702	9	11	9.35	0.11	13	-0.92	D	18
174.	5 °P - # °P* (280)											
		4495.28	33113	55353	9	7	9.20	0.947	6.3	-9.37	D	13
175.	z *D* - f *D (28£)											
		6661.10 6669.27	339°6 336	48825 48662	9 7	9 7	0.11 0.059	0.072 0.0 39	14 6.0	-0.19 -0.56	D D	18 18
176.	z "D" - e"F (283)											
		4796.15	33816	54660	9	11	0.13	0.055	7.8	-0.31	D	13
177.	z "P" – e "D (290)											
		4757.31 4743.12	34190 32897	55205 54975	5 3	7 5	0.12 0.080	0.057 0.045	4.5 2.1	-0.55 -0.87	D D	13 13
178.	δ 'I − 'K'											
		4752.07	33763	54800	13	13	0.62	0.21	42	0.44	D	13
179.	6 ¹ 1 - (*)*	4595.60	33763	56517	13	13	0.47	0.15	30	0.29	D	10n
180.	5 'I - x 'I'											
		4548.65	33763	55741	13	13	0.028	0.0086	1.7	- 0.95	E	17
181.	b'I − (**	a monta tra						1				2
		4514.26	33763	55908	13	13	0.11	0.034	6.5	- 0.26	D	13
182.	6 'I - y 'H'	4506.84	33763	56945	13	11	0.27	0. 069	13	- 0.05	D	10n
183.	c 'D - v 'P"	1		1			2					
	é 1	4699 .59 4 741.09	23935 33907	55207 54993	7 3	9 5	0.13 0.22	0.055 0.12	6.0 5.8	- 0.41 - 0.43	D D	13 13
184.	с °D - и °Р*	1 - -		•			: ; ;					
		4641.49	33935	55474	7	5	0.038	0.0088	0.94	- 1.21	D	13
185.	c ²D - ('₱		4		1	•			•		}	
		4337.25	33936	5 6996	5	7	0.20	0.079	5.6	0.40	D	13

I I .

.

.

Cr I: Allowed transitions - Continued

io.	Multiplet	λ (Å)	E. (cm ¹)	E . (cm ⁻)	8.	8 4	A⊾ (10° s ⁻)	· f.	S (ant_u_)	log gf	Accu- racy	Source
86.	с D - и Р										••••••	1
		4317.91 4309.73	33935 33936	57 06 8 571 33	7 5	5 3	0.11 0.17	0.022 0.028	2.2 2.0	- 0.81 - 0.85	D D	13 13
87.	c Ɗ - (**											•
		4283.00	31935	57276	7	7	0.088	0.024	2.4	-0.77	D	13
38 .	c 'D - t 'G' (294)										*	
		4232.23	33936	57557	5	7	0.17	0.064	4.5	-0.50	D	13
R9 .	6 H - 1 T								1 8 8 9 9		1	
		5032.54 5034.65	35 934 35884	557 99 55741	13	15 13	0. 020 0.017	0.0068	1.9	-0.94	E	17
		5045.04	35871	55686	3	11	0.018	0.0064	1.3	- 1.12	D	11
90	6 'H - t 'G' (303)									4 - - -		
		4592 .55	35934	57702	13	11	0.13	0.035	6.8	-0.34	D	: 13
91.	b 'H - (**								1			
		4606.36	35684	57587	11	9	0.12	0.031	5.2	- 0.46	D	13
972	6 'H - r 'H" (304)										4	
		4376 80 4373 65	35934	5K775 5K779	13	13	0.32	0.092	17	0.08	D	13
1 3.	ь Н - и Т (305)				5	5	0.26	0,000		- 0.14	U	14
		4165 52	35484	59NH4	11	13	075	0.23	35	0.40	D	10 4
94.	d 'F - 1 Tr											
		4838.42	36559	57221	5	5,	0 11	0,039	31	- 0.71	D	13
95	d 'F - (**											
		4823 90	36552	57276	7	7	0.12	0.042	4.7	0.53	D	13
96	d 'F - (**											
		4516-13	36578	57335	9	9	9.1N	0 061	87	- 0.26	D	IN.
17	d 'F - (**											
		4510-02	36559	58725	5	3	0 0041	756 4)	0.056	2 43	E	13
94	с 'G - х 'Г											
		4307.67	37234	60441	11	13	0.082	0 027	4.2	- 0.53	D	13
99	r 46 - 1 TP								1		:	8 6 8
:		4302 78	37234	6046M	11	11	0.25	0.069	1 1 11	0.12	n	17

I I I

I

Crt	Allowed	transtions	— Continued
-----	---------	------------	-------------

No.	Multiplet	د دلم	E , (cm ⁻¹)	E. (cm ⁻¹)	E.	B	A⊾ (1€° ∂ ^{−1})	1.	S (at. u.)	log d	Accu- recy	Source
200.	c*G - #*G*											
		4298.05 4296.11	37244 37234	60504 60504	9 11	9 9	0.25 0.089	0.472 9.920	9.2 3.1	-0.19 -0.65	D D	13 13
201.	e 'S - x 'S' (310)	4503.94	37883	60084	5	3	0.083	0.015	1.1	-1.12	D	13
202.	a 'H - (*)*											
		4656.82	38538	60005	11	11	0.11	0.935	6.0	-0.41	D	13
203.	α 'H - x 'T'	4564.17	38538	6941	11	13	0.51	0.19	31	0.32	D	18
201.	a 'H - (")*											
		4413.00	38538	61192	11	13	0.097	0.833	5.3	-0.43	D	13
206.	z 41° - e 41											
		4432.77	42387	64540	15	15	0.49	0.14	32	0.34	D	13

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied. "The term designation for the level in question was not provided by Sugar and Corlins in their energy level compilation (J. Phys. Chem. Ref. Data 14, Suppl. 2 (1905)), so we have accordingly omitted it from this work.

Cr II

V Isoelectronic Sequence

Ground State: 1s²2s²2p³3s²3p³d⁵ *S_{1/2}

Ionization Energy: 16.4858 eV = 132966 cm⁻⁺

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength $(\hat{\lambda})$	No.	Wavelength (Å)	No.
2653.57	3	2867.09	6	3126.68	5	4848.24	16
2658.59	1	2967.65	1	4054.10	8	4856.18	16
2666.02	4	2870.43	6	4087.60	8	4876.41	16
2668.71	4	2873.81	6	4113.24	7	4884.56	16
2671.80	4	2878.45	1	4539.61	19	5097.33	10
2672.83	3	2880.85	6	4555.01	21	5237.35	20
2740.09	2	2808.53	18	4558.66	21	5246.76	9
2744.97	12	2921.81	18	4565.77	19	5249.43	9
2787.61	12	2930.83	11	4587.20	21	5279.88	20
2822.28	14	2935.12	11	4568.22	21	5905.88	10
2835.63	1	2963.34	11	4589.89	21	5908.46	20
2840.01	14	2966.03	17	4592.07	21	5810.73	20
2843.24	1	2971.90	18	4616.64	21	5\$13.61	20
2849.83	1	2979.73	13	4618.82	21	5746.12	10
2851.25	14	2965.32	13	4684.10	21	5369.36	15
2856.77	6	2969.18	13	4697.61	26	5420.91	9
2857.40	6	\$118.64	5	4715.12	25	5502.07	22
2860.92	1	3120.36	5	4812.24	16	5508.63	22
2862.57	1	3122.59	23	4824.12	16	6053.48	24
2866.72	1	3128.69	5	4836.22	16	6129.23	24

For this spectrum, we have chosen the experiments by Musielok and Wujec¹ and by Wujec and Weniger,² who measured relative oscillator strengths in emission with similar wall-stabilized arc sources. To obtain an absolute scale, Musielok and Wujec normalized their data to beam-foil lifetimes measured by Engman *et al.*³ Wujec and Weniger, in turn, normalized their data directly to the *f*-value of the 4242.36 Å line tabulated in Ref. 1. In both experiments, a photographic detection system was employed, and a low-current carbon arc served as the absolute radiation standard.

Another data source which we utilized in this compilation is the work f Kostyk and Orlova.⁴ These authors derived log gf-values from solar spectra by using equivalent widths taken from the Liege solar atlas.⁴ In the case of Fe 1, Kostyk and co-workers⁶ used a similar approach in deriving f-values, which are of approximately 50 percent accuracy. We feel that the data of Ref. 4 tabulated here are of similar accuracy.

For the evaluation of these data sources, we found very few cases of overlap, so that no significant direct comparisons were possible. Refs. 1 and 2 overlap only for the 4242.36 Å line, where the log gf-value of Ref. 2 was made to agree with that of Ref. 1. Thus, to obtain some indication of systematic errors or scatter for these data sources, we compared the experimental data to the comprehensive semiempirical calculations of Kurucz and Peytremann.⁵ We had found earlier that for many neutral and singly-ionized members of the iron-group elements,⁶ the f-values of Ref. 5 compare reasonably well with more reliable data sources. While these calculated data show considerable scatter in comparison to experiment, the f-values of Ref. 5 appear to be generally devoid of gross systematic errors in the absolute scale. If the weaker lines and the intercombination lines are excluded, the majority of the data of Ref. 5 is generally accurate within a factor of two.

By comparing various experimental data to the calculations of Kurucz and Peytremann for Cr II, we found indications of systematic deviations and/or errors in absolute scale in the experimental results. For example, the data of Ref. 1 exhibit a pronounced wavelength dependence. The authors indeed suggest that there may be problems with their standard source in certain spectral regions. The f-values of Ref. 2 show a similar (though not as pronounced) dependence—the log gf-values of near uv lines are too strong. On the basis of these com-

1

parisons, we have limited the tabulation of data from Ref. 1 to lines having wavelengths shorter than 3150 Å and upper energy levels less than 67000 cm^{-1} .

Wujec and Weniger² normalized their data to the 4242.36 Å line of Ref. 1, which appears to be an inappropriate choice, since this wavelength falls in the region strongly affected by calibration problems with the carbon arc, due to molecular-band emission. Additional errors in the work of Wujec and Weniger may have occurred because of inconsistencies in the temperature measurement (discussed by us in the Cr 1 introduction). On the basis of a comparison with Ref. 5, we have shifted all log gf-values of Ref. 2 downward by 0.84 dex and have omitted all lines having wavelengths less than 4500 Å.

A comparison of Refs. 4 and 5 reveals considerable scatter, as well as a shift in scale — the log gf-values of Kostyk and Orlova are, on the average, about 50 percent higher than those of Kurucz and Peytremann. This comparison, however, deals only with the weak lines (log gf < -1.00), where the data of Ref. 5 are known to be less accurate. Therefore, we have tabulated the data of Kostyk and Orlova without renormalization.

Another reference which we originally considered for this spectrum is the paper by Goly and Weniger.⁷ These authors measured *f*-values for over one hundred lines in the 2413 - 2718 Å region by using a wall-stabilized arc. Our graphical comparisons indicate that these data exhibit pronounced scatter, as well as a substantial deviation in absolute scale. Therefore, they have not been included in this compilation.

References

- ¹J. Musielok and T. Wujec, Astron. Astrophys., Suppl. Ser. 36, 119 (1979).
- ²T. Wujec and S. Weniger, J. Quant. Spectrosc. Radiat. Transfer 25, 167 (1981).
- ¹B. Engman, A. Gaupp, L. J. Curus, and I. Martinson, Phys. Sci. 12, 220 (1975).
- R. J. Kostyk and T. V. Orlova, Astrometriya Astrofiz. 49, 39 (1983).
- ¹R. L. Kurucz and E. Peytremann, Smithsonian Astrophysical Observatory Special Report 362 (1975).
- *S. M. Younger, J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 7, 495 (1978).
- A. Goly and S. Weniger, J. Quant. Spectrosc. Radiat. Transfer 24, 335 (1980).
- *L. Delbouille, L. Neven, and C. Roland, "Photometric Atlas of the Solar Spectrum from 3000 to 30,000 Å," (Institut d'Astrophysique de l'Université de Liege, Observatoire Royal de Belgique, 1973).
- *E. A. Gurtovenko and R. I. Kostyk, Astron. Astrophys., Suppl. Ser. 47, 195 (1982).

Cr II: Allowed transitions

No.	Multiplet	× د	E , (cm ⁻¹)	E ₄ (cm ⁻¹)	8.	•	A ₄₀ (10 ⁴ s ⁻¹)	f.	S (act. vs.)	log gf	Асси- тасу	Source
1.	a "D - z "F" (uv 5)											
		2835.63	12497	(1152	10	12	2.0	0.29	27	0.46	C	3
		2849.83	12148	47228	6	8	0.92	0.15	8.4	-0.05	D	i
		2960.92 2962.57	11962 12304	46906 47228	28	4	0.69 0.63	0.17 0.077	82 58	-0.47 -0.21	D	
		2966.72	12033	46906	4	4	1.2	0.15	5.6	-0.23	D	1
		2867.65 2878.45	11962 12497	46624 47228	2 10	2 8	1.1 9.974	0.14 0.0074	2.6 9.79	-0.57	D D	
2	e D-2 P											
	(uv 6)											
		2740.09	12148	48632	6	8	0.11	0.017	0.89	-1.60	D -	1
8.	e D - 2 P											
	(200)	-	19904	187.04			A 66	0.044	• 1	0.45		
		2672.83 2653.57	12033	49706	4	6	0.35	0.056	1.9	-0.65	D	li
4.	a D - 2 D											
	(uv 8)											
		2671.90	12148	49565	6	4	1.0	0.071	3.8	-0.87	D	1
		2666.02	12148	49646	6	8	0.59	0.064	4.4	-0.30	D	1
		2658.59	11 962	49565	2	4	0.58	0.12	2.2	0.61	D	1
5.	a D - z T (5)									ł	ļ	
		3120 36	19621	51670			1.5	0.55	12	0.12	р	
		3118.64	19528	51584	2	4	1.7	0.50	10	-0.00	D	i
		3136.68 3128.69	19796 19631	51670 51584	6	6	0. 64 0.81	0.094	5.8 4.9	-0.25 -0.32	D D	1
6.	a 'D - 2 'D'											
	(uv 11)											
		2870.43	19798	54626	6	6	13	0.16	9.1	- 0.02	D	1
		2880.86	19796	54500	6	4	0.79	0.066	8,7	-0.27	D	li
		2878.81	19631	54418	4	2	0.88	0.054	2.1	-0.66	D	1
		2856.77	19798 19681	54626	4	6	0.48	0.079	2.6 3.0	-0.50	D	1
7.	6 D - 2 P											ļ
	(18)										Ì	
		4118.24	25047	49706	6	6	0.0012	8.0(4)	0.025	-2.74	D	4
8 .	6 °D - z °D* (19)											
		4054.10	25047	4935.2	6	6	0.0017	4.2(-4)	0.034	- 2.59	D	4
		4087.60	25086	49493	2	2	0.0012	8.0(-4)	0.0061	- 8.22	D	4

•

I

I I

•

-

1 1

Cr II: Allowed transitions -- Continued

No.	Multiplet	λ (Å)	<i>E</i> , (cm ⁻¹)	E ₆ (cm ⁻¹)	8.	81	A _h (10 ^e s ⁻¹)	ſ.	S (ant_u.)	log gf	Accu- racy	Source
9.	6 P - 2 P				: :					1 * *		
	1231				- 1							
		5420.91	30306	48750	. 4	2	0.0050	0.0011	0.78	-2.36	D	4
		5249.43	30308	49706	4	6	9.7(-4)	6.0(-4)	Ú.041	-2.62	D	4
		5246.76	29952	49006	Z	· 4 ·	0.0021	0.0018	0.061	-245	U	4
10.	6 P - 2 D (24)					 						
		5097 33	29952	49565	9	· .	0.0015	0.0011	0.038	-264	n	4
		5305.86	20865	49352	6	6	0.0033	0.0014	0.15	-2.08	D	4
		5346.12	30865	49565	6	4	0.0013	3.7(-4)	0.039	- 2.65	D	4
11.	6 'P - y 'D'											-
	(BA 22)					[1		
		2025.12	30865	64924	6	: 8.	1.8	0.31	18	0.27	D	1
		243).83	29952	64062	2	· •	1.1	0.28	5.5	-0.25	D	1
		2953.34	29952	63802	2	2	1.8	0.24	4.6	-0.33	D	1
12.	6 'P - y 'P' (uv 58)											
									1		:	1
		2757.61	30865	66727	6	6	1.5	0.17	9.6	0.02	D	1
		2144.91	353.5UM	667Z7	4	0	0.85	U.14	5.2	- 0.24	: U	1
13.	a 'H - z 'H' (uv 80)								• •			
		2971.90	30392	64031	14	14	2.0	0.26	36	0.57	D	² 1
		2979.73	30299	63849	12	12	1.8	0.24	28	0.46	D	1
		2945.32	30219	63707	10	10	2.2	0.29	29	0.47	D	1
		2989.1 8	30157	63601	8	н	2.2	0.29	23	0.37	D	1
14.	a 44 - z 47 (uv 82)					:			1 -	 	-	
		0000.00	20202	CEULO		10		0.01		0.54		
		2540.01	30392	65420	14	10	2.3	0.31	· 41 · 37	0.59	D D	: 3 : 1
		2851.35	30157	65218	н	10	2.2	0.34	25	0.43	D	Ī
15.	a 'F - z 'D' (29)					!					2 4 4	
;		5369.36	31219	49838	10	10	3.21 - 41	1.4(4)	U.024	- 2.86	D	4
16.	a 'F - z 'F'		,		t			·				
	19 4 11								1			
		4824 12	31219	51943	: 10	10	0.017	0.0060	0.96	- 1.22	D	2 n
		4848.24	31169	51789	: 8	8	0.026	0.0091	1.2	- 1.14	D	4
		41776.41 Anna 54	31169	51670	· #	6	0.016	0.0043	0.56	- 1.46	D	4
		4812.34	31160	01064 51942	. 9.	4	0.0008	0.0014	0.13	- 2.UR	ם ו	14
	;	4836.22	31118	51789	6	8	0.0020	9.4(4)	0.090	2.25	D	2.
		4856 18	31082	51670	4	6	0.0026	0.0014	0.088	2 26	- n	4

t. L

				_								
No.	Multipiet	k (k)	E , (can ⁻¹)	E _t (cm ⁻¹)	6	8	A _k (10 ⁶ s ⁻¹)	f.	S (at. u.)	log af	Ассы- гасу	Source
17.	6 T - y D (uv 94)											
18.	s *F - z *G* (uv \$5)	2966.43	31219	64924	10	8	0.54	0.057	5.6	-0.24	D	1
		2898.53 2921.81	31219 31169	65170 65384	10 8	12 10	1.2 0.99	0.18 0.14	17 11	0.26 0.06	D D	1 1
19.	6 ³ T − z ⁴ D* (36)	4530.61	12604	54626	6	6	9.0016	4.9(-4)	0.011	-2.58	D	24
29.	b T - z T (43)	4565.77	12664	54588	•	4	0.0062	0.0013	0.12	-2.11	D	24
		5237.35 5313.61 5279.88 5308.46 5310.73	32864 32866 32864 32837 32845	51943 51679 51789 51679 51679	20 6 10 8 4	10 6 8 6 6	0.017 0.0028 0.0024 0.0051 0.0021	0.0057 0.0037 7.9(-4) 0.0019 0.0013	1.2 0.30 0.14 0.27 0.002	-1.16 -1.65 -2.10 -1.81 2.28	D D D D D	6 6 6 6
21	6 *? - x *D* (44)										-	
		4558.05 4588.22 4618.82 4634.10 4555.01 4582.07 4616.64 4560.30	22854 22857 22855 22845 22845 22845 22845 22845 22845	54785 54628 54500 54418 54785 54626 54500 54625	10 8 4 8 6 4 4 4	8 6 2 8 6 4 6	0.668 0.12 0.001 0.000 0.017 0.002 0.000 0.0012	0.022 0.029 0.013 0.014 0.0052 0.010 0.013 5.5(-4)	2.3 3.5 1.2 0.55 0.51 0.75 0.023	-0.65 -0.63 -1.11 -1.24 -1.25 -1.25 -1.29 -2.05	D D D D D D D D D	2n 6 2n 2 2 1 6 6 6 6 2 1
22	6 "G - x " T " (50)											
23 .	6 °G - z °G' (54)	9602.07 5598.68	77619 33521	517780 51679	8	6	0.0028 0.0028	0. 9010 9.7(-4)	0.19 0.14	-1.90 -2.11	D	•
24.	c*D - z*D	\$122.50	23694	6 5710	12	12	0.44	0.064	7.9	-0.11	ם	1
	(1 05)	6063 .48 6129.23	38270 35315	54785 54825	86	8	0.0016 0.0011	8.6(-4) 6.1(-4)	0.14 0.073	-2.16 -2.44	D D	4
25.	¢ ¹ D - ካም	4 715.12	45870	66872	•	2	0.0073	0.0012	0.076	- 2.31	D	24

Cr II: Allowed transitions -- Continued

No.	Multiplet	λ (Å)	E, (cm ⁻¹)	E , (cm ⁻¹)	8.	8	A <u>k</u> (10° s ⁻¹)	f.	S (at. u.)	log af	Асси- гасу	Source
25.	c Ɗ - y ሞ											
		4697.61	45731	67012	6	6	0.0066	0.0022	0.29	- 1.88	D	2 .
21.	d ² G − x ² P				1	•		•			•	, , ,
		4587.30	52321	74114	10	8	0.0089	0.0022	0.34	- 1.65	D	2a

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Crn

Forbidden Transitions

For this spectrum, we selected the work of Nussbaumer and Swings,¹ who calculated numerous M1 and E2 transition probabilities. They derived their radial wavefunctions by using a central potential which was adjusted to give the optimum fit to observed energy levels. Their calculation included spin-orbit interaction but neglected the effects of configuration interaction. Because of the strong likelihood of configuration interaction, we have tabulated only the E2 transitions of the $a \, {}^{\circ}S - a \, {}^{\circ}D$ multiplet. These lines have been observed in stellar spectra.

Another data source for lines in the a ⁶S – a ⁶D multiplet is that of Garstang.² His calculated A-values are approximately 15 percent less than those of Nussbaumer and Swings, because different radial wavefunctions were used. The data tabulated here are estimated to be accurvie to within a factor of two.

References

¹H. Nussbaumer and J. P. Swings, Astrophys. J. 162, 589 (1970). ²R. H. Garstang, J. Res. Nat. Bur. Stand., Sect. A 68, 61 (1964).

No.	Multiplet	λ (Å)	<i>E</i> , (cm ⁻¹)	E . (cm ⁻¹)	g.	8,	Type of transition	. Ан (в ^{. 1})	S (at. u.)	Асси- гасу	Source
1.	a "S - a "D					,			• •	1	
	(1 F)							1		:	
		[8000.1]	0	12496	6	16	E 2	0.10	20	E	1
		[8125.3]	0	12304	6	8	E 2	0.094	16	E	1
		[8229.7]	0	12148	6	6	E2	0.068	12	E	1
		[8308.5]	0	12033	6	4	E2	0.084	7.9	E	, 1
		[8357.6]	0	11962	6	2	E2	0.082	4.0	E	1

Cr n. Forbidden transitions

Sc Isoelectronic Sequence

Ground State: 1s2s293s393d3 F12

Ionization Energy: $49.16 \text{ eV} = 396500 \text{ cm}^{-1}$

Forbidden Transitions

		1					
Wavelength (Å)	Ne.	Wavelength (Å)	Ne.	Wavelength (Å)	Ne.	Wavelength (Å)	No.
		79675.1					
1001.(10				
1867.9		274.5	10			1000.0	
1994	1	2003	10	SELA	4	1000.0	
	1	2306.Z	16	3576.6		1418.9	
1991.6	7	2331.5		5627.5	21	7518.Z	
1997.7	7	3076.7	15	6612.0	15	7664.7	19
1921.9	7	3078.1	18	6648.8	15	16142	
2567.8	10		18	6696.4	15	16180	
2565.6	10	3994.9	18	6731.9	3	16625	11
2568.8	10	3133.0	20	6747.5	3	16891	11
2576.6	10	4837.6	5	6896.0	3	17649	11
2585.1	10	4841.9	5	6915.2	3	18307	8
2506.3	10	6883.9	5	7023.1	2	18684	8
2624.6	13	4897.3	5	7061.5	2	18899	8
2636.2	13	4971.5	5	7006.2	3	26127	8
2669.6	13	5125.9	12	7110.5	2	81537	14
2882.9	6	5142.8	4	7171.6	2	82513	14
2912.9	6	5177.0	12	7184.1	2	88456	14
2929 4	i i	5206.3		7189 2	17	254344	1 1
7940 1	i i	5' 19 2	12	71667	17	313466	1 1
9957 8		5079 8	12	7992 6			1 .

Lint	đ	teteletet	lines.

For this spectrum, we have chosen the work of Pasternack,¹ who calculated M1 and E2 transition probabilities within the $3d^3$ configuration by using the central-field approximation without consideration of configuration interaction. However, the $3d^3$ configuration is well-separated from the next configuration— $3d^24s$. For electric quadrupole transitions, we modified the data of Ref. 1 by applying correction factors suggested by Garstang.³ These factors were introduced because of the availability of better wavefunctions. In the case of Fe vI, which is isoelectronic to Cr IV, we compared the A-values of Ref. 1 to those of Nussbaumer and Storey,³ who could utilize, in their much later work, modern theoretical and computational techniques. The agreement between Refs. 1 and 3 is surprisingly good—generally within 50 percent—even for the E2 transitions (after undergoing Garstang's correction). Weak lines are subject to greater uncertainties, so we have omitted lines having A-values less than 0.001 s⁻¹.

References

¹S. Pasterasck, Astrophys. J. 92, 129 (1940).

- ⁷R. H. Garntang, J. Res. Not. Bur. Stand., Soct. A 68, 61 (1964).
- ¹H. Numbrumer and P. J. Storey, Astron. Astrophys. 70, 37 (1978).

Cr IV: Forbidden transitions

No.	Transition Array	Multiplet	ک (آم)	E, (CRR ¹)	E. (cm ⁻¹)	£.	8.	Type of transition	AL (s ⁻¹)	S (at. u.)	Асси- гасу	Source
1.	3d'-3d'	ቸ - ቸ				: : :		1 1 2 2 2				
			[256900] [313400]	556.4 237.4	945.5 556.4	8 6	10 8	M1 M1	0.0017 0.0014	11 1 3	C C	1
2.		ቹ - ዋ (IF)		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
			[7390.8]	945.5	14472	10	6	E2	0 835	2.8	E	la
			[7339.5]	556.4	14178	8	4	E2	9.625	1.3	E	la
			[7 232.6] [7194.1]	Z37.4	14060	6	Z	12 12	0.022	0.52	F	
			[7171.6]	237.4	14178	6	4	EZ	0.020	0.50	E	la
			[7110.5]	0.0	14060	4	2	E2	0.035	0.76	E	1a
			[7023.1] [7051.5]	237.4 0.0	14672 14178	6 4	6	E2 E2	0.0073	0.20 0.30	E E	la la
3.		₩F - →G (2F)				-	-					
			(6915.2)	945.5	15402	10	10	MI	0.093	0.011	E	1
	•		[6896.0]	\$56.4	15054	8	•	M 1	0.035	0.0034	E	1
			[7096.2]	945.5	15054	10	8	M1	0.0023	2.4(-4)	E	1
			[6734.0] (6747.5)	506.4 737 A	15402	- 8 - 6	- 10 8	MLI MI	0.035	0.0041	E	1
			[0141.0]	201.4	1					0.0020		•
4.		'F - 'P (3F)							•	ξ		
			[5294.3]	556.4	19439	8	4	E2	0.0011	0.011	E	la
			[5206.3]	237.4	19439	6	4	M1	0.055	0.0012	E	1
			[5142.8]	0.0	19439	- 4	4	DE I	0.034	6.9(4)	E	1
5.		'F - 'D2 (4F)				•		: :				
			[4971.5]	556.4	20666	8	6	MI	0.16	0.0044	E	1
			(4897.3)	237.4	20651	6	4	MI	0 13	0.0023	E	1
			[4993.9]	237.4	20666	6	6	M1	0.020	5.21 - 4)	E	1
			[484].0] [487.6]	0.0 0.0	2065) 20666	4	4	M1 M1	0.071	0.0012	E	: 1 . 1
6		۰ F - 4 F	14000 (IS	0.0	2 17 1 161	•	U	246 J	0.0014	1.m - 47	; E	•
		•••									ł	
			[2991 .5]	945.5	34364	10	4	MI	0.034	2.7(- 4)	D	1
			[2940 3]	556 A	34557	10	8 6	EZ MI		0.0013	E	18
			(2957.0)	556.4	34364	Я	. 8	- M1	0.0034	2.64 - 5)	D	1
			[2912.9]	237.4	34557	6	6	MI	0.0046	2.5(-5)	D	1
			(2929.4)	237 4	34364	6	8	M 1	0.013	9.7(- 5)	D	1
			(2992.9)	.00	34557	4	6	· M1	0.031	1.7(-4)	D	1
						•	, 1	5.4	0.0011	- 10.01 - 91	E	1/1
7.		'F - 'Dl						1		1	1	
			[1921 9]	945.5	52976	10	6	E2	0.017	0.0016	E	1n
*			[1901.6]	556-4	53144	, N	4	F2	0.0079	2.31 - 4)	E	1.4
			[1907 7]	556.4	52976	· #	i 6	: <u>M1</u> : Po	0.047	6.6(-5)	E	1
			(1890-11	227 4	53144	6	: P 4		0.048		E	1
			[1896.1]	237.4	52976	6	6	MI	0.0046	7.01 - 61	R	1
			[1881.7]	0.0	53144	4	4	M 1	0.025	2.5(- 5)	E	1
			·	•		. 4	4	F 2	0.0013	7.3(5)	E	In
			[1887.6]	0.0	52376	- 4	6	MI	0.0014	2.4(- 6)	, K	1

Cr IV: Forbidden transitions - Continued

No.	Transition Array	Multiplet	à	E , (cm ⁻¹)	E. (cm ⁻¹)	8.	8	Type of transition	A⊾ (s ^{∼t})	S (mt. u.)	Асса- тасу	Source
8.		ዋ - ዋ										
		•	(20127) (18999)	14472 14178	19439 19439	6	4	MI Mi	0.020 0.028	0.624 0.628	D D	1
		;	[18307] [18584]	14960 14860	19521 19435	2 2	2	Mi Mi	0.952 0.013	0.024 0.012	D D	1
9.		'P - *D2	2 F								_	
			[16142] [16180]	14472 14472	20666 20651	6	6	M1 M1	0.0077 0.018	0.0072	E E	1
10.		"P - "DI	4			ł				F 1		
		5 • •	[2596 .3] [2565 .6]	14472 14178	52976 53144	6	6	M1 M1	0.23 0.089	9.(t 4) 2.21 4)	E	1
			[2585.1]	14472	53144	6	4	MI	0.022	5.61-51	E	1
i i			[2576.6]	14178	52976	4	6	MI E2	0 041 0.025	1.6(-4) 0.011	E	l La
4			[2557.8]	14069	53144	2	4	MI	0.023	5.7(-5)	E	1
			[2568.8]	14060	52976	2	6	E2 E2	0.0032	9 51 4)	E	la la
11.		²G - ᢪH	1 1 1			1	1		2 1 7 2			
			[16891]	15402	21321	10	12	MI	0.016	0.034	E	1
			[16625] [17649]	15664 15402	21067 21067	10	10	MI MI	0.016	0.027 0.061	E	1
12 . ·		'G - ጥ			1 1 1 1 1 1							
:		1	[5219.3]	15402	34557	10	6	£ 2	0.0012	0.017	E	la
			[5272.3]	15402	34354	10	8	M1 E2	0.019 0.088	8.7(s) 1.7	E E]]a
		1	[5125.9]	15054	34557	8	6	MI	0.022	6.6/-4)	E	1
			[5177.0]	15054	34364	8	6 8 8	E2 MI E2	0.098 0.041 0.0985	1.2 0.0017 0.15	E E	1a 1 1a
13.		² G - ² D!			:	÷						
-			10000 01					-				
			{2660.6} [2624.6] [2536.2]	15402 15054 15054	52976 53144 52976	10 8 8	6 4 6	12 F2 22	8.2 9.4 0.71	3.9 2.8 0. 3 2	E E	la la la
14.		*P - *D2	1									
			(815 37) (88456)	1 9439 19521	20656 20651	42	6	M1 M1	0.0062 0.0041	0.75 0.42	E E	1
			[82513]	19439	20651	4	4	MI	0.011	0.92	E	1
15.		ዋ-ዋ										
			[6698.4] [6648.8] [6613.0]	19439 19521 19429	34364 34657 34557	424	8 6 6	122 122 122	0.016 0.0095 0.0040	1.0 0.44 0.18	E E E	1a 1a 1a

Ê

.- '

r.

Cr IV: Forbidden transitions - Continued

Nie.	Transition Array	Maitiphet	λ (Å)	E, (Cat ^')	E _k (cm ⁻¹)	8.	8	Type of transition	A. (8 ⁻¹)	5 (mt. v.)	Ассы- гасу	Source
16	· ·	30 - 3NI										
	Ī]			
			(2988.2) [2980.9]	19521 19439	52976 52976	2	6	E2 Mi	0.52 0.040	0.44 2.4(-4)	E	la 1
			[2973.3] [2966.1]	19521 19439	53144 53144	4 2 4	6 4 4	62 62 62	0.79 1.2 1.9	0.55 0.55 1.0	E E	la la la
17.;	- 3	- PZ - 'F				5						
			[7297.9]	20665	34364	6	8	MI E2	0.0015 0.027	1.7(-4) 2.7	E E	l la
. j			[7189.2]	29651	34557	4	6	M1 E2	0.0010 0.023	8.3(-5) 1.6	E E	1 1#
ļ	-	-	(7196.7)	29665	34557	6	6	MI E2	0.0039 0.2065	3.2(-4) 0.45	E	1 1a
18.	5 4 4	702 - ĐÌ										
-		51	[3994.0]	20656	52976	6	6	E2	0.69	0.70	E	la
		17	[3075.7]	20651	53144	4	4	E2	0.0060	0.0039	E	la
	2 99 -	:	Janie I	2000		6		E2	0.29	0.19	E	: 1 - 1a
			[3092.6]	20651	52976	4	6	MI E2	0.063 1.1	4.1(-4) 1.1	D E	1 1#
••			· · · ·					r		1	1	
19.	•	11 - 11		•				•	!	1		
		:	[7664.7]	21321	34364	12	8	E2	0.039	4.9	E	la
			[7410.9]	21057	34557	: 10	6	E2	0.046	3.7	E	1n
		•	7518.2;	21067	34364	10	8	E2	0.0012	0.14	E	1n
120.	· · · · · ·	H - Di		,		1	* ; ;	- 	t.			1
	•.		[3133.0]	21067	52976	10	6	E 2	0.040	0.043	E	la
21 .	· · · · · · · · · · · · · · · · · · ·	F - DI	-			•						:
	•	·	[5323.5]	34364	53144	8	- 4	E2	0.075	0.76	E	1A .
	•		[5371.4]	34354	52976	8	6	MI	0.057	0.0020	E	1
	-		[5378.6]	34557	53144	B K	· 6	22 Mi	0.40	5.6 0.0014	E E	14
			- (wato.w)	-	· · · · · · · · · · · · · · · · · · ·	6	· 7	F2	0,40	4.3	Ē	in.
			[5427.5]	34557	52976	6	6	MI	0.10	0.0036	Ē	1
		-	•	•	•	6	6	E 2	0.069	1.2	E	1 <i>n</i>

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr v

Ca Isoelectronic Sequence

Ground State: 1s22s2p3s23p3d2 Fr

Ionizatiou Energy: 69.46 eV = 560200 cm⁻¹

Allowed Transitions

Vavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	Na.	Wavelength (Å)	No.
431.395	2	456.743	7	1127.63	16	1697.04	10
415.143	2	451.628	T	1134.77	16	1611.33	10
435.616	Z	457.504	1	1465.86	14	1622.61	9
436.351	2	464.015	R	1481.65	11	1638.59	9
436.691	2	469.311	6	1482.76	11	1639.40	9
437.429	1	469.634	3	1454.\$7	11	1644.95	9
437.655	1	469.893	6	1489.71	11	1652.60	9
441.956	5	470.567	- 6	1497.97	11	1655.64	
445.751	4	1105.39	15	1519.68	13	1837.44	12
456.272	7	1106.25	15	1579.70	10		
456.357	7	1121.97	16	1591.72	10		
456.637	7	1125.09	16	1603.19	10		

List of tabulated lines

For this spectrum, Kurucz and Peytremann¹ have calculated oscillator strengths for over one hundred transitions using a scaled Thomas-Fermi-Dirac approach with limited configuration interaction. Of these lines, we have chosen only the stronger lines, i.e., with $\log g / > -1.5$, and have omitted all intercombination (spin-forbidden) lines. An additional criterion for selecting the data was that all lines had to be experimentally observed, i.e., they appear in the line list of Ekberg.² should be fairly reliable. There is indirect support for this estimate from the good consistency between similarly calculated values and lifetime measurements for the isoelectronic ion Ti II.

References

We estimate that for the stronger lines of this relatively simple spectrum, Kurucz and Peytremann's data ¹R. L. Kurucz and E. Peytremann, Smithsonian Astrophysical Observatory Special Report 362 (1975).

²J. O. Ekberg, Phys. Scr. 7, 59 (1973).

Cr V:	Allowed	transitions
-------	---------	-------------

No.	Transition Array	Multiplet	ک (Å)	E , (cm ⁻¹)	<i>E</i> ; (cm ⁻¹)	E.	8.	A _h (10 ⁶ s ⁻¹)	1.	S (at. u.)	log gf	Accu- racy	Source
1.	3d ¹ -3d 4p	77 - 3 0°											
			427 420	508.2	220121	7	7	14	0.029	0.40	_0.64	n	т
			437.655	0.0	228489	5	5	13	0.038	0.27	-0.72	D	i
2		77 - 77											
			434.306	1141.7	231393	9	9	15	0.042	0.54	- 0.42	D	1
			435.143	508.2	230316	7	7	2.9	0.0082	0.082	-1.24	D	1
		1	435.636	0.0	229552	b	5	2.8	0.0000	0.067	-1.40	D	1
			436.351	1141.7	230316	9	7	24	0.063	0.69	~0.22	D	1
			436.601	508.2	229552	7	5	21	0.043	0.43	- 0.52	D	1
3.		'D - 'D'	469.634	1318R	226120	5	5	23	0.076	0.59	-0.42	D	1

Cr v: Allowed transitions - Continued

No.	Transition Array	Multiplet	ک (آم)	E, (cm ¹)	E. (cm ⁻¹)	8.	g.	A., (10° s ¹)	ſ .	S (at. u.)	has af	Acce- racy	Source
4.		¹ D - ¹ F *	445.751	13188	237530	5	7	1.9	0.0078	0.957	-1.41	D	1
5.		"D - "P"	441.056	13188	239918	5	3	23	0.040	0.29	-0.70	D	1
6.		ሻ - ፕን								•			
			459 311	16041	229121	5	7	39	0018	0 14	-164	D	1
			469.893	15677	228489	3	5	4.9	0.027	0.13	-1.09	D	i
			470.567	15492	228002	1	3	4.9	0.049	0.076	-1.31	D	1
7.		ዋ - ም	456.85	<u>15859</u>	234750	9	9	33	0.10	1.4	0.83	D	1
			457.928	16041	234846	5	5	2 1	0.063	0.63	-9.38	D	1
r		,	456.743	15677	234618	3	3	9.1	0.028	0.13	-1.07	D	1
		1	457,504 456.637	15677	234668	3	3	12	0.023	0.18	-0.55	D	1
			456.272	15677	234846	3	5	6.7	0.035	0.16	-0.98	D	1
		•	456.357	15492	234618	1	3	9.5	0.089	0.13	-1.65	D	1
8.		'G - 'F'	464.015	22019	237530	9	7	36	0.090	1.2	0.09	D	1
9.	3d 4s - 3d 4p	"D - "D"	• = •										
			1638.50	168090	229121	7	7	6.8	0.27	10	0.28	D	1
			1639.40	167491	228489	5	5	4.9	0.20	5.3	-0.01	D	1
			1655.64	168090	228489	3	5	5.0 1.6	0.20	1.8	-0.22	D	1
			1652.60	167491	228002	5	3	2.5	0.062	1.7	-0.51	D	1
			1622.61	167491	229121	5	7	0.74	0.041	1.1	-0.69	D	1
10.		'D - 'F"					2		1				
			1579.70	168090	231293	7	9	8.6	0.41	15	0.46	D	1
			1591.72	167491	230316	5	7	7.3	0.39	10	0.29	D	1
			1603.19	167176	229552 230316	3	5	7.0	0.45	7.1	0.13	D	1
			1611.33	167491	229552	5	5	0.23	0 0089	0.24	-1.35	D	i
11.		'D - 'P'				-	1						
			1497 97	169090	724846	7	5	75	019	62	0 10		1
			1489.71	167491	234618	5	3	6.6	0.13	3.2	-0.18	D	i
			1481.65	167176	234669	3	1	10	0.11	1.7	-0.47	D	1
		1	1482.76	167176	234618	3	3	2.2 3.5	0.073	1.5	-0.46	D	1
12		'D - 'D'	1837.44	171698	225120	5	5	4.3	0.22	6.6	0.04	D	1
13.		'D - 'P*	1519.03	171696	237530	5	7	9.5	0.46	11	0.36	D	1
14.		'D - 'P	1465.86	171698	2399 18	5	3	11	0.21	5.1	0.02	D	1
15.	λd 4p − λd 4d	'D' - 'G											
	-	1	1104.94	220121	210417	-	•	12	0.70	7.4	6.21	-	.
			1103.39	229489	319119	5	7	2.4	0.062	1.4	- 0.51	D	1
14		1 12 1 - 142			-	ļ							
		0											[
		:	1127.63	231393	320074	9	II	35	0.80	27	0.86	D	1
		1	1121.07	221393	ana)7 319517	9	9	21	0.028	13	0.55 0.47	D	1
		• •	1125.09	230316	319119	7	7	6.1	0.12	3.0	-0.09	D	1
		1		1 1		ι.			1	1		1	1

.

Cr v

Forbidden Transitions

THE OF SEPARATE MILE	يبتأ	of	tabulated	lines
----------------------	------	----	-----------	-------

Wavelength (Å)	No.	Wavelength (Å)	Ne.	Wavelength (Å)	No.	Wavelength (Å)	Ne.
							-
582.42	12	612.64	16	823.52	20	6749.9	3
584.15	12	645.57	13	859.52	19	7589.6	2
586.32	12	648.98	13	1955.2	5	7864.4	2
594.92	11	6(9.60	13	2533.7	8	8299.0	2
586.73	11	656.11	15	2818.5	10	11329	7
587.45	11	657,68	15	2847.7	16	35641	6
598.17	11	657,90	15	4540.2	4	40172	6
586.86	11	658.70	15	607.5	4	157800	1
596.99	11	600.07	15	4788.5	4	195700	1
589.99	11	669.28	15	6222.3	3	274300	9
601.14	u	661.66	15	6377.2	3	541000	9
630.87	14	668.10	18	6636.2	3		
640.18	16	684.60	17	6453.2	3		
640.54	16	687.42	17	6530.8	3		
	L	li		<u>l</u>	l		<u> </u>

For this ion, we selected the work of Warner and Kirkpatrick,¹ who used a single-configuration approximation and calculated radial integrals with acaled Thomas-Fermi wavefunctions. We have tabulated M1 and E2 transition probabilities for 23 lines within the $3d^2$ (ground) configuration and E2 data for 30 lines in the $3d^2-3d4s$ transition array. For long-wavelength lines within the $3d^2$ ³F and $3d^2$ ³P terms, we have recalculated Warner and Kirkpatrick's A-values by using observed energy-level data instead of theoretically derived values.

Reference

¹B. Warner and R. C. Kirkpatrick, Mon. Not. R. Astron. Soc. 144, 397 (1969).

.......

No.	Transition Array	Muitiplet	ک (آم)	<i>E</i> , (cm ¹)	E, (cm ¹)	£.	8.	Type of transition	A (s ⁻¹)	S (at. u.)	Ассы- гасу	Source
1.	3d*-3d*	1 7 - 1 7										
		β κ - - -	(157800) [196700]	508.2 0.0	1141.7 508.2	7 5	9 7	Mi Mi	0.0051 0.0037	6.7 7.3	C C	la la
2		77 - "D (17)										
			[8299.0] [7884.4]	1141.7 508.2	13188 13188	9 7 7	55	E2 M1 F7	2.41 - 47 0.10 8.21 - 5)	0.000 0.0001		1
			[7580.6]	0.0	13188	5	5 5	Mi E2	0.057 5.7(-5)	0. 0046 0.0042	E E	1
3.		77 - 79 (217)						_				
			[6709.9] [6590.8] [6453.2]	1141.7 508.2 0.0	16041 15677 15492	75	5 3 1		0.031 0.031 0.061	1.3 0.69 0.34		1 1 1
			[6436.2] [6377 2]	508.2	16041	77	5	M1 22 M1	0.0034 0.010	1.7(-4) 0.38 29(-6)		1
			(6232.3)	0.0	16041	555	3 5 5	82 M1 82	0.018 8.7(-4) 0.0016	0.34 3.9(-5) 0.045		1

Cr v: Porbidden transitions

~ m	Partition	en antitiana	- Continued
UT 1 .			

No.	Transition Array	Multiplet	Å Å	E , (cm ^{- 1})	E. (cm ⁻¹)	2	•	Type of transition	A (a ⁻¹)	5 (at. 11)	Асса- тасу	Source
4		₹- 'G										
		(32)										
		•	[4788.5]	1141.7	22919	9	3	Mi F2	0.072 4.2 - 5	0.0025 57(4)	B	1
			[46(7.5] [4540.2]	506.2 0.9	22019 22019	7 5	9 9	Mi E2	0.047 8.9(_5)	0.0016 9.21-4)	E E	1
5.		¥ - 'S										
			[1955.2]	6.0	51146	5	1	E2	0.025	4.3(-4)	B	1
6.		'D - 'P										
			[35941] [49172]	1 3188 1 3188	1 60 41 15677	5 5	5 3	M1 M1	0.824 0.9952	0.19 0.065	E E	1
7.		'D - 'G	(11320)	13188	22019	5	9	E2	6.1(-4)	9.61	E	1
8.		'D - 'S (4 P)	[2633.7]	13188	51146	5	1	E2	9.8	0.74	E	1
9.		ት - ት										
		•	[274 300] [541000]	15677 15492	1 60 41 15677	3	5 3	M1 M1	521-4) 1.27(-4)	2.9 2.24	с с	la la
10.		7 P - 'S (SP)										
1 1		:	(2847 .7] (2818.5)	1 60 41 15 6 77	511 46 511 46	5 3	1 1	E2 M1	9.21 1.1	0.023 9.1(-4)	E E	1 1
11.	3d°-3d la	ď - ď	- -									
			[601.14]	1141.7	167491	9	5	E2	2790	0.63	E	1
			[568.99] [588.99]	508.Z 1141.7	167176	9	7	E2 E2	4300 1.9(+4)	0.60 3.2	E	1
			[598.86] (598.17)	508.2 0.0	1 67491 167176	75	5	22 172	6500	1.5	E	1
			[596.73]	508.2	168090	7	7	E 2	2900	0.91	E	1
			[597.06] [594.92]	0.0 0.0	167491 168090	5	5	E2 E2	2800 270	0.86 0.084	E E	1
12		Ψ- 'D	-									
			[586.22]	1141.7	171 68 8		5	F 2	16	0.0022	F	1
1			[584.15] [582.42]	508.2	171 606	7	5	12 17	89	0.018	E	1
12		רוג. הוג בנוי			1.1.040	-				V.VVLL	-	•
;							_	_				
,			[645.57] [648.08]	13188 13188	168090 167491	5 5	7 5	22 122	200	0.036 0.068	E E	1
		;	[649.40]	13188	167176	5	3	E 2	61	0.013	E	I
14.		'D - 'D	[630.87]	13168	171698	5	5	£ 2	6800	2.0	E	1
--	--											

Na.	Transition Array	Multiplet	ŝ	K tcm ⁻¹)	<i>li</i> . (cm ⁻¹)	8.	8	Type of transition	A (s ⁻¹)	8 (mt. m.)	Acce-	Source
15.		4 - ۹۵										
	_		[656.11] [657.90]	15677 15492	1 68990 167491	3 1	7 5		1 200 1 200	0.61 0.44	E E	1 1
			[657.66] [658.70] [669.25]	16041 15677 16041	167497 167497 167491	5 3 5	7 5 5		2300 250 1800	1.2 0.11 0.57	B B B	1 1 1
		.	[661.67] [661.66]	15577 16941	167176	3	3		2589 810	9.58 9.18	E E	1
16.		¶P - ¶D	[642.44]	16941	171685	5	5	R	346	0.11	B	1
17			[648.15] [648.15]	15492	171698	1	5	82	10	0.0052	B	1
11.		G- D	[687.42]	22919	167491	9	5		30 1	0.061	E	1
18.		'G - 'D	[668.10]	22019	17:696	9	5	E2	9680	3.8	E	1
19.		'8 - °D	(1950 <u>52</u>)	51146	167491	1	5	Ē2	24		E	1
29.		'8 - 'D	[829.52]	51146	171608	1	5	E2	390	0.44	E	1

ŧ.

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr vi

K isoelectronic Sequence

Ground State: 1s²2s²2p⁺3s¹3p⁺3d⁻¹D_{3/2}

Ionization Energy: $90.6356 \text{ eV} = 731020 \text{ cm}^{-1}$

Allowed Transitions

Wavelength (Å)	No.	Wavelength $(\hat{\lambda})$	No.	Wavelength $(\hat{\lambda})$	No.	Wavelength (Å)	No.
161.687	8	172.487	6	202.442	5	259.776	2
161.920	8	172.841	6	202.739	5	279.154	1
162.565	9	201.007	4	225.241	3	280.143	1
168.068	7	201.224	4	227.202	3	280.879	1
168.355	7	201.388	- 4	227.699	3		
169.435	7	201.606	4	254.078	2		
172.204	6	202.057	5	264.732	2	1	

List of tabulated lines

For this spectrum, we have chosen the data of Tiwary,^{1,2} who calculated absolute multiplet oscillator strengths for the $3\rho^{*}3d-3\rho^{*}3d^{2}$ and $3\rho^{*}3d-3\rho^{*}3dAs$ arrays by using configuration interaction wavefunctions. For the $3\rho^{*}3d-3\rho^{*}3dAs$ array, *LS*-coupling line strengths generally agree quite well with the intermediate covpling calculations of Cowan.³ For the few cases whe.² the agreement is not good (worse than $\pm 50\%$), we have omitted the lines from this compilation. Within this transition array, we have normalized Cowan's line strengths to the multiplet strengths of Ref. 2.

For lines within the $3p^43d-3p^33d^2$ transition array, we have obtained line strengths from Tiwary's multiplet strengths by applying *LS*-coupling rules. We estimate these data to be accurate within fifty percent for stronger lines.

References

¹S. N. Tiwary, Chem. Phys. Lett. 93, 47 (1982).

²S. N. Trwary, Astrophys. J. 269, 803 (1983).

R. D. Cowan, Astrophys. J. 147, 377 (1967).

No.	Transition Array	Multiplet	λ (Å)	E, (cm ¹)	E , (cm ¹)	8.	8-	A _{le} (10° s ⁻¹)	ſ.	S (mt. u.)	iog gf	Acca- racy	Source
1.	39'3d- 39∕17°13d4'G)	₽ D - ₽₽ ₽	279.60	564	J58221	10	14	6.1	0.010	0.092	- 1.90	D	1
			279 154	940	359165	6	8	6.2	0.0096	0.053	-1.24	D-	la la
		1	280.143	0	356962	4	6	5.7	0.010	0.037	L-1.40	Ď-	L.
	•		280.879	940	356962	6	6	0.40	4.71-47	0.0026	-2.55	E	4
2	39"3d 39"1"P" 13d"("D)	'D - 'P"	26 7. 5 2	564	374643	10	14	27	0.041	0.36	-0.39	D	1
			269.776	940	371618	6	8	21	0.039	0.21	0.63	i D-	4
			264.078	0	378677	4	6	26	0.040	0.14	-0.79	D-	45
			264.732	940	378677	6	6	1.8	0.0019	0.010	-1.94	E	k
3.	ገቃ 3d - 3ቃ ፕሞ በd የሞ	'D - 'F	226.67	564	441741	10	14	710	0.77	5.7	0.89	D-	1
	:	: 1	226.241	940	442945	6	8	720	0.74	3.3	0.65	D-	la
	,	. 1	227,202	0	440135	4	6	660	0.77	2.3	0.49	D-	6
		Í	227.689	940	440135	6	6	46	0.036	0.16	- 0.67	E	ls
4.		'Ū' - Ū'	201.17	564	49 7173	10	10	2600	1.6	11	1.20	D-	1
			201.606	940	496958	6	6	2600	1.6	6.2	0.97	D-	4
			201.007	0	497495	4	4	2500	1.5	4.0	0.78	D-	4
			201.388	940 (497495	6	4	270	0.11	0.44	-0.18	P	45
		•	201.224	0	496958	4	6	180	0.17	0.44	0.18	E	10
5.	3 p*3d - 3p*1 *P* 13d*1*P)	₩D - ₩	202.51	564	494 .356	10	6	1200	0.44	2.9	0.64	D-	1
	- -		202.442	940	494911	6	4	1000	0.43	1.7	0.41	D -	4
		-	202 739	0	493247	4	2	1200	0.36	0.97	0.16	D	10
			202.057	0	494911	4	4	120	0.071	0.19	- 0.54	E	4
В.	3p'3d - 3p'3d ('P' Ma	′D ~ ′P*	172.59	564	57 99 87	10	6	120	0.032	0.18	- 0.49	D	2
			172.497	940	580597	6	. 4	110	0.032	0.11	- 0.71	D	3п
			172.841	0	578566	4	2	120	0.026	0.060	- 0.98	D	34
			172.204	0	580697	4	4	16	0.0071	0.016	- 1.55	R	30

Cr vt: Allowed transitions

No.	Transition Array	Multiplet	х (Å)	£ , (cm ⁻¹)	E . (cm ⁻¹)	8	8.	A _b (10 ⁰ s ⁻¹)	ſ.	S (at. u.)	ior of	Ассы- гасу	Source
7.	3;="3d- 3p"3d("F")4e	²D - ²P*	168.86	564	5 9 2751	10	14	190	9.11	0.61	0.04	D	Z
			165,435	940	591137	6	8	160	0.093	0.31	-0.25	D	3.
		ł	168.088	0	534926	4	6	200	0.13	0.28	-0.30	D	3.
			168.355	940	594926	6	6	11	0.0015	0.015	-1.57	E	Sa
8.	3p*3d- 3p*3d(*D*)4s	²D - ²D*	161.7 3	564	678862	10	10	190	0.073	0.39	-0.14	D	2
			161.687	940	618491	6	6	170	0.065	0.21	-0.40	D	3a
			161.687	0	619419	4	4	140	0.056	0.12	-0.65	D	3m
			161. 93 0	340	619419	6	4	30	0.0078	0.025	-1.33	E	3a
9.	3p'3d- 3p'3d('F')4s	²D - ² F *	162.65	564	615 9 53	10	14	79	0.944	0.24	-0.36	D	z
			162.565	940	616079	6	8	83	0.044	0.14	- 0.58	D	3a

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr vi

Ar Isoelectronic Sequence

Ground State: 1s²2s²2p⁺3s²3p⁺ 'S₀

Ionization Energy: 160.18 eV == 12919(2) cm⁻¹

Allowed Transitions

Line strengths for the $3p^4-3p^5M$ resonance transitions of this argon-like ion were interpolated from the superposition-of-configurations (SOC) calculations of Weiss,¹ which are expected to be fairly accurate.

Oscillator strengths for transitions of the 3p⁴-3p⁵4s array were interpolated from the Dirac-Hartree-Fock data of Lin et al.,2 who included correlation only in the lower state. Their results for lines of the $3p^{*}-3p^{3}4d$ array in nearby Ar-like species have not been interpolated to provide f-values for Cr VII, since cancellation effects at

or near V vi-one of the ions treated-introduce considerable uncertainty into the results at the low-Z end of the Ar sequence.

References

¹A. W. Weiss, private communication. ²D. L. Lin, W. Fielder, Jr., and L. Armstrong, Jr., Phys. Rev. A 16, 589 (1977).

Cr VI: Allowed transitions - Continued

Cr vs: Allowed transitions

Nu.	Transition Array	Multiplet	х (Å)	E , (cm ⁻¹)	E. (cm ⁻¹)	£	4	AL (10 ⁴ s ⁻¹)	f.	S (pt. u.)	log af	Асса- гасу	Source
1.	3p'-3p'3d	'S - "D"											
			259 .181	0	385828	1	3	0.93	0.0028	0.0024	-2.55	E	interp.
2		'S - 'P'	202.828	0	493035	1	3	1670	3.05	2.06	0.489	С	interp.
3.	Sp ¹ - Sp ¹ (² P [*] _{2/2})1e	¹ S - (³ / ₃ , ¹ / ₂) ^r											
			148.714	0	672428	1	3	130	0.13	0.064	-0.89	D	isterp.
٩	3p ⁴ - 3p ⁴ (*P _{1/2})4s	¹ S - (¹ / ₃ , ¹ / ₂)*											
	-		146.497	0	682610	1	3	300	0.29	0.14	-0.54	D	interp.

Cr VIII

Cl Isoelectronic Sequence

Ground State: 1s²2s²2p^{*}3s²3p⁵²P^{*}_{1/2}

Indization Energy: $184.7 \text{ eV} \approx 1490000 \text{ cm}^{-1}$

Allowed Transitions

Line strengths for transitions of the arrays $3s^23p^5$ - $3s^3p^4$ and $3p^5-3p^43d$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang et al.¹ These relativistic calculations include a perturbative treatment of the Breit interaction and the Lamb shift. Configuration mixing was limited to some configurations within the n = 3 complex. Those configurations which were assumed to lie far above $3p^5$ or $3p^*3d$ in energy were excluded, as were all configurations outside the complex. According to the semi-empirical HX (Hartree-Fock with statistical allowance for exchange) calculations of Bromage et al.² for Fe x, some levels of the $3p^43d$ configuration are strongly mixed in the LS basis, and in a few cases the LS designations given in Ref. 2 differed from those of Huang et al. The level designations used in this compilation are in accord with the theoretical results of Refs. 1 and 2 for Fe x. Percentage compositions published by Bromage' for the levels of the $3p^43d$ configuration in V vII and Ni XII indicate that the designations for

the iron ion are appropriate for the neighboring ions of the chlorine hoelectronic sequence. Transitions involving highly mixed levels have been excluded, as have the very weak transitions.

The calculated wavelengths of Husing *et al.* differ appreciably from the observed ones found in the literature. Thus the available experimentally determined wavelengths were used in making the conversion from line strengths to f- and A-values. (Otherwise, the calculated wavelengths of Husing *et al.* were used, but they provide only a rough idea of the spectral-line positions.) Bromage *et al.* indicate that it was necessary to scale down some configuration-interaction parameters by a greater amount than w-aal in order to fit their calculated energy levels for Fe x to the experimental data. This could be an indication that neglecting to take configuration interaction into account on a larger scale yields significant errors in the energy levels and/or f-values.

References

- ¹K.-N. Huang, Y.-K. Kim, K. T. Cheng, and J. P. Descinus, At. Data Nucl. Data Tables 28, 355 (1983).
- ²G. E. Brountge, R. D. Cowan, and B. C. Fawcett, Phys. Scr. 15, 177 (1977).
- ¹G. E. Brounige, Astron. Astrophys., Suppl. Ser. 41, 79 (1980).

No.	Transition Array	Multiplet	Å (Å)	E , (cm ⁻¹)	E , (cm ⁻¹)	¥.	8.	A _h (10 ⁶ s ⁻¹)	f.a	S (art. u.)	log <i>a</i> f	Ассы- гасу	Source
1.	3e*3p`-3e3p'	*P* - *S	418.82	329 7	242065	6	2	40.3	0.0353	0.292	-0.67	C –	1
			413.112 430.713	0 9892	242065 242065	4	2 2	27.9 12	0. 03 57 0. 03 5	0.1 94 0.098	0.85 1.16	C- C-	1
2	3p ⁵ -3p1*P13d	²₽* - *F										-	
1			(265) (271)			4	6	0.063	1.3(-4)*	4.6(-4)	- 3.28	E	1
3.		* P* - *P	[2.1]			-	•	V.11		9.21 - 9/	- 0.00	E	•
			(965)			-		0.25	5 9 A	0 1/ //	7 00	Ð	,
			(259)			4		027	27(-4)	9.9(-4)	-296	P	1
			(267)			2	2	0.27	28(-4)	50(_4)	-2.25	E	1
			[261]			4	2	0.85	4.4(-4)	0.0015	-2.76	Ē	1
4.	• •	²₽* - ²D	204.99	\$29 7	49 11 4 0	6	10	1500	1.6	6.5	0.96	C	1
			205.01	0	487780	4	6	1520	1.44	2.88	0.76	C	1
			205.65	9692	496180	2	4	1440	1.83	2.48	0.56	Ċ	1
			201.54	0	496180	4	4	68	0.041	0.11	-0.78	D	1
· 5.	ፄቃ*- ፄቃጘ ¹ D)3ď	²P* - ²¥											
		l I I	(233)			4	6	0.56	6.8(-4)	0.0021	-2.56	E	1
6.		79" - "8	218.23	529 7	461530	6	2	1310	0.311	1.84	0.271	C-	1
			216.67	0	461530	4	2	950	0.33	0.95	0.12	C -	1
			221.41	9892	461530	2	2	368	0.270	0.394	-0.267	C-	1
7.	3p*-3p*1*8X3d	²₽° - ²D	218			6	10	2.5	0.0030	0.013	- 1.74	E	1
			[216]			4	6	0.37	3.9(-4)	0.0011	- 2.81	E	1
		1	[222]			2	4	5.1	0.0075	0.011	- 1.82	E	1
		ļ	[217]			4	4	0.59	4.2(-4)	0.0612	- 2.77	E	1

Cr viii: Allowed transitions

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr vm

Forbidden Transitions

Line strengths for the magnetic dipole and electric quadrupole contributions to the transition between the two levels of the $3p^3$ configuration are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang et al.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for mixing among odd-parity configurations was limited to the set $3s^23p^3$, $3s^3p^33d$, $3p^33d^2$, and $3s^23p^33d^2$. The strength of the electric quadrupole transition as defined in Ref. 1 was multiplied by the factor $\frac{2}{3}$ which is needed to bring this value into conformance with the definition of quadrupole strengths used in the NBS tables.

Reference

¹K.-N. Huang, Y.-K. Kim, K. T. Cheng, and J. P. Desclaux, At. Data Nucl. Data Tables 28, 355 (1983).

No.	Transition Array	Multiplet	λ (Å)	<i>E</i> , (cm ⁻¹)	E, icm	5	8.	81	Type of transition	A _b (5 ⁻¹)	S (at. u.)	Асси- гасу	Source
1.	Зр -Зр	ም - ም					•						
			[10110]	0	9	892	4	2 2	M1 E2	17.4 0.0028	1, 33 0, 3 5	B D-	1

Cr viii: Forbidden transitions

Cr IX

S Isoelectronic Sequence

Ground State: 1s22s22p43s23p4 P2

Ionization Energy: $205.3 \text{ eV} = 1688000 \text{ cm}^{-1}$

Allowed Transitions

Oscillator strengths for a few transitions of the arrays $3s^23p^4-3s^3p^5$ and $3p^4-3p^33d$ were interpolated from the results of Bromage¹ for V VIII and those of Mason² and Bromage et al.³ for Fe XI. The term designations used here are in accord with the results of Refs. 1 and 3.

References

- ¹G. E. Bromage, Astron. Astrophys., Suppl. Ser. 41, 79 (1980). ²H. E. Mason, Mon. Not. R. Astron. Soc. 170, 651 (1975).
- G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Phys. Scr. 15, 177 (1977).

No.	Transition Array	Multiplet	λ λ	E , (cm ⁻¹)	E, (cm ⁻¹)	ł	84	A _h (1 0⁸ s⁻¹)	1 4	S (ast. u.)	lag gi	Ассы- гасу	Source
1.	3e*3p*-3e3p*	ም - ም											
			418.290	0	238069	5	5	14	0.937	0.25	-0.78	E	interp.
2		'D - 'P"	363.271	30284	305561	5	3	57	896.0	0.41	-0.47	D	interp.
8.	\$p'-\$p*(*D')8d	ት - ት								l l			
			220.02	0	454500	5 3	5 1	920	0.67 0.29	2.4	0.58 0.06	R R	interp. interp.
. 4.		'D - 'D*	215.97	30284	4933 10	5	5	1100	0.75	2.7	0.57	D	interp.
5.		'D - ' P *	200.44	30284	507740	5	7	1490	1.8	4.5	0.81	D	interp.
6.	3p'-3p ³ (*P*)8d	*P - *P*											
						5	5		0.021		-0.98	D	interp.
7.		'8 - 'P"	215.04	66865	5\$1890	1	3	1390	2.6	1.8	0.41	D	interp.

Cr II: Allowed transitions

Crix

Forbidden Transitions

(1983).

Transition probabilities for magnetic dipole and electric quadrupole lines within the 3p⁴ configuration are the results of the scaled Thomas-Fermi calculations of Mendoza and Zeippen.¹ They included a number of correlation configurations in their basis set and introduced Breit-Pauli relativistic corrections as a perturbation to the nonrelativistic Hamiltonian. Reference 'C. Mendoza and C. J. Zeippen, Mon. Not. R. Astron. Soc. 382, 981

ī.

Na.	Transition Array	Multiplet	ک (آن)	E , (cm ⁻¹)	Ë. (cm ^{- i})	£	8	Type of transition	A _b (g ⁻¹)	S (at. u.)	Асси- гасу	Source
1.	30'-30'	ጉ - ጉ										
			[1 2790] [5 7790]	0 7818	7818 954 8	553	3 3 1	M1 E2 M1	10.5 5.4(-4)* 9.270	2.44 0.33 1.93	C+ D- C+	1 1 1
2		²₽ - 'D	[10670]	0	3048	5	1	EZ	0.9021	0.16	D-	1
		;	[3301.1]	0	30284	5	5	M1 E2	30 0.053	0.20 0.962	D- E	1
			[4443.3] [482].2]	9548	30284	3	5 5 5	E2 E2	4.2 0.0018 6.1(-4)	0.0093 0.0047	E E	1 1
3.		*P - 'S		2 7 7 8 8			1					
			[1495.8] [1693.9]	0 7818	66855 66855	5 3	1 I	E2 M1	0.88 330	0.0029 0.059	E E	1
4.		'D - 'S	[2733.6]	30284	66855	5	1	E 2	6.4	0.58	D -	1

Cr IX: Perbidden transitions

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

P Isoelectronic Sequence

Ground State: 1s2s29*3s2393 *S12

Ionization Energy: 244.4 eV = 1971000 cm⁻¹

Allowed Transitions

List of tabelated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	Na.
209.79	9	228.63	11	248.40	7	399.707	2
216.72	8	228.71	11	253	10	411.655	1
217.71	12	231.21	14	254	4	416.690	1
218.83	12	232.96	14	256	4	427.551	1 1
223.86	5	242.20	13	206	6	443.062	3
224.74	5	244.10	13	287	6	447.529	3
226.24	5	244.13	7	394.47	2	449.45	3
227.42	11	244.19	13	395.964	2		
227.50	11	246.97	7	398.150	2		

Line strengths for transitions of the arrays $3s^23p^{3}$ - $3s^3p^4$ and $3p^3-3p^23d$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing was limited to configurations within the n=3 complex having no more than two electrons in the 3d subshell.

Huang published neither an energy-level diagram nor percentage compositions for levels of the $3s^23\rho^3$, $3s^2\rho^4$, and $3s^23\rho^23d$ configurations in Cr x. We have used the percentages given by Bromage et al.² for Fe XII, and by Bromage³ for V IX and Ni XIV, as a guide to naming the levels; their values resulted from Hartree-Fock calculations with relativistic effects and statistical allowance for exchange (HXR), and incorporated correlation effects due to a few configurations within the $\pi = 3$ complex. Whenever a term designation of a level in Fe XII, as given in Ref. 1, is different from that indicated in Ref. 2, all transitions involving the corresponding level in Cr x are omitted from this compilation.

Transitions involving levels which are indicated to be of low purity in LS coupling are omitted here. Lines which are characterized by very small *f*-values are assigned lower accuracy ratings; the weakest lines have been excluded.

References

K.-N. Huang, At. Data Nucl. Data Tables 30, 313 (1984).

²G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Mon. Not. R. Astron. Soc. 183, 19 (1978).

G. E. Bromage, Astron. Astrophys., Suppl. Ser. 41, 79 (1980).

Cr X:	Allowed	transitions
-------	---------	-------------

No.	Transition Array	Multipiet	λ (Å)	<i>E</i> , (cm ⁻¹)	<i>E</i> , (cm ⁻¹)	E.	8.	A _h (10 ⁴ s ⁻¹)	ſ.	S (at. u.)	log gf	Accu- racy	Source
1.	3 e ²3p ³-3e 3p ⁴	*8* - * P	421.18	0	23 7428	4	12	12	0.097	0.54	0.41	D	1
			427.551	0	233890	4	6	12	0.048	0.27	- 0.72	D	1
			416.690	0	229987	4	4	13	0.023	0.18	- 0.88	D	1
			411.655	Ō	242922	4	2	13	0.017	0.090	- 1.18	D	1
2.		0 ⁷ - ۲ ^۲	39 7.28	38507	29 0218	10	10	23	0.065	0.72	- 0.26	E	1
			328.150	39444	290606	6	6	21	0.051	0.40	- 0.52	D	1
			395.984	37102	289637	4	4	24	0.058	0.30	- 0.64	D	i
			399.707	39444	289637	6	4	0.71	0.0011	0.0090	- 2.16	E	1
			[394.47]	37102	290606	4	6	0.34	0.0012	0.0062	- 2.32	E	1

Cr x: Allowed transitions -- Continued

No.	Transition Array	Multiplet	х (Å)	E, tcm ¹)	E. (cm ⁻¹)	B .	8.	A⊾ (1€* s ⁻¹)	1.	S (at. m.)	bec ef	Accu- racy	Source
3.		₽°-D	<u>446.</u> 16	GEREL	298218	6	10	3.4	0.017	0 .15	-0.59	D-	1
-			417.529	67157 63935	230606 289637	4	6	4.1 2.4	0.019 0.014	0.11 0.041	- 1.13 - 1.55	D D	1
	9_1 9_530x93	10° 10	[449.48]	67157	289637	4	4	0.033	1.01-47	5.9(-4)	-3.40	E	1
•.	ар -арт рыц	-9 - D								1			
			[254] [256]			4	6 4	1.1 1.1	0.00 15 0.00 11	0.0051 0.0035	-2.21 -2.37	E E	1 1
5.		'5' - 'P	25.4	•	443730	4	12	750	1.7	5.1	0.84	D	1
1			225.24 224.74 223.85	•	442919 444969 446719	4 4 4	6 4 2	730 760 770	0.84 0.57 0.29	2.5 1.7 0.85	0.53 0.36 0.96	D D D	1 1 1
6.		Ð - Ð		· · · · ·									-
			[287] [286]			6 4	4 2	1. 3 1.7	0. 00 10 9. 00 11	0.0059 0.0040	-2.29 -2.57	E E	I I
7.		ገ ፓ - ዋ											
			[248.40] [244.13]	39444 37102	442010 446710	6	62	5.7 3.4	0.0053	9.025 9.0049	- 1.50	E	1
g		ar a	[240.31]	31102	442010	•	o	1.0	0.0022	0.0071	-2.90	E	1
σ.		·U - Y	416 TO	20111	600060		•		A 84		70	B	
•	7~ ¹ -7~4 ¹ D/2d	ю. Д	210.72	13444	200420	Ð		900	V.846	3.6	U . 1U		1
Э.	эр - эрч шыа	·3 - ·D	(100 70)	•	*76670								•
10		10 a 2 a	[209.19]	U	410010	•	0	1.1	0.0011	U.UUJU	-2.30	E	. 1
IV.		·V · U									:		
			[253]			6	8	1.0	0.0013	0.0066	-2.10	E	1
11.		ጉ · ጉ	228.20	38507	476730	10	10	530	0.41	3.1	0.62	D	1
			228 71	39444	476670	6	6	450	0.35	1.6	0.33	D	1
			227 42 (228 62)	37102 20144	476K20 #76820	4	4	520	0.46	1.2	0.20	D	1
			[227.50]	37102	476670	4	6	18	0.042	0.064	- 1.07	D	1 1
12.		'ው' - 'ዋ											
			[218.83]	39444	495420	6		10	0.0049	0.021	- 1.54	E	I
			(217 71)	37102	496420	4	4	74	0.0052	0.015	- 1.68	Ē	I
13.		ም - ወ	24.1 52	6608.J	4767 30	6	10	55	0. 081	0,39	- 0.31	E	1
			[244 19]	67157	476670	4	6	58	0.07H	0.25	- 0.51	D	1
			[242 20]	63935	476820	2	4	50	0.0RH	0 14	0 76	D	1
			[244 10]	67157	476820	4	4	10	9.71 - 41	0.0030	- 2 43	E	1
14.		P P											
i			232 96 231 21	67157 63935	4964 20 4964 20	4 2	4	440 120	0.36 0.20	11 0.30	0.16	E	1
							-						•

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied

1

1

Cr x

Forbidden Transitions

Line strengths for magnetic dipole and electric quadrupole transitions within the $3p^3$ configuration are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing was limited to configurations within the n = 3 complex having no more than two electrons in the 3d subshell. Strengths of electric quadrupole transitions as defined in Ref. 1 were multiplied by the factor $^{2}/_{3}$ which is needed to bring these values into conformance with the definition of quadrupole strengths used in the NBS tables. We have excluded from this compilation the electric quadrupole contributions to the $^{4}S_{1/2} - ^{2}P_{1/2}^{4}$ and ${}^{4}S_{1/2}^{*} - {}^{2}P_{1/2}^{*}$ transitions, since their strengths are very small and thus subject to considerable uncertainty.

Data for these same transitions calculated by Mendoza and Zeippen² with the scaled Thomas-Fermi approach with allowance for correlation are generally in very good agreement with the results of Ref. 1. These latter calculations treated relativistic effects by introducing Breit-Pauli corrections as a perturbation to $t^{(1)}$: curelativistic Hamiltonian.

References

K.-N. Hunng, At. Data Nucl. Data Tables 30, 313 (1964).

²C. Mendoza and C. J. Zeippen, Mon. Not. R. Astron. Soc. 198, 127 (1982).

No.	Transition Array	Multiplet	х (Å)	' <u>E,</u> (cm ⁻¹)	<i>E</i> 4 (cm ⁻¹)	2	8	Type of transition	A ₆ . (g ⁻¹)	S (ac. 11.)	Ассы- гасу	Source
1.	3 4 3-3 4 3	*S" - *D"										
			[2534.5]	.0	39141	4	6	M1 E2	0.30 0.940	0.0011 0.015	E	1
			[2694.5]	.0	37102	4	4	M1 E2	11 0.620	0.933 0.0066	D E	1 1
2.		*S" - *P*	1/99.64		e7167			M	199	0.050		
			1564.10	Ū	62925	•	2	MI	60	0.017	D	1
3.	! :	· U - · U	{42690}	37102	39444	4	6	M1 F2	0.127 1 St - 7 F	2.20	C+	1
4.	k	⁷ D" - ግም							1.5 - 17	0.000		
			[4082.0] [3607.4]	20111 20111	62925 67157	66	2 4	E2 M1 F2	0.25 27 0.75	0.34 0.19	D- C	1
	u contra de la con		(3725.7)	37102	63925	4	2 2	M1 E2	25 0.55	0.10 0.47	C D-	1
			[3326.3]	37102	67157	4	4	M1 E2	62 0.36	0.34 0.35	C D-	
5.		Jba - Jba	(21020)	63025	67 157	2		MI	0 273	1 21	C+	1
			[21000]			2	4	E 2	5.1(-7)	0.035	E	i

^ ~	B	· · · · · · · · · · · · · · · · · · ·
ULL.	FOI DESCRIPTION	

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xi

Si Isoelectronic Sequence

Ground State: 1s2s2p3s23p23P.

Ionization Energy: 270.8 eV = 2184000 cm⁻¹

Allowed Transitions

List of tabulated lines

Wevelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
198 214.31 226.45 232 235.58 240.76	9 8 12 6 7 13	250.28 273 299 359.29 366.495 366.491	11 5 10 2 2 2	368,942 374,927 375,35 412,629 422,463 422,262	2 2 1 1 1	431.154 433.88 434.09 483.27 455	I I I \$

Line strengths for transitions of the arrays $3s^23\rho^2$ - $3s^3\rho^3$ and $3\rho^2$ - $3\rho^3d$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing included all configurations within the n = 3 complex.

Huang published neither an energy-level diagram nor percentage compositions for levels of the $3s^23p^2$, $3s^2p^3$, and $3s^23p^3d$ configurations in Cr XI. We have used the percentages given by Bromage et al.² for Fe XIII, and by Bromage³ for V x and Ni XV, as a guide to naming the levels; their values resulted from Hartree-Fock calculations with relativistic effects and statistical allowance for exchange (HXR), and incorporated correlation effects due to a partial set of configurations within the n = 3 complex. Whenever the term designation of a level in Fe XIII, as given in Ref. 1, is different from that indicated in Ref. 2, all transitions involving the corresponding level in Cr XI are omitted from this compilation.

Transitions involving levels which are indicated to be of low purity in LS coupling are omitted here. Lines which are characterized by very small *f*-values are assigned lower accuracy ratings; the weakest lines have been excluded.

References

K.-N. Huang, At. Data Nucl. Data Tables 32, 503 (1985).

²G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Mon. Not. R. Astron. Soc. 183, 19 (1978).

¹G. E. Bromage, Astron. Astrophys., Suppl. Ser. 41, 79 (1980).

No.	Transition Array	Multiplet	ک (ج)	E , (cm ¹)	E, (cm ¹)	E.	8.	A _h (10 ⁶ s ⁻¹)	ſ.,	S (et. u.)	log gi	Accu- racy	Source
1.1	3e*3p*-3e3p*	ዋ - ፓ	426.23	8502	243117	9	15	10	0.048	0.60	-0.37	D	1
,		:	431.154	11961	243917	5	7	9.8	0.038	0.27	0.72	D	1
			422.083	5639	242459	3	5	10	0.046	0.19	0.86	D	1
			412.629	0	242348	1	3	8.3	0.063	0.086	- 1.20	D	1
;			[433.98]	11961	242459	5	5	0.74	0.0021	0.015	- 1.98	D	1
			422.282	5539	242348	3	3	3.0	0.0079	0.033	1.62	D	1
			(434.09)	11981	242348	5	3	0.083	1.4(-41	0 0010	- 3.16	E	1
2.		"P - "P"	3 70. 33	8502	278528	9	9	28	0.058	0.64	- 0.2R	D	L
			374.927	11981	278700	5	5	23	0.049	0.30	- 0.61	D	1
			366.491	5639	218397	3	3	12	0.024	0.087	- 1.14	D	1
			[375.35]	11961	218397	5	8	8.0	0.010	0.063	- 1.29	D	្រ
			366.942	51.39	278062	3	1	30	0.020	0.073	- 1.22	С	1
			366.085	5539	278700	3	5	4.1	0.014	0.050	- 1.38	D	1
			[359.20]	0	278397	1	3	9.5	0.055	0.065	- 1.26	D	I

Cr xi: Allowed transitions

No.	Transition Array	Multiplet	Å Å	K , (cm ⁻¹)	II. , (cm ⁻¹)	6	•	A _b (19 ⁶ s ⁻¹)	<i>f</i> .	S (at. 1.)	hed	Accu- racy	Source
2		יD - ئ Dr											
			(483.27)	36994	263017	5	7	6.5 1	0.0015	0.012	-2.12	B	1
4		15 - 7 **											
5.	Sy ^z -SpSul	29 - 29 ·	(630)				•				-2.30	Б	
			[273]			5	7	13	0.9920	0.0001	-1.90	B	1
6		¥-*						416	A 11				
7.		₽- Ъ	(cec)										
			235.53	11961	436559	5	7	550	9.56	25	0.51	D	1
8.		P-P	(2) 4 311	11981	(79596	5	7	14			_1 19		.
9.		*P - *P*	(213.01)	11201	1.000	ľ						-	
			[198]			1	3	29	0.0051	0.0023	-2.30	B	1
10.		יד ד י-Dי-	(299)			5	5	15		6.016	-1.99	R	
31 .		"D" - "D"									-		
			[250.28]	36894	436550	5	7	10	0.013	0.054	-1.18	E	1
12.		"D - "F"	226.45	36994	178500	5	7	600	0.65	2.41	0.51	C	1
18.		¹ S - ¹ P*	240.76			1	3	430	1.2	0.99	0.10	D	1

Cr XI: Allowed transitions -- Continued

The number in parentheses following the tobulated value indicates the power of ten by which this value has to be multiplied.

Cr xı

Forbidden Transitions

، مستر ۲	تدد کہ	المغناف	i line

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
519.13	11	1500	5	2799.2	8	15620	1
520	10	1590	3	2807.9	8	18060	1
710	9	2630	4	2874.1	8	63720	7
740	9	2750.1	8	2809.4	8	66570	7
940	6	2758.5	8	3178.2	2	901000	7
1400	5	2773.2	8	2006.8	2		
1440	3	2781.7	8	8244.2	1		

Line strengths for magnetic dipole and electric quadrupole transitions are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration interaction encompassed all configurations within the n = 3 complex. Huang calculated line strengths for transitions within the $3p^2$ configuration, as well as for transitions between pairs of odd-parity levels whose lower level is one of the four lowest-lying odd-parity levels in the n = 3 complex. Transitions involving odd-parity levels which are indicated by Bromage *et al.*² (for Fe XIII) or Bromage¹ (for V x and Ni XV) to be of low purity in *LS* coupling in Fe-group species are omitted here, as are lines whose strengths are very small. Strengths of electric quadrupole transitions as reported in Ref. 1 were multiplied by the factor ²/₃ which is needed to bring these values into conformance with the definition of quadrupole strengths used in the NBS tables.

References

- ¹K.-N. Huang, At. Data Nucl. Data Tables 32, 503 (1985) and private communication.
- G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Mon. Not. R. Astron. Soc. 183, 19 (1978).
- G. E. Bromage, Astron. Astrophys., Suppl. Ser. 41, 79 (1980).

T T

1

No.	Transition Arrey	Multiplet	¯λ (Å)	E, (cm ¹)	E, (cm ¹)	8.	ß	Type of transition	A _b . (s ⁻¹)	S (et. u.)	Acce- recy	Source
1.	3p°-3p°	ዋ - ዋ		- - -		-			1 1 1 1 1	a arter a	- a same to a way to a	
			(15520)	5539	11981	3	5	MI	3.45	2.39	C+	1
	v		[18050] [8344.3]		55 39 11981	1	3	MI E2	2.98 C.0011	1.95 0.13	D- C+ D-	1
2.		Ψ- 'D							2 2 2	*		
			3996.8	11961	36994	55	5	M1 E2	25 0.027	0.31 0.981	E E	1
			[3178.2]	5539	36994	3 3	5 5	MI E2	18 9.912	0.11 9.912	E E	1 1
3.		'P - 'S		• •		:						
:			(1590) (1440)	•		- 5 - 3	1	E2 Mi	1.5 37u	0.0092 0.041	E E	1
4.		'D - 'S	[2530]			\$	I	E 2	6.9	0.52	D	1
5.	2e 3p *- 2e 3p *	'S' - 'D'					:			•		
			[1 490] [1500]		-	5 5 5	7 5 5	E2 M1 E2	0.25 7.5 0.16	0.0056 0.0047 0.0037	E E E	1 1 1
6.		\$ · P				1						
			[940] [940]	ан - Л - Р 		5	5 3	M1 M1	240 130	0.037 0.012	E E	1 1
7.		ው - ው	;									
			[68570]	242459	243917	5	7	M1 22	0.054 7.21 - 91	4.52	C-	1
			[901000] [63720]	242248 242248	242459 2 439 17	3	5 7	M1 E2	3.21 - 5) 2.51 - 9)	4.4 0.011	E	I 1

Cr xr: Forbidden transitions

							_					
Ne.	Transition Array	Multiplet	Å Å	E, (cm ⁻¹)	ji (cm ⁻¹)	8	4	Type of transition	А _ь (в ⁻¹)	5 (mt. u.)	Ассы- тасу	Source
8.		U-T	1							1		
			(2995 4)	263017	778397	7		E2	14	0.53	D _	
			[2007.9]	242450	27862	5	ī	R2	15	0.95	Ď-	li
1			[2574.1]	243017	278700	7	5	Mi	22	0.14	B	i
			•	•	•	7	5	E2	1.:	0.59	D-	1
			[2781.7]	212159	275397	5	3	<u>62</u>	0.28	0.083	B	1
			[2799.2]	262348	278062	3	1	M1	42	0.054	B	1
1			[2758.5]	212159	275700	5	5	M1	5	0.005	B	1
			•	•	•	5	5	F2	1.3	0.50	D -	1
			[2773.2]	212348	278397	8	3	MI	42	0.000	B	1
						3		EZ NO	1.6	0.67	D-	1
	-		[2150.1]	262365	278/00		5		13	0.025	E E	
			-	_	_	•	9	EZ	•	4.10	-ע	1
	2.2.3.2.2.2.2.2	711 - 727	1									
-									1	1		1
			[710]			5	•	E2	6.5		в	11
			[740]			1	7	E2	3.0	0.0028	B	i
		Į	[710]			7	9)M1	540	130.0	E	1
									Į]		
10.		ሻዮ - ትዮ								1		
						_					_	
i			(529)			5	1	22	Z50	9.9957	B	11
11		The line							1		1	1
		U - U							1	1		
		i	(519 191	743617	(DELA	1 7	7	1 0	41	2100.0	R	1
		•	[474.24]			1 '	•••			1		1*

Cruz Perhidden transitions -- Continued

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xx

Al Isoelectronic Sequence

Ground State: 1s12s12p+3s13p 1P1/2

Ionization Energy: 298.0 eV = 2404000 cm⁻¹

Allowed Transitions

List of tabulated lines	
-------------------------	--

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelongth (Å)	No.	Wavelength (Å)	No.
196	29	247	19,20	250	28	206	15
196	22	240	25	273	28	309	15,16
209	31	250	20	274	28	\$11.56	8
216	30	251	25	275	6	\$18.62	2
217	30	251.52	17	278	6.28	320.20	5
218	30	252	19	280	18	824	14
221	21	252.11	17	282	18	225	4,14
222	25	254	25,34,25	206	24	325.13	5
239	32	255	25	294	23	\$27	14
244	19	256	19,27	294.77	3	230	8
244.70	17	250	21	300.32	3	381	1
246	20	265	1 22	206.81	3	231.95	2

1

List of tabulated lines -- Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Waveler jth (Å)	No.
132	8	401	7	410.91	1	40	11
332.06	5	402	12	412.46	1	458	11
338	4	463	7	413	9	461	11
344	13	405	7	417	12	589	10
346	13	407	7	419	12		
393.00	1	410	9	446	11		

Line strengths for transitions of the arrays $3s^23p$ - $3s^2p^2$, $3s^3p^2-3p^3$, $3s^23d-3s^2p^3d$, $3s^23p-3s^23d$, and $3s^3p^2-3s^3p^3d$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang.¹ These relativistic calculations included a perturbative treatment of the Breit interaction. Allowance for configuration mixing included all configurations within the n = 3 complex.

Hung published neither an energy-level diagram nor percentage compositions for levels of the $3s^23p$, $3s^3p^2$, $3s^23d$, $3p^3$, and $3s^3p^3d$ configurations in Cr XII. We have used the percentages given by Fawcett² as a guide to naming the levels; the latter's values resulted from Hartree-Fock calculations with relativistic effects and statistical allowance for exchange (HXR), and incorporated correlation effects due to all configurations within the n = 3 complex. Transitions involving levels which are indicated to be of low purity in *LS* coupling are omitted here. Lines which are characterized by very small *f*-values are assigned lower accuracy ratings; the weakest lines have been excluded. A few wavelengths computed by Huang differ significantly from those which resulted from the fitting and scaling procedure applied by Fawcett²; lines for which the wavelengths are in serious disagreement have been omitted.

References

¹K.-N. Huang, At. Data Nucl. Data Tables 34, 1 (1996) and private communication.

²B. C. Fawcett, At. Data Nuci. Data Tables 28, 557 (1983).

. -

No.	Transition Array	Multiplet	λ (Å)	E , (cm ⁻¹)	E , (cm ⁻¹)	E.	Ł	Аь (10 ⁴ в ⁻¹)	<i>f</i> .	S (at. u.)	ios d	Асси- гасу	Source
									[
1.	2e*3p-3e3p*	*P* - *D	104.86	8000	\$\$\$000	6	10	16	0.064	0.51	-0.42	E	1
			410.91	12000	255360	4	6	15	0.066	0.30	-0.65	D	1
	•		293.00	0	254450	2	4	17	0.077	0.20	-0.81	D	1
			412.46	12000	254450	4	4	0.94	0.0024	0.013	-2.02	E	1
2		'P' - 'S	\$2 7.16	8000	313660	6	2	130	0.068	0.44	-0.39	D	1
			331.95	12000	313660	4	2	21	0.017	0.075	-1.16	D	1
		1	\$18.82	0	313660	2	2	110	0.17	0.36	-0.46	D	1
3.		ም - ም	\$03.80	8000	\$\$ 71 6 0	6	6	230	0.45	2.7	0.43	D	1
			206.81	12000	239 250	4	4	276	0.387	1.56	0.190	c-	1
			[300.32]	0	332980	2	2	140	0.19	0.28	-0.42	D	1
		1	311.55	12000	332980	4	2	160	0.12	0.48	-0.33	D	1
			294.77	0	339250	2	4	60	0.157	0.204	-0.50	C-	1
4.	3e3p1-3p1	'P - 'D'											
			(228)		l			14	0.0019	0.012	1.07		
			(225)			2		0.54	0.0018	0.0029	-245	2	1
		1	(000)			•		0.00	0.0010	0.0000		Ľ	•
5.		'P - '8'	.\$\$7.71			12	4	290	0.15	2.0	0.27	D	I
		1	332.06			6	4	140	0.15	1.0	0.04	D	1
			325.13			4	4	99	0.16	0.67	- 0.20	D	1
			320.20			2	4	52	0.16	0.34	- 0.49	D	1
	1												

Cr III: Allowed transitions

.

Cr xm: Allowed transitions - Continued

No.	Transition	Multiplet	λ	E,	E,	6		٨.	· /+	s	log of	Acce	Source
	Алау		<i>w</i>	(cm ^{- 1})	(cm ⁻¹)			(10 ⁶ a ⁻¹)		(at. u.)		racy	<u> </u>
6.		9- 7											
			[278]	-		4	4	2.2	0.0025	0.0005	1.98	B	
_													
7.		*D - *D*	494			10	10	28	9.665	9.92	0.16	B	1
			[405] [405]			6	5	25 71	0.064	0.51	-0.42	B	1
			[407]			6	4	6.6	6.011	0.088	-1.18	B	1
			[401]			4	6	2.5	0.0009	0.067	-1.45	B	1
8.		*D - *P*	. \$\$1	1 		10	6	100	0.10	1.1	0.00	D	1
			[\$\$1]			6	4	85	0.653	0.61	-0.25	D	1
			[332]			4	2	110	0.067	0.38	0.46	D	1
			(0.000		-1.15		
э.		3-7	•			–		12	0.000	0.20	-0.13	B	
			[410] [41 3]			22	4	16 3.0	0.081	0.22	0.79 1.81	DE	
10		10 - 42*] _	
10.		1-5										_	
			[paa]			•	4	0.31	0.0016	0.013	-2.18	E	1 I
11.		² P - ² P*	455			6	6	26	0.081	0.73	-0.31	B	1
			[458]			4	4	22	0.070	0.42	-0.56	D	1
			[449] [46 1]	1			2	Z7 65	0.051	0.24	-0.79		
			[446]			2	4	0.23	0.0014	0.0041	-2.55	E	i
12.	80°2d - 808p(P*)8d	²D - ²F**	408			10	14	17	0.061	0.82	-0.21	E	1
			[402]	Į		6	8	19	0.60	0.48	-0.44	E	1
			[417]			4	6	14	0.053	0.29	-0.68	E	1
			[413]			0	0	24	0.0003	0.002	-1.42	E	L
13.		'D - 'ም											
			[346]	1		6	4	2.1	0.0025	0.017	-1.83	E	1
			[844]			4	4	2.6	0.0046	0.021	-1.78	E	1
14.	3e²3d - 8e3p('P*)3d	²D - ²F*	526			10	14	230	0.50	5.4	0.70	E	1
	-		(327)			6	8	220	0.48	21	0.46	P],
			[324]			4	6	220	0.52	2.2	0.31	E	i
		*	[325]			6	6	9.8	0.016	0.10	- 1.03	E	1
15.		² D - ² D*											
			[309]			6	6	160	0.23	1.4	0.14	E	1
			[306]			4	6	5.0	0.011	0.043	- 1.37	E	1
16.		²D - ²P*											
			[309]			4	2	270	0.19	0.79	0.11	D	1
		1	1	1		1	1	1	ļ		1	1	1

Т

Cr xm: Allowed transitions - Continued

No.	Transition Array	Multiplet	λ (Å)	E, (cm ⁻¹)	E t (cm ⁻¹)	8.	8.	A _b (10 ⁴ s ⁻¹)	f.	S (at. u.)	log gf	Ассы- гасу	Source
17.	39-34	°₽° - °D	249.25	8000	409210	6	10	350	0.55	2.7	0.52	D	1
		-	251.52 244.70 [252.11]	12000 0 12000	409580 408660 408660	4 2 4	6 4 4	340 300 66	0.48 0.55 0.063	1.6 0.88 0.21	0.29 0.04 0.60	D D D	1 1 1
18.	3s 3p²- 3s 3p(°P* 13d	ዋ - ሞ											
:			[282] [280]	to print and the second se	• • • • • •	6 4	8 6	1.2 0.72	0.0020 0.0013	0.011 0.0047	-1.93 -2.29	E E	1
19.		'P - 'P'		a dense a dense									
			[256] [244] [247] [252]			6 2 4 4	6 2 2 6	54 12 240 200	0.034 0.011 0.11 0.28	0.17 0.017 0.36 0.94	0.70 -1.67 -0.35 0.05	D D D D	1 1 1 1
20.		"P - "D"	- - - -										
	- 2		(250) (246) (250)			6 4 6	8 6 8	350 110 220	0.437 0.15 0.20	2.16 0.48 1.0	0.419 -0.23 0.06	C- D D	1 1 1
21.		'ዋ - 'ፑ"	[241]	1		· 2		990	0.30	U.43	-0.22	J	1
			(221)			6	. 8	1.9	0.0019	0.0082	- 1.95	E	1
22		'P - 'P'		:		:		* * * *					
			[198]			2	4	1.6	0.0018	0.0024	-2.43	E	1
23.		•D - 'P'	(1 00 - 1)	1 -		:						_	
			(294)			D	D	4.9	0.0064	0.037	-1.42	E	1
24 .		עי געי	[286]			: 6	8	15	0.0025	0.014	-183	P	1
25.		۲ D - ۲۳ ۰	251			10	14	140	0.18	1.5	- 1.55	E	1
			[248]			6	8	140	0.17	0.84	0.01	E	1
			[254] [255]			4	6 6	120 18	0.17 0.017	0.57 0. 086	- 0.17 - 0.99	E E	1
26.		'D - 'P'										1	
			[222]			4	2	0.44	1.6i - 4r	4.8 (4)	3.18	E	1
27.		'S - ' P "	258			2	6	290	0.82	1.4	0.22	D	1
			[259] [256]			2 2	4 2	320 150	0.65 045	1.1 0.25	0 11	D	· 1 • 1
28		'P - 'P'	275			6	6	150	0.17	0.93	0.01	D	1
			(278)			4	4	97	0.11	0.41	0.35	D	: . 1
			[269] (274)			2	2	210	0 23	0.40	0.35	D	1
			[273]			4 2	4	7.7	0.024	0.076	1.02	ם	: 1 - 1

1

No.	Transition Array	Multiplet	À (Å)	E , (cm ⁻¹)	E. (cm ⁻¹)	E.	ł	A _b (10 [#] s ⁻¹)	f.	S (ant. u.)	lot of	Accu- racy	Source
29.	3e3p²- 3e3p('P')3d	ዋ - ም											
			[196]			6	8	1.6	0.0012	0.0048	-2.13	E	1
3 0.		Đ-Ŧ	2]7			10	14	250	0.25	1.8	0.40	E	1
			[218] [216] [217]			6 4 6	8 6 6	240 240 14	0.23 0.25 0.910	1.0 0.72 0.043	0.14 0.01 -1.22	E E E	1 1 1
3 1.		*D - *P*											
			[299]			4	2	1.7	5.5(-4)	0.0015	2.66	E	1
32.		*S - *P*											
			[239]			Z	z	160	0.13	0.21	-0.57	D	1
33.		<u>ም - ም</u>											
			[265]			4	6	1.3	0.0020	0.0070	- 2.10	E	1
34.		²P - 'D'											
			[254]			4	6	520	0.75	2.5	0.48	E	1
35.		ም - ም											
			(251) (254)			24	22	70 75	0.067 6.0362	0.11 0.121	-0.88 -0.84	D C-	1

Cr XII: Allowed transitions - Continued

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xn

Forbidden Transitions

Line strengths for magnetic dipole and electric quadrupole transitions within the $3s^23\rho$ ²P[•] and $3s^3\rho$ ²^P terms are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Huang.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing included all configurations within the n = 3 complex. Strengths of electric quad.²upole transi-

S.

tions as reported in Ref. 1 were multiplied by the factor 2 /) which is needed to bring these values into conformance with the definition of quadrupole strengths used in the NBS tables.

Reference

K.-N. Huang, At. Data Nucl. Data Tables 34, 1 (1986).

F-63

Cr XII: Forbidden transitions

No.	Transition Army	Multiplet	<u>ک</u> (گ	E , (cm ⁻¹)	E. (cm ⁻¹)	£	84	Type of transition	A _{in} (g ⁻¹)	S (at. u.)	Accu- racy	Source
1.	3p~3p	ም-ም										
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[8 33 1] -	_0	12900	2 2	4	M1 E2	15.5 0.0025	1. 33 0.24	C D	1
2	3e3p²-3e3p²	ዋ-ዋ										
		1	[15600]			4	6	MI	4.24	3.58	c	1
		•	-	•		4	6	E2	1.1(-47	0.36	D -	1
		•	[21100]	ł		2	4	M 1	2.38	3.31	C	1
		•	-			2	4	E2	3.0(- 6)	0.030	E	1
			[8966]			2	6	E2	0.0013	0.27	D-	1

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xm

Mg Isoelectronic Sequence

Ground State: 1s²2s²2p*3s² 1So

Ionization Energy: $354.8 \text{ eV} = 2862000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

velength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
49.5 9	14	276.4	18	362.6	4	449.76	7
67.01	13	277	22	363.96	3	451.7	7
224	21	279.32	16	367.9	9	461.60	7
228	20	286	24	368.06	3	46-3 2	7
259.68	15	298	19	369.13	9	465.1	7
261.91	15	328.29	2	371	8	482.2	1
262.33	15	342.69	3	374	12	560.11	5
267.73	15	345	23	375.1	4	638	10
268.4	15	351.14	3	377.60	6		
268.9	15	353.81	3	385	11		
270	17	356.12	3	437.05	7		

Oscillator strengths for the three transitions $3s^{2-1}S_n - 3snp^{-1}P_1^*$ (n = 3-5) are the results of the relativistic random phase approximation (RRPA) calculations of Shorer et al.,¹ who allowed for correlation within the context of a frozen core. Oscillator strength data of Fawcett,² quoted for most transitions of the arrays $3s 3p - 3p^2$, 3s 3d - 3p 3d, 3s 3p - 3s 3d, and $3p^2 - 3p 3d$, were derived by means of Hartree-Fock calculations which included relativistic effects and statistical allowance for exchange (HXR); he incorporated correlation effects due to all configurations in the n = 3 complex. Froese Fischer and Godefroid' determined f-values for singlet-singlet transitions within the complex by applying a nonrelativistic multiconfiguration Hartree-Fock (MCHF) technique with large-scale allowance for configuration interaction; their resluts are quoted for two transitions of the 3p 3d- $3d^2$ array for which we estimate the contribution of singlet-triplet mixing to the *f*-value to be insignificant. *A*-values for the three intercombination lines tabulated here were calculated by Kastner and Bhatia⁴ using a scaled Thomas-Fermi approach that allowed for correlation due to all configurations in the n = 3 complex.

Transitions involving levels which are indicated in Ref. 2 to be of low purity in *LS* coupling are omitted here. Lines which are characterized by very small *f*-values are assigned lower accuracy ratings.

References ¹P. Shorer, C. D. Lin, and W. R. Johnson, Phys. Rev. A 16, 1109

(1977).

²B. C. Fawcett, At. Data Nucl. Data Tables 28, 579 (1983). ¹C. Frozar Fincher and M. Godefroid, Nucl. Instrum. Methods 282, 307 (1962).

*S. O. Kastner and A. K. Bhatis, J. Opt. Soc. Am. 69, 1391 (1979).

,

No.	Transition Array	Multiplet	Å Å	B , (can ⁻¹)	E 4 (cm ⁻¹)	8.	4	A. (10 ⁶ s ⁻¹)	<i>f</i> .	S (mt. v.)	he d	Acce- racy	Source
1.	3e ² -3e3p	"S - "P"											
			482.2	9	297480	1	3	0.18	0.0019	0.0030	-2.73	E	4
2		'S - 'P*	128.29	•	394610	1	3	186	0.982	0.9 75	-0.965	B	1
3.	3x3p-3p ²	3 9° - 3 P	\$55.9	212100	453680	,	9	150	9.28	2.9	0.39	D	2
			358.81 356.12 368.95 362.95 342.69 351.14	216600 297400 216009 297400 297400 203400	496200 495200 485200 485200 485200 485200	5 3 5 3 3 1	5 3 3 1 5 3	100 40 61 150 34 56	0.19 0.077 0.074 0.10 0.10 0.31	1.1 0.27 0.45 0.36 0.34 0.36	-0.92 -0.64 -0.43 -0.52 -0.52 -0.51	D C C C D C	2 2 2 2 2 2 2 2
4		₽° - "D											
			(375.1) [362.6]	21 6680 207400	483150 483150	5 3	5 5	13 6.4	0.027 9.021	0.17 0.075	- 9.35 -1. 29	E E	4
5.		'P' - 'D	560 .11	304610	483150	3	5	13	0.10	0.55	0.52	E	2
6.		'P' - 'S	377.60	304610	569440	3	1	150	0.11	0.41	-0.48	C	2
7.	3c3d-3p3d	י יזי - סי	447.2	589500	813100	15	21	42	0.18	3.9	0.42	D	2
			437.05 449.76 461.60 [451.7] [463.2] [465.1]	590100 589200 588500 590100 589200 590100	818900 811500 805100 811500 805100 805100	7 5 2 7 5 7 5 7	9 7 5 7 5 5 5	46.4 35 28 6.9 6.8 0.13	0.171 0.15 0.15 0.021 0.022 2.9(-4)*	1.72 1.1 0.68 0.22 0.17 0.9031	0.078 -0.12 -0.35 -0.83 -0.96 -2.69	C C D C D E	2 2 2 2 2 2 2 2
8.		*D - *P*		T									
		1 1	[371]			3	1	87	0.060	0.22	-0.74	C	2
9.		'D - 'D'											
			369.13 [367.9]	590100 589200	861000 861000	7 5	7 7	64 13	0.13 0.038	1.1 0.23	-0.04 -0.72	C C	2 2
10.		¹ D - ¹ D*	[638]			5	5	5.9	0.036	0.38	-0.74	D	2
11.		¹ D - ¹ F *	(385)			5	7	150	0.48	3.0	0.38	D	2
12.		¹ D - ¹ P"	[374]	-		5	3	100	0.13	0.80	- 0.19	D	2
13.	3e²-3e 4p	'S - 'P'	67.01	0	1492000	1	3	1670	0.338	0.075	-0.471	C	1
14.	3e°-3e5p	'S - 'P'	49.59	0	2017000	1	3	990	0.109	0.0178	0.96	C	1

Cr XIE: Allowed transitions

Cr xm: Allowed transitions - Continued

No.	Transition Array	Multiplet	ک (جُ)	E, (cm ¹)	E. (cm ⁻¹)	Ŗ.	8.	A_ (10° s ¹)	f.	S (at. u.)	log gf	Асса- гасу	Source
15.	3a3p-3a3d	Ϋ Γ - Ό	265.0	<u>212100</u>	589500	9	15	197	0 .34 5	271	0.492	С	2
	•											1	
			267.73	216600	590100	5	7	190	0.286	1.26	0.155	C	2
			251.91	207400	589200	3	5	150	0.25	0.67	-0.11	C	2
			259.68	203406	588500	i	3	120	0.35	0.30	-0.46	C	Z
			[266.4]	216600	263200	3	2	48	0.052	0.23	-0.59	C	2 Z
			252.33	207400	268500	3	3:	84	0.064	0.23	-0.56	C	Z
			[200.5]	216600	366300	2	3	5. Z	0.0034	0.015	— L.+ i	U	Z
16.		" P" = "D	279.32	304610	662620	3	5	350	0.63	1.9	0.32	D	2
17.	3p²-3p3d	"P" - "P"		•					•				
			[270]			3	1	170	0.063	0.17	-0.72	С	2
18.		* 0 * - ¶*											Í.
			[276.4]	499200	861000	5	7	220	0.35	1.6	0.24	D	2
19.		" D - " D "	[296]			5	5	130	0.17	0.83	- 0.07	E	2
20 .		"D - "F"	[228]	!		5	7	180	0.20	0.75	0.00	E	2
21 .		¹ D - ¹ P*	[224]	- B		5	3	2.9	0.0013	0.0048	- 2.19	E	2
22.		"S - "P"	[277]			1	3	210	0.73	0.67	-0.14	C	2
23.	3p3d-3d*	" F" - "G	(345)			7	9	174	0.399	3.17	0.446	C-	3
24.		' P * - 'S	[296]			3	1	460	0.188	0.53	- 0.249	C-	3

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

.

Cr xiv

Na Isoelectronic Sequence

Ground State: 1s²2s²2p⁴3s ²S_{1/2}

Ionization Energy: $384.171 \text{ eV} = 3098520 \text{ cm}^{-1}$

Allowed Transitions

List of	tabulated	lines
---------	-----------	-------

Wavelength (Å)	No.	Wavelength .Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
36.466	6	54.164	10	196.5	48	217.2	51
38.935	5	60.699	21	107.7	47	217.4	62
39.796	17	60.756	21	107.8	47	221.5	43
40.016	17	60.761	21	109.8	37	221.9	43
40.018	17	63.324	2	110.4	37	222.9	43
40.782	4	63.539	2	111.2	53	223.3	70
40.800	4	63.935	20	117.6	X	223.4	70
41.556	15	64.005	29	118.3	X	236.8	•
41.788	15	64.945	29	125.2	46	239.9	
41.796	15	68.594	9	125.3	46	241.5	74
42.297	14	69.213	9	133.1	45	241.7	74
42.453	14	69.247	9	133.2	45	286.3	56
44.597	13	79.125	32	133.3	45	287.2	56
44.869	13	84.631	41	136.0	52	289.735	1
44.873	13	85.012	41	148.5	29	237.9	61
45.835	12	85.020	41	149.1	29	300.1	61
46.125	12	86.060	19	156.4	58	360.271	7
46.417	25	86.169	19	157.1	35	300.3	61
46.453	25	86.185	19	158.4	35	301.814	7
46.468	3	86.911	31	165.0	65	346.3	68
46.527	3	93.006	39	165.7	65	346.5	68
48.300	25	93.432	39	187.02	- 44	346.6	68
48.235	25	93.467	39	187.2	44	363.5	60
48.340	25	95.997	49	187.30	44	357.1	60
48.991	24	96.061	49	188.0	71	389.81	1
49.032	24	96.330	28	188.1	71	400.3	73
50.821	11	96.824	38	189.1	34	400.5	73
51.172	11	99.443	54	190.0	:1	400.6	73
51.180	11	99.453	54	191.0	- 34	411.99	1
52.321	23	99.473	54	192.3	75	413.7	67
52.363	23	100.88	18	200.1	63	414.3	67
52.367	23	101.05	18	201.0	63	415.6	67
53.642	22	101.42	18	201.2	63	789.3	83
53.674	22	102.7	30	216.1	62	819.0	33
53.691	22	102.8	20	217.0	51	823.7	33
53.760	10	104.4	48	217.1	51		

Strengths of the lines of the 3s-3p and 3p-3d transitions were taken from Edlén's interpolation formulae.¹ These were based on the results of Weiss' Hartree-Fock calculations,² in which ratios of relativistic Dirac to nonrelativistic line strengths in hydrogenic ions were applied as scaling factors to the nonrelativistic Hartree-Fock line strengths in the corresponding sodiumlike species. Oscillator strengths for the 4p-4d transitions were derived by Gruzdev and Sherstyuk³ using the relativistic variant of their effective orbital quantum number method, which utilizes a Coulomb potential in conjunction with a semiempirical orbital quantum number which is determined from experimental energy levels. Strengths of the lines of the 3s-4p transition were interpolated from the results of the relativistic singleconfiguration Hartree-Fock calculations of Kim and Desclaux⁴ for V XIII and Fe XVI.

Multiplet f-values calculated by Biemont³ using a fully variational Hartree-Fock approach are quoted for numerous transitions n! - n'l' ($3 \le n \le 5$; $4 \le n' \le 8$; l, l' = s, p, d, f). Data for additional transitions (namely, those for which n > 5, where n is the principal quantum number of the lower state) can be found in Ref. 5. Whenever wavelengths of individual lines within a mul-

tiplet either were available directly or could be determined from the energy levels, the multiplet strength was distributed among the lines according to LS-coupling rules, except in cases where the wavelengths of all the lines in the multiplet are identical. The strength of the 3p ²P - 4s ²S multiplet was not distributed between the two lines in the multiplet, however, since the relativistic single-configuration Hartree-Fock calculations of Kim and Cheng* indicate that in the corresponding transition in sodiumlike iron the ratio of the two line strengths deviates somewhat from the value that would be obtained in the case of pure LS coupling.

Transitions with small f-values were generally assigned lower accuracy ratings.

References

- ¹B. Edlén, Phys. Scr. 17, 565 (1978).
- A. W. Weiss, J. Quant. Spectrosc. Radiat. Transfer 38, 481 (1977).
- P. F. Gruzdev and A. I. Sherstynk, Opt. Spectrosc. (USSR) 46, 353 (1979).
- Y.-K. Kim and J.-P. Deschuis, Argonne National Laboratory Report ANL-76-88, Part I (1976).

E. Biemont, Astron. Astrophys., Suppl. Ser. 31, 285 (1978).

"Y.-K. Kim and K.-T. Cheng, J. Opt. Soc. Am. 68, 836 (1978).

Cr xIV: Allowed transitions

Nio.	Transition Array	Multiplet	λ (Å)	E , (cm ⁻¹)	E. (cm ⁻¹)	E.	E.	A _b (10° s ⁻¹)	f.	S (at. u.)	iog af	Асть- гасу	Source
1			-						1	i -			
I.	3e-3p	ን - ም	396.94	0 .	251930	2	16	60.5	0.429	1.12	- 0.067	B	1
			389.81	0	256540	2	4	64.1	0.292	0.750	-0.233	B	. 1
			411.99	0 !	242720	2	2	53.7	0.137	0.371	0.563	B	1
2	3e-4p	ኝ - ም	61.395	0	1577410	2	6	1690	0.1 9 7	0.6823	-0.404	C+	interp.
			63.324	0	1579180	2		1070	0.129	0.0537	-0.589	C+	intern.
			63.539	0	1573960	2	2	1130	0.0684	0.0286	-0.864	C+	interp.
3.	3e-5p	ን - ም	46.488	0	2151100	Ż	6	660	0.064	0.020	- 0.89	С	5
			46.468	0	2152000	2		660	0.042	0013	-1.07	Ċ	. la
			46.527	0	2149300	2	2	670	0.022	0.0067	-1.36	č	4
4.	3а-бр	'S - 'P'	10.788	0	2451700	2	6	390	0.0292	0.0078	- 1.234	C	5
			40 782	0	2452100	2		390	0.019	0.0052	-141	С	la la
			40.800	Ō	2451000	2	2	390	0.0097	0.0026	-1.71	D	4
5.	3e-7p	·S - 7P	38.036	0	2629100	2	6	247	0.0161	0.00403	- 1.492	С	5
6.	3e -8p	²S - "P*	26.466	0	2742300	2	6	167	0.0100	0.00240	- 1.70	C	5
7.	3p-3d	ም - ወ	296.77	251930	5888 9 0	6	10	146	0.321	1.89	0.284	B	1
			300.271	256540	589570	4	6	141	0.286	1.13	0.058	В	1
			289.735	242720	587860	2	4	131	0.329	0.627	- 0.182	B	- I
			301.814	256540	587860	4	4	23.0	0.0315	0.125	- 0.900	B	1
8.	3p- 4s	'P" - 'S	81.526	251930	1478500	6	2	2000	0.066	0.11	0.40	С	5
9.	3p-4d	T ¹ - T	69.008	251 93 0	1701000	6	10	2240	0.278	0.379	0.222	C	5
			69.213	256540	1701200	4	6	2210	0 249	0 227	0 002	С	la
			68.594	242720	1700600	2	4	1980	0.279	0.126	- 0.253	č	Ĩ.
			69.247	256540	1700600	4	4	280	0.027	0.025	0.96	D	is in the second
10.	3p - 5a	'P" - 'S	54.028	251930	2102800	6	2	880	0.0129	0.0138	- 1.111	C	5
			54.164	256540	2102800	4	2	590	0.013	0.0092	- 1.29	с	la
			53.760	242720	2102800	2	2	300	0.0130	0.00460	- 1.59	С	la 🛛
11.	3p-5d	ም - ወ	51.054	2519 3 0	221060 0	6	10	1400	0.091	0.092	-0.25	С	5
			51.172	256540	2210700	4	6	1400	0.082	0.055	- 0.49	С	· la
			50.821	242720	2210400	2	- 4	1200	0.093	0.031	- 0.73	С	La la
			(51.180)	256540	2210400	4	. 4	230	0.0091	0.0061	- 1.44	D	la

Cr XIV: Allowed transitions — Conti	in and
-------------------------------------	--------

Ne.	Transition Array	Multiplet	å	£, (cm−')	K , (cm-¹)	*	•	A⊾ (1€ ⁰ s ⁻¹)	<i>[</i>]	5 (m. 1.)	he s	ТВС
12	San dia	¥-5	16 839	5/ 50	2124488	6	2		0.0050	0.0045	-1.52	D
-		0	46 195	2565.48	2424488		•	310			_170	
			45.895	242720	2121489	z	2	160	0.0050	0.0015	-2.00	D
u	3y-6d	*P* - *D	44.779	£51 530	2625100	6	10	340	0.9(2)	9.9872	-9.69	C
			44. 969 44.597 [44.873]	256540 262720 256540	2485200 2485000 2485000	4 2 4	64	830 710 140	0.0677 0.0622 0.0062	0.0223 0.0124 0.0025	-0.82 1.973 1.77	C C D
14	39- 7e	P-5	42.3 71	£51 539	2512000	6	2	290	0.0025	0.0022	-1.81	D
			42.458 [42.207]	256540 262720	2512000 2512000	4 2	22	200 36	0.0027 0.0025	0.0015 7.X-47	-1.97 -2.28	D D
15.	3 9-7d	*₽* - *D	41.712	£5/ 50 0	25,5300	•	10	560	0.0233	0.0192	-0.85	c
			41.786 41.556 [41.796]	256540 262720 256540	2549500 2549100 2549100	424	16 4 4	530 450 90	0.6289 0.623 0.0024	0.0115 0.0064 0.0013	-1.978 -1.33 -2.92	C C D
16.	3p-8r	*P* - *S				•	2		0.0015		-2.05	D
17.	3p-8d	ም - ካ	39.944	\$51 539	2755 40 0	6	10	361	0.0144	0.0114	-1.963	c
			40.018	256540	2755400	4	6	300	0.013	0.0005	-1.29	C
			[40.016]	256549	2755560	i	•	60	0.0014	7.9(-4)	-2.26	D
18.	3d-4p	°D - °P*	10].]6	588890	1577 410	15	6	485	0.0445	¢.1 49	-0.351	C
			101.05	589570 5877960	1579180	6	4	440	0.045	0.089	-0.57	C
		l	[100.88]	587860	1573180	4	4	49	0.0075	0.0099	-1.53	D
19.	2d-4	°D - °P*	86.125	588890	1750000	10	14	5900	0.92	2.6	0.96	C
			86.169	589570	1750140	6	8	5900	0.88	1.5	0.72	С
			86.060 [86.185]	587860 589570	17 49900 17 49900	6	6	5300 390	0.88 0.043	1.9 0.074	0.55 -0.58	C D
20.	3d-5p	'D - 'P'	64.012	5888 9 0	1151100	10	6	190	0.0070	0.015	- 1.15	D
			64.005	589570	2152000	6	4	170	0.0071	0.0090	-1.37	D
			[64.045] [63.925]	587860 587860	21 49300 2152000	4	2	190 19	0.0059	0.0050	-1.62 -2.32	Ē
21.	3d-54	'D - 'F'	60.731	588 89 0	2235500	10	. 14	2200	0.170	0.240	0.230	c
			60.756	589570	2235500	6	8	2190	0.162	0.194	-0.013	С
			60.699	587860	2235400	4	6	2050	0.170	0.125	-0.167	C
~~		300 37-	[00.101]	U100001V	665340U			1.00	0.0001	0.0037	- 1.01	י ר
72	4 0 - 0 0	"U - 'I'	əə.683 (52 min 1	306 630	2491/00	10	0	95	0.0020	0.0004	- 1.00	ע : ה
	•		[52.674]	5879 4 0	245100	0 	2	98	0.0023	0,0015	- 1.00 - 2.07	D
			(50 6 40)	107040	0.000						0.00	

\$	0 0 0 0 0	261- 511- 650- 190- 620-	1500°0 1000 1000 1000 11°0	6006°0 199°0 199°0 599°0	22 6001 0011 0011	9 9 8 91	9 7 9 0I	0026692 0026692 0026692 0026692	015685 058185 015685 068895	12525 12725 23725 23775	- 4. - 0 .	hR	12
5	D D C C C	251- 5L1- 650- 770-	1500°0 790°0 550°0 11°0	6000°0 190°0 190°0 890°0	EL 6001 0011 0011	9 9 8 91	9 7 9	0026692 0026692 0026692 0026692	015685 038185 015685 068885	U3625 12625 69625 57675	-स- C:	hn	12
•	D C C	261- 511- 650- 970-	1500°0 710°0 530°0	6609°0 199°0 199°0	52 0001 011	9 9 8	9 7 9	5422500 5422500 5422500 5422300	015685 098185 015685	125225 12525 55363			
म म	a	261- 5L1-	1500'0	00000	EL	9	9	2433290	019685	U.96.523]	÷		
9	a	261-		1	1					1			
\$		1	61000	2100.0	95	9	OL	0016252	400005	sieret	-F - C	dl-be	.12
4	D	11.2-	1100'0	1100.0	13	•	9	0016252	015695	[259 67]	:		
न म	3	192-	(1-15.3	(1-186	77 15	z		6016232	098185	[165 87]			
-			(1					660 100	[100 04-]	•		
\$	Э	150-	567470	2150-0	845	91	ÐI	0012535		12511	- d : - d :	JL-PC	7
4	5	51.0-	1920.0	0.0296	009	8	9	0008532	019695	SEE 81	-		
의 위	D a	-506	9616'A	5100°0	27 4400	9	9	5629300 5629300	015695 098190	(00E.84)			
5	B	512-		a-WL	SE	3	: OL	WEATLZ		IFT 37	-d: - 0-	-y-Pt	*
7		× 6-	10-03	0-6L	E		7	WELCT 12	¥65885	1637 37]		4	
7	2	297-	31(-1)	(1-)1'9	12	Z	•	9062712	698185	[119 99]	;		
9	8	a1-	19-18-2	11-121	LE	•	•	000211Z	098185	[[19:90]	i.		
5	Э	+L.O-		0810-0		† 1	10				-dr - Ch	/8- Pt	12
\$	Э	80.0		09.0		9	2	1			-d: - 5:	dy- 94	162
5	Э	-0362	1120	912.0	L1Z	9	3	0011517	0058411	2.841	4.8	đg- sy	67
7	D	750-	1710	771'0	1 812	: * :	Z	5125000	0058241	[\$'8 + []			
4	3	58.0-	010.0	120.0	012	z	2	5148300	0058291	[1:671]	1		
\$	Э	28.0	290.0	020.0	051	9	2	0021517	0058LF1	8701	- d S-	dg- 27	30
9	Э	90 °1	0.031	990.0	0+1	*	Z	2425100	0058LFI	[1:201]			
গ	5	EE 1-	910'0	120.0	051	2	z	S451000	0058491	[8:201]			
5	Э	9 81'1 -	<i>L</i> 810 [°] 0	LZED'0	96	9	z	0016292	0058741	[116'98]	-d S.	d <u>1</u> - sy	18
5	Э	2E9-1 -	9600'0	5810.0	99	9	z	0062912	005HLF1	[971'62]	-d: - S:	dy- sy	21:
3	Э	59.0	51	2910	67.	ol	9	0001021	0192251	1.008	Q , • " d ,	py-dy	Ħ
τ	J	646 V	- ¥₹.	67 U	ĸc	7	r	· VUETULI	UB16251	10.618)			
τ	3	20.0-	52	HP 0	52	1	2	00900/1	09462291	E GHL			
ť	Э	\$L'0	05.0	9900	51	, •	+	0090021	0×16251	[1 828]			
\$	3	691.0-	521'0	811'0	620	7.	9	2105900	01 \$2251	1 061	Sr - "d	wj-dy	"M:
7	3	L7E 0	ENZ O	8113	. 119	.Z	,	0042012	0 816 291	10 161]			
7	3	1910 -	0.142	911 0	£17	2	2	510500	09442251	11 GH1			
5	3	151.0	\$L'0	96Z 0	6 <i>L</i> £	01	9	0090177	01 \$2251	6'251	(1 , - , d)	p;-dy	કાર
-1		U	FF V	16 U	ULE	y	7	0020172	UN 10251	iv HSI)			
7 11) 1	78 U 10 0	0 52 0 44	17.0	062	7 4	2 •	0010127	0946251	11 <u>25</u> 1) 1			
"	D :	80 1	690'0	820 U	29	•	*	5510400	0H16251	(* #51)			
5	,)	HH O	150 0	0220 0	918	z	5	00 417.17	0192251	1 811	Sr - 41	my-dy	91 :
-/	, J	3 9U L	FDU U	660 Q	510	6	7	5454400	UN16291	12.811			
7	3	98 1 ·	L10'0	77.0 0	011	2	2	5454400	09412251	19/2111			

Cr xiv: Allowed transitions - Continued

67-70

Cr IIV:	Allowed transitions - Continued	

Na.	Transition Array	Multiplet	Å	يد (ده-۱)	E, (cm ⁻¹)	8.	•	A _b (10 ⁴ s ⁻¹)	1.	S (#L 11)	he st	Acce- recy	See
S 7.	4 9-64	*** - *D	110.2	15774.10	2625700	6	10	270	0.053	0.18	-0.30	с	5
			[130.4] [100.5] [110.4]	1579180 157 3860 157 9180	2005200 2005000 2005000	4 2 4	6 4 4	289 239 45	0.076 0.063 0.0083	0.11 0.050 0.012	-0.52 -0.78 -1.46	C C D	
38.	4 p- 7s	P- 3	36.656	1577410	2512000	6	2	180	0.0005	0.916	-1.29	D	5
			[96.824] [96.339]	1579180 1573860	2612000 2612000	4 2	2	120 60	0.0005 0.0054	0.011 0.0052	-1.46 -1.78	D D	b
39.	ty-Id	*₽* - *D	51.595	15774.10	9649900	6	10	186	9.9482	0.074	-1.62	c	5
			[38.432] [38.666] [38.667]	1579180 1573860 1579180	2549500 2549300 2549300	4 2 4	64	180 160 30	0.005 0.041 0.0040	0.044 0.025 0.9049	-0.54 -1.00 -1.30	C C D	
	4p-8e	P - 3				•	2		0.0044		-1.58	D	5
41.	4 9-8 4	¥₽* - *D	4.890	1577410	2755400	•	10	128	0.0230	0.0305	-0.86	с	5
			(85.929) [84.631] [85.912]	1579180 157 3860 1579180	2755600 2755500 2755500	4 2 4	64	127 198 21	0.0207 0.0232 0.0023	0.0232 0.0129 0.0025	-1.982 -1.334 -2.63	C C D	
62	46-47	²D - ²7"				10	14		0.122		0.005	с	5
4	4d-5p	*D - *P*	171.1	1701000	2151100	10	6	220	0.099	0.72	-0.00	С	5
			(221.9) (222.9) (221.5)	1701200 1700506 1700500	2152000 2149300 2152000	64	4 2 4	290 220 22	0.005 0.052 0.016	0.43 0.24 0.065	0.23 0.49 1.18	C C D	
44.	4d-5f	*D - *F*	187.1	1701000	2235589	10	14	970	0.71	4.4	0.85	С	5
			187.30 187.92 (187.2)	1701 300 170 050 9 1701 300	2235500 2235400 2235400	646	866	960 930 67	0.68 0.73 0.635	2.5 1.8 0.13	0.61 0.47 0.68	C C D	4 4 4
45.	4d-4p	Đ - Ŧ	133.2	1701000	2451700	10	6	103	0.0165	0.072	-0.78	c	5
			(133.2) (133.3) (133.1)	1701300 1700600 1700600	2452100 2451000 2452100	6	424	92 100 10	0.016 0.014 0.0027	0.043 0.024 0.0048	-1.01 -1.26 -1.96	C C D	
46 .	4d-6/	*D - *F*	125.J	1701000	2499300	10	14	540	0.178	0.73	0.250	c	5
			(125.3) (125.2) (125.3)	1701300 1700600 1701300	2499390 2499290 2499200	646	866	540 500 36	0.17 0.18 0.0085	0.42 0.29 0.621	0.01 -0.15 -1.29	C C D	
4 7.	4d-7p	*D - *P*	107.7	1701000	2629100	10	6	58	0.0060	0.021	-1.22	D	5
			[107.8] [107.7] [107.7]	1701 300 170 060 0 1700 60 0	2629100 2629100 2629100	6	424	58 57 5.7	0.0061 0.0049 9.9(-4)	0.013 0.0070 0.0014	-1.44 -1.70 -2.40	D D E	
48 .	40-71	י יע י - טי	106.4	1701000	\$658400	10	14	320	0.074	0.25	-0.13	c	5
			[106.5] [106.4]	1701 300 1709 600 1701 300	2555300 2555300	6	86	310 300 21	0.068	0.14	-0.30	C C D	

~

•

.

Cr xw: Allowed transitions -- Continued

Ne.	Transition Array	Multiplat	r L	Д tcm ^{-b})	E , tcm ⁻¹)	£	•	A _b (30 ⁴ s ⁻¹)	14	5 (m. v.)		Accu- racy	Source
						1		-			1.69		5
	• 4 - 4	D-T	70.044 196.0611	1701000	77.47388			-		0.0057	-1.42	D	-
			[96.997] [96.397]	1700600	2742300 2742300	4	24	57 26	0.0025 5.0(-4)	0.9032 6.3(-4)	-1.99 -2.70	D E	4 4
58.	4d-4f	*D - *F*				10	14		0.0589		-0.410	С	5
51 .	4-54	₩ - *D	£17.]	1750000	£2]0000	14	10	39.8	0.0201	0.291	-0.55	с	5
			[217.1] (217.2] [217.0]	175 0100 1749900 1749900	2216700 2216600 2216700	1 6 6	6 4 6	35.9 40 1.9	0.0201 0.019 0.0013	0.115 0.000 0.0057	-0.79 -0.95 -2.10	C C D	la la la
52	4-61	₩*D	[136.0]	1758888	2485100	14	10	17	0.0054	0.021	-1.32	D	5
53.	4 5 -7 d	₩ - D	(111 .2]	1758888	2613388	14	10	9.1	0.0012	0.0062	-1.77	D	5
54	47-84	°₽" - "D	99.463	175 0000	2 755 100	14	10	5.4	5.7(-4)	0.9925	-2.10	E	5
00 - 1 - 144 - 1 44 - 14			[99.473] [99.443] [99.453]	1750100 1745500 1745500	2755400 2755500 2755400	8 6 6	6 4 6	5.1 5.2 0.25	5.7(-4) 5.1(-4) 2.8(-5)	0.0015 0.0010 7.4(-5)	-2.34 -2.52 -3.65	E E E	la la la
55.	5e-5p	*5 - *F				2	6		0.78	1	0.19	с	5
56.	5 6-6 9	*S - *P*	286.6	2102000	24 517 80	2	6	ស	0.233	0.440	-0.332	с	5
		-	[296.3] [287.2]	2102800 2102800	24521 00 2451 000	22	4 2	ଣ ଘ	0.155 0.978	0.293 0.147	-0.51 -0.81	с с	4 4
57.	5e-7p	*S - *P*	(190.0]	2102300	2629100	2	6	a	0.076	0.095	-0.82	С	5
56 .	5e-8p	· · · · ·	[156.4]	2102900	2742300	2	6	32.7	0.0260	0.0371	-1.143	С	5
59 .	5p-5d	²₽* - ²D	1 1 1			6	10		0.67	1	0.60	c	5
60.	5p-6a	P - 3	36 5.9	2151100	2424400	6	2	241	0.161	1.16	-0.915	С	5
			[36 7.1] [363 .5]	2152000 2149300	2424400 2424400	4 2	2 2	160 82	0.16 0.162	0.77 0.387	- 0.20 - 0.490	C C	ia ia
61.	5p-6d	° P " - " P "	299.4	2151100	2485100	6	10	98	0.219	1.30	0.119	С	5
			[300.1] [297.9] (300.3]	2152000 21 49300 2152000	24852 ^(*) 2485000 2485000	4	6	97 82 16	0.20 0.221 0.022	0,78	-0.10	C C D	la La
62	50.7	'P* , 'S	917.0	151100	2612000		•	123	0.0313	0.001	-072	c	
			[217 4]	2152000	2612000	. • . •	, - ,	88	0.021	0.089	~ 0.91	c	" Ia
			[216.1]	2149300	2512000	2	2	: 44.9	0.0314	0.0447	- 1.202	č	
63	5p-7d	ም - D	200 .7	2151100	2649300	6	16	78	0.079	0.31	- 0.32	С	5
			(201.0) [200.1] [201.2]	2152000 2149300 2152000	2549500 2549100 2549100	4	6 4	79 63	0.072 0.076 0.0079	0.19 0.10 0.021	- 0.54 - 0.82	C C P	ia ia in
44	50 - ¥e	1 0- 242	[2. s 12]	2,.10000	7043100	. • 4	•	5 • 7	0.0192	0.021	- 1.30	D C	4 0
17 46 .	нр-на	r - 3				. 0	2		0.0124		- 1.132	C	5

Cr xw: Allowed transitions - Continue

									- ⁻				
No.	Transition Array	Multiplet	Å	E , (cm ⁻¹)	E ₄ (cm ⁻¹)	8.	•	A (10 ⁴ s ⁻¹)	1.	5 (at. u.)	hed	Ассь- гасу	Source
65.	5p-8d	17 - D	165.5	<i>\$</i> 151 100	2755 60	6	10	51	0.0002	0.125	-0.63	С	5
			[165.7]	2152000	2755488	4	6	51	0.005	0.077	-6.85	С	
			[165.6]	21(6900	2755580	2	4	48.1	0.0005	9.9627	-1.105	C	h
			[165.7]	2122000	2755560	4	•	9.5		0.0005	-1.61	D	6
66	5d-5f	"D - "T "	-			10	14		0.214		0.330	С	5
67.	5 3-6 9	*D - *P*	414.8	2210000	2451700	10	6	101	0.157	2.14	0.195	С	5
			[4]4.3]	2210700	2452100	6	4	91	0.156	1.28	-0.025	С	-
			[415.6]	2210000	2651000	4	2	100	0.13	0.71	-0.25	С	h
			[413.7]	221K-000	2652100	4	4	10	0.025	0.14	-0.90	D	6
æ	5d-4f	ግ-ም	246.4	£2,10000	24,99999	10	и	250	0.63	72	0.80	С	5
			1346.5]	2210700	2490000	6	8	250	0.00	41	0.56	С	
			[346.3]	2210400	2000200	4	6	200	0.66	29	0.41	C	b
			[346.6]	2210700	2499200	6	6	17	0.651	0.21	-0.74	D	5
●.	5 d -1p	*D - 🏞	231.9	2210000	2629100	10	6	52	0.0269	Q.212	-0.57	C	5
		1	[230.0]	2210700	2629100	6	4	17.1	0.0260	0.127	-0.79	С	
			[238.8]	2210400	2629100	4	2	53	0.023	0.071	-1.66	Ċ	
			[298.8]	2210400	2629100	4	4	5.2	0.0045	0.014	-1.75	D	
70.	5d -7/	*D - *F*	223.5	22/0000	3658400	10	14	166	0.174	1.28	0.241	c	5
			[223.4]	2210700	2553480	6	8	170	0.17	0.73	-0.00	C	
			[223.3]	2210400	2656300	4	Ē	150	0.17	0.51	-0.16	č	
			[221.4]	2210700	2658300	6	6	11	0.0084	0.057	1.30	D	6
71.	5d-8p	*D - *P*	181.1	£\$10600	2742300	10	6	81.4	9.9100	0.062	-1.990	с	5
			(198.11	2210700	7742300			28			-122	C	
			[188.9]	2210000	2742300	4	2	22	0.0085	0.821	-141	D	1
			[188.0]	2210400	2742300	4	4	8.1	0.0017	0.0041	-2.18	D	
72.	ક્રા-શ	"D - " 7 "				10	14		0.077		-0.11	c	5
73.	5 7-5 d	77" - "D	\$00.6	2225500	2485100	14	10	28.4	0.0488	0.90	0.165	с	5
			[400.5]	2225500	2485200	8	6	21	0.048	0.51	-0.41	C	10
			[400.6]	2235400	2485000	6	4	28	0.045	0.25	-0.56	Ċ	4
			[400.3]	2225400	2485200	6	6	1.4	0.0023	0.025	- 1.70	D	in .
74.	5f -7 d	™ - ™	24 1.7	2225500	2649300	14	10	14	0.0006	0.005	-0.92	D	5
			1241 51	2225500	2549500			12	0.0094	0.055	-116	D	la la
		, , 1	[241.7]	2235400	2549100	6	14	14	0.0080	0.028	-1.12	Ď	la la
			[241.5]	2235400	2549600	6	6	0.65	5.7(-4)	0.0027	-2.41	Ľ	10
75.	5 7-8 d	₩" - "D	(192.3)	\$\$\$5500	\$755490	14	10	7.8	0.0031	0.027	-1.36	D	5

The number is parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

F-73

Cr XIV

Forbidden Transitions

The electric quadrupole gf-value for the is-3d multiplet in this sodiumlike ion was reported by Godefroid *et al.*;¹ it was calculated earlier by Biemont and Godefroid² using a fully variational Hartree-Fock approach. This *f*-value was converted to a multiplet strength, which was then distributed between the two lines of the multiplet according to *LS*-coupling rules.

References

¹M. Godefroid, C. E. Magnusson, P. O. Zetterberg, and I. Joelsson. Phys. Scr. 32, 125 (1965).

*E. Biemont and M. Godefroid, Phys. Scr. 18, 323 (1978).

Cr XIV: Forbidden transition	8
------------------------------	---

No.	Transition Array	Multiplet	λ (Å)	E , (cm ⁻¹)	<i>E</i> , (cm ⁻¹)	8.	8.	Type of transition	A _h (s ⁻¹)	S (at. u.)	Асси- гасу	Source
1.	3e-3d	*S - *D										
			(1 69.62) [170.11]	0	589570 587860	2 2	6 4	E2 E2	5.5(+5P 5.5(+5)	0.277 0.185	c c	1, <i>la</i> 1, <i>l</i> a

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xv

Ne Isoelectronic Sequence

Ground State: 1s²2s²2p⁺¹S₀

Ionization Energy: $1010.6 \text{ eV} = 8151000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
18.497	9	102	3	293	13	327	14
18.762	8	102.18	1	304	13	405.127	11
19.015	7	103	3	309	13	417	16
20.963	6	105	4	321.282	15	469	10
21.153	5	111.27	2	324	17	703	12

For resonance transitions to J = 1 levels of the $2p^{3}3s$ and $2p^{3}3d$ configurations, we quote A-values which were calculated by Vainshtein and Safronova' using a charge-expansion perturbation theory approach with allowance for mixing of the $2p^{3}3s$, $2p^{3}3d$, and $2s2p^{4}3p$ configurations. Their results for the $2p^{4}-2p^{3}3d$ transitions in the isoelectronic ions Ar IX and Fe XVII are in rather good agreement with those of Shorer,² who used the relativistic random phase approximation (RRPA) with allowance for mixing between configurations of type $2p^{5}ns$ and $2p^{5}nd$, as well as correlation effects due to configurations having a vacancy in the 1s or 2s subshell. But the data of Ref. 1 for the two $2p^{2}-2p^{3}3s$ transitions are approximately a factor of two smaller than those of Shorer for the abovementioned neon-like species, so we have increased the transition probabilities of Ref. 1 for these two lines by a factor of two.

A-values quoted here for a number of transitions involving an electron jump of the type 2s-2p, 3s-3p, or 3p-3d were taken from the work of Pokleba and Safronova,³ who used wavefunctions calculated by a charge-expansion perturbation theory approach with allowance for mixing of configurations in which a single 2s or 2p electron is excited to an n = 3 orbital but with no inclusion of configurations in which an electron occupies the n = 4 shell. In cases where better wavelength data vere available, these transition probabilities were first converted to line strengths, which were then reconverted to f- and A-values by using the more accurate wavelengths. Transitions involving levels of the $2p^{3}3p$ and $2p^{3}3d$ configurations which are indicated by Fawcett⁶ (in Ti XII) or by Jupen and Litzen⁵ (in Ti XII or Fe XVII) to be of low to moderate purity in LS coupling are excluded here, as are very weak lines. The pattern of levels within the $2s2p^{3}3d$ configuration in the isoelectronic ions Fe XVII and Ni XIX resulting from the scaled Thomas-Fermi calculations of Loulergue and Nuss-

baumer⁴ with extensive allowance for correlation is en-

tirely different from that determined by Vainshtein and

Safronova, whose energy levels were apparently used by Pokleba and Safronova in their transition probability calcelations. We have thus excluded transitions out of these levels from our tabulation.

References

- ¹L. A. Vainshtein and U. I. Sofronova, Spektruskapicheskie Konstanty Atomov, 5-122 (Ed. V. B. Belyanin, Akad. Nauk SSSR, Ot. Ob. Fiz. Astron., Nauch. Sov. Spektrosk., Moscow, 1977).
- 2P. Shorer, Phys. Rev. A 28, 642 (1979).
- ¹A. K. Pokleba and U. I. Safronova, Preprint No. 11, Akad. Nauk SSSR, Qt. Ob. Fiz. Astron., Inst. Spektrosk. (Moscow, 1981).
- C. Fawcett, private communication, as quoted in E. Träbert, Z. Phys. A 319, 25 (1964).
- ⁵C. Jupen and U. Litzen, Phys. Scr. 30, 112 (1994).

"M. Loulergue and H. Numbrumer, Astron. Astrophys. 45, 125 (1975).

No.	Transition Array	Multiplet	λ ch	B , (cm ⁻¹)	E t (cm ⁻¹)	£	E.	A _b (10 ⁶ s ⁻¹)	[4	S (at. u.)	lot of	Асса- тасу	Source
1.	2= ³ 2p ¹ (² P3-1)3=- 2=2p ⁴ 3e	(⁴ / ₂ , ¹ / ₂)* - *S											
2	2s 22p (2P 1/2)3s -	(¹ /2 ¹ /2)* - *S	102.18	4 71 3200	5691900	5	3	790	0. 96 5	0.11	-0.49	D	3
	2s 2p*3s		111. 27	479320 0	5691900	3	3	170	0.031	0.034	-1.03	D	3
3.	2 s ³ 2р ⁵ 3р - 2s 2р ⁶ 3р	*S - *P*											
			[102] [103]			3	3 1	160 380	0.025 0.020	0.025 0.020	-1.1 3 -1. 22	E D	3 3
4.		7D - 7P*	(105)			7	5	590	0.063	0.15	-0.36	D	3
5.	2p*- 2p*(*P*_1)2e	¹ 8 - (³ / ₂ ¹ / ₂)*											
6.	2p ⁴ -	¹ S - (¹ / ₂ , ¹ / ₂)*	21.153	0	4727500	1	3	5600	0.11	0.0078	-0.95	C	1#
	2p*(*P* _{1/2})&e		20.863	0	4793200	1	2	6000	0.12	0.0061	0.93	c_	1#
1.	2p*-2p*3d	'8 - 'P'	19.015		5250000			m	A A1A	6 M . A	_1.00		
ß,		'3 - ' D'	10.010				•		0.010		-1.00		
9.		¹ 8 - ¹ P*	18.782 18.497	0	5924200 540 63 00	1	2	2.8(+4) 1.62(+5)	0.44 2.49	0.02, 0.152	-0.35 0.397	D C-	1
10.	2p*(*P*,-)&e 2p*8p	(*/3,*/2)* - *8											
			[469]			5	3	25	0.049	0.88	-0.61	D	3

Cr xv: Allowed transitions

Cr IV:	Allowed	l transitions	Continued
--------	---------	---------------	-----------

No.	Transition Array	Multiplet	ک رقم	E , (can ⁻¹)	E . (cm ⁻¹)	8.	84	A _{Je} (10 ⁹ s ⁻¹)	f.	S (art. u.)	lot af	Accu- racy	Source
11.		(¹ / ₂ ¹ / ₂) [*] - ³ D											
			405 .1 2 7	4713200	4960000	5	7	44	0.15	1.0	-0.13	D	3
12	2p≒P;.23s- 2p`3p	(¹ / ₂ , ¹ / ₂)* - *S											
			[703]			1	3	0.19	0.0042	0.0098	-2 .3 7	E	3
13.	2p`3p-2p`3d	'S - 'P'	298			3	9	56	0.22	0.66	-0.17	E	3
			[293]			3	5	42	0.090	0.26	-0.57	E	3
	i		[304] [309]			3	3 1	67 79	0.093	0.28	-0.56 -0.95	D D	3
14.	:	3D - 3P*											
			[327]			7	5	3.5	0.0040	0.030	- 1.55	E	3
15.		"D - "F"						-					
			321.262	4960000	52 71 30 0	7	9	81	0.16	1.2	0.05	D	3
16.		P - P											
		- 	[417]			1	3	1.7	0.013	0.018	-1.88	D-	3
17.		P - D											
			[324]			1	3	39	0.18	0.20	-0.73	D	3

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xv

Forbidden Transitions

The A-value for the single transition tabulated here is the result of the Hartree-Fock-Relativistic (HFR) calculations of Cowan.¹ The wavelength is the result of these same calculations and may be somewhat uncertain, as the energy of the J = 0 level has not been determined experimentally.

¹R. D. Cowan, Los Alamos Scientific Laboratory Informal Report

Cr xv:	Forbidden	transitions
--------	-----------	-------------

LA-6679-MS (Jan. 1977).

No.	Transition Array	Multiplet) (Å)	<i>E</i> , (cm ⁻¹)	<i>E</i> , (cm ⁻¹)	E.	8.	Type of transition	An (8 1)	S (at. u.)	Асси- гасу	Source
L	2р ⁻ (² Рі ₋₂)За - 2р ⁻ т ² Рі ₋₂)За	(¹ / ₂ , ¹ / ₂) ^o - (¹ / ₂ , ¹ / ₂) ^o										
			[1710]			8	1	MI	5200	0.96	D+	1

Reference

Cr xvi

F Isoelectronic Sequence

Ground State: 1s32s2p5 2P1/2

Ionization Energy: $1097 \, eV = 8850000 \, cm^{-1}$

Allowed Transitions

Oscillator strengths for lines of the multiplet $2s^22p^3 \cdot 2p^4 - 2s^2p^6 \cdot 2s$ are the results of the Dirac-Fock calculations of Cheng *et al.*,¹ which included a perturbative treatment of the Breit interaction and the Lamb shift.

For lines of the arrays $2p^3-2p^43s$ and $2p^3-2p^43d$, we quote the *f*-values calculated by Pawcett² using Cowan's Hartree-Fock-Relativistic (HFR) method and incorporating scaling of energy parameters on the basis of a least-squares fit to observed energies. Fawcett's calculations included fairly extensive allowance for configuration mixing in both odd- and even-parity states. Transitions involving levels which are indicated by Fawcett to be of low to moderate purity in *LS* coupling in neighboring fluorinelike ions are excluded from this compilation, as are lines characterized by very small f-values.

The ratio of A-values for the two resonance lines out of the $2s2p^{+2}S_{1/2}$ level as given in Ref. 1 is in reasonably good agreement with the result of Stratton *et al.*³ derived from relative-intensity measurements.

References

¹K. T. Cheng, Y.-K. Kim, and J. P. Descleux, At. Data Nucl. Data Tables 24, 111 (1979).

- ²B. C. Fewcett, At. Data Nucl. Data Tables 31, 495 (1984).
- ³B. C. Stratton, H. W. Moos, S. Suckewer, U. Feldman, J. F. Seely, and A. K. Bhatia, Phys. Rev. A 31, 2534 (1985).

No.	Transition Array	Multiplet	х (Å)	E , (cm ⁻¹)	E . (cm ⁻¹)	£.	84	A ₄₀ (10 ⁹ s ⁻¹)	f.	S (st. u.)	ior d	Ассы- гасу	Source
L	2s*2p*-2s2p*	* ?* - *S	10 9.1 3	1363 I	\$37910	6	2	1050	0.0625	0.135	-0.426	C+	1
			106.62 115.33	0 7 0892	93791 9 9379 10	42	2 2	758 295	0. 0646 0.0589	0.0907 0.0447	-0.588 -0.929	C+ C+	1 1
2.	2p ⁴ -2p4*P13e	*P* - *P											
		1	19.807	0	5048700	4	6	43C	0.0038	9.9(-4)*	-1.82	E	2
3.		°P* - °P											
			19.714 19.442	7 0892 0	5143500 5143500	2 4	2 2	1.1(+4) 9900	0.064 0.028	0.0083 0.0072	-0.89 -0.95	D D	2 2
4.	2p ¹ -2p*(`D 3e	۵ ۴ - ۳۴											
			19.255 19.511	0 70892	5193500 5196200	4 2	6 4	7700 8900	0.064 0.10	0.016 0.013	-0.59 -0.70	D D	2 2
5.	2p*-2p*(*8)8s	*P* - *S	18.8 6 8	2363 (5323600	6	2	9200	0.016	0.0061	-1.01	E	2
			18.775 19.038	0 70 892	5323600 5323600	4	2 2	2600 6400	0.0068 0.035	0.0017 0.0044	-1.57 -1.15	E D	2 2
6.	2ø'-2ø'ጘ'Di8ď	²P* - *8	17.510	2363 (5734600	6	2	1.2(+5)	0.19	0.066	0.06	D	2
			17.438 {17.656}	0 70 89 2	5734600 5734600	42	2 2	1.1(+5) 2.0(+4)	0.24 0.094	0.055 0.011	-0.02 -0.73	D D	22

Cr IVI: Allowed transitions

No.	Transition Array	Multiplet	ک (گ)	E , (cm ⁻¹)	E. (cm ⁻¹)	8.	8.	A ₆ (10 [#] s ⁻¹)	f.	S (ad. 12.)	los ef	Асси- гасу	Source
7.		* P* - *P					•				; [}		
			[17.372] 17.587	0 70892	5756 300 575 6300	42	4	1.4(+5) 2.0(+4)	0.62 0.19	0.14 0.022	0.39 -0.42	E E	2 2
8.		₽°-7D											
			17.514 [17 .299]	70892 0	5780600 5780600	2 4	4	1.1(+5) 2.5(+4)	0.97 0.11	0.11 0.025	0.29 0.36	E E	2 2
9.	2p ³ -2p4 ³ Si3d	₽°- D	17.1 25	23631	5862600	6	10	4.0(+4)	0.30	0.10	0.25	E	2
		-	17.073 17.242 [17.034]	0 70892 0	5857200 5870700 5870700	4 2 4	6 4 4	1.2(+4) 8.6(+4) 950	0.077 0.77 0.0043	0.017 0.067 9.6(4)	-0.51 0.19 -1.76	D D E	2 2 2

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Сг хи

Forbidden Transitions

Line strengths for the magnetic dipole and electric quadrupole contributions to the transition between the two levels of the $2p^3$ configuration are the results of the Dirac-Fock calculations of Cheng *et al.*¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. The strength of the electric quadrupole transition as defined in Ref. 1 was multiplied by the factor $\frac{1}{2}$ which is needed to bring this

value into conformance with the definition of quadrupole strengths used in the NBS tables.

Reference

¹K. T. Cheng, Y.-K. Kun, and J. P. Desclaux, At. Data Nucl. Data Tables 26, 111 (1979).

No	Transition Array	Multiplet) (Å)	<i>E</i> , (cm ⁻¹)	E , (cm ⁻¹)	R	R.	Type of transition	A., (6 ⁻¹)	S (st. u.)	Accu- racy	Source
1.	2p`-2p`	'P" - 'P"		• • •			1 1 -					
	•		1410.60	,0	70892	4	2 2	M1 E2	6390 0.45	1.33 0.0030	B D	1

Cr xvi: Forbidden transitions

Cr XVB

O Isoelectronic Sequence

Ground State: 1s²2s²2p⁴ ³P₂

Ionization Energy: $1185 \text{ eV} = 9560000 \text{ cm}^{-1}$

Allowed Transitions

Wavelength (人)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
16.11	-			19.000	13		
16.77	7	16.81	17 75	18.17	12	116 53	1
16 31	1	16.97	12.19	18 719	11	117.20	
16.32	24	17.19	20	18.226	ii l	120.84	ī
16.37	28	17.59	н	18.336	10.13	122.91	1
16.44	nn	17.77	14	18.389	17	125.00	1
16.59	23	17.87	14	18.52	9	125.35	I
16.62	21	17.892	12	18.531	H0	129.78	
16.64	30	17.90	14	18.73	9	132.76	1
16.65	30	17.957	11	\$9.572	2	147.40	3
16.66	32	17.968	16	94.49	2	166.08	5
16.68	26	18.01	15	94.69	2		
16.78	21	13.020	11	97.20	7		

List of tabulated lines

The tabulated oscillator strengths for transitions of the arrays $2s^22p^4-2s2p^3$ and $2s2p^3-2p^4$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing was limited to the n = 2 complex. The results should be quite accurate, except in the case of weak lines. (The $2s^22p^4 \, {}^{1}D_2 - 2s2p^3 \, {}^{1}P_1^*$ transition has been omitted from this tabulation, because its f-value as reported in Ref. 1 is extremely small, and thus very uncertain.)

Transition probabilities for lines of the $2s^22p^4-2s^2p^3$ array were calculated by Froese Fischer and Saha² using the multiconfiguration Hartree-Fock (MCHF) method with Breit-Pauli corrections. Their basis set included many configurations outside the n = 2 complex, but relativistic effects were not treated to the same degree as in Ref. 1. Line strengths derived from these two sources are in reasonably good agreement, particularly for the stronger transitions.

A-values for lines of the $2p^{+}P - 2p^{-1}(*S^{+})3s^{+}S^{+}$ multiplet are taken from the scaled Thomas-Fermi approach

of Kastner et al.³ with configuration interaction and relativistic effects. For all other lines of the $2p^4-2p^33s$ array, and for lines of the $2p^4-2p^33d$ array, we quote the f-values calculated by Fawcett⁴ using Cowan's Hartree-Fock-Re¹utivistic (HFR) method and incorporating scaling of energy parameters on the basis of a least-squares fit to observed energies. Fawcett's calculations included fairly extensive allowance for configuration mixing in both odd- and even-parity states. The weakest lines were not reported, and thus are not tabulated here. Transitions involving levels which are indicated by Fawcett to be of low to moderate purity in LS coupling in neighbo ing oxygenlike ions are excluded from this compilation.

References

- ¹K. T. Cheng, Y.-K. Kim, and J. P. Duclaux, At. Data Nucl. Data Tables 24, 111 (1979).
- ¹C. Frome Fincher and H. P. Sahn, J. Phys. B 17, 943 (1984).
- ¹S. O. Kastner, A. K. Blatin, and L. Cohen, Phys. Scr. 18, 259 (1977).
- *B. C. Fawcett, At. Data Nucl. Data Tables 34, 215 (1986).

Cr XVII: Allowed transitions

No.	Transition Array	Multiplet	۵ دلی	E , (cm ⁻¹)	E. (cm ⁻¹)	8	•	A (10 ⁴ s ⁻¹)	1.	S (ad. 12.)	hat af	Acce- racy	Source
1	2= ³ 2=1-2=2= ⁵	×-×	199 44	96599	896770	•	•	450	6 10	0.3 R	_0.03	C	1
-		•••				-				•		Ŭ	1
			122.91	•	813600	5	5	330	0.074	0.15	-0.43	С	1
1			125.35	68580	858159	3	3	169	0.0257	0.0318	-1.113	C	1
			190.93	60000	835139	2	3	244	0.0250	0.951	-0.83	C	
			19276	60500	6013 <i>6</i> 0		5	455	0.0000	0.054	-0.91	č	1
ł			125.00	58150	858150	i	3	140	0.096	0.040	-1.92	č	1
2		*P - *P*											
			130.5721	•	1116429	5	3	85	0.0051	0.0090	-1.52	R	1
			54.65	60380	1116420	3		4.6	654-47	6.1(-4)	-2.71	Ē	i
			51.45	58159	1116429	1	3	9.5	0.0058	0.0012	-2.42	E	1
									{				
3.		·U - 7*										ļ	ł
1			147.40	135160	813600	5	5	14	0.0047	0.011	-1.63	E	1
4		' D - ' P '	101.91	135160	1116620	5	3	1329	0.123	0.206	-0.211	C	1
5		·S - *								i		İ	
									1	•			
			[168.08]	253190	858150	1	3	5.6	0.0064	0.0035	-2.19	E	1
) •								~					1.
0.		2- F	117.20	263180	1116420	1	3	96	0.059	0.023	- 1.23	C	1
7.	2:20'-20'	"P" - 'S		İ		ļ							
						1	Ì					-	
		1	97.20	858150	1886950	3	1	59	0.0028	0.0027	- 2.08	E	1
		10° _ 10	120 78	1116490	1996950			1400	A 118	0 151	0.451	6	: : 1
0.			149.10	1110420	1000000		•	1400	V.110	V. 131	-0.401		
9.	2p*-2p*(*S*13s	ዎ - '\$	į						ł			ł	1
						_					-	: • •	i_
			[18.52]			2	5	160) 8.21 4)	· 2.2(-4)	-2.39	E	3
			[10.19]			9	3	12	1.1(-4)	, , , , , , , , , , , , , , , , , , ,	- 3.30	E	•
10.	2p*- 2p * *S*₿s	'P - 'S'	18.426	26590	5453800	9	3	2.7(+4)	0.046	0.025	0.38	C -	4
				ا د		· _	_		-		•	-	
			18.336	0	5453900	5	3	1.7(+4)	0.052	0.016	-0.59	: C-	4
			18.531	59150	5455800	່ 3 1	2	2200	0.030	0.0000	-1.05	· L-	
			10.001	10190		1. *		3200	0.000	0.0031	-1.00	, U -	•
11.	2p*-2p 42D* Ba	'P - 'D'						1					1
			_			1			:				
			17.957	60000	5568900	5	7	7800	0.053	0.016	-0.58	C	4
			18.219	50150	2049400	3	2	1700	0.026	0.0031	1.29 1 50	. D	1
			18.020	V Veter	5540400	- 5	0 5	6400	0.020	0.0010	_ 0 £1	5	•
			[18.226]	60380	5547000	3	3	7000	0.035	0.0063	-0.98	õ	4
						-	-						
12		'P - 'D'	1					1					
			(17 902)	A	5500000	ĸ	ĸ	960	0.0046	0.0014	1 64		
			[18.059]	60390	5589000	2	5	1700	0.014	0.0014	- 1.04	Ē	4
			1				.,						-
13		'D - 'D'	18.336	135160	5569000	5	5	1.6(+4)	0.091	0.024	0.39	D	4
Cr XVII: Allowed transitions -- Continued

No.	Transition Array	Multiplet	ک (الم)	E , (cm ⁻¹)	Б. (ст1)	8.	8	A _b (10 ⁴ s ⁻¹)	<i>[</i> _	S (at. 11.)	has af	Ассь- гасу	Source
14.	2p* - 2p*(*P*)3s	°P - °P											
			(17.59)			5	5	1300	0.0050	0.0017	-1.52	D-	4
			[17.30]			3	5	4480	0.035	0.0051	-0.58	D	4
		,	[17.87]			1	3	4900	9.5 11	9.9962	~ 1.10	ע	4
15.		"D - "P"											
			[18.91]			5	5	4386	9.921	9.9962	0.55	B	4
		-	[19.1Z]			3	•	2.000		0.0020	-1.01	B	
16.		י יד י - טי	17 .968	135160	5791289	5	3	8600	0.025	0.0074	0.30	D	4
17.	: 	'S - 'P*	18.389	263180	5701200	1	3	<u>9200</u>	0.14	0.0085	0.85	D	4
18.	2p* - 2p*(*S*)3d	³P - 'D'											Į
			[16.97]			5	5	1100	9.0046	0.0013	-1.64	B	4
19.	2p* - 2p*(*5*)3d	P- D'										Į	
			[16.90]			5	1	4.4(+4)	0.26	0.072	0.11	D	4
			[16.97]			1	3	2.63(+4)	0.341	0.0191	-0.457	C-	4
			[16.80]			5	3	1800	9.0046	0.0013	-1.64	D D	
20.		י D - "D "										ļ	
			(17 19)			5	7	680	0.0042	0.0012	-1.68	E	4
			[]		l							-	
Z1.	29° - 291'D' 38	7-7											
			(16.78) (16.62)		1 2 2 2 2 2	3	5	3600 5600	0.025	0.0061	-1.12	E	4
22	2a* - 2a44TC 24	ማ - ግ ዮ			2 m m					ł			
			(16.44)		i I	E	-	19.5	0.74	0.20	0.57	n	
			[10.44]				•	1-0(+3)	V.14	0.20	0.01		
23		ዋ - ም											
			[16.59]			3	1	5.7(+4)	0.078	0.013	0.63	D	4
24	•	*P - *P*											
		5 1 1	[16.32]			5	1	3.2(+4)	0.18	0.048	-0.06	E	4
25	•	'D - 'D'											
			[16.81]			5	1	2000	0.012	0.0023	-1.22	E	4
26		in . ir	(16.68)			5	1	68(+4)	0.40	0.11	0.20	D	4
~			[10.00]									-	
27	. 49° - 297°D' Xid	T - T										_	' .
			[16.27] [16.44]			5	7 5	5400 5800	0.030	0.0080	- 0.82 - 0.92	E	
29		10 - 10.											
			(16 97)					971.4	0.12	0.021	0.41	n	
			[10:91]			1	1	w.i(+4)	V. 18	V.U21	-0.41		•

No.	Transition Array	Multiplet	λ (Å)	E, (cm ¹)	E. (cm ⁻¹)	. .	8.	A⊾ (10° ∎ ¹)	ſ.,	S (at. u.)	loc af	Accu- racy	Source
		jan ister						4 1 1	*				•
77.		7-7	1						1				•
		;	[16.11]	:		3	3	3900	0.015	0.0024	-1.35	E	4
30.:		'D - 🏋					•	- - -	•		1		
		•	[16.64]			5	7	5290	0.030	0.0082	-0.66	E	4
										0.013	-0.35		
31.		- - - U -	[10:31]			: >	3	3600	0.023	9.905Z	-0.94	U	4
12		'S - ' P *	[16.66]	t t		1	3	1.8(+5)	23	9.13	9.36	D	4
						÷			1	-	6	÷	1

Cr xvii: Allowed transitions - Continued

The number in parenthesis following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xvn

Forbidden Transitions

Line strengths tabulated for magnetic dipole and electric quadrupole transitions within the $2p^4$ configuration are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng *et al.*¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing was limited to the n=2 complex. Strengths of electric quadrupole transitions as defined in Ref. 1 were multiplied by the factor 2/1 which is needed to bring these values into conformance with the definition of quadrupole strengths used in the NBS tables.

Transition probabilities for these same lines were calculated by Froese Fischer and Saha² using the multiconfiguration Hartree-Fock (MCHF) method with Breit-Pauli corrections. Their basis included many configurations outside the n = 2 complex, but relativistic effects were not treated to the same degree as in Ref. 1. Line strengths derived from these data are in quite good agreement with the data of Cheng *et al.* For this ion of the oxygen isoelectronic sequence, correlation effects due to mixing with configurations outside the complex were found by Froese Fischer and Saha to be rather small, as shown by a comparison of the results of their calculations employing an extensive basis to those derived by the same technique but limited to configurations within the n = 2 complex.

The weakest lines are excluded from this compilation, as their transition probabilities are considered to be very uncertain.

References

¹K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979).

¹C. From: Fincher and H. P. Saha, Phys. Rev. A 28, 3169 (1983).

No	Transition Array	Multiplet	λ (Å)	<i>E</i> , (cm ⁻¹)	E, (cm ⁻¹)	8.	8.	Type of transition	A., (5 ⁻¹)	S (at. u.)	Асси- гасу	Source
1.	2 \$ *-2 \$ *	۲۲ - ۲ ^۲		ļ		} - -						
l		ł	1656.3	0	60380	5	3	M1	4590	2 22	<u>c</u> +	1
:		•	[1720]	0	58150	5	3	62 62	0.13 0.19	0.0029	E	1
2		'P - 'D				; ,						
			740.75	0	135160	5	5	M 1	6600	0.50	D	1
			1340.7	60380	135160	5	5 5	E2 M 1	2.3 400	0.0015 0.1#	E D	1

Cr xvii: Forbidden transitions

Cr IVE: Forbidden transitions -- Continued

No.	Transition Array	Multiplet	ية م	£ (cm ⁻¹)	E, (cm ⁻¹)	Ł	B A	Type of transition	۸ ـ (۲ ⁻¹)	5 (at. u.)	Ассы- тасу	Source
1		'P - 'S		•								
			493.8	61399	263189	3	1	M1	6.5(+4)*	0.29	D	1
4		'D - 'S	[781.13]	135160	263180	5	1	E2	28	0.000	E	1

The number in parenthenus following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xvm

N Isoelectronic Sequence

Ground State: 1s²2s²2p³⁴S_{3/2}*

Ionization Energy: $1299 \text{ eV} = 10480000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
		100.00				177.00	
20.83	4	100.31	z	129.58	•	157.40	10
92.508	13	110.41	12	133.06	15	164.89	5
\$3.36	13	112.27	14	136.52	1	169.81	5
94.16	3	113.99	12	139.87	1	175.90	16
\$5.77	8	119.21	12	140.82	16	184.67	5
97.660	13	119.62	11	143.53	10	193.51	5
99.383	13	122.56	14	147.79	15	197.48	9
102.32	8	123.87	14	149.80	1	222.00	•
104.98	8	125.38	11	149.94	19	248.10	•
105.92	12	125.51	6	151.90	10		
106.84	7	128.10	6	155.46	16		
	1	11	1	H.		1	

The tabulated oscillator strengths for transitions of the arrays $2s^22p^3-2s2p^4$ and $2s2p^4-2p^5$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except

in the case of weak lines. (A few very weak lines have been omitted from this tabulation.)

Reference

¹K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979).

No.	Transition Array	Multiplet	а (Å)	<i>E</i> , (cm ⁻¹)	E, (cm ⁻¹)	8.	84	A _h , (1 0⁸ o ⁻¹)	5.	5 (at. 11.)	log g/	Ассь- гвсу	Bouro
1.	2 5°29'-25 29'	*8* - *P	144.05	0	694/80	4	12	140	0.13	0.24	-0.30	с	1
			140.80 130.87	0	661660 71,4660	4	6	120	0.069	0.12	-0.58	C	1
			136.52	0	782400	4	2	166	0.0222	0.0417	-1.082	č	i

Cr XVII: Allowed transitions

Cr XVIII: Allowed transitions -- Continued

No.	Transition Moltig Array	piet A (Å)	E , (cm ⁻¹)	E , (cm ⁻¹)	Ł	•	А _М (10 ⁴ в ⁻¹)	<i>[</i>]	S (at. u.)	log gf	Ассы- тасу	Source
								1			• !	•
2	*5' - 1	Ð									İ	
		108.37	•	522800	4	4	6.2	0.0011	0.0016	-2.36	E	1
3	•5° - 1	5										
		M 16		1057055		,	97	6 V	761-4	- 961	P	1
_				100000		-	V.					-
4.	5-'	P					-					
;		50.63	0	1103370	4	4	24	0.0030	0.0036	-1.92	E	1
5.	*D* - 1	P										
	ę.	[191.51]	150000	667568	6	6	1.4	8.8(-4)	0.9051	-2.32	E	1
		[169.81]	125040	714950	4	4	9.42	1.8(-4)	4.8(-4)	-3.14	E	1
		[194.89] [184.67]	126040	667568	4	2 6	2.5	2.9(-4) 0.0020	0.0049	-2.10	E	1
6	2 D * - 1	Ð										
		-									6	
		128.10	150000	922800	5 4	6 4	340	0.065	0.17 0.13	-0.49	C	1
		[129.53]	150800	922800	6	4	29	4.9(-4)	0.0013	-2.53	E	1
7.	- 'D' - '	5										
·	:	106.84	126040	1062060		2	340	0.029	9.041	-0.94	E	1
8.	²D* - ³	P 101.55	140900	11 256 50	10	6	840	0.078	0.25	-0.11	с	1
		104 98	150800	1102270	£		870	0.0%	0.20	_0 24	c	1
		95.77	125040	1170210	4	2	306	0.0212	0.3257	-1.072	č	i
		102.32	125040	1103370	4	4	154	0.0242	0.0326	-1.014	С	1
9.	2 1 2** - 4	P							I			1
		[248.10]	254490	667560	4	6	0.23	3.21-4)	0.0010	-2.89	E	1
		(222.00)	254490	714950	4	4	1.1	8.4(-4)	0.0025	-2.47	E	1
		[131.46]	20100	142490	Z	Z	1.0	ə.ə – 4)	1.1 (- 4)	- 2.93	E	. 1
10.	2 P* - 3	D 147.87	251630	927970	6	10	46	0.025	0.074	- 0.82	C -	1
		149.94	264490	931420	4	6	53	0.0270	0.053	0,97	C	1
		143.53 [151.90]	226100 264490	922900 922900	2	4	28.5 6.1	0.0176	0.0166	- 1.453 - 2.08	D	1
11	70°~		251000	100000			250	0.000	0.004			1
11.	· P * - *	∃ <i> ZJ.≱U</i>	Z3/6 3 0	1002060	6	2	330	U.U25	U.U64	- U.HU	C-	1.
	·	125.38	254490	1062060	4	2	53 220	0.0063	0.010	- 1.60	D	1
		117.04		1002000	6	Z	•20	V.005	0.004	7.81		· •
12.	'P' - '	ዋ ፡ <i>114.4\$</i>	251690	1 12565 0	6	6	360	0.071	0.16	- 0.37	C~	t I
		119.21	254490	1102370	4	4	89	0.0190	0.0296	-1.119	C	1
	4 1	105.92 110 41	226100 264490	1170210	2	2 7	49 790	0.0083	0.0058	- 1.78	D	1
		113.99	226100	1102370	2	1	70	0.0274	0.0206	- 1.261	č	i

Na	Transition Array	Multiplet	ŝ	K (cm ⁻¹)	گ و (cm ⁻¹)	8	•	A., (19 ⁰ s ⁻¹)	<i>[</i> •	5 (at. a.)	head	Асть- гасу	Source
18	20.01	*P - *P*											
		-	92.36 (97.690)	667560 714950	17 36700 17 36700	6	4	17 7.9	0.0015 0.0010	0.0125 9.0913	-2.66 -2.40	E E	1
			(92.506) (90.363)	7 32690 7 32690	1813480 1738700	2 2	2 4	55 25	7.¥-4) 7.\$(-4)	4.X0 4.X0	-2.86 -2.84	E B	1 1
14		*D - *P*	119.67	927970	1763630	10	6	en	0.963	0.25	-0.29	C	1
			112.57 112.56	922800 922800	1735700 1813680 1735700	4	2 4	424 126	0.02001 0.0200	0.050 0.0452	-0.55 -0.55	C C C	1
15.		*S - *P*	142.54	1062060	1763630	2	6	56	0.051	0.0175	-0.59	C-	1
			147.79 [133.68]	1062060 1062060	1738700 1813480	2 2	4 2	72 8.7	0.0000 0.0023	0.0456 0.9120	-1.928 -2.34	C D	1 1
16		*P - *P*	156.74]] 25650	1763639	6	6	367	0.135	0.618	-0.001	С	1
			157.49 155.46 [140.82]	1103370 1170210 1103370	1738700 1813480 1813480	424	4 2 2	283 284 255	0.105 0.103 0.0396	0.218 0.105 0.073	-0.377 -0.69 -0.89	C C C	1 1 1
		!	[175.90]	1170210	1738700	2	4	20.5	0.0190	0.0220	-1.429	С	1

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xvm

Forbidden Transitions

Line strengths tabulated for magnetic dipole and electric quadrupole transitions within the $2p^3$ configuration are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing was limited to the n=2 complex. Strengths of electric quadrupole transitions as defined in Ref. 1 were multiplied by the factor 2/1 which is needed to bring these values into conformance with the definition of quadrupole strengths used in the NBS tables. The weakest lines are excluded from this compilation, as their strengths are considered to be very uncertain.

A-values for the M1 and E2 components of the single transition within the $2p^3$ configuration were obtained by applying Z-expansion formulas published by Oboladze and Safronova.³ Their values for the magnetic dipole

contribution to this line are in very good agreement with the results of the scaled Thomas-Fermi calculations of Bhatia *et al.*³ and Bhatia⁴ for nitrogenlike Ti and Mn, respectively. It is not clear whether Oboladze and Safronova incorporated configuration interaction into their calculations. Thus the A-value for the E2 contribution should be considered rather uncertain.

References

- ¹K. T. Cheng, Y.-K. Kim, and J. P. Desclaus, At. Data Nucl. Data Tables 24, 111 (1979).
- ¹N. S. Oboladze and U. I. Safronova, Opt. Spectrosc. (USSR) 46, 469 (1980).
- ¹A. K. Bhatia, U. Feldman, and G. A. Doschek, J. Appl. Phys. 51, 1464 (1980).
- 'A. K. Bhata, J. Appl. Phys. 53, 59 (1982).

Cr xvar: Ferbidden transitions

Na	Transition Array	Multiplet	ک (آب)	E, (cm ¹)	L , (cm ⁻¹)	£	g a	Type of transition	А., (8 ⁻¹)	5 (at. u.)	Ассы- гасу	Source
1.	\$ *- \$ *	5 - D										
			663.1 793.3	•	1,50000 1,25040	4	i 4	161 161	325 6100	0.021 0.45	D– D	1 1
2	5	5-7										
		•	378.0 442.1	•	254690 225100	4	4 2	M1 M1	1.6(+4)* 1.3(+4)	0.13 0.064	D D-	1 1
3.		ው - ው										
			4839	125040	150000	4	6	M1 E2	127 4.9(-4)	1.46 0.0019	C+ E	1 1
4.		ህ - ም										
			[1 328] [879.58]	150900 150900	225100 254490	6	2	E2 Mi	0.63 5290	0.0031 0.52	ED	1
		2 2 4	[999.40]	125049	225100	4	22	122 M1 122	6.3 3400 3.0	0.0079 0.25 0.0036	D E	
	2 7 7 7	Ъ 1 1	722.1	125040	254490	4	4	MI E2	1.6(+4) 3.0	0.87 0.9014	D E	1
5.	5 1 2 4	ም - ም	2 8 4 	f 1 1 1	allen an an an an an an an an an an an an an							
	: :		2506.4	226100	254490	2	4	Ml	382	1.00	C	1
6.	29*-29*	- ም - ም	(1337)	1738700	1812480	4	2	MI	7600	13	C+	2
		· · ·	[4	2	E2	0.53	0.0027	E	2

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xix

C Isoelectronic Sequence

٠

Ground State: 1s²2s²2p²⁻³Po

Ionization Energy: $1396 \text{ eV} = 11260000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No	Wavelength $(\dot{\lambda})$	No.	Wavelength (\hat{A})	No.
14.73	30	107 70	5	118.83	17	129.00	9
14.80	29	109.33	18	120.86	23	120.99	17
14.81	30	109.64	4	125.93	3	132.11	3
14.84	29	110.37	11	125.24	20	133.99	3
90.102	16	111.18	18	125,20	15	124.89	3
95.62	16	111.88	5	125,33	10	137.89	19
95.88	6	113.97	4	127.95	20	128.15	19
100.69	21	118.21	17	128.43	17	128.45	3
104.18	4	118.67	17	128.63	17	140.51	2

~ F-87

	List of	tabulated	lines	Continued
--	---------	-----------	-------	-----------

Wavelength (Å)	Ne.	Wavelength (Å)	Ne.	Wavelength (Å)	Ne.	Wavelength (Å)	No.
148.52	19	161.29	8	185.87	24	236.11	25
143.57	28	163.94	25	199.16	7	267.55	12
148.64	2	164.09	8	201.82	21	278.21	25
151.32	14	165.46	Z	201.97	13	280.37	1
152.42	19	168.40	Z	289.94	22	310.54	1
154.92	19	169.73	2	291.89	7		
169.91	Z	179.18	22	286,38	7		
169.30	2	189.37	22	211.00	24		

The tabulated oscillator strengths for transitions of the arrays $2s^22p^2-2s^2p^3$ and $2s^22p^3-2p^4$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng *et al.*¹ These relativistic calculations included a perturbstive treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing was limited to the n = 2 complex. The results should be quite accurate, except in the case of weak lines. (A few very weak lines have been omitted from this tabulation.)

Transition probabilities for lines of the $2s^22p^2-2s2p^3$ array were calculated by Froese Fincher and Saha² using the multiconfiguration Hartree-Fock (MCHF) method with Breit-Pauli corrections. Their basis included many configurations outside the n = 2 complex, but relativistic effects were not treated to the same degree as in Ref. 1. Line strengths derived from these two sources are in reasonably good agreement, particularly for the stronger transitions.

Data for a few lines of the $2p^2-2p 3d$ array were interpolated from the HX (Hartree-Fock with statistic...) allowance for exchange) *f*-values of Bromage and Fawcett³ for the isoelectronic ions Ca XV and Fe XXI.

References

- ¹K. T. Cheng, Y.-K. Kim, and J. P. Deschuss, At. Data Nucl. Data Tables 24, 111 (1979).
- ¹C. Frome Fincher and H. P. Sahn, Phys. Scr. 32, 181 (1985).

¹G. E. Brounge and B. C. Fawcett, Mon. Not. R. Astron. Soc. 178, 605 (1977).

No.	Transition Array	Multiplet	х (Å)	Ľ , (cm ⁻¹)	E , (cm ⁻¹)	e.	4	A _b (10 ⁰ s ⁻¹)	1.	S (at. u.)	log <i>g</i> f	Асси- гасу	Source
1.	2s ³ 2p ² -2s2p ³	79 - 18											
												1	
			(310.54)	82420	404440	5	5	0.17	251-47	0.0012	-2.90	E	1
		ļ	[280.37]	47770	404440	3	5	0.15	2.9(-4)	8.9(-4)	-3.06	E	i
2		ሻ - ሻን	162.02	61710	678920	9	15	72	0.0472	0.227	-0.371	c_	1
-	•	:				-						-	[⁻
	÷ ,		165.46	82420	696510	5	7	59	0.0329	0.092	-0.77	C	1
	1	1	160.30	67770	671500	2	5	82	0.053	0.084	-0.90	č	1
			148.64	0	672750	Ĩ	2	90	0.099	0.044	-1.05	C	li
	1	1	169.73	82420	671590	5	5	0.095	4.1(-5)	11(-4)	-2.69	R.	1
	1	1	160.01	67770	672750	2	2	11	0.0041	0.0065	-1.91	ñ	li
	i	•	(169.40)	82420	672750	5	2	0.25	67(-5)	19-41	-247	R	1
	1		(200700)			•		0.20		• ·• · = •/		-	·
3.		ማ - ም	185.55	61710	7 9943 0	9	9	190	0.062	0.210	-0.327	C-	1
			129.45	97470	-			171	0.0491	0.110			Ì.
			130.40	67770	204120		9	101	0.0996	0.112	-0.01		
		1	140.51	47770	796120			121	0.0820	0.0430	- 1.011	C C	
		į	1140.01	62420	796120			30	0.0000	0.015	1.000	0	
		1	122.11	47770	(90100			110	0.0180	0.0200	-1.200		1.
			102.11	•///0	304040		2	1.1	0.0081	0.0000	-2.08		
	1		120.98		796120	•	•	40.5	0.0200	0.0120	-1.04	C	1
4.		P- 'S'	111. 3 4	61710	959660	9	2	890	0.065	0.18	-0.31	C	1
	(1	1			ļ				1	1		1
			113.97	82420	969860	5	2	550	0.064	0.12	-0.49	С	1
			109.64	67770	960050	2	2	246	0.0444	0.0481	0.88	C	1
		1	104.18	0	960050	1	8	90	0.0438	0.0150	-1.359	C	1
			1						1				1

Cr XIX: Allowed transitions

Cr XIX: Allowed transitions -- Continued

No.	Transition Array	Multiplet	à	E, (cm ⁻¹)	E a (ca n ⁻¹)	£	8	A⊾ (10 ⁴ ∎ ^{−1})	1.	S (mt. u.)	log af	Accu- recy	Source
5		³P - 'D'											
			111.88 [107.70]	82420 47778	976270 976270	5	5 5	53 24	0.01¢ 7.1(-4)	0.018 7.6/ -4)	-1. 30 -2.67	E	1
		300 1000											
•		T - 'P											
			\$5.88	47770	1090760	3	3	36	0.0049	0.0046	-1.83	E	1
7		י סי - מ י				} .			1				
				1									
			[199.16] [1905.18]	184690	686810 571580	5	1	6.2	0.0052	0.017	-1.59	E	1
			[204.89]	184690	672750	5	3	12	4.6(-4)	0.0016	-2.56	E	1
									[
ο.		- P	1										
			[161.29]	184690	804690	5	5	1.9	7.6(-4)	0.0020	-2.42	E	1
			[164:03]	186690	794120	2	3	2.8	6.7(-4)	0.0018	-2.47	E	1
9.		'D - 'S *	[129.00]	184690	955860	5	3	0.73	1.1(-4)	2.3(-4)	-3.26	E	1
10.		¹ D - ¹ D*	126.33	184690	976270	5	5	435	0.104	0.216	0.284	С	1
11.		¹ D − ¹ P*	110.37	184690	1090760	5	3	600	0.066	0.12	-0.48	С	1
12		'S - 'D'				1					{		
ļ			1967 551	206000	679750			0.77	0.0012	0.0011			
1		•	[201.00]	230330	0121)	•		0.01	0.0012	0.0011	-2.32	E	1
13.		'S - 'P"											Ì
		:	[201.97]	298990	794120	1	3	1.1	0.0020	0.0013	-2.70	E	1
14.		'S - 'S'	[151.32]	296990	959860	1	3	4.2	0.0043	0.0021	-2.37	E	1
15.		'S - 'P'	125.30	298990	1090760	1	3	156	0.112	0.0466	-0.95	с	1
16.	2s2p3-2p4	-'S' - '₽			ŧ.						i		
			95.62	404440	1450/200	5	5	7.2	9.91-4)	0.0016	-231	R	1
			{90.102}	404440	1514290	5	3	1.8	1.3(-4)	1.9(-4)	- 3.19	E	1
17.		'D' - 'P	124.97	678920	1479090	15	9	400	0.057	0.35	- 0.07	C	1
			130.59	696810	1450200	7	5	290	0.053	0.16	- 0.43	с	1
			118.67	671590	1514290	5	3	210	0.0266	0.052	- 0.88	C	1
			118.31	672750	1517960	3	1	329	0.0230	0.0269	-1.161	C	1
			126.43	67/1590	1514200	5	5	125	0.0295	0.062	-0.83	C	E] . 1
			129.63	672750	1450200	3	ð 5	23	0.0200	0.0000	-154	. ປ : ກ	1
			1	UDIG: U	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.0001	V.VIE			
18.		'D' - 'D	- 1	- -	1 1 1		ł.				1		
			111.18	686810	1586250	7	5	37	0.0049	0.012	- 1.46	E	1
			[109.33]	671590	1586250	5	5	5.5	9.8(- 4)	0.0018	- 2.31	E	1
			i			i	i	I	1	i i			(;

1

No.	Transition Агтау	Multiplet	Å	E, (cm ⁻¹)	E ₄ (cm ⁻¹)	L	84	A _{bi} (10 ⁹ s ⁻¹)	ſ.	5 (at. u.)	he s	Ассы- гасу	Source
19.		9P* - 9P											
			154.92	804690	1450290	5	5	35.3	G. 9127	0.0324	-1.197	с	1
			140.92 198.15	804690 754150	1514290	5	3	138 175	0.0247	0.057	-0.91	C	1
			152.42	794120	1450290	3	5	32.7	0.0190	0.0296	-1.244	č	i
			137.89	789100	1514290	1	3	41.6	0.0356	0.0162	-1.449	С	1
20.		₽° - 'D											
			127.95	804690	1586250	5	5	10	0.0025	0.9053	-1.90	B	1
			[126.24]	794120	1586250	3	5	7.0	0.0028	0.9035	-2.08	B	1
21.		*P* - 'S											
			[100.69]	794120	1787290	3	1	26	0.0013	0.0012	-241	B	
_													
Z		3'-7	192.39	959960	1479090	3	ש	85	0.14	0,21	-0.57		1
			[203.94]	959860	1450200	3	5	63	0.065	0.18	-0.71	C	1
			179.18	959860	1517960	3	1	145	0.0232	0.0411	-1.157	c	li
23.		*S* - *S	[120.86]	959860	1787290	3	1	45	0.0033	0.0039	-2.00	E	1
94		in- 30											
а.		D - F											
			[211.00]	976270 976270	1450200 1514290	5	5	6.3 1.4	0.0042	0.015	-1.68	E	
			[
ක.		עי - יעי	163.94	976270	1586250	•	2	310	0.125	0.337	-0.204	C	1
26 .		'P' - 'P										1	
	}	! 	[278.21]	1090760	1450200	3	5	0.88	0.0017	0.0047	-2.29	E	1
			[236.11]	1090760	1514290	3	3	4.7	0.0039	0.0091	-1.93	E	1
27		ⁱ P* - ⁱ D	201.82	1090760	1586250	3	5	41.6	0.0428	0.084	0.90	C	1
28 .		¹ P* - ¹ S	143.57	1090760	1787280	3	1	720	0.074	0.10	-0.65	C	1
29 .	2 p 1–2 p 3d	*P - *D*	ļ							l			
			[14.84]			5	7	1.3(+5)	0.61	0.15	0.48	E	inserp.
			[14.80]			1	3	1.3(+5)	1.3	0.063	0.11	D	interp.
3 0.		•¶• - ¶•											
			[14.73]			3	3	7.1(+4)	0.23	0.083	-0.16	E	inserp.
			[14.81]			5	3	3.4(+4)	0.068	0.017	-0.47	E	interp.

Cr XX: Allowed transitions -- Continued

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

F-89

Cr xix

Forbidden Transitions

Line strengths tabulated for magnetic dipole and electric quadrupole transitions within the $2p^2$ configuration are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng *et al.*¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb skift. Allowance for configuration mixing was limited to the n = 2 complex. Strengths c electric quadrupole transitions as defined in Ref. 1 were multiplied by the factor 2/3 which is needed to bring these values into conformance with the definition of quadrupole strengths user in the NBS tables. The weakest lines are excluded from this compilation, as their strengths are considered to be very uncertain. Transition probabilities for these same lines were calculated by Froese Fischer and Saha² using the multiconfiguration Hartree-Fock (MCHF) method with Breit-Pauli corrections. Their basis included many configurations outside the n = 2 complex, but relativistic effects were not treated to the same degree as in Ref. 1. Line strengths derived from these data are in good agreement with the data of Cheng *et al.*

References

¹K. T. Cheng, Y.-K. Kim, and J. P. Deschuss, At. Data Nucl. Data Tables 24, 111 (1979).

²C. Froese Fischer and H. P. Saba, Phys. Scr. 32, 181 (1985).

No.	Transition Array	Multiplet	λ (Å)	<i>E</i> , (cm ¹)	E, (cm ⁻¹)	8.	8.	Type of transition	Аь. (5 ⁻¹)	S (at. u.)	Accu- racy	Source
1.	2p²-2p²	'P - 'P								1		
,			2885.4	47770	82420	3	5	M1	469	2.09	C+	1
			-	•	•	3	5	E 2	0.0035	0.0021	E	1
			2090.9	0	47770	1	3	M1	1810	1.84	C+	1
			[1213]	0	82420	1	5	E2	0.18	0.0014	E	1
2.		י יף - 'D							1			
		:	979.0	82420	184690	5	5	M1	5700	10	C	1
			-			5	5	F2	0.90	0.0024	Ē	i
			731.1	47770	184690	3	5	MI	5700	0.41	D	1
3.		³ P - ³ S			2 2 2	1		•		!		
i			398.4	47770	298990	3	1	M1	6.41 + 4)*	0.15	D	1
4.		'D - 'S	[874.89]	184690	298990	5	1	E 2	13	0.0041	E	1

Cr XIX: Forbidden transitions

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xx

B Isoelectronic Sequence

Ground State: 1s²2s²2p ²P_{1/2}

Ionization Energy: $1496 \text{ eV} = 12070000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Way -length (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
14.13	14	128.42	3	164.63	8	216.99	7
14.26	14	129.26	9	167.97	8	258.57	11
97.494	6	151.31	9	169.87	8	271.72	11
97.729	6	1\$3.82	4	178.42	8	281.99	1
101. 63	6	135.26	9	175.42	2	287.53	1
116.05	3	140.75	4	179.21	2	368.20	1
119.29	5	148.99	4	180.85	12	416.34	10
122.29	5	156.00	2	192.82	12		

The tabulated oscillator strengths for transitions of the arrays $2s^22p-2s2p^2$ and $2s2p^2-2p^3$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al.¹ These relativistic calculations included a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except in the case of weak lines. (A few very weak lines have been omitted from this tabulation.)

According to several sources (see, e.g., introduction to Fe XXII), the two levels $2s2p^2 {}^2P_{1/2}$ and ${}^2S_{1/2}$ "cross" at about V XIX or Cr XX. Transitions to these levels in Cr XX have been omitted from this compilation, since the precise location of the level crossing, and thus the correct designations of the levels, are uncertain.

The Hartree-Fock results of Shamey² for the isoelectronic ions Ar XIV and Fe XXII, which allowed for limited configuration interaction, were interpolated to provide *f*-values for the 2p-3s, 2p-3d, and 2p-4d transitions.

References

³L. J. Shaney, J. Opt. Soc. Am. 61, 942 (1971).

Cr x	x: A	llowed	transit	tion
------	------	--------	---------	------

No.	Transition Array	Multiplet	λ (Å)	E , (cm ⁻¹)	Ē , (cm ^{- 1})	E.	8.	A _b (10 ⁶ g ⁻¹)	ſ.	S (at. u.)	log gi	Асси- гасу	Source
1.	2 5 *2 p-24 2p ¹	² ም - ዋ											
			(000 001								• •		
			[251.68]	53030	430700			0.43	0.1(-47	0.0023	-2.01	E	
			[281.99]		304020	Z	Z	0.42	D.U(-4)	7.8 - 4)	- 3.00	E	
			[305.20]	89090	324050	4	Z	0.11	1.1(-4)	9.3(-4)	3.30	E	1
2.		0° - ۹°] 61.66	55 35 0	6483 70	6	10	63	0.045	0.15	-0.57	D	1
			175 42	82020	459090			52	0.0968	0.085	_0.88	C	1
			156.00		641090	2		84	0.061	0.063	_0.91	č	1
			179.21	99090	641090			11	SAL AL	0.0019	201	¥.	
			1.4.4.1		001000	•		.	9.4	0.0010	- 2.01	"	
8.		°P* - "P											
			128.42 116.05	83050 0	861700 861700	42	4	\$80 \$7	0. 095 0.0230	0.1 6 0.0176	-0.43 -1.337	c c	1

¹K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979).

Cr IX: Allowed transitions -- Continued

No.	Transition Array	Multiplet	بې بې	E , (cm ⁻¹)	E. (cm ⁻¹)	8	4	A _h (10 ⁶ s ⁻¹)	ſ.	S (mt. u.)	lot of	Ассы- тасу	Source
•	афф-	7-5	143.48	404320	1101990	IZ	4	369	0.04990	U.ZZ/	-0-319	C	1
			148.99	430700	1101890	6	4	175	0.0388	0.114	-0.63	С	1
			140.75	391410	1101890	4	4	135	0.0400	0.074	-0.80	C	1
		1	133.52	334620	1101090	2	•	0 3	0.0445	0.0352	- 1.001	Ľ	L
5.		"P - "D"											
				434740	1949440	-	e	0.0	0.0000	0.0059	1.00	Ð	
		:	[119.29]	391410	1229720	4	4	9.8	0.0022	0.0033	-2.06	E	1
i													-
6.		P-P					ĺ						ļ
1		4 1 1	[101.63]	430700	1414650	6	4	1.1	1.1(-4)	2.2(-4)	-3.18	Е	1
			[97.729]	391410	1414650	4	4	2.0	2.8(-4)	3.6(-4)	-2.95	E	1
		i .	[97.494]	354620	1390320	2	2	1.5	2.1(-4)	1.3(-4)	-3.38	E	1
7.		- 10 - 55										 	
											1		
i			[216.99]	641030	1101890	4	4	0.42	3.0(-4)	8.6(-4)	-2.92	E	1
8.		^ተ D - ቸን	168.73	648270	1240950	10	10	126	0.054	0.296	-0.270	с	1
1								_		! 			
			167.97	653090	1248440	6	6	112	0.0474	0.157	-0.55	C	1
			109.07	653090	1229720	-		40 3	0.0121	0.000	-1 139	c	3
			164.63	641030	1248440	4	6	24.1	0.0147	0.0319	-1.231	č	i
		-						105					
У.		·U - ·٣	132.46	648270	1403210	10	0	190	0,0307	0.134	-0.51	C	1
			131.31	653090	1414650	6	4	127	0.0219	0.057	-0.88	С	1
			135.26	641030	1390320	4	2	241	0.0331	0.059	-0.88	С	1
			129.25	641030	1414650	4	4	42.7	0.0107	0.0182	- 1.369	С	1
10.		ም - ' S'	k.			i		1					t
							Ϊ.						
			[416.34]	861700	1101890	4	4	0.19	; 5.0(-4)	0.0027	-2.70	E	1
11.		ίΡ- Ό		• •	2	1			:			;	1
			[258.57] 271.72	861700 961700	1248440	4	6	29.8	0.0448	0.153	-0.75	C F	1
								0.01		0.0021		; •• 	•
12		ዋ - ዋ	: !		į	1		ł			1		ł
			190.95	961700	1414650			160	0.077	0.19	_0.51	C	1
			192.82	861700	1380320	4	2	23	0.0065	0.017	-1.59	Ď	1
			: 1	•					1				
13.	2p-3e	°P" - 'S	1										1
			1		 	4	2		0.019		- 1.12	E	interp.
			ł			2	2		0.020		-1.40	E	interp.
.,	2.24	10+ In	ł	•		1				ł			
14.	<i>4</i> 7-80	- T - V	4 4 5	1		1					1		
			[14.26]	1	1	4	6	1.3(+5)	0.56	0.11	0.87	D	interp.
			[14.13]	I	1 1 1	2	4	1.1(+5)	0.65	0.060	0.11	D	interp.
			ł	1		1	•	2 I I MARINA	0.000		~ 0,00	U	interp.

Cr II: Allowed transitions -- Continued

Ne.	Transition Array	Multiplet	ά,	B , (cm ⁻¹)	<u>R</u> 4 (cm ⁻¹)	8.	•	A _b (10 ⁶ s ⁻¹)	ſ.	S (#L=L)	inc d	Accu- racy	Seurce
15.	2p-4d	₽ ₽ ~ – *D											
						4 2 4	6 4 4		0.11 0.12 0.912		0.36 0.62 1.32	D E D	interp. interp. interp.

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Cr xx

Forbidden Transitions

The line strengths tabulated for the single magnetic dipole and single electric quadrupole transition within the $2s^22p$ ground state configuration are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al.³ These relativistic calculations include a perturbative treatment of the Breit interaction and the Lamb shift. Allowance for configuration mixing is limited to the n = 2 complex. The strength of the electric quadrupole transition as defined in Ref. 1 was multiplied by the factor $\frac{2}{3}$ in order to bring this value into conformance with the definition of the quadrupole strength used in the NBS tables.

Transition probabilities for the same lines were calculated by Froese Fischer and Saha² using the multiconfig-

uration Hartree-Fock (MCHF) method with Breit-Pauli corrections. Their orbital basis includes many configurations outside the n=2 complex, but relativistic effects were not treated to the same degree as in Ref. 1. The line strengths for both the M1 and E2 transitions, derived from these data by interpolation between appropriately spaced ions of the 3 sequence, are in very good agreement with the data of Cheng *et al.*¹

References

¹K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, A. Data Nucl. Data Tables 24, 111 (1979).

²C. Froese Fincher and H. P. Saha, Phys. Rev. A 28, 3169 (1983).

No.	Transition Array	Multiplet	λ (λ)	<i>E</i> , (cm ⁻¹)	<i>E</i> , (cm ⁻¹)	8.	8.	Type of transition	A _b (s ⁻¹)	S (at. u.)	Accu- racy	Source
1.	2p-2p	•dr - •dr			T 	T						
			1205.9	,0	82926	2 2	4	M1 E2	5110 0. 336	1.33 0.00204	B C	1

Cr xx: Forbidden transitions

Cr xxi

Be Isoelectronic Sequence

Ground State: 1s²2s² ¹Sa

lonization Energy: $1634 \text{ eV} = 13180000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
12.87	11	13.60	12,29	13.99	28	140.72	4
12.97	11	13.65	24	14.90	19	149.90	2
12.98	19,11	13.66	29	14.94	19,25	154.62	4
13.01	10	13.67	24	14.12	30	165.03	3
13.62	10	13.68	23	14.17	19,21	168.62	3
13.08	9	13.75	2	14.20	31	170.16	7
13.12	8	13.76	27	14.23	21	175.45	3
13.13	10	13.78	27	14.24	35	184.48	3
13.22	16	13.84	27,33,34	14.25	21	190.98	3
13.34	15	13.87	27	14.32	21	197.61	3
13.44	14	13.91	27	14.35	21	259.94	6
13.49	24	13.92	28	14.38	22	233.11	1
13.53	24	13.93	26	14.39	21	357.12	5
13.55	24	13.94	27	14.58	20	409.80	5
13.59	13	13.95	32	14.81	23	505,89	5

Oscillator strengths for transitions of the arrays 2s²-2s2p and $2s2p-2p^2$ are taken from the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al ' These relativistic calculations include the configuration interaction most relevant for the states of these configurations, as well as a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except for the weakest intercombination lines. (The ${}^{3}P_{1}^{*} - {}^{3}S_{0}$ transition of the $2s2p-2p^{2}$ array has been omitted here, since the f-value is considerably smaller than those of the other lines of this array.)

A number of sources of reliable data, from other relativistic calculations, are available for the 2s-2p transitions. However, with the exception of some of the weaker lines, they all agree well with the results of Cheng et al.¹ The latter are quoted exclusively here since they provide data from a single set of comprehensive calculations, all done at a uniform and reasonably accurate level of approximation, for the valence shell 2s-2p transitions for all ions of the isoelectronic sequence.

The f-values for the $2s^{2}-2s^{2}p$, $2s^{2}p-2p^{2}p$, $2s^{2}p-2s^{2}s$, $2p^2-2p$ 3s, 2s2p-2s 3d, and $2p^2-2p$ 3d arrays of transitions are taken from the work of Fawcett,¹ who used Cowan's version of the relativistic Hartree-Fock method with intermediate coupling and configuration interaction. This work provides a comprehensive set of data for the entire

isoelectronic sequence, calculated at a uniform level of approximation. Some of these transitions, for some ionr of this sequence, have also been calculated by Bhatia et al.3 using the program SUPERSTRUCTURE, which includes configuration interaction and intermediate coupling. Where they overlap, these two sets of calculations agree to within the uncertainties assigned here. Transitions involving the J=1 levels of 2p 3p 'S and 'P have been omitted because of erratic behavior of the /-values along the sequence.

Oscillator strengths for the transition array 2s²-2s4p have been interpolated from the relativistic random phase approximation (RRPA) calculations along the isoelectronic sequence by Lin and Johnson.4

A few multiplet f-values for transitions involving the outer electron alone, 2s3s-2s3p and 2s3p-2s3d, have been interpolated along the isoelectronic sequence and assigned a low accuracy.

References

- 'K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979)
- ¹B. C. Fawcett, At. Data Nucl. Data Tables 36, 1 (1984); 33, 479 (1985). A. K. Bhatia, U. Feldman, and J. F. Seely, At. Data Nucl. Data Tables
- 35, 449 (1986). *C. D. Lin and W. R. Johnson, Phys. Rev. A 15, 1046 (1977)

Cr xx: Allowed transitions

No.	Transition Array	Multiplet	х (Д)	E , (cm ⁻¹)	E 4 (cm ⁻¹)	8.	8	A. (10 ⁶ s ⁻¹)	fa	S (ast. u.)	hq d	Accu- racy	Source
	21 ¹ -2220	۲ <u>۶</u> - ۲											
			(293.11)	•	341170	1	3	0.25	0.0010	9.6(-4)*	-3.00	D	1
2		"S - "P"	[149.90]	•	667119	1	3	162	0.164	0.0000	-0.785	B	1
3	2x2p-2p ²	'P' - 'P	181.90	374 100	925980	9	9	117	0.9576	0.309	-0.286	B	1
			[184.48] [175.45] [197.61] [190.98] [165.93]	405070 341170 405070 341170 341170	947130 911130 911130 864780 947130	5 3 5 3 3 3	5 3 3 1 5	73.7 34.2 40.1 109 42.8	0.0376 0.0158 0.0141 0.0199 0.0291	0.114 0.0274 0.0459 0.0375 0.0474	-0.726 -1.324 -1.152 -1.224 -1.659	B B B B	1 1 1 1
			(168.62)	318880	911130	1	3	52.4	0.9679	0.0372	-1.174	B	1
4		" P " - "D	[154.62] [140.77]	405079 341170	1051810 1051810	5	5	28.2 24	0.9191	9.9257	-1. 29 7	C	1
5.		'P" - 'P	[1	••••••	100,010							-	-
			(357.12) (409.80) (505.89)	667110 667110 667110	947130 911130 864780	111111111111111111111111111111111111111	5 3 1	2.1 0.040 0.19	0.0066 1.0(-4) 2.4(-4)	0.023 4.0(-4) 0.0012	-1.70 -3.52 -3.14	D E E	1 1
6.		'P" - 'D	[259.94]	667110	1051810	3	5	36.5	0.0616	0.158	-0.733	B	1
7.		¹ P* - ¹ S	[170.16]	66 7110	1254790	3	1	271	0.0392	0.0659	- 0.930	B	1
8.	2#²-2#3p	'S - 'P'											
1		1	[13.12]	0	7620000	1	3	3.7(+4)	0.29	0.013	0.54	C-	2
9.		'S - 'P'	[13.06]	0	[7648000]	1	3	5.2(+4)	0.40	0.017	-0.40	C -	2
10.	2s2p-2p3p	ም - ህ											
		\$ 7 1 1	[13.02] [13.02] [12.98] [13.13] [13.01]	405070 341170 319080 405070 341170	8087000 (8022000) (8025000) (8023000) (8025000)	5 3 1 5 3	7 5 3 5 3	3.9(+4) 3.8(+4) 1.1(+4) 1900 1.9(+4)	0.14 0.16 0.082 0.0050 0.047	0.020 0.021 0.0025 0.0011 0.0060	-0.15 -0.32 -1.09 -1.60 -0.85	C- C- D D D	2 2 2 2 2 2
11.		*P* - *P											
			[12.98] [12.97] [12.87]	405070 341170 341170	8109000 (8049000) 8109000	5 3 3	5 1 5	3.9(+4) 4.8(+4) 2700	0.098 0.040 0 011	0.021 0.0051 0.0014	0. 3 1 0. 92 1.48	C– D D	2 2 2
12		¹ P" - ¹ P	[13.60]	667110	8022000	3	8	1.6(+4)	0.043	0.0068	0.89	ם	2
13.		'P" - 'D											
		1	[13.59]	667110	(8025000)	3	8	1.2(+4)	0.033	0.0044	- 1.00	D	2
14.		¹ P" - ³ P											
			(13.44) [13.44]	667110 667110	8109000 [8109000]	8	5 8	1.2(+4) 2.5(+4)	0.065 0.067	0.0070 0.0089	- 0.80 - 0.70	D C-	2 2

F-95

Crast: Allowed transitions -- Continued

							_		-				
No.	Transition Array	Multiplet	λ ώ	E , (cm ⁻¹)	<u>E.</u> (cm ⁻¹)	Ł	8	A⊾ (1€ ⁰ s ^{−1})	<i>f.</i>	S (at. 1.)	log gf	Accu- racy	Source
						_				1			
15.		ت P* - 'D	[13.34]	667110	[8161000]	3	5	5.2(+4)	9.23	9.830	-0.16	C –	2
16.		'P' - 'S	[13.22]	667119	[8231000]	3	1	4.6(+4)	0.000	0.0052	-0.92	D	2
17.	21 ¹ -2149	'S - 🍄								1			
						1	3		0.029		- 1.70	D	interp.
18		'S - '₽"				1	3		0.16		-0.89	D	interp.
19.	2:2p-2:3s	7-5	14.11	574100	7463000	•	3	2.5(+4)	0.026	0.011	-0.63	D	2
	-	1	[14.17]	405070	7463890	5	1	14(+4)	0.625	0.0061	-0.89	D	2
		;	[14.04]	141170	7453600	1	1	9160	0 827	0 0037	-109	D	2
		;	[14.00]	318989	7463800	ī	3	3200	0.028	0.0013	-1.55	D	2
80.		'P' - 'S	[14.58]	657110	(7526000)	3	1	9480	0.010	0.0014	-1.52	D	2
21.	2p²-2p3s	P - P	14.27	925990	[7939000]	,	9	1.8(+4)	0.054	0.023	-0.31	D	2
[i	[14.25]	947130	[7966900]	5	5	1.2(+4)	0.038	0.0089	-0.72	D	2
			[14.32]	911130	[7894000]	; 3	3	3600	0.011	0.0016	-1.48	D	2
÷			[14.39]	947130	[7894000]	5	3	8100	0.015	0.0036	-1.12	D	2
Ē			[14.35]	911130	[7881000]	3	1	1.7(+4)	0.017	0.0024	- 1.29	D	2
			[14.17]	911130	[7966000]	3	5	6000	0.030	0.0042	- 1.05	D	2
			[14.23]	864780	[7894000]	1	3	6100	0.055	0.0025	-1.25	D	2
22.		'D - 'P'	[14.38]	1051810	[8008000]	5	3	1.5(+4)	0.028	0.0066	-0.85	D	2
23 .		'S - 'P'	[14.81]	1254790	[8008000]	1	3	5800	0.057	0.0028	- 1.24	D	2
24 .	2s2p-2s3d	۲۰ - ۲ ۴	13.60	\$74100	[7728000]	9	15	1.6(+5)	0.72	0.29	0.81	C -	2
			[13.65]	405070	7733000	5	7	1.5(5)	0.60	0 13	0.48	C-	2
			(13.55)	341170	7721000	3	5	12(+5)	0.55	0 074	0.22	Č-	2
			[13.49]	318060	[7730000]	ĩ	2	90(+4)	0 74	0.033	-013	Č~	2
			(13.67)	405070	7721000	5	5	3.9(+4)	0.11	0.025	-0.26	Č-	2
			[13.53]	341170	[7730000]	3	3	6.6(+4)	0.18	0.024	-0.27	Ē-	2
			[13.65]	405070	[7730000]	5	3	4300	0.0072	0.0016	-1.44	C -	2
25.		P* - 'D	[14.04]	667110	[7792000]	3	5	1.2(+5)	0.61	0.085	0.26	C -	2
26 .	2p2p3d	'P - ' F '											
			[13.93]	947130	[8124000]	5	7	4.21+4)	0.17	0.039	- 0.07	C	2
27.		'P - 'D'	13.82	9 25 9 80	8162000	9	15	1.5(+5)	0.71	0.29	0.80	C-	2
			[13.78]	34 7130	8204000	5	7	1.7(+5)	0.68	0 15	0.53	C	2
			[13.87]	911130	8121000	3	5	8.5(+4)	0.407	0.056	0.067	С.	2
			[13.76]	864780	8134000	1	3	1.51(+5)	1.29	0.058	0.111	C	2
			[13.94]	947130	8121000	5	5	1.1(+4)	0.032	0.0073	0.80	D	2
			[13.84]	911130	8134000	3	3	3.5(+4)	0.10	0.014	- 0. 52	C -	?
			[13.91]	947130	8134000	5	3	1000	0.0018	4.1(4)	- 2,05	D	2
25		'P - 'D'											
			110 041		10000000		-		0.004	0.0000	0.00	c	0
			[13] 99]	947130	[8093000]	5	5	6200)	0.024	0.0055	- 0.92	C	2
			13.92	911130	[20,930,000]	- 3	- 5	H.(# + 4)	041	0.056	0.09	D	z

No.	Transition Array	Multiplet	۵ دل	K , (cm ⁻¹)	E. (cm ⁻¹)	£	A	A. (10 ⁴ s ⁻¹)	ſı	S (#L =_)	ha d	Аста- тасу	Source
23		ዋ-ም	18.71	925900	[8230007]	9	9	1.15(+5)	0.325	0.132	0.455	C-	2
			(13.75) (13.68) (13.75)	967130 911130 967130	8219000 8219000	5 \$ 5	5	9.5(+4) 8 2(+4)	0.270 9.23	0.061 0.051	0.130 0.16 0.47	C C	2
			[13.66] [13.68] [13.69]	911130 911130 866780	[8231000] 8219000 8219000	3 3 1	15	1.2(+5) 1.2(+4) 610	0.11 0.057 0.0051	0.915 0.0077 2.3(-4)	-0.48 -0.77 -2.29	C– D D	2 2 2 2
30.	;	¹D - ᢪ₽*											
			[14.12]	1051810	[81 32000]	5	5	7400	0.922	0.0051	-0.96	D	2
3 1.		'D - 'D'	[14.20]	1951810	(80 53866)	5	5	1.7(+4)	0.050	0.012	-9.69	C-	2
22		¹D - ᢪ₽*											
			[13.95]	1051810	8219000	5	5	3.8(+4)	0.11	0.025	-0.21	C-	2
33.		¹ D - ¹ P*	[1 3.84]	1051810	8275090	5	3	8700	0.015	0.0034	-1.12	D	2
34.		¹ D - ¹ F*	[13.84]	1051810	8275000	5	7	2.59(+5)	1.04	0.237	0.72	C-	2
35.		¹ S - ¹ P*	[14.24]	1254790	8275090	1	3	1.41(+5)	1.29	0.060	0.111	C-	2
36.	2:3: -2:3p	*S - *P*				3	9		0.13		-0.41	D	interp.
37.		¹ S - ¹ P*				1	3		0.056		-1.25	E	interp.
38 .	2s 3p - 2s 3d	*P* - *D				9	15		0.029		-0.58	E	interp.
39 .		"P" - "D		t !		3	5		0.052		-0.81	E	interp.

The number in parentheses following the tabulated visue indicates the power of ten by which this value has to be multiplied.

Cr xxi

Forbidden Transitions

Transition probabilities for magnetic dipole and electric quadrupole transitions within the $2s2\rho$ and $2\rho^2$ configurations were calculated by Feldman et al.¹ using scaled Thomas-Fermi wavefunctions with allowance for configuration interaction and relativistic effects. We modified their transition probability data by the application of experimental wavelengths, i.e., we first converted their A-values into line strength data utilizing their theoretical transition energies and then reconverted the line strengths into A-values with wavelengths derived from experimental data. This approach should normally yield transition probabilities that are more accurate than those based on theoretically determined wavelengths. The one E2 transition listed, which is relatively strong compared to other E2 transitions, has been taken from the multiconfiguration relativistic Hartree-Fock calculations of Anderson and Anderson,² and has been included to indicate the small magnitude of the E2 line strengths.

References

¹U. Feldman, G. A. Doschek, Ch.-Ch. Cheng, and A. K. Bhatis, J. Appl. Phys. **51**, 190 (1980).

¹E. K. Anderson and E. M. Anderson, Opt. Spectrosc. (USSR) 52, 478 (1982).

Cr xxI: Forbidden transitions

No.	Transition Array	Multipict	ک (گ)	E, (cm ¹)	E, (cm ')	8	8.	Type of transition	A⊾ (s ⁻¹)	S (at. u.)	Асса- гасу	Source
1	2=2=-2=2=	7 - 7					1					
					1	1		!		i I		
1			1566.4	341170	405070	3	5	MI	3450	2.46	C+	1
-			[4329.7]	318060	341170	I	3	ML	218	1.97	C+	I
2		'P' - 'P'				•			1	!		
					1			•	1	1	ļ	1
1			[381.62]	405070	667110	5	3	Ml	6000	0.037	D	1
			[306.80]	341170	667110	3	3	MI	6800	0.022	D-	
ļ			[786.51]	219090	667110		2	E2 MI	23	1.1(-4)	D-	2
			[200.31]	310000		[•			1.1(++)	0.000		•
3.	2 p ²-2 p ²	'P - 'P								1	İ	
•												۱.
1			[2777.0]	911130	947130	3	5	MI MI	520	2.07	C	
l		1	[1130re]	894/80	711130	•	,	–	1720	1.72	L.	1
4.		'P - 'D										
					[ł		ţ			1	ł
ļ		1	[955.29]	947130	1051810	5	5	MI	6800	1.1	D+	1
ļ			[710.83]	911130	1051810	3		M	6300	0.4Z	D+	1
s		1P - 15				1		1				
						ļ				l		[
		1	[290.99]	711130	1254790	3	1	MI	9.2(+4)	0.064	D	1
					1	1	1	1		1	ł	

The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Сг ххи

Li Isoelectronic Sequence

Ground State: 1s¹2s ¹S_{1/2}

Ionization Energy: $1721.4 \text{ eV} = 13882000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
2.190	5	8.04	17	9.493	8	26.8	18
2.191	2	8.07	10	9.809	14	37.5	22
2.196	1	8.10	17	9.865	14	27.7	22
2.198	4	8.20	16	12.623	7	28.0	22
2.199	1,3,4	8.37	16	12.664	1	222.98	6
2.202	3	8.52	9	13.149	13	279.74	6
2.209	4	8.78	15	13.292	13		
7.82	11	8.85	15	13.206	13		

Oscillator strengths for lines of the principal (2s-2p) resonance multiplet are the results of the MCDF calculations of Cheng et al.,³ which include a perturbative treatment of the Breit interaction and the Lamb shift. The results of the MCDF calculations of Armstrong et al.⁴ were interpolated to provide *f*-values for the 2p-3d transitions.

The f-value for the 3d-4f transition was taken from a study of systematic trends along isoelectronic sequences by Smith and Wiese.⁵ The tabulated data for many additional transitions were taken from the theoretical analysis of Martin and Wiese,⁶ which was based on a generalized study of systematic trends for several spectral series of the lithium isoelectronic sequence.

Results of the relativistic Hartree-Fock calculations of Kim and Desclaux⁷ for several ions of the Li sequence were incorporated into the data of Ref. 6 for the 2s-3ø transitions. For all other transitions for which the results of Ref. 6 are quoted here, no relativistic calculations were available. However, the relativistic calculations of Younger and Weiss⁴ for the hydrogen isoelectronic sequence provide a means of assessing the magnitude of relativistic corrections since the Li sequence is very similar in structure to the H sequence. For those transitions for which relativistic effects were estimated to be significant (specifically, whenever the ratio of the weighted relativistic hydrogenic f-values gfa of any two lines within a multiplet was found to deviate from the corresponding LS-coupling linestrength ratio by more than 5% for the appropriate value of the nuclear charge Z), the f-values were excluded from the compilation. A more detailed discussion of this comparison is given in Ref. 6.

Although the 2p-3s multiplet did not satisfy the criterion described in the paragraph above, we have nevertheless quoted the multiplet *f*-value obtained by Onello⁹ using a Z-expansion technique based on a variational calculation for O VI That allowed for large-acale configuration interaction. The resulting multiplet oscillator strengths for Fe XXIV and Ni XXVI are in very good agreement with data derived from the results of calculations that included relativistic effects.^{R11} We thus felt that the results of Ref. 9 should be sufficiently accurate for inclusion in this compilation.

Transition probability data are available for numerous transitions involving doubly excited states with the spectrator electron occupying the $\pi = 3$ shell, or higher.¹² These have not been tabulated, however, since they belong to, or are very close to belonging to, the unresolved satellites of the helium-like ion.

References

- ¹J. Hata and I. P. Grant, Mon. Not. R. Astron Soc. 211, 549 (1:04).
- ³L. A. Vainshtein and U. I. Safronova, Al. Data Nucl. Data Tables 21, 49 (1970).
- ¹K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979).
- 'L. Armstrong, Jr., W. R. Fielder, and D. L. Lin, Phys. Rev. A 14, 1114 (1976).
- ⁵M. W. Smith and W. L. Wiese, Astrophys. J. Suppl. Ser. 23, No. 196, 103 (1971).
- ⁴G. A. Martin and W. L. Wiese, J. Phys. Chem. Ref. Data 5, 537 (1976).
- Y.-K. Kim and J. P. Desclaux, Phys. Rev. Lett. 36, 139 (1976) and private communication
- ⁴S. M. Younger and A. W. Weins, J. Res. Not. Bur. Stand., Sect. A 79, 629 (1975).
- ⁹J. S. Onello, Phys. Rev. A 11, 743 (1975).
- "M. A. Hayes, Mon. Not. R. Astron. Soc. 189, 55P (1979).
- ¹¹B. C. Fawcett, A. Ridgeley, and T. P. Hughes, Mon. Not. R. Astron. Soc. 100, 365 (1979).
- ¹³L. A. Vainshtein and U. I. Safronova, At. Data Nucl. DataTable: 25, 311 (1980).

Cr XXII: Allowed transitions

							_						
No.	Transition Array	Multiplet	λ (Å)	<i>E</i> , (cm ^{- 1})	<i>E</i> ₄ (cm ⁻¹)	E.	8.	A _{la} (10 ⁰ s ⁻¹)	Ja	S (at. u.)	log gf	Accu- racy	Source
L	ls*2s- ls(*8)2s2p(*P*)	²8 - "P"	2.196			2	6	4.1(+5)°	0.090	0.0018	-0.75	D	1
			[2.196] [2.199]			2 2	42	3.4(+4) 1.1(+6)	0.0049 0.080	7.1(-5) 0.0012	-2.01 -0.80	D C	1
2	ls*2s- ls(*8)2s2p('P*)	38 - 3P*											
			(2.191)			2	2	2.5(+6)	0.18	0.0 026	-0.44	c	1
g .	15°20-1520'	סי- ייזי						_					
			(2.202) (2.199)			42	4	1.6(+6) 2.9(+6)	0.17 0. 88	0.0061 0.0048	-0.16 -0.18	C C	1
								-				-	

۰.

Cr xxx	Allowed transitions - Continued

No.	Transition Array	Multiplet	λ ώ	£ , (cm ⁻¹)	E, (cm ⁻¹)	Ł	4	AL (10 ⁶ s ⁻¹)	1.	S (at. u.)	ins af	Асси- гасу	Source
•		₽°- ₽											
			(* 1981					4546	0 13	0.0004	A 17	C	1
			[2.199]			2	2	3.9(+6)	0.28	0.0041	-0.25	č	I
			[Z.203]			4	2	1.3(+6)	0.947	9.9014	-0.7Z	С	1
5.		P - S								}			
			[2.190]			4	2	1.7(+6)	0.061	0.0018	-0.61	С	1
6	22-29	*S - *P*	239 .15	0	418140	2	6	26.4	0.9680	0.107	-0.867	B+	3
			222.96	0	448470	2		32.9	0.0430	0.0719	-1.909	B+	3
			279.74	0	357470	2	2	16.5	0.0132	2222.0	-1.413	B+	3
7.	2z-3p	*5 - *P*	12.637	0	7 913500	2	6	5.19+4)	0.373	0.9310	-0.128	B	6
			12.623	0	7922000	2	•	5.13(+4)	0.245	0.0294	-0.310	E	6
		1	12.664	0	7896400	2	2	5.28(+4)	0.127	0.0106	-0.595	B	6
8.	2s-4p	*S - *P*	9.493	0	10530000	2	6	2.5(+4)	0.10	0.0063	-0.70	C+	6
9.	2s-5p	*5 - *P*	[8.52]			2	6	1.2(+4)	0.040	0.0022	- 1.10	C+	6
10.	2s-6p	*S - *P*	[8.07]			2	6	7240	0.0212	0.00113	-1.373	C+	6
11.	2s-7p	²S - ²P*	[7.82]			2	6	4510	0.0124	6.38(-4)	- 1.606	C+	6
12	20-30	۲ - ۴	13.54	418140	7805000	6	2	1.9(+4)	0.017	0.0045	-0.99	D	9
12	20-11	10° - 10	19 045	118110	7962100		10	154(+5)	0 677	0 177	0 608	•	intern
	<i>ap</i> ~30		10.200	410140			10	1.00 + 0)	V.011	V.1.,	0.000		unep.
		ί.	1.J. 29 2 13.149	448470 857470	7971800 7962600	4	6	1.54(+5) 1.29(+5)	0.611 0.671	0.107	0.358 0.128	B	interp.
			[13.308]	448470	7962500	4	4	2.6(+4)	0.068	0.012	-0.57	B	interp.
14.	2p-4d	²P* - ²D	9.852	418140	10570000	6	10	4.9(+4)	0.12	0.023	~0.14	B	6
			9.865	448470	10590000	4	6	4.9(+4)	0.11	0.014	-0.37	В	4
			9,809	857470	10550000	2	4	4.1(+4)	0.12	0.0077	-0.62	B	la In
			9.000	440470	10350000	•	•	1900	0.012	0.0019	-1.09	L+	4
15.	2p-5d	'P" - 'D	8.8 5			6	10	2.31(+4)	0.0450	0.00785	0.569	C+	6
		1	[8.85]			4	6	2.29(+4)	0.0404	0.00471	-0.791	C+	la
			[8.78] [8.85]			4		1.96(+4) 3800	0.0453	0.00262 5.2(-4)	-1.043 -1.75	D C++	10 10
16.	20-6d	7P* - 7D	8.15			6	10	1.26(+4)	0 0220	0 00263	-0.879	C+	6
										0.0000			
			[8.37] [8.30]			4	6	1.26(+4) 1.07(+4)	0.0196	0.00218	-1.102	C+ C+	La La
			[8.37]			4	4	2100	0.0022	2.4(-4)	- 2.06	D	la
17.	2p~7d	₽" - "D	8.08			6	10	7720	0.0126	0.00201	- 1.121	C+	6
		1	[8.10]			4	6	7690	0.0113	0.00121	- 1.343	C+	4
			[8.04]			2	4	6530	0.0127	6.70(- 4)	-1.597	C+	4
:			[8.10]			•	•	1200	0.0012	1.21 - 4)	- 2.31	ט	10
18.	3e-4p	*8 - 'P*	[36.8]	7805000	10530000	2	6	7100	0.43	0.10	- 0.07	C	6

		•	•	•	•	***	•	•	•	•	6	•	•	•	•	•	6	
11	د	,	υ	U	-	n m đ	さ	J	J	よ	A	U	U	υ	ţ	さ	. J	ţ
1			-		8	평풍력		SUM-	11-	-0.761	1.86	121.0-	-0.50	-0.96	0.544	810-0	-1M	-0.432
8 J						N 19 8												
4					3	395					1.86	EV.	0.128	0.066	0.583	0.141	0.0060	0.0616
AL (***)					1.7(+0)	1.7(+0) 1.4(+0) 2700												
4		•	٠	٠	S	***	2	2	•	2	z	9	٠	9	2	2	2	2
4	•)	•	••	٠	484	٠	٠	٠	٠	2	•	N	•	9	•		•
ال 1					NETROD	Lacterne Lactures Lactures												
м					ODCE INL													
4					37.6	(arant) (1:141) (5:141)												
Meine	4)	Å- 19	k p	•		P - +	P - A	90 	P -	5-4	4- p	4	4	P-4	P - 4	%-4	₽ · ₽
The state	4	•	1	4-4	7	999999	3	3	2	2-4	77	4-4-	3	4L-1	3	\$	s1-4	PL-4
2	2		8	ম	8		8	*	X	×	2	*	R	8	3	8	8	2

Critic Allowed transitions - Continue

of ten by which this value has to be multiplied. ž ł value indicates ing the tabulated Ī 륗 The number in par

Cr xxx

Forbidden Transitions

The single magnetic dipole transition within the $1s^22\rho$ configuration has the line strength of 1.33 in the absence of relativistic effects in the wavefunctions.¹ It is estimated that these effects are negligible, since comprehensive relativistic calculations by Cheng *et al.*² for the analogous transition in the $1s^22s^22\rho$ configuration of the boron sequence show that such relativistic corrections are negligible until much more highly charged ioas.

The listed transition probability data are also expected to be quite accurate since the energy levels are derived from experimental data.

An electric quadrupole transition at the same wavelength is estimated to be of negligible strength, as calculated by Bhatia³ for this transition in the case of Mn xxui. (He obtains a ratio of about 10^{-3} for the ratio of E2 to M1 line strengths).

References

W. L. Wiese, M. W. Smith, and B. M. Miles, "Atomic Transition Probabilities", Vol. 0, NSRDS-NBS 22, U.S. Govt. Print. Office, Washington, DC 1969.

²K. T. Cheng, Y.-K. Kim, and J. P. Descioux, At. Data Nucl. Data Tables 24, 111 (1979).

¹A. K. Bhatis, private communication (1986).

Multiplet No. Transition) (Å) E, E, 8. 8. Type of A ... 5 Accu-Source (cm ¹) (cm ¹) (5 1) transition Array (at. u.) гасу 1. 20-20 ዋ - ዋ [1098.9] 357470 6760 448470 2 4 **M**1 1.33 B interp.

Cr xxII: Forbidden transitions

Cr xxm

He Isoelectronic Sequence

Ground State: 1s2 1So

Ionization Energy: 7481.8 eV = 60344000 cm⁻¹

Allowed Transitions

List of tubulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
1.7235	17	2,107	3.7.10	9.0513	31	35.722	45
1.7238	16	2.109	7	9.2126	32	74.234	55
1.7632	15	2.113	9	11.852	21	74.878	56
1.7640	14	2.119	5	12.093	22	76.447	58
1.8557	13	2.129	6	12.271	27	77.226	· 59
1.8578	12	2.1818	2	12.512	73	225.3	19
2.095	11	2.1923	1	23.553	41	326.3	18
2.101	4,8	7.9233	25	23.820	42	442.9	18
2.102	3	8.0619	26	23.979	48	467.5	20
2.103	7	8.0762	35	24.265	49	471.0	18
2.104	7	8.2126	36	34.193	39		
2.105	7	8.8497	23	34.609	40		
2.106	3	9.0127	24	35.256	44		

Oscillator strengths for transitions of the $1s^2-1s2p$ array are taken from the results of Drake,¹ who incorporated accurate nonrelativistic matrix elements and Dirac hydrogenic matrix elements into a Z-expansion technique in order to provide f-values which would accurately reflect correlation effects for low-Z ions and relativistic effects for high-Z ions of the helium isoelectronic sequence. The f-values for the $1s^2$ ¹S - 1snp ³P^{*} (n = 3-5) transitions were interpolated from results of the relativistic random phase approximation (RRPA) calculations of Johnson and Lin.² Data for other s-p and p-s transitions were interpolated from the RRPA results of Lin et al.,³ with the exception of the 2s-2p transitions, where we tabulate the actual published RRPA A-values of these same authors.⁴

The charge expansion results of Laughlin³ are given for various p-d and d-p transitions, as well as transitions between 4d and 4f levels. For those multiplets involving no change in principal quantum number (3p-3d, 4p-4d, 4d-4f) the f-values should be considered rather uncertain, since they are sensitive to energy differences. Oscillator strengths for the 2p-3d transitions, and for 1s3p ³P^{*} - 1s3d ³D, were interpolated from the varistional calculations of Weiss.⁶ Both of these calculations indicate that, unlike the triplets, the nd ³D energy levels (n = 3,4) lie below the np ³P^{*} levels, and the 4f ⁴F^{*} lies below the 4d ⁴D.

Brown and Cortez' have provided f-values for numerous d-f and f-d transitions for the isoelectronic sequence by fitting Z-expansion formulas to the results of variational calculations for the low-Z ions. Their results for transitions between the lower-lying D and F^* terms are tabulated here.

Transition probabilities for the stronger transitions involving the doubly excited n=2 states are taken from the comprehensive, charge expansion perturbation theory calculations of Vainshtein and Safronova.⁴ Numerous data are also available for transitions involving doubly excited states where the spectator electron has principal quantum number n = 3.⁹ However, these data are not tabulated here since most of the transitions are very close to belonging to the unresolved satellites of the H-like ions, if they do not in fact do so.

References

- ¹G. W. F. Drake, Phys. Rev. A 19, 1387 (1979).
- W. R. Johnson and C. D. Lin, Phys. Rev. A 14, 565 (1976).
- ³C. D. Lin, W. R. Johnson, and A. Dalgarno, Astrophys. J. 217, 1011 (1977).
- ⁴C. D. Lin, W. R. Johnson, and A. Dalgarno, Phys. Rev. A 15, 154 (1977).
- ⁵C. J. Laughin, J. Phys. B 6, 1942 (1973).
- 4A. W. Weiss, J. Res. Nat. Bur. Stand., Sect. A 71, 163 (17 (7).
- R. T. Brown and J.-L. M. Cortez, Astrophys. J. 176, 267 (1972).
- L. A. Vainshisin and U. J. Safranova, At. Data Nucl. Data Tables 21, 49 (1978).
- *L. A. Vainshtein and U. I. Safronova, At. Data Nucl. Data Tables 25, 311 (1980).

Cr xxttt: Allowed transitions

No.	Transition Array	Multiplet	λ (Å)	E , (cm ⁻¹)	E. (cm ⁻¹)	R.	81	A (10 ⁰ s ⁻¹)	ſ.	S (al. u.)	ios af	Асса- пасу	Source
1.	ls [:] -1s2p	'S - 'P"											
			[2.1923]	0	[45614900]	1	3	2.34(+5)	0.0505	3.64(-4)	1.297	B	I
2		"S - "P"	[2.1818]	0	[45832900]	1	3	3.37(+6)	0.721	0.00518	-0.142	B	1
3.	l\$2s-2s2p	'S - 'P'	2.104	[45389100]	[92920000]	3	9	2.1(+6)	0.41	0.0085	0.09	С	8
			[2.102]	[45389100]	(92960070)	3	5	2.1(+6)	0.23	0.0048	-0.16	с	
			[2.106] [2.107]	[453 8 9100] [453 8910 0]	[92870000] [92850000]	3	3 1	2.0(+6) 2.0(+6)	0.13 0.044	0.0028 9.2(4)	0.40 0.88	с с	8
4.		'S - 'P"	[2.101]	[45619000]	(93220000)	1	3	2.0(+6)	0.40	0.0027	-0.40	с	8
5.	ls2p-2s ²	' P' - 'S											
			[2.119]	[45614900]	(92800000)	3	1	2.7(+5)	0.0961	1.3(-4)	- 1.74	D	8
6.		' P' - 'S	[2.129]	[45832900]	[92800000]	3	1	5.i(+5)	0.012	2.4(-4)	- 1.46	D	8
7.	1#2p-2p [:]	'P' - 'P	2.105	[45658200]	[93]40000]	9	9	3.9(+6)	0.26	0.016	0.36	D+	8
		i I	[2.107]	[45695600]	(93 [60000]	5	5	2.3(+6)	0.15	0.0053	-0.12	с	8
			[2.105]	[456) 1900]	[93130000]	3	3	9.6(+5)	0.064	0.0013	-0.72	D	: 8
			[2:107]	[45614900]	[93070000]	2	' J 	1.7(+0)	0.066	0.0024	-0.47	c	. B.
			[2.103]	[45614900]	[93160000]	3	5	1.2(+6)	0.13	0.0028	-0.40	i č	8
			[2.104]	[45601400]	[93130000]	I	3	1.4(+6)	0.28	0.0019	- 0.55	Ċ	8
8.		P' - 'D											
			[2.101]	[45695600]	{93 29000 0}	5	5	7.9(+5)	0.052	0.0018	0.58	D	8
9.		P* - 'P						1	i				,
			[2.113]	[45832900]	{93160000}	3	5	5.9(+5)	0.066	0.0014	-0.70	D	8
10.		°P* - 'D	[2 107]	[45832900]	[93290000]	3	5	3.3(+6)	0.37	0.0076	0.04	С	8
П.		P* - 5	[2.095]	[45832900]	{93560000]	3	1	3.5(+6)	0.077	0.0016	0.64	С	8
12.	1s-1s3p	S - P*											
			[1.8578]	0	[53826600]	I	3	8.4(+4)	0.013	8.0(-5)	1 89	E	interp
13.		S - P*	[1.8557]	0	[53888200]	1	3	8 97(+ 5)	0.139	8.49(- 4	- 0.857	C +	interp.
14.	1s ² -1s4p	S - 'P*											
			[1.7640]	0	[56688900]	1	3	3.2(+ 4)	0 0045	2.6(- 5)	- 2.35	E	interp
15		S - P*	[1 7632]	0	(56714400)	I	3	3 6R(+ 5)	v 0514	2.98(4	- 1 289	C +	interp.
16	18 - 184p	S - P*											
			[1 7238]	0	[58010100]	1	3	16(+4)	0.0022	1-2(5)	- 2.66	E	interp

-

1

-

.

-

Cr xxm: Allowed transitions - Continued

No.	Transition Array	Muhiplet	à, (Å)	₽ , (cm= ⁻¹)	<i>E</i> , (cm ⁻¹)	e.	4	A _{in} (10 ⁴ s ⁻¹)	<i>[</i> 4	S (al. u.)	log af	Асса- гасу	Source
17.		'S - 'P'	[1.7235]	0	[50023100]	1	3	1.86(+5)	0.0248	1.41(-4)	-1.605	C+	interp.
18.	1s2s-1s2p	¹ 5 - 7 7 *	\$71.6	[45389100]	[45658290]	3	9	6.71	0.0417	0.153	-0.903	B	4
			[326.3]	[45389100]	[45695600]	3	5	10.1	0.0269	0.0066	-1.094	B	4
			[471.0]	[4538/100] [4538/100]	[45601400] [45601400]	3	1	3.36	0.00372	0.0173	-1.952	B	•
19.		¹ 5 - 17*											
			[225.3]	[45389100]	[45632900]	3	3	1.93	0.00147	0.00327	-2.356	в	4
20.		'S - 'F	[467.5]	[45619000]	[45832900]	1	3	3.32	0.0326	0.0502	-1.486	B	4
21.	ls2s-ls3p	5-7											
			[11.852]	[45389100]	[53826600]	3	3	5.8(+4)	0.123	0.0144	-0.433	с	interp.
22.		² S − ¹ F *	[12.093]	{45619000]	[53888200]	1	3	5.6(+4)	0.366	0.0147	-0.434	с	interp.
23.	is2s-is4p	¹ 5 - ¹ P*											
			[8.8497]	[45389100]	[56683900]	3	3	2.6(+4)	0.030	0.0026	-1.05	C+	interp.
24.		¹ S - ¹ P*	(9.0127)	[45619000]	[56714400]	1	3	2.4(+4)	0.089	0.0026	-1.05	C+	interp.
25.	1#2#-1#5p	'S - 'P'											
			[7.9233]	[45389100]	[58010100]	3	3	1.3(+4)	0.012	9.4(-4)	-1.44	C+	interp.
26 .		'S - 'P'	[\$.0619]	[45619000]	[58023100]	1	3	1.3(+4)	0.037	9.8(4)	-1.43	C+	interp.
27.	is2p-is3s	'P' - 'S											
			[12.271]	[456]4900]	[53764300]	3	3	6200	0.014	0.0017	-1.38	C-	interp.
28.		'P' - 'S	[12.512]	[45832900]	[53825000]	3	1	1.9(+4)	0.015	 0.0019	- 1.35	C+	interp.
29 .	le2p-le3d	'P' - 'D			1	9	15		0.69		0.79	C+	interp.
30.	-	'P' - 'D				3	5		0.70		0.32	C+	interp.
31.	1s2p-1s4s	³ P' - ³ S					1						
	-		[9.0513]	[45614900]	[56663000]	3	3	2500	0.0031	2.8(-4)	-2.03	D	interp.
32.		1 P' - 1S	[9.2126]	[45832900]	[56687600]	3		7300	0.0031	2.8(-4)	-2.03	С	intern.
33.	1020-104d	מי-י <i>יני</i>				9	15		0.12		0.03	c	5
34		'P' - 'D				,	5		0.12		-0.44	c	5
35	1e2o-1e5e	ipr ig				-							
		• • •	(8 0767)	(45614900)	(57997000)	1	1	1300	0.0011	10(-4)	-241	n	inter
1		i I	[0.0702]	[430]4700]	[31777000]		'		0.0013	1.4(-2.41		unserp.

1

1

1 I I II

Cr XXIII: Allowed transitions - Continued

No.	Transition Array	Makiplet	ک (آم)	E, (cm= ')	E, (cm ⁻¹)	Ł	B A	A⊾ (10 ^e s⁻¹)	∫₄	5 (at. u.)	log gf	Асэв- гасу	Source
36.		۲ ۳ - ۲۰	(8.2126)	[45832900]	[58009300]	3	1	3900	0.0013	1.1(-4)	-2.41	с	interp.
37.	1s3s-1s3p	'S - ' T '	_	•							-		
	· · ·	1	-			3	3		0.018		-1.27	E	interp.
38.		'S - 'M				1	3		0.057		-1.24	D	interp.
39.	Ls 3s - Ls 4p	'S - '₽*											
		e.	[34.193]	[53764300]	[56688900]	3	3	7800	0.136	0.0459	-0.389	с	interp.
40.		'S - '?'	[34.609]	(53825000]	[56714400]	1	3	7500	0.405	0.0461	-0.393	с	interp.
41.	ls3s-1s5p	'S - ' P '											
		* * *	[23.553]	[537 64300]	[58010100]	3	3	4200	0.035	0.0061	-0.98	с	interp.
42.		'S - 'P"	(23.820)	(53825000)	[58023100]	1	3	4080	0.104	0.00816	-0.983	C+	interp.
43.	ls 39 – 15 3d	סיידי				9	15		0.012		-0.97	D	interp.
44.	1s3p-1s4s	' 7 " - 'S								ļ			
		•	[35.256]	[53826600]	[56663000]	3	3	1800	0.033	0.011	- 1.00	C	interp.
45.		'P" - 'S	[35.722]	(53888200)	[56687600]	3	1	5300	0.034	0.012	0.99	с	interp.
46.	1s 3p-1s4d	₩ -D				9	15		0.60		0.73	с	5
47.		'P" - 'D				3	5		0.62		0.27	с	5
48	ls 3p=1s 5s	'P" - 'S											
			[23.979]	[53826600]	[57997000]	3	3	89C	0.0077	0.0018	-1.64	D	interp.
49.		'P" - 'S	[24.265]	[53888200]	(\$8009300]	3	1	2600	0.0077	0.0018	-1.64	с	interp.
50.	1 s 3d - 1 s 3p	'D - 'P'				5	3		0.0022		- 1.96	F	5
51.	15 3d - 154 p	'D - 'P*				15	9		0.012		-0.74	с	5
52.		'D - 'P"				5	3		0.011		-1.26	с	5
53.	1545-154p	'S - 'P"											
						3	3		0.025		~1.12	E	interp.
54.		'S - 'P'				ì	3		0.080		- 1.10	я·	interp.
55.	1 5 4 5 - 1 5 5 p	'S - 'P"											
			[74.234]	[56663000]	[\$8010100]	3	3	1830	0.151	0.111	-0 344	с	interp.
56.		'S - 'P"	[74.878]	(56687600)	[58023100]	1	3	1800	0.45	0.11	-0.35	D	interp.
57.	18(t=184d	'P" - 'D				9	15		0.02 i		-0.72	D	5
58.	15 4p - 1555	'P" - 'S								l Í		ļ	
			[76.447]	[56688900]	(57997000)	3	3	630	0.055	0.042	-0.78	D	INIETP.

κ.

I.

L

Cr xXIII: Allowed transitions - Continued

No.	Transition Array	Multiplet	<u>д</u> (Å)	<i>E</i> , (c m ⁻¹)	<i>E</i> , (cm ^{~1})	£	84	A⊾ (10" s⁻ ')	J.	5 (al. w.)	log gf	Acce- racy	Source
59.		'P" - 'S	[77.226]	[56714400]	[58009300]	3	1	1800	0.055	0.042	-0.78	С	interp.
60	154d-154p	'D - 'P'				5	3		0.0034		-1.77	E	5
61.	ls4d-ls4/	'D - 'F"				15	21		8.5(-4)	ļ .	-1.89	E	5
62	154d-1555	'T' - C'				15	21		0.99		1.13	B	7
63.		'D - 'F*				5	7		0.99		0.65	B	7
64.	154/-154d	'F' - 'D				7	5		4.5(-4)		-2.50	E	5
65.		· ም - ካ				21	15		1 1.0009		-0.73	с	7
"	•	'F" - 'D				7	5		0.000		-1.21	с	7
67	1-5-1-5-	مور عد											
•	13-13-14	3-1					.		1				
i						3	3		0.031		- 1.03	E	interp.
68.		'S - 'P'				1	3		0.10		1.00	E	interp.

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Сг ххш

Forbidden Transitions

The results of multi-configuration Dirac-Fock calculations by Hata and Grant¹ have been selected for this tabulation. Their work includes both a very detailed consideration of configuration interaction—with configurational wavefunction sets containing as many as 51 interacting states—as well as a fully relativistic treatment based on the Dirac Hamiltonian. Their calculated wavelengths are in very close agreement with experiment, and the agreement between an experimentally determined lifetime² for the 2p ³P₁ state and the theoretical result is excellent, the difference being only 5%. A comprehensive comparison table containing all experimental data on these He-sequence transitions is given in the introduction to the forbidden lines of Ti XXI.

References

¹J. Heta and I. P. Grant, Mon. Not. R. Astr. Soc. 211, 549 (1984). ³H. D. Dohmann, R. Mann, and E. Pfeng, Z. Phys. A 309, 101 (1982).

No.	Transition Array	Multiplet	λ (Å)	<i>E</i> , (cm)	E, (cm - ')	8.	S.	Type of transition	A⊾ (¢⁻¹)	S (#1. 11.)	Ассы- гасу	Source
I. 2.	l. ¹ - 13 2s 13 ¹ - 13 2p	18 - 18 18 - 194	[2.2034]	0	(45383500)	1	3	MI	9.37(+7)°	1.11(-4)	8	1
			(2.1886)	0	[45691370]	1	5	M2	3.45(+9)	0.131	3	1

Cr xxm: Forbidden transitions

The number in parenthenes following the tabulated value indicates the power of ten by which this value has to be multiplied.

CT XXIV

H Isoelectronic Sequence

Ground State: 1s 2S1/2

Ionization Energy: 7894.87 eV = 63675900 cm⁻¹

Allowed Transitions

Electric dipole transition probability data for this hydrogen-like ion can be obtained directly, in a non-relativistic approximation, from the data for neutral hydrogen.¹ The oscillator strength is independent of Z along the entire isoelectronic sequence and is therefore identical to the value for the hydrog. 3 atom. Line strengths scale as Z^{-2} and transition probabilities scale as Z^{4} , i.e.,

$S_Z = Z^{-1}S_{\mathrm{H}}, \qquad A_Z = Z^*A_{\mathrm{H}}.$

For higher nuclear charges in this sequence, relativistic corrections will cause these values to deviate increasingly from the non-relativistic ones. The first effect of relativity will be to alter the transition energies, or wavelengths, from the non-relativistic, even though the line strength itself is still well approximated by the non-relativistic value. In this case, experimental energies should be used in the standard conversion formulas, given in the general introduction to this volume, to calculate the most accurate values of f and A. It should be noted that the relativistic removal of the *j*-degeneracy introduces dipole transitions which do not occur in the non-relativistic theory, e.g., $2s_{1/2} - 2p_{1/2}$. For very high Z, it is necessary to use the four-component Dirac spinors rather than two-component Schroedinger functions in theoretical calculations, and this introduces relativistic corrections to the line strengths themselves. Several recent systematic studies of the problem²³ indicate that these corrections are not large for stages of ionization in the range 20-30. Corrections for Z = 30 are usually no larger than 5-10% and generally substantially less than 5%. If an accuracy greater than this is required, the reader is referred to these papers²³ for a more detailed error analysis.

References

¹W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities - Hydrogen through Neon (A Critical Data Compilation), Vol. I, 157 pp., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 4 (May 1966).

- 'S. M. Younger and A. W. Weins, J. Res. Nat. Bur. Stand., Sect. A 79, 629 (1975).
- S. J. Rose, Rutherford Appleton Laboratory Report RL-82-114 (December 1982).