ORNL-6089/V4 (Fourth volume of ORNL-6086)

Contract No. DE-AC05-840R21400

Physics Division

FED LIBRARY MAY 1 1985

ATOMIC DATA FOR CONTROLLED FUSION RESEARCH

VOLUME IV

"SPECTROSCOPIC DATA FOR IRON"

W. L. Wiese, Editor

National Bureau of Standards Washington, D.C.

FUSION ENERGY DIVISION LIBRARY

Published by Controlled Fusion Atomic Data Center

Date Published: February 1985

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A18 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SERIES PREFACE

The primary objective of the Controlled-Fusion Atomic Data Center at Oak Ridge National Laboratory is to publish handbooks containing numerical and graphical cross sections and other physical data relevant to fusion energy research. In 1977, a two-volume compilation was published as ORNL reports ORNL-5206 and ORNL-5207. Since that time, a large volume of pertinent data has become available, necessitating an update of the previous compilation. Plans are to include both cross sections and rate coefficients for collisional processes, and to publish the revised series in handbook form. The specific volumes which are in preparation are listed below, with their expected completion dates.

- Vol. 1, "Collisions of H, H₂, He, and Li Atoms and Ions with Atoms and Molecules," C. F. Barnett, ORNL (January 1986).
- Vol. 2, "Collisions of Electrons with Atoms and Molecules," J. W. Gallagher, Joint Institute for Laboratory Astrophysics; and C. F. Barnett, ORNL (October 1985).
- Vol. 3, "Particle Interactions with Surfaces," E. W. Thomas, Georgia Institute of Technology (January 1985).
- Vol. 4, "Spectroscopic Data for Iron," W. L. Wiese, National Bureau of Standards (March 1985).
- Vol. 5, Collisions of Carbon and Oxygen Ions with Electrons, H, H₂, and He," R. A. Phaneuf, ORNL; R. K. Janev, Institute of Physics, Yugoslavia; and M. S. Pindzola, Auburn University (March 1986).

C. F. Barnett H. T. Hunter M. I. Kirkpatrick R. A. Phaneuf

iii

Spectroscopic Data for Iron

W. L. Wiese, Editor

Table of Contents

e

Pages

A.	Introduction	Al
	(W. L. Wiese)	
В.	Ionization Energies	B1
	(Source: C. Corliss and J. Sugar)	
C.	Prominent Lines for Fe I to Fe V (Vacuum Ultraviolet to Near Infrared Regions)	C1
	(Compiled by J. Reader and C. H. Corliss)	
D.	Vacuum Ultraviolet Lines for Fe 1 through Fe XXVI	D1
	(Compiled by R. L. Kelly)	
E.	Atomic Energy Levels for Fe I through Fe XXVI	E1
	(Compiled by C. Corliss and J. Sugar)	
F.	Atomic Transition Probabilities for Fe 1 through Fe XXVI	F1
	(Compiled by J. R. Fuhr, G. A. Martin, W. L. Wiese and S. M. Younger)	

genere.

ABSTRACT

Comprehensive spectroscopic data tables are presented for all ions of Fe. Tables of ionization potentials, wave lengths of spectral lines, atomic energy levels, and transition probabilities are given which were excerpted from general critical compilations. All utilized compilations are less than five years old and include data on electric dipole as well as magnetic dipole transitions.

A. Introduction

This compendium contains a collection of recent spectroscopic data tables for iron, which—as a widely used first-wall material for magnetic fusion devices—has become of great importance for the assessment of the effects of plasma impurities and plasma-wall interactions as well as for the application of several plasma diagnostic techniques.

Numerical data are tabulated for spectroscopic quantities which are of principal importance for such impurity studies and plasma diagnostics, specifically:

> Ionization energies, Wavelengths, Atomic energy levels, and Atomic transition probabilities.

The majority of the critical evaluation and compilation work for these data has been done at the National Bureau of Standards. Most tables are parts of larger tabulations¹⁻⁴ containing many other chemical elements besides iron. Excerpting the iron data from these larger compilations required some modifications in the reprinted material, especially the modification of the introductory material with comments and explanations that specifically pertain to the iron spectra. All of the material is of very recent vintage, less than four years old, and one tabulation is still in the process of being published, all under the sponsorship of the National Standard Reference Data System (NSRDS).

However, the different tabulations have been completed at different times. Thus where data overlap, mainly on energy levels and wavelengths, they are sometimes based on different material. Also, there may occasionally be different judgments, by independent evaluators, on the quality of the source material. Thus, some inconsistencies in this overlapping material are found. For example, wavelengths which may be derived from the atomic energy levels of Section E may not always be fully consistent with directly observed line wavelengths in the wavelength tables of Sections C and D. Also, there may be slight inconsistencies in the energy level data contained in the wavelength and transition probability tables as compared with the energy level table itself. But these differences are so small that they should not matter for any plasma applications, and therefore the use of any of these recent tabulations is appropriate. However, we generally recommend using the *primary* tables to obtain data on a specific atomic quantity.

This compendium is divided into six sections—A through F—each having its own pagination. Since the book is prepared in a looseleaf format, it is possible to exchange each section separately with a new tabulation if one should become available in the future. It is our intention to provide such updates infrequently when this is warranted. The editor acknowledges the cooperation of the data compilers and the NSRDS editing staff, which has provided the lists of vacuum ultraviolet lines prior to publication. Also, the permission of NSRDS, as well as that of the American Institute of Physics and the American Chemical Society, to reprint excerpts of these tables is gratefully acknowledged.

References

- J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S), 68, 415 pgs., U. S. Government Printing Office, Washington, DC (1980).
- 2. R. L. Kelly, Atomic and Ionic Spectral Lines below 3500 Å (H through Kr), to be published in J. Phys. Chem. Ref. Data, Supplement.
- C. H. Corliss and J. Sugar, Energy Levels of Iron, Fe 1 through Fe XXVI, J. Phys. Chem. Ref. Data 11, 135-241 (1982).
- J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, Atomic Transition Probabilities for Iron, Cobalt and Nickel (A Critical Data Compilation of Allowed Lines), J. Phys. Chem. Ref. Data 10, 305-565 (1981).

B. Ionization Energy of Iron Ions

Spectrum	Ground State Configuration	Ground Level	Ionization Energy (eV)
Fe I	$1s^22s^22p^63s^23p^63d^64s^2$	⁵ D ₄	7.870
Fe II	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s$	⁶ D _{9/2}	16.1879
Fe III	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$	${}^{5}D_{4}$	30.652
Fe IV	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$	⁶ S _{5/2}	54.8
Fe v	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$	⁵ D ₀	75.0
Fe VI	$1s^22s^22p^63s^23p^63d^3$	${}^{4}F_{3/2}$	99.1
Fe VII	$1s^22s^22p^63s^23p^63d^2$	${}^{3}F_{2}$	124.98
Fe VIII	$1s^2 2s^2 2p^6 3s^2 3p^6 3d$	$^{2}D_{3/2}$	151.061
Fe 1X	$1s^2 2s^2 2p^6 3s^2 3p^6$	${}^{1}S_{0}$	233.6
Fe X	$1s^2 2s^2 2p^6 3s^2 3p^5$	² P _{3/2}	262.1
Fe XI	$1s^2 2s^2 2p^6 3s^2 3p^4$	³ P ₂	290.3
Fe XII	$1s^2 2s^2 2p^6 3s^2 3p^3$	⁴ S _{3/2}	330.8
Fe XIII	$1s^2 2s^2 2p^6 3s^2 3p^2$	³ P ₀	361.0
Fe XIV	$1s^22s^22p^63s^23p$	$^{2}P_{1/2}^{\circ}$	392.2
Fe XV	$1s^2 2s^2 2p^6 3s^2$	$^{1}S_{0}$	457.0
Fe XVI	$1s^2 2s^2 2p^6 3s$	${}^{2}S_{1/2}$	489.264
Fe XVII	$1s^2 2s^2 2p^6$	$^{1}S_{0}$	1262.2
Fe XVIII	$1s^2 2s^2 2p^5$	² P _{3/2}	1362
Fe XIX	$1s^2 2s^2 2p^4$	$^{3}P_{2}$	1469
Fe XX	$1s^2 2s^2 2p^3$	⁴ S _{3/2}	1582.0
Fe XXI	$1s^2 2s^2 2p^2$	³ P ₀	1689
Fe XXII	$1s^2 2s^2 2p$	² P _{1/2}	179 9
Fe XXIII	$1s^2 2s^2$	${}^{1}S_{0}$	1958.6
Fe XXIV	$1s^{2}2s$	${}^{2}S_{1/2}$	2045.8
Fe XXV	1 <i>s</i> ²	${}^{1}S_{0}$	8828.14
Fe XXVI	l.s	${}^{2}S_{1/2}$	9277.65

[Source: C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 11, 135 (1982)]

1000

C. Prominent Spectral Lines for Fe I to Fe V (Vacuum Ultraviolet to Near Infrared Regions)

.

C. Prominent Spectral Lines for Fe I to Fe V

(Vacuum Ultraviolet to Near Infrared Regions)

These lists were recently prepared under the auspices of the Committee on Line Spectra of the Elements of the National Academy of Sciences---National Research Council as part of a general wavelength table.^{1,2} The tables contain the outstanding spectral lines----from the far ultraviolet to the far infrared----of neutral (I), singly ionized (II), doubly ionized (III), triply ionized (IV), and quadruply ionized (V) iron atoms. The lines are selected from larger lists (see references) in such a way as to include the stronger observed lines in each spectral region.

The data were compiled by Henry M. and Hannah Crosswhite, Argonne National Laboratory (Fe I and Fe II), and Joseph Reader, NBS (Fe III -- Fe V). For Fe I and II, the following six literature references were used as the principal sources of data:

- H. M. Crosswhite, J. Res. Nat. Bur. Stand. (U. S.) 79A, 17 (1975).
- J. C. Dobbie, Ann. Sol. Phys. Obs. Cambridge 5, 1 (1938).
- L. C. Green, Phys. Rev. 55, 1209 (1939).
- S. Johansson and U. Litzen, Phys. Scr. 10, 121 (1974).
- U. Litzen and J. Verges, Phys. Scr. 13, 240 (1976).
- H. N. Russell, C. E. Moore, and D. W. Weeks, Trans. Am. Philos. Soc. 34 (Part 2), 111 (1944).
- For Fe III, IV and V, the following references were used:
 - B. Edlen and P. Swings, Astrophys. J. 95, 532 (1942).
 - S. Glad, Ark. Fys. 10, 291 (1956).

- J. O. Ekberg and B. Edlen, Phys. Scr. 18, 107 (1978).
- J. O. Ekberg, Phys. Scr. 12, 42 (1975).

All wavelengths are given in Angstrom units (Å). Below 2000 Å, the wavelengths are in vacuum; above 2000 Å, the wavelengths are in air. Wavelengths given to three decimal places have an uncertainty of less than 0.001 Å and are therefore suitable for the calibration of most spectrometers. The line intensities are estimates of the relative strengths of lines which are not greatly separated in wavelength. Since the intensity scale is in general different for each data source, even within a fairly narrow wavelength range, the intensities tabulated here are useful only as a rough indication of the appearance of a spectrum. Furthermore, in the tables of first and second spectra the intensities of the lines of the singly ionized atom relative to those of the neutral atom should be used with caution, inasmuch as the concentration of the ions in the light source depends greatly on the excitation conditions.

The descriptive symbols used in the tables have the following meaning:

- H -- hazy
- L shaded to longer wavelengths
- S shaded to shorter wavelengths
- P -- perturbed by a close line
- W --- wide

References

- J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, *Wavelengths and Transition Probabilities for Atoms and Atomic Ions*, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 68, 415 pgs., U. S. Government Printing Office, Washington, D.C. (1980).
- J. Reader and C. H. Corliss, in Handbook of Chemistry and Physics, 64th Edition (R. C. Weast, Ed.), pp. E192-E318, CRC Press, Inc., Boca Raton, FL (1983).

Iron (Fe)

Z = 26

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Intensity Wavelength (Å)	Spectrum		Intensity	Wavelength (Å)	Spectrum
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe I and II			30	1952.59	I
Vacuum 60 1957,823 I 12 1055,27 II 30 1960,144 I 15 1068,36 II 12 1962,111 I 15 1071,60 11 12 1962,111 I 15 1096,89 II	i e i and ii			30	1953.005	Ī
Vacuum601960.144I121055.27II301961.25I151068.36II121963.11II151071.60II121963.11II151096.89IIAir-121122.86II502157.794I121122.86II502157.794I121130.43II402166.773I151133.41II2002186.486I121138.64II602186.892I121138.64II602187.195I121143.23II2502198.6486I121144.33II802200.390I151148.29II802200.390I151148.29II802200.724I12127.00II12213.65II12137.102II252245.58II121563.79II25225.77II15163.12II802260.389I15163.12II802267.469I15163.62II802267.469I15163.62II802267.469I1616130227.870II15163.1214802267.085I15163.621550<	•,			60	1957.823	Ι
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vacuum			60	1960.144	Ι
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				30	1961.25	I
15 1068.36 11 12 1963.11 II 15 1071.60 II Air 12 1099.12 II Air 18 112.09 II 100 2084.122 I 12 112.80 II 100 2084.122 I 12 112.80 II 15 2167.734 I 12 1138.64 II 40 2166.773 I 12 1138.64 II 60 2186.892 I 12 1142.33 II 220 2187.183 I 12 1143.33 II 80 2200.390 I 13 1144.95 II 80 2200.390 I 14 12 126.744 II 20 2218.26 II 12 1147.41 II 80 2200.390 I I 12 127.00 II 12 2218.26 II I 12 126.744 II 20 2218.26 II I	12 1055.27	II	[50	1962.111	I
15 1071.60 11 15 1096.89 II 12 1099.12 II Air 12 112.99 II 100 2084.122 I 12 112.99 II 100 2084.122 I 12 112.99 II 100 2084.122 I 12 112.866 II 50 2157.794 I 12 113.0.43 II 40 2166.773 I 12 113.3.68 II 250 2186.486 I 12 1138.64 II 60 2186.892 I 12 1143.23 II 120 2187.195 I 12 1143.23 II 150 2196.043 I 12 1143.23 II 150 2196.043 I 12 1147.41 II 80 2200.724 I 12 126.74 II 20 2218.65 II 12 136.02 II 20 220.38 II </td <td>15 1068.36</td> <td>II</td> <td></td> <td>12</td> <td>1963.11</td> <td>II</td>	15 1068.36	II		12	1963.11	II
15 1096,89 11 12 1099,12 II Air 18 1112,09 II 100 2084,122 I 12 112,8,07 II 150 2157,794 I 12 112,8,07 II 15 2162,02 II 12 113,41 II 300 2187,794 I 13 11 40 2166,773 I I 12 113,3,68 II 250 2186,486 I 12 1143,23 II 120 2187,195 I 12 1143,23 II 150 2196,043 I 12 1144,95 II 80 2200,724 I 12 1147,41 II 80 2208,0724 I 12 1151,16 II 15 2208,41 II 12 1247,20 II 12 2208,23 II 12 1563,79 II 25 2245,58 II 12 1580,62 II	15 1071.60	11				
12 1099,12 11 Air 18 1112,09 II 100 $2084,122$ I 12 1122,86 II 50 $2157,94$ I 12 1128,07 II 15 $2162,02$ II 12 1130,43 II 40 $2166,773$ I 12 1133,64 II 300 $2178,118$ I 12 1138,64 II 60 $2186,892$ I 12 1142,33 II 120 $2187,195$ I 12 1142,33 II 250 $2191,839$ I 13 1144,29 II 80 2200,30 I 15 1148,29 II 80 2200,724 I 12 127,100 II 12 2218,65 II 12 126,744 II 20 2203,80 I 12 126,744 II 20 220,85 II 12 1561,6 II 10 25128,77 II	15 1096.89	11				
18 112.09 11 12 112.09 11 100 2084.122 I 12 112.860 11 50 2157.794 I 12 112.807 11 15 2162.02 11 12 113.04.3 11 40 2166.77.3 I 15 113.34.1 11 200 2186.486 I 12 1138.64 11 60 2186.892 I 12 1142.33 11 120 2187.195 I 12 1143.23 11 250 2191.839 I 12 1143.23 11 80 2200.390 I 15 1148.29 11 150 2196.043 I 12 1147.41 11 80 2200.724 I 12 1151.16 11 12 2208.41 I1 12 1267.44 11 20 2213.65 11 12 137.102 11 20 2213.61 11 12	12 1099.12	11			Air	
12 112.199 11 100 2084.122 1 12 1128.07 II 15 2165.794 I 12 1138.043 II 40 2166.773 I 12 1133.41 II 300 2178.118 I 12 1133.68 II 250 2186.486 I 12 1133.63 II 200 2187.195 I 12 1143.23 II 200 2187.195 I 12 1143.23 II 80 2200.390 I 15 1148.29 II 80 2200.724 I 12 1277.00 II 12 213.65 II 12 1271.02 II 20 223.85 II 12 1271.02 II 20 2245.58 II 12 1580.62 II 50 2250.790 I 12 1580.62 II 25 2255.77 II 12 168.47 II 20 2270.86	18 1112.09	11				_
12 1122.86 11 15 2157.794 1 12 1130.43 11 40 2166.773 I 15 1133.41 11 300 2178.118 I 12 1133.68 11 205 2186.486 I 12 1138.64 11 60 2186.892 I 12 1142.33 11 120 2187.195 I 12 1143.23 11 120 2187.195 I 12 1143.23 11 150 2196.043 I 12 1147.41 11 80 2200.390 I 15 1148.29 11 15 2208.41 11 12 1151.16 11 15 2208.41 11 12 1272.00 11 12 2213.65 11 12 1371.02 11 20 2220.38 11 12 156.27 11 10 255.275.790 11 12 158.662 11 60	12 1121.99	11		100	2084.122	I
12 112.07 11 15 2162.02 11 12 1130.43 II 40 2166.73 I 15 1133.41 II 300 2178.118 I 12 1133.68 II 250 2186.486 I 12 1138.64 II 60 2186.892 I 12 1143.23 II 120 2187.195 I 12 1143.23 II 150 2196.043 I 12 1147.41 II 80 2200.390 I 15 1148.29 II 20 213.65 II 12 151.16 II 12 2218.26 II 12 127.00 II 20 2213.65 II 12 1370.02 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2264.389 I 12 158.12 II 80 2267.085 <	12 1122.86	II		50	2157.794	I
12 1130.43 11 40 2166.773 1 15 1133.41 11 300 2178.118 I 12 1133.68 II 250 2186.486 I 12 1138.64 II 60 2186.892 I 12 1142.33 II 120 2187.195 I 12 1143.23 II 150 2196.043 I 12 1147.41 II 80 2200.724 I 12 1151.16 II 15 2208.41 II 12 1267.44 II 20 2213.65 II 12 127.00 II 12 2218.26 II 12 1371.02 II 20 220.38 II 12 1563.79 II 25 2250.79 I 12 1580.62 II 60 2251.874 I 12 168.47 II 25 2255.77 II 15 163.12 II 80 2267.469	12 1128.07			15	2162.02	11
15 1133.41 11 300 2178.118 1 12 1133.68 II 250 2186.486 I 12 1138.64 II 60 2187.195 I 12 1142.33 II 120 2187.195 I 12 1143.23 II 250 2191.839 I 18 1144.95 II 50 2200.390 I 15 1148.29 II 80 2200.724 I 12 1151.16 II 12 2218.65 II 12 1272.00 II 20 2213.65 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1580.62 II 60 2251.874 I 12 168.46 II 60 2251.874 I 13 163.40 II 80 2267.085 I 14 80 22	12 1130.43	11		40	2166.773	I
12 1133.68 11 250 2186.486 1 12 1138.64 II 60 2186.892 I 12 1142.33 II 220 2187.195 I 12 1143.23 II 250 2191.839 I 18 1144.95 II 150 2196.043 I 12 1147.41 II 80 2200.390 I 15 1148.29 II 80 2200.390 I 12 1151.16 II 15 2208.41 II 12 1251.46 II 20 2213.65 II 12 1272.00 II 12 2218.26 II 12 1371.02 II 20 2220.38 II 12 153.79 II 50 2250.790 I 12 153.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 163.12 II 80 2267.085 I 15 163.12 II 80 2267.085 I 15 163.42 II 150 2270.026 I 15 163.42 II 150 2270.026 I 15 163.42 II 80 2279.937 I 12 1647.6 II 80 2279.250 I <t< td=""><td>15 1133.41</td><td>11</td><td></td><td>300</td><td>2178.118</td><td>1</td></t<>	15 1133.41	11		300	2178.118	1
12 1138.64 11 60 2186.892 1 12 1142.33 II 120 2187.195 I 12 1142.33 II 250 2191.839 I 18 1144.95 II 150 2196.043 I 12 1147.41 II 80 2200.390 I 15 1148.29 II 80 2200.724 I 12 1151.66 II 15 2208.41 II 12 1267.44 II 20 2213.65 II 12 1272.00 II 12 2220.38 II 12 1563.79 II 25 2245.58 II 12 1563.79 II 25 2255.77 II 12 1580.62 II 60 2267.469 I 12 168.47 II 25 2255.77 II 15 1621.68 II 300 2267.085 I 15 1631.12 II 80 2267.085 I 15 1636.32 II 150 2270.070 I 12 1641.76 II 150 2270.700 I 12 1647.16 II 150 2287.250 I 12 1670.74 II 150 2287.250 I 12 1670.74 II 150 2287.250 I 12 167.74 II 80 2297.170 I <td>12 1133.68</td> <td>11</td> <td></td> <td>250</td> <td>2186.486</td> <td>1</td>	12 1133.68	11		250	2186.486	1
12 1142.33 11 120 218.195 1 12 1143.23 II 250 2191.839 I 18 1144.95 II 150 2196.043 I 12 1147.41 II 80 2200.390 I 15 1148.29 II 80 2200.724 I 12 1151.6 II 15 2208.41 II 12 1267.44 II 20 2213.65 II 12 1272.00 II 20 2220.38 II 12 1371.02 II 25 2245.58 II 12 1563.79 II 25 2250.790 I 12 1580.62 II 50 2250.790 I 13 1628.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1629.15 II 60 2267.469 I 15 1636.32 II 80 2267.085 I 15 1636.32 II 80 2270.706 I 15 1636.32 II 150 2270.706 I 12 1647.76 II 150 2284.086 I 12 167.74 II 150 2287.250 I 12 167.74 II 300 2294.41 I 20 178.74 II 200 2297.787 I <td>12 1138.64</td> <td></td> <td></td> <td>60</td> <td>2186.892</td> <td>I -</td>	12 1138.64			60	2186.892	I -
12 1143.23 11 250 2191.839 1 18 1144.95 II 150 2196.043 I 12 1147.41 II 80 2200.390 I 15 1148.29 II 80 2200.724 I 12 1151.16 II 15 2208.41 II 12 1267.44 II 20 2213.65 II 12 1272.00 II 12 2218.26 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1563.79 II 25 2250.790 I 12 1563.79 II 25 2255.77 II 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 163.12 II 80 2267.085 I 15 1634.0 II 80 2270.0862 I 15 1636.32 II 50 2270.862 I 15 1636.32 II 150 2276.026 I 12 1647.16 II 80 2279.937 I 12 167.74 II 150 2284.086 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I </td <td>12 1142.33</td> <td></td> <td></td> <td>120</td> <td>2187.195</td> <td></td>	12 1142.33			120	2187.195	
18 1144.95 11 150 2196.043 1 12 1147.41 II 80 2200.390 I 15 1148.29 II 80 2200.724 I 12 1151.16 II 15 2208.41 II 12 1267.44 II 20 2213.65 II 12 1272.00 II 12 2218.26 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1629.15 II 60 2267.085 I 15 1631.12 II 80 2267.085 I 15 1634.21 II 80 2270.862 I 15 1634.21 II 80 2270.937 I 12 1647.16 II 150 2272.270 I 12 1647.16 II 150 2284.086 I 12 1702.04 II 150 2297.250 I 12 1761.38 II 300 2294.41 I 20 1785.26 II 80 2299.20 I 12 1761.38 II 80 2299.20 I <td>12 1143.23</td> <td></td> <td></td> <td>250</td> <td>2191.839</td> <td></td>	12 1143.23			250	2191.839	
12 1147.41 11 80 2200.390 1 15 1148.29 II 80 2200.724 I 12 1151.16 II 15 2208.41 II 12 1267.44 II 20 2213.65 II 12 1272.00 II 20 2213.65 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1631.12 II 80 2267.085 I 15 1631.12 II 80 2267.085 I 15 1636.32 II 50 2270.862 I 15 1639.40 II 150 2270.70 I 12 1647.16 II 80 2299.937 I 12 1647.16 II 150 2287.250 I 12 1761.38 II 300 2294.41 I 20 1785.26 II 80 2294.41 I 20 1785.76 II 80 2299.220 I 30 1934.538 I 80 2299.220 I <td>18 1144.95</td> <td>11</td> <td></td> <td>150</td> <td>2196.043</td> <td></td>	18 1144.95	11		150	2196.043	
15 1148.29 11 80 2200.724 1 12 1151.16 II 15 2208.41 II 12 1272.00 II 20 2213.65 II 12 1272.00 II 12 2218.26 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1631.12 II 80 2267.469 I 15 1635.40 II 80 2267.469 I 15 1636.32 II 50 2270.026 I 15 1639.40 II 150 2270.026 I 12 1647.16 II 80 2267.469 I 12 1647.16 II 150 2284.086 I 12 1670.74 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1785.76 II 80 2294.41 I 20 1785.76 II 80 2294.41 I 20 1785.76 II	12 1147.41			80	2200.390	I
12 1151.16 11 15 2208.41 11 12 1267.44 II 20 2213.65 II 12 1272.00 II 12 2218.26 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1631.12 II 80 2267.469 I 15 1636.32 II 50 2270.862 I 15 1636.32 II 150 2270.062 I 15 1639.40 II 150 2270.070 I 12 1641.76 II 150 2279.070 I 12 1647.16 II 150 2284.086 I 12 1702.04 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1785.76 II 80 2294.20 I 130 1934.538 I 80 2299.200 I <td>15 1148.29</td> <td>11</td> <td></td> <td>80</td> <td>2200.724</td> <td>1</td>	15 1148.29	11		80	2200.724	1
12 1267.44 11 20 2213.65 11 12 1272.00 II 12 2218.26 II 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1563.79 II 25 2250.790 I 12 1580.62 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1621.68 II 300 2267.085 I 15 1631.12 II 80 2267.085 I 15 1635.40 II 80 2270.862 I 15 1639.40 II 150 2270.070 I 12 1647.16 II 80 2279.937 I 12 1647.16 II 80 229.2937 I 12 1670.74 II 150 2287.250 I 12 1702.04 II 150 2287.250 I 12 1761.38 II 200 229.514 I 20 1785.26 II 80 2299.220 I 30 1934.538 I 80 2299.220 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I <td>12 1151.16</td> <td>11</td> <td></td> <td>15</td> <td>2208.41</td> <td></td>	12 1151.16	11		15	2208.41	
12 $12/2.00$ 11 12 2218.26 11 12 1371.02 II 20 2220.38 II 12 1563.79 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1629.15 II 60 2264.389 I 15 1631.12 II 80 2267.085 I 15 1635.40 II 80 2267.469 I 15 1639.40 II 150 2270.862 I 15 1639.40 II 150 2276.026 I 12 1641.76 II 150 2278.026 I 12 1647.16 II 150 2284.086 I 12 1670.74 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1785.26 II 80 2299.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 25 1946.988 I 50 2301.684 I <td>12 1267.44</td> <td>11</td> <td></td> <td>20</td> <td>2213.65</td> <td></td>	12 1267.44	11		20	2213.65	
12 1371.02 11 20 2220.38 11 12 1563.79 II 25 2245.58 II 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1629.15 II 60 2267.085 I 15 1631.12 II 80 2267.085 I 18 1635.40 II 80 2267.469 I 15 1636.32 II 50 2270.862 I 15 1639.40 II 150 2276.026 I 12 1647.16 II 150 2279.937 I 12 1647.16 II 150 2287.250 I 12 1670.74 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 80 2299.220 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I <td>12 1272.00</td> <td>11</td> <td></td> <td>12</td> <td>2218.26</td> <td></td>	12 1272.00	11		12	2218.26	
12 1563.79 11 25 2245.58 11 12 1580.62 II 50 2250.790 I 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1629.15 II 60 2264.389 I 15 1631.12 II 80 2267.085 I 18 1635.40 II 80 2267.469 I 15 1636.32 II 50 2270.862 I 15 1639.40 II 150 2270.062 I 12 1647.16 II 150 2270.937 I 12 1647.16 II 80 229.937 I 12 1670.74 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.20 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	12 1371.02	11		20	2220.38	
12 1580.62 11 50 2250.790 1 18 1608.46 II 60 2251.874 I 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1629.15 II 60 2264.389 I 15 1631.12 II 80 2267.085 I 18 1635.40 II 80 2267.085 I 15 1636.32 II 50 2270.862 I 15 1639.40 II 150 2270.70 I 12 1641.76 II 150 2277.070 I 12 1647.16 II 80 2279.937 I 12 1670.74 II 150 2284.086 I 12 1702.04 II 150 2287.250 I 20 1785.26 II 80 2294.41 I 20 1785.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	12 1563.79	11		25	2245.58	11
18 1008.46 11 60 2251.874 1 12 1618.47 II 25 2255.77 II 15 1621.68 II 300 2259.511 I 15 1621.68 II 300 2259.511 I 15 1621.68 II 60 2264.389 I 15 1631.12 II 80 2267.085 I 18 1635.40 II 80 2267.469 I 15 1636.32 II 50 2270.862 I 15 1639.40 II 150 2272.070 I 12 1641.76 II 150 2276.026 I 12 1647.16 II 150 2287.250 I 12 1670.74 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	12 1580.62			50	2250.790	1
12 1618.47 11 25 2255.77 11 15 1621.68 II 300 2259.511 I 15 1629.15 II 60 2264.389 I 15 1631.12 II 80 2267.085 I 18 1635.40 II 80 2267.469 I 15 1639.40 II 50 2270.862 I 15 1639.40 II 150 2276.026 I 12 1641.76 II 150 2277.070 I 12 1647.16 II 80 2279.937 I 12 1670.74 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 100 2301.684 I	18 1608.40			60 25	2251.874	1
15 1021.08 11 300 2259.311 115 1629.15 II 60 2264.389 I15 1631.12 II 80 2267.085 I18 1635.40 II 80 2267.469 I15 1636.32 II 50 2270.862 I15 1639.40 II 150 2272.070 I12 1641.76 II 150 2279.937 I12 1647.16 II 80 2279.937 I12 1670.74 II 150 2284.086 I12 1702.04 II 150 2287.250 I12 1761.38 II 300 2292.524 I20 1785.26 II 80 2299.20 I18 1788.07 II 600 2299.169 I30 1934.538 I 80 2299.220 I25 1937.269 I 300 2300.142 I50 1966.988 I 50 2301.684 I	12 1618.47			25	2255.77	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 1621.08			300	2259.511	I
15 1031.12 11 80 2267.085 118 1635.40 II 80 2267.469 I15 1636.32 II 50 2270.862 I15 1639.40 II 150 2272.070 I12 1641.76 II 150 2279.937 I12 1647.16 II 80 2279.937 I12 1670.74 II 150 2287.250 I12 1702.04 II 150 2287.250 I12 1761.38 II 300 2292.524 I20 1785.26 II 80 2297.787 I18 1788.07 II 600 2298.169 I30 1934.538 I 80 2299.220 I25 1937.269 I 300 2300.142 I50 1946.988 I 50 2301.684 I	15 1629.15			6U 80	2264.389	1 T
18 1635.40 11 80 2267.469 1 15 1636.32 II 50 2270.862 I 15 1639.40 II 150 2272.070 I 12 1641.76 II 150 2276.026 I 12 1647.16 II 80 2279.937 I 12 1670.74 II 150 2284.086 I 12 1702.04 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	15 1631.12	11		80	2207.085	1 T
151636.3211 50 2270.862 1151639.40II150 2272.070 I121641.76II150 2276.026 I121647.16II80 2279.937 I121670.74II150 2284.086 I121702.04II150 2287.250 I121761.38II300 2292.524 I201785.26II80 2294.41 I201786.74II200 2297.787 I181788.07II600 2298.169 I301934.538I80 2299.220 I501937.269I3002300.142I501946.988I502301.684I501946.571I1002302.424I	18 1635.40			80	2207.409	I
15 1639.40 11 150 2272.070 1 12 1641.76 II 150 2276.026 I 12 1647.16 II 80 2279.937 I 12 1670.74 II 150 2284.086 I 12 1702.04 II 150 2287.250 I 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	15 1630.32	11		50	2270.862	1 T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 1639.40	11		150	2272.070	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 1041.70	11		130	22/0.020	I T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 1647.10	11		150	2219,931	I T
12 1702.04 11 130 2287.230 1 12 1761.38 II 300 2292.524 I 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	12 10/0.74	11		150	2204.000	I T
12 1701.38 11 300 2292.324 1 20 1785.26 II 80 2294.41 I 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	12 1702.04	11		130	2267.230	T
20 1763.20 11 30 2294.41 1 20 1786.74 II 200 2297.787 I 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	12 1701.38 20 1795.26	* ± 1 T	1	200	2292.324	ц Т
20 1760.74 11 200 2257.767 1 18 1788.07 II 600 2298.169 I 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	20 1/63.20	II		200	2274.41	T T
16 1766.07 11 600 2258.109 1 30 1934.538 I 80 2299.220 I 25 1937.269 I 300 2300.142 I 50 1946.988 I 50 2301.684 I	10 1700.74	11		200 600	2297.767	I I
25 1934.338 1 300 2300.142 1 50 1946.988 I 50 2301.684 I	10 1/88.U/ 20 1024.529	II T		2000 RO	2290.109	⊥ T
50 1946.988 I 50 2301.684 I 50 1946.788 I 100 2303.424 I	3U 1934.338 35 1027.340	1 T		300	2300 142	Ţ
	20 1937.209 50 1076.000	T		50	2301 684	Ī
	25 1051 571	Ī		100	2303.424	Ī

Intensity	Wavelength (Å)	Spectrum		Intensity	Wavelength (Å)	Spectrum
 150	2303.581	I		40	2388.37	II
120	2308.999	I		300	2388.63	11
150	2313,104	I		200	2389.973	I
200	2320.358	Ī		30	2390.10	II
100	2327 40	Ī		20	2390.77	II
15	2327.10	TT		15	2391 48	TI
100	2327.00	TT		20	2397.58	11
100	2331.51	TT		40	2392.30	11
10	2221.21	11		1000	2333.42	11
300	2332.00	11		15	2395.02	11
200	2330.01	11		200	2390.72	11
600	2343.49			300	2399.24	11
80	2343.96	11		20	2400.05	11
150	2344.28	11		15	2401.29	11
25	2344.98	11		50	2404.43	11
50	2345.34	11		800	2404.88	11
200	2348.11	II		250	2406.66	II
250	2348.30	II		80	2406.97	II
50	2351.20	II		300	2410.52	II
15	2351.67	II		200	2411.07	II
25	2352.31	II		50	2411.81	II
30	2353.47	II		150	2413.31	II
15	2353.68	11		20	2416.45	II
50	2354.48	II		80	2417.87	II
40	2354.89	II		15	2418.44	II
200	2359.12	II		60	2420.396	I
15	2359.59	II		60	2422.69	II
150	2360.00	II		60	2423.089	I
120	2360.29	II		40	2423.21	II
30	2360.51	II		150	2424-14	II
40	2362.02	II		15	2424 39	 TT
60	2363.86	II		30	2424 59	TT
200	2364.83	II		30	2428.29	TT T
80	2365 76	II		120	2420.25	TT
25	2366 59	II		25	2428.80	TT
80	2368.59	11		25	2420.00	TT
80	2360.55	ī		20	2429.03	11 TT
80	2360.450	I		20	2429.39	11
80 25	2303.33	11		30	2429.80	11
23	2370.50	11 T		120	2430.08	
120	2371.430	I		25	2431.02	11
300	2373.024	1		80	2432.26	11
150	2373.74	11		60	2432.87	11
120	2374.518	1		25	2434.06	11
60	2375.19			20	2434.24	II
120	2376.43	11		20	2434.65	II
20	2378.13	11		50	2434.73	II
80	2379.27	11		50	2434.95	II
20	2379.41	11		25	2436.62	II
40	2380.20	11		60	2438.182	I
120	2380.76	II		150	2439.30	II
150	2381.835	I		150	2439.74	I
1000	2382.04	II	ļ	80	2440.11	I
20	2382.90	II		40	2440.42	II
20	2383.06	II	1	30	2442.37	II
60	2383.25	II		100	2442.57	I
50	2384.39	II		60	2443.71	II
			-			

Intensity	Wavelength (A)	Spectrum	Intensi	ty Wavelength (A)	Spectrum
250	2443.872	I	60	2476.657	I
100	2444.51	II	25	2477.34	II
50	2445.11	II	60	2478.57	II
50	2445.212	Ι	120	2479.480	I
100	2445.57	II	1200	2479.776	I
40	2445.80	II	100	2480.16	II
50	2446.11	II	15	2481.05	TT
30	2446.47	II	80	2482.12	II
40	2447.20	 TT	25	2482 32	II
25	2447 33	II	100	2482.66	II
60	2447 709	T	15	2482.80	II
30	2447.70)	T T	10000	2402.07	T
25	2447.75		300	2403.271	I
25	24493.30	11	15	2463.333	1 T T
100	2430.20	11	1000	2483.72	11
100	2433.470		1000	2484.185	1
20	2453.98	11	60	2484.24	11
30	2454.58	11	30	2484.44	11
15	2455.71	11	50	2485.990	1
15	2455.90	11	800	2486.373	I
15	2457.09	II	100	2486.691	I
1500	2457.598	I	100	2487.066	I
150	2458.78	II	120	2487.370	I
40	2458.97	II	4000	2488.143	I
60	2460.44	II	100	2488.945	I
80	2461.28	II	80	2489.48	II
100	2461.86	II	1000	2489.750	I
100	2462.181	I	50	2489.83	II
1500	2462.647	I	50	2489.913	Ι
50	2463.29	II	3000	2490.644	I
50	2463.730	Ι	100	2490.71	II
40	2464.01	11	60	2490.86	II
40	2464.90	II	2000	2491.155	I
800	2465.149	Ι	100	2491.40	II
50	2465.91	Ī	25	2492.34	II
15	2466.50	II	100	2493.18	T
60	2466.67	TT	500	2493.26	11
60	2466.82	11	20	2493.88	II
60	2467 732	T	60	2495.00	I
15	2468.29	TT	50	2494.000	Ţ
600	2468.879	T	100	2494.231	T
60	2400.077	TT	600	2475.07	T
25	2409.31	TT	50	2490.333	TT
2.5	2470.41	11	150	2497.62	11
80	2470.07	11	40	2498.90	
00 000	2470.903	L T	1000	2500.92	T
800	24/2.330	1	1000	2301.132	1 1 1
40	24/2.45		40	2501.51	11
40	24/2.00	T T	50	2301.093	1
1000	24/2.093	L T	00	2302.39	
200	24/3.10	L TT	40	2503.33	
50	2473.32	11	20	2503.57	
30	2474.05	11	60	2503.87	11
600	2474.814	1	80	2506.09	11
50	2475.12	11	40	2506.80	11
40	2475.54	II	500	2507.900	I
15	2476.26	II	30	2508.34	II

Intensity	Wavelength (Å)	Spectrum		Intensity	Wavelength (Å)	Spectrum
50	2508.753	Ι		80	2541.10	II
1000	2510.835	I		60	2541.84	II
120	2511.76	II		300	2542.10	I
80	2512.275	I		25	2542.78	II
400	2512.365	I		60	2543.38	II
50	2514.38	II		250	2543.92	I
80	2516.570	Ι		150	2544.70	I
50	2517.13	II		40	2544.97	II
300	2517.661	Ι		40	2545.22	II
800	2518.102	Ι		20	2545.44	II
60	2519.05	II		800	2545.978	I
150	2519.629	I		40	2546.44	II
40	2521.09	II		80	2546.67	II
30	2521.82	II		80	2546.87	I
50	2522.480	I		20	2548.59	II
4000	2522.849	I		100	2548.74	11
200	2523.66	I		80	2549.08	II
500	2524.293	I	i	80	2549.39	II
100	2525.02	I		60	2549.46	II
200	2525.39	II		600	2549.613	I
25	2526.07	II		40	2549.77	II
300	2526.29	II		60	2550.03	II
20	2527.10	II		25	2550.15	II
2000	2527.435	I		50	2550.68	II
30	2527.70	II		40	2560.28	II
20	2528.88	II		25	2562.09	II
20	2529.08	II		400	2562.53	II
800	2529.135	I		200	2563.48	II
25	2529.23	II		20	2566.22	II
80	2529.31	I		60	2566.91	II
250	2529.55	II		25	2570.52	II
150	2529.836	I		30	2570.85	11
40	2530.11	II		150	2574.36	II
200	2530.687	I		50	2575.74	I
20	2531.87	II		300	2576.691	I
120	2533.63	II		25	2576.86	II
60	2533.80	I		60	2577.92	II
100	2534.42	II		50	2582.30	I
120	2535.49	II		100	2582.58	II
400	2535.607	I		1500	2584.54	I
60	2536.67	II		650	2585.88	II
200	2536.792	I		90	2588.00	I
200	2536.80	II		90	2591.54	II
50	2536.84	II		30	2592.78	II
50	2537.14	II		60	2593.51	I
50	2538.20	II		90	2593.73	II
40	2538.50	II		650	2598.37	II
20	2538.68	II		2000	2599.40	II
100	2538.80	II		300	2599.57	I
100	2538.91	II		20	2605.34	II
150	2538.99	II		20	2605.42	II
50	2539.357	I		60	2605.657	I
20	2540.52	II		300	2606.51	II
200	2540.66	II		800	2606.827	I
600	2540.972	I	I	650	2607.09	II

Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum	
		<u>.</u>				
20	2611.07	II	50	2728.820	I	
600	2611.87		80	2728.90	11	
320	2013.82		40	2730.73	11	
320	2017.02	11	1000	2733.581	l	
230	2018.018		60 50	2734.005	l T	
20	2619.07	11	500	2/34.208	1	
90 20	2020.41	11	500	2/33.4/3	L	
20 40	2620.09	II	500	2733.012	L T	
400	2623.53	I	120	2737.510	L	
	2625.55	I	400	2730.55		
200	2625.49	TT	400	2739.33	11	
150	2628.29	IT	800	2742.254	T	
20	2630.07	TI	200	2742.405	T	
250	2631.05	II	150	2743.20	T	
250	2631.05	II	200	2743.303	I	
250 50	2631.61	II	80	2744.008	Ţ	
100	2632 237	Ĩ	300	2744.527	TT	
300	2635 809	I	100	2740.43	TT	
50	2641.646	Ţ	500	2749.32	TT	
200	2643.998	Ī	1200	2750 140	T	
60	2664.66	11	20	2750.140	T	
30	2666.64	II	20	2752.15	II	
300	2666.812	I	80	2753.29	II	
60	2666.965	Ī	50	2753.69	T	
600	2679.062	Ī	150	2754 032	T	
500	2684.75	II	100	2754 426	T	
400	2689.212	Ι	30	2754.89	Ī	
60	2692.60	II	800	2755.73	11	
50	2696.28	I	250	2756.328	I	
200	2699.106	I	100	2757.316	I	
60	2703.99	II	50	2759.81	Ι	
80	2706.012	Ι	120	2761.780	I	
400	2706.582	Ι	150	2761.81	II	
60	2708.571	Ι	150	2762.026	I	
20	2709.05	II	120	2762.772	I	
200	2711.655	Ι	120	2763.109	I	
80	2714.41	II	20	2763.66	II	
50	2716.22	II	25	2765.13	II	
50	2716.257	I	80	2766.910	I	
50	2717.786	I	250	2767.522	I	
50	2717.87	II	50	2769.30	I	
250	2718.436	I	25	2769.35	II	
4000	2719.027	I	300	2772.07	I	
100	2719.420	I	50	2773.23	I	
50	2720.197	I	20	2774.69	II	
1500	2720.903	I	15	2776.91	II	
400	2723.578	1	60	2778.07	I	
30	2724.88	11	600	2778.220	1	
150	2/24.953	1 T	40	2779.30	11	
80	2726.05	1	50	2783.69	11	
50 25	2/20.235		30	2785.19	11	
20	2121.38	11	3000	2/88.10	L TT	
00	2121.34	11	20	2193.89	11 T	
200	2128.020	T	i 200	2191.18	1	

Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum	
	2799.29	II	15	3002.64	II	
400	2804.521	I	200	3007.282	I	
1500	2806.98	I	500	3008.14	I	
2500	2813.287	I	120	3009.569	I	
300	2823.276	I	60	3017.627	I	
600	2825.56	I	60	3018.983	I	
50	2825.687	I	60	3020.01	II	
120	2828.808	I	500	3020.491	I	
25	2831.56	II	1500	3020.639	I	
1500	2832.436	I	600	3021.073	I	
120	2835.950	Ι	500	3024.032	I	
200	2838.119	I	150	3025.638	I	
30	2839.51	II	500	3025.842	I	
20	2839.80	II	80	3030.148	I	
15	2840.65	II	60	3031.214	I	
200	2843.631	1	60	3034.484	I	
1000	2843.977	I	40	3036.96	II	
100	2845.594	I	800	3037.389	I	
15	2848.11	II	80	3041.637	I	
15	2848.32	11	800	3047.604	I	
800	2851.797	I	600	3057.446	I	
30	2856.91	II	1000	3059.086	I	
25	2858.34	II	250	3067.244	I	
50	2869.307	I	120	3075.719	I	
50	2872.334	I	120	3091.577	I	
80	2874.172	I	80	3098.189	I	
50	2894.504	I	100	3099.895	I	
120	2912.157	I	100	3099.968	I	
120	2929.007	I	60	3100.303	I	
1200	2936.903	I	100	3100.665	I	
60	2941.343	I	12	3154.20	II	
12	2944.40	II	80	3175.445	I	
1000	2947.876	I	150	3184.895	I	
60	2950.24	I	250	3191.659	I	
600	2953.940	I	500	3193.226	I	
250	2957.364	I	800	3193.299	I	
80	2959.99	I	12	3196.08	II	
150	2965.254	I	200	3196.928	I	
1500	2966.898	I	80	3199.500	I	
120	2969.36	I	60	3200.47	I	
800	2970.099	I	50	3205.398	I	
15	2970.52	II	50	3211.67	I	
1200	2973.132	I	100	3211.88	1	
500	2973.235	I	13	3213.31	11	
600	2981.445	I	200	3214.011	1	
1000	2983.570	I	200	3214.396	1	
60	2984.77	1	60	3215.938	1	
50	2984.82	11	50	3217.377	1	
13	2985.54	II	80	3219.583	1	
1000	2994.427	I	60	3219.766	1	
250	2994.502	1	300	3222.045	1	
500	2999.512	1	600	3225.78	1	
120	3000.451	L T		5221.13	11	
800	3000.948	1	80	3221.190	1 T T	
60	3001.655	L	1 20	3230.42	11	

Intensity	Wavelength (A)	Spectrum	Intensity	Wavelength (Å)	Spectrum
80	3233.05	I	200	3556.878	I
50	3233.967	I	400	3558.515	I
120	3234.613	I	1000	3565.379	I
300	3236.222	I	1200	3570.097	I
100	3239.433	I	800	3570.25	I
80	3244.187	I	120	3571.996	I
80	3246.005	I	100	3573.393	Ī
60	3254.36	I	60	3573.829	Ī
80	3265.046	I	60	3573.888	Ī
50	3265.617	Ī	4000	3581 19	T
50	3271.000	Ī	150	3582 199	Ţ
50	3280.26	ī	150	3584 660	T
150	3286.75	ī	120	2584.020	T
120	3305.97	T T	120	3504.727	I
200	3306 343	T	500	3303.319	1 T
400	2255 227	T	150	3585.705	1 T
+00	3333.221	1 T	200	3586.103	1
ðU 40	3333.31/	1 T	400	3586.984	1
00	3309.540	1	100	3594.633	I
120	3370.783	1	150	3603.204	I
50	3378.678	I	200	3605.454	I
50	3380.110	I	500	3606.680	I
60	3383.978	I	1500	3608.859	I
12	3388.13	II	250	3610.16	I
50	3392.304	I	60	3612.068	I
150	3392.651	I	150	3617.788	I
150	3399.333	I	1500	3618.768	I
80	3404.353	I	200	3621.462	I
500	3407.458	I	150	3622.004	I
250	3413.131	I	150	3623.19	I
60	3424.284	I	100	3631.096	I
500	3427.119	Ι	1200	3631.463	I
60	3428.748	I	60	3632.041	ī
6000	3440.606	Ī	100	3638 298	Ĩ
2500	3440,989	Ī	200	3640 389	I
1000	3443 876	Ī	80	3643 717	I
200	3445 149	ī	1500	3647 847	I
15	3453.61	I	250	3640 506	I
1200	3465 860	T	230	3049.300	I T
2000	3475 450	⊥ T	200	3030.219	L T
2000 500	2476 703	⊥ T	200	3031.40/	T T
2500	34/0./UZ	L T	120	30/0.024	1
2300	3490.374	1 T	150	3670.089	1
500	3497.840	L.	100	36/6.311	1
250	3513.817	1	150	3677.629	I
300	3521.261	Ĩ	1500	3679.913	I
400	3526.040	I	200	3682.242	I
100	3526.166	I	120	3683.054	I
60	3526.237	I	150	3684.107	I
60	3526.381	I	120	3685.998	I
60	3526.467	I	500	3687.456	I
100	3533.199	I	120	3689.477	I
200	3536.556	I	150	3694.008	I
300	3541.083	I	120	3695.051	I
250	3542.075	I	150	3701.086	I
80	3553.739	I	80	3704.462	I
		-	1		-

•

Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum	
60	3707.041	I	80	3846.800	I	
150	3707.821	I	200	3849.96	I	
300	3707.919	I	120	3850.817	I	
600	3709.246	I	2500	3856.372	I	
120	3716.442	I	150	3859.212	I	
8000	3719.935	I	10000	3859.911	I	
1500	3722.563	I	150	3865.523	I	
120	3724.377	I	60	3867.215	I	
60	3725.491	I	250	3872.501	I	
60	3727.093	I	150	3873.761	I	
500	3727.619	Ι	250	3878.018	I	
150	3732.396	I	2000	3878.573	I	
1200	3733.317	I	4000	3886.282	I	
5000	3734.864	I	200	3887.048	I	
120	3735.324	I	300	3888.513	I	
6000	3737.131	I	800	3895.656	I	
100	3738.306	I	1200	3899.707	I	
400	3743.362	I	400	3902.945	I	
80	3743.47	I	250	3906.479	I	
6000	3745.561	I	80	3916.731	Ī	
1200	3745.899	I	600	3920.258	I	
3000	3748.262	I	1200	3922.911	Ī	
80	3748.964	I	1200	3927.920	Ī	
3000	3749.485	I	2000	3930.296	Ī	
1500	3758.232	I	60	3948.774	Ī	
400	3760.05	I	60	3949.953	Ī	
1500	3763.788	I	50	3951.164	Ī	
400	3765.54	I	50	3952.601	Ī	
600	3767.191	I	60	3956.454	ī	
60	3776.452	Ī	250	3956.68	ī	
250	3785.95	I	60	3966.614	Ī	
100	3786.68	I	100	3969.257	Ī	
250	3787.880	Ī	80	3977.741	ī	
250	3790.092	I	40	3981.771	ī	
150	3794.34	Ī	50	3983.956	- T	
400	3795.002	Ī	60	3994 114	Ĩ	
120	3797.518	Ī	200	3997 392	Ţ	
250	3798.511	Ī	40	3998 053	T	
400	3799.547	Ī	400	4005 241	± T	
200	3805.345	Ī	60	4000 713	Ť	
80	3806 696	ī	80	4014 53	T	
600	3812 964	Ť	100	4014.00	T T	
60	3813.059	- T	50	4041.007	T	
1500	3815 840	Ť	4000	4045 812	T	
2500	3820 425	Ť	1500	4063 504	T	
150	3821 170	Ť	50	4066 075	T	
80	3824 306	Ť	50	7000.773	T	
2500	3874 144	T	1100	4007.977	T	
1500	3875 880	.⊾ T	1200	40/1./3/	T T	
1200	3877 872	T	40	40/0.029	L T	
1000	3824 777	T	40	4100./3/	T	
170	3830 757	T	40	4107.489 1110 - 14	1 T	
500	3840 127	T	100	4118.344	T	
200	3841 047	T	40	4127.008	I	
120	3842 756	T	400	4132.038 1121 272	1 T	
140	JOTJ.2JU	Ŧ	1 80	4134.0/0	L	

Intens	sity Wavelength (Å)	Spectrum		Intensity	Wavelength (Å)	Spectrum
	4136.997	I		200	4482.252	I
200	4143.415	I		50	4489.739	Ī
800	4143.869	I		50	4528.613	Ţ
40	4153.898	Ī		11	4583.83	Ī
50	4154 500	- T		30	4647 433	T
50 60	4156 799	ī		30	4736 771	T
50	4150.755	T		50	4859 741	⊥ T
50	4174 012	T		120	4037.741	T
50	4175.635	T		120	40/1.31/	I
50	4175.055	I T		60 20	4872.130	I
50	4177.393	1		30	48/8.208	I T
120	4101.734	L T		100	4890.754	1
50	4184.891	L T		250	4891.492	1
120	4187.038	1		30	4903.309	1
120	4187.795	1		150	4918.992	1
80	4191.430	l		500	4920.502	1
40	4195.329	1		12	4923.92	11
150	4198.304	1		1500	4957.597	I
40	4199.095	I		11	4990.50	II
300	4202.029	I		80	5001.862	I
40	4203.984	I		18	5001.91	II
80	4206.696	I		11	5004.20	II
80	4210.343	I		30	5005.711	I
400	4216.183	I		100	5006.117	I
100	4219.360	I		60	5012.067	I
50	4222.212	I		30	5014.941	I
50	4225.956	I		12	5018.43	II
200	4227.423	I		11	5030.64	II
11	4233.17	II		25	5030.77	I
100	4233.602	I		12	5035.71	II
250	4235.936	I		150	5041.755	I
50	4238.809	I		30	5049.819	I
50	4247.425	I		30	5051.634	I
200	4250.118	I		25	5074.748	I
300	4250.787	I		18	5100.73	T
40	4258.315	Ī		15	5100.95	11
800	4260.473	Ī		150	5110 357	T
250	4271 153	T		40	5133.69	ī
1200	4271 759	Ī		40	5139.251	Ť
1200	4282 402	Ī		100	5139.467	Ť
200 80	4291 462	Ī		11	5144 36	T
250	4799 734	- T	[10	5140 /6	11
1200	4307 901	Ť		12	5177.40 5151.010	T
1200	4315 084	Ī		20	5162.27	T
1500	4375 761	Ī		50	5166 281	T
1300	4357 734	ī		2500	5167 497	T
00 00	Λ260 771	Ť		2300	5160 007	L T
00	A275 020	Ť		8U 10	5160.07	L TT
2000	A202 5AA	Ţ		12	5109.U3	T T
3000	4303.344 AAAA 750	Ţ		500	51/1.595	L T
1200	4404.750	1 T		50	5191.454	L T
300	4415.122	T T		80	5192.343	1
600	4427.299	I T		200	5194.941	1
400	4401.002	L T		30	5204.582	1 T
120	4400.001	L T		25	5215.179	I
80	44/0.01/	I T		150	5216.274	1
80	4482.169	T		18	5216.85	II

Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
60	5226.862	I	13	5544.76	II
1000	5227.150	I	30	5569.618	Ι
13	5227.49	II	60	5572.841	Ι
250	5232.939	I	120	5586.755	Ι
13	5247.95	II	200	5615.644	I
13	5251.23	II	20	5624.541	I
18	5260.26	II	12	5645.40	II
11	5264.18	II	50	5662.515	I
100	5266.555	I	20	5762.990	Ι
1200	5269.537	I	11	5783.63	II
800	5270.357	I	30	5862.353	I
30	5281.789	I	13	5885.02	II
60	5283.621	I	16	5902.82	II
25	5302.299	I	30	5914.114	I
11	5306.18	II	14	5955.70	II
13	5316.23	II	30	5986.956	I
150	5324.178	I	18	5961.71	II
800	5328.038	I	30	5962.4	II
300	5328.531	I	13	5965.63	II
100	5332.899	I	40	6065.482	I
14	5339.59	II	30	6102.159	I
80	5339.928	I	40	6136.614	I
500	5341.023	I	40	6137.694	I
25	5364.87	I	30	6147.73	II
40	5367.47	I	20	6149.24	II
50	5369.96	I	15	6175.16	II
400	5371.489	I	40	6191.558	I
60	5383.37	I	30	6213.429	I
14	5387.06	II	30	6219.279	I
40	5393.167	I	40	6230.726	I
12	5395.86	II	20	6238.37	II
300	5397.127	I	20	6246.317	I
15	5402.06	11	80	6247.56	II
60	5404.12	1	30	6252.554	I
250	5405.774	l	15	6305.32	II
30	5410.91	l	12	6331.97	II
60	5415.20	i T	15	6383.75	II
60	5424.07		20	6393.602	I
30	5427.83	11	30	6399.999	1
250	5429.695		20	6411.647	
13	5429.99	II T	20	6416.90	11
100	5454.525	L T	20	6421.349	I
200	5455 45	1 T	30	6430.844	
25	5455.40	L T	20	6446.43	
120	5455.009	T T	200	0420.38	11
10	2402.93 5466 04	II TT	60	0494.981	1
20 16	2400.74 5427 21	11 TT	20	0010.00	11
10	5402.21	II II	20	0340.239	I
14	5473.03 5107 516	T	20	0372.913	⊥ T
23 20	5501 464	т Т	40	00//.989 6855 19	1 T
20	5506.20	II	15	6945 21	1 T
30	5506 778	T	20	7067 AA	1 TT
12	5510 78	-	15	7130.94	Ī
12	5529.06	II	25	7164.443	Ī
12	2022100		. 20		-

æ.

Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
80	7187.313	I	50	14555.06	I
30	7207.381	I	14	14565.95	I
12	7224.51	II	40	14826.43	I
50	7307.97	II	37	15051.77	I
40	7320.70	II	28	15207.55	I
20	7376.46	II	94	15294.58	Ī
30	7445.746	I	16	15335.40	ī
20	7462.38	II	30	15621.67	T
40	7495.059	I	25	15631.97	I
60	7511.045	I	14	15723 59	T
15	7586.04	T	41	15769.42	T
15	7711 71	T	28	15812 12	T
30	7780 59	T	12	15015.15	1 T
40	7832 22	T	13	16494 402	I T
	7032.22	I	105	10480.09	1
60 60	7937.131	I T	105	18856.65	1
80	7943.964	I T	4/	18987.01	I
80	/998.939	L	25	19113.68	Ι
60	8046.04/	1	22	19791.88	I
50	8085.176	1	14	22380.82	I
150	8220.41	Ι	21	22619.85	I
120	8327.053	I	38	26222.04	I
20	8331.908	I	17	26659.22	I
120	8387.770	I			
30	8468.404	I		F 7	
15	8514.069	I		Fe III	
60	8661.898	I			
150	8688.621	I		Vacuum	
12	8793.38	Ι			
12	8824.23	Ι	6	728.81	III
20	8866.96	Ι	5	730.00	III
15	8999.56	I	5	737.71	III
15	10216.32	ī	5	739.26	III
13	10469.65	T	9	807.55	TTT
21	11119.80	T	8	807.86	III
14	11374.08	T	8	808 84	III
52	11472 32	T	8	P 811.28	TTT
87	11/20 12	I	10	813 38	TTT
01	11502.50	I	0	813.30	
71	11575.37	L T	10	841 70	111
233	11629.26	L T	10	044.20 046 41	
100	11038.20	T	9	845.41 W 847.42	
230	11089.98	1	ð a	w 84/.42	111
160	11783.26	1	8	859.72	111
580	11882.84	1	8	r 861.76	111
225	11884.08	I	10	P 861.83	III
1030	11973.05	I	8	873.46	III
15	12638.71	I	9	890.76	III
14	12879.76	I	10	891.17	III
17	13565.04	I	8	891.44	III
30	14236.25	I	8	899.42	III
24	14285.11	I	10	950.33	III
14	14292.38	I	10	981.37	III
16	14308.69	I	10	W 983.88	III
96	14400.56	I	8	985.82	III
20	14442.28	I	9	991.23	III
			1		

Intensity Wavelength (Å) Spectrum	Intensity	Wavelength (Å) Spectrum
8 1017.74	III	15	2151.78	III
8 1018.29	III	12	2157.71	III
8 1032.12	III	12	2158.47	III
8 1063.87	III	10	2161.27	III
9 1122.53	III	12	2166.95	III
9 1124.88	III	12	2171.04	III
8 1128.02	III	15	2174.66	III
10 H 1505.17	III	12	2180.41	III
10 H 1538.63	III	10	P 2208.85	III
12 H 1550.20	III	10	2221.83	III
10 H 1601.21	III	10	2229.27	III
10 1869.83	III	10	2232.43	III
12 1877.99	III	10	2232.69	III
10 1882.05	III	10	2235.91	III
12 1886.76	III	10	2238.16	III
13 1890.67	III	12	P 2241.54	III
11 1893.98	III	12	2261.59	III
20 1895.46	III	10	2267.42	 III
10 S 1907.58	III	10	2293.06	III
19 1914.06	III	15	2295.86	111
15 1915.08	III	10	P 2317 70	TTT
15 1922.79	III	10	2319.22	TTT
10 P 1926.01	III	10	P 2321.71	TTT
18 1926.30	III	10	2326.95	TTT
15 1930 39		10	P 233677	TTT
14 1931.51		10	2338.06	
14 1937.34		8	2330.50	
10 I 1938.90	III	8	2389.55	TTT
14 \$ 1943.48		8	P 2582 37	
12 1945 34		8	2595.67	
10 1950.33		8	2617.15	
12 1951.01		i i i i i i i i i i i i i i i i i i i	P 2645 30	
11 1952.65	TTT	10	H 2695 13	
13 1053 32		0	H 2695.15	111
10 1953.49		8	H 2700.02	111
10 1955.49 10 W 1954.22		8	H 2701.13	
11 1058.58		8	2701.13	111
13 1960.32		10	D 2812 24	
15 1987 50	TTT	10	P 2805.08	111
15 1707.30 14 1001.41	TTT	0		111 111
13 1994.07		12	2004.42	III
12 1994.07	TTT	12 Q	P 2004.43	111 TTT
12 1995.50		10	2.903.80	
12 1790.42	111	10	2907.30	
Air		12	2.907.70	111
All		0	2723.90	111
10 2061.55	TTT	0	2740.37 7022 72	
10 2001.00	TTT	12	2703.23	111
14 2000.24 14 2079.00	TTT	12	JUU1.02	111
10 2024.25	111	12	2012.17	111
10 2004.33	TTT	10	D 2126 42	111
12 2090.14 15 2007.49	111	10	I 3130.43	111
15 2097.40 17 2007.40	TTT	10	3174.09	
12 2097.09	TTT	10	3173.97 3178 MI	111
10 2103.00		10	3766 88	111
10 2107.32	***	1 13	5200.00	

(¹⁷⁷)

÷....

Intensity	Wa	velength (Å)	Spectrum		Intensity	Wa	velength (Å)	Spectrum
11		3276.08	III		9		5272.37	III
10		3288.81	III		14		5272.98	III
9		3305.22	III		15		5276.48	III
9		3339.39	III		16		5282.30	III
9		3499.59	III		12		5284.83	III
9		3500.28	III		11		5298 12	TIT
10		3501.76	III		12		5799.93	111
10		3586.04	111		14	w	5302.60	111
11		3600.94			10	**	5206.76	111
11		3603.88			10		5310.99	111
16		2054 22	111		10		5310.88	
10		3934.33	111		10		5322.74	111
11		3908.72			11		5340.88	
9	**7	3909.49	111		12		5353.77	111
10	w	39/9.42	111		12		5363.76	111
10		4035.42	111		10	_	5368.06	111
11		4053.11	111		11	L	5375.47	III
12		4081.00	III		11		5719.88	III
10		4120.90	III		9		5744.19	III
11		4122.02	III		10		5756.38	III
11		4122.78	III		18		5833.93	III
15		4137.76	III		9		5848.76	III
13		4139.35	III		10		5854.62	III
9		4140.48	III		9		5876.26	III
9		4154.96	III		15		5891.91	III
18		4164.73	III		9		5898.68	III
9		4164.92	III		9		5918.96	III
13		4166.84	111		10	ρ	5920.13	111
13		4174.26			18	p	5929.69	
9		4210.67	TTT		10		5952 31	
11		4210.07			10		5052.51	111
11		4225.21	111		14		5059.02	
13		4235.50			9		5908.48	
9		4238.02			12	T T	59/9.32	
12	••	4243.75	111		9	н	5981.01	111
12	н	4273.40	111		12	Н	5989.08	111
12		4279.72	111		18		5999.54	III
14	Н	4286.16	III		9		6031.02	III
16	Н	4296.85	III		16		6032.59	III
18	Н	4304.78	III		13		6036.56	III
20	Н	4310.36	III		11		6048.72	III
9		4323.68	III		11		6054.18	III
9	Н	4372.04	III		9		6056.36	III
9	Н	4372.14	III	1	9		6149.99	III
11	Н	4372.31	III		9		6169.74	III
14	Н	4372.53	III		9		6185.26	III
18	Н	4372.81	III		7		6186.56	III
9		4395.76	III		7		6194.79	111
12		4419.60	III		6		6195 43	111
Q		4431 02	III		6		6201 37	111
Q		5111 07	TTT		5	s	6203.04	111 TTT
9		5127.25	TTT		5 5		0203.04	111
10		5156 10	111		د ۲	р	0237.81	111
12		5150.12	111		0	r	0294.30	
10		5199.08			5		18./ 220	111
10		3233.00			2	11	/31/.63	
18		5243.31	111		6	H	/320.14	111
13	L	5200.34	111	1	3	w	/921.17	111

Intensity	Way	velength (Å) Spectrum		Intensity	Wavelength (Å)	Spectrum
5	W	8230.88	III		14	1536.58	IV
5	W	8231.79	III		12	1538.29	IV
9	W	8235.45	III		13	1542.16	IV
8	W	8236.75	III		14	1542.70	IV
6	W	8238.98	III		12	1546.40	IV
5		8563.49	III		12	1552.35	IV
				1	12	1552.71	IV
				1	12	1562.46	IV
		Fe IV			13	1566.26	IV
					14	1568.27	IV
	۲	Vacuum			12	1570.18	IV
					12	1570.42	IV
10		502.42	IV		12	1571.24	IV
11		506.69	IV		12	1577.20	IV
11		505.35	IV	1	12	1577.76	IV
17		525.69	IV	1	12	1590.62	IV
15		526.29	IV		13	1591.51	IV
10		526.57	IV		13	1592.05	IV
13		526.63	IV		12	1596.67	IV
10		530.91	IV		13	1598.01	IV
10		531.78	IV		12	1600.50	IV
10		535.55	IV		13	1600.58	IV
14		536.61	IV		13	1601.67	IV
10		536.74	IV		12	1602.08	IV
15		537.10	IV		13	1603.18	IV
13		537.26	IV		13	1603.73	IV
14		537.79	IV		13	1604.88	IV
13		537.94	IV		13	1605.68	IV
10		538.44	IV		15	1605.97	IV
10		544.20	IV		13	1606.98	IV
10		546.22	IV	Í	17	1609.10	IV
10		548.80	IV		14	1609.83	IV
11		550.32	IV		.13	1610.47	IV
10		551.77	IV		13	1611.20	IV
13		552.14			13	1613.64	IV
11		552.74			15	1614.02	IV
10		554.26			13	1614.64	IV
10		555.00			13	1615.00	IV
10		572.88			12	1615.61	IV
10		3/0./0 570 74		1	16	1616.68	
10		319.10 607 57			14	1617.68	
14		608 80	IV IV		14	1619.02	
13		600.60			12	1620.91	
10		1425 73	IV		13	1621.16	
12		1423.73			14	1621.57	
13		1473.70	IV	1	13	1623.38	
12		1480 52	IV		15	1625.33	
12		1495 18	IV		1.5	1626.47	IV IV
12		1526.60	IV		14	1620.90	IV IV
13		1530.26	īv	1	13	1620.34	IV
14		1532.63	īV	1	17	1631.08	IV
13		1532.91	ĪV	1	17	1632.08	īv
15		1533.86	IV	1	14	1632.40	IV
13		1533.95	IV		13	1634.01	ĪV

 Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
 12	1638.07	IV	12	1860.42	IV
12	1638.30	IV	12	1869.64	IV
14	1639.40	IV	12	1874.23	IV
16	1640.04	IV			
14	1640.16	IV			
15	1641.87	IV		Fe v	
12	1642.88	IV			
15	1647.09	IV	1	Vacuum	
15	1651.58	IV			
15	1652.90	IV	300	361.28	V
13	1653.41	IV	300	365.43	V
13	1656.11	IV	300	365.86	v
15	1656.65	ĪV	300	374 24	v
12	1657.82	IV	300	374.87	v
12	1658 43	IV	300	375.98	v
14	1660 10	ĪV	300	370 50	v
17	1661 57	īv	300	380 31	v V
12	1662 32	IV	200	381.37	v V
13	1662.52	IV	200	301.47	v V
13	1662.52	IV	200	204.70	v
12	1669.00		300	304.91	V V
13	1668.09		300	385.03	V
12	1009.01		300	385.11	V
14	16/1.04	IV	300	385.25	V
12	1672.86	IV	300	385.26	V
13	1673.68	IV	300	385.30	V
14	1675.66	IV	300	385.75	V
12	1676.78	IV	300	385.88	V
12	1677.12	IV	350	386.16	V
13	1681.36	IV	300	386.74	V
12	1681.95	IV	300	386.78	V
15	1687.69	IV	300	386.85	V
15	1698.88	IV	300	386.88	V
12	1700.40	IV	350	386.88	V
12	1704.93	IV	400	387.20	V
13	1709.81	IV	400	387.50	V
15	1711.41	ĪV	300	387.62	V
14	1712 76	ĪV	400	387 76	· V
12	1717 11	IV	400	387 78	v
14	1717 90	IV	200	387 98	v
14	1718 16	IV	200	382 61	v
17	1718 47	IV	200	388 87	v V
14	1710.44	IV	200	300.02	v V
14	1717.40	IV	300	300.10	v V
14	1724.06		300	390.19	v
14	1724.00		300	390.78	V
12	1724.20		300	391.94	V
16	1725.63		300	392.06	v
13	1/61.08		300	392.38	V
12	1764.92	1V	300	392.50	V
12	1767.36	IV	300	392.51	V
13	1792.10	IV	300	392.70	V
13	1796.93	IV	300	392.91	V
12	1805.32	IV	300	393.27	V
12	1820.42	IV	300	393.72	V
13	1827.98	IV	300	393.73	V
12	1840.24	IV	300	393.91	V

 Intensity	Wavelength (Å)	Spectrum	Intensity	Wavelength (Å)	Spectrum
300	393.97	V	300	415.01	v
300	394.04	V	300	416.66	v
300	394.64	V	300	416.84	v
300	395.15	V	700	417.39	v
300	395.79	V	700	418.04	v
400	395.90	V	500	418.47	v
300	399.84	V	300	420.56	v
300	400.11	V	700	421.06	v
300	400.51	V	500	421.78	v
300	400.52	V	300	422.28	\mathbf{v}
300	400.63	V	500	422.31	v
300	401.04	V	300	423.23	v
300	401.64	V	500	426.06	v
300	401.86	V	500	426.11	v
300	402.87	V	300	426.83	V
300	403.06	V	350	426.97	v
400	404.62	V	300	434.42	v
400	405.50	V	300	439.22	v
800	407.42	v	300	444.70	v
600	407.44	V	300	445.44	v
400	407.49	V	300	446.04	V
500	407.75	V	300	458.16	v
400	409.71	V	300	486.17	v
400	410.20	V	400	1317.86	v
600	411.55	v	300	1318.35	v

D. Vacuum Ultraviolet Lines for Fe I through Fe XXVI

D. Vacuum Ultraviolet Lines for Fe I through Fe XXVI

The following tables, including the introductory comments, are excerpted from a new tabulation by R. L. Kelly,¹ which supersedes and revises his previous tables published with Palumbo in 1973.²

The listed wavelength data are generally from observations, with lines of the helium-like and hydrogen-like ions (Fe XXV and Fe XXVI) as notable exceptions. But also in many cases where lines have been observed, wavelengths given here are those resulting from a comprehensive analysis of the spectrum rather than the measured values. A few lines have been predicted from unpublished extrapolations along isoelectronic sequences, and some unobserved weak lines in multiplets have been included for completeness. Such predicted values of wavelength are marked by the symbol P in the column labeled "Notes."

The lines are arranged in order of increasing wavelength within each spectrum, and the vacuum wavelengths are given as they are reported in the reference listed first for each line. A complete listing of these references is given at the end of these introductory comments.

With respect to the accuracy of the wavelength data, it is conservatively estimated that all wavelengths reported should have uncertainties of ten to twenty in the last digit given.

The listed intensities have been normalized to a maximum of 1000 for convenience in comparing the different references. The normalization procedure used was generally a linear or logarithmic transformation of the intensities reported by the original authors, depending on the particular case. Intensities given by different observers have seldom been found compatible, however, and the tabulated intensities should be used only as a rough estimate.

The transitions are shown in standard spectroscopic notation with the lower level given first, and the energy levels, i.e., energies above the ground state, are presented in units of 1000 cm⁻¹, each value being rounded off to conserve space. Additive uncertainties are indicated by B, C, K, etc. which may be thousands of cm⁻¹. The energy level data are taken from the files of the Naval Postgradutate School Spectroscopic Data Center (and thus do not necessarily agree with those tabulated in Section E of this book).

The multiplet numbers assigned by C. E. Moore³ are given in a separate column. The classifications of the transitions are given in the accepted form, the primary references being the NBS spectroscopy tables.^{3,4} For convenience, separate columns are used for showing the configurations, terms, and *J*-values. In the term column, the symbol *g* is used to denote the ground term. Otherwise, the term designation follows that of Cowan and Andrew.⁵

The parent terms are given where they are known and where they are not immediately obvious. The older practice of using primes, double primes, etc. to indicate that the parent term of a configuration is an excited state of the next higher ion has been abandoned. But the notation of a, b, c, . . . (for even terms) and z, y, x, . . . (for odd terms) to indicate the order of appearance of terms of the same multiplicity and same type has been continued. A few descriptive symbols are used in the "Notes" column which have the following meanings:

- F -- line is forbidden by electric dipole selection rules
- A line observed in absorption
- Q uncertain classification
- P --- predicted value of wavelength

There are three classes of predicted lines:

- (a) lines that have been observed but for which calculations of wavelengths from energy levels are superior to the observations as in hydrogenic spectra and in other specific transitions.
- (b) lines which have not been observed but for which Ritz calculations between known levels can be made, as in many of the forbidden lines.
- (c) lines for which one or both of the energy levels have been found by Hartree-Fock type calculations, by interpolation, or by extrapolation.

These three classes are not separately distinguished in the "Notes" column.

References for Introductory Comments

- 1. R. L. Kelly, Atomic and Ionic Spectrum Lines below 2000 Augstroms (Hydrogen through Krypton), J. Phys. Chem. Ref. Data, Supplement (to be published).
- R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms: Hydrogen through Krypton, NRL Report 7599 (June 1973).
- C. E. Moore, An Ultraviolet Multiplet Table, NBS Circular 488, Sect. 1 (1950); Sect. 2 (1952).
- 4. J. Reader and J. Sugar, J. Phys. Chem. Ref. Data 4, 353 (1975).
- 5. R. D. Cowan and K. L. Andrew, J. Opt. Soc. Am. 55, 502 (1965).

General Reference List for Section D

- 3. E. E. Anderson and J. E. Mack, Phys. Rev. 59, 717-723 (1941).
- K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am. 49, 146-161 (1958).
- E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650-653 (1965).
- E. Alexander, U. Feldman, and B. S. Fraenkel, Phys. Lett. 14, 40-41 (1965).
- 30. L. Bloch and E. Bloch, J. Phys. Radium 6, 441-450 (1935).
- 45. I. S. Bowen, Phys. Rev. 46, 791-792 (1934).
- 46. I. S. Bowen, Phys. Rev. 47, 924-925 (1935).
- 47. I. S. Bowen, Phys. Rev. 52, 1153-1156 (1937).
- 49. I. S. Bowen and S. B. Ingram, Phys. Rev. 28, 444-448 (1926).
- 58. J. C. Boyce, Phys. Rev. 47, 718-720 (1935).
- 59. J. C. Boyce, Phys. Rev. 48, 396-402 (1935).
- 77. W. S. Black et al., Nature 206, 654-658 (1965).
- 89. W. M. Burton and A. Ridgeley, Sol. Phys. 14, 3-28 (1970).
- V. A. Boiko, Y. P. Voinov, V. A. Gribkov and G. V. Sklizkov, Opt. Spectrosc. 29, 545-546 (1970).
- W. E. Behring, L. Cohen, and U. Feldman, Astrophys. J. 175, 493-523 (1972).

- 94. H. G. Berry, M. C. Buchet-Poulizac, and J. P. Buchet, J. Opt. Soc. Am. 63, 240-241 (1973).
- 130. J. A. Carroll, Trans. R. Soc. (London) 225A, 357-420 (1925).
- 137. R. D. Cowan and K. G. Widing, Astrophys. J. 180, 285-292 (1973).
- 140. C. W. Curtis, J. Opt. Soc. Am. 42, 300-305 (1952).
- 146. L. Cohen and U. Feldman, Astrophys. J. 160, L105-L106 (1970).
- 178. B. Edlen, Z. Phys. 100, 621-635 (1936).
- 180. B. Edlen, Z. Phys. 103, 536-541 (1936).
- 181. B. Edlen, Z. Phys. 104, 188-193 (1937).
- 182. B. Edlen, Z. Phys. 104, 407-416 (1937).
- 188. B. Edlen and P. Swings, Astrophys. J. 95, 532-554 (1942).
- 197. B. Edlen, Reports On Progress In Physics, Vol. 26, 181-212 (1963).
- 199. R. C. Elton, A. C. Kolb, W. E. Austin, R. Tousey, and K. G. Widing. Astrophys. J. 140, 388-395 (1964).
- 208. U. Feldman and L. Cohen, Astrophys. J. 151, L55-L58 (1968).
- 209. B. Edlen, private communication.
- 228. J. O. Ekberg, Phys. Scr. 11, 23-30 (1975).
- 229. J. O. Ekberg, Phys. Scr. 12, 42-57 (1975).
- 237. U. Feldman, L. Katz, W. Behring and L. Cohen, J. Opt. Soc. Am. 61, 91-95 (1971).
- 239. B. C. Fawcett, J. Phys. B 4, 1577-1586 (1971).
- 241. B. C. Fawcett, R. D. Cowan, E. Ya. Kononov and R. W. Hayes, J. Phys. B 5, 1255-1269 (1972).
- 242. B. C. Fawcett (1972).
- 256. B. C. Fawcett and A. H. Gabriel, Astrophys. J. 141, 343-353 (1965).
- 260. B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 88, 262-264 (1966).
- 261. U. Feldman and B. S. Fraenkel, Astrophys. J. 145, 959 (1966).
- 266. B. C. Fawcett, A. H. Gabriel, F. E. Irons, N. J. Peacock, and P. A. H. Saunders, Proc. Phys. Soc. 88, 1051–1053 (1966).
- 271. B. C. Fawcett, N. J. Peacock and R. D. Cowan, J. Phys. B 1, 295---306 (1968).
- 288. S. Glad, Ark. Fys. 10, 291-334 (1956).
- 292. L. C. Green, Phys. Rev. 55, 1209-1217 (1939).
- 305. Yu. I. Grineva, V. I. Karev, V. V. Korneev, V. V. Krutov, S. L. Mandelstam, L. A. Vainstein, B. N. Vasilyev, and I. A. Zhitnik, Sol. Phys. 29, 441-446 (1973).
- 330. L. Johansson, Phys. Scr. 10, 236--240 (1974).
- 365. P. G. Kruger and S. G. Weissberg, Phys. Rev. 52, 314-317 (1937).
- 366. P. G. Kruger, S. G. Weissberg, and L. W. Phillips, Phys. Rev. 51, 1090-1091 (1937).
- 375. R. L. Kelly, unpublished work prepared for this report.
- 378. C. C. Kiess, V. C. Rubin, and C. E. Moore, J. Res. Nat. Bur. Stand. **65A**, 1-29 (1961).
- 388. V. I. Kovalev, A. A. Ramonas, and A. N. Ryabtsev, Liet. Fiz. Rinkinys 15, 915-927 (1975).
- 389. V. Kaufman and B. Edlen, J. Phys. Chem. Ref. Data 3, 825---895 (1974).
- 390. S. O. Kastner, W. M. Neupert, and M. Swartz, Astrophys. J. 191, 261-270 (1974).
- 393. E. Ya. Kononov, K. N. Koshelev, L. I. Podobedova, S. V. Chekalin, and S. S. Churilov, J. Phys. B 9, 565 - 572 (1976).
- 395. S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777-780 (1975).
- 429. T. N. Lie and R. C. Elton, Phys. Rev. A 3, 865-871 (1971).
- 430. A. E. Livingston, J. Phys. B 9, L215-1217 (1976).
- 432. B. C. Fawcett and H. F. Henrichs, Astron. Astrophys. Suppl. 18, 157-167 (1974).
- 436. L. Cohen, U. Feldman, and G. A. Doschek, Astrophys. J. Suppl., to be published.
- 437. K. P. Dere, Astrophys. J. 221, 1062-1067 (1978).
- 439. G. A. Doschek, U. Feldman, M. E. Van Hoosier, and J. D. F. Bartoe, Astrophys. J. Suppl. 31, 417-443 (1976).
- 440. S. O. Kastner, A. M. Crooker, W. E. Behring, and L. Cohen, Phys. Rev. A 16, 577-582 (1977).
- 442. G. D. Sandlin, G. E. Brueckner, and R. Tousey, Astrophys. J. 214, 898--904 (1977).
- 443. K. G. Widing, Astrophys. J. 197, L33-L35 (1975).
- 447. R. J. Hutcheon, J. P. Pye, and K. D. Evans, Mon. Not. R. Astron. Soc. 175, 489 --- 499 (1976).

- 463. J. G. Firth, F. F. Freeman, A. H. Gabriel, B. B. Jones, C. Jordan, C. R. Negus, D. B. Shenton, and R. F. Turner, Mon. Not. R. Astron. Soc. 166, 543-560 (1974).
- 464. J. H. Parkinson, Sol. Phys. 42, 183-207 (1975).
- 487. C. E. Moore, Nat. Bur. Stand. (U.S.), Circ. 467, Atomic Energy Levels, Vol. I, 309 pp. (1949), Vol. II, 227 pp. (1952), Vol. III, 245 pp. (1958).
- 488. C. E. Moore, Nat. Bur. Stand. (U.S.), Circ. 488, Sec. I, 78 pp. (1950), Sec. II, 115 pp. (1952).
- 593. A. Ridgeley and W. M. Burton, Sol. Phys. 27, 280-285 (1972).
- 605. H. N. Russell and C. E. Moore, Trans. Am. Philos. Soc. 34, II, 113-179 (1944).
- 616. J. Reader and J. Sugar, J. Phys. Chem. Ref. Data 4, 353--440 (1975).
- 620. D. R. Flower and H. Nussbaumer, Astron. Astrophys. 31, 353 -- 360 (1974).
- 626. U. I. Safronova, Opt. Spectrosc. 38, 118-120 (1975).
- 643. V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer **19**, 11-50 (1978).
- 645. M. Sales, An. Real Soc. Espan. Fis. Quim. 49A, 15--30 (1953).
- 680. S. O. Kastuer, A. K. Bhatia, and L. Cohen, Phys. Scr. 15, 259-267 (1977).
- 716. M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B 4, 1747--1768 (1971).
- 726. R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 -- 307 (1976).
- 728. J. H. Scofield, Report UCRL-16848, Lawrence Livermore Lab., Univ. Calif. (1975).
- 729. M. Swartz, S. O. Kastner, L. Goldsmith, and W. M. Neupert, J. Opt. Soc. Am. 66, 240-244 (1976).
- 730. G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 -- L50 (1976).
- 736. W. M. Neupert, M. Swartz, and S. O. Kastner, Sol. Phys. **31**, 171-195 (1973).
- 741. M. Klapisch, J. L. Schwob, B. S. Fraenkel, and J. Oreg, J. Opt. Soc. Am. 67, 148-155 (1977).
- 746. R. Smitt, Sol. Phys. 51, 113-119 (1977).
- 748. S. Johansson, Astrophys. J. 212, 923-924 (1977).
- 749. S. Johansson, Phys. Scr. 18, 217-265 (1978).
- 795. P. G. Wilkinson, J. Opt. Soc. Am. 47, 182-185 (1957).
- 804. K. G. Widing, G. D. Sandlin, and R. D. Cowan, Astrophys. J. 169,
- 405-411 (1971).
 806. W. J. Wagner and L. L. House, Astrophys. J. 166, 683-698 (1971); Astrophys. J. 155, 677-686 (1969).
- 812. H. Zirin, Astrophys. J. 140, 1332-1338 (1964).
- 814. L. L. House, W. A. Deutschmann, and G. A. Sawyer, Astrophys. J. 140, 814-816 (1964).
- J. Junkes, E. W. Salpeter, and G. Milazzo, Atomic Spectra in the Vacuum Ultra-Violet, Specola Vaticana (1965).
- 839. G. A. Doschek, Space Sci. Rev. 13, 765-821 (1972).
- U. Feldman, G. A. Doschek, D. Nagel, W. Behring, and L. Cohen, Astrophys. J. Lett. 183, L43-L45 (1973).
- 850. U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445-1453 (1973).
- 856. B. C. Fawcett, Advances in Atomic and Molecular Physics, Vol. 10, Academic Press (1974).
- 868. B. C. Fawcett, M. Galanti, and N. J. Peacock, J. Phys. B 7, 1149-1153 (1974).
- 900. L. Cohen, private communication and NRL Solar List.
- 901. J. A. Bearden, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.) 14 (1967).
- 918. A. M. Ermolaev and M. Jones, J. Phys. B 7, 199-207 (1974).
- 923. W. E. Behring, L. Cohen, U. Feldman, and G. A. Doschek, Astrophys. J. 203, 521-527 (1976).
- 940. U. Feldman and G. A. Doschek, J. Opt. Soc. Am. 67, 726-734 (1977).
- 943. G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Mon. Not. R. Astron. Soc. 183, 19--28 (1978).
- 944. G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Phys. Scr. 15, 177-182 (1977).
- 945. G. E. Bromage, R. D. Cowan, B. C. Fawcett, H. Gordon, M. G. Hobby, N. J. Peacock, and A. Ridgeley, Culham Lab. Report CLM-- R 170 (1977).
- 946. G. E. Bromage, R. D. Cowan, B. C. Fawcett, and A. Ridgeley, J. Opt. Soc. Am. 68, 48-51 (1978).
- 949. G. E. Bromage and B. C. Fawcett, Mon. Not. R. Astron. Soc. 178, 605-610 (1978).
- 955. P. O. Bogdanovich, G. V. Merkelis, Z. B. Rudzikas, and S. D. Sadziuviene, Phys. Scr. **17**, 549 ~ 555 (1978).
- 956. W. M. Neupert, Sol. Phys. 18, 474-488 (1971).
- 958. J. O. Ekberg and B. Edlen, Phys. Scr. 18, 107-124 (1978).
- 970. S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558-1564 (1978).
- 977. B. Edlen, Phys. Scr. 19, 255-266 (1979).
- 979. P. G. Burkhalter, L. Cohen, R. D. Cowan, and U. Feldman, J. Opt. Soc. Am. 69, 1133-1140 (1979).
- 983. S. O. Kastner and A. K. Bhatia, J. Opt. Soc. Am. 69, 1391-1393 (1979).
- 986. A. F. Shestakov, Opt. Spectrosc. 46, 117-118 (1979).
- 988. A. K. Bhatia and S. O. Kastner, to be published (1980).
- 1042. G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831-869 (1977).
- 1055. B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. R. Astron. Soc. 186, 113-116 (1979).
- 1057. B. C. Fawcett, A. Ridgeley, and T. P. Hughes, Mon. Not. R. Astron. Soc. 188, 365-370 (1979).
- 1059. U. Feldman, G. A. Doschek, and R. W. Kreplin, Astrophys. J. 238, 365-374 (1980).

- 1067. D. L. McKenzie, P. B. Landecker, R. M. Broussard, H. R. Rugge, R. M. Young, U. Feldman, and G. A. Doschek, Astrophys. J. 241, 409-416 (1980).
- 1075. S. O. Kastner, E. D. Rothe, and W. M. Neupert, Astron. Astrophys. 37, 339-348 (1974).
- 1076. S. O. Kastner and H. E. Mason, Astron. Astrophys. 67, 119--127 (1978).
- 1082. S. Suckewer and E. Hinnov, Phys. Rev. A 20, 578-585 (1979).
- 1085. A. A. Ramonas and A. N. Ryabtsev, Opt. Spectrosc. 48, 348---351 (1980).
- 1089. N. Spector, A. Zigler, H. Zmora, and J. L. Schwob, J. Opt. Soc. Am. 70, 857-861 (1980).
- 1091. K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313-3334 (1980).
 1094. H. Gordon, M. G. Hobby, and N. J. Peacock, J. Phys. B 13, 1985-1999 (1980).
- 1103. J. O. Ekberg, Phys. Scr. 23, 7-20 (1981).
- 1104. B. Edlen, Phys. Scr. 22, 593-602 (1980).
- 1106. S. Suckewer, Phys. Scr. 23, 72--86 (1981).
- 1112. M. Klapisch, A. Bar Shalom, J. L. Schwob, B. S. Fraenkel, C. Breton, C. De Michelis, M. Finkenthal, and M. Mattioli, Phys. Lett. 69A, 34-36 (1978).
- 1137. E. Hinnov and S. Suckewer, Phys. Lett. 79A, 298-300 (1980).
- 1144. R. J. Hutcheon, J. P. Pye, and K. D. Evans, Astron. Astrophys. 51, 451---460 (1976).

IRON , Z = 26Unclassified Lines

Multiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		$\begin{array}{c} 1.8283 \\ 1.8309 \\ 1.8344 \\ 1.8389 \\ 1.8424 \end{array}$						1059 1059 1059 1059 1059 1059
	5 15 9 16	$ \begin{array}{r} 1.9360 \\ 6.725 \\ 7.106 \\ 7.143 \\ 7.210 \end{array} $		i				901 643 643 643 643
	14 15 19 15 28	7.230 7.277 7.355 7.612 7.901						643 643 643 643 643
	23 20 21 14 15	8.082 8.118 8.167 8.240 8.334	E.				- - - -	643 643 643 643 643
1	15 23 20 21 14	8.348 8.406 8.439 8.452 8.494						643 643 643 643 643
	17 26 17 29 23	8.510 8.543 8.563 8.583 8.714						643 643 643 643 643
	10 16 20 18 16	8.797 8.807 8.823 8.850 8.900						643 643 643 643 643
	15 22 16 19 21	8.908 8.915 8.921 8.946 9.022						643 643 643 643 643
	17 28 24 40 31	9.042 9.120 9.129 9.145 9.155				i		643 643 643 643 643
	34 18 22 32 22	9.248 9.271 9.287 9.380 9.401		1			1	643 643 643 643 643
	31 0 11 28	9.486 9.507 9.568 9.619 9.644						643 643 643 643 643 643
	32 12 5 85 36	9.817 9.882 9.936 10.065 10.071			· · ·			643 643 945 643 643

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J·J	Notes	Reference
	21 15 19 19 1	$10.205 \\10.269 \\10.408 \\10.486 \\10.516$						643 643 643 643 643
	1 15 12 1 21	10.762 10.877 10.964 10.987 11.090						643 945 643 1089 945
	5 61 15 48 125	11.113 11.166 11.199 11.233 11.333						643 643 643 643 643
	$86 \\ 47 \\ 128 \\ 24 \\ 2$	11.485 11.632 11.948 11.953 12.016						643 643 643 945 643
	25 130 70 2 33	12.158 12.297 13.030 13.307 13.614						643 643 643 643 643
	42 7 29 0 36	13.719 13.829 14.041 14.053 14.750						945 643 945 643 945
	0 16 20 1	14.812 14.833 14.908 14.942 15.070						643 945 146 643 643
	30 69 1 34 28	15.075 15.091 15.222 15.237 15.289						945 643 643 945 945
	58 14 14 77 1	15.294 15.339 15.360 15.585 15.598						643 945 945 643 643
	75 77 120 140 0	15.635 15.686 15.806 15.918 15.979						643 643 643 643 643
	2 2 1 9 8	16.236 16.336 16.506 16.819 17.734						643 643 643 979 979
	8 6 13 245	17.787 17.821 17.901 17.944 24.55						979 979 979 979 736
	10 20 90 10	83.94 99.05 101.435 108.45 115.46						868 393 241 393 729

frin.

D-6

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms J	J Notes	References
	6 60 30 5	117.89 123.76 134.743 136.34 139.82					393 390 729 868 393
	130	155.50 155.78 155.81 156.84 163.52					814 814 393 814
	500 600 20 600 30	165.47 166.35 169.616 169.88 169.915				:	256 256 856 256 856
	$30 \\ 400 \\ 700 \\ 40 \\ 30$	171.533 176.32 176.74 176.982 177.597					856 256 256 856 856
		178.15 179.00 186.983 187.27 188.498					256 256 856 256 856
	500 300 200 250	188.86 189.50 191.20 194.31 194.762	:				256 256 199 814 365
	$ 1000 \\ 750 \\ 100 \\ 300 \\ 100 $	195.476 196.046 200.80 201.69 202.92					365 365 256 256 256 256
	50 400 30 30	203.739 204.77 205.31 206.180 206.264					856 256 814 856 856
	40 30 300 300 200	$207.124 \\ 207.935 \\ 210.03 \\ 210.40 \\ 210.67$					856 856 256 256 256
	30 200 200 30 30	220.882 222.189 223.870 225.867 228.057	-				856 365 365 856 856
	40 40 4 1	249.389 256.919 1249.20 1370.11 1428.84					856 856 593 089 089
I	7 40 10 0 10	1440.63 1544.90 1553.77 1574.12 1667.95					089 089 089 816 089
	100 100 20 20 20 20	1681.05 1731.77 1734.54 1737.83 1740.14					089 089 089 089 089 089

Multiplet	Rel. Int.	λ _{væ} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	20	1766.36						089
	15	1777.35						089
	15	1779.35				1		089
	15	1814.06						089
	0	1839.65						816
	40	1842.97						089
	2	1872.65						816
	ō	1875.14						816
	1	1878.06						816
	0	1878.20						816
	70	1878 31		1				089
	2	1879.86						816
	2	1884.73				ļ		816
	150	1888.03						089
	150	1901.71						089
	0	1958.84						816

IRON I (Fe^{+ 0}), Z == 26 Ground State 1s²2s²2p⁶3s²3p⁶3d⁶4s² (⁵D₄) (26 electrons) Ionization Potential 63 480 cm⁻¹; 7.870 eV

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
1.	0 0 0 100 0	1737.63 1761.08 1851.39 1855.58 1856.21	0 57.550000 0 56.783317 0 54.013747 0 53.891520 .415932 - 54.28909	$\begin{array}{r} 3d^64s^2 \cdot 3d^6(a^3D)4s^4p(^3P^{*})\\ 3d^64s^2 \cdot 3d^6(a^4G)4s^4p(^3P^{*})\\ 3d^64s^2 \cdot 3d^6(a^3D)4s^4p(^3P^{*})\\ 3d^64s^2 \cdot 3d^6(a^3D)4s^4p(^3P^{*})\\ 3d^64s^2 \cdot 3d^6(a^3D)4s^4p(^3P^{*})\\ 3d^64s^2 \cdot \end{array}$	$\begin{array}{l} ga^{5}D - t^{3}F^{*}\\ ga^{5}D - u^{3}F^{*}\\ ga^{5}D - 5F^{*}\\ ga^{5}D - 5D^{*}\\ ga^{5}D - 5D^{*}\\ ga^{5}D - 22^{*}\end{array}$	4 - 4 4 - 3 4 - 5 4 - 3 3 - 3	Q Q Q Q	816,375 816,375 816,375 605 816,375
39. 40. 42.	40 100 10 300 80	1859.26 1862.318 1863.54 1865.30 1866.07	0 53.78474 .415932 - 54.112218 0 53.66109 0 53.61044 .415932 - 54.00478	$\begin{array}{l} 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-3d^{6}(a^{3}P)4s4p(^{3}P'')\\ 3d^{6}4s^{2}-3d^{1}(a^{2}D)4p\\ 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-3d^{6}(a^{2}P)4s4p(^{3}P'') \end{array}$	ga ⁵ D - 20° ga ⁵ D - ⁵ P° ga ⁵ D - y ¹ F° ga ⁵ D - 17° ga ⁵ D - ⁵ P°	4 - 3 3 - 2 4 - 3 4 - 4 3 - 3		378 292 605 378 605
39. 39.	40 0 160	1866.815 1870.36 1872.359	.704004 - 54.271057 .415932 - 53.88191 .704004 - 54.112218	3d ⁶ 4s ² - 3d ⁶ (a ³ P)4s4p(³ P°) 3d ⁶ 4s ² - 3d ⁶ 4s ² - 3d ⁶ (a ³ P)4s4p(³ P°)	ga ⁵ D - ⁵ P° ga ⁵ D - 21° ga ⁵ D - ⁵ P°	$2 \cdot 1$ 3 - 4 2 - 2	Q	292 816,375 292
39.	160 100	$\frac{1873.052}{1873.259}$	0, - 53.38868 .888129 - 54.271057	3d ⁶ 4s ² 3d ⁶ 4s ² - 3d ⁶ (a ³ P)4s4p(³ P')	ga ⁵ D - 27° ga ⁵ D - ⁵ P°	$4 \cdot 3$ $1 \cdot 1$		292 292
39. 39. 41.	40 20 35 40 300	1876.419 1878.849 1880.14 1883.91 1887.761	$\begin{array}{r} .978072 & 54.271057 \\ .888129 & 54.112218 \\ .704004 & 53.891520 \\ .704004 & 53.78474 \\ .415932 & 53.38868 \end{array}$	$\begin{array}{r} 3d^64s^2 - 3d^6(a^3P)4s4p(^3P')\\ 3d^64s^2 - 3d^6(a^3P)4s4p(^3P')\\ 3d^64s^2 - 3d^6(a^3D)4s4p(^3P')\\ 3d^64s^2 - \\ 3d^64s^2 - \\ 3d^64s^2 - \end{array}$	ga ⁵ D - ⁵ P° ga ⁵ D - ⁵ P° ga ⁵ D - ⁵ D° ga ⁵ D - 20° ga ⁵ D - 27°	$ \begin{array}{r} 0 & -1 \\ 1 & -2 \\ 2 & -3 \\ 2 & -3 \\ 3 & -3 \\ \end{array} $		292 292 605 378 292
40. 38.	80 200 20 20 0	1888.32 1891.74 1899.21 1903.39 1910.53	.704004 - 53.66109 .888129 - 53.74939 .704004 - 53.35753 .415932 - 52.95368 .888129 - 53.229942	$\begin{array}{l} 3d^{6}4s^{2}-3d^{7}(a^{2}D)4p\\ 3d^{9}4s^{2}-\\ 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-\\ 3d^{6}4s^{2}-3d^{7}(a^{2}D)4p \end{array}$	$\begin{array}{l} ga^{5}D - y^{1}F^{n} \\ ga^{5}D - 19^{o} \\ ga^{5}D - 16^{o} \\ ga^{5}D - s^{3}D^{o} \\ ga^{5}D - s^{3}D^{o} \end{array}$	2 - 3 1 - 2 2 - 3 3 - 3 1 - 1	P Q	605 378 378 605 816,375
37. 35. 37. 35. 37.	500 500 500 200 400	1934.528 1937.274 1940.649 1945.090 1945.274	$\begin{array}{c} 0. & 51.691935 \\ 0. & 51.619069 \\ .415932 & 51.944774 \\ .415932 & 51.827401 \\ .704004 & 52.110587 \end{array}$	$\begin{array}{r} 3d^64s^2-3d^6(a^5D)4s(a^6D)5p\\ 3d^64s^2-3d^6(a^5D)4s(a^6D)5p\\ 3d^64s^2-3d^6(a^5D)4s(a^6D)5p\\ 3d^64s^2-3d^6(a^5D)4s(a^6D)5p\\ 3d^64s^2-3d^6(a^5D)4s(a^6D)5p\\ 3d^64s^2-3d^6(a^5D)4s(a^6D)5p \end{array}$	ga ⁵ D - u ⁵ P° ga ⁵ D - u ⁵ F° ga ⁵ D - u ⁵ F°	4 - 3 4 - 3 3 - 2 3 - 2 2 - 1	P P	292 292 292 292 292 292
35. 36. 37. 35. 37.	40 600 500 500 500	1946.219 1946.983 1950.223 1951.571 1952.262	$\begin{array}{c} 0. & 51.381455\\ 0. & 51.361394\\ .415932 & 51.691935\\ .704004 & 51.944774\\ .888129 & 52.110587\\ \end{array}$	$\begin{array}{rrrr} 3d^64s^2 &- 3d^6(a^5D)4s(a^6D)5p\\ 3d^64s^2 &- 3d^6(a^5D)4s(a^6D)5p \end{array}$	$\begin{array}{l} ga^{5}D \cdot u^{5}F^{o}\\ ga^{5}D \cdot t^{5}D^{u}\\ ga^{5}D \cdot u^{5}P^{o}\\ ga^{5}D \cdot u^{5}P^{o}\\ ga^{5}D \cdot u^{5}P^{o}\\ ga^{5}D \cdot u^{5}P^{o}\end{array}$	4 - 4 4 - 3 3 - 3 2 - 2 1 - 1	Р	292 795,292 292 292 292 292

	nei, mit.	Λ_{var} (in A)	Levels (in 10° cm ⁻¹)	Configurations	Terms	J·J	Notes	References
36.	500	1952.579	.415932 - 51.63007	3d ⁶ 4s ² - 3d ⁶ (a ⁵ D)4s(a ⁶ D)5p	ga ⁵ D - t ⁵ D°	3 - 2	ļ	795.292
35.	500	1953.001	.415932 - 51.619069	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	$ga^5D \cdot u^5F^{\circ}$	3 . 3		795.292
36:	400	1955.690	.704004 - 51.83687	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	$ga^5D - t^5D^{\circ}$	2 - 1		292
35.	500	1956.052	.704004 - 51.827401	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	ga ⁵ D - u ⁵ F°	2 - 2	Р	292
36.	600	1957.838	0 51.076626	3d ⁶ 4s ² - 3d ⁶ (a ⁵ D)4s(a ⁶ D)5p	$ga^{5}D - t^{5}D^{\circ}$	4 - 4		795,292
37.	600 '	1958.598	.888129 - 51.944774	3d ⁶ 4s ² - 3d ⁶ (a ⁵ D)4s(a ⁶ D)5p	ga ⁵ D - u ⁵ P⁰	1 - 2		292
36.	300	1958.724	$.888129 \cdot 51.941786$	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	$ga^{5}D - t^{5}D^{\circ}$	1.0	Р	292
35.	600	1960.139	0 51.016658	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	$ga^{3}D - u^{5}F^{\circ}$	4 - 5	-	795.292
37.	500	1961.236	.704004 + 51.691935	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5n$	ga ⁵ D - u ⁵ P°	2 3	1	292
35.	500	1962.031	.978072 - 51.945805	3d ⁶ 4s ² - 3d ⁶ (a ⁵ D)4s(a ⁶ D)5p	ga ⁵ D - u ⁵ F ^o	0 - 1		292
25	600	1069 107	415029 51 201455	9-104-2 9-10(-5D)4-(-9D)5-	5D5E9	2 4		202
35. 36	10	1902.107	.413932 - 31,301433	$30.4s^2 + 30.(a D)4s(a D)3p = 104.2 + 310(a 3D)4.(a 5D)5.2$	ga D - u r ⁵ D ⁵ D ^o	0-4	ł	292
- 30. - 96	400	1902.740	.000129 - 51.05007	30.45 + 30.(a.D)4s(a.D)3p 2404.2 + 246(a5D)4a(a5D)5a	ga D-tD	1 - 1		292
25	500	1902.071	.410902 • 01.001094	30.48 - 30 (a D)4s(a D)3p 2464.2 - 246(-5D)4.(-6D)5.2		3.3		292
25	200	1905.110	704004 51.627401	30.48 - 30 (a D)4s(a D)3p $3164_2 - 316(-5D)4_{-}(-5D)5_{-}$	ga D - u r	0.0	ł	292
- ə.ə.	200	1905.029	.704004 - 51.65007	30°4s" - 30°(a°D)4s(a D)5p	ga D · FD	2.2		292
35.	400	1964.043	.704004 - 51.619069	3d ⁶ 4s ² - 3d ⁶ (a ⁵ D)4s(a ⁶ D)5p	ga⁵D - u⁵F°	2 - 3	Ì	292
36.	10	1970.771	.888129 - 51.63007	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	ga ⁵ D - t ⁵ D°	1 - 2		292
36.	20	1973.911	.415932 - 51.076626	$3d^{6}4s^{2} - 3d^{6}(a^{5}D)4s(a^{6}D)5p$	ga⁵D - t⁵D°	3 - 4		292
36	20	1974.059	.704004 - 51.361394	3d ⁶ 4s ² - 3d ⁶ (a ⁵ D)4s(a ⁶ D)5p	ga ⁵ D - t ⁵ D°	2 - 3	1	292

$\label{eq:IRON II (Fe^{-1}), Z = 26} \\ \mbox{Ground State $1s^22s^22p^63s^23p^63d^64s$ ($^6D_{9/2}$) (25 electrons)} \\ \mbox{Ionization Potential 130 563 cm}^{-1}; 16.188 eV \\ \mbox{}$

ultiplet	Rel. Int.	λ_{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms].]	Notes Reference
31	1.	896.504	384790 - 111 9290	3d6(a5D)44	ga ⁶ D - 29°	7.5	292
31	0	898 776	667683 - 111 9290	$3d^{6}(a^{5}D)4s$	ga ⁶ D - 29°	5.5	292
31	5	900 360	862613 - 111.9290	3d ⁶ (a ⁵ D)A ₈ -	ga ⁶ D , 29°	3 5	292
0.	ĭ	018 118	862613 100 7800	3d%a ⁵ D)4a	ga ⁶ D - 28°	3 3	202
î [ò	919.095	.977053 - 109.7800	$3d^{6}(a^{5}D)4s$.	ga ⁶ D - 28°	$\frac{2}{1} - \frac{2}{3}$	292
28	2	923.880	0 108.2392	3d°(a ⁵ D)4s -	ga ⁶ D - 24°	2.2	749
30	2	924.970	.667683 - 108.7800	$3d^{6}(a^{5}D)4s$	ga ⁶ D - 27°	2 - 2	292
25	5	926.215	0 107.9647	$3d^{6}(a^{5}D)4s$	ga ⁶ D - 21°	3-3	749
30	1	926.618	$.862613 \cdot 108.7800$	3d ⁶ (a ⁵ D)4 ₆ -	ga ⁶ D - 27°	3.3	292
24	2	926.900	0 107.8866	3d°(a ⁵ D)4s -	ga ⁶ D - 20"	2 - 2	292
28	2	927.178	.384790 - 108.2392	3d6(a5D)4s -	ga ⁶ D 24°	2 - 2	749
30	1	927.632	.977053 - 108.7800	3d°(a°D)4s -	gaºD - 27"	2 - 2	292
26 .	1	928.107	.384790 - 108.1306	3d ⁶ (a ⁵ D)4s -	ga°D - 22°	2 - 2	292
29	2	928.470	$.667683 \cdot 108.3717$	$3d^{6}(a^{5}D)4s$ -	ga°D - 25°	2 - 2	292
25	1	929.538	.384790 - 107.9647	3d ⁶ (a ⁵ D)4s -	ga°D - 21°	2 - 2	292
28	1	929.612	.667683 - 108.2392	3d ⁶ (a ⁵ D)4 ₃ -	ga ⁶ D - 24°	5 - 7	292
27 j	1.	930.030	$.667683 \cdot 108.1916$	3d°(a°D)4s -	ga°D - 23°	2 - 2	292
29	1	930.165	.862613 - 108.3717	3d°(a2D)4s -	ga°D • 25°	2 - 2	292
24	J	930.219	.384790 - 107.8866	3d°(a°D)4s -	ga°D - 20°	2 - 2	: 292
26	1	930.558	.667683 - 108.1306	3d°(a²D)4s -	ga°D - 22°	2 - 2	292
29	2	931.142	.977053 - 108.3717	$3d^{6}(a^{5}D)4s$ -	ga'D - 25'	$\frac{1}{2} - \frac{3}{2}$	292
27	1	931.709	.862613 - 108.1916	3d°(a ³ D)4s ·	ga°D - 23°	2 - 2	292
26	0	932.244	.862613 - 108.1306	3d°(a°D)4s -	ga"D - 22"	2 2	292
27	0	932.687	.977053 - 108.1916	$3d^{\circ}(a^{\circ}D)4s$ -	gaºD - 23º	2 - 2	292
22	0	935.783	0 106.8632	3d ⁶ (a ⁵ D)4s -	ga ⁶ D - 16°	$\frac{9}{2} - \frac{7}{2}$	292
23	1	936.484	.384790 - 107.1656	3d ⁶ (a ⁵ D)4s -	ga ⁶ D - 17°	7 - 7	292
23	1	938.967	.667683 - 107.1656	3d°(a'D)4s -	ga°D - 17°	2 - 2	292
22	2	939.159	.384790 - 106.8632	3d°(a°D)4s -	ga°D - 16°	2.2	292
22	1	941.660	.667683 - 106.8632	3d°(a°D)4s -	ga ⁶ D - 16°	2 2	292
56	0	942.589	1.872567 - 107.9647	3d' -	a ⁴ F - 21°	2 . 2	292
55	1	943.267	1.872567 - 107.8866	$3d_{1}^{7}$ -	a4F - 20"	2 - 2	292
58	2	943.910	2.837950 - 108.7800	3d -	a4F - 27"	2 - 2	292
57	3	945.095	2.430097 - 108.2392	3d <u>′</u> -	a⁺F 24	ź - ź	292
	0	946.051	2.430097 - 108.1306	3d -	a⁴F - 22°	2 - 2	292
	0	947.564	2.430097 - 107.9647	3d′ -	a*F - 21	2 - 2	292

D-9	
-----	--

Maltiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
53	1 0 0	952.470 954.496 954.786	1.872567 - 106.8632 2.430097 - 107.1962 2.430097 - 107.1656	3d ⁷ - 3d ⁷ - 3d ⁷ -	a ⁴ F - 16° a ⁴ F - 18° a ⁴ F - 17°	7-54-754-754		292 292 292
77	$\begin{array}{c} 1\\ 0\end{array}$	995.829 999.003	7.955299 - 108.3738 8.680454 - 108.7800	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ⁵ D)4s -	a ⁴ D · 26° a ⁴ D · 27°	$\frac{7}{2} - \frac{7}{2}$ $\frac{3}{2} - \frac{7}{2}$		292 292
77	0	1000.183 1000.665	8.391938 - 108.3738 8.846768 - 108.7800	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ⁵ D)4s -	a ⁴ D - 26° a ⁴ D - 27°	5.7		292 292
-	0	1005.082	8.391938 - 107.8866	3d ⁶ (a ⁵ D)4s -	a ⁴ D - 20°	27-22		292
76 75	2 3	1007.657 1007.975	7.955299 - 107.1962 7.955299 - 107.1656	3d°(a°D)4s - 3d°(a ⁵ D)4s -	a*D - 18º a*D - 17º	12 - 12 12 - 2		292 292
74	3	1011.037	7.955299 - 106.8632	3d ⁶ (a ⁵ D)4s -	$a^{4}D \cdot 16^{\circ}$	7 - 7 5 - 5		292
75	25	1012.088	8.391938 - 107.1656	$3d^{6}(a^{5}D)4s$ -	a ⁴ D - 17°	2-2		292
76 74	$\frac{1}{2}$	$1015.083 \\ 1015.520$.384790 - 98.89871 8.391938 - 106.8632	3d ⁶ (a ⁵ D)4s - 3d ⁶ (b ¹ G)4p 3d ⁶ (a ⁵ D)4s -	ga ⁶ D · ² F° a ⁴ D · 16°	7-2-7-2-7-2-7-2-7-2-7-2-7-2-7-2-7-2-7-2		292 292
	1	1038.370	13.474411 - 109.7800	3d ⁷ -	a ⁴ P - 28°	52 - 32 20 - 27	_	292
	5	1055.262	0 94.763219 384790 - 94 763219	$- 3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}(a^{\circ}D)4s4p(^{\circ}P^{\circ})$ $- 3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}(a^{\circ}D)4s4n(^{\circ}P^{\circ})$	$ga^{6}D - {}^{6}P^{6}$	2-2	P	749 749
	5	1060.442	.384790 - 94.68509	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P')$	ga ⁶ D - ⁶ P ^o	17 20	P	749
	2	1062.152	0 94.148518	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{0})$	ga ⁶ D • w ⁴ G°	2 - 2	Р	749
	2 2	1062.750 1063.021	.667683 - 94.763219 .667683 - 94.73917	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$ $3d^{6}(a^{5}D)4s - 3d^{7}(a^{4}P)4s4p(^{3}P^{\circ})$	ga ⁶ D - ⁶ P ^o ga ⁶ D - ⁴ P ^o	- 12 - 12 - 12	P P	749 749
	5	1063.176	0 94.057773	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P')$ $3d^{6}(a^{5}D)4c - 2d^{5}(a^{4}D)4c4a^{-t^{3}D'^{5}}$	$ga^6D - {}^6D^\circ$	9-9 3-1	P	749 749
	1	1063.633	.667683 - 94.68509	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$	ga D - 12 ga ⁶ D - 6P°	2 - 2	P P	749
	1	1063.972	0 93.987457 977053 - 94.88074	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P')$ $3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}P)4c4r(^{3}P')$	$ga^{6}D - {}^{6}D^{\circ}$	$\frac{9}{2} - \frac{7}{2}$	P	749 749
	2	1065.843	.862613 - 94.68509	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{2})$	ga ⁶ D - ⁶ P°	2 2	P	749
	5 5	1066.529 1067.544	.977053 - 94.73917 .384790 - 94.057773	3d°(a°D)4s - 3d°(a*P)4s4p(3P) 3d°(a5D)4s - 3d5(a*D)4s4p(3P)	ga°D - ⁴ P° ga ⁶ D - ⁶ D°		Р Р	749 749
	5	1068.346	.384790 - 93.987457	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$	$ga_{6D}^{6D} - {}^{6D_{2}}_{6D_{2}}$	7 - 7	Р	749
ļ	2	1070.135	.862613 - 94.211739	$3d^{5}(a^{5}D)4s - 3d^{5}(a^{4}P)4s4p(^{3}P^{\circ})$ $3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}P)4s4p(^{3}P^{\circ})$	ga ^o D - ⁺ P ^o	12 - 12 12 - 12 15 - 15	P	749 749
	5 2	$1071.584 \\ 1073.321$.667683 - 93.987457 .862613 - 94.031378	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{o})$ $3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{o})$	ga ⁶ D - ⁶ D° ga ⁶ D - ⁶ D°	5 - 7 3 - 1 2 - 2	P P	749 749
	2	1073.384	.667683 - 93.830979	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$	ga ⁶ D - ⁶ D°	5-5	Р	749
	2	1074.641	.977053 - 94.031378 .862613 - 93.830979	3d°(a°D)4s - 3d°(a*D)4s4p(°P°) 3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ D)4s4p(³ P°)	ga°D - °D° ga°D - °D°	1 - 1 3 - 1 3 - 1	P	749 749
	ī	1076.852	.977053 - 93.84034	3d6(a5D)4s - 3d5(a4D)4s4p(3P)	ga ⁶ D - ⁶ D ⁰	1 - 3	P	749
	30	1081.875	0 92.432136	$3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}(a^{+}D)4s4p(^{\circ}P^{\circ})$	ga°D - °F*	ž•2	P	749
		1083.420	0 92.300277 .384790 - 92.42698	3d°(a°D)4s - 3d°(a*D)4s4p(°P°) 3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ G)4s4p(³ P°)	ga°D - "F° ga°D - v ⁴ F°	¥175	P P	749 749
	10	1087.956	.384790 - 92.300277	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P')$	ga ⁶ D - ⁶ F°	17 - 19 17 - 17	P	749
	1	1091.523	.384790 - 92.154165 1.872567 - 93.48765	$3d^{(a^{-})}_{3d^{7}} - 3d^{(a^{-})}_{3d^{7}}$	ga D - "F" a ⁴ F - u ⁴ F'	* - * 20 - 7 2 - 2	P	749 749
]	1	1091.560	1.872567 - 93.48458	$3d^7 - 3d^6(b^3F)4p$ $3d^6(a^5D)4a - 3d^5(a^4D)4a4m^3P^3)$	$a^{4}F \cdot u^{4}F^{a}$	9 - 9 2 - 2 5 - 7	Р	749 749
	2	1094.678	.667683 - 92.018729	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P')$	ga°D °F°	25	P	749
	$1 \\ 1$	1095.802 1095.911	$1.872567 + 93.12990 \\ .667683 + 91.915950$	3d ⁷ - 3d°(b ³ F)4p 3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ D)4s4p(³ P°)	a*F • *D° ga*D - *F*	NAMANA Naturalo	P P	749 749
18	5	1096.607	.384790 - 91.575139	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{5}D)5p$	ga ⁶ D - ⁶ P ⁶	72.52	Р	749
18	1 30	1096.782	.007083 - 91.843470 0 91.167937	3d°(a°D)4e - 3d°(a°D)5p 3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ⁵ D)5p	ga°D - °P° ga°D - °P°	10 - 11 10 - 17	Р Р	749 749
[1	1097.019	.862613 - 92.018729 2 430097 - 03 48459	3d6(a5D)4s - 3d5(a2D)4s4p(3P")	ga ⁶ D - ⁶ F ⁶	151200	P	749 740
	1	1098.257	862613 - 01 015050	$3d^6(a^5D)4s = 3d^5(a^4D)4s4n(^3P^3)$	α. Γ u. Γ α a ⁶ D ⁶ F⁰	3.3	т р	749
18	2	1099.132	.862613 - 91.843470	3d ⁶ (a ⁵ D)4 ₅ - 3d ⁶ (a ⁵ D)5p	ga ⁶ D - ⁶ P ²	131 - 14 12 - 14	P	749
	0	1099.321	2.430097 - 93.39536 .977053 - 91.915950	3dʻ - 3d°(b°F)4p 3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ D)4s4n/ ³ P°)	a *F - u [*] F ⁰ ga ⁶ D - ⁶ F ⁰	2 - 2 1 - 3	P	749 749
18	š	1100.020	,667683 - 91.575139	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ⁵ D)5p	ga ⁶ D - ⁶ P	2 - 2 2 - 2 2 - 2	P	749
18	1	1100.429 1100.517	.977053 - 91.850722 .977053 - 91.843470	3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ D)4s4p(³ P°) 3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ⁵ D)5p	ga ⁶ D • ⁶ F° ga ⁶ D • ⁶ P°	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{3}{2}$	Р Р	749 749
18	2	1101.526	.384790 - 91.167937	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{5}D)5p$ $2d^{6}(a^{5}D)4z - 2d^{6}(a^{5}D)5p$	ga ⁶ D - ⁶ P°	7 - 7	P	749 749
18	0	1102.384	.802013 - 91.575139 2 430007 - 93 12990	3d7 - 3d7(a*D)5p 3d7 - 3d6(b3F)4p	ga U - P°	2 2	P	749 740

enne.

/****

/****.

Multiplet	Rel. Int.	λ _{νε} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
18	1 1 0 0 2	1102.71 1104.272 1104.969 1105.350 1105.754	$\begin{array}{r} .384790 & - 91.070547 \\ 2.837950 & - 93.39536 \\ .667683 & - 91.167937 \\ 2.430097 & - 92.89950 \\ 7.955299 & - 98.39133 \end{array}$	3d°(a ⁵ D)4s - 3d°(a ⁵ D)5p 3d ⁷ - 3d°(b ³ F)4p 3d°(a ⁵ D)4s - 3d°(a ⁵ D)5p 3d ⁷ - 3d°(b ³ F)4p 3d°(a ⁵ D)4s - 3d ⁵ (a ⁴ D)4s4p(³ P")	$\begin{array}{c} ga{}^{6}D - {}^{4}F{}^{6} \\ a{}^{4}F \cdot u{}^{4}F{}^{6} \\ ga{}^{6}D \cdot {}^{6}P{}^{6} \\ a{}^{4}F - {}^{4}D{}^{6} \\ a{}^{4}D \cdot {}^{4}D{}^{6} \end{array}$	10-10-10-10-10-10-10-10-10-10-10-10-10-1	Р Р Р Р	292 749 749 749 749 749
	2 5 1 1 1	1106.203 1106.362 1107.430 1108.512 1109.716	$\begin{array}{c} 7.955299 & -98.35466 \\ 0. & 00.386528 \\ 1.872567 & -92.171716 \\ 3.117461 & -93.32848 \\ 8.391938 & -98.50510 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4_5 + 3d^5(a^4D)4_54p(^{3}P^{\circ})\\ 3d^6(a^5D)4_5 + 3d^6(a^5D)4_p\\ 3d^7 + 3d^6(b^3F)4_p\\ 3d^7 + 3d^6(b^3F)4_p\\ 3d^7 + 3d^6(b^3F)4_p\\ 3d^6(a^5D)4_5 + 3d^5(a^4D)4_54p(^{3}P^{\circ}) \end{array}$	$\begin{array}{c} a^{4}D \cdot {}^{4}F^{\circ} \\ ga^{\circ}D \cdot {}^{4}F^{\circ} \\ a^{4}F \cdot u^{2}G^{\circ} \\ a^{4}F \cdot u^{4}F^{\circ} \\ a^{4}D \cdot {}^{4}D^{\circ} \end{array}$		P P P P	749 292 749 749 749 749
	0 1 30 35 0	1110.005 1111.119 1112.048 1112.086 1112.937	$\begin{array}{r} 8.680454 & 98.77014 \\ 8.391938 & 98.39133 \\ 0. & 89.924175 \\ .977053 & 90.898873 \\ 2.430097 & 92.28246 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4s+3d^5(a^4D)434p(^3P'')\\ 3d^6(a^5D)4s+3d^5(a^4D)4s4p(^3P'')\\ 3d^6(a^5D)4s+3d^6(a^5D)5p\\ 3d^6(a^5D)4s+3d^6(b^3P)4p\\ 3d^7+3d^5(a^4C)4s4p(^3P'')\\ \end{array}$	$ \begin{array}{c} a^{4}D \ - \ ^{4}D^{\alpha} \\ a^{4}D \ - \ ^{4}D^{\alpha} \\ ga^{6}D \ - \ ^{6}F^{\prime\prime} \\ ga^{6}D \ - \ ^{6}F^{\prime\prime} \\ a^{4}F \ - \ v^{4}F^{\alpha} \end{array} $	NA-MACHAGAM	P P P P	749 749 749 488 749
	0 0 0 0	1113.467 1115.044 1115.349 1115.661 1118.116	$\begin{array}{r} 2.837950 & 92.64751 \\ .384790 & 90.067347 \\ .384790 & 90.042779 \\ .667683 & 90.300625 \\ 2.837950 & 92.27412 \end{array}$	$\begin{array}{r} 3d^7 \cdot 3d^6(b^3F) 4p \\ 3d^6(a^5D) 4s \cdot 3d^6(a^5D) 5p \\ 3d^6(a^5D) 4s \cdot 3d^6(b^3F) 4p \\ 3d^6(a^5D) 4s \cdot 3d^6(a^3F) 5p \\ 3d^6(a^5D) 4s \cdot 3d^6(a^5D) 5p \\ 3d^7 \cdot 3d^6(b^3P) 4p \end{array}$	$\begin{array}{c} a^4F - {}^4D^{\circ}\\ ga^6D - {}^6F^{\circ}\\ ga^6D - {}^4G^{\circ}\\ ga^6D - {}^6F^{\circ}\\ a^4F - {}^4P^{\circ} \end{array}$	rdente-utgebreich	P P P P P	749 749 749 749 749 749
	0 1 1 40 30	1119.204 1119.370 1120.559 1121.975 1122.843	$\begin{array}{c} 8.846768 & 98.19600 \\ 3.117461 & 92.45346 \\ 3.117461 & 92.35861 \\ 0 & 89.128561 \\ .384790 & 89.444458 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4s\cdot3d^5(a^4D)4s4p(^3P'')\\ 3d^7\cdot3d^6(b^3F)4p\\ 3d^7\cdot3d^5(a^4G)4s4p(^3P'')\\ 3d^6(a^3D)4s\cdot3d^5(a^4P)4s4p(^3P'')\\ 3d^6(a^5D)4s\cdot3d^5(a^4P)4s4p(^3P'')\\ 3d^6(a^5D)4s\cdot3d^5(a^4P)4s4p(^3P'')\\ \end{array}$	$\begin{array}{c} a^{4}D - {}^{4}F^{\circ} \\ a^{4}F - {}^{4}D^{\circ} \\ a^{4}F + v^{4}F^{\circ} \\ ga^{\circ}D - {}^{\circ}P^{\circ} \\ ga^{\circ}D - {}^{\circ}P^{\circ} \end{array}$		P P P P P	749 749 749 749 749 749
	$ \begin{array}{r} 10 \\ 30 \\ 20 \\$	1124.123 1125.448 1126.421 1126.591 1126.840	$\begin{array}{c} .667683 \cdot 89.625940 \\ 0 \cdot 88.853533 \\ .667683 \cdot 89.444458 \\ .862613 \cdot 89.625940 \\ .384790 \cdot 89.128561 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4_{\rm S} - 3d^5(a^4P)4_{\rm S}4_{\rm P}({}^3P^{\circ})\\ 3d^6(a^5D)4_{\rm S} - 3d^9(a^5D)5_{\rm P}\\ 3d^6(a^5D)4_{\rm S} - 3d^5(a^4P)4_{\rm S}4_{\rm P}({}^3P^{\circ})\\ 3d^6(a^5D)4_{\rm S} - 3d^5(a^4P)4_{\rm S}4_{\rm P}({}^3P^{\circ})\\ 3d^6(a^5D)4_{\rm S} - 3d^5(a^4P)4_{\rm S}4_{\rm P}({}^3P^{\circ}) \end{array}$	$\begin{array}{c} ga^{6}D - {}^{6}P^{o}\\ ga^{6}D - {}^{6}D^{o}\\ ga^{6}D - {}^{6}P^{o}\\ ga^{6}D - {}^{6}P^{o}\\ ga^{6}D - {}^{6}P^{o}\\ ga^{6}D - {}^{6}P^{o}\\ \end{array}$	NH-INGENGENER	P P P P	749 749 749 749 749 749
	20 5 10 40 5	1126.955 1127.098 1127.860 1128.046 1128.180	$\begin{array}{c} .384790 & 89.119457 \\ 0 & 88.723400 \\ .667683 & 89.331195 \\ .977053 & 89.625940 \\ 2.430097 & 91.070547 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4s \ - \ 3d^6(a^5D)5p \\ 3d^6(a^5D)5p \end{array}$	$\begin{array}{c} ga^{6}D - {}^{6}D^{o} \\ ga^{6}D - {}^{6}D^{a} \\ ga^{6}D - {}^{6}D^{o} \\ ga^{6}D - {}^{6}P^{o} \\ a^{4}F - {}^{4}F^{o} \end{array}$		P P P Q	749 749 749 749 292
	1 20 5 1 30	1128.557 1128.899 1129.621 1129.765 1130.443	$\begin{array}{r} .862613 & 89.471365 \\ .862613 & 89.444458 \\ 1.872567 & 90.397868 \\ 1.872567 & 90.386528 \\ .667683 & 89.128561 \end{array}$	$\begin{array}{l} 3d^{o}(a^{5}D)4s \cdot 3d^{o}(a^{5}D)5p \\ 3d^{o}(a^{5}D)4s \cdot 3d^{5}(a^{4}P)4s4p(^{3}P^{o}) \\ & 3d^{7} \cdot 3d^{o}(a^{5}D)5p \\ & 3d^{7} \cdot 3d^{o}(a^{5}D)4p \\ 3d^{o}(a^{5}D)4s \cdot 3d^{5}(a^{4}P)4s4p(^{3}P^{o}) \end{array}$	$\begin{array}{c} ga^6D + {}^6D^o\\ ga^6D + {}^6P^o\\ a^4F + {}^4D^o\\ a^4F + {}^4F^o\\ ga^6D + {}^6P^o\end{array}$	Netherstoren version	P P P P P	749 749 749 749 749 749
	$\begin{array}{c} 0\\ 0\\ 2\\ 1\\ 40 \end{array}$	1130.560 1130.863 1131.594 1132.001 1133.405	.667683 - 89.119457 1.872567 - 90.300625 2.837950 - 91.208887 1.872567 - 90.211700 .384790 - 88.61452	$\begin{array}{l} 3d^6(a^5D)4_6 \ - \ 3d^6(a^5D)5p \\ 3d^7 \ - \ 3d^6(b^4P)4p \\ 3d^6(a^5D)4s \ - \ 3d^5(a^4P)4s4p(^3P^\circ) \end{array}$	$\begin{array}{c} ga^{6}D - {}^{6}D^{o} \\ a^{4}F - {}^{6}F^{o} \\ a^{4}F + {}^{4}F^{o} \\ a^{4}F - {}^{4}G^{o} \\ ga^{6}D - {}^{6}D^{o} \end{array}$	10000000000000000000000000000000000000	P P P P	749 749 749 749 749 749
	5 20 15 0 1	1133.654 1133.665 1133.675 1134.170 1135.302	$\begin{array}{c} 2.837950 & 91.048256 \\ 0. & 88.20945 \\ 2.430097 & 90.638822 \\ 1.872567 & 90.042779 \\ 3.117461 & 91.199746 \end{array}$	$\begin{array}{r} 3d^7 \cdot 3d^6(a^5D)5p \\ 3d^6(a^5D)4s \cdot 3d^5(a^4P)4s^4p(^3P'') \\ 3d^7 \cdot 3d^6(a^5D)5p \\ 3d^7 \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^6(a^5D)5p \end{array}$	$\begin{array}{c} a^{4}F - {}^{4}D^{\circ} \\ ga^{6}D - {}^{\circ}D^{\circ} \\ a^{4}F - {}^{4}D^{\circ} \\ a^{4}F - {}^{4}G^{\circ} \\ a^{4}F - {}^{4}O^{\circ} \end{array}$		P P P P	749 749 749 749 749
	0 1 0 0 0	1135.548 1135.577 1136.780 1137.258 1137.681	$\begin{array}{c} 2.837950 & 90.901124 \\ 2.837950 & 90.898873 \\ 2.430097 & 90.397868 \\ 3.117461 & 91.048256 \\ 21.251608 & 109.14968 \end{array}$	$\begin{array}{r} 3d^7 \cdot 3d^6(a^5D)5p \\ 3d^7 \cdot 3d^6(b^3P)4p \\ 3d^7 \cdot 3d^6(a^5D)5p \\ 3d^7 \cdot 3d^6(a^5D)5p \\ 3d^7 \cdot 3d^6(a^2D)5p \\ 3d^6(a^3H)4s \cdot 3d^5(a^2I)4s^4p(^3P^*) \end{array}$	$\begin{array}{c} a^{4}F - {}^{4}P^{o} \\ a^{4}F - {}^{4}P^{o} \\ a^{4}F - {}^{4}D^{o} \\ a^{4}F - {}^{4}D^{o} \\ a^{4}F - {}^{2}I^{o} \end{array}$		P P P P P	749 749 749 749 749 749
10	0 40 1 20 20	1138.038 1138.632 1138.941 1142.312 1142.366	$\begin{array}{c} 2.430097 & -90.300625\\ .384790 & 88.20945\\ 2.837950 & -90.638822\\ .667683 & -88.20945\\ 0. & -87.537652 \end{array}$	$\begin{array}{r} 3d^7 - 3d^6(a^5D)5p\\ 3d^6(a^5D)4_8 - 3d^5(a^4P)4_84p(^3P^{\prime\prime})\\ 3d^7 - 3d^6(a^5D)5p\\ 3d^6(a^5D)4_8 - 3d^3(a^4P)4_84p(^3P^{\prime\prime})\\ 3d^6(a^5D)4_8 - 3d^5(a^4C)4_84p(^3P^{\prime\prime})\\ 3d^6(a^5D)4_8 - 3d^5(a^4C)4_84p(^3P^{\prime\prime})\\ \end{array}$	$\begin{array}{c} a^{4}F \cdot {}^{6}F^{\circ} \\ ga^{6}D \cdot {}^{6}D^{\circ} \\ a^{4}F \cdot {}^{4}D^{\circ} \\ ga^{6}D \cdot {}^{6}D^{\circ} \\ ga^{6}D \cdot y^{6}F^{\circ} \end{array}$	rachatanachatan	P P P P	749 749 749 749 749 749
10 56 10	90 5 40 110 2	1143.226 1144.052 1144.273 1144.939 1145.515	$\begin{array}{c} 0.& -87.471765\\ 20.830582& -108.2392\\ .667683& -88.05938\\ 0.& 87.340983\\ .667683& -87.340983\\ .667683& -87.96465 \end{array}$	$\begin{array}{l} 3d^{\circ}(a^{5}D)4_{S}\cdot3d^{5}(a^{4}C)4_{S}4_{P}({}^{3}P')\\ 3d^{\circ}(a^{3}P)4_{S}\cdot\\ 3d^{\circ}(a^{5}D)4_{S}\cdot3d^{5}(a^{4}P)4_{S}4_{P}({}^{3}P'')\\ 3d^{\circ}(a^{5}D)4_{S}\cdot3d^{5}(a^{4}C)4_{S}4_{P}({}^{3}P'')\\ 3d^{\circ}(a^{5}D)4_{S}\cdot3d^{5}(a^{4}P)4_{S}4_{P}({}^{3}P'')\\ \end{array}$	$\begin{array}{c} ga^{6}D - y^{6}F^{o} \\ b^{4}P - 24^{o} \\ ga^{6}D - {}^{6}D^{o} \\ ga^{6}D - y^{6}F^{o} \\ ga^{6}D - y^{6}F^{o} \\ ga^{6}D - {}^{6}D^{o} \end{array}$		P P P	749 488 749 749 749

Multinlat	Ral Int	λ (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J	Notes	References
10	1 20 20	1146.364 1146.831 1146.952	21.251608 - 108.48387 .862613 - 88.05938 .384790 - 87.572431	$\begin{array}{l} 3d^6(a^3H)4_6 &\cdot 3d^3(a^2G)4_54p(^1P'')\\ 3d^6(a^5D)4_5 &\cdot 3d^5(a^4P)4_54p(^3P'')\\ 3d^6(a^5D)4_5 &\cdot 3d^5(a^4G)4_54p(^3P'') \end{array}$	$ \begin{array}{c} \mathbf{a}^{4}\mathbf{H} - {}^{4}\mathbf{C}^{5} \\ \mathbf{g}\mathbf{a}^{6}\mathbf{D} - {}^{6}\mathbf{D}^{6} \\ \mathbf{g}\mathbf{a}^{6}\mathbf{D} - {}^{9}\mathbf{b}^{7} \\ \mathbf{g}\mathbf{a}^{6}\mathbf{D} - {}^{9}\mathbf{b}^{7} \\ \mathbf{c}^{6}\mathbf{b}^{6} \end{array} $	11/22/10201-4247	P P P	749 749 749 749
10	55 2	$\frac{1147.409}{1147.576}$.384790 - 87.537652 21.430359 - 108.57056	$3d^{\circ}(a^{3}H)4s - 3d^{3}(a^{*}C)4s4p(^{*}F^{*})$ $3d^{\circ}(a^{3}H)4s - 3d^{5}(a^{2}C)4s4p(^{1}P^{*})$	ga°D - y°F" a ⁴ H - ³ G°	$\frac{1}{2}$ - $\frac{1}{2}$	P	749
10	40 90 0 1	1148.079 1148.277 1148.719 1148.733 1148.772	.862613 - 87.96465 .384790 - 87.471765 21.430359 - 108.48387 2.837950 - 89.890373 21.581638 - 108.63109	$\begin{array}{l} 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}P)4s4p(^{5}P')\\ 3d^{9}(a^{5}D)4s-3d^{3}(a^{4}C)4s4p(^{5}P')\\ 3d^{6}(a^{3}H)4s-3d^{5}(a^{2}C)4s4p(^{1}P')\\ 3d^{6}(a^{3}H)4s-3d^{5}(a^{2}C)4s4p(^{1}P')\\ 3d^{6}(a^{3}H)4s-3d^{5}(a^{2}C)4s4p(^{1}P') \end{array}$	$\begin{array}{c c} ga^{6}D + {}^{6}D^{\circ} \\ ga^{6}D + \gamma^{6}F^{\circ} \\ a^{4}H - {}^{4}G^{\circ} \\ a^{4}F + {}^{4}G^{\circ} \\ a^{4}H - {}^{4}G^{\circ} \end{array}$		P P P P	749 749 749 749 749
10	5	1148.956	.862613 - 87.89812 977053 - 87.96465	.3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ G)4s4p(³ P°) 3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁴ P)4s4p(³ P°)	$\begin{array}{c} ga^6D + v^6F^0\\ ga^6D + {}^6D^0 \end{array}$	3 - 1 1 - 2 1 - 2	P P	749 749
10 10 10	20 10 30 30	1149.389 1150.290 1150.469 1150.685	.667683 - 87.60225 .977053 - 87.89812 .667683 - 87.572431	$\begin{array}{l} 3d'(a^{5}D)4s & : 3d'(a^{4}G)4s4p(^{3}P') \\ 3d'(a^{5}D)4s & : 3d'(a^{4}G)4s4p(^{5}P') \\ 3d'(a^{5}D)4s & : 3d'(a^{4}G)4s4p(^{5}P') \\ 3d'(a^{5}D)4s & : 3d'(a^{4}G)4s4p(^{4}P') \end{array}$	$ga^{6}D - y^{6}F^{\circ}$ $ga^{6}D - y^{6}F^{\circ}$ $ga^{6}D - y^{6}F^{\circ}$		P P P	749 749 749
10 10 10	70 1 10 20 1	1151.146 1152.428 1152.875 1153.272 1153.950	.667683 - 87.537652 .862613 - 87.63592 .862613 - 87.60225 .862613 - 87.572431 .977053 - 87.63592	$\begin{array}{l} 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}G)4s^{4}P(^{3}P^{*})\\ 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}P)4s4P(^{3}P^{*})\\ 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}G)4s4P(^{3}P^{*})\\ 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}G)4s4P(^{3}P^{*})\\ 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}P)4s4P(^{3}P^{*})\\ 3d^{6}(a^{5}D)4s-3d^{5}(a^{4}P)4s4P(^{3}P^{*})\\ \end{array}$	ga ⁶ D - y ⁶ F° ga ⁶ D - ⁶ D° ga ⁶ D - y ⁶ F° ga ⁶ D - y ⁶ F° ga ⁶ D - ⁶ D°	Nam raku Niku Kultuku IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	P P P P	749 749 749 749 749 749
10 57	5 2 2 1 10	$\begin{array}{c} 1154.399 \\ 1155.273 \\ 1156.575 \\ 1158.115 \\ 1159.334 \end{array}$	$\begin{array}{c} .977053 & 87.60225 \\ 21.812055 & 108.3717 \\ 23.317633 & 109.7800 \\ 8.391938 & 94.73917 \\ 7.955299 & 94.211739 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4s + 3d^5(a^4G)4s 4p(^3P^\circ)\\ 3d^6(a^3P^{Ag} + \\ & 3d^54e^2 + \\ 3d^6(a^5D)4s + 3d^5(a^4P)4s 4p(^3P^\circ)\\ 3d^6(a^5D)4s + 3d^5(a^4P)4s 4p(^3P^\circ) \end{array}$	$\begin{array}{l} ga^{6}D &- y^{6}F^{9} \\ b^{4}P &- 25^{\circ} \\ a^{6}S &- 28^{\circ} \\ a^{4}D &- {}^{3}P^{\circ} \\ a^{4}D &- {}^{4}P^{\circ} \end{array}$		P P P	749 488 292 749 749
	0 0 5 5 2	1160.089 1162.332 1164.474 1165.232 1166.042	$\begin{array}{c} 8.680454 & 94.88074 \\ 8.846768 & 94.88074 \\ 7.955299 & 93.830979 \\ 8.391938 & 94.211739 \\ 22.810357 & 108.57056 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4s - 3d^5(a^4P)4s4p(^3P')\\ 3d^6(a^5D)4s - 3d^5(a^4P)4s4p(^3P')\\ 3d^6(a^5D)4s - 3d^5(a^4D)4s4p(^3P'')\\ 3d^6(a^5D)4s - 3d^5(a^4P)4s4p(^3P'')\\ 3d^6(a^5D)4s - 3d^5(a^4P)4s4p(^3P'')\\ 3d^6(a^3F)4s - 3d^5(a^2G)4s4p(^1P'')\\ \end{array}$	$\begin{array}{c} a^{4}D - {}^{4}P^{o} \\ a^{4}D - {}^{3}P^{o} \\ a^{4}D - {}^{6}D^{o} \\ a^{4}D - {}^{6}P^{o} \\ b^{4}F - {}^{4}G^{o} \end{array}$		P P P P	749 749 749 749 749 749
	1 2 10 10 2	1166.974 1168.252 1168.552 1169.190 1170.297	$\begin{array}{l} 22.939358 & 108.63109\\ 23.031300 & 108.62925\\ 21.430359 & 107.00635\\ 7.955299 & 93.48458\\ 8.391938 & 93.84034 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s + 3d^5(a^2G)4s4p(^1P^a)\\ 3d^6(a^3F)4s + 3d^5(a^2G)4s4p(^1P^a)\\ 3d^6(a^3H)4s + 3d^5(a^2I)4s4p(^3P^a)\\ 3d^6(a^3E)4s + 3d^6(b^3F)4p\\ 3d^6(a^5D)4s + 3d^6(b^3F)4p\\ 3d^6(a^5D)4s + 3d^5(a^4D)4s4p(^3P^a)\\ \end{array}$	b ⁴ F - ⁴ C° b ⁴ F - ⁴ C° a ⁴ H - ² H° a ⁴ D - u ⁴ F° a ³ D - ⁶ D°	NORTH CONTRACTOR	P P P P	749 749 749 749 749 749
	1 1 0 1 1	1171.633 1173.921 1174.059 1175.699 1180.109	$\begin{array}{c} 8.680454 & .94.031378 \\ 8.846768 & .94.031378 \\ 7.955299 & .93.12990 \\ 23.317633 & .108.3738 \\ 8.391938 & .93.12990 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4_8 + 3d^5(a^4D)4_84\rho(^3P^\circ)\\ 3d^6(a^5D)4_8 + 3d^5(a^4D)4_84\rho(^3P^\circ)\\ 3d^6(a^5D)4_8 + 3d^6(a^5P)4\rho\\ 3d^54s^2 + \\ 3d^54s^2 + \\ 3d^6(a^5D)4_8 + 3d^6(b^3P)4\rho \end{array}$	$ \begin{array}{c} a^{4}D - {}^{6}D^{\circ} \\ a^{4}D - {}^{6}D^{\circ} \\ a^{4}D - {}^{4}D^{\circ} \\ a^{6}S - 26^{\circ} \\ a^{6}D - {}^{4}D^{\circ} \end{array} $		P P P	749 749 749 292 749
	2 1 1 1 1 10	1180.430 1181.362 1181.891 1183.438 1183.829	$\begin{array}{l} 8.680454 & 93.39536 \\ 8.680454 & 93.32848 \\ 1.872567 & 86.48275 \\ 2.430097 & 86.929649 \\ 7.955299 & 92.42698 \end{array}$	$\begin{array}{l} 3d^{c}(a^{5}D)4s \cdot 3d^{c}(b^{3}F)4p \\ 3d^{c}(a^{5}D)4s \cdot 3d^{c}(a^{5}F)4p \\ & 3d^{7} \cdot 3d^{c}(a^{5}F)4p \\ & 3d^{7} \cdot 3d^{c}(b^{2}F)4p \\ & 3d^{7} \cdot 3d^{c}(b^{2}F)4p \\ & 3d^{c}(a^{5}D)4s \cdot 3d^{5}(a^{4}G)4s 4p(^{3}F^{c}) \end{array}$			P P P P	749 749 749 749 749 749
	2 1 10 0 1	1185.712 1185.857 1187.417 1187.705 1188.815	2.430097 - 86.767577 7.955299 - 92.28246 7.955299 - 92.171716 22.810357 - 107.00635 2.430097 - 86.54749	$\begin{array}{r} 3d^7 \cdot 3d^6(b^3P)4p \\ 3d^6(a^5D)4s \cdot 3d^5(a^4G)4s 4p(^4P'') \\ 3d^6(a^5D)4s \cdot 3d^6(b^3F)4p \\ 3d^6(a^4F)4s \cdot 3d^5(a^2T)4s 4p(^3P') \\ 3d^7 \cdot 3d^6(a^4F)4p \end{array}$			P P P P	749 749 749 749 749 749
	0 1 1 10 0	1189.726 1191.356 1191.474 1192.030 1192.148	22.637205 - 106.69017 8.391938 - 92.32989 2.837950 - 86.767577 8.391938 - 92.28246 8.391938 - 92.27412	$\begin{array}{l} 3d^6(a^3F)4s - 3d^5(a^4)4s 4p(^3P^\circ) \\ 3d^6(a^5D)4s - 3d^5(a^4C)4s 4p(^3P^\circ) \\ 3d^7 - 3d^9(b^3P)4p \\ 3d^7(a^3C)4s - 3d^7(a^4C)4s 4p(^3P^\circ) \\ 3d^7(a^5D)4s - 3d^7(a^4C)4s 4p(^3P^\circ) \\ 3d^9(a^5D)4s - 3d^9(b^3P)4p \end{array}$	$\begin{array}{c} b^{4}F + {}^{2}H^{o} \\ a^{4}D + v^{4}F^{o} \\ a^{4}F - v^{4}D^{o} \\ a^{4}D - v^{4}F^{o} \\ a^{4}D - {}^{4}P^{o} \end{array}$	มีการสุดภาพระมาณณะ 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	P P P P	749 749 749 749 749 749
	2 0 2 1 1	1194.657 1195.055 1195.465 1196.263 1196.671	$\begin{array}{r} 2.837950 & 86.543974 \\ 8.680454 & 92.35861 \\ 8.680454 & 92.32989 \\ 8.680454 & 92.27412 \\ 21.251608 & 104.81680 \end{array}$	$\begin{array}{l} 3d^7 - 3d^6(b^3P)4p\\ 3d^6(a^5D)4s - 3d^5(a^4C)4s4p(^3P^{\circ})\\ 3d^6(a^5D)4s - 3d^5(a^4G)4s4p(^3P^{\circ})\\ 3d^6(a^5D)4s - 3d^6(b^3P)4p\\ 3d^6(a^5D)4s - 3d^5(a^2I)4s4p(^3P^{\circ})\\ 3d^6(a^3H)4s - 3d^5(a^2I)4s4p(^3P^{\circ})\\ \end{array}$	$a^{4}F \cdot v^{4}D^{o}$ $a^{4}D \cdot v^{4}F^{o}$ $a^{4}D \cdot v^{4}F^{o}$ $a^{4}D \cdot v^{4}F^{o}$ $a^{4}D \cdot v^{4}F^{o}$ $a^{4}H \cdot v^{4}H^{o}$	Harvenskardenska 1 - 1 - 1 - 1 1 1 - 1 - 1	P P P P	749 749 749 749 749 749
	1 1 0 0 1	1197.435 1197.498 1198.064 1198.087 1198.366	8.846768 - 92.35861 21.430359 - 104.93780 8.846768 - 92.314758 25.805328 - 109.27171 21.581638 - 105.02860	$\begin{array}{l} 3d^6(a^5D)4_5 + 3d^5(a^4C)4_84p(^3P^{\circ})\\ 3d^6(a^3H)4_5 + 3d^5(a^2))4_84p(^3P^{\circ})\\ 3d^6(a^5D)4_5 + 3d^5(a^5D)5p\\ 3d^6(a^5C)4_5 + 3d^3(a^2I)4_84p(^3P^{\circ})\\ 3d^6(a^2H)4_8 + 3d^5(a^2I)4_84p(^3P^{\circ})\\ \end{array}$		$\frac{1}{12} - \frac{32}{12} + \frac{32}$	P P P P	749 749 749 749 749 749

, and the second

t Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Refer
$ \begin{array}{c c} 0 \\ 55 \\ 40 \\ 20 \\ 20 \\ 20 \\ \end{array} $	1198.660 1198.931 1199.236 1199.671 1200.240	$\begin{array}{c} 3.117461 + 86.543974 \\ 21.251608 + 104.65926 \\ 21.430359 + 104.81680 \\ 21.581638 + 104.93780 \\ 21.711917 + 105.02860 \end{array}$	$\begin{array}{r} 3d^7 - 3d^6(b^4P) 4p \\ 3d^6(a^3H) 4s - 3d^5(a^2I) 4s 4p (^3P'') \end{array}$	$\begin{array}{c} a^{4}F + v^{4}D^{*} \\ a^{4}H + - {}^{4}H^{\circ} \\ a^{4}H + - {}^{4}H^{\circ} \\ a^{4}H + - {}^{4}H^{\circ} \\ a^{4}H + {}^{4}H^{\circ} \\ a^{4}H + - {}^{4}H^{\circ} \end{array}$		P P P P P	749 749 749 749 749 749
	1201.415 1201.506 1201.549 1202.591	21.581638 - 104.81680 21.430359 - 104.65926 21.711917 - 104.93780	$3d^{6}(a^{3}H)4s - 3d^{5}(a^{2}I)4s4p(^{3}P^{*})$ $3d^{6}(a^{3}H)4s - 3d^{5}(a^{2}I)4s4p(^{3}P^{*})$ $3d^{6}(a^{3}H)4s - 3d^{5}(a^{2}I)4s4p(^{3}P^{*})$ $3d^{6}(a^{3}H)4s - 3d^{5}(a^{2}I)4s4p(^{3}P^{*})$	$a^{4}H - {}^{4}H^{\circ}$ $a^{4}H - {}^{4}H^{\circ}$ $a^{4}H - {}^{4}H^{\circ}$ $2C - {}^{2}H^{\circ}$	9 - 11 2 - 2 11 - 13 2 - 2 4 - 2 2 - 2 2 - 2 9 - 7	P P P	749 749 749 749 749
22	1204.035 1205.117 1205.997	15.84405 - 98.89871 26.170181 - 109.14968 26.352766 - 109.27171	3d° - 3d°(b°G)4p 3d ⁶ (a ³ H)4s - 3d ⁵ (a ² I)4s4p(³ P°) 3d ⁶ (a ³ H)4s - 3d ⁵ (a ² I)4s4p(³ P°)	$a^{2}G - F^{3}$ $b^{2}H - {}^{2}I^{3}$ $b^{2}H - {}^{2}I^{3}$		P P P	749 749 749
$\begin{vmatrix} 1\\2\\1 \end{vmatrix}$	$1207.360 \\ 1207.898 \\ 1208.237$	7.955299 - 90.780621 25.805328 - 108.57056	3d°(a°D)4s - 3d°(a°D)5p 3d°(a°G)4s - 3d ⁵ (a²G)4s4p('P°)	a*D - *F° a*G - *G"	$\frac{2}{2} - \frac{2}{2}$	P P	749 749 749
$\begin{array}{c}1\\1\\2\\2\\20\end{array}$	1209.431 1209.929 1211.986 1212.966 1213.149	$\begin{array}{c} 7.955299 & -90.638822 \\ 25.981629 & -108.63109 \\ 8.391938 & -90.901124 \\ 7.955299 & -90.397868 \\ 7.955299 & -90.386528 \end{array}$	$\begin{array}{l} 3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{3}D)5p \\ 3d^{\circ}(a^{3}C)4s - 3d^{5}(a^{2}C)4s 4p(^{1}P^{\circ}) \\ 3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{5}D)5p \\ 3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{5}D)5p \\ 3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{5}D)4p \end{array}$	$ \begin{array}{c} a^{4}D + {}^{4}D^{n} \\ a^{4}G - {}^{4}G^{n} \\ a^{4}D - {}^{4}P^{n} \\ a^{4}D - {}^{4}P^{n} \\ a^{4}D - {}^{4}P^{n} \\ a^{4}D - {}^{4}F^{n} \\ \end{array} $	1-121-121-121-121-121-121-121-121-121-1	P P P P	749 749 749 749 292
$\begin{array}{c}2\\3\\1\\1\\2\end{array}$	1213.738 1213.759 1214.150 1214.398 1217.848	8.680454 - 91.070547 8.391938 - 90.780621 8.846768 - 91.208887 7.955299 - 90.300625 7.955299 - 90.067347	$\begin{array}{l} 3d^6(a^5D)4_5\cdot3d^6(a^5D)5p\\ 3d^6(a^5D)4_8\cdot3d^6(a^5D)5p\\ 3d^6(a^5D)4_8\cdot3d^6(a^5D)5p\\ 3d^6(a^5D)4_8\cdot3d^6(a^5D)5p\\ 3d^6(a^5D)4_8\cdot3d^6(a^5D)5p\\ 3d^6(a^5D)4_8\cdot3d^6(a^5D)5p \end{array}$	$\begin{array}{c} a^{4}D + {}^{4}F^{o} \\ a^{4}D - {}^{4}F^{o} \\ a^{4}D - {}^{4}F^{o} \\ a^{4}D - {}^{6}F^{o} \\ a^{4}D - {}^{6}F^{o} \\ a^{4}D - {}^{6}F^{o} \end{array}$	1000 - 1001 - 1000 - 10	P P P P	749 749 749 749 749 749
$ \begin{array}{c c} 0 \\ 2 \\ 30 \\ 1 \\ 40 \end{array} $	1218.088 1218.231 1219.802 1220.872 1224.132	8.391938 - 90.487810 7.955299 - 90.042779 21.251608 - 103.2321 8.391938 - 90.300625 21.430359 - 103.1209	$\begin{array}{l} 3d^6(a^5D)4s\cdot3d^6(a^5D)5p\\ 3d^6(a^5D)4s\cdot3d^6(h^5F)4p\\ 3d^6(a^3H)4s\cdot3d^5(a^4D)4s4p(^3P^\circ)\\ 3d^6(a^5D)4s\cdot3d^6(a^5D)5p\\ 3d^6(a^3D)4s\cdot3d^6(a^4D)4s4p(^3P^\circ)\\ \end{array}$	$ \begin{array}{c} a^{4}D - {}^{6}F^{o} \\ a^{4}D - {}^{4}G^{o} \\ a^{4}H - {}^{4}I^{o} \\ a^{4}H - {}^{4}I^{o} \\ a^{4}D - {}^{6}F^{o} \\ a^{4}H - {}^{4}I^{o} \end{array} $	5347471374 5347471374 1374 5347471 1274 53474 127 127	P Q P P P	749 749 749 749 749 749
20 20 1 10	1225.497 1228.521 1230.597 1230.927 1233.661	21.251608 - 102.8512 21.581638 - 102.9803 25.428784 - 106.69017 21.711917 - 102.9515 21.430359 - 102.4899	$\begin{array}{l} 3d^6(a^3H)4s\cdot3d^5(a^2I)4s4p(^3P^{\circ})\\ 3d^6(a^3H)4s\cdot3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3G)4s\cdot3d^5(a^2I)4s4p(^3P^{\circ})\\ 3d^6(a^3H)4s\cdot3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3H)4s\cdot3d^5(a^2I)4s4p(^3P^{\circ})\\ 3d^6(a^3H)4s\cdot3d^5(a^2I)4s4p(^3P^{\circ})\\ \end{array}$	a ⁴ H - ⁴ K° a ⁴ H - ⁴ I° a ⁴ G - ² H° a ⁴ H - ⁴ I° a ⁴ H - ⁴ K°	$\begin{array}{c} 13 \\ 29 \\ 22 \\ 12 \\ 22 \\ 12 \\ 22 \\ 12 \\ 22 \\ 12 \\ 12 \\ 22 \\ 12 \\$	Р Р Р Р	749 749 749 749 749 749
5 0 0 2 5	1234.386 1236.34 1237.93 1238.257 1239.871	$\begin{array}{c} 13.673185 & .94.68509 \\ 25.805328 & .106.69017 \\ 8.846768 & .89.625940 \\ 21.581638 & .102.3403 \\ 26.352766 & .107.00635 \end{array}$	$\begin{array}{r} 3d^7\cdot 3d^5(a^4D)4_54p(^3P^{\circ})\\ 3d^6(a^3G)4_5\cdot 3d^5(a^21)4_54p(^3P^{\circ})\\ 3d^6(a^5D)4_5\cdot 3d^3(a^4P)4_54p(^3P^{\circ})\\ 3d^6(a^3H)4_5\cdot 3d^3(a^21)4_54p(^3P^{\circ})\\ 3d^6(a^3H)4_5\cdot 3d^5(a^21)4_54p(^3P^{\circ})\\ \end{array}$	a ⁴ P - ⁶ P° a ⁴ G - ² H° a ⁴ D - ⁶ P° a ⁴ H - ⁴ K° b ² H - ² H°		P P P	749 816 816 749 749
5 1 2 2 2	1241.928 1242.046 1244.750 1245.340 1246.760	26.170181 - 106.69017 15.84465 - 96.35696 26.352766 - 106.69017	$\begin{array}{l} 3d^6(a^4H)4s + 3d^5(a^2I)4s4p(^3P^\circ)\\ 3d^7 + 3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^6(a^3H)4s + 3d^5(a^2I)4s4p(^3P^\circ) \end{array}$	b ² H - ² H° a ² G - t ² F" b ² H - ² H°	$\begin{array}{c} 11 & 11 \\ 2 & -2 \\ 2 & -2 \\ 5 & -2 \\ 5 & -2 \\ 5 & -2 \\ 2 & -2 \\ 2 & -2 \end{array}$	P P P	749 749 749 749 749 749
2 2 5	1247.816 1249.798 1250.597	22.810357 - 102.9515 26.170181 - 106.1831	$3d^{6}(a^{3}F)4_{8} - 3d^{5}(a^{4}D)4_{8}4p(^{3}P^{*})$ $3d^{6}(a^{3}H)4_{8} - 3d^{5}(a^{2}I)4_{8}4p(^{3}P^{*})$	$b^{4}F - {}^{4}I''$ $b^{2}H - {}^{2}K''$	$\frac{1}{2} - \frac{9}{2}$ $\frac{11}{2} - \frac{13}{2}$	Q P	749 749 749
$\begin{array}{c c} 20\\ 0\end{array}$	1255.406 1257.18	13.474411 - 93.12990 27.620412 - 107.1656	3d' - 3d°(b'F)4p 3d ⁶ (a'F)4s -	a ³ P - ⁴ D ^o a ² F - 17°	92 - 42 15 12 12 12	P ∣ Q	749 816
10 10 0 110 5	1259.053 1259.179 1259.636 1260.533 1260.829	$\begin{array}{c} 13.474411 & -92.89950 \\ 20.34030 & -99.75712 \\ 25.428784 & -104.81680 \\ 0. & -79.33150 \\ 20.34030 & -99.65322 \end{array}$	$\begin{array}{r} 3d^7 - 3d^{\circ}(b^4F)4p \\ 3d^7 - 3d^{\circ}(b^4G)4p \\ 3d^{\circ}(a^3G)4s - 3d^{\circ}(a^2I)4s4p (^3P^{\circ}) \\ 3d^{\circ}(a^3G)4s - 3d^{\circ}(a^2G)4s4p (^4P^{\circ}) \\ 3d^{\circ}(a^5G)4s - 3d^{\circ}(a^4G)4s4p (^4P^{\circ}) \end{array}$	$ \begin{array}{c} a^{4}P - {}^{4}D^{\alpha} \\ a^{2}H - {}^{2}G^{\alpha} \\ a^{4}G - {}^{4}H^{\alpha} \\ ga^{\alpha}D - x^{\alpha}P^{\alpha} \\ a^{2}H - {}^{2}G^{\alpha} \end{array} $	52021 2121 2121 2121 2121 2121 2121 2121	P P P P P	749 749 749 749 749 749
10 10 0 0 1	1262.141 1262.212 1263.055 1263.200 1263.704	25.428784 - 104.65926 13.673185 - 92.89950 13.474411 - 92.64751 22.409852 - 101.57390 25.805328 - 104.93780	$\begin{array}{rl} 3d^6(a^3G)4s &- 3d^5(a^2I)4s4p(^3P^{*})\\ &3d^7 &- 3d^{*}(b^3F)4p\\ &3d^7 &- 3d^6(b^3F)4p\\ 3d^6(a^3P)4s &- 3d^5(a^4D)4s4p(^3P^{*})\\ 3d^6(a^3C)4s &- 3d^3(a^2I)4s4p(^3P^{*})\\ \end{array}$	a ⁴ G - ⁴ H" a ⁴ P - ⁴ D ^o a ⁴ P - ⁴ D ^o b ⁴ P - ⁴ P ^o a ⁴ G - ⁴ H ^o	13 	P P P P P	749 749 749 749 749 749
$ \begin{array}{c} 1 \\ 10 \\ 10 \\ 5 \\ 15 \end{array} $	1265.071 1265.639 1265.781 1266.234 1266.253	25.981629 - 105.02860 25.805328 - 104.81680 20.80577 - 99.80840 7.955299 - 86.929649 26.055423 - 105.02860	$\begin{array}{rl} 3d^6(a^3G)4s &- 3d^5(a^21)4s4p({}^3P'')\\ 3d^6(a^3G)4s &- 3d^5(a^21)4s4p({}^3P'')\\ &3d^7 &- 3d'(b^1G)4p\\ 3d^6(a^2D)4s &- 3d'(b^3P)4p\\ 3d^6(a^3G)4s &- 3d^5(b^3P)4p\\ 3d^6(a^3G)4s &- 3d^5(a^21)4s4p({}^3P'')\\ \end{array}$	a ⁴ G - ⁴ H ⁰ a ⁴ G - ⁴ H ⁰ a ² H - ² G ⁰ a ⁴ D - v ⁴ D ⁰ a ⁴ G - ⁴ H ⁰	1-12-12-1-12-1-12-12-12-12-12-12-12-12-1	P P P P	749 749 749 749 749 749

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
9 9	5 30 55 5	$1266.525 \\1266.677 \\1267.422 \\1268.143 \\1268.557 \\$	$\begin{array}{c} 25.981629 & .104.93780 \\384790 & .79.33150 \\384790 & .79.28511 \\ 13.474411 & .92.32989 \\2009 & .2009 \\2009 & .2009 \\2009 &2009 \\$	$\begin{array}{l} 3d^{6}(a^{3}G)4s + 3d^{5}(a^{2}I)4s4p(^{3}P^{\circ})\\ 3d^{6}(a^{5}D)4s + 3d^{5}(a^{*}S)4s4p(^{1}P^{\circ})\\ 3d^{6}(a^{5}D)4s + 3d^{5}(a^{*}S)4s4p(^{1}P^{\circ})\\ 3d^{7} + 3d^{7}(a^{*}G)4s4p(^{3}P^{\circ})\\ 3d^{7} + 3d^{7}(a^{*}G)4s4p(^{3}P^{\circ}) \end{array}$	$a^{4}G - {}^{4}H^{o}$ $ga^{6}D - x^{6}P^{o}$ $ga^{6}D - x^{6}P^{o}$ $a^{4}P - v^{4}F^{o}$ $a^{2}H - {}^{2}G^{o}$	01617-16117-16117-16	P P P P P	749 749 749 749 749 749
	2 1 1	1269.040 1269.353 1269.823 1269.823	13.474411 - 92.27412 13.673185 - 92.45346 13.474411 - 92.22538 13.004824 - 92.64731	3d ⁷ - 3d ⁶ (b ³ P)4p 3d ⁷ - 3d ⁶ (b ³ P)4p 3d ⁷ - 3d ⁶ (b ³ P)5p 3d ⁷ - 3d ⁶ (b ³ P)5p 3d ⁷ - 3d ⁶ (b ³ P)4p	$a^{4}P - {}^{4}P^{0}$ $a^{4}P - {}^{4}D^{0}$ $a^{4}P - {}^{4}P^{0}$ $a^{4}P - {}^{4}P^{0}$		P P P P	749 749 749 749 749
9	2	1271.232	.667683 - 79.33150	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{1}P^{0})$	ga ⁶ D - x ⁶ P ^o	25-2	P	749
9 9	1 1 55 5 35	$\begin{array}{c} 1271.347\\ 1271.592\\ 1271.983\\ 1272.250\\ 1272.613 \end{array}$	$\begin{array}{c} 13.673185 - 92.32989\\ 13.673185 - 92.314758\\ .667683 - 79.28511\\ 13.673185 - 92.27412\\ .667683 - 79.24617 \end{array}$	$\begin{array}{c} 3d' & : 3d^2(a^*C)4s4p(`P'') \\ & 3d^7 & : 3d^6(a^5D)5p \\ 3d^6(a^5D)4s & : 3d^5(a^5)4s4p(`P'') \\ & 3d^7 & : 3d^6(b^3P)4p \\ & 3d^7 & : 3d^6(b^3P)4p \\ & 3d^6(a^5D)4s & : 3d^5(a^6S)4s4p(`P'') \end{array}$	a'P - v'F' a'P - 'P' ga'D - x ⁶ P' a'P - 'P' ga ⁶ D - x ⁶ P'		P P P P P	749 749 749 749 749 749
	5 2 5 2	$\begin{array}{c} 1272.655\\ 1273.036\\ 1273.097\\ 1274.063\end{array}$	$\begin{array}{r} .667683 - 79.24360 \\ 13.673185 - 92.225538 \\ 13.904824 - 92.45346 \\ 26.170181 - 104.65926 \end{array}$	$\begin{array}{c} 3d^6(a^5D)4s - 3d^6(a^1D)4p \\ & 3d^7 - 3d^6(a^5D)5p \\ & 3d^7 - 3d^6(b^3P)4p \\ & 3d^7(a^3H)4s - 3d^5(a^2I)4s4p(^{3}P'') \\ & 3d^6(a^3H)4s - 3d^5(a^2I)4s4p(^{3}P'') \\ \end{array}$	ga ⁶ D - w ² P° a ⁴ P - ⁴ P° a ⁴ P - ⁴ D° b ² H - ⁴ H°	11111111111111111111111111111111111111	Р Р Р	749 749 749 749
9	20	1275.144	.862613 - 79.28511	3d°(a°D)4s - 3d°(a°S)4s4p('P°)	$ga^{a}D \cdot x^{o}P^{o}$	12-2 11	ч Ч	749
9	55 60 10 10	1275.349 1275.778 1275.807 1275.820 1276.801	.862613 - 79.24617 20.516960 - 98.89871 .862613 - 79.24360 13.904824 - 92.225538	$\begin{array}{l} 3d^6(a^5D)4s & - 3d^7(a^5S)4s4p(^{1}P^{\circ})\\ & 3d^7 & - 3d^6(b^4G)4p\\ 3d^6(a^5D)4s & - 3d^6(a^1D)4p\\ & 3d^7 & - 3d^6(a^5D)5p \end{array}$	$\begin{array}{c} a^{4}D - x^{6}P^{6} \\ a^{2}D - {}^{2}F^{6} \\ ga^{6}D - w^{2}P^{6} \\ a^{4}P - {}^{4}P^{6} \end{array}$	2010/17-00/07/1-10/	P P P P	749 749 749 749 749
9	60 10 5 5 20	1277.643 1277.685 1279.101 1280.526 1283.063	$\begin{array}{c} .977053 & .79.24617\\ .977053 & .79.24360\\ 25.787598 & .103.96749\\ 20.80577 & .98.89871\\ 20.34030 & .98.27877\end{array}$	$\begin{array}{l} 3d^6(a^5D)4s - 3d^5(a^cS)4s 4p(^{1}P^{\circ}) \\ 3d^6(a^5D)4s - 3d^7(a^1D)4p \\ 3d^6(a^3P)4s - 3d^5(a^4P)4s4p(^3P^{\circ}) \\ 3d^7 - 3d^5(b^1G)4p \\ 3d^7 - 3d^6(b^1G)4p \\ 3d^7 - 3d^6(b^1G)4p \end{array}$	ga ⁶ D - x ⁶ P° ga ⁶ D - w ² P° b ² P - ² S° a ² H - ² F° a ² H - ² H°		P P P P	749 749 749 749 749 749
	1 1 1 5 40	1286.914 1287.423 1289.094 1289.312 1290.194	$\begin{array}{c} 20.830582-98.53585\\ 20.830582-98.50510\\ 13.474411-91.048256\\ 20.830582-98.39133\\ 20.830582-98.39133\\ 20.830582-98.33828 \end{array}$	$\begin{array}{l} 3d^6(a^3P)4s - 3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s - 3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^7 - 3d^6(a^5D)5p\\ 3d^6(a^3P)4s - 3d^7(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s - 3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s - 3d^5(a^4P)4s4p(^3P^{\circ}) \end{array}$	b ⁴ P - ⁴ F° b ⁴ P - ⁴ D° a ⁴ P - ⁴ D° b ⁴ P - ⁴ D° b ⁴ P - ⁴ S°		P P P P	749 749 749 749 749 749
	$20 \\ 30 \\ 1 \\ 2 \\ 0$	$\begin{array}{c} 1290.772 \\ 1291.581 \\ 1292.406 \\ 1293.044 \\ 1293.543 \end{array}$	$\begin{array}{c} 20.80577 & 98.27877 \\ 13.474411 & 90.898873 \\ 13.673185 & 91.048256 \\ 26.055423 & 103.39129 \\ 13.474411 & 90.780621 \end{array}$	$\begin{array}{c} 3d^7 - 3d^6(b^1C) 4p \\ 3d^7 - 3d^6(b^2P) 4p \\ 3d^7 - 3d^6(b^2P) 4p \\ 3d^7 - 3d^6(a^3D) 5p \\ 3d^6(a^3C) 4s - 3d^4(a^2D) 5s) 2d^7 \\ 3d^6(a^3D) 5p \end{array}$	$ \begin{array}{c} a^{2}H - {}^{2}H^{o} \\ a^{4}P - {}^{4}P^{o} \\ a^{4}P - {}^{4}D^{o} \\ a^{4}G - {}_{5/2}[_{3/2}]^{o} \\ a^{4}P - {}^{4}F^{o} \end{array} $		P P P Q	749 749 749 749 292
	$30 \\ 1 \\ 40 \\ 1 \\ 10$	1294.906 1295.903 1296.084 1296.287 1297.933	$\begin{array}{r} 13.673185 & -90.898873\\ 21.430359 & -98.59665\\ 13.474411 & -90.629902\\ 13.904824 & -91.048256\\ 20.80577 & -97.85135 \end{array}$	3d ⁷ - 3d ⁶ (b ³ P)4p 3d ⁶ (a ³ H)4s - 3d ⁵ (a ⁴ D)4s4p(³ P°) 3d ⁷ - 3d ⁶ (b ³ P)4p 3d ⁷ - 3d ⁶ (a ⁶ D)5p 3d ⁷ - 3d ⁶ (b ³ G)4p	a ⁴ P - ⁴ P° a ⁴ H - ⁴ F° a ⁴ P - ⁴ S° a ⁴ P - ⁴ D° a ² H - ² H°		P P P P	749 749 749 749 749 749
	$2 \\ 5 \\ 30 \\ 0 \\ 1$	1298.116 1298.802 1299.432 1299.804 1299.994	$\begin{array}{r} 26.932748 & + 103.96749 \\ 13.904824 & + 90.898873 \\ 13.673185 & + 90.629902 \\ 13.904824 & + 90.83948 \\ 13.474411 & + 90.397868 \end{array}$	$\begin{array}{l} 3d^6(a^{3}P)4s - 3d^5(a^{4}P)4s4p(^{3}P') \\ & 3d^7 - 3d^6(b^3P)4p \\ & 3d^7 - 3d^6(b^3P)4p \\ & 3d^7 - 3d^6(b^3P)4p \\ & 3d^7 - 3d^6(a^{3}D)5p \end{array}$	b ² P - ² S° a ⁴ P - ⁴ P° a ⁴ P - ⁴ S° a ⁴ P - ⁴ P° a ⁴ P - ⁴ D°	1923923921-92592 	P P P P P	749 749 749 749 749 749
	2 5 2 5 1	1303.030 1303.355 1303.899 1304.436 1305.520	26.932748 - 103.67622 13.904824 - 90.629902 21.812055 - 98.50510 25.787598 - 102.44910 22.409852 - 99.00770	$\begin{array}{l} 3d^6(a^3P)4_5 + 3d^6(a^5D_{3/2})4f \\ 3d^7 + 3d^6(b^3P)4p \\ 3d^6(a^3P)4_5 + 3d^5(a^4D)4_54p(^3P^\circ) \\ 3d^6(a^3P)4_5 + 3d^5(a^4D)4_54p(^3P^\circ) \\ 3d^6(a^3P)4_5 + 3d^5(a^4D)4_54p(^3P^\circ) \\ 3d^6(a^3P)4_5 + 3d^5(a^4D)4_54p(^3P^\circ) \end{array}$	$\begin{array}{c} b^2 P - \frac{3}{2} \left[\frac{1}{2} \right]^9 \\ a^4 P - \frac{4}{3} S^0 \\ b^4 P - \frac{4}{2} D^0 \\ b^2 P - \frac{2}{2} D^0 \\ b^4 P - \frac{4}{4} D^0 \end{array}$		Q P P P P	749 749 749 749 749 749
	$\begin{array}{c} 0 \\ 20 \\ 2 \\ 2 \\ 2 \\ 0 \end{array}$	1305.784 1306.742 1306.830 1307.263 1308.968	$\begin{array}{c} 15.84465 & 92.42698 \\ 21.812055 & 98.33828 \\ 18.360646 & 94.88074 \\ 20.830582 & 97.32627 \\ 32.875646 & 109.27171 \end{array}$	$\begin{array}{r} 3d^7 - 3d^5(a^4G)4s4p(^3P^{\prime})\\ 3d^6(a^3P)4s - 3d^7(a^4P)4s4p(^3P^{\prime})\\ 3d^7 - 3d^5(a^4P)4s4p(^3P^{\prime})\\ 3d^6(a^5P)4s - 3d^5(a^4P)4s4p(^3P^{\prime})\\ 3d^6(a^1I)4s - 3d^5(a^2I)4s4p(^3P^{\prime}) \end{array}$	a ² G - v ⁴ F° b ⁴ P - ⁴ S° a ² P - ⁴ P° b ⁴ P - ² P° a ² I - ² I°		P P Q P P	749 749 749 749 749 749
	30 10 1 1 1	1309.555 1309.581 1309.929 1310.151 1310.588	$\begin{array}{c} 32.909905 & 109.27171 \\ 22.409852 & 98.77014 \\ 18.360646 & 94.70066 \\ 15.84465 & 92.171716 \\ 30.388542 & 106.69017 \end{array}$	$\begin{array}{l} 3d^6(a^1I)4s \cdot 3d^5(a^2I)4s 4p(^3P^\circ) \\ 3d^6(a^3P)4s \cdot 3d^5(a^4D)4s 4p(^3P^\circ) \\ 3d^7 \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^6(b^3F)4p \\ 3d^6(a^3G)4s \cdot 3d^5(a^2I)4s 4p(^3P^\circ) \end{array}$	$\begin{array}{c} a^{2}I - {}^{2}I^{\circ} \\ b^{4}P - {}^{4}D^{\circ} \\ a^{2}P - {}^{2}D^{\circ} \\ a^{2}G - u^{2}G^{\circ} \\ b^{2}G - {}^{2}H^{\circ} \end{array}$	122-12200000000000000000000000000000000	P P P P P	749 749 749 749 749 749

ere.

èa.

D-	14
----	----

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	30 2 5 5 5 5	1311.062 1311.762 1316.492 1317.030 1317.545	$\begin{array}{r} 32.875646 & \cdot 109.14968 \\ 16.36936 & \cdot 92.602703 \\ 22.637205 & \cdot 98.59665 \\ 22.409852 & \cdot 98.33828 \\ 22.637205 & \cdot 98.53585 \end{array}$	$\begin{array}{l} 3d^6(a^1I)4s+3d^5(a^2I)4s4p(^3P^{\circ})\\ 3d^7-3d^6(b^3F)4p\\ 3d^6(a^3F)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^4F)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ \end{array}$	a ² I - ² I° a ² G - u ² G° b ⁴ F - ⁴ F° b ⁴ P - ⁴ S° b ⁴ F - ⁴ F°	13 27 + 2012 30 27 + 20 20 - 12 - 20 - 23 - 27 + 20 20 - 12 - 20 - 20 - 20 - 20 - 20 - 20 -	Р Р Р Р	749 749 749 749 749 749
	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{array} $	1318.065 1318.565 1318.726 1320.060 1320.327	$\begin{array}{r} 27.314922 & 103.1837 \\ 20.516960 & 96.35696 \\ 22.939358 & 98.77014 \\ 22.637205 & 98.39133 \\ 23.031300 & 98.77014 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s \cdot 3d^5(a^4D)4s4p(^3P^\circ) \\ 3d^7 \cdot 3d^5(a^*C)4s4p(^3P^\circ) \\ 3d^6(a^3F)4s \cdot 3d^5(a^4D)4s4p(^3P^\circ) \\ 3d^6(a^4F)4s \cdot 3d^5(a^4D)4s4p(^3P^\circ) \\ 3d^6(a^4F)4s \cdot 3d^5(a^4D)4s4p(^3P^\circ) \\ 3d^6(a^4F)4s \cdot 3d^5(a^4D)4s4p(^3P^\circ) \end{array}$	$\begin{array}{c} a^{2}F + {}^{2}F^{o} \\ a^{2}D + t^{2}F^{o} \\ b^{4}F + {}^{4}D^{o} \\ b^{4}F + {}^{4}D^{o} \\ b^{4}F + {}^{4}D^{o} \\ b^{4}F + {}^{4}D^{o} \end{array}$		P P P P	749 749 749 749 749 749
	1 1 1 1	1320.559 1320.765 1321.096 1323.084 1323.258	$\begin{array}{r} 22.810357 + 98.53585\\ 27.620412 + 103.3341\\ 22.810357 + 98.50510\\ 22.810357 + 98.39133\\ 26.932748 + 102.50381 \end{array}$	$\begin{array}{l} 3d'(a^3F)4s \cdot 3d^5(a^4D)4s 4p(^3P'')\\ 3d''(a^3F)4s \cdot 3d^5(a^4D)4s 4p(^3P'')\\ 3d^6(a^3F)4s \cdot 3d^5(a^4D)4s 4p(^3P'')\\ 3d''(a^3F)4s \cdot 3d^5(a^4D)4s 4p(^3P'')\\ 3d''(a^3F)4s \cdot 3d^5(a^4D)4s 4p(^3P'')\\ \end{array}$	$\begin{array}{c} b^{4}F + {}^{4}F^{o} \\ a^{2}F + {}^{2}F^{o} \\ b^{4}F + {}^{4}D^{o} \\ b^{4}F + {}^{4}D^{o} \\ b^{2}P + {}^{2}D^{o} \end{array}$		P P P P P	749 749 749 749 749 749
	0 5 0 0 0	1323.351 1324.254 1325.991 1327.14 1328.786	22.939358 - 98.50510 21.812055 - 97.32627 22.939358 - 98.35466 7.955299 - 83.305251 22.939358 - 98.19600	$\begin{array}{l} 3d^{\circ}(a^{3}F)4s + 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})\\ 3d^{\circ}(a^{3}P)4s + 3d^{5}(a^{4}P)4s4p(^{3}P^{\circ})\\ 3d^{\circ}(a^{4}F)4s + 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})\\ 3d^{\circ}(a^{5}D)4s + 3d^{6}(a^{1}F)4p\\ 3d^{\circ}(a^{5}F)4s + 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})\\ \end{array}$	b ⁴ F - ⁴ D° b ⁴ P - ² P° b ⁴ F - ⁴ F° a ⁴ D - v ² G° b ⁴ F - ⁴ F°		P P P P P	749 749 749 816 749
	1	1328.793 1330.01	20.80577 - 96.06206 23.317633 - 98.50510	$\begin{array}{r} 3d^7 \cdot 3d^5(a^4G)4s4p(^3P^{\circ}) \\ 3d^54s^2 \cdot 3d^5(a^4D)4s4p(^3P^{\circ}) \end{array}$	a ² H - ² H° a ⁶ S - ⁴ D°	9 - 11 25 - 5 2 - 5	P P	749 816
	1 0	$ \begin{array}{r} 1330.052 \\ 1330.405 \\ 1330.412 \end{array} $	20.830582 - 95.99569 23.031300 - 98.19600	$3d^{6}(a^{3}P)4s - 3d^{5}(a^{4}P)4s4p(^{3}P^{\circ}) \\ 3d^{6}(a^{3}F)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$	b ⁴ P - ⁴ D° b ⁴ F - ⁴ F°	55 - 55 21-35 22 - 22	P P	749 749 749
	$ \begin{array}{c} 10 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	1330.952 1335.410 1336.386 1336.712 1340.260	$\begin{array}{l} 27.314922 + 102.44910\\ 27.620412 + 102.50381\\ 27.620412 + 102.44910\\ 21.251608 + 96.06206\\ 25.787598 + 100.40036 \end{array}$	$\begin{array}{l} 3d^{6}(a^{3}F)4s \cdot 3d^{5}(a^{4}D)4s 4p(^{3}P^{\circ})\\ 3d^{6}(a^{3}F)4s \cdot 3d^{5}(a^{4}D)4s 4p(^{3}P^{\circ})\\ 3d^{\prime}(a^{3}F)4s \cdot 3d^{5}(a^{4}D)4s 4p(^{3}P^{\circ})\\ 3d^{6}(a^{3}H)4s \cdot 3d^{5}(a^{4}G)4s 4p(^{3}P^{\circ})\\ 3d^{6}(a^{3}P)4s \cdot 3d^{5}(a^{4}P)4s 4p(^{3}P^{\circ})\\ \end{array}$	a ² F - ² D ⁰ a ² F - ² D ⁰ a ² F - ² D ⁰ a ⁴ H - ² H ⁰ b ² P - ² D ⁰	7-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-	P P P P P	749 749 749 749 749 749
	5 10 5 5 2	1345.382 1347.265 1348.005 1349.592 1353.023	$\begin{array}{c} 25.428784 + 99.75712 \\ 25.428784 + 99.65322 \\ 20.516960 + 94.70066 \\ 32.909905 + 107.00635 \\ 20.830582 + 94.73917 \end{array}$	$\begin{array}{l} 3d^6(a^3G)4s + 3d^6(b^1G)4p\\ 3d^6(a^3G)4s + 3d^3(a^4G)4s^4p(^3P^o)\\ & 3d^7 + 3d^6(b^2F)4p\\ 3d^6(a^1I)4s + 3d^5(a^2I)4s^4p(^3P^o)\\ 3d^6(a^3P)4s + 3d^5(a^4P)4s^4p(^3P^o) \end{array}$	a ⁴ G - ² G° a ⁴ G - ² G° a ² D - ² D° a ² I - ² H° b ⁴ P - ⁴ P°	ЦруЦрупанц 	P P P P P	749 749 749 749 749 749
	1 1 2 0 0	1354.013 1354.459 1354.747 1354.87 1356.483	20.830582 - 94.68509 25.805328 - 99.63552 32.875646 - 106.69017 20.34030 - 94.148518 22.637205 - 96.35696	$\begin{array}{l} 3d^{\circ}(a^{3}P)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ}) \\ 3d^{\circ}(a^{3}G)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{\circ}) \\ 3d^{\circ}(a^{1})14s - 3d^{5}(a^{2}1)4s4p(^{5}P^{\circ}) \\ 3d^{7} - 3d^{5}(a^{4}G)4s4p(^{3}P^{\circ}) \\ 3d^{7}(a^{3}F)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{\circ}) \end{array}$	b ⁴ P - ⁶ P° a ⁴ G - ² G° a ² I - ² H ³ a ² H - w ⁴ G° b ⁴ F - t ² F ³	North Reverses	P P Q P	749 749 749 816 749
	20 2 20 20 12	1357.796 1358.788 1358.937 1359.063 1360.16	32.875646 - 106.5244 26.170181 - 99.75712 22.637205 - 96.21742 .977053 - 74.498057	$\begin{array}{l} 3d^6(a^1I)4s - 3d^5(a^2I)4s4p(^3P^o) \\ 3d^6(a^3H)4s - 3d^6(b^1G)4p \\ 3d^6(a^3F)4s - 3d^5(a^4P)4s4p(^3P^o) \\ 3d^6(a^5D)4s - 3d^6(a^3D)4p \end{array}$	$a^{2}I + {}^{2}K''$ $b^{2}H + {}^{2}G^{\circ}$ $b^{4}F + {}^{4}D^{\circ}$ $ga^{\circ}D + x^{2}D^{\circ}$	$\frac{13}{2} - \frac{15}{2}$ $\frac{11}{2} - \frac{9}{7}$ $\frac{9}{2} - \frac{7}{7}$ $\frac{1}{2} - \frac{9}{2}$	P P P Q	749 749 749 749 439
	5 20 25 30 1	$\begin{array}{c} 1360.450\\ 1360.858\\ 1361.366\\ 1361.373\\ 1361.504\end{array}$	33.501253 - 107.00635 26.170181 - 99.65322 26.352766 - 99.80840 13.474411 - 86.929649 22.409852 - 95.85805	$\begin{array}{l} 3d^6(a^1G)4s\cdot3d^5(a^2I)4s4p(^3)\\ 3d^6(a^3H)4s\cdot3d^5(a^4G)4s4p(^3P^*)\\ 3d^6(a^3H)4s\cdot3d^6(b^1G)4p\\ &3d^7\cdot3d^6(b^3P)4p\\ 3d^7\cdot3d^6(a^3P)4s\cdot3d^5(a^4P)4s4p(^3P^*)\\ \end{array}$	c ² G - ² H° b ² H - ² G° b ² H - ² G° a ⁴ P - v ⁴ D° b ⁴ P - ⁴ D°		P P P P P	749 749 749 749 749 749
	$2 \\ 1 \\ 10 \\ 20 \\ 40$	$\begin{array}{c} 1362.267\\ 1362.535\\ 1362.748\\ 1364.384\\ 1364.578\end{array}$	22.810357 - 96.21742 21.308040 - 94.70066 20.830582 - 94.211739 13.474411 - 86.767577 26.352766 - 99.63552	$\begin{array}{r} 3d^6(a^3F)4s - 3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^7 - 3d^9(b^3F)4p\\ 3d^6(a^3P)4s - 3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^7 - 3d^6(b^3P)4p\\ 3d^6(a^3H)4s - 3d^5(a^4G)4s4p(^3P^{\circ})\\ \end{array}$	$\begin{array}{c} b^{4}F + {}^{4}D^{\circ}\\ a^{2}D - {}^{2}D^{\circ}\\ b^{4}P - {}^{4}P^{\circ}\\ a^{4}P - v^{4}D^{\circ}\\ b^{2}H - {}^{2}G^{\circ} \end{array}$	NACONSCINCTON	P P P P	749 749 749 749 749 749
	$\begin{array}{c c} 20 \\ 10 \\ 20 \\ 30 \\ 2 \end{array}$	1364.756 1365.678 1366.394 1366.720 1367.161	$\begin{array}{c} 32.909905 \cdot 106.1831 \\ 33.466463 \cdot 106.69017 \\ 22.810357 \cdot 95.99569 \\ 25.428784 \cdot 98.59665 \\ 20.34030 \cdot 93.48458 \end{array}$	$\begin{array}{rll} 3d^6(a^1])4s &- 3d^5(a^2])4s4p(^3P^\circ)\\ 3d^6(a^1G)4s &- 3d^5(a^2])4s4p(^3P^\circ)\\ 3d^6(a^3F)4s &- 3d^5(a^4P)4s4p(^3P^\circ)\\ 3d^6(a^3G)4s &- 3d^3(a^4D)4s4p(^3P^\circ)\\ 3d^7 &- 3d^6(b^3F)4p \end{array}$	$a^{2}I - {}^{2}K^{\circ}$ $c^{2}G - {}^{2}H^{\circ}$ $b^{4}F - {}^{4}D^{\circ}$ $a^{4}G - {}^{4}F^{\circ}$ $a^{2}H - u^{4}F^{\circ}$	1322112 	P P P P P	749 749 749 749 749 749
	$2 \\ 10 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2$	1367.950 1368.094 1368.262 1368.493 1368.575	13.673185 - 86.767577 27.314922 - 100.40036 13.474411 - 86.54749 21.812055 - 94.88074	$\begin{array}{ccc} & 3d^{7}\cdot 3d^{6}(b^{3}P)4p \\ & 3d^{6}(a^{3}F)4s\cdot 3d^{5}(a^{4}P)4s4p(^{3}P^{9}) \\ & 3d^{7}\cdot 3d^{6}(a^{1}F)4p \\ & 3d^{6}(a^{3}P)4s\cdot 3d^{5}(a^{4}P)4s4p(^{3}P^{9}) \end{array}$	a ⁴ P - v ⁴ D° a ² F - ² D° a ⁴ P - u ² F° b ⁴ P - ⁴ P°	ngeververver 	P P P P	749 749 749 749 749 749

Multiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
5 20 10 2 0	1368.807 1369.707 1369.856 1370.191 1370.532	22.939358 - 95.99569 13.474411 - 86.48275 20.830582 - 93.830979 25.787598 - 98.77014 23.031300 - 95.99569	$\begin{array}{l} 3d^6(a^3F)4s+3d^5(a^4P)4s4\rho(^3P^{\circ})\\ 3d^7-3d^6(a^4F)4p\\ 3d^8(a^5P)4s+3d^7(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^5P)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ \end{array}$	$\begin{array}{c} b^{4}F + {}^{4}D^{n} \\ a^{4}P + u^{2}F^{n} \\ b^{4}P + {}^{n}D^{n} \\ b^{2}P + {}^{4}D^{n} \\ b^{4}F + {}^{4}D^{n} \end{array}$		Р Р Р Р	749 749 749 749 749 749
55 0 5 0 40	1371.022 1371.232 1371.390 1372.226 1372.292	$\begin{array}{r} 21.251608 & - 94.1898888\\ 21.812055 & - 94.73917\\ 22.939358 & - 95.85805\\ 13.673185 & - 86.54749\\ 13.673185 & - 86.54749\\ 13.673185 & - 86.543974 \end{array}$	$\begin{array}{l} 3d^6(a^3H)4s\cdot3d^5(a^4C)4s4p(^3P^{\circ})\\ 3d^6(a^4P)4s\cdot3d^5(a^4P)4s4p(^4P^{\circ})\\ 3d^6(a^3F)4s\cdot3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^7\cdot3d^9(a^4F)4p\\ 3d^7\cdot3d^9(a^4F)4p\\ 3d^7\cdot3d^6(b^3P)4p \end{array}$			P P P P P	749 749 749 749 749 749
5 30 0 1 5	1373.122 1373.718 1374.005 1374.393 1374.827	23.031300 - 95.85805 30.388542 - 103.1837 27.620412 - 100.40036 21.430359 - 94.189888 23.031300 - 95.76770	$\begin{array}{l} 3d^6(a^3F)4s+3d^3(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3G)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4G)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4P)4s4p(^3P^{\circ}) \end{array}$	$\begin{array}{c} b^{4}F + {}^{4}D^{o} \\ b^{2}G + {}^{2}F^{o} \\ a^{2}F + {}^{2}D^{o} \\ a^{4}H + w^{4}G^{o} \\ b^{4}F + {}^{4}D^{o} \end{array}$	NAM ⁶⁴ Transman National Andrews National Andrews	Р Р Р Р	749 749 749 749 749 749
10 55 1 10 0	1374.939 1375.172 1375.859 1376.668 1377.676	25.805328 - 98.53585 21.430359 - 94.148518 20.80577 - 93.48765 13.904824 - 86.543974 25.805328 - 98.39133	$\begin{array}{l} 3d^{5}(a^{3}G)4_{5}\cdot 3d^{5}(a^{4}D)4_{5}4p(^{3}P^{o})\\ 3d^{6}(a^{4}H)4_{5}\cdot 3d^{5}(a^{*}G)4_{5}4p(^{3}P^{o})\\ 3d^{7}\cdot 3d^{6}(b^{5}F)4p\\ 3d^{7}\cdot 3d^{6}(b^{5}F)4p\\ 3d^{7}\cdot 3d^{6}(b^{5}P)4p\\ 3d^{6}(a^{*}G)4_{5}\cdot 3d^{5}(a^{*}D)4_{8}4p(^{3}P^{o})\\ \end{array}$			Р Р Р Р Р	749 749 749 749 749 749
2 30 2 2 55	1377.99 1378.036 1378.280 1378.347 1379.470	30.764485 - 103.3341 25.787598 - 98.35466 25.981629 - 98.53585 25.787598 - 98.33828 21.581638 - 94.073248	$\begin{array}{l} 3d^6(a^3C)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3G)4s+3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3H)4s+3d^5(a^4G)4s4p(^3P^{\circ})\\ \end{array}$	b ² G - ² F b ² P - ⁴ F a ⁴ G - ⁴ F b ² P - ⁴ S a ⁴ H - w ⁴ C	NACINGUNALINGUNAL NACINGUNALINGUNAL	Q P P P	816 749 749 749 749 749
5 10 2 10 20	1379.615 1380.411 1380.711 1381.221 1381.730	$\begin{array}{c} 13.904824 & + 86.388820 \\ 27.314922 & + 99.75712 \\ 26.170181 & + 98.59665 \\ 21.812055 & + 94.211739 \\ 25.981629 & + 98.33466 \end{array}$	$\begin{array}{r} 3d^7\cdot 3d^6(b^3P)4p\\ 3d^6(a^3F)4s\cdot 3d^9(b^1C)4p\\ 3d^6(a^3F)4s\cdot 3d^5(a^2D)4s4p(^3P^*)\\ 3d^6(a^3P)4s\cdot 3d^5(a^3P)4s4p(^3P^*)\\ 3d^6(a^4G)4s\cdot 3d^5(a^4D)4s4p(^4P^*)\\ \end{array}$	a ⁴ P - v ⁴ D° a ² F - ² G° b ² H - ⁴ F° b ⁴ P - ⁴ P° a ⁴ G - ⁴ F°	-1010-1010-0010051050	P P P P	749 749 749 749 749 749
1 2 1 1 2	1381.954 1382.394 1382.565 1382.732 1383.139	21.711917 - 94.073248 27.314922 - 99.65322 22.400852 - 94.73917 27.314922 - 99.63552 20.830582 - 93.12990	$\begin{array}{l} 3d^6(a^3H)4s+3d^5(a^4C)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4C)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^5(a^4P)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^5(a^4C)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s+3d^5(a^4C)4s4p(^3P^{\circ})\\ 3d^6(a^3P)4s+3d^6(b^3F)4p \end{array}$	$\begin{array}{c} {a}^{4}H + {w}^{4}G^{\circ} \\ {a}^{2}F + {}^{2}G^{\circ} \\ {b}^{4}P + {}^{4}P^{\circ} \\ {a}^{2}F + {}^{2}G^{\circ} \\ {b}^{4}P + {}^{4}D^{\circ} \end{array}$	1-010-001-001-001-001-001-001-001-001-0	P P P P	749 749 749 749 749 749
70 5 2 1 20	1383.580 1384.671 1385.272 1385.456 1386.182	21.711917 - 93.98817 21.812055 - 94.031378 27.620412 - 99.80840 20.516960 - 92.695374 26.055423 - 98.19600	$\begin{array}{l} 3d^6(a^3H)4s+3d^5(a^4G)4s4p(^{3}P')\\ 3d^6(a^2P)4s+3d^5(a^4D)4s4p(^{3}P')\\ 3d^6(a^3F)4s+3d^9(b^4G)4p\\ 3d^6(a^2F)4s+3d^9(b^3P)4p\\ 3d^6(a^2G)4s+3d^5(a^4D)4s4p(^{3}P'')\\ \end{array}$	$\begin{array}{c} a^{4}H + w^{4}G^{\circ} \\ b^{4}P + ^{6}D^{\circ} \\ a^{2}F + ^{2}G^{\circ} \\ a^{2}D + u^{2}D^{\circ} \\ a^{4}G + ^{4}F^{\circ} \end{array}$		P P P P	749 749 749 749 749 749
1 1 55 1 0	1386.462 1386.797 1387.219 1387.445 1387.87	22.637205 - 94.763219 26.170181 - 98.27877 20.34030 - 92.42698 26.932748 - 99.00770 31.364440 - 103.41808	$\begin{array}{l} 3d^6(a^3F)4s+3d^5(a^4D)4s4p(^3P^\circ)\\ 3d^6(a^3H)4s+3d^7(b^4G)4p\\ 3d^7+3d^3(a^4G)4s4p(^3P^\circ)\\ 3d^6(a^3P)4s+3d^5(a^4D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^4D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^5D)4s+3d^6(a^5D)4s4p(^3P^\circ)\\ 3d^6(a^5D)4s+3d^5(a^5D)4s+3d^5(a^5D)4s+3d^5(a^5D)4s+3d^6(a^5D)4s+3d^6(a^5D)4s+3d^6(a^5D)4s$	b ⁴ F - ⁶ P° b ² H - ² H° a ² H - v ⁴ F° b ² P - ⁴ D° b ⁴ D - _{5/2} [0]°	$\begin{array}{c} 9 & 7 \\ 21 & 22 \\ 11 & 22 \\ 21 & 22 \\ 22 & 22 \\ 22 & 22 \\ 23 & 22 \\ 23 & 23 \\ 23 & 22 \\ 23 & 23 \\ 24 & 24 \\ 25 & 25 \\ 25 & \mathbf$	P P P Q	749 749 749 749 816
10 5 5 2 5	1387.94 1388.524 1388.597 1389.660 1390.318	31.999048 - 104.04635 21.812055 - 93.830979 27.620412 - 99.63552 20.34030 - 92.300277 26.352766 - 98.27877	$\begin{array}{r} 3d^7-3d^6(a^5D_{<,n})4f\\ 3d^6(a^2P)4s-3d^5(a^4D)4s4p(^3P')\\ 3d^6(a^3F)4s-3d^5(a^4G)4s4p(^3P')\\ 3d^7-3d^5(a^4D)4s4p(^3P')\\ 3d^7-3d^5(a^4D)4s4p(^3P')\\ 3d^6(a^3H)4s-3d^6(b^4G)4p\\ \end{array}$	b ² F - 0[_{5/2}]° b ⁴ P - ⁶ D" a ² F - ² C° a ² H - ⁶ F° b ² H - ² H″	trato traffic trattorional Reference and trattorional	Q P P P	436 749 749 749 749 749
1 70 90 2 1	1391.309 1392.149 1392.817 1393.214 1393.49	22.810357 - 94.68509 20.34030 - 92.171716 20.80577 - 92.602703 20.34030 - 92.11678 22.939358 - 94.70066	$\begin{array}{l} 3d^6(a^3F)4s \cdot 3d^5(a^4D)4s 4p(^3P^\circ) \\ 3d^7 \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^5(b^3F)4p \\ 3d^7 \cdot 3d^5(a^4G)4s 4p(^3P^\circ) \\ 3d^6(a^3F)4s \cdot 3d^6(b^3F)4p \end{array}$	b ⁴ F - ⁶ P° a ² H - u ² G° a ² H - u ² G° a ² H - x ⁴ H° b ⁴ F - ² D°		P P P Q	749 749 749 749 816
1 2 5 1 0	1394.713 1396.228 1396.234 1396.964 1396.974	20.516960 - 92.216320 22.409852 - 94.031378 20.80577 - 92.42698 27.314922 - 98.89871 21.812055 - 93.39536	$\begin{array}{r} 3d^7 - 3d^6(b^3P) 4p \\ 3d^6(a^4P) 4s - 3d^7(a^4D) 4s 4p(^3P'') \\ 3d^7 - 3d^7(a^4G) 4s 4p(^3P'') \\ 3d^6(a^3F) 4s - 3d^6(b^4G) 4p \\ 3d^6(a^3F) 4s - 3d^6(b^3F) 4p \end{array}$			P P P P	749 749 749 749 749 749
30 40 10 0 2	1397.572 1397.845 1398.380 1398.629 1399.057	$\begin{array}{r} 22.637205-94.189888\\ 25.787598-97.32627\\ 22.637205-94.148518\\ 26.352766-97.85135\\ 20.80577-92.28246 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s + 3d^3(a^4G)4s4p(^2P'')\\ 3d^6(a^2P)4s + 3d^3(a^2P)4s4p(^3P'')\\ 3d^6(a^4F)4s + 3d^5(a^4G)4s4p(^3P'')\\ 3d^6(a^3F)4s + 3d^6(a^4G)4s4p(^3P'')\\ 3d^6(a^3F)4s + 3d^6(a^4G)4s4p(^4P'')\\ 3d^7 + 3d^5(a^4G)4s4p(^4P'') \end{array}$	$\begin{array}{l} b^{4}F + w^{4}G^{\circ} \\ b^{2}P + ^{2}P^{\circ} \\ b^{4}F + w^{4}G^{\circ} \\ b^{2}H + ^{2}H^{\circ} \\ a^{2}H + v^{4}F^{\circ} \end{array}$		Р Р Р Р	749 749 749 749 749 749

ultiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
		1399.962 1400.452 1401.229 1401.774 1403.101	$\begin{array}{c} 22.409852 & -93.84034 \\ 26.932748 & -98.33828 \\ 20.80577 & -92.171716 \\ 22.810357 & -94.148518 \\ 1.872567 & 73.143288 \end{array}$	$\begin{array}{l} 3d^6(a^3P)4s\cdot3d^5(a^4D)4s^4p(^3P^\circ)\\ 3d^6(a^3P)4s\cdot3d^5(a^4P)4s^4p(^3P^\circ)\\ 3d^7\cdot3d^6(b^3P)4p\\ 3d^6(a^3F)4s\cdot3d^7(a^4G)4s^4p(^3P^\circ)\\ 3d^7\cdot3d^6(a^1G)4p \end{array}$	$\begin{array}{l} b^{4}P - {}^{6}D^{\circ} \\ b^{2}P - {}^{4}S^{\circ} \\ a^{2}H - u^{2}G^{\circ} \\ b^{4}F - w^{4}G^{\circ} \\ a^{4}F - w^{2}G^{\circ} \end{array}$	12 - 32 P 12 - 32 P	749 749 749 749 749 749
	$10 \\ 1 \\ 40 \\ 30 \\ 1$	1403.255 1404.119 1405.608 1405.800 1406.718	$\begin{array}{c} 22.810357 & 94.073248 \\ 1.872567 & 73.091590 \\ 1.872567 & 73.016147 \\ 22.939358 & 94.073248 \\ 21.812055 & 92.89950 \end{array}$	$\begin{array}{rl} 3d^6(a^3F)4s &- 3d^5(a^4G)4s4p(^3P^{\rm o})\\ &3d^7 &- 3d^6(a^1G)4p\\ &3d^7 &- 3d^9(a^1G)4p\\ &3d^8(a^3F)4s &- 3d^3(a^4G)4s4p(^3P^{\rm o})\\ &3d^6(a^3F)4s &- 3d^9(a^3F)4p \end{array}$	b ⁴ F - w ⁴ G° a ⁴ F - w ² G° a ⁴ F - x ² F° b ⁴ F - w ⁴ G° b ⁴ P - ⁴ D°	2 - 7 P 2 - 7 P	749 749 749 749 749 749
	5 110 10 1 1	1407.483 1408.478 1409.307 1410.139 1410.273	$\begin{array}{c} 22.939358 + 93.98817 \\ 21.251608 + 92.25021 \\ 23.031300 + 93.98817 \\ 21.251608 + 92.16660 \\ 21.308040 + 92.216320 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s \cdot 3d^3(a^4G)4s4p({}^3P^e)\\ 3d^6(a^3F)4s \cdot 3d^5(a^4G)4s4p({}^3P^e)\\ 3d^6(a^3F)4s \cdot 3d^5(a^4G)4s4p({}^3P^e)\\ 3d^6(a^3F)4s \cdot 3d^5(a^4G)4s4p({}^3P^e)\\ 3d^6(a^3H)4s \cdot 3d^5(a^4G)4s4p({}^3P^e)\\ 3d^7 \cdot 3d^6(b^3P)4p \end{array}$	b ⁴ F - w ⁴ G° a ⁴ H - x ⁴ H° b ⁴ F - w ⁴ G° a ⁴ H - x ⁴ H° a ² D - u ² D°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749 749 749 749 749 749
47	0 15 25 70 70	1410.621 1411.424 1411.485 1412.842 1413.702	$\begin{array}{c} 21.711917 & 92.602703\\ 22.637205 & 93.48765\\ 22.637205 & 93.48458\\ 1.872567 & 72.651876\\ 21.430359 & 92.16660\\ \end{array}$	$\begin{array}{l} 3d^6(a^3H)4s\cdot 3d^6(b^3F)4p\\ 3d^6(a^3F)4s\cdot 3d^6(b^3F)4p\\ 3d^6(a^3F)4s\cdot 3d^6(b^3F)4p\\ 3d^7\cdot 3d^6(a^3D)4p\\ 3d^6(a^3H)4s\cdot 3d^5(a^4G)4s4p(^3P^{\circ}) \end{array}$	a ⁴ H - u ² G° b ⁴ F - u ⁴ F° b ⁴ F - u ⁴ F° a ⁴ F - w ⁴ D° a ⁴ H - x ⁴ H°	7 - 7 P 9 - 7 P 11 - 12 P	749 749 749 749 749 749
	2 2 1 2 1	1414.699 1414.882 1414.943 1415.763 1415.934	21.430359 - 92.11678 22.810357 - 93.48765 22.810357 - 93.48458 25.428784 - 96.06206 2.430097 - 73.054881	$\begin{array}{l} 3d^6(a^3H)4s\cdot3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^6(a^3F)4s\cdot3d^6(b^3F)4p\\ 3d^6(a^3F)4s\cdot3d^6(b^3F)4p\\ 3d^6(a^3G)4s\cdot3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^7\cdot3d^6(a^1G)4p \end{array}$	$\begin{array}{l} a^{4}H \cdot x^{4}H^{\circ} \\ b^{4}F \cdot u^{4}F^{\circ} \\ b^{4}F \cdot u^{4}F^{\circ} \\ a^{4}G \cdot ^{2}H^{\circ} \\ a^{4}F \cdot x^{2}F^{\circ} \end{array}$	11 - 9 - 9 	749 749 749 749 749 749
	$ \begin{array}{c} 1 \\ 0 \\ 5 \\ 2 \\ 40 \end{array} $	1416.630 1416.710 1416.732 1417.469 1417.733	$\begin{array}{c} 21.581638 + 92.171716 \\ 2.430097 + 73.016147 \\ 22.810357 + 93.39536 \\ 22.939358 + 93.48765 \\ 21.581638 + 92.11678 \end{array}$	$\begin{array}{r} 3d^6(a^3H)4s\cdot3d^6(b^3F)4p\\ 3d^7\cdot3d^6(a^1G)4p\\ 3d^6(a^3F)4s\cdot3d^6(b^3F)4p\\ 3d^6(a^3F)4s\cdot3d^6(b^3F)4p\\ 3d^6(a^3F)4s\cdot3d^6(b^3F)4p\\ 3d^6(a^3H)4s\cdot3d^5(a^4G)4s4p(^3P^e) \end{array}$	a ⁴ H - u ² G° a ⁴ F - x ² F° b ⁴ F - u ⁴ F° b ⁴ F - u ⁴ F° a ⁴ H - x ⁴ H°	951-51-55 951-51-55 P P P P P P P	749 749 749 749 749 749
	1 1 20 10 1	1418.286 1418.587 1418.853 1419.325 1419.445	$\begin{array}{c} 21.581638 \cdot 92.08926\\ 22.637205 \cdot 93.12990\\ 1.872567 \cdot 72.352024\\ 22.939358 \cdot 93.39536\\ 31.999048 \cdot 102.44910 \end{array}$	$\begin{array}{r} 3d^6(a^3H)4s\cdot3d^5(a^4G)4s4p(^3P^e)\\ 3d^6(a^3F)4s\cdot3d^6(a^3P)4p\\ 3d^7\cdot3d^6(a^3D)4p\\ 3d^6(a^3F)4s\cdot3d^6(b^3F)4p\\ 3d^7\cdot3d^5(a^4D)4s4p(^3P^e) \end{array}$	$a^{4}H + x^{4}H^{\circ}$ $b^{4}F + {}^{4}D^{\circ}$ $a^{4}F + w^{4}F^{\circ}$ $b^{4}F + u^{4}F^{\circ}$ $b^{2}F + {}^{2}D^{\circ}$	9 - 7 P 9 - 7 P P 9 - 7 P P P 9 - 7 P P P P P P P P P P P P P P	749 749 749 749 749 749 749
	1 0 1 0 1	1419.603 1419.771 1420.356 1420.368 1420.575	$\begin{array}{c} 21.711917 + 92.154165 \\ 25.805328 + 96.23920 \\ 21.711917 + 92.11678 \\ 21.812055 + 92.216320 \\ 13.474411 + 83.86845 \end{array}$	$\begin{array}{rl} 3d^6(a^3H)4s &\cdot 3d^5(a^4D)4s^4p(^3P^{\rm o})\\ 3d^6(a^3C)4s &\cdot 3d^3(a^4C)4s4p(^3P^{\rm o})\\ 3d^6(a^3H)4s &\cdot 3d^5(a^4G)4s4p(^3P^{\rm o})\\ 3d^6(a^3P)4s &\cdot 3d^6(a^3P)4p\\ &3d^7\cdot 3d^6(a^1F)4p \end{array}$	a ⁴ H - ⁶ F ^a a ⁴ G - ² H ^o a ⁴ H - x ⁴ H ^o b ⁴ P - u ² D ^o a ⁴ P - v ² D ^o	7 - 7 P 9 - 7 - 9 P 2 - 9 - 9 P	749 749 749 749 749 749
	1 1 40 1 1	1420.585 1420.674 1420.912 1421.180 1421.441	$\begin{array}{c} 26.932748 + 97.32627 \\ 22.939358 + 93.32848 \\ 21.711917 + 92.08926 \\ 23.031300 + 93.39536 \\ 2.837950 + 73.189110 \end{array}$	$\begin{array}{rl} 3d^6(a^3P)4s &\cdot 3d^5(a^4P)4s4p(^3P^{\rm o})\\ 3d^6(a^3P)4s &\cdot 3d^6(b^3P)4p\\ 3d^6(a^3H)4s &\cdot 3d^5(a^4C)4s4p(^3P^{\rm o})\\ 3d^6(a^3F)4s &\cdot 3d^6(b^3F)4p\\ 3d^7 &\cdot 3d^6(a^3D)4p \end{array}$	b ² P - ² P ^a b ⁴ F - u ⁴ F ^o a ⁴ H - x ⁴ H ^o b ⁴ F - u ⁴ F ^o a ⁴ F - y ² P ^o		749 749 749 749 749 749
	5 10 5 8	1422.080 1422.532 1423.922 1424.08	22.810357 · 93.12990 23.031300 · 93.32848 2.430097 · 72.650658	$\begin{array}{l} 3d^6(a^3F)4s \cdot 3d^6(b^3F)4p \\ 3d^6(a^3F)4s \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^6(a^3D)4p \\ 0d^7 \cdot 3d^6(a^3D)4p \\ 0d^5(a^3D)4p \\ 0d^6(a^3D)4p \\ $	$b^{4}F - {}^{4}D^{\circ}$ $b^{4}F - u^{4}F^{\circ}$ $a^{4}F - w^{4}F^{\circ}$	$\frac{7}{2} - \frac{7}{2}$ P $\frac{7}{2} - \frac{2}{2}$ P $\frac{7}{2} - \frac{9}{2}$ P	749 749 749 488
7	$\begin{array}{c} 2\\ 55\\ 10\\ 2\\ 10\\ \end{array}$	1424.309 1424.597 1424.717 1424.786 1425.610 1426.21	31.304440 - 101.37390 13.673185 - 83.86845 2.430097 - 72.619490 31.387948 - 101.57390 38.660043 - 108.804667	$\begin{array}{r} 3a^{7} - 3a^{6}(a^{1}P)4s + p(^{-}P') \\ & 3d^{7} - 3d^{6}(a^{1}P)4p \\ & 3d^{7} - 3d^{6}(a^{2}D)4p \\ & 3d^{6}(a^{3}D)4s + 3d^{5}(a^{4}D)4s + p(^{3}P') \\ & 3d^{6}(a^{5}D)4s - 3d^{6}(a^{5}D)5s \end{array}$	$b^{+}D^{-} \cdot P^{0}$ $a^{4}P^{-} v^{2}D^{0}$ $a^{4}F^{-} w^{4}D^{0}$ $b^{4}D^{-} \cdot q^{4}P^{0}$ $z^{6}D^{0} \cdot q^{4}D$	2 · 2 P 3 · 52 P 2 · 2 P 2 · 2 P 2 · 2 Q Q	749 749 749 749 749 749 749 436
7 7	4P 1 2 2	1426.21 1426.21 1426.761 1427.148 1427.798	22.810357 - 92.89950 3.117461 - 73.187280 31.364440 - 101.40238	$\begin{array}{r} 3d^6(a^3F)4s \cdot 3d^6(b^3F)4p \\ 3d^7 \cdot 3d^6(a^3D)4p \\ 3d^6(a^3D)4s \cdot 3d^5(a^4D)4s4p(^3P^o) \end{array}$	b ⁴ F - ⁴ D° a ⁴ F - y ² P° b ⁴ D - ⁴ P°	7 - 52 P 23 - 52 P 32 - 52 P	13D,49 13D,49 749 749 749 749
,	$\begin{array}{c}2\\2\\1\\1\\10\end{array}$	1427.879 1428.688 1429.276 1429.391 1430.167	31.368450 - 101.40238 8.846768 - 78.84196 22.637205 - 92.602703 22.939358 - 92.89950 2.430097 - 72.352024	$\begin{array}{rl} 3d^6(a^3D)4s &- 3d^5(a^4D)4s4p(^3P^a)\\ 3d^6(a^3D)4s &\cdot 3d^6(a^4D)4p\\ 3d^6(a^3F)4s &- 3d^6(b^3F)4p\\ 3d^6(a^3F)4s &- 3d^6(b^3F)4p\\ 3d^6(a^3F)4s &- 3d^6(b^3F)4p\\ 3d^7 &- 3d^6(a^3D)4p \end{array}$	b ⁴ D - ⁴ P° a ⁴ D - w ² P° b ⁴ F - u ² G° b ⁴ F - ⁴ D° a ⁴ F - w ⁴ F°	1 - 1 P - 1 - 1 Q - 1 - 1 Q - 1 - 1 Q - 2 - 2 P - 2 - 2 P - 2 - 2 P - 2 - 2 P	749 749 749 749 749 749

Multiplet	Rel. Int.	λ_{vac} (in A)	Levels (in 10° cm ⁻¹)	Configurations	Terms	J - J Notes	Refer
	30 30 10	1430.781 1430.893 1432.492 1432.822	26.170181 - 96.06206 26.352766 - 96.23920 2.430097 - 72.238513 22.810357 - 92.607703	3d ⁶ (a ³ H)4s • 3d ⁵ (a ⁴ G)4s4p(³ P [*]) 3d ⁶ (a ³ H)4s • 3d ⁵ (a ⁴ G)4s4p(³ P [*]) 3d ⁷ • 3d ⁶ (a ³ D)4p 3d ⁶ (a ³ F)4s • 3d ⁶ (b ³ F)4n	$b^{2}H \cdot {}^{2}H^{\circ}$ $b^{2}H \cdot {}^{2}H^{\circ}$ $a^{4}F \cdot w^{4}F^{\circ}$ $b^{4}F \cdot u^{2}C^{\circ}$	11 - 11 P 2 - 2 P 2 - 2 P - 2 - 2 P - 2 - 2 P - 2 - 2 P - 2 - 7 P	749 749 749 749
	15	1432.875	22.637205 - 92.42698	3d ⁶ (a ³ F)4s · 3d ⁵ (a ⁴ G)4s4p(³ P ^o)	b ⁴ F - v ⁴ F ⁵	2 - 2 P	749
47 47	5 0 2 1 55	1433.044 1433.568 1434.145 1434.669 1434.996	$\begin{array}{c} 2.837950 & .72.619490\\ 22.939358 & .92.695374\\ 20.34030 & .90.067347\\ 20.34030 & .90.042779\\ 2.837950 & .72.524566\end{array}$	3d ⁷ - 3d ⁶ (a ³ D)4p 3d ⁶ (a ³ F)4s - 3d ⁶ (b ³ P)4p 3d ⁷ - 3d ⁶ (a ² D)5p 3d ⁷ - 3d ⁶ (b ³ F)4p 3d ⁷ - 3d ⁶ (a ³ D)4p			749 749 749 749 749 749
	1 2 1 2 0	1435.475 1435.848 1436.041 1436.438 1436.447	$\begin{array}{l} 22.939358 & 92.602703\\ 22.637205 & 92.28246\\ 30.764485 & 100.40036\\ 22.810357 & 92.42698\\ 23.031300 & 92.64751 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s + 3d^6(b^3F)4p\\ 3d^6(a^3F)4s + 3d^5(a^4G)4s4p(^3P^{*})\\ 3d^6(a^3G)4s + 3d^5(a^4P)4s4p(^3P^{*})\\ 3d^6(a^3F)4s + 3d^5(a^4G)4s4p(^3P^{*})\\ 3d^6(a^3F)4s + 3d^6(b^3F)4p \end{array}$	$\begin{array}{c} b^{4}F + u^{2}G^{o} \\ b^{4}F + v^{4}F^{o} \\ b^{2}G + ^{2}D^{o} \\ b^{4}F + v^{4}F^{o} \\ b^{4}F + v^{4}F^{o} \\ b^{4}F + ^{4}D^{o} \end{array}$	P P P P P P P P	749 749 749 749 749 749
	20 10 5 30 2	1438.133 1438.135 1438.445 1439.427 1439.600	$\begin{array}{c} 2.430097 & 71.964710\\ 22.637205 & 92.171716\\ 22.810357 & 92.32989\\ 22.810357 & 92.28246\\ 22.810357 & 92.28246\\ 22.810357 & 92.27412 \end{array}$	$\begin{array}{r} 3d^7 \cdot 3d^6(a^3D) 4p \\ 3d^6(a^3F) 4s \cdot 3d^9(b^3F) 4p \\ 3d^6(a^3F) 4s \cdot 3d^5(a^4G) 4s 4p (^3P^\circ) \\ 3d^6(a^3F) 4s \cdot 3d^5(a^4G) 4s 4p (^3P^\circ) \\ 3d^6(a^3F) 4s \cdot 3d^6(b^3P) 4p \end{array}$	$\begin{array}{c} {a}^{4}F \cdot {w}^{4}P^{u} \\ {b}^{4}F \cdot {u}^{2}G^{o} \\ {b}^{4}F \cdot {v}^{4}F^{o} \\ {b}^{4}F \cdot {v}^{4}F^{o} \\ {b}^{4}F \cdot {v}^{4}F^{o} \\ {b}^{4}F \cdot {4}P^{o} \end{array}$	72 - 52 P 95 - 52 P 95 - 52 P 95 - 52 P 95 - 52 P 12 - 52 P	749 749 749 749 749 749
47	1 5 2 5	1440.510 1440.523 1440.775 1440.910 1441.119	30.388542 - 99.80840 22.939358 - 92.35861 3.117461 - 72.524566 2.837950 - 72.238513 22.939358 - 92.32989	$\begin{array}{l} 3d^{6}(a^{3}C)4s \cdot 3d^{6}(b^{1}C)4p \\ 3d^{6}(a^{3}F)4s \cdot 3d^{5}(a^{*}C)4s4p(^{3}P^{o}) \\ 3d^{7} \cdot 3d^{6}(a^{2}D)4p \\ 3d^{7} \cdot 3d^{6}(a^{3}D)4p \\ 3d^{6}(a^{3}F)4s \cdot 3d^{5}(a^{*}C)4s4p(^{3}P^{o}) \end{array}$	$ b^{2}G - {}^{2}G^{\circ} \\ b^{4}F - v^{4}F^{\circ} \\ a^{4}F - w^{4}D^{\circ} \\ a^{4}F - w^{4}F^{\circ} \\ b^{4}F - v^{4}F^{\circ} \\ b^{5}F - v^{4}F^{\circ} $		749 749 749 749 749 749
	5 2 2 2 5	1441.575 1441.725 1442.104 1442.278 1442.433	$\begin{array}{r} 30.388542 + 99.75712\\ 22.810357 + 92.171716\\ 22.939358 + 92.28246\\ 22.939358 + 92.27412\\ 23.031300 + 92.35861 \end{array}$	$\begin{array}{l} 3d^6(a^3G)4s+3d^6(b^1G)4p\\ 3d^6(a^3F)4s+3d^6(b^3F)4p\\ 3d^6(a^3F)4s+3d^5(a^4G)4s4p(^3P^*)\\ 3d^6(a^3F)4s+3d^6(b^3P)4p\\ 3d^6(a^3F)4s+3d^5(a^3G)4s4p(^3P^*)\\ 3d^6(a^3F)4s+3d^5(a^3G)4s4p(^3P^*)\\ \end{array}$	$\begin{array}{l} b^{2}G - {}^{2}G^{\circ} \\ b^{4}F - u^{2}G^{\circ} \\ b^{4}F - v^{4}F^{\circ} \\ b^{4}F - {}^{4}P^{\circ} \\ b^{4}F - {}^{4}P^{\circ} \\ b^{4}F - v^{4}F^{\circ} \end{array}$		749 749 749 749 749 749
47	$20 \\ 1 \\ 1 \\ 20 \\ 1$	1442.746 1443.031 1443.481 1443.737 1444.193	$\begin{array}{c} 3.117461 - 72.429711 \\ 23.031300 - 92.32989 \\ 22.939358 + 92.216320 \\ 30.388542 - 99.65322 \\ 23.031300 - 92.27412 \end{array}$	$\begin{array}{l} 3d^7 \cdot 3d^6(a^3D) 4p \\ 3d^6(a^3F) 4s \cdot 3d^3(a^4C) 4s 4p (^3P^{\circ}) \\ 3d^6(a^3F) 4s \cdot 3d^6(b^3P) 4p \\ 3d^6(a^3C) 4s \cdot 3d^4(a^4C) 4s 4p (^3P^{\circ}) \\ 3d^6(a^3F) 4s \cdot 3d^4(b^3P) 4p \end{array}$	$\begin{array}{c} a^{4}F + w^{4}D^{\circ} \\ b^{4}F + v^{4}F^{\circ} \\ b^{4}F + u^{2}D^{\circ} \\ b^{2}C + {}^{2}G^{\circ} \\ b^{4}F + {}^{4}P^{\circ} \end{array}$		749 749 749 749 749 749
	10 2 0 10 1	1444.981 1445.400 1446.737 1447.272 1448.194	2.837950 - 72.043026 23.031300 - 92.216320 3.117461 - 72.238513 3.117461 - 72.212978 3.117461 - 72.168998	3d ⁷ - 3d ⁶ (a ³ D)4p 3d ⁶ (a ³ F)4e - 3d ⁶ (b ³ P)4p 3d ⁷ - 3d ⁶ (a ³ D)4p 3d ⁷ - 3d ⁶ (a ³ D)4p 3d ⁷ - 3d ⁶ (a ³ D)4p	$a^{4}F - w^{4}P^{\circ}$ $b^{4}F - u^{2}D^{\circ}$ $a^{4}F - w^{4}F^{\circ}$ $a^{4}F - w^{4}P^{\circ}$ $a^{4}F - w^{4}F^{\circ}$ $a^{4}F - w^{4}F^{\circ}$		749 749 749 749 749 749
	$ \begin{array}{c} 40 \\ 2 \\ 1 \\ 10 \\ 40 \end{array} $	1448.393 1450.020 1451.616 1451.989 1454.311	$\begin{array}{c} 27.314922 - 96.35696 \\ 27.314922 - 96.27949 \\ 30.764485 - 99.65322 \\ 30.764485 - 99.63552 \\ 25.428784 - 94.189888 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s\cdot3d^5(a^4G)4s4p({}^3P^{\circ})\\ 3d^6(a^3F)4s\cdot3d^5(a^4G)4s4p({}^3P^{\circ})\\ 3d^{\prime\prime}(a^3G)4s\cdot3d^5(a^4G)4s4p({}^3P^{\circ})\\ 3d^6(a^3G)4s\cdot3d^5(a^4G)4s4p({}^3P^{\circ})\\ 3d^6(a^3G)4s\cdot3d^5(a^4G)4s4p({}^3P^{\circ})\\ \end{array}$	$ \begin{array}{c} {a}^{2}F \cdot t^{2}F^{\circ} \\ {a}^{2}F \cdot t^{2}F^{\circ} \\ {b}^{2}G \cdot ^{2}G^{\circ} \\ {b}^{2}G \cdot ^{2}G^{\circ} \\ {a}^{4}G \cdot {w}^{4}G^{\circ} \end{array} $	7	749 749 749 749 749 749
93	$ \begin{array}{c} 1 \\ 2 \\ 20 \\ 0 \\ 40 \end{array} $	1454.830 1455.186 1456.472 1457.431 1459.304	$\begin{array}{c} 27.620412 &- 96.35696\\ 25.428784 &- 94.148518\\ 27.620412 &- 96.27949\\ 20.830582 &- 89.444458\\ 23.317633 &- 91.843470 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s \cdot 3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^6(a^3G)4s \cdot 3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^6(a^3F)4s \cdot 3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^6(a^3P)4s \cdot 3d^5(a^4G)4s4p(^3P^\circ)\\ 3d^54s^2 \cdot 3d^5(a^4P)4s4p(^3P^\circ)\\ \end{array}$	a ² F - t ² F° a ⁴ G - w ⁴ G° a ² F - t ² F° b ⁴ P - ⁶ P° a ⁶ S - ⁶ P°	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	749 749 749 749 749 749
	0 1 2 40 1	1461.145 1461.840 1462.318 1463.204 1463.592	.862613 - 69.30209 18.360646 - 86.767577 25.805328 - 94.189888 25.805328 - 94.148518 .977053 - 69.30209	$\begin{array}{l} 3d^6(a^5D)4s - 3d^5(a^5S)4s4p(^3P'')\\ 3d^7 - 3d^6(b^3P)4p\\ 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P'')\\ 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P'')\\ 3d^6(a^5D)4s - 3d^5(a^6S)4s4p(^3P'')\\ \end{array}$	ga ⁶ D - x ⁴ P° a ² P - v ⁴ D° a ⁴ G - w ⁴ G° a ⁴ G - w ⁴ G° ga ⁶ D - x ⁴ P°		749 749 749 749 749 749
93	$egin{array}{c} 1 \\ 40 \\ 2 \\ 2 \\ 30 \end{array}$	1464.817 1465.040 1466.220 1466.988 1468.610	25.805328 - 94.073248 23.317633 - 91.575139 25.787598 - 93.98817 25.981629 - 94.148518 25.981629 - 94.073248	$\begin{array}{l} 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P^{\circ}) \\ & 3d^54s^2 - 3d^5(a^5D)5p \\ 3d^6(a^3P)4s - 3d^5(a^4G)4s4p(^3P^{\circ}) \\ 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P^{\circ}) \\ 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P^{\circ}) \\ 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P^{\circ}) \end{array}$	a ⁴ G - w ⁴ G ⁰ a ⁶ S - ⁶ P ⁶ b ² P - w ⁴ G ⁰ a ⁴ G - w ⁴ G ⁰ a ⁴ G - w ⁴ G ⁰	92 - 72 P 102 - 92 P 103 - 92 P 103 - 92 P 104	749 749 749 749 749 749
	5 0 2 1 1	1469.383 1469.68 1470.015 1470.162 1470.203	25.428784 - 93.48458 22.939358 - 90.9815 15.84465 - 83.871184 26.170181 - 94.189888 26.055423 - 94.073248	3d°(a ³ G)4s - 3d ⁶ (b ³ F)4p 3d°(a ³ F)4s - 3d ⁷ (a ³ F)4s - 3d ⁷ (a ¹ F)4p 3d ⁶ (a ³ H)4s - 3d ⁵ (a ⁴ G)4s4p(³ P'') 3d ⁶ (a ³ G)4s - 3d ⁵ (a ⁴ G)4s4n(³ P'')	a ⁴ G - u ⁴ F° b ⁴ F - 10° a ² G - v ² G° b ² H - w ⁴ G° a ⁴ G - w ⁴ G°	$\begin{array}{c c} 11 & -9 & P \\ 2^{5} - 3^{2} & Q \\ -9^{5} - 3^{2} & Q \\ -9^{5} - 3^{2} & P \\ 11 & -12 & P \\ 12 & -12 & P \\ 13 & -7 & P \end{array}$	749 816 749 749 749 749

lultiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
-	$\begin{array}{c}1\\5\\20\\0\\1\end{array}$	1470.447 1470.662 1472.044 1472.966 1473.090	$\begin{array}{c} 25.981629 & 93.98817\\ 31.811822 & 99.80840\\ 26.055423 & 93.98817\\ 30.388542 & 98.27877\\ 2.430097 & 70.314604 \end{array}$	$\begin{array}{l} 3d^6(a^3G) 4_{\rm S} - 3d^5(a^4G) 4_{\rm S} 4_{\rm P}(^3P^*) \\ & 3d^7 + 3d^5(b^1G) 4_{\rm P} \\ 3d^6(a^3G) 4_{\rm S} - 3d^3(a^4G) 4_{\rm S} 4_{\rm P}(^3P^*) \\ 3d^6(a^3G) 4_{\rm S} - 3d^6(b^1G) 4_{\rm P} \\ & 3d^7 + 3d^6(a^4G) 4_{\rm P} \end{array}$	$a^{4}G - w^{4}G^{\circ}$ $b^{2}F - {}^{2}G^{\circ}$ $a^{4}G - w^{4}G^{\circ}$ $b^{2}G - {}^{2}H^{\circ}$ $a^{4}F - x^{2}G^{\circ}$		749 749 749 749 749 749
93	40 0 1 1 10	1473.833 1474.033 1474.723 1475.019 1475.694	$\begin{array}{c} 23.317633 + 91.167937\\ 36.126387 + 103.96749\\ 31.999048 + 99.30840\\ 26.352766 + 94.148518\\ 27.314922 + 95.07964 \end{array}$	$\begin{array}{rrrr} & 3d^54s^2 - 3d^6(a^5D)5p \\ & 3d^6(a^3D)4s - 3d^5(a^4P)4s4p(^3P') \\ & 3d^7 - 3d^6(b^4G)4p \\ & 3d^9(a^3H)4s - 3d^5(a^4G)4s4p(^3P') \\ & 3d^6(a^3F)4s - 3d^5(b^3P)4p \end{array}$	$\begin{array}{l} a^{0}S - {}^{6}P^{**} \\ b^{2}D - {}^{2}S^{\circ} \\ b^{2}F - {}^{2}G^{\circ} \\ b^{2}H - w^{4}G^{\circ} \\ a^{2}F - {}^{2}F^{\circ} \end{array}$	-75 P	749 749 749 749 749 749
	$5 \\ 10 \\ 5 \\ 2 \\ 10 \\ 10 $	1475.839 1476.030 1477.491 1477.558 1478.105	31.999048 - 99.75712 22.637205 - 90.386528 25.805328 - 93.48765 25.805328 - 93.48458 31.999048 - 99.65322	$\begin{array}{r} 3d^5 - 3d^{\circ}(b^1G)4p\\ 3d^{\circ}(a^3F)4s - 3d^{\circ}(a^{\circ}D)4p\\ 3d^{\circ}(a^3G)4s - 3d^{\circ}(b^3F)4p\\ 3d^{\circ}(a^3G)4s - 3d^{\circ}(b^3F)4p\\ 3d^{\circ}(a^3G)4s - 3d^{\circ}(b^3F)4p\\ 3d^7 - 3d^{\circ}(a^{\circ}G)4s4p(^{3}P'')\\ \end{array}$	b ² F • ² G° b ⁴ F • ⁴ F° a ⁴ G • u ⁴ F° a ⁴ G • u ⁴ F° b ² F • ² G°	1 2 2 P 20 2 2 P 20 2 7 P 20 7 2 P 20 7 2 P 20 2 2 P 21 2 P P	749 292 749 749 749
	1 1 2 0 2	1478.344 1478.431 1479.848 1480.42 1481.349	$\begin{array}{c} 31.364440 - 99.00770 \\ 31.368450 - 99.00770 \\ 22.637205 - 90.211700 \\ 22.939358 - 90.487810 \\ 25.981629 - 93.48765 \end{array}$	$\begin{array}{l} 3d^6(a^4D)4s - 3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3D)4s - 3d^5(a^4D)4s4p(^3P^{\circ})\\ 3d^6(a^3F)4s - 3d^6(b^3F)4p\\ 3d^6(a^3F)4s - 3d^6(a^5D)5p\\ 3d^6(a^3G)4s - 3d^6(b^3F)4p \end{array}$	$b^{4}D \cdot {}^{4}D^{\circ}$ $b^{4}D \cdot {}^{4}D^{\circ}$ $b^{4}F \cdot {}^{4}G^{\circ}$ $b^{4}F \cdot {}^{6}F^{\circ}$ $a^{4}G \cdot u^{4}F^{\circ}$	$\frac{3}{2} - \frac{1}{2}$ P $\frac{1}{2} - \frac{1}{2}$ P $\frac{1}{2} - \frac{1}{2}$ P $\frac{1}{2} - \frac{1}{2}$ P $\frac{1}{2} - \frac{1}{2}$ P	749 749 749 645 749
	1 1 0 2 5	1481.417 1481.441 1482.393 1483.377 1483.554	$\begin{array}{c} 25.981629 & \cdot 93.48458 \\ 16.36936 & \cdot 83.871184 \\ 22.939358 & \cdot 90.397868 \\ 25.981629 & \cdot 93.39536 \\ 31.364440 & \cdot 98.77014 \end{array}$	$\begin{array}{r} 3d^6(a^4G)4s + 3d^5(b^4F)4p \\ 3d^7 + 3d^5(a^1F)4p \\ 3d^6(a^3F)4s + 3d^6(a^5D)5p \\ 3d^6(a^3F)4s + 3d^6(b^3F)4p \\ 3d^6(a^3G)4s + 3d^3(a^4D)4s4p(^3P^\circ) \\ \end{array}$	$\begin{array}{l} a^{4}G & - \ u^{4}F^{\upsilon} \\ a^{2}G & - \ v^{2}G^{\prime \prime} \\ b^{4}F & ^{4}D^{\prime \prime} \\ a^{4}G & - \ u^{4}F^{\upsilon} \\ b^{4}D & - \ ^{4}D^{\upsilon} \end{array}$		749 749 749 749 749 749
:	5 1 2 5 2	1483.556 1483.642 1484.072 1485.003 1485.342	$\begin{array}{r} 22.637205 & 90.042779 \\ 31.368450 & 98.77014 \\ 31.387948 & 98.77014 \\ 26.055423 & 93.39536 \\ 25.805328 & 93.12990 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s - 3d^6(b^3F)4p\\ 3d^6(a^3D)4s - 3d^3(a^4D)4s4p(^3P')\\ 3d^6(a^3D)4s - 3d^3(a^4D)4s4p(^3P')\\ 3d^6(a^3G)4s - 3d^6(b^3F)4p\\ 3d^6(a^3G)4s - 3d^6(b^3F)4p \end{array}$	$\begin{array}{c} b^{4}F & - {}^{4}G^{\alpha} \\ b^{4}D & - {}^{4}D^{\alpha} \\ b^{4}D & - {}^{4}D^{\alpha} \\ a^{4}G & - {}^{4}F^{\alpha} \\ a^{4}G & - {}^{4}D^{\alpha} \end{array}$	2 - 2 P - 2 P	749 749 749 749 749 749
	1 10 1 1 1	1485.566 1486.479 1486.834 1487.377 1489.250	$\begin{array}{l} 26.170181 + 93.48458 \\ 26.055423 + 93.32848 \\ 22.810357 + 90.067347 \\ 22.810357 + 90.042779 \\ 31.387948 + 98.53585 \end{array}$	$\begin{array}{l} 3d^6(a^3H)4s - 3d^6(b^3F)4p\\ 3d^6(a^3C)4s - 3d^6(b^3F)4p\\ 3d^6(a^3F)4s - 3d^6(a^5D)5p\\ 3d^6(a^3F)4s - 3d^6(b^3F)4p\\ 3d^6(a^3D)4s - 3d^5(a^4D)4s4p(^3P') \end{array}$	b ² H - u ⁴ F ⁵⁰ a ⁴ G - u ⁴ F ⁶⁰ b ⁴ F - ⁶ F ⁵⁰ b ⁴ F - ⁴ G ⁵⁰ b ⁴ D - ⁴ F ⁶⁰	11 - 22 P 23 - 22 P 24 - 22 P 25 - 22 P 25 - 22 P 25 - 22 P	749 749 749 749 749 749
	$2 \\ 30 \\ 5 \\ 1 \\ 5$	1489.410 1489.932 1490.605 1490.757 1491.365	$\begin{array}{r} 31.364440 & 98.50510 \\ 31.387948 & 98.50510 \\ 30.764485 & 97.85135 \\ 22.810357 & 89.890373 \\ 31.483176 & 98.53585 \end{array}$	$\begin{array}{rl} 3d^6(a^3D)4s &- 3d^5(a^4D)4s^4p(^3P^*)\\ 3d^6(a^3D)4s &- 3d^5(a^4D)4s4p(^3P^*)\\ 3d^6(a^3G)4s &- 3d^6(b^1G)4p\\ 3d^6(a^3F)4s &- 3d^6(b^3F)4p\\ 3d^6(a^3F)4s &- 3d^5(a^4D)4s4p(^3P^*)\\ \end{array}$	$\begin{array}{c} b^4 D + {}^4 D^{\alpha} \\ b^4 D + {}^4 D^{\alpha} \\ b^2 G + {}^2 H^{\alpha} \\ b^4 F + {}^4 G^{\alpha} \\ b^4 P + {}^4 F^{\alpha} \end{array}$	**************************************	749 749 749 749 749 749
	$2 \\ 2 \\ 20 \\ 1 \\ 5$	1492.049 1492.462 1492.577 1493.279 1493.629	$\begin{array}{l} 31.483176 + 98.50510\\ 31.387948 + 98.39133\\ 25.428784 + 92.42698\\ 31.387948 + 98.35466\\ 22.939358 + 89.890373 \end{array}$	$\begin{array}{l} 3d^6(a^3D)4s - 3d^5(a^4D)4s4p(^3P^*)\\ 3d^6(a^3D)4s - 3d^5(a^4D)4s4p(^3P^*)\\ 3d^6(a^3G)4s - 3d^5(a^4G)4s4p(^3P^*)\\ 3d^6(a^3D)4s - 3d^5(a^4D)4s4p(^3P^*)\\ 3d^6(a^3F)4s - 3d^6(b^3F)4p \end{array}$	$\begin{array}{c} b^4 D + {}^4 D^{\circ} \\ b^4 D + {}^4 D^{\circ} \\ a^4 G + v^4 F^{\circ} \\ b^4 D + {}^4 F^{\circ} \\ b^4 D + {}^4 F^{\circ} \\ b^4 F + {}^4 G^{\circ} \end{array}$	P P P P P P P P P P P P P P P P P P P	749 749 749 749 749 749
	$ \begin{array}{c c} 2 \\ 0 \\ 1 \\ 10 \\ 20 \end{array} $	1493.9671494.0811494.3761494.5861494.595	$\begin{array}{c} 16.36936 + 83.305251 \\ 36.252918 + 103.1837 \\ 25.981629 + 92.89950 \\ 31.483176 + 98.39133 \\ 25.787598 + 92.695374 \end{array}$	$\begin{array}{rrrr} & 3d^7 & - 3d^6(a^1F) 4p \\ 3d^6(a^3D) 4s & - 3d^5(a^4D) 4s 4p (^3P^{\circ}) \\ 3d^6(a^3G) 4s & - 3d^6(b^3F) 4p \\ 3d^6(a^2D) 4s & - 3d^3(a^4D) 4s 4p (^3P^{\circ}) \\ 3d^6(a^3P) 4s & - 3d^6(b^3P) 4p \end{array}$	$ \begin{array}{c} a^2G \cdot v^2G^{ v} \\ b^2D \cdot ^2F^{ v} \\ a^4G \cdot ^4D^{ v} \\ b^4D \cdot ^4D^{ v} \\ b^2P \cdot u^2D^{ v} \end{array} $	7 - 7 P 7 -	749 749 749 749 749 749
	$ \begin{array}{c} 10 \\ 0 \\ 40 \\ 2 \\ 20 \end{array} $	1494.776 1496.019 1496.526 1497.065 1498.287	31.999048 - 98.89871 26.055423 - 92.89950 25.428784 - 92.25021 25.805328 - 92.602703 25.428784 - 92.171716	$\begin{array}{r} 3d^{7} - 3d^{6}(b^{1}G)4p\\ 3d^{6}(a^{3}G)4s - 3d^{6}(b^{3}F)4p\\ 3d^{6}(a^{3}G)4s - 3d^{3}(a^{4}G)4s4p(^{3}P^{\circ})\\ 3d^{6}(a^{3}G)4s - 3d^{6}(b^{3}F)4p\\ 3d^{6}(a^{3}G)4s - 3d^{6}(b^{3}F)4p\\ 3d^{6}(a^{3}G)4s - 3d^{6}(b^{3}F)4p\end{array}$	$\begin{array}{c} b^2 F + {}^2 F^{\circ} \\ a^4 G - {}^4 D^{\circ} \\ a^4 G - x^4 H^{\circ} \\ a^4 G - u^2 G^{\circ} \\ a^4 G - u^2 G^{\circ} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	749 749 749 749 749
	1 5 1 20 0	1499.339 1501.027 1501.680 1504.277 1504.996	$\begin{array}{r} 23.031300 & + 89.727342 \\ 25.981629 & + 92.602703 \\ 26.055423 & + 92.64751 \\ 25.805328 & + 92.28246 \\ 25.981629 & + 92.42698 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s + 3d^6(b^3F)4p\\ 3d^5(a^3G)4s + 3d^6(b^3F)4p\\ 3d^6(a^3G)4s + 3d^6(b^3F)4p\\ 3d^6(a^3G)4s + 3d^4(a^4G)4s4p(^3P'')\\ 3d^6(a^3G)4s + 3d^5(a^4G)4s4p(^3P'')\\ 3d^6(a^3G)4s + 3d^5(a^4G)4s4p(^3P'')\\ \end{array}$	$\begin{array}{c} b^{4}F & {}^{4}G^{\circ} \\ a^{4}G & - u^{2}G^{\circ} \\ a^{4}G & {}^{4}D^{\circ} \\ a^{4}G & {}^{4}F^{\circ} \\ a^{4}G & {}^{4}F^{\circ} \\ a^{4}G & {}^{4}F^{\circ} \end{array}$	32 - 22 P - 23 P - 23 P - 23 P - 24 P - 25 P - 25 P - 25 P - 25 P - 25 P	749 749 749 749 749 749
	$\begin{array}{c} 0 \\ 10 \\ 1 \\ 20 \\ 5 \end{array}$	1505.37 1506.539 1506.787 1506.903 1507.198	25.787598 - 92.216320 0 66.377283 25.805328 - 92.171716 25.805328 - 92.16660 25.981629 - 92 32989	$\begin{array}{l} 3d^{6}(a^{3}P)4s &\cdot 3d^{6}(b^{3}P)4p \\ 3d^{6}(a^{5}D)4s &\cdot 3d^{6}(a^{3}C)4p \\ 3d^{6}(a^{3}C)4s &\cdot 3d^{6}(h^{3}P)4p \\ 3d^{6}(a^{3}C)4s &\cdot 3d^{6}(a^{4}C)4s4p(^{3}P') \\ 3d^{6}(a^{3}C)4s &\cdot 3d^{6}(a^{4}C)4s4p(^{3}P') \\ 3d^{6}(a^{3}C)4s &\cdot 3d^{6}(a^{4}C)4s4p(^{6}P') \end{array}$	$\begin{array}{c} b^2 P \cdot u^2 D^\circ \\ g a^\circ D \cdot x^4 F^\circ \\ a^4 G \cdot u^2 G^\circ \\ a^4 G \cdot x^4 H^\circ \\ a^4 G \cdot x^4 F^\circ \end{array}$	3 3 P 22 - 4 P 22 - 2 P 22 - 2 P 23 - 12 P 25 - 2 P 25 - 2 P 25 - 2 P	816 749 749 749 749 749

Multiplet	Rel. Int.	λ _{vsc} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1	1507 779	36 126387 - 102 44910	3d ⁶ (a ³ D)4s - 3d ⁵ (a ⁴ D)4s4n(³ P°)	$h^2D - {}^2D^2$	3 - 5	Р	749
	i	1508.107	23.317633 - 89.625940	$3d^{5}4s^{2} - 3d^{5}(a^{4}P)4s4p(^{3}P)$	a6S - 6P	5-2	P	749
	5	1508.223	26.055423 - 92.35861	$3d^{6}(a^{3}G)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{9})$	$a^4G - v^4F^0$	57 - 27	P	749
	2	1508.277	25.981629 - 92.28246	$3d^{\circ}(a^{\circ}G)4s - 3d^{\circ}(a^{\circ}G)4s4p(^{\circ}P^{\circ})$	$a^{+}G = v^{+}F^{*}$	2 - 2 7 - 5	P	749
	2	1508.467	25.981529 - 92.27412	30 (a G)48 - 30 (b P)4p	a G - F	2 - 2	. r	149
	2	1508.877	26.055423 - 92.32989	$3d^{6}(a^{3}G)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{0})$	$a^4G - v^4F^{\circ}$	2-2	P	749
	0	1509.279	26.170181 - 92.42698	3d°(a°H)4s - 3d°(a°G)4s4p(°P°)	b ² H - v [*] F ^{**}	2 - 2	P	749
		1509.414	36.252918 - 102.50381	$3d^{2}(a^{3}H)A_{2} = 3d^{2}(a^{3}H)A_{2}$	$b^{2}H = u^{2}C^{2}$	2 - 2	r P	749
	1	1510.148	26.055423 - 92.27412	3d6(a ³ G)4s - 3d6(b ³ P)4p	$a^4G - {}^4P^0$	2 - 2 2 - 2	P	749
	20	1510.661	36.252918 + 102.44910	$3d^{6}(a^{3}D)4s - 3d^{3}(a^{4}D)4s4p(^{3}P^{2})$	b²D • ²D°	ş - ş	P	749
	1	1510.801	25.981629 - 92.171716	3d ⁶ (a ³ G)4s - 3d ⁶ (b ³ F)4p	a ⁴ G - u ² G°	7.2	P	749
	1	1511.467	26.055423 - 92.216320	$3d^{6}(a^{3}G)4s - 3d^{6}(b^{3}P)4p$	$a^{4}C - u^{2}D^{3}$	2 - 2	P	749
	30	1512.055	25.981629 • 92.11678	$3d^{\circ}(a^{\circ}G)4s + 3d^{\circ}(a^{\circ}G)4s4p(^{\circ}P^{\circ})$	$a^{*}G - x^{*}H^{0}$	2 - 2	P	749
		1512.214	1.872507 - 08.000788	30" - 30" (a"C)4p	a'r - y'ri	2 • 2	r	149
	1	1512.246	23.317633 - 89.444458	$3d^{5}4s^{2} - 3d^{5}(a^{4}P)4s4p(^{3}P^{\circ})$	a ⁶ S - ⁶ P ⁶	5.5	P	749
	2	1513.316	26.170181 • 92.25021	$3d^{\circ}(a^{\circ}H)4s = 3d^{\circ}(a^{\circ}G)4s4p(^{\circ}P')$	$b^2H = x^2H^2$	2.2	P	749
	10	1514.575	20.055425 - 92.08920	$3d^{6}(a^{3}H)As = 3d^{6}(h^{3}F)An$	a G - X H $b^2 H + \mu^2 C^2$		P	749
	2	1515.171	18.360646 - 84.35980	3d ⁷ - 3d ⁶ (a ⁺ F)4p	$a^2 P - v^2 D^{\circ}$	3 - ž	P	749
	5	1515.877	30.388542 - 96.35696	$3d^{6}(a^{3}G)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{0})$	$b^2 G - t^2 F^2$	$\frac{2}{2} - \frac{7}{2}$	Р	749
	5	1515.937	20.516960 - 86.48275	3d ⁷ - 3d ⁶ (a ⁴ F)4p	$a^2D - u^2F^{\circ}$	2 - 2	P	749
	0	1516.569	31.387948 - 97.32627	3d°(a [*] D)46 - 3d°(a [*] P)464p(*P*)	b'D - °P°	2 - 2	P	749
	1	1518.685	26.352766 - 92.16660	$3d^{\circ}(a^{*}D)4p - 3d^{\circ}(a^{*}D)5d$ $3d^{\circ}(a^{3}H)4s - 3d^{5}(a^{4}G)4s4p(^{3}P^{\circ})$	$b^2H - x^4H^\circ$	$\frac{2}{2} - \frac{2}{2}$ $\frac{9}{2} - \frac{11}{2}$	P P	749
	1	1510 504	23 317633 - 80 128561	$3d^{5}4s^{2} - 3d^{5}(a^{4}P)(4c4n)^{3}P^{2})$	a66.600	5.7	р	749
	i i i	1520 416	38.858958 - 104.63043	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$	z ^c D ^o - ^o P	5-3	P	749
	5	1520.874	38.660043 - 104.41169	3d6(a5D)4p - 3d6(a5D)5d	z ⁶ D° - ⁶ D	1 - ž	P	749
	1	1521.586	38.660043 - 104.38094	3d°(a ³ D)4p - 3d ⁶ (a ³ D)5d	$z^6D^6 - {}^6F$	2 - 2	P	749
	10	1522.684	30.388542 - 96.06206	3d°(a ³ G)4s - 3d°(a ⁴ G)4s4p('P')	b ² G - ² H ^o	2 - 2	P	749
	1	1523.280	39.109307 - 104.75711	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	$z^{6}D^{0} - {}^{6}D_{2}D_{1}$	1/2 - 1/2	P	749
	20	1523.374	1.872567 - 67.516332	3d' - 3d'(a'G)4p 246(5)1)4z - 246(51))54	a'r - y'H' "6130-00	2 - 2	P	749
	2	1525.990	2.430097 - 68.000788	$3d^7 - 3d^6(a^3G)4p$	$a^3F - v^2H^{\circ}$	7 9	P	749
	5	1525.743	38.458981 - 104.00081	3d6(a3D)4p - 3d6(a5D)5d	z ⁶ D° - ⁶ P	$\frac{5}{2} - \frac{7}{2}$	P	749
	2	1526.205	38.858958 - 104.38094	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z ⁶ D° • ⁶ F	5 - 2	Р	749
	5	1526.369	30.764485 - 96.27949	3d6(a3G)4s - 3d5(a4G)4s4p(3P)	$b^2 G \cdot t^2 F^{*}$	2 - 2	P	749
		1526.536		3d' - 3d'(a'F)4p 2 26(251)(4 236(251))(5)	$a^{2}P - v^{*}D^{*}$	2 2	P	749
	20	1527.239	38.458981 - 103.93660	3d°(a ⁵ D)4p - 3d°(a ⁵ D)5d	$z^6D^\circ - {}^{\Gamma}F$	$\frac{2}{2} - \frac{2}{2}$	P	749
	40	1527.347	18.886780 - 84.35980	$3d^7 \cdot 3d^6(a^1F)4p$	a ² P - v ² D°	4.3	Р	749
	5	1527.645	38.660043 - 104.12027	3d6(a5D)4p - 3d6(a5D)5d	z ⁶ D° - ⁶ P	2 - 2	P	749
	0	1528.742	39.013206 - 104.42646	3d6(a5D)4p - 3d6(a5D)5d	$z^{6}D^{a} - {}^{6}F$	3 - 2	P	749
	0	1528.979	32.875646 - 98.27877	$3d^{\circ}(a^{1})4s - 3d^{\circ}(b^{1}G)4p$	$a^{2}l - {}^{2}H^{3}$	2 2	P	749
	1	1529.509	27.314922 - 92.093374	5d (a r)4s - 5d (b r)4p	ar-uD	2 - 2	ſ	149
	5	1530.438	38.660043 - 104.00081	1 3d°(a°D)4p - 3d°(a ⁵ D)5d	z°D° · °P	2.2	P	749
		1530.680	38.858958 - 104.18938	るd"(a"1))4p + 3d"(a"H)4d 3d%(a ⁵ D)4c = 3d%(a ⁵ D)たJ	2 D - T 	2 2	P P	749
	10	1532.301	38 858958 - 104.12027	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$	z^6D^6 P	2.2	P	749
	10	1532.815	21.308040 - 86.54749	3d ⁷ - 3d ⁶ (a ¹ F)4p	$a^2D + a^2F^{\circ}$	3 - 2	P	749
	0	1534.838	26.055423 - 91.208887	3d ⁶ (a ³ C)4s - 3d ⁶ (a ⁵ D)5p	a4G - 4F°	5-3	Р	749
	2	1538.044	13.673185 - 78.690846	$3d^7 - 3d^6(a^1D)4p$	$a^4P - w^2D^6$	- 10 C	P	749
	0	1539.046	25.805328 - 90.780621	$3d^{\circ}(a^{\circ}G)4s - 3d^{\circ}(a^{\circ}D)5p$	a ⁴ G - [*] F ⁶	2 - 2	P	749
	5	$1539.462 \\ 1541.026$	25.428784 - 90.386528 23.317633 - 88.20945	$3d^{\circ}(a^{\circ}C)4s - 3d^{\circ}(a^{\circ}D)4p$ $3d^{5}4s^{2} - 3d^{5}(a^{4}P)4s4p(^{3}P')$	a°G - °F" a°S - °D"	2.2	P P	292
	1	1549 500	31 387049 06 91749	3d9(a311)4= 3d5(a4D)4a4 nd3D4)	5 ⁴ D 4D ⁹	5 Z	р	749
		1543.234	25.981629 - 90.780621	$3d^{6}(a^{3}C)4s - 3d^{6}(a^{5}D)5n$	a ⁴ G - ⁴ F°	1	P	749
	ĭ	1543.277	8.391938 - 73.189110	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ D)4p	$a^4D - y^2P^0$	52 - 2	P	749
	2	1543.617	25.428784 - 90.211700	$3d^{6}(a^{3}G)4s - 3d^{6}(b^{3}F)4p$	a ⁴ G· ⁴ G°	1 2 - 2	P	749
	10	1544.777	31.483176 - 96.21742	3d°(a3D)4s - 3d2(a4P)4s4p(3P°)	b*D - *D°	$\frac{1}{2} \cdot \frac{7}{2}$	Р	749
	0	1545.202	1.872567 - 66.589008	$3d^7 - 3d^6(a^3G)4p$	$a^4F - y^4H^\circ$	9 - 9 27 - 7	P	749
	0	1545.677 1545.706	7.955299 - 72.651876	50°(a°0)4s - 50°(a°0)4p 3d°(a ⁵ 0)4s - 3d ⁶ (a ³ 0)4s	$a^{4}\Omega = w^{4}\overline{w}^{0}$	2 2	P P	749
	2	1545.808	30.388542 - 95.07964	3d ⁶ (a ³ G)4s - 3d ⁵ (b ³ P)4n	$b^2G - {}^2F^{\circ}$	20275	P	749
	$\tilde{2}$	1546.451	7.955299 - 72.619490	3d6(a5D)4s - 3d6(a3D)4p	a ⁴ D - w ⁴ D°	2.2	P P	749
			}		I	1	I	I

D-20)
------	---

muniplet	Rel. Int.	Λ_{vac} (in A)	Levels (in 10° cm ⁻)	Configurations	l erms	J-J No	tes Kefer
	1 2 1 30	1547.239 1547.802 1548.204 1548.438 1548.697	31.364440 - 95.99569 31.387948 - 95.99569 1.872567 - 66.463528 25.805328 - 90.386528 2.430097 - 67.000517	$\begin{array}{r} 3d^{\prime}(a^{3}D)4s \; - \; 3d^{5}(a^{4}P)4s4p(^{3}P^{\prime}) \\ 3d^{\prime}(a^{3}D)4s \; - \; 3d^{5}(a^{4}P)4s4p(^{3}P^{\prime}) \\ 3d^{7} \; - \; 3d^{6}(a^{3}G)4p \\ 3d^{\prime}(a^{3}G)4s \; - \; 3d^{\prime}(a^{3}D)4p \\ 3d^{\prime}(a^{3}G)4s \; - \; 3d^{\prime}(a^{3}D)4p \\ 3d^{\prime}(a^{3}F)4p \end{array}$	$b^{4}D - {}^{4}D^{o}$ $b^{4}D - {}^{4}D^{o}$ $a^{4}F - y^{4}H^{a}$ $a^{4}G - {}^{4}F^{o}$ $a^{4}F - y^{2}D^{o}$		P 749 P 749 P 749 P 749 P 749 P 749 P 749
45	10 90 1 1 0	1549.593 1550.274 1550.52 1550.638 1551.17	$\begin{array}{c} 27.620412 & 92.154165 \\ 1.872567 & 66.377283 \\ 31.364440 & 95.85805 \\ 31.368450 & 95.85805 \\ 31.811822 & 96.27949 \end{array}$	$\begin{array}{l} 3d^6(a^3F)4s \ -\ 3d^5(a^4D)4s4p(^3P^{\prime\prime})\\ 3d^7 \ -\ 3d^6(a^3G)4p\\ 3d^6(a^3D)4s \ -\ 3d^5(a^4P)4s4p(^3P^{\prime\prime})\\ 3d^6(a^3D)4s \ -\ 3d^5(a^4P)4s4p(^3P^{\prime\prime})\\ 3d^7 \ -\ 3d^5(a^4G)4s4p(^3P^{\prime\prime}) \end{array}$	$\begin{array}{c} a^{2}F & {}^{6}F^{u} \\ a^{4}F & -x^{4}F^{u} \\ b^{4}D & -4D^{u} \\ b^{4}D & -4D^{u} \\ b^{4}D & -4D^{u} \\ b^{2}F & -t^{2}F^{u} \end{array}$	57-27-2 52-	749 749 749 816 749 816 816
46	$20 \\ 1 \\ 0 \\ 1 \\ 10$	1551.930 1552.677 1552.716 1552.813 1553.810	$\begin{array}{r} 2.837950 & \cdot 67.273826 \\ 25.981629 & \cdot 90.386528 \\ 31.364440 & \cdot 95.76770 \\ 31.368450 & \cdot 95.76770 \\ 31.999048 & \cdot 96.35696 \end{array}$	$\begin{array}{r} 3d^7 - 3d^6(a^3F)4p\\ 3d^6(a^3G)4s - 3d^6(a^3D)4p\\ 3d^6(a^3D)4s - 3d^5(a^4P)4s4p(^3P^*)\\ 3d^6(a^3D)4s - 3d^5(a^4P)4s4p(^3P^*)\\ 3d^7(a^3D)4s - 3d^5(a^4P)4s4p(^3P^*)\\ 3d^7 - 3d^5(a^4G)4s4p(^3P^*) \end{array}$	$\begin{array}{c} a^{4}F + y^{2}D^{\prime\prime} \\ a^{4}G + {}^{4}F^{\circ} \\ b^{4}D + {}^{4}D^{\circ} \\ b^{4}D + {}^{4}D^{\circ} \\ b^{4}D + {}^{4}D^{\circ} \\ b^{2}F + t^{2}F^{\circ} \end{array}$		2 749 2 749 2 749 2 749 2 749 2 749 2 749
	1 1 0 2 1	1554.08 1554.751 1554.843 1555.655 1556.129	$\begin{array}{r} 37.227326 + 101.57390 \\ 25.981629 + 90.300625 \\ 30.764485 + 95.07964 \\ 30.764485 + 95.04610 \\ 25.805328 + 90.067347 \end{array}$	$\begin{array}{l} 3d^{\circ}(a^{1}S)4s \ - \ 3d^{5}(a^{4}D)4s4p(^{3}P'') \\ 3d^{\circ}(a^{3}C)4s \ - \ 3d^{\circ}(a^{5}D)5p \\ 3d^{\circ}(a^{3}C)4s \ - \ 3d^{5}(b^{3}P)4p \\ 3d^{\circ}(a^{3}G)4s \ - \ 3d^{5}(b^{3}P)4p \\ 3d^{\circ}(a^{3}G)4s \ - \ 3d^{\circ}(a^{3}D)5p \end{array}$	a ² S - ⁴ P° a ⁴ G - ⁶ F° b ² G - ² F° b ² G - ² F° a ⁴ G - ⁶ F°		816 749 749 749 749 749 749 749 749 749 749 749
46 46 45	1 70 55 110 5	1556.608 1558.541 1558.692 1559.085 1559.269	2.430097 - 66.672334 2.837950 - 67.000517 3.117461 - 67.273826 1.872567 - 66.012750 8.391938 - 72.524566	$\begin{array}{r} 3d^7 \cdot 3d^{\circ}(a^3G)4p \\ 3d^7 \cdot 3d^{\circ}(a^3F)4p \\ 3d^7 \cdot 3d^{\circ}(a^3F)4p \\ 3d^7 \cdot 3d^{\circ}(a^3G)4p \\ 3d^{\circ}(a^5D)4s \cdot 3d^{\circ}(a^3D)4p \end{array}$			749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749
45 44 45	90 20 20 160 30	1560.252 1561.067 1562.270 1563.790 1565.360	2.430097 - 66.522304 1.872567 - 65.931334 7.955299 - 71.964710 2.430097 - 66.377283 3.117461 - 67.000517	$\begin{array}{ccc} 3d^7 & - 3d^{\circ}(a^3G)4p \\ 3d^7 & - 3d^{\circ}(a^3G)4p \\ 3d^{6}(a^5D)4s & - 3d^{6}(a^3D)4p \\ 3d^7 & - 3d^{6}(a^3G)4p \\ 3d^7 & - 3d^{6}(a^3F)4p \end{array}$	a ⁴ F - x ⁴ F ⁵ a ⁴ F - x ⁴ G ⁶ a ⁴ D - w ⁴ P ⁶ a ⁴ F - x ⁴ F ⁶ a ⁴ F - y ² D ⁶		2 749 749 749 749 749 749 749 749
44 45 44	$2 \\ 110 \\ 55 \\ 2 \\ 110 \\ 110 $	1566.346 1566.822 1568.020 1568.646 1569.674	20.516960 - 84.35980 1.872567 - 65.696038 2.837950 - 66.612656 8.680454 - 72.429711 1.872567 - 65.580041	$\begin{array}{ccc} 3d^7 & \cdot & 3d^9(a^1F)4p \\ & 3d^7 & \cdot & 3d^9(a^3G)4p \\ & 3d^7 & \cdot & 3d^9(a^3G)4p \\ & 3d^9(a^5D)4s & \cdot & 3d^9(a^3D)4p \\ & 3d^9(a^5D)4s & \cdot & 3d^9(a^3D)4p \\ & 3d^7 & \cdot & 3d^9(a^4G)4p \end{array}$	$ \begin{array}{l} a^2 D - v^2 D^a \\ a^4 F - x^4 G^a \\ a^4 F - x^4 F^o \\ a^4 D - w^4 D^a \\ a^4 F - x^4 G^o \end{array} $		749 749
45 44	110 1 10 20 1	1570.244 1570.498 1571.065 1571.137 1572.21	2.837950 - 66.522304 38.660043 - 102.334112 8.391938 - 72.043026 2.430097 - 66.078269 22.939358 - 86.543974	$\begin{array}{r} 3d^7 - 3d^6(a^3G)4p\\ 3d^6(a^5D)4p - 3d^6(a^5D)6s\\ 3d^6(a^5D)4s - 3d^6(a^3D)4p\\ 3d^7 - 3d^6(a^3G)4p\\ 3d^7 - 3d^6(a^3G)4p\\ 3d^7(a^3F)4s - 3d^7(b^3F)4p \end{array}$			749 749 749 749 749 816
45 45	5 5 55 55	1572.749 1572.756 1573.000 1573.828 1574.038	8.846768 - 72.429711 2.430097 - 66.012750 8.391938 - 71.964710 2.837950 - 66.377283 20.34030 - 83.871184	$\begin{array}{r} 3d^6(a^5D)4s \ - \ 3d^6(a^3D)4p \\ 3d^7 \ - \ 3d^6(a^3G)4p \\ 3d^6(a^5D)4s \ - \ 3d^6(a^4D)4p \\ 3d^7 \ - \ 3d^6(a^3G)4p \\ 3d^7 \ - \ 3d^6(a^1F)4p \\ 3d^7 \ - \ 3d^6(a^1F)4p \end{array}$	$ \begin{array}{c} a^{4}D - w^{4}D'' \\ a^{4}F - x^{4}F'' \\ a^{4}D - w^{4}P'' \\ a^{4}F - x^{4}F'' \\ a^{2}H - v^{2}G'' \end{array} $	1 - 120 F - 200 F - 20	749 749 749 749 749 749 749 749
44 45	L 30 70 0 1	1574.399 1574.772 1574.922 1575.420 1575.80	$\begin{array}{c} 31.364440 \cdot 94.88074 \\ 2.430097 \cdot 65.931334 \\ 3.117461 \cdot 66.612656 \\ 38.858958 \cdot 102.334112 \\ 44.915046 \cdot 108.3738 \end{array}$	$\begin{array}{l} 3d^6(a^3D)4s - 3d^5(a^4P)4s4p(^3P^o)\\ 3d^2 - 3d^6(a^3G)4p\\ 3d^7 - 3d^6(a^3G)4p\\ 3d^6(a^5D)4p - 3d^6(a^5D)6s\\ 3d^6(a^5P)4s - 3d^6(a^5D)6s \end{array}$	$\begin{array}{l} b^4 D = {}^4 P^a \\ a^4 F = x^4 G^a \\ a^4 F = x^4 F^a \\ z^6 D^a = {}^6 D \\ c^2 F = 26^a \end{array}$	3 - 12 P 2 - 275 P	749 749 749 749 749 816
45	$1 \\ 55 \\ 1 \\ 2 \\ 5$	1576.433 1577.167 1578.012 1578.128 1578.219	39.109307 - 102.543648 3.117461 - 66.522304 38.660043 - 102.030912 8.846768 - 72.212978 8.680454 - 72.043026	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} z^6 D^{\circ} - {}^6 D \\ a^4 F - x^4 F^{\circ} \\ z^6 D^{\circ} - {}^6 D \\ a^4 D - w^4 P^{\circ} \\ a^4 D - w^4 P^{\circ} \end{array} $	1 - 3 2 - 3 2 - 3 2 - 3 2 - 3 2 - 2 2	749 749 749 749 749 749 749
44 44	$20 \\ 20 \\ 2 \\ 110 \\ 3$	1578.495 1578.501 1579.257 1580.629 1581.270	20.516960 - 83.86845 31.387948 - 94.73917 39.013206 - 102.334112 2.430097 - 65.696038 2.837950 - 66.078269	$\begin{array}{rrrr} 3d^7 & - 3d^6(a^1F)4p \\ 3d^6(a^3D)4s & - 3d^3(a^1P)4s4p(^3P^\circ) \\ 3d^6(a^6D)4p & - 3d^6(a^5D)6s \\ 3d^7 & - 3d^6(a^3G)4p \\ & 3d^7 & - 3d^6(a^3G)4p \\ & 3d^7 & - 3d^6(a^3G)4p \end{array}$	$\begin{array}{c} a^2 D & - v^2 D^{\prime\prime} \\ b^4 D & - {}^4 P^{\prime\prime} \\ z^{\prime\prime} D^{\prime\prime} & - {}^6 D \\ a^4 F & - x^4 G^{\prime\prime} \\ a^4 F & - x^4 G^{\prime\prime} \end{array}$	P P P P P P P P P P P P P P P P P P P	749 749 749 749 749 749
	2 5 2 2 0	1581.290 1581.421 1582.372 1582.981 1584.417	38.458981 - 101.698489 31.811822 - 95.04610 8.846768 - 72.043026 38.858958 - 102.030912 42.334822 - 105.44954	$\begin{array}{rl} 3d^6(a^5D)4p & - 3d^6(a^5D)6s \\ 3d^7 & - 3d^5(b^3P)4p \\ 3d^6(a^5D)4s & - 3d^6(a^3D)4p \\ 3d^6(a^5D)4s & - 3d^6(a^5D)6s \\ 3d^6(a^5D)4p & - 3d^6(a^5D)5d \\ \end{array}$	$z^{6}D^{\circ} - {}^{6}D \\ b^{2}F - {}^{2}F^{\circ} \\ a^{4}D - w^{4}P^{\circ} \\ z^{6}D^{\circ} - {}^{6}D \\ z^{6}F^{\circ} - {}^{4}G$	9 - 9 P - 9 P	749 749 749 749 749 749

D	2	1
	-	_

								and a second sec
Aultiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
44	110 5 2	1584.952 1585.274 1585.655	2.837950 - 65.931334 31.999048 - 95.07964 20.80577 - 83.871184	3d ⁷ - 3d ⁶ (a ³ G)4p 3d ⁷ - 3d ⁵ (b ³ P)4p 3d ⁷ - 3d ⁶ (a ⁴ F)4p	$a^{4}F - x^{4}G^{a}$ $b^{2}F - {}^{2}F^{a}$ $a^{2}H - v^{2}G^{a}$	7-127-10-2001	P P P	749 749 749
	$\begin{array}{c} 30\\ 3\end{array}$	1585.999 1586.288	21.308040 - 84.35980 42.114818 - 105.15509	3d′ - 3d°(a'F)4p 3d′(a ⁵ D)4p - 3d′(a ³ F)4d	$a^2D \cdot y^2D^0$ $z^6F^2 \cdot {}^4G$	NACAR NACAR	P P	749 749
	2	1586.333	38.660043 - 101.698489	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)6s$	$z^{6}D^{6} - {}^{6}D$	7 - 9 3 - 5	P	749 740
44	110	1588.290	3.117461 - 66.078269 0 - 62 945038	3d' - 3d'(a'C)4p 3d ⁶ (a ⁵ F)4n	$a^{+}F \cdot x^{+}G^{\circ}$ $\sigma a^{6}D \cdot x^{4}D^{\circ}$	2-2	P	749
	2	1590.124	.384790 - 63.272976	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{3}F)4p$	ga ⁶ D - x ⁴ D°	474-22	P	749
	1	1590.559	42.334822 - 105.20579	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z°F° - °G	2-2	Р	749
	2	1591.122	42.439822 - 105.28853	.3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d .3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	$z^6F^\circ \cdot {}^6G$ $z^6F^\circ \cdot {}^4D$	$\frac{1}{2} - \frac{3}{2}$	P P	749 749
	0	1591.632	42.237033 - 105.06563	$3d^{\circ}(a^{\circ}D)4p - 3d^{\circ}(a^{\circ}D)5d$	z ⁶ F ^o - ⁶ G	2 2	P	749
	5	1592.243	42.401302 - 105.20579	3d ^o (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z ⁶ F ⁶ - ⁶ G	- Price	Р	749
	1	1592.909	33.501253 - 96.27949	3d°(a1G)4s - 3d5(a4G)4s4p(3P)	$c^2 G + t^2 F^{\circ}$	2 - 2	Р	749
1	5	1593.532	42.114818 - 104.86850	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$ $2d^{6}(a^{5}D)5d$	$z^{6}F^{\circ} - {}^{6}G$	9 9 2 11	P	749 749
	10	1595.001	42,114616 - 104.00345 42,334822 - 105.06563	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$	z ⁶ F° • ⁶ G	2 2	P	749
	1	1595.416	2.430097 - 65.109679	3d ⁷ - 3d ⁶ (a ³ F)4p	a ⁴ F · y ² G°	2 - 2	Р	749
	10	1596.641	42.237033 - 104.86850	3d6(a5D)4p - 3d6(a5D)5d	z°F° - °G	ź-ź	Р	749
	1	1596.82	41.968046 - 104.59327	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$ $2d^{7} - 3d^{6}(a^{5}D)4p$	$z^6 F^\circ - {}^6 G$	11 11 2 2 3 5	Q	816 749
	55	1598.455	21.308040 - 83.86845 20.80577 - 83.305251	$3d^{7} - 3d^{6}(a^{1}F)4p$ $3d^{7} - 3d^{6}(a^{1}F)4p$	a D = v D $a^2 H = v^2 G^\circ$	2 - 2	P	749
	5	1600.552	42.114818 - 104.59327	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z°F° - ⁶ G	ş. u	Р	749
	20	1600.714	31.368450 - 93.84034	3d ⁵ (a ³ D)4s - 3d ⁵ (a ⁴ D)4s4p(³ P ^o)	b⁴D - ⁰D°	2 - 2	Q	749
	5	1601.220	31.387948 - 93.84034 31.387048 - 03.830070	$3d^{6}(a^{3}D)4s - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$ $3d^{6}(a^{3}D)4c - 3d^{5}(a^{4}D)4s4p(^{3}P^{\circ})$	b ⁴ D - ⁶ D° b ⁴ D - ⁶ D°	575-52	P P	749 749
	20	1601.669	31.301940 - 93.030979	50 (a 1)45 - 50 (a 1)454p(1)	50-0	2-2		749
	10	1602.210	1.872567 - 64.286345	$3d^7 - 3d^6(a^3F)4p$	$a^4F - z^2F'$	$\frac{9}{2} - \frac{7}{2}$	P	749 749
	40	1602.596	41.968046 - 104.36682	.3d°(a°D)4p - 3d°(a°D)5d	2°F° - °G	2.2	r	749
	5 70	1604.583	16.36936 - 78.690846 15.84465 - 78.137364	3d ⁷ - 3d ⁶ (a ¹ D)4p 3d ⁷ - 3d ⁶ (a ¹ D)4p	$a^2G - w^2D^2$ $a^2G - v^2F^2$	200	P P	749 749
	1	1605.41	21.581638 - 83.871184	$3d^{6}(a^{3}H)4s - 3d^{6}(a^{1}F)4p$	a ⁴ H - v ² G⁰	- 2 2 - 2	P	816
	1	1605.865	2.837950 - 65.109679 42 114818 - 104 38094	3d ⁷ - 3d ⁶ (a ³ F)4p 3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	a ⁴ F - y ² G ^o z ⁶ F ^o - ⁵ F		P P	749 749
		1(07.0(0	12.120022 104.62042	246(-5D)4- 246(-5D)54	_0E0 (B	1 3	- D	740
		1607.990	$42.439822 \cdot 104.03043$ $42.237033 \cdot 104.42646$	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$	$z^{6}F^{\circ} - {}^{6}F$	7 5	P	749
8	160	1608.451	0 62.171615	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)$	ga ⁶ D - y ⁶ P°	9-2	Р	749
	2 2	1609.168 1610.314	42.237033 - 104.38094 31.387948 - 93.48765	3d°(a²D)4p - 3d°(a²D)5d 3d°(a²D)4s - 3d°(b²F)4p	$z^{\circ}F^{\circ} - {}^{\circ}F$ $b^{4}D - u^{4}F^{\circ}$	2 - 27	P P	749 749
12	90	1610.923	1 872567 - 63 948790	$3d^7 - 3d^6(a^3F)4w$	a⁴F - v⁴G°	8.8	Р	749
v	40	1611.201	0 62.065521	3d ⁶ (a ³ D)4s - 3d ⁶ (a ³ F)4p	ga ⁶ D - y ⁴ F°	9 - 2	Р	749
	2	1611.540	43.238586 - 105.29101	$3d^{\circ}(a^{\circ}D)4p + 3d^{\circ}(a^{\circ}F)4d$ $2d^{\circ}(a^{\circ}D)4n = 2d^{\circ}(b^{\circ}F)4n$	z°P° • *G	2-2	P	749 749
13	135^{2}	1612.806	1.872567 - 63.876317	3d ⁷ - 3d ⁶ (a ³ F)4p	a ⁴ F - y ⁴ G°	2 - 2 2 - 1 2 - 2	P	749
	2	1613.183	31.999048 - 93.98817	$3d^7 - 3d^5(a^4G)4s4p(^3P^{\circ})$	b ² F - w ⁴ G°	7 - 5		816
	1	1613.29	.977053 - 62.962205	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{3}P)4p$	$ga^{6}D - y^{4}D^{6}$	$\frac{1}{2} - \frac{3}{2}$	P	816
	1	1613.357	41.968046 - 103.95059 41.968046 - 103.93660	.3d°(a°D)4p - 3d°(a°D)5d .3d°(a ⁵ D)4p - 3d°(a ⁵ D)5d	$z^{6}F^{\circ} - {}^{6}F$	ų ų	P	749
	ĩ	1613.944	31.368450 - 93.32848	3d ⁶ (a ³ D)4s - 3d ⁶ (b ³ F)4p	b ⁴ D - u ⁴ F°	2 - 2	P	749
	1	1616.326	42.114818 - 103.98351	3d6(a5D)4p - 3d6(a3G)5s	$z^{6}F^{\circ} \cdot e^{2}G$	9 · 7	P	749
	20	1616.652	2.430097 - 64.286345	3d' - 3d'(a'l')4p 3d%=5D)4n - 3d%=5D)5d	art - zrt"	2 2	P	749 749
8	160	1618.468	.384790 - 62.171615	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)$	ga ⁶ D · y ⁶ P°	$\frac{2}{7} - \frac{2}{7}$	P	749
	0	1618.955	42.658224 - 104.42646	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z ⁶ P ^o - ⁶ F	7 • 5	P	749
	2	1618.961	16.36936 - 78.137364	$3d^7 - 3d^6(a^1D)4p$	$a^2G \cdot v^2F^{\prime\prime}$	7 - 7	P	749 740
	2	1619.342	42.658224 - 104.41169 42.237033 - 103.98351	3d°(a°D)4p - 3d°(a°D)5d 3d°(a ⁵ D)4n - 3d°(a ³ G)5s	z°F° • °D z°F° • e ² G	2-5275	P	749 749
	ŏ	1619.644	31.387948 - 93.12990	$3d^{6}(a^{3}D)4s - 3d^{6}(b^{3}F)4p$	b ⁴ D - ⁴ D ⁶	5 - 1	P	749
	2	1620.061	0 61.726077	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ P)4p	ga ⁶ D - y ⁴ D°	2 - 2	Р	749
	1	1620.149	42.658224 - 104.38094	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$ $3d^{6}(a^{5}D)4n - 3d^{6}(a^{3}D)4n$	$z^6P^\circ - {}^6F$	$\frac{1}{2} - \frac{1}{2}$	P	749 749
8	160	1621.686	.384790 - 62.065521	3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁶ S)4s4p(³ P')	ga ⁶ D - y ⁶ P ^o	2 - 25	P	749
-	5	1621.867	2.430097 - 64.087418	3d ⁷ - 3d ⁶ (a ³ F)4p	a ⁴ F - y ⁴ G°	2.2	P	749
			••••••••			1 1 1		77.443

D	-2	2
	_	_

ultiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J · J	Notes	Reference
	1 -	1622.464	43.238586 - 104.87323	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z ⁶ P° · ⁴ D	\$ - 7	Р	749
43	110	1623.092	2.430097 - 64.040886	3d ⁷ - 3d ⁶ (a ³ F)4p	a ⁴ F - y ⁴ G°	2 - 2	P	749
19	10	1623.707	2.837950 - 64.425408	3d' - 3d°(a°F)4p	$a^{4}F - z^{2}F^{0}$	2-2	P	749
43	135	1625.522	2.430097 - 63.948790 31.387948 - 92.89950	3d' - 3d'(a''F)4p 3d ⁶ (a ³ D)4s - 3d ⁶ (b ³ F)4p	a*F - y*G° b⁴D - ⁴ D°	258-8	P	749 749
8	10	1625.912	.667683 - 62.171615	$3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}(a^{\circ}S)$	ga ^o D - y ^o P ^o	2 - 2	P	749
		1020.440	.007000 - 02.101001	30 (a D)45 · 30 (a P)4p 249(-5D)4- 249(-5D)54	ga D · y r	2 - 2	r D	749
	1	1627.020	43.2333300 - 104.10342	$3d^{6}(s^{5}D)4p = 3d^{6}(s^{5}D)5d$	2 F - D 	2 - 2	í Þ	749
	2	1627.130	.667683 - 62.125600	$3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{3}P)4p$	z = 1 $ga^{6}D - z^{2}D^{6}$	2 2	Р	749
	30	1627 382	2 837050 64 286345	2d7 2d%s3E\4s	4F 2F	5 7	p	740
	1	1628 722	667683 - 62.065521	$3d^{6}(a^{5}D)4s = 3d^{6}(a^{3}F)4n$	$a \Gamma - 2 \Gamma$ $a^{6}D \cdot v^{4}F^{0}$		P	749
	i l	1628.881	43.238586 - 104.63043	$3d^{6}(a^{5}D)4D + 3d^{6}(a^{5}D)5d$	7°P° - °P	\$.3	P	749
8	135	1629.160	.667683 - 62.049025	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{0})$	ga ⁶ D · y ⁶ P ⁶	\$. ¥	P	749
	40	1629.371	$16.36936 \cdot 77.742730$	3d ⁷ - 3d ⁶ (a ¹ D)4p	$a^2G - v^2F^{\circ}$	- ž	P	749
	2	1630.189	42.658224 - 104.00081	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z°P° - °P	7 - 7	Р	749
8	110	1631.128	.667683 - 61.974933	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{0})$	ga⁰D - y⁰Pº	$\frac{5}{2}$ - $\frac{3}{2}$	P	749
	5	1632.307	$.862613 \cdot 62.125600$	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ P)4p	ga°D - z²D°	3 - 3	P	749
13	55	1632.667	2.837950 - 64.087418	$3d' - 3d'(a^3F)4p$	a ⁴ F - y ⁴ G°	2 - 2	P	749
13	90	1633.909	2.837950 - 64.040886	3d' - 3d°(a°F)4p	a*F - y*G°	2 - 2	Р	749
	70	1634.350	.862613 - 62.049025	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{\circ})$	ga ⁶ D - y ⁶ P ^o	37 - 57	Р	749
58	110	1635.401	7.955299 - 69.10238	$3d^{\circ}(a^{\circ}D)^{4}s - 3d^{\circ}(a^{\circ}S)^{4}s^{4}p(^{\circ}P^{\circ})$	$a^*D - x^*P^0$	2.2	P	749
8	110	1055.010	13.474411 - 74.000841 862613 - 61.074022	$3d - 3d^{\circ}(a^{\circ}D)4p$ $3d^{\circ}(a^{\circ}D)4a - 3d^{\circ}(a^{\circ}C)4a - 4a^{\circ}(a^{\circ}D)$	a'P - x"D"	2 2 3	Y I	749 740
12	110	1637.399	1.872567 - 62.945038	3d ² - 3d ⁶ (a ³ F)4p	$a^4F \cdot x^4D^\circ$	2 2 2	P	749
8	110	1639 401	077053 61 074033	3d6(a5D)4e - 3d5(a6S)4a4n(3D9)	aa ⁶ D v ⁶ D°	1 3	р	749
5	2	1639.609	31 368450 - 92 35861	3d ⁶ (a ³ D)48 - 3d ⁵ (a ⁴ C)4c4r(³ P ⁰)	ցаթ-չք հ⁴D. ս⁴F⁰	2 2	P	749
13	110	1640.152	3.117461 - 64.087418	$3d^{7} - 3d^{6}(a^{3}F)4p$	$a^4F \cdot v^4G^\circ$	33 - 5	P	749
	20	1640.856	31.483176 - 92.42698	$3d^{6}(a^{3}D)4s \cdot 3d^{5}(a^{4}G)4s4p(^{3}P^{0})$	$b^4D - v^4F^2$	2 - 2	Р	749
58	90	1641.762	8.391938 - 69.30209	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{o})$	$a^4D \cdot x^4P^{\circ}$	<u>5</u> - 2	Р	749
	10	1642.427	18.360646 - 79.24617	3d ² - 3d ⁵ (a ⁶ S)4s4p(¹ P ⁰)	$a^2P - x^6P^6$	3 - 3	Р	749
	10	1642.496	18.360646 - 79.24360	$3d^7 \cdot 3d^6(a^1D)4p$	$a^2P - w^2P^o$	3 - 3	Р	749
	2	1642.927	48.039090 - 108.90664	$3d^7 - 3d^5(a^2G)4s4p(^1P^0)$	$d^2D - {}^4H^\circ$	2 - 2	Q	749
12	90	1643.578	2.430097 - 63.272976 31.483176 - 92.28246	3d' - 3d'(a'F)4p 3d'(a ³ L)4s - 3d ⁵ (a ⁴ G)4s4p(³ P')	a*F - x*D* h4D - v4F*	2 2	P	749 749
I	20	1645-016) 0705(7 (0)((0014		45 210	9 11	D	740
	30	1645.016	1.872567 - 62.662244	3d° - 3d°(a°H)4p 3d%-5D)4p 3d%-5D)5d	a ² F • Z ² I ² - ⁴ D ⁰ • ⁴ C	$\frac{2}{7} - \frac{1}{2}$	P	749
Ì	110	1646 185	8 680454 . 69 42698	$3d^{6}(s^{5}D)As = 3d^{5}(s^{6}S)AsAn(^{3}P^{6})$	2 D · G 9 ⁴ D · v ⁴ P ⁰	3 1	P	74.0
ĺ	1	1646.510	38.164194 - 98.89871	$3d^{6}(a^{1}D)4s - 3d^{6}(h^{1}G)4n$	$c^2 D = {}^2 F^{\circ}$	2-2	p :	749
8	90	1647.163	8.391938 - 69.10238	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{0})$	$a^4D \cdot x^4P^\circ$	\$ - \$	Р	749
	30	1647.546	31.999048 - 92.695374	3d ⁷ - 3d ⁶ (b ³ P)4p	b²F - u²D⁰	7-8	Р	749
	5	1647.758	31.483176 - 92.171716	$3d^{6}(a^{3}D)4s - 3d^{6}(b^{3}F)4p$	$b^4D - u^2G^\circ$	7 - ž	P	749
	2	1648.403	$44.784761 \cdot 105.44954$	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)5d$	z ⁴ D° - ⁴ G	2-2	Р	749
Ì	2 5	1649.112	44 232512 104 06242	3d6(25D)40 . 3d6(25D)54	"4po 4r	2 11	р	749 740
	3	1077.040	F12/2012 • 105.00040		21 - 6	. 2 - 2	•	1917
2	55	1649.426	2.837950 - 63.465109	$3d^7 \cdot 3d^6(a^3F)4p$	$a^{4}F \cdot x^{4}D^{\circ}$	5 - 3 2 - 2 3	P	749
ю	90	1649.576	8.680454 - 69.30209	30"(a"D)4s - 30"(a"S)4s4p("P") 2.17 2.16/23(5)4-	$a^{*}D - x^{*}P^{0}$ $b^{2}E = b^{2}C^{0}$	2 2	P	749 740
8	70	1650,005	31.999040 - 92.002703 8.846768 - 69.42608	3d ⁶ (a ⁵ D)4s - 3d ⁵ (a ⁶ S)4eAn(³ P ⁰)	סיר • ע∹יט 1 ⁴ D - ע ⁴ P°	2 2	P	749 749
-	10	1651.615	31.811822 - 92.35861	3d ⁷ - 3d ⁵ (a ⁴ G)4s4p(³ P [*])	$b^2F \cdot v^4F^2$	25 - 23 22 - 23 22 - 22	P	749
	0	1652.44	47.674721 - 108 1916	3d ⁷ -	d ² D + 23°	3.3	0	816
-	ŏ	1652.489	2.430097 - 62.945038	$3d^7 - 3d^6(a^3F)4p$	$a^4F \cdot x^4D^\circ$	2-5	×	292
	0	1652.911	43.620957 - 104.12027	3d6(a5D)4p - 3d6(a5D)5d	z°P" - °P	3.5	P	749
	20	1653.403	18.360646 - 78.84196	$3d^7 - 3d^6(a^1D)4p$	$a^2P - w^2P'$	3 - 1	Р	749
	20	1654.062	44.753799 - 105.21114	3d°(a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z⁴F° - ⁴G	2 - 2	Р	749
8	10	1654.114	8.846768 - 69.30209	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{\circ})$	a ⁴ D - x ⁴ P°	$\frac{1}{2} - \frac{3}{2}$	P	749
	2	1654.263	1.872567 - 62.322431	3d' - 3d°(a ³ H)4p	$a^{3}F \cdot z^{2}G^{\circ}$	2 2	P	749
2	30	1054.478	3.117401 - 63.559488	3d - 3d (a'r)4p 2.47 - 2.46(-3E)4	a*r · x*D*	2.2	r D	749
-2		1654.91	2.657683 - 61.093413	30 · 30 (a ² F)4p 3d ⁶ (a ⁵ D)4s · 3d ⁶ (a ³ P)4p	ar - x D' ga ⁶ D - z ² D°	2 2	Q	749 816
8	10	1655.028	8 680454 - 60 10238	3d6(25D)48 - 3d5(268)4-27(3D0)	- •⁴D - ∗ ⁴ P⁰	3.5	р	749
~	1	1655.253	31.811822 - 92.225538	$3d^7 - 3d^6(a^5D)5n$	a D · x P ² b ² F - ⁴ P ⁰	2 2	P	749
	20	1655.506	31.811822 - 92.216320	$3d^{7} - 3d^{6}(b^{3}P)4p$	$b^2F - u^2D^\circ$	5 5	P	749
	1	1656.142	44.446878 • 104.82816	3d6(a5D)4p - 3d6(a5D)5d	z4D° - 6D	2.2	Р	749
	5	1656.461	45.079879 - 105.44954	3d°(a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z4F° - 4G	5-3	Р	749

D	-23	

Multiplet	Rel. Int.	λ_{rac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Referen
	2 5 4	1656.743 1656.814 1657.07	18.886780 - 79.24617 18.886780 - 79.24360 3.117461 - 63.465109	$\begin{array}{c} 3d^7 - 3d^5(a^6S)4s4p(^1P^s)\\ 3d^7 - 3d^7(a^1D)4p\\ 3d^7 - 3d^7(a^3F)4p\\ 2a^{10}(a^3F)4p\end{array}$	$a^{2}P - x^{6}P^{6}$ $a^{2}P - w^{2}P^{6}$ $a^{4}F - x^{4}D^{6}$	constant of the second se	P P P	749 749 645 740
	1 30	1657.249 1657.545	45.289801 - 105.63075 18.360646 - 78.690846	$3d^{\circ}(a^{\circ}D)^{4}p + 3d^{\circ}(a^{\circ}D)^{5}d$ $3d^{\circ} + 3d^{\circ}(a^{1}D)^{4}p$	$a^{2}P \cdot w^{2}D^{\circ}$	× - * 32 - 22	P	749 749
41	10 90	$1658.401 \\ 1658.772$	$\frac{1.872567}{1.872567} - \frac{62.171615}{62.158110}$	3d ⁷ - 3d ⁵ (a ⁶ S) 3d ⁷ - 3d ⁶ (a ³ F)4p	a ⁴ F - y ⁶ P° a ⁴ F - y ⁴ F°	9420421	P P	749 749
40	110 1	1659.327 1659.482 1660.388	$\begin{array}{r} 42.401302 + 102.666694 \\ 2.430097 + 62.689880 \\ 42.439822 + 102.666694 \end{array}$	$\begin{array}{r} 3d^{\circ}(a^{\circ}D)4p - 3d^{\circ}(a^{\circ}D)6s \\ 3d^{\circ} - 3d^{\circ}(a^{3}P)4p \\ 3d^{\circ}(a^{5}D)4p - 3d^{\circ}(a^{5}D)6s \end{array}$	$z^{6}F^{6} + {}^{6}D^{6}$ $a^{4}F + y^{4}D^{6}$ $z^{6}F^{6} + {}^{6}D$	*27-52-1-2 *27-52-1-2	Р Р Р	749 749 749
	5 15	1660.839 1660.886	1.872567 - 62.083108 42.334822 - 102.543648	3d ⁷ - 3d ⁶ (a ³ H)4p 3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)6s	$a^{4}F + z^{2}G^{\circ}$ $z^{6}F^{\circ} + {}^{6}D$	66000 	P P	749 749
41 42	$\begin{array}{c} 30 \\ 2 \\ 10 \end{array}$	1661.324 1662.358 1662.425	$\begin{array}{c} 1.872567 - 62.065521 \\ 3.117461 - 63.272976 \\ 36.126387 - 96.27949 \end{array}$	$\frac{3d^7}{3d^6(a^3F)4p}$ $3d^7 - 3d^6(a^3F)4p$ $3d^6(a^3D)4s - 3d^5(a^4G)4s4p(^3P^*)$	a ⁴ F - y ⁴ F° a ⁴ F - x ⁴ D° b ² D - t ² F°	New York	P P P	749 749 749
40	1	1662.722 1663.222	42.401302 - 102.543648 2.837950 - 62.962205	3d°(a ⁵ D)4p - 3d ⁶ (a ⁵ D)6s 3d ⁷ - 3d ⁶ (a ³ P)4p	z ⁶ F° · ⁶ D a ⁴ F - v ⁴ D°		P P	749 749
42	5 5 0	1663.697 1663.782 1663.788	$\begin{array}{r} 2.837950 + 62.945038 \\ 36.252918 + 96.35696 \\ 42.439822 + 102.543648 \end{array}$	$3d^7 - 3d^6(a^3F)4p$ $3d^6(a^3D)4s - 3d^3(a^4G)4s4p(^3P')$ $3d^6(a^5D)4p - 3d^6(a^5D)6s$	$a^{4}F - x^{4}D^{\circ}$ $b^{2}D - t^{2}F^{\circ}$ $z^{6}F^{\circ} - {}^{6}D$	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	P P P	749 749 749
	2	$1663.974 \\ 1665.133$	42.237033 - 102.334112 44.784761 - 104.84002	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)6s = 3d^{6}(a^{5}D)4p -$	z ⁶ F° - ⁶ D z ⁴ D° - 38	72-52	P P	749 749
	1 0 20	1665.929 1666.06 1666.686	36.252918 - 96.27949 33.466463 - 93.48765 42.334822 - 102.334112	$3d^{6}(a^{3}D)4s + 3d^{5}(a^{4}G)4s4p(^{3}P^{*}) = 3d^{6}(a^{1}G)4s + 3d^{6}(b^{3}F)4p = 3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)6s = 0$	$b^{2}D - t^{2}F^{\circ}$ $c^{2}G - u^{4}F^{\circ}$ $z^{6}F^{\circ} - {}^{6}D$	Nakanako Nakan 1	P Q P	749 816 749
	55	1667.913	18.886780 - 78.84196 42 401302 - 102 334112	3d ⁷ - 3d ⁶ (a ¹ D)4p 3d ⁶ (a ⁵ DMa - 3d ⁶ (a ⁵ DMa	$a^{2}P - w^{2}P^{o}$	1 - 12	P	749 749
	5 5 40	1669.001 1669.003 1669.663	42.401302 - 102.334112 42.114818 - 102.030912 45.289801 - 105.20579 2.430097 - 62.322431	$\begin{array}{l} 3d'(a^{2}D)4p - 3d'(a^{5}D)6s \\ 3d'(a^{5}D)4p - 3d'(a^{5}D)5d \\ 3d'(a^{5}D)4p - 3d'(a^{4}B)5d \\ 3d' - 3d'(a^{3}H)4p \end{array}$	$z^{6}F^{\circ} - {}^{6}D$ $z^{4}F^{\circ} - {}^{6}G$ $a^{4}F - z^{2}G^{\circ}$	200240001-00	P P P	749 749 749 749
40 40	150 70	1670.746 1670.790	1.872567 - 61.726077 2.837950 - 62.689880	3d ⁷ - 3d ⁶ (a ³ P)4p 3d ⁷ - 3d ⁶ (a ³ P)4p	a⁴F - y⁴D° a⁺F - y⁴D°	992-12U-30	P P	749 749
40	30 1 0	$\begin{array}{c} 1670.991 \\ 1672.412 \\ 1672.427 \end{array}$	3.117461 - 62.962205 42.237033 - 102.030912 45.079879 - 104.87323	$3d^7 - 3d^{\circ}(a^3P)4p$ $3d^{\circ}(a^5D)4p - 3d^{\circ}(a^5D)6s$ $3d^{\circ}(a^5D)4p - 3d^{\circ}(a^5D)5d$	a ⁴ F - y ⁴ D" z ⁶ F" - ⁶ D z ⁴ F" - ⁴ D	NGC/100-110(Lu	Р Р Р	749 749 749
02	0 110	1672.675 1673.464	44.784761 - 104.56923 15.84465 - 75.600931	3d ⁶ (a ⁵ D)4p - 3d ⁷ - 3d ⁶ (a ³ D)4p	z ⁴ D° - 36 a ² G - w ² F°	57.57 92.77 92.77	Р Р	749 749
41 41	5 55 1	1674.188 1674.256 1674.440	41.968046 - 101.698489 2.430097 - 62.158110 2.430097 - 62.151561	$\begin{array}{ccc} 3d^6(a^5D)4p & - 3d^6(a^5D)6s \\ 3d^7 & - 3d^6(a^3F)4p \\ 3d^7 & - 3d^6(a^3F)4p \\ \end{array}$	z ⁶ F° - ⁶ l) a ⁴ F - y ⁴ F° a ⁴ F - y ⁴ F°	121-021-04 	P P P	749 749 749
40	70	1674.716 1676.156	3.117461 - 62.829075 31.387948 - 91.048256	$3d^{7} - 3d^{6}(a^{3}P)4p$ $3d^{6}(a^{3}D)4s - 3d^{6}(a^{5}D)5p$	a ⁴ F - y ⁴ D° b ⁴ D - ⁴ D°		P	749 749
41	10 70 40	1676.361 1676.856 1677.842	2.430097 - 62.083108 2.430097 - 62.065521 18.886780 - 78.487153	3d ⁷ - 3d ⁹ (a ³ H)4р 3d ⁷ - 3d ⁹ (a ³ F)4р 3d ⁷ - 3d ⁹ (a ⁴ F)4р 3d ⁷ - 3d ⁹ (a ⁴ D)4р	a ⁴ F - z ² G° a ⁴ F - y ⁴ F° a ² P - w ² D"	Nama-Nama Nama-Nama Nama-Nama	P P P	749 749 749
40	0	1678.312 1678.629	42.114818 - 101.698489 3.117461 - 62.689880	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)6s$ $3d^{7} - 3d^{6}(a^{3}P)4p$	z ⁶ F° - ⁶ D a ⁴ F - v ⁴ D°	- 10 - 10 - 10	P P	749 749
02	70 30 1	1679.378 1679.494 1680.36	16.36936 - 75.915215 13.474411 - 73.016147 31.387948 - 90.898873	$\begin{array}{c} 3d^7 - 3d^9 (a^3D) 4^4 p \\ 3d^7 - 3d^9 (a^3G) 4p \\ 3d^6 (a^3D) 4s - 3d^6 (b^3P) 4p \end{array}$	$a^{2}G - w^{2}F^{a}$ $a^{4}P - x^{2}F^{a}$ $b^{4}D - {}^{4}P^{a}$		P P P	749 749 816
	40	$1681.111 \\ 1682.822$	2.837950 - 62.322431 45.206450 - 104.63043	$3d^7 - 3d^6(a^3H)4p$ $3d^6(a^5D)4u - 3d^6(a^5D)5d$	a ⁴ F - z ² G° z ⁴ D° - ⁶ P	5 - 7	P P	749 749
41	1 2 5	1682.993 1683.315 1684.004	$\begin{array}{r} 31.483176 & 90.901124 \\ 2.837950 & 62.244520 \\ 45.044168 & 104.42646 \end{array}$	$\begin{array}{r} 3d^6(a^3D)4s - 3d^6(a^5D)5p \\ 3d^7 - 3d^6(a^3F)4p \\ 3d^6(a^5D)4p - 3d^6(a^5D)5d \end{array}$	$b^{4}D - {}^{4}P^{o}$ $a^{4}F - y^{4}F^{o}$ $z^{4}D^{o} - {}^{6}F$	Naurolanaru Narolanaru Nataratara	Р Р Р	749 749 749
41	0 70	1684.276 1685.954	42.658224 - 102.030912 2.837950 - 62.151561	3d ⁶ (a ³ D)4p - 3d ⁶ (a ³ D)6s 3d ⁷ - 3d ⁶ (a ³ F)4n	z ⁶ P° - ⁶ D a ⁴ F° - v ⁴ F°		P P	749 749
40 39	70 40 5	$\frac{1686.455}{1686.692}\\1686.788$	2.430097 - 61.726077 2.837950 - 62.125600 1.872567 - 61.156835	3d ⁷ - 3d ⁶ (a ³ P)4p 3d ⁷ - 3d ⁶ (a ³ P)4p 3d ⁷ - 3d ⁶ (a ³ P)4p	$a^{4}F - y^{4}D''$ $a^{4}F - z^{2}D''$ $a^{4}F - z^{4}H''$	In-Indonesia In-Indonesia	P P P	749 749 749
02	1 10	1687.739 1688.289	31.387948 - 90.638822 16.36936 - 75.600931	$3d^{6}(a^{3}D)4s - 3d^{6}(a^{5}D)5p - 3d^{7} - 3d^{6}(a^{3}D)4p$	$b^4D - {}^4D^\circ$ $a^2G - w^2F^\circ$	101-10201 	Р Р	749 749
41 85	30 55	1688.403 1689.832	2.837950 - 62.065521 13.474411 - 72.651876	$\frac{3d^{7}}{3d^{7}} - \frac{3d^{6}(a^{3}F)4p}{3d^{7}} - \frac{3d^{6}(a^{3}D)4p}{3d^{7}}$	a ⁴ F - y ⁴ F° a ⁴ P - w ⁴ D°		P P	749 749

:

D-24

Aultiplet	Rel. Int.	λ_{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
85	20	1690.758	13.474411 - 72.619490	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^4P - w^4D^\circ$	5 - 2	Р	749
41	0	1691.010	33.466463 • 92.602703	$3d^{6}(a^{1}G)4s - 3d^{6}(b^{3}F)4p$	$c^2 G - u^2 G^{\circ}$	2 - 2	P	749
41	40	1691.273	3.117461 - 62.244520 1.872567 - 60.989444	3d ⁷ - 3d ⁶ (a ² F)4p 3d ⁷ - 3d ⁶ (a ³ H)4p	a ⁴ F - y ⁴ F	* - *	P	749
	i	1692.175	43.238586 - 102.334112	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)6s	$z^6P^\circ - ^6D$	2 - 2	P	749
38	40	1692.499	1.872567 - 60.956781	3d ⁷ - 3d ⁶ (a ³ H)4p	a ⁴ F - z ⁴ G°	¥ - 2	Р	749
85	30	1693.476	13.474411 - 72.524566	3d' - 3d°(a°D)4p	a ⁴ P - w ⁴ D ^o	2-2	P	749
	1	1693.759	43.620957 - 102.666694 42.658224 - 101.698489	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)6s$	z ⁶ P ⁶ , ⁶ D	2 - 2	P	749 749
41	40	1693.936	3.117461 - 62.151561	3d ⁷ - 3d ⁶ (a ³ F)4p	a ⁴ F - y ⁴ F°	3 - 2	P	749
	10	1694.484	1.872567 - 60.887598	$3d_{-}^{7} - 3d_{-}^{0}(a_{-}^{3}H)4p$	a4F - z4H"	2 - 11 2 - 2	Р	749
39	10	1694.681	3.117461 - 62.125600	$3d' - 3d^{\circ}(a^{\circ}P)4p$	$a^{4}F - z^{2}D^{*}$	2 - 2	P	749
റാ	135	1696.459	1872567 - 60.807230	$3d^{7} - 3d(a^{2}D)4p$ $3d^{7} - 3d^{6}(a^{3}H)4p$	a ⁴ F • 7 ⁴ G°	2 - 2	P	749 749
	0	1697.139	43.620957 · 102.543648	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)6s	z ⁶ P ⁵ - ⁶ D	$\frac{3}{2} - \frac{3}{2}$	P	749
	0	1697.225	36.126387 - 95.04610	$3d^{6}(a^{3}D)4s - 3d^{5}(b^{3}P)4p$	$b^2D - {}^2F^{o}$	30 - 51 20 - 52	Р	749
10	0	1697.428	31.387948 - 90.300625	$3d^{6}(a^{3}D)4s - 3d^{6}(a^{3}D)5p$	b ⁴ D · ⁶ F ⁶	19-527	P	749 740
40	20	1698.135	2.837950 - 61.726077	30' - 30°(a'P)4p 3d ⁷ - 3d ⁶ (a ³ D)4p	a'r y'D' a ⁴ P - w ⁴ F'	10 - 52 - 52 - 52 - 52 - 52 - 52 - 52 - 52	P P	749 740
85	20	1699.195	13.673185 - 72.524566	$3d^{7} - 3d^{6}(a^{3}D)4p$	a ⁴ P·w ⁴ D°	2 23 2 23 2 2	P	749
	2	1699.908	36.252918 - 95.07964	$3d^6(a^3D)4s - 3d^5(b^3P)4p$	$b^2D - {}^2F^{\circ}$	- 2 - 2	Р	749
	2	1700.902	43.238586 - 102.030912	$3d^{6}(a^{3}D)4p - 3d^{6}(a^{5}D)6s$	z ⁶ P ⁶ • ⁶ D		P	749 740
85	2	1701.719	13.474411 - 72.238513	30° - 30°(a°D)4p 3d² - 3∂⁰(a³D)4p	a`r - w`r" a ⁴ P - w ⁴ D°	2 - 2	P	(49 749
38	110	1702.044	1.872567 - 60.625449	$3d^{7} - 3d^{6}(a^{3}H)4p$	a ⁴ F - z ⁴ G"		P	749
	5	1702.730	20.516960 - 79.24617	3d7 - 3d5(a6S)4s4p(1P0)	$a^2D - x^6P^{\circ}$	5.3	Р	749
	20	1702.805	20.516960 • 79.24360	3d ⁷ - 3d ⁶ (a ⁴ D)4p	$a^2D \cdot w^2P^0$	500	P	749
	2 .	1703.190	43.620957 - 102.334112	$3d^{2}(a^{-}D)4p + 3d^{2}(a^{-}D)0s$ $3d^{2} + 3d^{6}(a^{3}D)4p$	$z^{*}P^{*} - {}^{*}D$ $a^{4}P - w^{4}F^{0}$	2 - 2	P	749 740
39	40	1704.643	2.430097 - 61.093413	3d ⁷ - 3d ⁶ (a ³ P)4p	$a^4F - z^2D^{\circ}$	- ž	P	749
	2	1704.815						749
85	1	1705.910	13.904824 - 72.524566	3d' - 3d'(a'D)4p	$a^{4}P - w^{4}D^{\circ}$	2 - 2	P	749
38	35 9	1706.145	2.430097 - 01.041748 8.680454 - 67.273826	3d' - 3d''(a'H)4p 3d'(a ⁵ D)4e - 3d''(a ³ F)4p	$a^{4}D = v^{2}D^{0}$	2 2	P	749 749
84	9Õ	1707.399	13.474411 - 72.043026	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^{4}P - w^{4}P^{\circ}$	252	P	749
	5	1707.669	$2.430097 \cdot 60.989444$	3d ⁷ - 3d ⁶ (a ³ H)4p	a ⁴ F · z ⁴ H°	7 - 2	Р	749
34 i		1708.240	13.673185 - 72.212978	$3d' - 3d'(a^{\circ}D)4p$	$a^{4}P - w^{4}P^{0}$	2 - 2	Р	749
30	55	1708.022	2.430097 - 00.930781	$3d^{7} - 3d^{6}(a^{3}P)4p$	ar-zG a ⁴ F-v ⁴ P⁰	2 2	P	749
34	55	1709.685	13.474411 - 71.964710	3d ⁷ - 3d ^o (a ³ D)4p	$a^4P \cdot w^4P^{\circ}$	\$ - \$	P	749
	2	1710.930	36.252918 - 94.70066	$3d^{6}(a^{3}D)4s - 3d^{6}(b^{3}F)4p$	$b^2D - {}^2D^o$	5-5	Р	749
	2	1711.536	8.846768 - 67.273826	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{3}F)4p$	$a^4D \cdot y^2D^0$	1 - 2	Р	749
	5	1711.684	7.955299 - 66.377283	3d°(a°D)4s - 3d°(a°G)4p	a*D - x⁴F°	2-2	Р	749 740
38	160	1712.999	2.430097 - 60.807230	3d [†] - 3d [•] (a ³ H)4p	$a^4F \cdot z^4G^\circ$	72.2	Р	749
34	10	1713.213	13.673185 - 72.043026	$3d^{7} - 3d^{6}(a^{3}D)4p$	a^4P - w^4P°	3 - 3 2 - 2 1	P	749
l	1	1713.724	44.232512 - 102.584963	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{3}G)5s$	$z^{4}F^{\circ} - f^{4}G$	2 - 2	P	749
	10 :	1714.070	8.080454 - 07.000517 9.837950 - 61.156835	3d"(a"1)4s - 3d"(a"1)4p 3d ⁷ - 3d ⁶ (a ³ H)4p	a D - y"D" a4F _ z4H⊍	2 - 2	P	749 749
84	30	1715.026	13.904824 - 72.212978	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^4P \cdot w^4P^\circ$	$\frac{1}{2} \cdot \frac{2}{2}$	P	749
34	40	1715.515	13.673185 - 71.964710	$3d_{2}^{7} - 3d_{2}^{6}(a_{2}^{3}D)4p$	$a^4P - w^4P^{\circ}$	$\frac{3}{2} - \frac{3}{2}$	P	749
20	<u> </u>	1716.321	13.904824 72.168998	$3d' - 3d^{\circ}(a^{3}D)4p$	$a^{4}P - w^{4}F^{n}$	2 - 2	P	749
J.7	5 S	1717.107	2.657950 - 01.093413 16.36936 - 74.606841	30 - 30 (a 17)4p 3d ⁷ - 3d ⁶ (a ³ D)4n	ar · z⁻D″ a²G · x²D°	2-2	P	749 749
	5	1717.448	30.388542 - 88.61452	$3d^{6}(a^{3}G)4s - 3d^{5}(a^{4}P)4s4p(^{3}P')$	b ² G · ⁶ D ⁶	$\frac{2}{2}$ $\frac{2}{2}$	•	749
	5	1717.716	18.360646 - 76.577482	3d ⁷ - 3d ⁶ (a ¹ S)4p	$a^2P - x^2P^{\circ}$	$\frac{3}{2} - \frac{1}{2}$	P	749
10	5	1717.761	$3.117461 \cdot 61.332764$	$3d^{2} - 3d^{6}(a^{3}P)4p$	$a^{+}F - y^{+}P^{+}$	* - *	P	749 740
10	35 20	1718.984	20.516960 - 78.690846	3d ⁷ - 3d ⁶ (a ¹ D)4n	ar - z·G′ a ² D - w ² D°	2 - 2	P	749
	-5	1719.330	44.232512 - 102.394718	$3d^{6}(a^{5}D)4p - 3d^{6}(a^{5}D)6s$	z ⁴ F° - ⁴ D	$\frac{5}{2} - \frac{7}{2}$	P	749
34	30	1720.039	13.904824 - 72.043026	$3d^{7} - 3d^{6}(a^{3}D)4p$	$a^4P - w^4P^0$	1/2 - 3/2	Р	749
	$\frac{2}{10}$	1720.271	8.391938 - 66.522304	$3d^{6}(a^{3}D)4s - 3d^{6}(a^{3}G)4p$	$a^{4}D - x^{4}F^{0}$	32 - 52 52 - 52	P	749 740
1	2	1720.013	2.837950 - 60.956781 31 368450 - 89 471365	3d°(a°H)4p 3d°(a ³ D)4s - 3d°(a ⁵ D)5n	a'r - z''G" h ⁴ D - ⁶ D"	2 - 2	0	749 749
	÷ :	1721 720	95 707500 02 04045	$2 d^{0}(a^{3}D)A_{a} = 2 d^{0}(a^{3}E)A_{a}$	$h^2 D = u^2 D^{\mu}$	3 2	- ¥	740

n	-25	
υ	-25	

						r		
Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		1701.004	45 0 41 (0 102 110 400	2 10 5TN 1- 2 20 5TN C	-4D° 4D	3 3	р	740
	1	1721.934	45.044168 - 103.118400	$30^{(a)}D)4p - 30^{(a)}D)0s$	z D - D	2 - 2	r D	749
	30	1722.432	1.955299 - 00.012750	30(a) D/45 + 30(a) D/49	-4120 4D	2 - 2	r D	740
		1722.097	44.755799 - 102.602512	$3.4^{6}(a^{5}T)/4r$ $3.4^{6}(a^{5}T)/6r$	$2 \Gamma - D$ $-^{4}\Gamma^{0} = ^{4}D$	2 - 2	r P	749
		1722.994	45.079679 - 105.116400	$3d^{6}(a^{5}D)4p = 3d^{6}(a^{5}D)6c$	2 F - D 2 ⁴ D° - ⁴ D	2 - 2	p	749
	1	1723.010	44.704701 - 102.302512	50 (a D)+p - 50 (a D)55	20-0	2 - 2	•	112
	40	1724.574	8.391938 - 66.377283	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ G)4p	$a^4D - x^4F^{\circ}$	5 - 7	Р	749
	50	1724.853	3.117461 - 61.093413	3d - 3d'(a'P)4p	a⁴F - z²D°	2 - 2	P	749
	20	1724.855	45.289801 - 103.265694	3d°(a°D)4p · 3d°(a°D)6s	z*F° - *D	2 - 2	P	749
	70	1724.963	2.430097 - 60.402342	3d' - 3d°(a ³ P)4p	a°F · y*P°	2 - 2	P	749
	5	1725.390	44.92955 - 102.88712	$3d^{\circ}(a^{+}t)4s + 3d^{\circ}(a^{+}D_{7/2})4t$	C'F - 7/2[7/2]	ž - ž	Q	749
	2	1725.690	44.446878 - 102.394718	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)6s	$z^4D^\circ - {}^4D$	$\frac{2}{2} - \frac{7}{2}$	Р	749
	1	1725.979	21.308040 - 79.24617	3d ⁷ - 3d ⁵ (a ⁶ S)4s4p(⁴ P ⁶)	a ² D - x ⁶ P ^o	$\frac{3}{2} - \frac{3}{2}$	P	749
	1	1726.056	21.308040 - 79.24360	3d' - 3d°(a'D)4p	$a^2D \cdot w^2P^\circ$	2 - 2	<u>P</u>	749
	0	1726.156	8.680454 - 66.612656	3d°(a°D)4s - 3d°(a ³ G)4p	a⁴D - x⁴F°	2 - 2	P.	749
	90	1726.392	3.117461 - 61.041748	3d' - 3d"(a°H)4p	a*F-z*G"	2 - 2	Р	749
	5	1726.584	3.117461 - 61.035287	3d ⁷ - 3d ⁶ (a ³ P)4p	$a^4F - v^4P^0$	3-1	Р	749
	20	1726.918	15.84465 - 73.751282	$3d^7 \cdot 3d^6(a^1))4p$	$a^2G - w^2H^\circ$	3.9	P	749
	ĨÕ	1727.325						749
	2	1728.288	46.967444 - 104.82816	3d ⁶ (a ⁵ D)4p - 3d ⁶ (a ⁵ D)5d	z ⁴ P° - ⁶ D	5-5	P	749
	1	1728.639	47.389779 - 105.23877	3d ⁶ (a ⁵ D)4p -	z ⁴ P° - 40	3 - 2	Р	749
	20	1728.852	8.680454 - 66.522304	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ G)4p	a⁴D - x⁴F°	3-5	р	749
	10	1729.325						749
10	55	1731.038	18.360646 - 76.129446	3d ⁷ - 3d ⁹ (a ¹ S)4p	a ² P - x ² P ^o	2 - 2	P	749
	5	1731.125	8.846768 - 66.612656	3d°(a°D)4s - 3d°(a°G)4p	a D · x*F	2 - 2	P	749
	20	1731.336	15.84465 - 73.60350	3d' - 3d°(a'1)4p	a*G - w*H*	2-2	Р	749
	30	1731 879	7 955299 - 65 696038	$3d^{6}(a^{5}D)da + 3d^{6}(a^{3}C)dn$	a ⁴ D · x ⁴ C ⁰	7.8	р	749
	5	1732 275	31 999048 - 89 727342	$3d^7 - 3d^6(h^3F)4n$		7.5	l ô	749
	5	1732.575		04 04 (0 x) xp			×	749
	2	1733.072	26.170181 - 83.871184	3d ⁶ (a ³ H)4s - 3d ⁶ (a ¹ F)4p	b ² H - v ² G°	4-8	P	749
10	10	1733.382	18.886780 - 76.577482	3d7 - 3d6(a'S)4p	a ² P · x ² P°	$\frac{1}{2} - \frac{1}{2}$	Р	749
	,	1799 519	9 201029 66 079260	2,16(1,51)) 4. 2,16(1,3C) 4.	s ⁴ D × ⁴ C°	5 5	ъ	749
	5	1733 860	0.391930 - 00.070209	50 (a 1)48 - 50 (a 6)4p	a. D. X.O	2 2		749
	200	1733.88	50 212826 - 107 8866	3d6(h3P)4e	c4P . 20°	5.7	0	436
	10	1734.080	33 501253 - 91 167937	$3d^{6}(a^{1}G)4s + 3d^{6}(a^{5}D)5n$	c ² C . ⁶ P ^o	7 7	ŏ	749
	10	1734.448				2.2	×	749
				0.17 0.16 10.14	20 200	5 7		7.40
	20	1735.496	20.516960 - 78.137364	3d' - 3d'(a'D)4p	a D · v t ·	2 - 2		749
		1735.811	44.784761 - 102.394718	$3d^{\circ}(a^{\circ}D)4p - 3d^{\circ}(a^{\circ}D)0s$	2 D° - D	2 2	r	749
	10	1730.002	42.334622 - 99.918309	$3a^{(a-1)/4}p - 3a^{(a-1)} as$ $2A^{7} - 2A^{6}(a^{3}p)Ac$	2 F - 1 F 	5 5	р	749
	10	1737 946	8 301038 - 65 031334	$3d^{6}(a^{5}D)A_{8} = 3d^{6}(a^{3}C)A_{0}$	a ⁴ D x ⁴ G ⁹	5 7	P	749
	10	1131.940	0.091900 - 09.901034	00 (a 1975) - 00 (a 1977)	40-20	2 2		
	10	1738.105	21.308040 - 78.84196	3d ⁷ - 3d ⁶ (a ¹ D)4p	$a^2D - w^2P^o$	$\frac{3}{2} - \frac{1}{2}$	Р	749
	20	1740.312	45.206450 - 102.666694	3d6(a5D)4p - 3d6(a5D)6s	$z^4D^\circ - {}^\circ D$	2 - 2	Q	749
	1	1741.340	26.932748 - 84.35980	3d°(a°P)4s - 3d°(a'F)4p	b ² P · v ² D ^o	2 - 2	Р	749
	40	1741.560	0 . 57 411065	$3d^{6}(a^{5}D)Ae = 3d^{5}Ae^{2}$	$a^{6}D = d^{4}P$	9.5	FP	749 375 749
		1141.02	0 01.411000	50 (a b) 15 * 50 115	- Gu D' U I	2-2	1,1	010,119
	55	1742.709	16.36936 - 73.751282	3d ⁷ · 3d ⁶ (a ¹ I)4p	a ² G · w ² H°	7 - 2	Р	749
	20	1743.338				ļ l		749
	10	1744.526	00 000500	9.16(30) 4 9.16(10) 4	140 200	5 7		749
01		1744.99	20.830582 - 78.137304	$3d^{\circ}(a^{\circ}P)4s - 3d^{\circ}(a^{\circ}D)4p$ $3d^{7} - 3d^{\circ}(a^{\circ}D)4p$	$\mathbf{b}^{2}\mathbf{\Gamma} \cdot \mathbf{v}^{2}\mathbf{\Gamma}^{3}$	2-2	Y P	810 740
01	э	1743.242	13.04103 - 13.143208	50 - 50 (a 5)rp	a GrwG	2-2		1.49
01	2	1745.661	3.117461 - 60.402342	3d ⁷ - 3d ⁶ (a ³ P)4p	a ⁴ F · y ⁴ P°	3.5	P	749
	110	1746.818	15.84465 - 73.091590	3d' - 3d'(a'G)4p	$a^2G \cdot w^2G^\circ$	2.2	P	749
	0	1748.880	47.389779 - 104.56923	3d°(a°D)4p -	z [*] ₽° - 36	× - 2	P	749
	.5	1748.890	21.308040 - 78.487153	3d' - 3d'(a*D)4p	$a^2D \cdot w^2D^2$	2 - 2		749
	30	1749.125	13.84403 - 13.01014/	30 - 30 (a (3)4p	a G - x r	2 2 2	r	149
	5	1749.358	52.29939 - 109.46312	$3d^{5}(a^{6}S)4s4p(^{3}P'') - 3d^{5}4s(a^{7}S)4d$	z ³ P° - ³ D	5-2	Р	749
	10	1749.602	52.29939 - 109.45525	3d ⁵ (a ⁶ S)4s4p(³ P [°]) - 3d ⁵ 4s(a ⁷ S)4d	z ⁸ P° - ⁸ D	52 - 52	P	749
	10	1749.777	52.29939 - 109.44953	$3d^{\circ}(a^{6}S)4s4p(^{3}P^{\circ}) + 3d^{5}4s(a^{7}S)4d$	z ⁸ F° - ⁸ D	5 2	P	749
		1751.05	.384790 - 57.493321	$3d^{\circ}(a^{5}D)4s - 3d^{5}4s^{2}$	ga⁰D - d⁺P	2 2	F,P	375,749
	20	1753.26	47.389779 - 104.42646	3d°(a°D)4p - 3d°(a°D)5d	z*P° - °F	2-2	Q	389
		1753 58	.384790 - 57 411065	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	ga ⁶ D - d ⁴ P	7.5	F.P	375.749
	20	1755,850	26.352766 - 83.305251	$3d^{6}(a^{3}H)4s - 3d^{6}(a^{1}F)4n$	$b^2H - v^2G^2$	9 7 7	P	749
	2	1756.84	33.466463 - 90.386528	3d ⁶ (a ¹ G)4s - 3d ⁶ (a ⁵ D)4p	c ² G - ⁴ F [*]	5 - 5	ō	816
	5	1756.960						749
		1757.14	.667683 - 57.578484	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	ga ⁶ D - d ⁴ P	2-2	F,P	375,749
	[I		I	i l		

fann.

D-2	26
-----	----

Multiplet	Rel. Int.	λ_{var} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	30 20 5 10	1757.743 1758.065 1758.312 1759.77 1759.77	$\begin{array}{l} 52.58251 & \cdot 109.47365\\ 52.58251 & \cdot 109.46312\\ 52.58251 & \cdot 109.45525\\ \cdot .667683 & \cdot 57.493321\\ 2.837950 & \cdot 59.663456 \end{array}$	$\begin{array}{l} 3d^5(a^{6}S)4s^4p(^{3}P^{6}) & - 3d^54s(a^{7}S)4d \\ 3d^5(a^{6}S)4s4p(^{3}P^{6}) & - 3d^54s(a^{7}S)4d \\ 3d^5(a^{6}S)4s4p(^{3}P^{6}) & - 3d^54s(a^{7}S)4d \\ & 3d^{6}(a^{5}D)4s & - 3d^54s^2 \\ & & 3d^{7}(a^{5}D)4p \end{array}$	$ \begin{array}{c} z^8 P^{\circ} - {}^8 D \\ z^8 P^{\circ} - {}^8 D \\ z^8 P^{\circ} - {}^8 D \\ ga^{\circ} D - d^4 P \\ a^4 F - z^4 S^{\circ} \end{array} $		P P F,P P	749 749 749 375,749 749
01	20 110 10	1760.390 1761.372 1761.84 1762.32 1762.977	$\begin{array}{c} 15.84465 & .72.650658 \\ 16.36936 & .73.143288 \\ 1.872567 & .58.631531 \\ .667683 & .57.411065 \\ 16.36936 & .73.091590 \end{array}$	$\begin{array}{r} 3d^7 - 3d^6(a^3D)4p\\ 3d^7 - 3d^6(a^4C)4p\\ 3d^7 - 3d^6(b^4G)4s\\ 3d^6(b^4G)4s\\ 3d^6(a^5D)4s - 3d^54s^2\\ 3d^7 - 3d^6(a^4C)4p\end{array}$	a ² G - w ⁴ F° a ² G - w ² G° a ⁴ F - d ² G ga ⁶ D - d ⁴ P a ² G - w ² G°		Q P F,P F,P P	749 749 375,749 375,749 749
	20 20	1763.17 1764.119 1765.325 1765.83 1766.74	$\begin{array}{r} .862613 & .57.578484 \\ 16.36936 & .73.054881 \\ 16.36936 & .73.016147 \\ .862613 & .57.493321 \\ .977053 & .57.578484 \end{array}$	$\begin{array}{r} 3d^6(a^5D)4s-3d^54s^2\\ 3d^7-3d^6(a^4C)4p\\ 3d^7-3d^6(a^4C)4p\\ 3d^7(a^5D)4s-3d^54s^2\\ 3d^6(a^5D)4s-3d^54s^2\\ 3d^6(a^5D)4s-3d^54s^2\\ \end{array}$	ga ⁶ D - d ⁴ P a ² G - x ² F° a ² G - x ² F° ga ⁶ D - d ⁴ P ga ⁶ D - d ⁴ P		F,P P F,P F,P	375,749 749 749 375,749 375,749
	1 5 40 30 1	1767.75 1768.012 1769.275 1769.666 1769.993	36.126387 - 92.695374 52.96582 - 109.48615 52.96582 - 109.47365 52.96582 - 109.47365 52.96582 - 109.46312	$\begin{array}{l} 3d^6(a^3D)4s - 3d^6(b^3P)4p \\ 3d^5(a^6S)4s^4p(^3P^{\circ}) - 3d^54s(a^7S)4d \\ 3d^5(a^6S)4s^4p(^3P^{\circ}) - 3d^54s(a^7S)4d \\ 3d^5(a^6S)4s^4p(^3P^{\circ}) - 3d^54s(a^7S)4d \end{array}$	$b^{2}D + u^{2}D^{o}$ $z^{8}P^{o} + {}^{8}D$ $z^{8}P^{o} + {}^{8}D$ $z^{3}P^{o} + {}^{8}D$	592 Ц ²¹ 0607-61	P P P	816 749 749 749 749 749
99	5 5 10 110 2	1771.260 1771.510 1771.960 1772.513 1773.22	21.308040 - 77.742730 15.84465 - 72.261729 36.252918 - 92.64751	3d ⁷ - 3d ⁶ (a ¹ D)4p 3d ⁷ - 3d ⁶ (a ¹ G)4p 3d ⁶ (a ³ D)4s - 3d ⁶ (b ³ F)4p	a ² D - v ² F° a ² G - x ² H° b ² D - ⁴ D°	 	P P P	749 749 749 749 816
99	30 0 10	1776.649 1777.45 1777.898 1778.22 1779.31	$\begin{array}{c} 15.84465 & 72.130390\\ 44.232512 & 100.49202\\ 18.360646 & 74.606841\\ 2.430097 & 58.666258\\ 2.430097 & 58.631531\end{array}$	$\begin{array}{r} 3d^7 & 3d^6(a^1G)4p\\ 3d^6(a^5D)4p & 3d^6(a^3F)5s\\ 3d^7 & 3d^6(a^3D)4p\\ 3d^7 & 3d^6(a^3D)4p\\ 3d^7 & 3d^6(b^1G)4s\\ 3d^7 & 3d^6(b^1G)4s \end{array}$	$a^{2}G - x^{2}H^{\circ} z^{4}F^{\circ} - e^{2}F a^{2}P - x^{2}D^{\circ} a^{4}F - d^{2}G a^{4}F - d^{2}G$		P Q F,P F,P F,P	749 816 749 375,749 375,749
	$2 \\ 30 \\ 5 \\ 2 \\ 20$	1780.99 1781.343 1781.530 1781.702 1782.012	$\begin{array}{c} 31.387948 + 87.537652 \\ 18.360646 + 74.498057 \\ 7.955299 + 64.087418 \\ 8.680454 + 64.806487 \end{array}$	$\begin{array}{r} 3d^{6}(a^{3}D)4s + 3d^{5}(a^{4}G)4s4p(^{3}P^{0}) \\ & 3d^{7} + 3d^{6}(a^{3}D)4p \\ & 3d^{6}(a^{5}D)4s + 3d^{6}(a^{3}F)4p \\ & 3d^{6}(a^{5}D)4s + 3d^{6}(a^{3}P)4p \end{array}$	$\begin{array}{l} b^4D - y^6F^*\\ a^2P - x^2D^*\\ a^4D - y^4G^*\\ a^4D - z^2P^* \end{array}$		Q P Q	816 749 749 488 749
91 91 91	160 5 1 110 40	1785.272 1785.922 1786.448 1786.752 1787.996	$\begin{array}{c} 23.317633 & .79.33150 \\ 7.955299 & .63.948790 \\ 13.673185 & .69.650484 \\ 23.317633 & .79.28511 \\ 23.317633 & .79.24617 \end{array}$	3d ⁵ 4s ² - 3d ⁵ (a ⁶ S)4s4p(¹ P°) 3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ F)4p 3d ⁷ - 3d ⁶ (a ⁶ G)4p 3d ⁵ 4s ² - 3d ⁵ (a ⁶ S)4s4p(¹ P ^c) 3d ⁵ 4s ² - 3d ⁵ (a ⁶ S)4s4p(¹ P ^c)	$\begin{array}{c} a^{6}S + x^{6}P^{u} \\ a^{4}D + y^{4}G^{u} \\ a^{4}P + y^{2}F^{u} \\ a^{6}S + x^{6}P^{u} \\ a^{6}S + x^{6}P^{u} \end{array}$		P P P P	749 749 292 749 749
99	40 2 110	1788.078 1789.90 1791.21 1792.32 1793.367	$\begin{array}{c} 23.317633 \cdot 79.24360 \\ 16.36936 \cdot 72.238513 \\ 2.837950 \cdot 58.666258 \\ 2.837950 \cdot 58.631531 \\ 16.36936 \cdot 72.130390 \end{array}$	$\begin{array}{c} 3d^54s^2 & . \ 3d^6(a^1D)4p \\ 3d^7 & . \ 3d^6(a^3D)4p \\ 3d^7 & . \ 3d^6(b^4G)4s \\ 3d^7 & . \ 3d^6(b^4G)4s \\ 3d^2 & . \ 3d^6(b^4G)4s \\ 3d^7 & . \ 3d^6(a^1G)4p \end{array}$	$ \begin{array}{c} a^{6}S \cdot w^{2}P^{o} \\ a^{2}G \cdot w^{4}F^{o} \\ a^{4}F \cdot d^{2}G \\ a^{4}F \cdot d^{2}G \\ a^{2}G \cdot x^{2}H^{o} \end{array} $	NA-JN-SCI-NGCR3-LINDC NACNACN4-INSCING	P P F,P F,P P	749 816 375,749 375,749 749
	$1 \\ 2 \\ 20 \\ 40 \\ 5$	1794.77 1795.11 1796.915 1796.98 1798.025	30.764485 - 86.48275 44.784761 - 100.49202 8.391938 - 64.040886 38.214507 - 93.830979	$\begin{array}{c} 3d^6(a^3G)4s \cdot 3d^6(a^1F)4p \\ 3d^6(a^5D)4p \cdot 3d^6(a^3F)5s \\ 3d^6(a^5D)4s \cdot 3d^6(a^3F)4p \\ 3d^6(a^1D)4s \cdot 3d^5(a^4D)4s4p(^3P^\circ) \end{array}$	$b^{2}G - u^{2}F^{a}$ $z^{4}D^{a} - e^{2}F^{a}$ $a^{4}D - y^{4}G^{a}$ $c^{2}D - b^{a}D^{a}$		Q Q P	816 816 749 645 749
42	100 10 1	1798.157 1798.196 1800.22 1800.449 1800.55	20.516960 - 76.129446 18.886780 - 74.498057 3.117461 - 58.666258 31.387948 - 86.929649 1.872567 - 57.411065	$\begin{array}{r} 3d^7 - 3d^6(a^1S)4p \\ 3d^7 - 3d^7(a^3D)4p \\ 3d^7 - 3d^6(b^3G)4s \\ 3d^6(a^3D)4s - 3d^6(b^3P)4p \\ 3d^7 - 3d^54s^2 \end{array}$	$\begin{array}{l} a^{2}D \cdot x^{2}P^{n} \\ a^{2}P \cdot x^{2}D^{o} \\ a^{4}F \cdot d^{2}G \\ b^{4}D \cdot v^{4}D^{m} \\ a^{4}F \cdot d^{4}P \end{array}$	NACHALINAL NACHAL	P P F,P P F,P	749 749 375,749 749 375,749
	1 5 0 0 1	1801.08 1803.541 1804.166 1804.646 1804.827	$\begin{array}{c} 13.904824 + 69.42698\\ 31.483176 + 86.929649\\ 46.967444 + 102.394718\\ 47.389779 + 102.802312\\ 8.680454 + 64.087418 \end{array}$	$\begin{array}{r} 3d^7 \cdot 3d^5(a^{\circ}S)4s4p(^{3}P^{\circ})\\ 3d^{\circ}(a^3D)4s \cdot 3d^{\circ}(b^3P)4p\\ 3d^{\circ}(a^5D)4p \cdot 3d^{\circ}(a^5D)6s\\ 3d^{\circ}(a^5D)4p \cdot 3d^{\circ}(a^5D)6s\\ 3d^{\circ}(a^5D)4p \cdot 3d^{\circ}(a^3F)4p \end{array}$	$\begin{array}{c} a^4P \cdot x^4P^o \\ b^4D \cdot v^4D^u \\ z^4P^o \cdot {}^4D \\ z^4P^o \cdot {}^4D \\ a^4D \cdot y^4G^o \end{array}$	NGONGONANA-113-	Р Р Р Р	816 749 749 749 749 749
66 42	1 20 0 90	1804.95 1805.718 1807.740 1808.828 1809.318	$\begin{array}{c} 31.364440 + 86.767577 \\ 31.387948 + 86.767577 \\ 7.955299 + 63.272976 \\ 31.483176 + 86.767577 \\ 21.308040 + 76.577482 \end{array}$	$\begin{array}{c} 3d^6(a^3D)4s & 3d^6(b^3P)4p \\ 3d^6(a^3D)4s & 3d^6(b^3P)4p \\ 3d^6(a^5D)4s & 3d^6(a^3F)4p \\ 3d^6(a^3D)4s & 3d^6(b^3P)4p \\ 3d^7(a^3D)4s & 3d^6(a^1S)4p \end{array}$	$\begin{array}{l} b^4D + v^4D^3 \\ b^4D + v^4D^3 \\ a^4D + x^4D^n \\ b^4D + v^4D^3 \\ a^2D + x^2P^2 \end{array}$	NAGARAH-ANA-ANAGARANGA Nat-Anagaranga	P P P P	816 749 749 749 749 749

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	3 0 1 30	1810.57 1812.266 1814.01 1815.410	38.164194 - 93.39536 31.364440 - 86.543974 44.446878 - 99.573225 20.516960 - 75.600931	$\begin{array}{c} 3d^6(a^1D)4s & 3d^6(b^5F)4p \\ 3d^6(a^5D)4s & 3d^2(b^4F)4p \\ 3d^6(a^5D)4p & 3d^6(a^3F)5s \\ & 3d^7(a^3D)4p \end{array}$	$c^{2}D - u^{4}F^{\alpha}$ $b^{4}D - v^{4}D^{\alpha}$ $z^{4}D^{\alpha} - t^{4}F$ $a^{2}D - w^{2}F^{\alpha}$		P P P	816 749 816 749
66	20 0	1815.766 1815.87	8.391938 - 63.465109 44.753799 - 99.824045	3d°(a°D)4s - 3d°(a°F)4p 3d°(a°D)4p - 3d°(a°F)5s	$a^4D - x^4D^9$ $z^4F^9 - f^4F$	2 - 2 7 - 5 2 - 2	P Q	749 816
66	0 70	1816.09 1817.509 1818.521 1818.81	2.430097 - 57.493321 31.368450 - 86.388820 7.955299 - 62.945038 2.430097 - 57.411065	3d ⁷ - 3d ⁵ 4s ² 3d ⁶ (a ³ D)4s - 3d ⁶ (b ³ P)4p 3d ⁶ (a ³ D)4s - 3d ⁶ (a ³ F)4p 3d ⁷ - 3d ⁵ 4s ²	$a^{4}F - d^{4}P$ $b^{4}D - v^{4}D^{o}$ $a^{4}D - x^{4}D^{o}$ $a^{4}F - d^{4}P$	7-12-100-300	F,P P P F,P	375,749 749 749 375,749
66 66	$2 \\ 2 \\ 40 \\ 1 \\ 10$	1819.646 1820.479 1822.123 1822.189 1823.870	31.811822 - 86.767577 31.999048 - 86.929649 8.391938 - 63.272976 8.680454 - 63.559488 16.360646 - 73.189110	$\begin{array}{c} 3d^7 - 3d^4(b^3P)4p\\ 3d^7 - 3d^6(b^3P)4p\\ 3d^6(a^5D)4s - 3d^6(a^5F)4p\\ 3d^6(a^5D)4s - 3d^4(a^5F)4p\\ 3d^7(a^5D)4s - 3d^6(a^5D)4p\\ 3d^7 - 3d^6(a^5D)4p\end{array}$	$\begin{array}{l} b^{2}F & - v^{4}D^{\circ} \\ b^{2}F & - v^{4}D^{\circ} \\ a^{4}D & - x^{4}D^{\circ} \\ a^{4}D & - x^{4}D^{\circ} \\ a^{2}P & - y^{2}P^{\circ} \end{array}$	NGCLARTON AFTRON	P P P P	749 749 749 749 749 749
66	$5\\1\\2\\20$	1823.931 1824.105 1824.979 1825.329 1826.80	$\begin{array}{c} 18.360646 & -73.187280 \\ 21.308040 & -76.129446 \\ 20.80577 & -75.600931 \\ 8.680454 & -63.465109 \\ 2.837950 & -57.578484 \end{array}$	$\begin{array}{r} 3d^7 + 3d^6(a^3D) 4p \\ 3d^7 - 3d^6(a^5) 4p \\ 3d^7 - 3d^6(a^5D) 4p \\ 3d^7 - 3d^6(a^5D) 4p \\ 3d^6(a^5D) 4s - 3d^6(a^3F) 4p \\ 3d^7 - 3d^5 4s^2 \end{array}$	$\begin{array}{c} a^2 P &- y^2 P'' \\ a^2 D &- x^2 P'' \\ a^2 H &- w^2 F'' \\ a' D &- x^4 D'' \\ a' F &- d^4 P \end{array}$	NGORDEN 2001 - 2000	P P P P F,F	749 749 749 749 749 375,749
65 66	50 30 30 5 20	1826.962 1826.999 1827.729 1828.346 1828.854	31.811822 - 86.54749 7.955299 - 62.689880 8.846768 - 63.559488 18.360646 - 73.054881 15.84465 - 70.523706	$\begin{array}{c} 3d^7 - 3d^6(a^1F)^4p\\ 3d^6(a^5D)^4s - 3d^6(a^2F)^4p\\ 3d^6(a^5D)^4s - 3d^6(a^3F)^4p\\ 3d^7 - 3d^6(a^1G)^4p\\ 3d^7 - 3d^6(a^1G)^4p\\ 3d^7 - 3d^6(a^6G)^4p \end{array}$	$ \begin{array}{l} b^{2}F \cdot u^{2}F^{\nu} \\ a^{4}D \cdot y^{4}D^{\nu} \\ a^{4}D \cdot x^{4}D^{\nu} \\ a^{2}P \cdot x^{2}F^{\nu} \\ a^{2}G \cdot x^{2}G^{\nu} \end{array} $		Р Р Р Р	749 749 749 749 749 749
	0 30 20 20	1829.126 1829.65 1830.262 1830.463 1830.734	$\begin{array}{r} 31.811822 - 86.48275 \\ 2.837950 + 57.493321 \\ 52.58251 + 107.2195 \\ 54.275637 + 108.90664 \\ 54.283220 + 108.90664 \end{array}$	$\begin{array}{c} 3d^7 - 3d^6(a^1F)^4p\\ 3d^7 - 3d^54s^2\\ 3d^5(a^6S)4s4p(^3P') - 3d^54p^2\\ 3d^54s^2 - 3d^7(a^2C)4s4p(^1P'')\\ 3d^54s^2 - 3d^7(a^2C)4s4p(^1P'')\\ 3d^54s^2 - 3d^6(a^2C)4s4p(^1P'') \end{array}$	$\begin{array}{l} b^2 F - u^2 F^{\circ} \\ a^4 F - d^4 P \\ z^6 P^{\circ} - {}^8 P \\ b^4 G - {}^4 H^{\circ} \\ b^4 G - {}^4 H^{\circ} \end{array}$	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	P F,P P Q	749 375,749 749 749 749 749
66 66	$20 \\ 40 \\ 30 \\ 30 \\ 30$	1830.887 1831.261 1831.753 1831.980 1832.40	$\begin{array}{c} 8.846768 + 63.465109 \\ 21.308040 + 75.915215 \\ 8.680454 + 63.272976 \\ 54.283220 + 108.86898 \\ 2.837950 + 57.411065 \end{array}$	$\begin{array}{c} 3d^6(a^5D)4_6 + 3d^6(a^3F)4p\\ 3d^7 + 3d^7(a^3D)4p\\ 3d^6(a^3D)4s + 3d^6(a^3F)4p\\ 3d^54s^7 + 3d^5(a^2G)4s^4p(^1P'')\\ 3d^7 + 3d^54s^2 \end{array}$	$\begin{array}{c} a^{4}D \ - \ x^{4}D^{\circ} \\ a^{2}D \ - \ w^{2}F^{\circ} \\ a^{4}D \ - \ x^{4}D^{\circ} \\ b^{4}G \ - \ ^{4}H^{\circ} \\ a^{4}F \ - \ d^{4}P \end{array}$		P P P F,P	749 749 749 749 375,749
65 66	20 40 2 55 55	1832.500 1833.076 1833.233 1833.631 1833.662	$\begin{array}{r} 8.391938 & 62.962205\\ 8.391938 & 62.945038\\ 31.999048 & 86.54749\\ 52.29939 & 106.8360\\ 54.273641 & 108.80931 \end{array}$	$\begin{array}{c} 3d^{6}(a^{5}D)4s\cdot3d^{6}(a^{5}P)4p\\ 3d^{6}(a^{5}D)4s\cdot3d^{7}(a^{4}P)4p\\ 3d^{7}(a^{4}D)4s\cdot3d^{7}(a^{4}P)4p\\ 3d^{5}(a^{6}S)4s4p(^{4}P^{\prime})\cdot3d^{5}4p^{2}\\ 3d^{5}4s^{2}\cdot3d^{6}(a^{2}G)4s4p(^{1}P^{\prime}) \end{array}$			P P P P	749 749 749 749 749 749
98	$ \begin{array}{c} 1 \\ 40 \\ 40 \\ 110 \end{array} $	1833.813 1834.964 1835.411 1835.874 1836.18	$\begin{array}{r} 38.164194 - 92.695374 \\ 54.232195 - 108.72916 \\ 31.999048 - 86.48275 \\ 15.84465 - 70.314604 \\ 3.117461 - 57.578484 \end{array}$	$\begin{array}{r} 3d^6(a^1D)4s - 3d^6(b^3P)4p\\ 3d^54s^2 - 3d^5(a^2C)4s4p(^{1}P'')\\ & 3d^7 - 3d^6(a^4F)4p\\ & 3d^7 - 3d^6(a^6C)4p\\ & 3d^7 - 3d^5(a^5C)4p\\ & 3d^7 - 3d^54s^2 \end{array}$	$\begin{array}{c} c^2 D - u^2 D^u \\ b^4 G - {}^4 H^o \\ b^2 F - u^2 F^o \\ a^2 G - x^2 G^o \\ a^4 F - d^4 P \end{array}$	5121-1 	Р Р Р Р F,P	749 749 749 749 375,749
	5 5 5 10	1839.05 1839.460 1839.674 1839.742 1839.804	3.117461 - 57.493321 54.273641 - 108.63109 54.275637 - 108.63109 54.275637 - 108.62925	$\begin{array}{l} 3d^7 - 3d^5 4s^2 \\ 3d^5 4s^2 - 3d^5 (a^2 G) 4s 4p (^1 P^*) \\ 3d^5 4s^2 - 3d^3 (a^2 G) 4s 4p (^1 P^*) \\ 3d^5 4s^2 - 3d^3 (a^2 G) 4s 4p (^1 P^*) \end{array}$	a ⁴ F - d ⁴ P b ⁴ G - ⁴ G° b ⁴ G - ⁴ G° b ⁴ G - ⁴ G°	NECHNICH NEC	F,P P P P	375,749 749 749 749 749 749
65	$20 \\ 0 \\ 20 \\ 10 \\ 30$	1839.998 1840.320 1841.542 1841.604 1841.690	$\begin{array}{l} 54.283220 & -108.63109\\ 54.232105 & -108.57056\\ 18.886780 & -73.189110\\ 18.886780 & -73.187280\\ 8.391938 & -62.689680 \end{array}$	$\begin{array}{c} 3d^54s^2 + 3d^5(a^2G)4s4p(^1P'')\\ 3d^54s^2 + 3d^7(a^2G)4s4p(^1P'')\\ & 3d^7 + 3d^6(a^3D)4p\\ & 3d^7 + 3d^6(a^3D)4p\\ & 3d^7 + 3d^6(a^3D)4p\\ & 3d^6(a^5D)4s + 3d^6(a^3P)4p \end{array}$	$ \begin{array}{c} b^4G - {}^4G^\circ \\ b^4G - {}^4G^\circ \\ a^2P - y^2P^\circ \\ a^2P - y^2P^\circ \\ a^4D - y^4D^\circ \end{array} $	7-540661370	P P P P P	749 749 749 749 749 749
	$ \begin{array}{c} 10\\ 1\\ 20\\ 20 \end{array} $	1841.725 1842.050 1842.240 1842.52 1843.193	$\begin{array}{r} 54.273641 + 108.57056\\ 54.283220 + 108.57056\\ 8.680454 + 62.962205\\ 0. + 54.273641\\ 52.96582 + 107.2195 \end{array}$	$\begin{array}{c} 3d^5 4s^2 & 3d^5 (a^2 G) 4s 4p (^1 P'') \\ 3d^3 4s^2 & 3d^3 (a^2 G) 4s 4p (^1 P'') \\ 3d^6 (a^5 D) 4s & 3d^6 (a^3 P) 4p \\ 3d^6 (a^5 D) 4s & 3d^5 4s^2 \\ 3d^5 (a'S) 4s 4p (^3 P'') & 3d^5 4p^2 \end{array}$	$\begin{array}{c} b^{4}G \ - \ ^{4}G^{\circ} \\ b^{4}G \ - \ ^{4}G^{\circ} \\ a^{4}D \ - \ y^{4}D^{\circ} \\ ga^{6}D \ - \ b^{4}G \\ z^{8}P^{\circ} \ - \ ^{8}P \end{array}$	STATE NEWS STATE	P P F,P P	749 749 749 375,749 749
	15 10 5 0	1843.199 1843.261 1843.92 1844.59 1844.671	$\begin{array}{r} 52.58251 + 106.8360 \\ 54.232195 + 108.48387 \\ 0. + 54.232195 \\ 44.232512 + 98.445400 \\ 54.273641 + 108.48387 \end{array}$	$\begin{array}{c} 3d^5(a^6S)4s4p(^3P') - 3d^54p^2 \\ 3d^54s^2 - 3d^5(a^2C)4s4p(^1P') \\ 3d^6(a^2D)4s - 3d^2s^2 \\ 3d^6(a^2D)4s - 3d^4(a^3H)5s \\ 3d^4s^2 - 3d^2(a^2C)4s4p(^{1P'}) \end{array}$	$z^{8}P^{o} - {}^{8}P$ $b^{4}C - {}^{4}C^{o}$ $ga^{0}D - b^{4}G$ $z^{4}F^{o} - e^{4}H$ $b^{4}C - {}^{4}C^{o}$	712112122000 122122000 122000 122000 120000 10000 10000 10000 100000 100000 100000 100000 100000 1000000	P P F,P	749 749 375,749 488 749

D	28
---	----

Aultiplet	Rel. Int.	$\lambda_{v_{B'}}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	30	1844 023	7 955290 - 62 158110	3d6(a ⁵ D)4 3d6(a ³ F)4.	a ⁴ D	7.2	р	749
	2	1845.146	7.955299 - 62.15116	$3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{3}F)4n$	$a^{4}D \cdot v^{4}F^{0}$	2 · 2 5 - 5	P	749
	20	1846.273	18.360646 - 72.524566	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^2P \cdot w^4D^4$	3-3	Ô.	749
98	40	1846.574	16.36936 - 70.523706	3d ⁷ - 3d ⁶ (a ⁶ G)4p	$a^2G - x^2G^{\circ}$	2 - 2)	749
65	10	1846.769	8.680454 - 62.829075	3d6(a5D)4s - 3d6(a3P)4p	a ⁴ D · y ⁴ D°	$\frac{3}{2} \cdot \frac{1}{2}$	Р	749
65	10	1847.902	8.846768 - 62.962205	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{3}P)4p$	a ⁴ D - y ⁴ D"	$\frac{1}{2} - \frac{3}{2}$	P	749
41	70	1848.775	20.516960 - 74.606841	3d' - 3d'(a'D)4p	$a^2D - x^2D^{\circ}$	- 12 21 - 22	P	749
65	30	1851.529	8.680454 - 62.689880	$3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}(a^{\circ}P)4p$	a*D - y*D* - 4D - 4D*	2 - 2	Р	749
05	10	1853.732	16.36936 - 70.314604	3d (a D) 4s - 3d (a P) 4p $3d^7 - 3d^6(a^6G) 4p$	$a^2G \cdot x^2G^\circ$	2-2	P P	749 749
	2	1854 239	8 301038 . 62 322431	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ H)4n	a ⁴ D - 7 ² C"	ž - ž	Р	749
	-	1855.34	.384790 - 54.283220	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	ga ⁶ D - b ⁴ G	2 - 2 5 - 5	F.P	375.749
		1855.67	.384790 - 54.273641	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	ga ⁶ D - b ⁴ G	2 - 2	F,P	375,749
	20	1856.315	52.96582 - 106.8360	$3d^{5}(a^{6}S)4s4p(^{3}P^{n}) - 3d^{5}4p^{2}$	$z^{B}P^{\circ} + {}^{B}P$	2 - 2	Р	749
	0	1856.921	8.391938 - 62.244520	3d°(a°D)4s - 3d°(a°F)4p	a ⁴ D y ⁴ F°	2 - 2	Р	749
	5	1856.930	18.360646 - 72.212978	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^2P \cdot w^4P$	3 · 1	Р	749
	30	1857.10 1857.959	.384790 - 54.232195	$3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}4s^{2}$	ga⁰D - b⁴G	2 - 2	F,P	375,749 749
	5	1859.557	20.830582 - 74.606841	3d ⁶ (a ³ P)4s - 3d ⁶ (a ³ D)4n	$b^4P \cdot x^2D^0$	ş.ş	Р	749
65	40	1859.746	7.955299 - 61.726077	3d ⁶ (a ⁵ D)4s - 3d ⁶ (a ³ P)4p	$a^4D - y^4D^{\circ}$	ž - ž	P	749
97	160	1860.053	15.84465 - 69.606552	$3d^7 - 3d^6(a^6G)4n$	$a^2G \cdot v^2F^{\alpha}$	3-3	Р	749
	1	1861.031	8.391938 - 62.125600	3d'(a5D)45 - 3d'(a3P)4p	$a^4D - z^2D^{\circ}$	$\frac{5}{2} - \frac{3}{2}$	P	749
	8	1862.81	18.360646 - 72.043026	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^2P \cdot w^4P^{\prime\prime}$	10401	P	645
26	2 55	$1863.114 \\ 1864.647$	8.391938 - 62.065521 20.34030 - 73.969767	3d°(a°D)4s - 3d°(a°F)4p 3d² - 3d ⁶ (a ¹ D4n	$a^*D \cdot y^*F^0$ $a^2H \cdot v^2I^0$	ų ų	P P	749 749
		1064 740	20.24020 72.00000	217 216 Its4	211 210	11 13	- P	740
20	90	1804.749	20.34030 - 73.966832 667683 - 54.983990	30° - 30°(a°1)4p 3d°(a ⁵ D)4e - 3d ⁵ 4a²	a"H • y"l" ga%D • h#C	2.2	F P	749 375 740
		1865.39	.667683 - 54.265220	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	ga D - D G ga ⁶ D - h ⁴ G	2 - 2	F.P	375.749
		1865.46	.667683 - 54.273641	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	ga ⁶ D - b ⁴ G	- 20 20 20 20 20 20 20 20 20 20 20 20 20 2	F,P	375,749
	2	1866.923	8.680454 - 62.244520	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{3}F)4p$	$a^4D - y^4F^{o}$	2 - 2	Р	749
	10	1867.258	50.157452 - 103.71157	$3d^{6}(b^{3}F)4s - 3d^{6}(a^{5}D_{3/2})4f$	c ⁴ F - 3/2[7/2] ^a	2 - ž	Q	749
	1	1867.660	18.886780 - 72.429711	$3d^{7} - 3d^{6}(a^{3}D)4p$	$a^2P - w^4D^4$	$\frac{1}{2} = \frac{1}{2}$	P	749
	10	1867.942	48.039090 - 101.57390	$3d^{\circ} - 3d^{\circ}(a^{\circ}D)4s4p(^{\circ}P^{\circ})$	d*D - *P*	2 - 2	- <u>Q</u>	749
	30 5	1869.549	30.388542 - 83.871184	3d°(a ³ G)4s - 3d°(a ¹ F)4p 3d°(a ³ G)4s - 3d°(a ¹ F)4p	$b^2G - v^2G^{\circ}$	2 - 2 2 - 2	P	749 749
	1	1870.72	25 787598 . 79 24360	3d ⁶ (a ³ P)4s - 3d ⁶ (a ¹ D)4n	$h^2 P \cdot w^2 P''$	3.3	0	816
	2	1871.077	8.680454 - 62.125600	$3d^{\circ}(a^{5}D)4s - 3d^{\circ}(a^{3}P)4p$	a ⁴ D z ² D ^o	$\frac{2}{3}$ $\frac{2}{3}$	ě	749
		1871.94	.862613 - 54.283220	$3d^{6}(a^{5}D)4s - 3d^{5}4s^{2}$	$ga^{\circ}D - b^{4}G$	<u>3</u> - <u>7</u>	F,P	375,749
		1872.20	.862613 - 54.275637	3d°(a ⁵ D)4s - 3d ⁵ 4s ²	ga°D - b⁴G	ž - ž	F,P	375,749
	20	1872.638			1			/49
	0	1872.738	8.846768 - 62.244520	$3d^{6}(a^{5}D)4s - 3d^{6}(a^{3}F)4p$	$a^4D - y^4F^{\circ}$	$\frac{1}{2} - \frac{3}{2}$	P	749
45	3	1874.58	36.126387 - 89.471365	3d°(a°D)4s - 3d°(a°D)5p 2d9(a5D)4a - 2d9(a3D)4-	b*D - "D" ₀*D*D°	ž - ž	- V	816 740
υð	40	1875.211		əd (a 17)48 - 30°(a°17)4p 3d ⁷ - 3d ⁶ (a ³ F)4p	$a D - y D^{2}$ $a^{4}P - v^{2}D^{4}$	2 - 2	P	749
	õ	1875.43	54.870528 - 108.1916	3d6(b3P)4s -	$d^2F = 23^\circ$	- 2 2 2 2	Q	816
	15	1875.536	 36.126387 - 89.444458	3d6(a3D)43 - 3d5(a4P)4s4p(3P))	b ² D - ⁶ P ⁶	3 - 5	ļ	488
41	40	1876.215	21.308040 - 74.606841	$3d^7 + 3d^6(a^3D)4p$	$a^2D - x^2D^{o}$	<u>3</u> - <u>5</u>	Р	749
		1876.22	.977053 - 54.275637	$3d^6(a^5D)4s - 3d^54s^2$	ga^D - b ⁴ G	1 - 2	F,P	375,749
97 25	160 190	1876.837 1877.469	16.36936 - 69.650484 20.34030 - 73.60350	3d° - 3d"(a°G)4p 3d⁻ - 3d°(a¹I)4p	$a^{a}G - y^{2}F^{o}$ $a^{2}H - w^{2}H^{o}$	1 - 2 1 - 1 2 - 1	P	749 749
_	40	1070-207	14 24024 40 404552	- ~	-20 210	7 7	n	740
$\frac{i}{1}$	40	1878.386	16.36936 - 69.606552 21.308040 - 74.408057	3d° - 3d'(a'G)4p 3d7 - 3d%a3D)4∞	$a^{2}C \cdot y^{2}F^{0}$ $a^{2}D \cdot y^{2}D^{0}$	2 - 2	P	749 749
26	110	1880.972	20.80577 - 73.969767	$3d^7 - 3d^6(a^1I)4p$	$a^2H - v^2I^2$	ş. Ļ	P	749
	0	1883.06	22.810357 - 75.915215	3d6(a3F)4s - 3d6(a3D)4p	$b^4F \cdot w^2F^{\circ}$	2 . 2	Q	816
		1885.67	1.872567 - 54.904222	$3d^7 - 3d^6(b^3P)4s$	a ⁴ F - d ² F	2 - 2	F,P	375,749
		1886.86	1.872567 - 54.870528	$3d^7 - 3d^6(b^3P)4s$	$a^4F - d^2F$	2-2	F,P	375,749
		1888.010	0 52.96582	$3d^{6}(a^{5}D)4s - 3d^{5}(a^{6}S)4s4p(^{3}P^{6})$	$ga^{o}D - z^{8}P^{o}$	9 - 92 9 - 92	P	749 740
<i>د</i> ې	100	1800.254	20.80577 - 73.751282	3d" - 3d"(a'l)4p 3d7 - 3d%3C\An	a*H - w*H" _4P _4F*	2-2	r P	749 740
	$\frac{2}{2}$	1893.649	15.474411 - 00.377283	əu •əu (a G/4p	а г - Х Г	2 - 2	E.	749
5	70	1894.021	20.80577 - 73.60350	3d ⁷ - 3d ⁶ (a ¹ I)4n	a ² H - w ² H°	ş_₩.	Р	749
24	55	1895.688	20.34030 - 73.091590	$3d^{7} - 3d^{6}(a^{1}G)4p$	$a^2H = w^2G^{\circ}$	<u>1</u> 2 2	P	749
	2	1897.480	8.391938 - 61.093413	$3d^{6}(a^{3}D)4s - 3d^{6}(a^{3}P)4p$	$a^4D - z^2D^{\circ}$	3 - 2	P	749
10	90	1898.536	20.516960 - 73.189110	$3d^{2} - 3d^{6}(a^{3}D)4p$	$a^2D - y^2P^0$	3 - 1 5 - 7	P	749
		1900.190	20.310900 - 73.143288	3d' - 3d''(a'G)4p	a*D - w*G*	2 - 2	P	749

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	10 30 20 1 5	1900.67 1901.773 1902.027 1903.023 1903.284	$\begin{array}{c} 0.\ -\ 52.58251\\ 13.673185\ \cdot\ 66.24866\\ 31.811822\ \cdot\ 84.35980\\ 30.764485\ \cdot\ 83.305251 \end{array}$	$\begin{array}{r} 3d^6(a^5D)4a - 3d^5(a^6S)4a^4p(^3P^{o})\\ 3d^7 - 3d^6(a^2P)4p\\ 3d^7 - 3d^6(a^3P)4p\\ 3d^7 - 3d^6(a^1F)4p\\ 3d^6(a^3G)4s - 3d^6(a^1F)4p \end{array}$	$\begin{array}{l} ga^{6}D \ - \ z^{8}P^{\circ} \\ a^{4}P \ - \ z^{2}S^{\circ} \\ b^{2}F \ - \ v^{2}D^{\circ} \\ b^{2}G \ - \ v^{2}G^{\circ} \end{array}$		P P P P	488 749 749 749 749 749
39 39	5 110 1	1903.387 1904.791 1905.270 1905.70 1905.77	20.516960 - 73.054881 20.516960 - 73.016147 8.846768 - 61.332764 2.430097 - 54.904222 2.430097 - 54.902315	$\begin{array}{c} 3d^7 - 3d^6(a^1C) 4p \\ 3d^7 - 3d^6(a^1C) 4p \\ 3d^6(a^5D) 4s + 3d^6(a^1P) 4p \\ 3d^7 - 3d^6(b^3P) 4s \\ 3d^7 - 3d^6(b^3P) 4s \end{array}$			P P F,P F,P	749 749 749 375,749 375,749
	1	1906.93 1908.36 1909.808 1909.87 1910.04	$\begin{array}{c} 2.430097 + 54.870528 \\ 1.872567 + 54.273641 \\ 8.680454 + 61.041748 \\ 1.872567 + 54.232195 \\ 8.680454 + 61.035287 \end{array}$	$\begin{array}{c} 3d^7 \cdot 3d^6(b^3P) 4s \\ 3d^7 \cdot 3d^34s^2 \\ 3d^6(a^5D) 4s \cdot 3d^6(a^3H) 4p \\ 3d^7 \cdot 3d^54s^2 \\ 3d^7(a^5D) 4s \cdot 3d^6(a^3P) 4p \end{array}$	$\begin{array}{l} {a}^{4}{F} \ - \ {d}^{2}{F} \\ {a}^{4}{F} \ - \ {b}^{4}{G} \\ {a}^{4}{D} \ - \ {z}^{4}{G}^{\circ} \\ {a}^{4}{F} \ - \ {b}^{4}{G} \\ {a}^{4}{F} \ - \ {b}^{4}{G} \\ {a}^{4}{D} \ - \ {y}^{4}{P}^{\circ} \end{array}$		F,P F,P P F,P P	375,749 375,749 749 375,749 816
24 24	1 40 10 5	1910.150 1910.445 1910.675 1912.564 1914.330	21.251608 - 73.60350 13.904824 - 66.24866 20.80577 - 73.143288 20.80577 - 73.091590	$\begin{array}{l} 3d^6(a^3H)4s\cdot3d^6(a^1I)4p\\ 3d^7\cdot3d^6(a^2P)4p\\ 3d^7\cdot3d^6(a^4G)4p\\ 3d^7\cdot3d^6(a^4G)4p\\ 3d^7\cdot3d^6(a^1G)4p \end{array}$	$a^{4}H - w^{2}H^{2}$ $a^{4}P - z^{2}S^{o}$ $a^{2}H - w^{2}G^{o}$ $a^{2}H - w^{2}G^{o}$	13 - 11 21 - 2 	P P P	292 749 749 749 749 749
38	2 1 0 40 30	1915.328 1915.792 1916.239 1917.320 1918.100	20.80577 - 73.016147 .384790 - 52.58251 20.830582 - 73.016147 15.84465 - 68.000788 20.516960 - 72.651876	$\begin{array}{l} 3d^7 \cdot 3d^6(a^1C) & 4p \\ 3d^6(a^5D) & 4s \cdot 3d^5(a^4S) & 4s & 4p(^3P^*) \\ 3d^6(a^3P) & 4s \cdot 3d^6(a^4C) & 4p \\ 3d^7 \cdot 3d^6(a^3C) & 4p \\ 3d^7 \cdot 3d^6(a^3C) & 4p \\ 3d^7 \cdot 3d^6(a^3D) & 4p \end{array}$	$\begin{array}{c} a^{2}H \cdot x^{2}F^{\circ} \\ ga^{6}D \cdot z^{3}P^{\circ} \\ b^{4}P \cdot x^{2}F^{\circ} \\ a^{2}G \cdot y^{2}H^{\prime\prime} \\ a^{2}D \cdot w^{4}D^{\circ} \end{array}$		Р Р Р Р	749 749 749 749 749 749
	0 0	1920.63 1920.70 1920.985 1921.87 1922.269	$\begin{array}{c} 2.837950 & 54.904222\\ 2.837950 & 54.902315\\ 31.811822 & 83.86845\\ 2.837950 & 54.870528\\ 21.581638 & 73.60350 \end{array}$	$\begin{array}{c} 3d^7 - 3d^6(b^3P)4s\\ 3d^7 - 3d^6(b^3P)4s\\ 3d^7 - 3d^6(a^1F)4p\\ 3d^7 - 3d^6(a^1F)4p\\ 3d^7 - 3d^6(b^3f)4s\\ 3d^6(a^3H)4s - 3d^6(a^1))4p \end{array}$	$a^{4}F \cdot d^{2}F$ $a^{4}F \cdot c^{2}P$ $b^{2}F \cdot v^{2}D^{\circ}$ $a^{4}F \cdot d^{2}F$ $a^{4}H \cdot w^{2}H^{\circ}$	NONCOLOURS IN TURNED	F,P F,P P F,P P	375,749 375,749 749 375,749 292
23 40	5 20 135 30 5	1922.692 1922.797 1925.987 1926.240 1927.485	8.391938 - 60.402342 20.516960 - 72.524566 20.34030 - 72.261729 .384790 - 52.29939 21.308040 - 73.189110	$\begin{array}{r} 3d^6(a^5D)4s \cdot 3d^6(a^3P)4p \\ 3d^7 \cdot 3d^9(a^4D)4p \\ 3d^7 \cdot 3d^9(a^4D)4p \\ 3d^7 \cdot 3d^9(a^4C)4p \\ 3d^6(a^5D)4s \cdot 3d^5(a^5S)4s4p(^2P^*) \\ 3d^7 \cdot 3d^6(a^3D)4p \end{array}$	$\begin{array}{c} {\bf a}^4 D \ - \ y^4 P^{\rm o} \\ {\bf a}^2 D \ - \ w^4 D^{\rm o} \\ {\bf a}^2 H \ - \ x^2 H^{\rm o} \\ {\bf g} {\bf a}^6 D \ - \ z^8 P^{\rm o} \\ {\bf a}^2 D \ - \ y^2 P^{\rm o} \end{array}$		P P P	749 292 749 748 749
40 23	25 2 2	1927.553 1927.919 1928.52 1928.785 1928.88	21.308040 - 73.187280 31.999048 - 83.86845 2.430097 - 54.283220 20.80577 - 72.651876 2.430097 - 54.273641	$\begin{array}{l} 3d^7 - 3d^6(a^3D) 4p \\ 3d^7 - 3d^6(a^1F) 4p \\ 3d^7 - 3d^5 4s^2 \\ 3d^7 - 3d^5 4s^2 \\ 3d^7 - 3d^6(a^3D) 4p \\ 3d^7 - 3d^5 4s^2 \end{array}$			P P F,P P F,P	749 749 375,749 749 375,749
	10 2 40	1929.196 1929.709 1930.42 1930.915 1931.00	$\begin{array}{c} 20.516960 & .72.352024 \\ 20.830582 & .72.651876 \\ 2.430097 & .54.232195 \\ 20.830582 & .72.619490 \\ 3.117461 & .54.904222 \end{array}$	$\begin{array}{c} 3d^7 + 3d^6(a^3D)4p\\ 3d^6(a^3P)4s + 3d^6(a^3D)4p\\ 3d^7 + 3d^54s^2\\ 3d^6(a^3P)4s + 3d^6(a^3D)4p\\ 3d^7 + 3d^6(a^3D)4s\end{array}$	$a^{2}D - w^{4}F^{\circ}$ $b^{4}P - w^{4}D^{\circ}$ $a^{4}F - b^{4}G$ $b^{4}P - w^{4}D^{\circ}$ $a^{4}F - d^{2}F$		P P F,P P F,P	749 749 375,749 749 375,749
39	70 5 10	1931.07 1932.25 1932.485 1933.417 1933.45	$\begin{array}{c} 3.117461 + 54.902315 \\ 3.117461 + 54.870528 \\ 21.308040 + 73.054881 \\ 8.680454 + 60.402342 \\ 20.516960 + 72.238513 \end{array}$	$\begin{array}{c} 3d^7 \cdot 3d^6(b^3P)4s \\ 3d^7 \cdot 3d^6(b^3P)4s \\ 3d^7 \cdot 3d^6(a^4C)4p \\ 3d^7 \cdot 3d^6(a^4C)4p \\ 3d^6(a^5D)4s \cdot 3d^6(a^3P)4p \\ 3d^7 \cdot 3d^6(a^3D)4p \end{array}$	$a^{4}F - c^{2}P$ $a^{4}F - d^{2}F$ $a^{2}D - x^{2}F^{\circ}$ $a^{4}D - y^{4}P^{\circ}$ $a^{2}D - w^{4}F^{\circ}$	Nocinstantia Naturiatu IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	F,P F,P P P	375,749 375,749 749 749 645
96 96	1 110 0 15 55	1934.47 1935.296 1935.45 1936.793 1936.805	20.830582 - 72.524566 15.84465 - 67.516332 22.939358 - 74.606841 .667683 - 52.29939 16.36936 - 68.000788	$\begin{array}{c} 3d^6(a^3P)4s \cdot 3d^6(a^3D)4p \\ 3d^7 \cdot 3d^6(a^3G)4p \\ 3d^6(a^3F)4s \cdot 3d^9(a^3D)4p \\ 3d^6(a^5P)4s \cdot 3d^5(a^5S)4s4p(^3P) \\ 3d^7 \cdot 3d^6(a^5G)4p \\ 3d^7 \cdot 3d^6(a^3G)4p \end{array}$	$\begin{array}{c} b^{4}P & - w^{4}D^{\circ} \\ a^{2}G & - y^{2}H^{\circ} \\ b^{4}F & - x^{2}D^{\circ} \\ ga^{6}D & - z^{8}P^{\circ} \\ a^{2}G & - y^{2}H^{\circ} \end{array}$	ndevidevenergevener 	P Q P P	645 749 816 748 749
	8 0 2	1938.899 1940.939 1941.995 1943.81 1944.10	$\begin{array}{c} 23.031300 & .74.606841 \\ 20.830582 & .72.352024 \\ 31.811822 & .83.305251 \\ 2.837950 & .54.283220 \\ 2.837950 & .54.275637 \end{array}$	$\begin{array}{c} 3d^6(a^3F)4s\cdot3d^6(a^3D)4p\\ 3d^6(a^3P)4s\cdot3d^6(a^3D)4p\\ 3d^7\cdot3d^6(a^1F)4p\\ 3d^7\cdot3d^54s^2\\ 3d^7\cdot3d^54s^2\\ 3d^7\cdot3d^54s^2 \end{array}$	$b^{4}F - x^{2}D^{\circ}$ $b^{4}P - w^{4}F^{\circ}$ $b^{2}F - v^{2}G^{\circ}$ $a^{4}F - b^{4}G$ $a^{4}F - b^{4}G$	NETHAENISCINSCINCLU NETHAENISCINSCINCLU NATURE LINE-LINE-LINE	P P F,P F,P	292 749 749 375,749 375,749
23	0 5 2 70	1944.134 1944.18 1946.437 1946.85 1948.383	$\begin{array}{c} .862613 - 52.29939 \\ 2.837950 - 54.273641 \\ 27.314922 - 78.690846 \\ 44.915046 - 96.27949 \\ 20.80577 - 72.130390 \end{array}$	$\begin{array}{l} 3d^6(a^5D)4s - 3d^5(a^6S)4s4p(^3P^{\circ})\\ 3d^7 - 3d^54s^2\\ 3d^4(a^3F)4s - 3d^6(a^1D)4p\\ 3d^6(a^1F)4s - 3d^5(a^4G)4s4p(^3P^{\circ})\\ 3d^7 - 3d^6(a^1G)4p \end{array}$	$\begin{array}{l} ga{}^{6}D \ - \ z^{8}P^{\circ} \\ a{}^{4}F \ - \ b{}^{4}G \\ a{}^{2}F \ - \ w{}^{2}D^{\circ} \\ c{}^{2}F \ - \ t{}^{2}F^{\circ} \\ a{}^{2}H \ - \ x{}^{2}H^{\circ} \end{array}$		P F,P P Q P	749 375,749 749 816 749

e de la compañía de la

Multiplet	Rel. Int.	$\lambda_{v_{\mu}}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1	1948,883	21.308040 + 72.619490	$3d^7 - 3d^6(a^3D)4n$	$a^2D \cdot w^4D^{\circ}$	3 5	Р	749
	1	1952.15	2.837950 - 54.063459	3d ⁷ - 3d ⁶ (b ³ P)4s	$a^4F \cdot c^2P$	ş.,	F.P	375,749
	1	1952.650	20.830582 - 72.043026	3d6(a3P)4s - 3d6(a3D)4p	b ⁴ P - w ⁴ P ^o	5-3	P	749
		1954.43	3.117461 - 54.283220	$3d^{7} - 3d^{5}4s^{2}$	a ⁴ F · b ⁴ G	3.7	F,P	375,749
	1	1954.618	13.673185 - 64.834073	3d ⁷ - 3d ⁶ (a ³ P)4p	a ⁴ P - z ² P°	$\frac{3}{2} - \frac{3}{2}$	Р	749
		1954.72	3.117461 - 54.275637	$3d^7 - 3d^54s^2$	a ⁴ F - b ⁴ G	3 - 5	F,P	375,749
	5	1955.641	20.830582 - 71.964710	3d ⁶ (a ³ P)4s - 3d ⁶ (a ³ D)4p	b ⁴ P · w ⁴ P ^o	2 - 2	P	749
	10	1956.12	21.308040 - 72.429711	$3d^7 - 3d^6(a^3D)4p$	a²D - w⁴D°	2 - 1	Р	645
	5	1958.09	21.581638 - 72.651876	$3d^{6}(a^{3}H)4s - 3d^{6}(a^{3}D)4p$	a⁴H - w⁴D°	2 - 2		645
	5	1958.121	21.581638 • 72.650658	3d°(a'H)4s - 3d°(a'D)4p	a⁺H - w⁴F°	ž - ž		292
	1	1962.07	22.637205 - 73.60350	3d ⁶ (a ³ F)4s - 3d ⁶ (a ¹ I)4p	$b^4F - w^2H^\circ$	$\frac{9}{2} - \frac{11}{2}$		645
		1962.86	3.117461 - 54.063459	3d' - 3d°(b'P)4s	$a^{4}F - c^{2}P$	2 - 2	F,P	375,749
	25	1963.110	$21.711917 \cdot 72.651876$	3d°(a°H)4s - 3d°(a°D)4p	a*H - w*D°	<u>‡</u> -į		292
	12	1964.342	21.711917 - 72.619490	3d°(a°H)4s - 3d°(a°D)4p	a*H - w*D*	2 - 2		197,292
	1	1964.572	13.904824 - 64.806487	3d' - 3d'(a'P)4p	a*P - z*P"	<u>2</u> - 2	P	749
	2	1965.921	27.620412 - 78.487153	$3d^{6}(a^{3}F)4s + 3d^{6}(a^{1}D)4p$	$a^2 \mathbf{F} \cdot \mathbf{w}^2 \mathbf{D}^\circ$	\$ - 3	P	749
	20	1966.200	48.039090 - 98.89871	3d' - 3d°(b'G)4p	$d^2D \cdot {}^2F^{\circ}$	2 - 2	P	749
	1	1967.635	27.314922 - 78.137364	$3d^{0}(a^{3}F)4s - 3d^{0}(a^{3}D)4p$	$a^{2}F - v^{2}F^{0}$	출 - <u>축</u>	P	749
	20	1968.042	13.474411 - 64.286345	3d' - 3d'(a'F)4p	a*P · z*F*	2 2	Р	749
	z	1968.216	21.812055 - 72.619490	3d"(a"P)4s - 3d"(a"D)4p	$\mathbf{b}^{\mathbf{v}}\mathbf{P} \cdot \mathbf{w}^{\mathbf{v}}\mathbf{D}^{\mathbf{v}}$	2 - 2	Р	749
	10	1968.684	52.29939 - 103.09473	$3d^{5}(a^{0}S)4s4p(^{3}P^{0}) + 3d^{5}4s(a^{7}S)5s$	z8P° - 8S	$\frac{5}{2} \cdot \frac{7}{2}$	Р	749
	5	1968.896	25.787598 - 76.577482	3d ⁶ (a ³ P)4s - 3d ⁶ (a ¹ S)4p	$b^2 P - x^2 P^{o}$	$\frac{3}{2} - \frac{1}{2}$	P	749
	2 .	1970.357	13.673185 - 64.425408	$3d^{7} - 3d^{6}(a^{3}F)4p$	a ⁴ P - z ² F°	3 - 5	Р	749
	10	1970.662	15.84465 - 66.589008	$3d^7 \cdot 3d^6(a^3G)4p$	a ² G - y ⁴ H°	2 - 2	Р	749
	1	1971.03	21.308040 - 72.043026	3d ⁷ - 3d ⁶ (a ³ D)4p	$a^2D \cdot w^4P^{\circ}$	$\frac{3}{2} - \frac{3}{2}$	Р	645
	İ I	1971.96	7.955299 - 58.666258	3d°(a ⁵ D)4s - 3d°(b ¹ G)4s	a⁴D - d²G	7 - 7	F,P	375,749
		1973.31	7.955299 - 58.631531	$3d^{6}(a^{5}D)4s - 3d^{6}(b^{1}C)4s$	a ⁴ D - d ² G	7 - 9	F,P	375,749
	1	1974.49	20.34030 - 70.986677	3d ⁷ - 3d ⁶ (a ¹ I)4p	a ² H · z ² K°	$\frac{11}{2} - \frac{13}{2}$		645
	40	1975.548	15.84465 - 66.463528	3d ⁷ - 3d ⁶ (a ³ G)4p	a ² G · y ⁴ H°	<u>2</u> - 1 /2	P	749
	1	1977.595	13.474411 - 64.040886	3d ⁷ - 3d⁰(a³F)4p	a ⁴ P - y ⁴ G°	2 - 2	P	749
95	2	1978.919	15.84465 - 66.377283	3d ⁷ - 3d ⁶ (a ³ G)4p	$a^2G \cdot x^4F^{\circ}$	$\frac{9}{2} - \frac{7}{2}$	Р	749
	0	1979.156	$21.711917 \cdot 72.238513$	3d°(a ³ H)4s - 3d°(a ³ D)4p	a ⁴ H - w ⁴ F ^o	2 - 2	P	749
	20	1979.719	52.58251 - 103.09473	3d°(a°S)4s4p(°P°) - 3d°4s(a'S)5s	z°P° - °S	ź-ź	P	749
	5 1	1983.033	27.314922 - 77.742730	$3d^{\circ}(a^{\circ}F)4s - 3d^{\circ}(a^{\circ}D)4p$	$a^{2}F \cdot v^{2}F^{0}$	<u> </u>	P	749
	1 :	1985.941	33.400403 - 83.871184	3d"(a'G)4s - 3d"(a'F)4p	c*6 - v*6*	2 - 2	P	749
	5	1984.091	21.812055 - 72.212978	$3d^{6}(a^{3}P)4s - 3d^{6}(a^{3}D)4p$	b⁴P - w⁴P°	$\frac{3}{2} - \frac{1}{2}$	Р	749
	20	1984.956	22.637205 - 73.016147	$3d^{\circ}(a^{3}F)4s - 3d^{\circ}(a^{1}G)4p$	$b^{4}F - x^{2}F^{\circ}$	$\frac{9}{2} - \frac{7}{2}$	Р	749
	40	1986.419	25.787598 - 76.129446	3d°(a ³ P)4s - 3d°(a ³ S)4p	$b^2P \cdot x^2P^0$	2 - 2	P	749
	1	1987.954	16.36936 - 66.672334	3d' - 3d°(a°G)4p	a ² G - y ⁴ H ⁰	ž • ž	P	749
		1989.09	8.391938 - 58.666258	3d"(a"D)4s - 3d°(b'G)4s	a*D - d*G	2 - 2	F,P	375,749
		1990.46	8.391938 - 58.631531	3d ⁶ (a ⁵ D)4s - 3d ⁶ (b ¹ G)4s	a ⁴ D - d ² G	$\frac{5}{2} - \frac{9}{2}$	F,P	375,749
	1	1990.805	21.812055 - 72.043026	3d ⁶ (a ³ P)4s - 3d ⁶ (a ³ D)4p	b ⁴ P · w ⁴ P°	$\frac{3}{2} - \frac{3}{2}$		645
	10	1991.252	16.36936 - 66.589008	$3d^{7} - 3d^{6}(a^{3}G)4p$	a ² G · y ⁴ H°	$\frac{7}{2} - \frac{9}{2}$	Р	749
	2	1991.52	0 50.212826	$3d^{\circ}(a^{5}D)4s - 3d^{\circ}(b^{3}P)4s$ $3d^{\circ}(a^{3}E)4s - 3d^{\circ}(a^{1}C)4s$	$ga^{6}D - c^{4}P$	9 - 5 7 - 7	F,P	375,749 749
	2	1991.002	22.010007 * (0.01014)	ου (α τ / το - ου (α σ/φρ	DL-XL	2 - 2	1	147
95	10	1993.298	15.84465 - 66.012750	$3d^7 - 3d^6(a^3G)4p$	a ² G - x ⁴ F°	2 - 2	P	749
		1993.72	0 50.157452	$3d^{\circ}(a^{\circ}D)4s - 3d^{\circ}(b^{3}F)4s$	ga°D c ⁴ F	2 - 2	F,P	375,749
	2	1993.912	21.812055 - 71.964710	3d°(a ³ P)4s - 3d ⁶ (a ³ D)4p	$b^4P \cdot w^4P^0$	2 - 2	P	749
	20	1994.857	52.96582 - 103.09473	$3d^{\circ}(a^{\circ}S)4s4p(^{\circ}P^{\circ}) - 3d^{\circ}4s(a^{\circ}S)5s$	z°P° - °S	ž - ž	P	749
	1	1999'118	27.020412 - 77.742730	3d"(a"1)48 - 3d"(a"D)4p	arr - vrr	ž - ž	r	(49
	2	1995.422	22.409852 72.524566	$3d^{6}(a^{3}P)4s - 3d^{6}(a^{3}D)4p$	$b^{4}P - w^{4}D^{\circ}$	$\frac{1}{2} - \frac{3}{2}$	Р	749
	$\frac{2}{2}$	1996.539	15.84465 - 65.931334	3d' - 3d°(a°G)4p	$a^2G \cdot x^3G^{\circ}$	¥-4	P	749
	0	1996.933	22.939358 - 73.016147	3d°(a°F)4s - 3d°(a'G)4p	b*F - x ² F ^o	2-2	Р	(49
	4	1997.03	20.055423 - 70.129446	$3d^{(a^{+})}4s - 3d^{(a^{+})}4p$	a G - x ⁴ P ⁰	ž - ž 1 1	D	045 740
	1	1999.200	22.409032 · (2.429/11	30"(a"r)4s · 30"(a"V)4p	D'P - w'D°	2 - 2	P	749
87	70	1999.413	22.637205 - 72.651876	$3d^{6}(a^{3}F)4s - 3d^{6}(a^{3}D)4p$	$b^{4}F - w^{4}D^{\circ}$	2 - 2	P	749
	10	1999.462	22.637205 - 72.650658	3d°(a°F)4s - 3d°(a°D)4p	b"F - w*F"	- 12 2	P	292
		1000 700						7.40

IRON III (Fe^{+ 2}), Z = 26 Ground State $1s^22s^22p^63s^23p^63d^6$ (⁵D₄) (24 electrons) Ionization Potential 247 221 cm⁻¹; 30.652 eV

Multiplet	Rel, Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
01 01 01 02	200 150 150 70 70	679.129 680.700 682.10 684.28 684.858	20.0511 - 167.2989 20.3008 - 167.2073 20.4819 - 167.0850 20.0511 - 166.18750 20.4819 - 166.498	3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ³ (b ² G)4p 3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ⁵ (b ² G)4p	a ³ H - t ³ G° a ³ H - v ³ H° a ³ H - r ³ F°	6 - 5 5 - 4 4 - 3 6 - 6 4 - 3		188 188 188 188 188 188
02 02 03 03 04	70 20 70 70 70 70	686.63 688.53 700.575 703.506 704.923	$\begin{array}{r} 20.3008 & \cdot 165.9396 \\ 20.4819 & \cdot 165.7191 \\ 24.5588 & \cdot 167.2989 \\ 24.9409 & \cdot 167.0850 \\ 25.1424 & \cdot 167.002 \end{array}$	3d ⁶ - 3d ⁵ (b ² (5)4p 3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ² (b ² G)4p 3d ⁶ - 3d ² (b ² G)4p 3d ⁶ - 3d ² (b ² G)4p 3d ⁶ - 3d ³ (b ² G)4p		5 - 5 4 - 4 5 - 5 4 - 3 3 - 2		188 188 188 188 188
04 04 8	150 70 250 200 70	705.892 707.444 722.419 727.681 728.52	$\begin{array}{r} 24.5588 & \cdot 166.2222 \\ 25.1424 & \cdot 166.498 \\ 30.3562 & \cdot 168.7801 \\ 0.0 & \cdot 137.42300 \\ 21.4622 & \cdot 158.7293 \end{array}$	3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ³ (b ² G)4p 3d ⁶ - 3d ³ (b ² G)4p 3d ⁶ - 3d ² (b ⁴ F)4p 3d ⁶ - 3d ² (b ⁴ F)4p 3d ⁶ - 3d ³ (b ² D)4p	$ \begin{array}{c} a^{3}G \cdot r^{3}F^{a} \\ a^{3}G \cdot r^{3}F^{a} \\ a^{1}I \cdot w^{1}H^{a} \\ ga^{5}D \cdot x^{5}D^{a} \\ a^{3}F \cdot t^{3}D^{a} \end{array} $	$5 \cdot 4$ 3 \cdot 3 6 \cdot 5 4 - 3 4 - 3		188 188 188 188 188 188
8 8 8 8 8	400 200 300 150	728.810 729.349 729.996 730.88 730.96	$\begin{array}{c} 0.0 & + 137.20973 \\ 0.4362 & + 137.54460 \\ 0.4362 & + 137.42300 \\ 0.7389 & + 137.5611 \\ 0.7389 & + 137.54460 \end{array}$	3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁷ (a ⁴ F)4p 3d ⁶ - 3d ³ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p	$\begin{array}{l} ga^5D + x^5D^o\\ \end{array}$	4 - 4 3 - 2 3 - 3 2 - 1 2 - 2		188 188 188 188 188
8 8 8 8	70 70 150 150 70	731.130 731.443 731.612 731.846 731.90	$\begin{array}{c} 0.4362 & + 137.20973 \\ 21.6999 & + 158.4168 \\ 0.7389 & + 137.42300 \\ 0.9324 & + 137.5732 \\ 0.9324 & + 137.5611 \end{array}$	$\begin{array}{l} 3d^6 - 3d^5(a^4F)4\mu\\ 3d^6 - 3d^6(b^2D)4\mu\\ 3d^6 - 3d^6(a^4F)4\mu\\ 3d^6 - 3d^5(a^4F)4\mu\\ 3d^6 - 3d^5(a^4F)4\mu\\ 3d^6 - 3d^5(a^4F)4\mu \end{array}$	$\begin{array}{l} ga^5D \cdot x^5D^o \\ a^3F \cdot t^3D^o \\ ga^5D \cdot x^5D^o \\ ga^5D \cdot x^5D^o \\ ga^5D \cdot x^5D^o \end{array}$	$3 \cdot 4$ $3 \cdot 2$ $2 \cdot 3$ $1 \cdot 0$ $1 \cdot 1$		188 188 188 188 188 188
8 8 05 05	200 150 70 250 70	732.004 732.425 733.13 734.296 735.338	$\begin{array}{c} 0.9324 & + 137.54460 \\ 1.0273 & + 137.5611 \\ 21.8572 & + 158.2573 \\ 0.0 & + 136.18517 \\ 0.0 & + 135.99062 \end{array}$	3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ³ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (b ² D)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p	ga ⁵ D - x ⁵ D° ga ⁵ D - x ⁵ D° a ³ F - t ³ D° ga ⁵ D - x ⁵ F° ga ⁵ D - x ⁵ F°	$ \begin{array}{r} 1 \cdot 2 \\ 0 \cdot 1 \\ 2 \cdot 1 \\ 4 \cdot 5 \\ 4 \cdot 4 \end{array} $		188 188 188 188 188 188
06 05 06 03 05	$20 \\ 300 \\ 70 \\ 300 \\ 150$	736.47 737.708 738.742 739.264 739.594	$\begin{array}{c} 30.7162 - 166.498 \\ 0.4362 - 135.99062 \\ 30.8578 - 166.2222 \\ 0.7389 - 136.00874 \\ 1.0273 - 136.23584 \end{array}$	3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ⁷ (a ⁴ F)4p 3d ⁶ - 3d ² (a ⁴ F)4p 3d ⁶ - 3d ² (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p		2 - 3 3 - 4 3 - 4 2 - 3 0 - 1		188 188 188 188 188 188
05 07 07 07	250 200 150 150 150	739.724 746.247 751.427 751.648 754.478	0.9324 - 136.11794 24.5588 - 158.5627 24.9409 - 157.9820 25.1424 - 157.6843	3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (b ² D)4p 3d ⁶ - 3d ⁵ (b ² D)4p 3d ⁶ - 3d ⁵ (b ² D)4p 3d ⁶ - 3d ⁵ (b ² D)4p	ga ⁵ D - x ⁵ F° a ³ G - s ³ F° a ³ G - s ³ F° a ³ G - s ³ F°	$1 \cdot 2$ 5 - 4 4 - 3 3 - 2		188 188 188 188 188 188
	150 150 150 200 200	757.167 757.279 776.097 782.035 783.069	70.72501 - 199.57771 30.8578 - 158.7293 30.8578 - 158.5627	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)5p 3d ⁶ - 3d ⁵ (b ² D)4p 3d ⁶ - 3d ⁵ (b ² D)4p	$b^{3}C - q^{3}F^{a}$ $a^{3}D - t^{3}D^{a}$ $a^{3}D - s^{3}t^{a}$	3 - 2 3 - 3 3 - 4	Q	188 188 188 188 188 188
08 09 08 08	70 200 70 150 150	785.76 792.559 794.01 794.19 795.550	$\begin{array}{r} 30.7162 + 157.9820 \\ 21.4622 + 147.63595 \\ 21.4622 + 147.40614 \\ 21.6999 + 147.61465 \\ 21.8572 + 147.55645 \end{array}$	3d ⁶ - 3d ³ (b ² D)4p 3d ⁶ - 3d ⁴ (b ² F)4p 3d ⁶ - 3d ² (b ² F)4p 3d ⁶ - 3d ³ (b ² F)4p 3d ⁶ - 3d ³ (b ² F)4p 3d ⁶ - 3d ³ (b ² F)4p	$ a^{3}D - s^{3}F^{*} \\ a^{3}F - u^{3}D^{*} \\ a^{3}F - u^{3}C^{*} \\ a^{3}F - a^{3}D^{*} \\ a^{3}F - a^{3}D^{*} \\ a^{3}F - u^{3}D^{*} $	2 - 34 - 34 - 53 - 22 - 1		188 188 188 188 188 188
08 19 19	150 150 70 600 550	797.055 797.16 801.32 807.547 807.855	$\begin{array}{c} 21.6999 & .147.16136 \\ 0.0 & .125.44358 \\ 20.0511 & .144.84324 \\ 20.0511 & .143.88374 \\ 20.3008 & .144.08597 \end{array}$	3d ⁶ - 3d ⁵ (b ² F)4p 3d ⁶ - 3d ⁷ (a ⁴ D)4p 3d ⁶ - 3d ⁵ (a ² H)4p 3d ⁶ - 3d ⁵ (a ² G)4p 3d ⁶ - 3d ⁵ (a ² G)4p	$\begin{array}{c} a^{3}F \sim u^{3}G^{\circ} \\ ga^{5}D - y^{3}f^{\circ \circ} \\ a^{3}H - x^{1}H^{\circ} \\ a^{3}H - v^{3}G^{\circ} \\ a^{3}H - v^{3}G^{\circ} \end{array}$	3 - 4 4 - 4 6 - 5 6 - 5 5 - 4		188 188 188 188 188 188
7 19 7	300 550 200 450 250	808.079 808.840 809.675 810.940 811.246	$\begin{array}{c} 0.0 & + 123.75039 \\ 20.4819 & + 144.11664 \\ 21.4622 & + 144.96850 \\ 0.4362 & + 123.75039 \\ 21.6999 & + 144.96850 \end{array}$	3d ⁶ - 3d ⁵ (a ⁴ D)4p 3d ⁶ - 3d ⁷ (a ² G)4p 3d ⁶ - 3d ⁵ (b ² F)4p 3d ⁶ - 3d ⁵ (a ⁴ D)4p 3d ⁶ - 3d ⁵ (b ² F)4p	$\begin{array}{l} ga^{5}D - x^{5}P^{\alpha}\\ a^{3}H - v^{3}G^{\prime\prime}\\ a^{3}F - t^{3}F^{\alpha}\\ ga^{5}D - x^{5}P^{\alpha}\\ a^{3}F - t^{3}F^{\alpha} \end{array}$	4 - 3 4 - 3 4 - 4 3 - 3 3 - 4		188 188 188 188 188 188

.

Aultiplet	Rel. Int.	λ_{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
7	550	811.284	0.4362 - 123.69718	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga ⁵ D - x ⁵ P°	3 - 2	188
	300	812.931	0.7389 - 123.75039	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga ⁵ D - x ⁵ P°	2 - 3	188
7	250	813.288	0.7389 - 123.69718	$3d^{\circ} - 3d^{\circ}(a^{*}D)4p$	$ga^{5}D \cdot x^{5}P^{o}$	2 - 2	188
0	300	813.382 813.862	0.0 - 122.94415 21.6999 - 144.57053	3d° - 3d°(a*D)4p 3d° - 3d ⁵ (b ² F)4p	ga"D - y"D" a ³ F - t ³ F"	4 - 4 3 - 3	188
_	70	814.148	0.0 - 122.82955	$3d^{6} - 3d^{5}(a^{4}D)4p$	ga ⁵ D · y ⁵ D°	4 - 3	188
7	400	814.242	0.7389 - 123.55295 0.0324 - 123.60719	3d° - 3d°(a*D)4p 3d° - 3d²(a*D)4p	ga ^o D - x ^o P ^o	$2 \cdot 1$	188
	200	815.363	21.8572 - 144.50174	$3d^{6} - 3d^{5}(b^{2}F)4p$	a ³ F t ³ F°	$\frac{1}{2}$ - 2	188
	70	815.52	0.9324 - 123.55295	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga ⁵ D - x ⁵ P°	1 - 1	188
6	200 400	815.612 816.163	20.3008 - 142.90848 0.0324 123.45502	3d ⁶ - 3d ⁵ (a ² H)4p 3d ⁶ - 3d ⁵ (a ⁴ D)4p	$a^{3}H - w^{3}H^{\circ}$	5-5	188
6	400	816.273	0.4362 - 122.94415	$3d^6 - 3d^5(a^4D)4p$	$ga^5D \cdot y^5D^\circ$	3 - 4	188
6	450	817.038	0.4362 • 122.82955	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga ⁵ D - y ⁵ D°	3 - 3	188
	200	817.166	20.4819 - 142.85559	3d" - 3d"(a ² H)4p	a"H - w"H"	4 - 4	188
6	200 200	817.348 818.383	0.0 - 122.34661 0.4362 - 122.62834	3d° - 3d ⁵ (a4P)4p 3d° - 3d ⁵ (a4D)4p	$ga^{5}D \cdot z^{3}D^{\circ}$ $ga^{5}D \cdot v^{5}D^{\circ}$	4 - 3 3 - 2	188 188
	250	818.598	0.7389 - 122.89884	$3d^{6} - 3d^{5}(a^{4}P)4p$	$ga^5D \cdot z^3D^\circ$	2 - 2	188
6 6	250	818.981 819.066	0.7389 - 122.84303 0.7389 - 122.82955	3d° - 3d°(a*D)4p 3d° - 3d5(a*D)4p	$ga^{5}D - y^{5}D^{6}$ $ga^{5}D - y^{5}D^{6}$	$2 \cdot 1$ 2 · 3	188 188
	70	819.742	0.9324 - 122.92137	$3d_{_{-}}^{6} - 3d_{_{-}}^{5}(a^{4}P)4p$	ga ⁵ D - z ³ D°	1 - 1	188
	200	819.898	0.9324 - 122.89884	$3d^{6} - 3d^{5}(a^{4}P)4p$	$ga^{5}D - z^{3}D^{\circ}$	1-2	188
6	200	820.409	0.7389 - 122.62834	3d ⁶ - 3d ⁵ (a ⁴ D)4p	$ga^{5}D - y^{5}D^{\circ}$	2 - 2	188
6	200	820.915	$1.0273 \cdot 122.84303$	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga ⁵ D - y ⁵ D°	0 - 1	188
6	200	821.723	0.9324 - 122.62834 0.7390 - 132.24661	$3d^6 + 3d^5(a^4D)4p$ $3d^6 - 3d^5(a^4P)4p$	$ga^5D \cdot y^5D^\circ$	1 - 2	188
5	400	823.257	0.0 - 121.46882	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga D - z D ga ⁵ D - y ⁵ F°	4-5	188
_	200	824.800	0.0 - 121.24167	$3d^6 - 3d^5(a^4D)4p$	ga ⁵ D - y ⁵ F	4-4	188
5	400	827.777	0.4362 - 121.24167	3d" - 3d"(a*D)4p	ga°U - y°F°	3 - 4	188
48	250)4P	829.375 829.375	0.4362 - 84.36992 204.94326 - 24.5588	3d° - 3d°(a²F)4s 3d⁵(a⁴D)5p - 3d6	ga⁵D - c³F u⁵F° - a³G	3 - 3 2 - 2	188 33D,7
48)4P	830.500	0.7389 - 121.00878	$3d^{6} \cdot 3d^{5}(a^{4}D)4p$	ga ⁵ D · y ⁵ F°	2 - 3	43D,7
18	300 150	832.328 833.532	20.0511 - 140.19633 20.4819 - 140.45310	3d° - 3d°(a²H)4p 3d ⁶ - 3d ⁵ (a²F)4p	a ³ H - y ³ l ⁶ a ³ H - y ¹ F ⁶	6 - 7 4 - 3	188 188
5	250	834.067	0.9324 - 120.82617	3d ⁶ - 3d ⁵ (a ⁴ D)4p	ga ^s D - y ^s F°	1 - 2	188
43	400	834.944	30.8864 - 150.6549	$3d^6 - 3d^5(b^2F)4p$	$a^{1}G - w^{1}F^{\alpha}$	4 - 3	188
3	150	835.917	24.9409 - 144.57053	3d ⁶ - 3d ⁵ (b ² F)4p	$a^{3}G \cdot t^{3}F^{\circ}$	4 - 3	188
18	450	836.521	20.3008 - 139.84618	$3d^{6} - 3d^{5}(a^{2}H)4p$	a ³ H - y ³ l ^a	5 - 6	188
33	200	836.628	24.5588 - 144.08597	$3d^6 - 3d^5(a^2G)4p$	$a^{3}G - v^{3}G^{\circ}$	5 - 4	188
17	200	837.803	25.1424 - 144,50174	$3d^{6} - 3d^{5}(b^{2}F)4p$	an w G a'G · t'F	3 - 2	188
17 '	550	838.048	20.3008 - 139.62517	3d ⁶ - 3d ⁵ (a ⁴ F)4p	a ³ H · w ³ G°	5-4	188
	150	838.498	0.4362 - 119.69764	3d° - 3d°(a*P)4p	ga'D - z'P°	3 - 2	188
18	150	838.869	20.3008 - 139.50944	$3d^6 - 3d^5(a^2H)4p$ $3d^6 - 3d^5(a^4F)4p$	a ³ H - y ³ l ^o a ³ H w ³ C ^o	5 · 5 4 - 3	188 188
• '	250	838.997	25.1424 - 144.33221	3d ⁶ - 3d ⁵ (b ² F)4p	$a^{3}G - x^{1}G^{0}$	3 • 4	188
33 17	$\frac{150}{150}$	839.092 839.195	24.9409 - 144.11664 20.3008 - 139.46336	3d ⁶ - 3d ⁵ (a ² G)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p	a ³ G · v ³ G° a ³ H - w ³ G°	4 - 3 5 - 5	188 188
17	300	839.319	20.4819 - 139.62517	3d ⁶ - 3d ⁵ (a ⁴ F)4p	a ³ H - w ³ G°	4 - 4	188
	200	839.981	0.9324 - 119.98226	$3d^{6} - 3d^{5}(a^{4}P)4p$	$ga^{5}D \cdot z^{3}P^{0}$	$1 \cdot 1$	188
18 25	250 300	840.141	20.4819 - 139.50944	3d" - 3d°(a"H)4p 3d° - 3d ⁵ (² C)4p	a ³ H - y ³ F	4-5	188 188
33	250	840.518	25.1424 • 144.11664	$3d^6 - 3d^5(a^2G)^4p$	$a^3G - v^3G^\circ$	3 - 3	188
• •	200	840.629	0.7389 - 119.69764	$3d^6 - 3d^5(a^4P)4p$	$ga_{3C}^{5} \cdot z^{3}P^{\circ}$	2 - 2	188
っさ . 25 :	300	840.741 841.088	24.9409 - 143.88374 21.8572 - 140.75098	30" - 30"(a*G)4p 3d ⁶ - 3d ⁵ (a²G)4p	a G - v G a ³ F - v ³ F°	4.5	188 188
	150	841.688	30.7162 - 149.52563	$3d^{6} - 3d^{5}(a^{2}S)4p$	$a^{3}D \cdot w^{3}P^{\circ}$	2 - 2	188
32	400	842.020	24.5588 - 143.32085	3d" - 3d ⁵ (a ² H)4p	a'G - w'H'	5-6	188
	300 300	842.09 842.686	21.6999 - 140.45310 30.8578 - 149.52563	3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ² S)4p	$a^{3}F - y^{1}F^{0}$ $a^{3}D - w^{3}P^{0}$	$3 \cdot 3 \\ 3 \cdot 2$	188 188
4	650	844.284	0.0 - 118.44292	3d ⁶ - 3d ⁵ (a ⁴ P)4p	$ga_{3D}^{5} - y_{1D}^{5}P^{o}$	4 - 3	188
	250	844.838	21.4622 - 139.82717	$3d^{\circ} - 3d^{\circ}(a^{2}G)4p$	$a^{\circ}F - y^{\circ}G^{\circ}$	4 - 4	188

n na star anna anna anna anna anna anna anna a	Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	4 16	600 70 450 200 150	845.408 845.686 845.925 846.035 846.089	0.4362 - 118.72160 0.0 - 118.24652 20.0511 - 138.26447 30.7162 - 148.9153 30.7258 - 148.9153	$3d^6 - 3d^5(a^4P)4p$ $3d^6 - 3d^3(a^4G)4p$ $3d^6 - 3d^3(a^2G)4p$ $3d^6 - 3d^3(a^2G)4p$ $3d^6 - 3d^5(a^2S)4p$ $3d^6 - 3d^5(a^2S)4p$	$\begin{array}{c} ga^{5}D & \cdot y^{5}P^{\upsilon} \\ ga^{5}D & \cdot z^{3}F^{\upsilon} \\ a^{3}H & \cdot x^{3}H^{\upsilon} \\ a^{3}D & \cdot w^{3}P^{\upsilon} \\ a^{3}D & \cdot w^{3}P^{\upsilon} \end{array}$	$ \begin{array}{r} 3 - 2 \\ 4 - 3 \\ 6 - 6 \\ 2 - 1 \\ 1 - 1 \end{array} $	188 188 188 188 188 188
	4 4 32 4	400 550 450 400 400	846.534 847.425 847.578 847.700 847.924	0.7389 - 118.86787 0.4362 - 118.44292 0.7389 - 118.72160 24.9409 - 142.90848 0.9324 - 118.86787	3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p	$\begin{array}{c} ga^5D \cdot y^5P^o \\ ga^5D \cdot y^5P^o \\ ga^5D \cdot y^5P^o \\ a^3G \cdot w^3H^o \\ ga^5D \cdot y^5P^o \end{array}$	$ \begin{array}{c} 2 & -1 \\ 3 & -3 \\ 2 & -2 \\ 4 & -5 \\ 1 & -1 \end{array} $	188 188 188 188 188 188
	32 4 4	300 70 250 250 200	847.984 848.07 848.601 848.729 848.977	21.6999 - 139.62517 24.9409 - 142.85559 1.0273 - 118.86787 21.8572 - 139.68047 0.9324 - 118.72160	3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ² H)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p	$\begin{array}{c} a^{3}F \cdot w^{3}G^{\circ} \\ a^{3}G \cdot w^{3}H^{\circ} \\ ga^{5}D \cdot y^{5}P^{\circ} \\ a^{3}F \cdot w^{3}G^{\circ} \\ ga^{5}D \cdot y^{5}P^{\circ} \end{array}$	$ \begin{array}{r} 3 \cdot 4 \\ 4 \cdot 4 \\ 0 \cdot 1 \\ 2 \cdot 3 \\ 1 \cdot 2 \end{array} $	188 188 188 188 188
	32 31 16 31	300 250 450 450 400	849.524 849.569 851.150 851.332 851.842	25.1424 - 142.85559 20.4819 - 138.18793 24.5588 - 142.0470 20.3008 - 137.76370 25.1424 - 142.53507	3d ⁶ - 3d ⁵ (a ² H)4p 3d ⁶ - 3d ⁵ (a ² H)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p		3 - 4 4 - 3 5 - 4 5 - 5 3 - 2	188 188 188 188 188
	31 16 16 31 3	400 150 70 70 300	851.992 852.644 853.045 853.456 854.073	24.9409 - 142.31290 20.4819 - 137.76370 20.3008 - 137.52792 25.1424 - 142.31290 0.4362 - 117.52191	3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ² G)4p 3d ⁶ - 3d ⁵ (a ² C)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p	$ \begin{array}{c} a^{3}G \cdot u^{3}F^{*} \\ a^{3}H \cdot x^{3}H^{*} \\ a^{3}H \cdot x^{3}H^{*} \\ a^{3}G \cdot u^{3}F^{*} \\ ga^{5}D \cdot z^{5}D^{*} \end{array} $	4 - 3 4 - 5 5 - 4 3 - 3 3 - 4	188 188 188 188 188 188
	3 16	70 400 150 70 200	854.205 854.367 854.532 855.336 855.441	$\begin{array}{r} 0.0 & -117.06856\\ 20.4819 & -137.52792\\ 50.2761 & -167.2989\\ 50.2952 & -167.2073\\ 30.7162 & -147.61465\end{array}$	3d ⁶ - 3d ⁵ (a ⁺ C)4p 3d ⁶ - 3d ⁵ (a ² C)4p 3d ⁶ - 3d ⁵ (b ² C)4p 3d ⁶ - 3d ³ (b ² C)4p 3d ⁶ - 3d ⁵ (b ² F)4p	$\begin{array}{c} ga^{5}D \cdot z^{5}D^{\circ} \\ a^{3}H \cdot x^{3}H^{\circ} \\ b^{3}F \cdot t^{3}G^{\circ} \\ b^{3}F \cdot t^{3}G^{\circ} \\ a^{3}D \cdot u^{3}D^{\circ} \end{array}$	4 - 3 4 - 4 4 - 5 3 - 4 2 - 2	188 188 188 188 188 188
\sim		150 150 150 70 300	855.879 855.935 856.039 856.244 856.325	$\begin{array}{r} 30.7162 & \cdot 147.55645 \\ 30.7258 & \cdot 147.55645 \\ 50.1849 & \cdot 167.002 \\ 50.2952 & \cdot 167.0850 \\ 30.8578 & \cdot 147.63595 \end{array}$	3d ⁶ - 3d ⁵ (b ² F)4p 3d ⁶ - 3d ⁵ (b ² F)4p 3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ⁵ (b ² F)4p 3d ⁶ - 3d ⁵ (b ² F)4p		$ \begin{array}{r} 2 & -1 \\ 1 & -1 \\ 2 & -2 \\ 3 & -3 \\ 3 & -3 \end{array} $	188 188 188 188 188 188
	3 2 2	70 300 300 250 400	856.480 857.392 857.690 858.565 858.602	$\begin{array}{c} 30.8578 & \cdot 147.61465 \\ 0.4362 & \cdot 117.06856 \\ 21.4622 & \cdot 138.05459 \\ 0.0 & \cdot 116.47544 \\ 0.0 & \cdot 116.46741 \end{array}$	3d ⁶ - 3d ⁵ (b ² F)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p	$\begin{array}{c} a^{3}D \cdot u^{3}D^{\circ} \\ ga^{5}D \cdot z^{5}D^{\circ} \\ a^{3}F \cdot x^{3}G^{\circ} \\ ga^{5}D \cdot z^{5}F^{\circ} \\ ga^{5}D \cdot z^{5}F^{\circ} \end{array}$	3 - 2 3 - 3 4 - 5 4 - 3 4 - 4	188 188 188 188 188 188
	3 2 11 2	200 400 550 400 300	859.086 859.626 859.721 859.838 860.315	21.6999 - 138.10312 0.7389 - 117.06856 0.0 - 116.31663 19.4048 - 135.7057 0.7389 - 116.97505	3d ⁶ - 3d ⁵ (a ² H)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p	$\begin{array}{c} a^{3}F - x^{3}C^{o} \\ ga^{5}D - z^{5}D^{o} \\ ga^{5}D - z^{5}F^{o} \\ a^{3}P - w^{3}D^{o} \\ ga^{5}D - z^{5}F^{o} \end{array}$	3 - 4 2 - 3 4 - 5 2 - 3 2 - 3 2 - 2	188 188 188 188 188 188
	11 2	150 150 150 250 550	860.565 860.889 861.087 861.284 861.761	$\begin{array}{c} 50.2952 \cdot 166.498 \\ 0.7389 \cdot 116.89822 \\ 20.0511 \cdot 136.18517 \\ 20.6884 \cdot 136.7938 \\ 0.9324 \cdot 116.97505 \end{array}$	3d ⁶ - 3d ⁵ (b ² G)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p	b ³ F • r ³ F ⁵ ga ⁵ D • z ⁵ S ³ a ³ H • x ⁵ F ³ a ³ P • w ³ D ³ ga ⁵ D • z ⁵ F ⁵	3 - 3 2 - 2 6 - 5 1 - 2 1 - 2	188 188 188 188 188 188
	2 2 3	650 300 150 150 200	861.832 862.028 862.191 862.326 862.468	$\begin{array}{c} 0.4362 & -116.46741 \\ 0.9324 & -116.93757 \\ 0.4362 & -116.41939 \\ 0.9324 & -116.89822 \\ 50.2761 & -166.2222 \end{array}$	3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁶ (a ⁴ P)4p 3d ⁶ - 3d ⁶ (b ² G)4p	ga ⁵ D - z ⁵ F° ga ⁵ D - z ⁵ F° ga ⁵ D - z ⁵ D° ga ⁵ D - z ⁵ S° b ³ F - r ³ F°	3 - 4 1 - 1 3 - 2 1 - 2 4 - 4	188 188 188 188 188 188
	2 11	300 70 250 250 70	862.735 863.004 863.232 863.302 863.730	$\begin{array}{r} 1.0273 &- 116.93757\\ 19.4048 &- 135.2790\\ 20.6884 &- 136.53245\\ 35.8037 &- 151.6373\\ 20.6884 &- 136.4649 \end{array}$	3d ⁶ - 3d ⁵ (a ⁴ G)4p 3d ⁶ - 3d ⁵ (a ² D)4p 3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ² F)4p 3d ⁶ - 3d ⁵ (a ² F)4p	$\begin{array}{c} ga^{5}D \cdot z^{5}F^{o} \\ a^{3}P \cdot x^{3}D^{o} \\ a^{3}P \cdot w^{3}F^{o} \\ a^{1}D \cdot y^{1}P^{n} \\ a^{3}P \cdot w^{3}D^{v} \end{array}$	0 - 1 2 - 2 1 - 2 2 - 1 1 - 1	188 188 188 188 188 188
	2 3	400 150 250 70	864.034 864.375 864.425 864.450 865.267	$\begin{array}{c} 0.7389 & \cdot 116.47544 \\ 20.3008 & \cdot 135.99062 \\ 20.0511 & \cdot 135.73531 \\ 0.7389 & \cdot 116.41939 \\ 19.4048 & \cdot 134.97622 \end{array}$	3d ⁶ - 3d ⁵ (a ⁺ P)4p 3d ⁶ - 3d ⁵ (a ⁺ F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p 3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ² D)4p	$\begin{array}{c} ga^{5}D \cdot z^{5}F^{\circ} \\ a^{3}H \cdot x^{5}F^{\circ} \\ a^{3}H \cdot y^{5}G^{\circ} \\ ga^{5}D \cdot z^{5}D^{\circ} \\ a^{3}P \cdot x^{3}D^{\circ} \end{array}$	2 - 3 5 - 4 6 - 5 2 - 2 2 - 3	188 188 188 188 188

tiplet I	Rel. Int.	$\lambda_{v_{2v}}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J No	tes Reference
3	250	865.896	0.9324 - 116.41939	3d ⁶ - 3d ⁵ (a ⁴ P)40	$ga^5D - z^5D^{\circ}$	1 - 2	188
3	70	866.905	1.0273 - 116.38007	$3d^6 \cdot 3d^5(a^4P)4p$	ga ⁵ D - z ⁵ D°	0 - 1	188
1	300	867.639	21.2085 - 136.4649	3d ⁶ - 3d ⁵ (a ² F)4p	a ³ P - w ³ D ^o	0 - 1	188
	200	868.428	21.4622 - 136.61278	$3d^{6} - 3d^{5}(a^{2}F)4p$	$a^{3}F - w^{3}F^{\circ}$	4 - 4	P 188
	50	868.473	19.4048 - 134.5494	3d° - 3d3(a2D)4p	a ³ P · x ³ P ³	2 - 1	· 188
	300	868.836	21.6999 - 136.79705	3d° - 3d ⁵ (a ² F)4p	$a^3F - w^3F^{\circ}$	3 - 3	188
ł	200	870.041	$20.3008 \cdot 135.23974$	3d° - 3d°(a*F)4p	a ³ H - y ⁵ G ⁶	5 - 4	188
ĺ	150	870.235	21.6999 - 136.61278	3d° - 3d°(a°F)4p	a°F - w°F°	3 - 4	188
	300	870.274 870.621	$24.5588 \cdot 139.40330$ $19.4048 \cdot 134.26542$	3d [°] - 3d [°] (a ⁺ F)4p 3d ⁶ - 3d ⁵ (a ² D)4p	a ³ C - w ³ C ³ a ³ P - x ³ P ⁹	5 - 5 2 - 2	188
	150	071 550	01 4699 106 00010	2.10 2.15(21)) 4	312 1120		100
	250	871.552	21.4622 - 136.20013 24.9409 - 139.62517	3d" - 3d"(a*D)4p 3d° - 3d ⁵ (a*F)4p	a [°] F - z [°] F [°] a ³ G - w ³ G [°]	4-3	188
	250	872.027	0.4362 - 115.11092	$3d^{6} - 3d^{5}(a^{4}G)4p$	ga ⁵ D - z ⁵ H°	3 - 4	188
	200	873.080	25.1424 - 139.68047	$3d^{6} - 3d^{5}(a^{4}F)4p$	$a^3G \cdot w^3G^\circ$	3 . 3	188
	150	873.130	20.6884 - 135.2171	$3d^{6} - 3d^{5}(a^{2}D)4p$	$a^{3}P - x^{3}D^{o}$	1 - 1	188
3	550	873.462	30.3562 - 144.84324	3d ⁶ - 3d ⁵ (a ² H)4p	a ¹ I - x ¹ H ^o	6 - 5	188
	70	873.988	21.6999 - 136.11794	3d ⁶ - 3d ⁵ (a ⁴ F)4p	a ³ F ⋅ x ⁵ F°	3 - 2	188
	150	874.129	20.6884 - 135.0881	$3d^{6} - 3d^{5}(a^{2}D)4p$	a ³ P x ³ P	1.0	188
	70	874.560	21.8572 - 136.20013	3d° - 3d²(a²D)4p	a ³ F z ¹ F ^o	$2 \cdot 3$	188
	150	875.090	21.4622 - 135.73531	3d" - 3d"(a'F)4p	a°F - y°G°	4 - 5	188
	300	875.423	30.3562 - 144.58683	3d ⁶ · 3d ⁵ (a ² G)4p	$\mathbf{a}^{1}\mathbf{I} + \mathbf{y}^{1}\mathbf{H}^{0}$	6 - 5	188
	300	876.021	30.8864 - 145.03861	3d" - 3d"(a*G)4p	$a'G \cdot x'F'$	$4 \cdot 3$	188
İ	200	876 564	21.4622 - 135.55441 30.8864 - 144.06950	30" - 30"(a**)4p 340 - 345(b2t34~	$a^{T} - y^{T}G^{0}$	4.4	188
	200	876.679	20.4819 - 134.54900	3d ⁶ - 3d ⁵ (a ² F)4p	a G - T r a ³ H - y ³ G°	4 · 3	188
	50	878 264	20 6884 . 134 5404	340 345(-21)/4-	³ D - ³ D ⁰	111	189
	200	878.316	21 4622 - 135 31642	$3d^6 - 3d^5(a^2F)4n$	$a \Gamma \cdot X \Gamma$ $a^3 F \cdot y^3 C^9$	4.5	188
	250	879.505	30.8864 - 144.58683	$3d^{6} - 3d^{5}(a^{2}G)4p$	$\mathbf{a}^{1}\mathbf{G} - \mathbf{v}^{1}\mathbf{H}^{\alpha}$	4.5	188
	300	880.008	0.0 - 113.63534	3d ⁶ - 3d ⁵ (a ⁴ G)4p	ga ⁵ D - z ⁵ G°	4 - 4	188
	400	880.447	21.6999 - 135.2790	$3d^{6} - 3d^{5}(a^{2}D)4p$	$a^{3}F \cdot x^{3}D^{\circ}$	3 - 2	188
	400	880.949	21.4622 - 134.97622	$3d^{6} - 3d^{5}(a^{2}D)4p$	$a^{3}F - x^{3}D^{0}$	4 - 3	188
	450	881.088	24.5588 - 138.05459	3d ⁶ - 3d ⁵ (a ² H)4p	a ³ G - x ³ G°	5 - 5	188
	200	881.477	30.8864 - 144.33221	3d ⁶ - 3d ⁵ (b ² F)4p	$a^{T}G \cdot x^{T}G^{\circ}$	4 - 4	188
	250	882.147 882.295	21.8572 - 135.2171 21.2085 - 134.5494	3d° - 3d°(a ⁻ D)4p 3d ⁶ - 3d ⁵ (a ² D)4p	a [°] F - x [°] D" a ³ P - x ³ P°	2 - 1 0 - 1	188
		BBB BBB		0.14 0.15 10 1	377 500		100
	200	883.090	21.8572 - 135.09984 94.9409 138.10312	3d° - 3d°(a°F)4p 3d° - 3d ⁵ (a²H)4p	$a^{3}F - y^{3}G^{\circ}$	2-3	188
	250	884 963	57 2217 . 170 3106	$3d^6 - 3d^5(b^2G)4p$	a G - x G $h^{i}G - n^{i}F^{n}$	4-4	188
)	300	884.600	25.1424 - 138.18793	$3d^{6} - 3d^{5}(a^{2}H)4p$	$a^{3}G - x^{3}G^{\circ}$	3-3	188
	70	886.138	21.6999 - 134.54900	3d6 - 3d5(a2F)4p	$a^{3}F + y^{3}G^{\circ}$	3 - 3	188
	200	887.372	21.8572 - 134.54900	3d° - 3d ⁵ (a²F)4n	$a^{3}F - v^{3}G^{\circ}$	2 - 3	188
5	150	888.777	20.0511 - 132.56471	3d ⁶ - 3d ⁵ (a ² I)4p	$a^{3}H + y^{3}H^{o}$	6 - 5	188
	150	890.008	20.3008 - 132.65917	3d ⁶ - 3d ⁵ (a ² I)4p	a ³ H - y ³ H ^o	5 - 4	188
	600 650	890.755	20.3008 - 132.56471	3d° - 3d ⁵ (a ² I)4p 3d° - 3d ⁵ (a ² I)4p	a ³ H - y ³ H ^o a ³ H - u ³ H ^o	5.5	188
	000	071.172	20.0311 - 132.20200	ou - ou (a 1)4p	a 11 - y 11	0.0	100
	550	891.442	20.4819 - 132.65917	$3d^6 - 3d^5(a^2l)4p$	$a^{3}H - y^{3}H^{\circ}$	4 - 4	188
'	400	892.417	24.5588 - 136.61278	3d° - 3d°(a°F)4p	$a^{3}G \cdot w^{3}F^{\circ}$	5-4	188
	70	896.079	30 7162 - 149 31990	3d ⁶ - 3d ⁵ (a ⁴ F)4n	a∵o•wr a ³ D⊥u ³ F°	+•-3 2-3	188
	70	896.380	57.2217 - 168.7801	3d ⁶ - 3d ⁵ (b ² G)4p	$\mathbf{b}^{1}\mathbf{G} - \mathbf{w}^{1}\mathbf{H}^{\circ}$	4 5	188
	70	897 580	20 3008 . 131 71079	3d6 . 3d5(a21)4p	s3H ≂¹H∘	5.5	188
	150	897.747	25.1424 - 136.53245	$3d^6 - 3d^5(a^2F)4n$	$a^{3}G \cdot w^{3}F^{\circ}$	3 - 2	188
	70	898.805	24.9409 - 136.20013	$3d^{6} - 3d^{5}(a^{2}D)4p$	$a^3G - z^1F^0$	4 - 3	188
	70	899.052	20.4819 - 131.71079	3d ⁶ - 3d ⁵ (a ² I)4p	$a^{3}H - z^{1}H^{\circ}$	4 - 5	188
	550	899.417	30.3562 - 141.53955	3d ⁶ - 3d ⁵ (a ² H)4p	a'I - y'I°	6 - 6	188
I	150	900.432	25.1424 - 136.20013	3d ⁶ - 3d ⁵ (a ² D)4p	a ³ G - z ¹ F°	3 - 3	188
	200	900.940	24.5588 - 135.55441	3d ⁶ - 3d ⁵ (a ² F)4p	a ³ G - y ³ G ^o	5 - 4	188
	300	901.034	20.0511 - 131.03507	3d ⁶ - 3d ⁵ (a ² I)4p	$a^{3}H \cdot z^{3}I^{\circ}$	6 - 7	188
	200	902.869	24.5588 - 135.31642 30 8864 - 141 46653	3d° - 3d°(a ² F)4p 3d ⁶ - 3d ⁵ (a ⁴ F)4p	a ³ G · y ³ G ^o a ¹ C · y ³ D ^o	5.5	188
	200	709.320	30.0004 - 141.40033	ou - ou (a r <i>)</i> 4p	a (7 - Y D)	-y - J	100
	450	905.338	20.3008 - 130.75684	3d° - 3d ⁵ (a ² l)4p 3d° - 3d ⁵ (a ² D)4p	a ³ H - z ³ I ^o a ³ F - x ³ F ^o	$5 \cdot 6$	188
	70	907.041	21.8572 - 132.10494	$3d^{6} - 3d^{5}(a^{2}D)4p$	$a^3F \cdot x^3F^{\circ}$	2 - 2	188
	250	907.891	30.8578 - 141.00299	3d ⁶ - 3d ⁵ (a ² G)4p	$a^3D - v^3F^o$	$3 \cdot 4$	188
	200	008 131	20 9964 141 00200	9.16 9.15 2 C 14	-lC3E9	4 4	100

	Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terma	J - J	Notes	References
		70 150 250	908.800 908.885 909.178	30.7162 - 140.75098 .30.7258 - 140.75098 20.0511 - 130.04056	3d ⁶ - 3d ⁵ (a ² G)4p 3d ⁶ - 3d ⁵ (a ² G)4p 3d ⁶ - 3d ⁵ (a ² I)4p	a ³ D - v ³ F° a ³ D - v ³ F° a ³ H - z ³ K°	$2 \cdot 2$ 1 - 2 6 - 7		188 188 188
		$\frac{150}{200}$	909.279 910.639	$\begin{array}{c} 30.7162 & -140.69336 \\ 35.8037 & -145.61839 \end{array}$	3d ⁶ - 3d ⁵ (a ² G)4p 3d ⁶ - 3d ⁵ (b ² F)4p	$a^{3}D - v^{3}F^{5}$ $a^{1}D - x^{1}D^{5}$	$\begin{array}{c} 2 \cdot 3 \\ 2 \cdot 2 \end{array}$		188 188
		250	910.693	30.8864 - 140.69336	$3d^6 - 3d^5(a^2G)4p$	a ¹ G - v ³ F°	4 - 3		188
		70	911.205	21.6999 - 131.44503	$3d^6 \cdot 3d^5(a^2D)4p$	$a^{3}F \cdot z^{1}D^{\circ}$	$\frac{1}{3} \cdot 2$		188
		150 150	911.265 912.197	30.7162 - 140.45310 50.4123 - 160.0379	3d° - 3d°(a²F)4p 3d° - 3d ⁵ (b²D)4p	a ³ D - y ¹ F* b ³ P - v ³ P*	2 - 3 2 - 2		188 188
		300	912.683	30.8864 - 140.45310	3d ⁶ · 3d ⁵ (a ² F)4p	$a^1G - y^1F^0$	4 - 3		188
		200	912.794 913.132	20.3008 - 129.85480 19.4048 - 128.91751	3d° - 3d°(a*1)4p 3d° - 3d ⁵ (a*1)4p	a"H - z"K" a ³ P - y ³ P"	5-0		188
		70 130	$913.324 \\913.919$	30.3562 + 139.84618 24.9409 + 134.36040	3d° - 3d ⁵ (a ² H)4p 3d° - 3d ⁵ (a ² F)4p	a ¹ I - y ³ I° a ³ G - z ¹ G°	$6.6 \\ 4-4$		188 188
		200	915.455	35.8037 - 145.03861	$3d^{6} - 3d^{5}(a^{2}C)4p$	$a^{1}D - x^{1}F^{0}$	2 - 3		188
		150	917.684 917.932	30.8578 - 139.82717 30.8864 - 139.82717	$3d^6 + 3d^5(a^2G)4p$ $3d^6 + 3d^5(a^2G)4p$	$a^{3}D + y^{1}G^{\alpha}$ $a^{1}G + y^{1}G^{\alpha}$	3-4		188 188
		70	918.800	49.5769 · 158.4168	$3d^6 - 3d^5(b^2D)4p$	$b^{3}P \cdot t^{3}D^{a}$	1 - 2		188
		70	923.215	50.4123 - 158.7293	3d° - 3d°(b2D)4p	$b^{a}P - t^{a}D^{a}$	2 - 3		188
		250 300	928.004 928.474	42.8969 - 150.6549 24.5588 - 132.26266	3d° - 3d°(b²F)4p 3d ⁶ - 3d ⁵ (a²I)4p	a'F - w'F° a ³ G - y ³ H° -	$3 \cdot 3$ 5 - 6		188 188
		300	929.163	24.9409 - 132.56471	$3d^6 + 3d^5(a^2l)4p$	a ³ G·y ³ H ^o	4 - 5		188
		70	931.124	21.2085 - 128.60565	$3d^{\circ} - 3d^{\circ}(a^{\circ}D)4p$	a ³ P - y ³ P ^o	0 - 1		188
`	10	450	934.703	19.4048 - 126.39057	$3d^6 - 3d^5(a^4P)4p$	$a^{3}P \cdot z^{3}S^{o}$	$2 \cdot 1$		188
	10	400	942.363 946.056	42.8969 - 149.01336 20.6884 - 126.39057	3d ⁶ - 3d ⁵ (a ⁴ P)4p	$a^{3}P = z^{3}S^{3}$	3 - 4		188
		300 250	948.322 948.918	$\frac{19.4048}{30.3562} \cdot \frac{124.85404}{135.73947}$	3d ⁶ - 3d ⁵ (a ⁴ D)4p 3d ⁶ - 3d ³ (a ² l)4p	a ³ P - y ³ D° a ¹ I - z ¹ l°	2 - 3 6 - 6		188 188
		650	950.334	30.3562 - 135.58208	$3d^{6} - 3d^{5}(a^{4}F)4p$	a ¹ I - y ⁵ G°	6 - 6		188
	10	200	950.722 953.383	21.2085 + 126.39057 35.8037 + 140.69336	3d ⁶ - 3d ⁵ (a ⁴ P)4p 3d ⁶ - 3d ⁵ (a ² G)4u	$a^{3}P - z^{3}S^{\circ}$ $a^{1}D + v^{3}F^{\circ}$	$\begin{array}{c} 0 \cdot 1 \\ 2 \cdot 3 \end{array}$		188 188
mar .	46	150 300	955.141 955.572	30.8578 - 135.55441 35.8037 - 140.45310	$3d^6 - 3d^5(a^2F)4p$ $3d^6 - 3d^5(a^2F)4p$	$a^{3}D \cdot y^{3}G^{\circ}$ $a^{1}D \cdot y^{1}F^{\circ}$	$3 \cdot 4 \\ 2 \cdot 3$		188 188
		70	956.355	30.7162 - 135.2790	3d ⁶ - 3d ⁵ (a ² D)4p	$a^{3}D + x^{3}D^{\circ}$	2 - 2		188
		70	959.070	20.6884 - 124.95488	$3d^6 - 3d^5(a^4D)4p$ $3d^6 - 3d^5(a^4E)4p$	$a^{3}P - y^{3}D^{2}$	1-1		188 198
		250	959.552	20.6884 - 124.90392	3d ⁶ - 3d ⁵ (a ⁴ D)4p	$a^{3}P \cdot y^{3}D^{\circ}$	1 - 2		188
		70	960.454	30.8578 - 134.97622	3d° - 3d°(a2D)4p	$a^{2}D - x^{2}D^{2}$	3 - 3		188
	45	150 450	961.709 961.901	21.4622 + 125.44358 35.8037 + 139.76448	3d° - 3d°(a°D)4p 3d° - 3d ⁵ (a°F)4p	a ³ F - y ³ F ⁹ a ¹ D - y ¹ D ⁹	4 - 4		188 188
	44	70	962.108	21.6999 - 125.63798	$3d^6 - 3d^5(a^4D)4p$ $3d^6 - 3d^5(a^2D)4p$	$a^{3}F \cdot y^{3}F^{\circ}$	$\frac{3}{0}$		188
	·4·3	50	963.172	30.7258 - 1.34.5494	$3d^{5} - 3d^{5}(a^{2}D)4p$	$a^{3}D \cdot x^{3}P^{0}$	1-1	Р	188
		100	963.246	21.8572 - 125.67283	3d ⁶ - 3d ⁵ (a ⁴ D)4p 3d ⁶ - 3d ⁵ (a ⁴ D)4p	$a^{3}F - y^{3}F^{n}$	$2 \cdot 2$	Р	188
		70	965.717	30.7162 - 134.26542	$3d^{\circ} - 3d^{\circ}(a^{\circ}D)4p$	$a^{3}D \cdot x^{3}P^{0}$	2 - 2		188
	23 23	$\begin{array}{c}400\\250\end{array}$	967.197 968.955	$\begin{array}{c} 21.4622 & 124.85404 \\ 21.6999 & 124.90392 \end{array}$	3d° - 3d°(a*D)4p 3d6 - 3d5(a*D)4p	a ³ F - y ³ D ⁵ a ³ F - y ³ D ⁵	$4 \cdot 3$ 3 - 2		188 188
	80	150	969.423	21.6999 - 124.85404	$3d^6 - 3d^5(a^4D)4p$	a ³ F - y ³ D°	3 - 3		188
	23	150	969.954 970.381	21.8572 - 124.95488	3d° - 3d°(a°D)4p 3d ⁵ (a ⁴ P)4p - 3d ⁵ (a ⁴ G)5d	a'F - y°D° z ³ P° - h ⁵ F	2 - 1 2 - 3	0	188
		150 200	970.435 971.929	21.8572 - 124.90392 35.8037 - 138.69181	3d ⁶ - 3d ⁵ (a ⁴ D)4p 3d ⁶ - 3d ⁵ (a ² D)4p	$a^{3}F - y^{3}D^{0}$ $a^{1}D - z^{1}P^{0}$	$2 - 2 \\ 2 - 1$		188 188
		250	973.505	42.8969 - 145.61839	3d ⁶ - 3d ⁵ (b ² F)4p	a'F - x'D°	3 . 2		188
		150	977.790	57.2217 - 159.4930	$3d^6 - 3d^5(b^2D)4p$ $3d^6 - 3d^5(a^2C)4p$	$\mathbf{b}^{1}\mathbf{G} \cdot \mathbf{v}^{1}\mathbf{F}^{\circ}$	4 - 3		188
		150	979.704	42.8969 - 144.96850	$3d^6 - 3d^5(b^2F)4p$	$a^{T}F - t^{3}F^{2}$	3.4		188
			980.416	21.0999 - 123.09718	301 - 301 (a 10)4p	a"t - x"t"	3 · Z		100
	13	70 650	981.084 981.373	30.8578 - 132.78536 66.52295 - 168.42101	3d" - 3d"(a*D)4p 3d ⁵ (a*P)4s - 3d ⁵ (a*S)5p	a'D • x'F' a ⁵ P • w ⁵ P'	$\begin{vmatrix} 3 & 4 \\ 2 & 2 \end{vmatrix}$		188 188
	13	150 400	983.510 983.860	30.8864 - 132.56471 20.3008 - 121.94129	3d° - 3d°(a*1)4p 3d ⁶ - 3d ⁵ (a*G)4p	a'G - y°H° a ³ H - z ³ G°	4 - 5 5 - 4	P	188 188
		250	983.909	30.3562 - 131.99158	$3d^{6} - 3d^{5}(a^{2}l)4p$	a'l · z'K°	6 - 7	Р	188

gerran a

			T		· · · · · · · · · · · · · · · · · · ·			
13	550	985 824	20 4819 . 121 01074	3,16 9,151,4634-	3u _3Co	4 2		100
10	250	986.514	21 4622 - 122 82955	$3d^6 - 3d^5(a^4D)A_D$	an - zG , ³F, u ⁵ D°	4-3		100
	300	986.637	30.3562 - 131.71079	$3d^6 - 3d^5(a^2)/4n$	ar yD all zlHo	6.5		188
22	150	988.148	21 6999 - 122 89884	$3d^6 - 3d^5(a^4P)A_P$	$a = 2 \Pi$ $a^3 \mathbf{F} = a^3 \mathbf{D}^{\circ}$	3 9		100
22	250	989.467	21.8572 - 122.92137	3d ⁶ - 3d ⁵ (a ⁴ P)4p	$a^{3}F \cdot z^{3}D^{\circ}$	2 - 1		188
I	250	990.235	21.8572 - 122.84303	3d ⁶ - 3d ⁵ (a ⁴ D)4p	$a^{3}F - v^{5}D^{\circ}$	2 · 1		188
	400 ±	990.800	21.6999 - 122.62834	$3d^{\circ} - 3d^{5}(a^{4}D)4p$	$a^{3}F \cdot v^{5}D^{\circ}$	3 - 2		188
22	600	991.232	21.4622 122.34661	$3d^{6} - 3d^{5}(a^{4}P)4p$	$a^{3}F - z^{3}D^{\circ}$	4 - 3		188
42	400	991.829	30.8864 - 131.71079	3d ⁶ - 3d ⁵ (a ² I)4p	a'G - z'H°	4 - 5		188
	150	992.337	21.8572 - 122.62834	3d ⁶ - 3d ⁵ (a ⁴ D)4p	a ³ F - y ⁵ D°	2 - 2		188
29	450	993.080	24.9409 - 125.63798	$3d^6 - 3d^5(a^4D)4p$	$a_{3}^{3}G - y_{3}^{3}F^{0}$	4 - 3		188
20	200	994.237	19.4048 • 119.98220	3d° - 3d°(a'P)4p	$a^{\alpha}P - z^{\alpha}P^{\alpha}$	2 - 1		188
29	400	994.724	23.1424 - 123.07283	3d" - 3d"(a'D)4p	a G - y F	3 - 2		188
21	150	995.223	21.4622 - 121.94962 21.4622 - 121.94129	3d [°] - 3d [°] (a [*] G)4p 3d ⁶ - 3d ⁵ (a ⁴ G)4p	a ³ F - z ³ G ⁶	4 - 5		188
g	450	997.081	19 4048 - 119 69764	3d ⁶ - 3d ⁵ (a ⁴ P) <i>A</i> n	a ³ D _ a ³ D∘	2.9		199
21	400	997.599	21.6999 - 121.94129	$3d^6 \cdot 3d^5(a^4G)4n$	$a^3F \cdot z^3G^0$	$\begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$		188
21	70	997.794	21.6999 - 121.91974	$3d^6 - 3d^5(a^4G)4p$	$a^{3}F \cdot z^{3}G^{0}$	3 - 3		188
21	300	999.376	21.8572 - 121.91974	3d ⁶ - 3d ⁵ (a ⁴ G)4p	$a^{3}F - z^{3}G^{\circ}$	2 . 3		188
	150	1005.106	82.33392 - 181.82567	3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁴ G)5s	$z^7 P^\circ - f^\circ G$	3 - 4		188
	150	1006.341	30.8864 - 130.25627	$3d^{6} - 3d^{5}(a^{2}I)4p$	a ¹ G - z ³ I°	4 - 5		188
9	200	1007.113	20.6884 - 119.98226	3d ⁶ - 3d ⁵ (a ⁴ P)4p	$a^{3}P - z^{3}P^{\circ}$	1 - 1		188
9	250	1010.005	20.6884 - 119.69764	3d° - 3d ⁵ (a ⁴ P)4p	$a^{3}P - z^{3}P^{2}$	1 - 2		188
9 19	200	1012.411	21.2085 - 119.98226	3d ^v - 3d ² (a*P)4p	$a^{\circ}P \cdot z^{\circ}P^{\circ}$	$\frac{0}{6} - \frac{1}{6}$		188
12	000	1017.204	20.0311 • 118.35501	30° - 30°(a°G)4p	a'n - z'H'	0-0		188
12	550	1017.745	20.3008 - 118.55725	$3d^{6} - 3d^{5}(a^{4}G)4p$	$a^{3}H - z^{3}H^{\circ}$	5 - 5		188
12	550	1018.286	20.4819 - 118.68625	3d° - 3d°(a*G)4p	$a^{3}H - z^{3}H^{\circ}$	4 · 4		188
41	400	1019.789	30.8578 - 128.91751	3d" - 3d ² (a*D)4p	$a^{a}D - y^{3}P^{a}$	$3 \cdot 2$		188
41	150	1020.022	49.5709 - 147.61465 30.7162 - 198.60565	3d" - 3d"(b*F)4p 3d° - 2d5(c4D)4x	$b^{\alpha}P - u^{\alpha}D^{\alpha}$	$\frac{1 \cdot 2}{2 \cdot 1}$		188
- F 1	200	1021.301	əv. 1102 · 128.00905	əu - əu (a 10)4p	a D - y P	2 • 1		198
41 28	200 400	1024.108	30.7258 - 128.37153 24 5588 - 121 04062	3d ⁶ - 3d ⁵ (a ⁴ D)4p 3d ⁶ - 3d ⁵ (a ⁴ C)4p	$a^{3}D - y^{3}P^{\circ}$	$\frac{1}{5} \cdot \frac{0}{5}$		188
20	150	1020.790	24.000 - 121.94902 50.2761 - 147 40614	оц - оц (a°G)4p 3d ⁶ - 3d ⁵ /Б ² £Мл	a G - Z G h ³ F - h ³ C ⁰	3.5		100
28	150	1029.844	24 9409 - 121 94962	$3d^{6} - 3d^{5}(a^{4}G)4n$	$a^{3}G - a^{3}G^{0}$	4.5		100
28	400	1030.924	24.9409 - 121.94129	3d ⁶ - 3d ⁵ (a ⁴ G)4p	$a^3G \cdot z^3G^\circ$	4 - 4		188
20	550	1032.123	21.4622 - 118.35024	3d ⁶ - 3d ⁵ (a ⁴ G)4p	a ³ F - z ³ F°	4-4		188
	150	1032.337	42.8969 • 139.76448	3d ⁶ - 3d ⁵ (a ² F)4p	$a^1F \cdot y^1D^o$	3 - 2	Р	188
	100	1032.352	50.2952 - 147.16136	3d ⁶ - 3d ⁵ (b ² F)4p	$b^3F - u^3G^\circ$	3 - 4	P	188
28	70	1033.079	25.1424 - 121.94129	3d ⁶ - 3d ⁵ (a ⁴ G)4p	a ³ G - z ³ G°	3 - 4		188
20	150	1033.225	21.4622 - 118.24652	3d ⁶ - 3d ⁵ (a ⁴ G)4p	a ³ F - z ³ F°	4 - 3		188
28	300	1033.298	25.1424 - 121.91974	3d ⁶ - 3d ⁵ (a ⁴ G)4p	$a^3G - z^3G^{\circ}$	3 - 3		188
20	150	1034.054	50.1849 · 146.8910	$3d^{\circ} - 3d^{\circ}(b^{2}F)4p$	$b^{3}F \cdot u^{3}G^{\circ}$	2 - 3		188
20	150	1034.654	21.6999 - 118.35024	$3d^{\circ} - 3d^{\circ}(a^{\circ}G)4p$	$a^{3}F - z^{3}F$	3 - 4		188
20 20	400	1035.768	21.6999 - 118.24652 21.6999 - 118.16356	3d° - 3d°(a°G)4p 3d° - 3d ⁵ (a ⁴ G)4p	a"F - z"F" a ³ F - z ³ F"	$\begin{array}{c c} 3 & 3 \\ 3 & 2 \end{array}$		188 188
20	70	1027 469	21 9572 119 94479		-3F -3F0			100
20	400	1038.355	21.0572 - 110.24032	3d ⁶ • 3d ⁵ (a ⁴ C)4n	ar - zr a ³ F - z ³ F ⁰	2.3		100
	250	1060.258	50.1849 - 144 50174	$3d^6 - 3d^5(h^2F)An$	ar - 2r b ³ F. + ³ F°	2.2	1	188
	250	1060.723	50.2952 - 144.57053	$3d^{6} - 3d^{5}(h^{2}F)4n$	$b^3F - t^3F^0$	3.3		188
	250	1061.127	30.7162 - 124.95488	3d ⁶ - 3d ⁵ (a ⁴ D)4p	$a^{3}D - y^{3}D^{\circ}$	2 - 1		188
40	300	1061.245	30.7258 - 124.95488	3d ⁶ - 3d ⁵ (a⁴D)4p	a ³ D - v ³ D°	1.1		188
40	400	1061.708	30.7162 - 124.90392	$3d^{6} - 3d^{5}(a^{4}D)4p$	$a^{3}D - v^{3}\overline{D}^{o}$	2 - 2		188
40	250	1061.827	30.7258 - 124.90392	$3d^{6} - 3d^{5}(a^{4}D)4p$	$a^{3}D \cdot y^{3}D^{\circ}$	1 - 2		188
40	200	1062.272	$30.7162 \cdot 124.85404$	$3d^{6} - 3d^{5}(a^{4}D)4p$	$a^{3}D - y^{3}D^{\circ}$	2 - 3		188
	250	1063.188	50.2761 - 144.33221	3d° - 3d°(b²F)4p	$\mathbf{b}^{\mathbf{a}}\mathbf{F} - \mathbf{x}^{\mathbf{b}}\mathbf{G}^{\mathbf{a}}$	4 - 4		188
40	200	1063.309	30.8578 - 124.90392	3d ⁶ - 3d ⁵ (a ⁴ D)4p	$a^{3}D - y^{3}D^{\circ}$	3 - 2		188
40	550	1063.872	30.8578 - 124.85404	$3d^{6} - 3d^{5}(a^{4}D)4p$	$a^{3}D - y^{3}D^{e}$	3 - 3		188
	70	1064.611	50.1849 - 144.11664	3d° - 3d°(a²G)4p	$\mathbf{b}^{3}\mathbf{F} = \mathbf{v}^{3}\mathbf{G}^{n}$	2 - 3		188
z (26	350 300	1066.143	24.5588 - 118.35501 34.8124 - 128.60565	3d° - 3d°(a*G)4p 3d° - 3d ⁵ (a*D)4p	a°G - z°H° a ¹ S - y ³ P°	$5 \cdot 6 \\ 0 \cdot 1$		188 188
97	300	1068 100	24 0400 110 55795	9.16 9.154-4C14				100
21	200	1068.190	24.9409 - 118.55725 50 2761 - 143 88374	3d° - 3d°(a*G)4p 3d° - 3d ⁵ (a*G)4p	$a^{*}G \cdot z^{*}H^{\circ}$ $b^{3}F = v^{3}C^{\circ}$	4 - 5		188
27	300	1069.019	25.1424 - 118.68625	$3d^6 - 3d^5(a^4G)4n$	a ³ G - 7 ³ H°	3.4		188
	250	1070.284	57.2217 - 150.6549	$3d^6 - 3d^5(b^2F)4n$	$b^1G - w^1F^0$	4 . 3		188
					~ ~ ~ ~ .			

D-37

ultiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Referenc
26	300	1071.746	24.9409 - 118.24652	3d ⁶ - 3d ⁵ (a ⁴ G)4p	a ³ G - z ³ F°	4 - 3		188
	250	1072.217	40.99987 - 134.26542	$3d^{5}(a^{6}S)4s - 3d^{5}(a^{2}D)4p$	$a^5S - x^3P^6$	2 - 2		188
26	70	1074.061	25.1424 - 118.24652	3d ⁶ · 3d ⁵ (a ⁴ G)4p	$a^3G - z^3F^6$	3 - 3		188
26	250	1075.024	25.1424 - 118.16356	3d° - 3d°(a°G)4p	a ^o G - z ^o F ^o .	3-2	0	188
	2	1076.556	117.52191 - 210.41132	3d°(a*P)4p - 3d°(a°5)6d	2°D" - "D	4 - 5	V	292
	250	1082.838	50.1849 - 142.53507	3d ⁶ - 3d ⁵ (a ⁴ F)4p	$b^3F - u^3F^{\circ}$	2 - 2		188
	150	1083.176	49.148 - 141.46945	3d ⁶ - 3d ⁵ (a ⁴ F)4p	$b^{3}P - v^{3}D^{\circ}$	0 - 1		188
	300	1086.748	$50.2952 \cdot 142.31290$	3d° - 3d ⁵ (a*F)4p	$b^3F - u^3F^0$	3 - 3		188
	200	1088.224	49.5769 - 141.46945 49.5769 - 141 39904	3d° - 3d°(a*F)4p 3d° - 3d ⁵ (a*F)4p	$b^{3}P - v^{3}D^{3}$ $b^{3}P - v^{3}D^{3}$	$1 \cdot 1$ 1 · 2		188
	200	1009.001						
	250	1089.416	57.2217 - 149.01336	3d° - 3d°(a ² H)4p	b'G - w'G°	4.4		188
	150	1003 332	A2 8060 134 36040	3d ⁶ 3d ⁵ (a ² F)da		3.4		188
	300	1095.476	$50.1849 \cdot 141.46945$	$3d^{6} - 3d^{5}(a^{4}F)4n$	$b^3 F \cdot v^3 D^3$	2.1	1 1	188
	200	1096.606	50.2761 - 141.46653	3d ⁶ - 3d ⁵ (a ⁺ F)4p	$b^3F \cdot v^3D^a$	4 - 3		188
	70	1097.649	50.2952 - 141.39904	$3d^{6} - 3d^{5}(a^{4}F)4e$	b ³ F - v ³ D°	3 . 2		188
	2	1097.782	66.59168 - 157.6843	$3d^{5}(a^{4}P)4s - 3d^{5}(b^{2}D)4p$	a ⁵ P - s ³ F°	1 - 2	Q	292
	300	1098.247	50.4123 - 141.46653	3d ⁶ - 3d ⁵ (a*F)4p	$b^{3}P \cdot v^{3}D^{\circ}$	2 - 3		188
	150	1099.061	$50.4123 \cdot 141.39904$	3d° - 3d ⁵ (a*F)4p	$b^{3}P \cdot v^{3}D^{3}$	2 - 2		188
1	600	1122.526	0.0 - 89.08479	3d° - 3d°(a°5)4p	ga'D - z'P°	4 - 3		188
1	600	1124.883	0.4362 - 89.33459	$3d^{6} - 3d^{5}(a^{6}S)4p$	ga ⁵ D - z ⁵ P°	3 - 2		188
1	400	1126.728	0.7389 - 89.49144	3d° - 3d°(a°S)4p	ga'D - z'P'	$\frac{2}{2} - 1$		188
1	350 450	1128.050	0.4302 - 89.08479	30° - 3d°(a°S)4p 3,46 - 9,45(.,6€)4.	$ga^{-}D \cdot z^{-}P^{0}$	3-3		188
1	450	1120.125	0.9324 - 89.49144	3d ⁶ - 3d ⁵ (a ⁶ S)4p	$ga^5D \cdot z^5P^{\circ}$	1.1		188
1	300	1130.404	1 0273 89 49144	3.46 2.15(62)4m	~ ~,5D ~5₽°	0.1		100
i	450	1131 194	0 9324 - 89 33459	$3d^{\circ} - 3d^{\circ}(a^{\circ}S)4n$	ga D - z T $ga^5 D - z^5 P^{o}$	1-2	i	188
i	200	1131.914	0.7389 - 89.08479	3d ⁶ - 3d ⁵ (a ⁶ S)4p	ga ⁵ D - z ⁵ P ^o	2 - 3		188
_	200	1141.272	57.2217 - 144.84324	$3d^{6} - 3d^{5}(a^{2}H)4p$	b ¹ G - x ¹ H ^o	4 - 5		188
9	250	1142.464	30.7162 - 118.24652	$3d^6 - 3d^8(a^4G)4p$	a ³ D - z ³ F°	2 - 3		188
9	300	1142.955	30.8578 - 118.35024	3d ⁶ - 3d ⁵ (a ⁴ G)4p	a ⁵ D - z ³ F ^o	3 - 4		188
9	70	1143.545	30.7162 - 118.16356	3d ⁵ - 3d ⁵ (a ⁴ G)4p	$a^{3}D - z^{3}F^{\circ}$	2 - 2		188
9	200	1143.671	30.7258 - 118.16356	3d° - 3d ² (a°G)4p	$a^{\circ}D \cdot z^{\circ}F^{\circ}$	1 - 2		188
	70	1382.857	$63.42517 \cdot 135.73947$	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{2}I)4p$	$a^5G - z^1I^\circ$	6-6	Y	188
	70	1204 024	50 1940 191 01074	246 245(-4(1)4-	1.3F ~3Co	9 2		100
l l	200	1395 213	50 2761 - 121 94962	$3d^{5} - 3d^{5}(a^{4}C)4v$	$b^3F \cdot z^3C^2$	4.5		188
	20	1395.382	50.2761 - 121.94129	$3d^6 - 3d^5(a^4G)4p$	$b^3F - z^3C^2$	4.4		188
	150	1395.750	50.2952 - 121.94129	3d6 - 3d5(a4G)4p	$b^{3}F - z^{3}G^{\circ}$	3 - 4		188
	50	1465.291	113.58420 - 181.83002	3d ⁵ (a ⁴ G)4p - 3d ³ (a ⁴ G)5s	z ⁵ G° - f ⁵ G	2 - 3	Р	288
1	150	1465.320	113.58420 - 181.82866	3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)5s	z ⁵ G° - f ⁵ G	2 - 2	Р	288
	150	1465.746	113.60537 - 181.83002	$3d^{5}(a^{4}C)4p - 3d^{5}(a^{4}C)5s$	z ⁵ G° - f ⁵ G	3 - 3	Р	288
	50	1465.775	113.60537 - 181.82866	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)5s$	z°G° - f°G	$3 \cdot 2$	P	288
	20 250	1465.839	113.60537 + 181.82567 113.63534 + 181.82567	3d°(a*G)4p - 3d°(a*G)5s 3d ⁵ (a*G)4p - 3d ⁵ (a*G)5s	2°G° - 1°G 7 ⁵ G° - 1°G	3.4	P	288 288
		1100.101			20 10	* *		200
	250	1467.746	113.67701 - 181.80870	3d°(a°G)4p - 3d°(a°G)5s	2°G° - f°G	5-5	P	288
	150	1408.524	50 2761 118 25024	$30^{\circ}(a^{\circ}C)4p - 30^{\circ}(a^{\circ}C)5s$ $34^{5} - 34^{5}(a^{4}C)4p$		3.0	r	200
	400	1469.876	113.73962 - 181 77259	$3d^{5}(a^{4}G)4u = 3d^{5}(a^{4}G)5s$	7 ⁵ C ⁹ · f ⁵ C	6.6	р	288
ĺ	20	1471.051	50.1849 - 118.16356	3d6 - 3d5(a4G)4p	$b^3F \cdot z^3F^o$	2 - 2		188
	70	1471.638	50.2952 - 118.24652	3d ⁶ - 3d ⁵ (a ⁴ C)4n	b ³ F - z ³ F°	3 - 3		188
	150	1481.169	69.69573 - 137.20973	3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ F)4p	$\tilde{b}^{5}\tilde{D} - \tilde{x}^{5}\tilde{D}^{\circ}$	4 - 4		188
	20	1484.241	70.72875 - 138.10312	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{2}H)4p$	$b^3G - x^3G^o$	4.4		188
_	70	1484.546	70.69403 - 138.05459	3d ³ (a ⁴ G)4s - 3d ⁵ (a ² H)4p	$b^3G \cdot x^3G^\circ$	5 - 5	_	188
5	450	1486.254	82.00173 - 149.28500	3d°(a°S)4p - 3d°(a°S)5s	$\mathbf{z}'\mathbf{P}' - \mathbf{e}'\mathbf{S}$	2 - 3	P	288
5	600	1493.626	82.33392 - 149.28500	$3d^{5}(a^{6}S)4p + 3d^{5}(a^{6}S)5s$	$z^7 P^\circ - e^7 S$	3 - 3	P	288
	70	1495.213	114.94855 - 181.82866	3d"(a"G)4p - 3d"(a"G)5s	z°H° - f°G	3 - 2	ר <u>א</u>	288
	10	1990.021	115.11092 - 181.68002	3d ³ (a ⁴ C)4n 2d ³ (a ⁴ C)58	2 H • FG 2 ⁵ 110 - 450	5.4	r D	200
	150	1504.002	69.69573 - 136.18517	3d ⁵ (a ⁴ D)4s · 3d ⁵ (a ⁴ F)4p	$b^5D - x^5F^{\circ}$	4.5	•	188
5	650	1505,152	82.84659 - 149 28500	3d5(a65)4p - 3d5(a65)5s	2 ⁷ P° - 5 ⁷ S	4.3	Р	288
~	150	1507.512	115.47425 - 181.80870	3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)5s	z ⁵ H° - f°G	6.5	P	288
	150	1511.138	113.58420 - 179.75949	3d5(a4G)4p - 3d5(a4G)4d	$z^5G^\circ - e^5G$	2 - 2	P	288
	200	1511.594	113.60537 - 179.76072	3d ⁵ (a*G)4p - 3d ⁵ (a*G)4d	$z^5G^\circ - e^5G$	3 - 3	Р	288
I				and a first state of the second state of the s	· · · · · ·		-	

م محکمی

ltiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	50 150	1511.656	113.60537 - 179.75798 115.64223 - 181.77259	3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d 3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)5s	z ⁵ G° - e ⁵ G z ⁵ H° - f ⁵ G	$3 \cdot 4 \\ 7 \cdot 6$	P	288 288
	20	1512.279	113.63534 - 179.76072	3d5(a4G)4p - 3d5(a4G)4d	z ⁵ G ^u - e ⁵ G	4 - 3	Р	288
	150	1512.341	113.63534 - 179.75798	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$z^5G^{\circ} - e^5G$	$4 \cdot 4$	P	288
	50	1512.364	116.36476 - 182.48640	3d°(a*P)4p - 3d°(a*P)4d	z°D° - f°F	0 - 1	Р	288
	20	1512.844	116.38007 - 182.48072	$3d^{5}(a^{4}P)4p - 3d^{5}(a^{4}P)4d$	$z^5D^{\prime\prime} - f^5F$	1 - 2	P	288
	150	1512.888	113.58420 - 179.68294	3d°(a°G)4p - 3d°(a°G)4d 3d ⁵ (a ⁴ C)4p - 3d ⁵ (a ⁴ C)4d	2°G" - e ⁵ F	3.2	r p	200 288
	250	1513.520	113.67701 - 179.74817	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$z^5G^{\circ} - e^5G$	5.5	P	288
	150	1514.552	113.63534 - 179.66148	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$z^5G^\circ - e^5F$	4 - 3	Р	288
	20	1514.571	116.41939 - 182.44470	$3d^{5}(a^{4}P)4p - 3d^{5}(a^{4}P)4d$	$z^5D^\circ \cdot f^5F$	2 - 3	Р	288
	20	1514.955	113.73962 - 179.74817	$3d^{\circ}(a^{4}G)4p - 3d^{\circ}(a^{4}G)4d$	z°G° • e°G	6 - 5	P	288
	300	1515.480	113.73962 - 179.72531	3d°(a°G)4p - 3d°(a°G)4d 3d ⁵ (a ⁴ C)4p - 3d ⁵ (a ⁴ C)4d	z°G° - e°G z ⁵ C° - e ⁵ F	0-0 5-4	P	288
	200	1516.594	116.47544 - 182.41265	3d ⁵ (a ⁴ P)4p - 3d ⁵ (a ⁴ P)4d	z ⁵ F° - f ⁵ F	3 - 4	P	288
	20	1516.785	135.99062 - 201.91953	3d ⁵ (a ⁴ F)4p - 3d ⁵ (a ⁴ F)5s	х ⁵ F° - ц ⁵ F	4 - 4	Р	288
	20	1517.777	120.82617 - 186.71202	3d ⁵ (a ⁴ D)4p - 3d ⁵ (a ⁴ D)4d	y ⁵ F° - e ⁵ D	2 - 1	Р	288
	300	1518.829	113.73962 - 179.57983	$3d^{5}(a^{4}C)4p - 3d^{5}(a^{4}C)4d$	$z_{SE}^{SG^{\circ}} - e_{SE}^{SF}$	6 - 5	P	288
	20	1521.902	136.18517 - 201.89244	3d°(a*F)4p - 3d°(a*F)5s 3d ⁵ (a*C)4p - 3d ⁵ (a*C)4d	x°F° - g′F z ⁵ C° - <u>a</u> 5H	5-5	P P	288 288
	300	1924.920	113.30420 • 179.17002	ou (a G)4p - ou (a G)4u	20-00	2-0	r f	200
	300 70	1524.649 1524.707	113.60537 - 179.19422	3d²(a²G)4p - 3d²(a²G)4d 3d²(a²P)4n - 3d²(a²P)4d	z°G° - e°H z°S° - f°F	$\frac{3 \cdot 4}{2 \cdot 2}$	¦Р Р	288 288
	350	1525.036	113.63534 - 179.20757	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$z^5G^\circ - e^5H$	4 - 5	P	288
	50	1525.051	120.69710 - 186.26869	$3d^{5}(a^{4}D)4p - 3d^{5}(a^{4}D)4d$	$y_{s}^{s}F^{o} - g_{s}^{s}G$	1 - 2	P	288
	70	1525.346	113.63534 - 179.19422	3d°(a*G)4p - 3d°(a*G)4d	z'G° - e'H	4.4	P	288
	150	1525.635	116.89822 - 182.44470	$3d^{5}(a^{4}P)4p - 3d^{5}(a^{4}P)4d$	z ⁵ S° - f ⁵ F	2 - 3	P	288
	400	1525.798	113.67701 - 179.21647	$3d^{3}(a^{*}G)4p - 3d^{3}(a^{*}G)4d$ $2d^{3}(a^{4}D)4n - 2d^{5}(a^{4}D)4d$	z'G' - e'H	5-0	P	288
	400	1526.024	113 73962 - 179 22145	$3d^{5}(a^{4}G)4n - 3d^{5}(a^{4}G)4d$	yr -eD z ⁵ G° - e ⁵ H	6-7	P	288
	50	1527.248	120.82617 - 186.30344	$3d^{5}(a^{4}D)4p - 3d^{5}(a^{4}D)4d$	y ⁵ F° - g ⁵ G	2 - 3	P	288
	150	1527.257	113.73962 - 179.21647	3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d	z ⁵ G° - e ⁵ H	6 - 6	Р	288
	70	1527.745	116.31663 - 181.77259	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)5s$	z ⁵ F° - f ⁵ G	5 - 6	P	288
	20	1528.864	134.97622 - 200.38428	$3d^{\circ}(a^{2}D)4p - 3d^{\circ}(a^{*}F)4d$	x°D° - h°G	3 - 3	. P	288
	150	1529.750	116.47544 - 181.82567	3d ⁵ (a ⁴ P)4p - 3d ⁵ (a ⁴ G)5s	z ⁵ F° · f°G	3 - 4 3 - 4	P	200 288
	20	1530.426	116.46741 • 181.80870	3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)5s	z⁵F° - f⁵G	4 - 5	Р	288
	400	1531.294	82.00173 - 147.30597	3d5(a'S)4p - 3d5(a'S)4d	$z^7 P^\circ - e^7 D$	2 - 3	Р	288
	550	1531.640	82.00173 • 147.29121	$3d^{5}(a^{6}S)4p - 3d^{5}(a^{6}S)4d$	$z^7 P^\circ - e^7 D$	$\frac{2}{2} \cdot \frac{2}{2}$	P	288
	400	1531.862	122.82955 - 188.10958	3d°(a*D)4p - 3d°(a*D)5s 3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)4d	y ³ D ⁶ - f ³ D 7 ⁷ P ⁶ - e ⁷ D	3-3	P	288
	50	1551.004	62.00173 • 147.20109	50 (a 5)4p - 50 (a 5)40	21 - 60	2.1	-	200
	250	1533.450	121.24167 - 186.45409	$3d^{3}(a^{4}D)4p - 3d^{3}(a^{4}D)4d$ $2d^{5}(a^{4}D)4n - 2d^{5}(a^{4}D)4d$	y°F°-g°G	4.5	P	288
	150	1536 433	135 23974 - 200.32556	$3d^{5}(a^{4}F)4p - 3d^{5}(a^{4}F)4d$	v ⁵ G° - h ⁵ G	4.4	P	288
	70	1536.596	135.31642 - 200.39533	3d ⁵ (a ² F)4p · 3d ⁵ (a ⁴ F)4d	y³G° · h⁵G	5 - 5	Р	288
	150	1536.658	118.35501 - 183.43128	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)5s$	z ³ H° · e ³ G	6 - 5	P	288
	70	1536.824	$122.94415 \cdot 188.01340$	$3d^{5}(a^{4}D)4p - 3d^{5}(a^{4}D)5s$	y ⁵ D° - f ⁵ D	4 - 4	P	288
	650	1538.628	82.33392 - 147.32685	3d°(a°S)4p - 3d°(a°S)4d 3d°(a°S)4p - 3d°(a°S)4d	$z^{2}P^{\circ} - e^{2}D$	3.4	. P	288
	300 i	1539.125	82.33392 - 147.30397	$3d^{5}(a^{6}S)4v - 3d^{5}(a^{6}S)4d$	$z^7 P^{\circ} - e^7 D$	3 - 2	P	288
	450	1540.164	114.94855 - 179.87671	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$z^{5}H^{o} - e^{5}I$	3 - 4	Р	288
	20	1540.340	135.73531 - 200.65602	$3d^{5}(a^{4}F)4p - 3d^{5}(a^{4}F)4d$	y ⁵ G° - h ⁵ G	5 - 6	Р	288
	70	1540.439	135.73947 • 200.65602	3d°(a ² 1)4p - 3d°(a ⁴ F)4d 2d ⁵ (a ⁴ C)4p - 2d ⁵ (-4C)5-	z'l' · h°G	5.6	P a	288 288
	150 300	1540.834	118.33723 - 183.43713	3d ⁵ (a ⁴ P)4n - 3d ⁵ (a ⁴ P)4d	z n eu z D° f°F	4-5	P P	288
	70	1542.614	124.85404 • 189.67907	3d ⁵ (a ⁴ D)4p - 3d ⁵ (a ⁴ D)5s	$\tilde{y^3D^{\circ}} \cdot e^3D$	3 - 3	P	288
	150	1542.949	114.94855 - 179.75949	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	z ⁵ H° - e ⁵ G	3 - 2	P	288
	400	1543.623	115.11092 - 179.89356	$3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$z^{5}H^{\circ} - e^{5}I$	4 - 5	P	288
	200	1544.068	134.93784 - 199.70182	$3d^{\circ}(a^{*}F)4p - 3d^{\circ}(a^{*}F)4d$ $2d^{5}(a^{4}C)4n - 2d^{5}(-4C)5 -$	y″G°-f°H "≶րթ ՃՐ	2-3	P	288
	250 200	1544.232 1545.405	135.09684 - 199.80481	30 (a G)4p - 30°(a°G)38 3d⁵(a⁴F)4p - 3d⁵(a⁴F)4d	y ⁵ G° - f ⁵ H	3.4	P	288
	250	1546.104	135.70557 - 200.38428	3d ⁵ (a ² F)4p - 3d ⁵ (a ⁴ F)4d	$w^3D^\circ - h^5G$	3 - 3	Р	288
	20	1546.551	135.73531 - 200.39533	3d ⁵ (a ⁴ F)4p - 3d ⁵ (a ⁴ F)4d	y ⁵ G° h ⁵ G	5 - 5	P	288
	250	1546.918	135.23974 - 199.88439	$3d^{5}(a^{4}F)4p - 3d^{5}(a^{4}F)4d$	y°G° - f°H	4 - 5	P	288
	20 550	1547.509	135.70557 - 200.32556	əar(arr)4p - əar(arr)4d 3d⁵(a⁴G)4n - 3d⁵(a⁴G)4d	w⁻D⁻ • h°G z⁵H° - ⊧⁵I	5.6	P	268
	000	10111001	10,000,000	22 (2 2) F 00 (2 0) 10		1	1	
D	-39							
---	-----	--						
D	-39							

	Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J-J N	otes	Reference
	84	300 800 300	1548.237 1550.193 1550.459	135.31642 - 199.90603 82.84659 - 147.35470 118.35501 - 182.85205	3d ⁵ (a ² F)4µ - 3d ⁵ (a ⁴ F)4d 3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)4d 3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d	y ³ G" - f ⁵ H z ⁷ P" - e ⁷ D z ³ H" - e ³ I	5 - 6 4 - 5 6 - 7	Р Р Р	288 288 288
	84	530 150	1550.862 1551.089	82.84659 - 147.32685 136.18517 - 200.65602	3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)4d 3d ⁵ (a ⁴ F)4p - 3d ⁵ (a ⁴ F)4d	$z^7 P^\circ - e^7 D$ $x^5 F^\circ - h^5 G$	4 - 4 5 - 6	P P	288 288
-	84	150 250 550 20	1551.156 1551.365 1552.064 1552.682	115.28991 - 179.75798 82.84659 - 147.30597 115.47425 - 179.90456 135.99062 - 200.39533	$3d^5(a^4G)4p + 3d^5(a^4G)4d$ $3d^2(a^8S)4p + 3d^2(a^6S)4d$ $3d^5(a^4G)4p + 3d^5(a^4G)4d$ $3d^5(a^4G)4p + 3d^5(a^4G)4d$ $3d^5(a^4F)4p + 3d^5(a^4F)4d$	$z^{5}H^{0} - e^{5}G$ $z^{7}P^{o} - e^{7}D$ $z^{5}H^{o} - e^{5}I$ $x^{5}F^{o} - h^{5}G$	5 - 4 4 - 3 6 - 7 4 - 5	Р Р Р Р	288 288 288 288 288
		200 300 70	1555.851 1556.076 1556.410	135.38208 - 199.88439 118.55725 - 182.83076 135.73947 - 200.00370 135.55441 - 199.80481	$3d^{3}(a^{4}C)4p - 3d^{5}(a^{4}C)4d$ $3d^{3}(a^{4}C)4p - 3d^{5}(a^{4}C)4d$ $3d^{3}(a^{2}L)4p - 3d^{5}(a^{4}F)4d$ $3d^{3}(a^{2}E)4p - 3d^{3}(a^{4}F)4d$	y G - FH z ³ H ^o - e ³ I z ¹ I ^o - f ⁵ H y ³ G ^o - f ⁵ H	5 - 6 6 - 7 4 - 4	r P P P	288 288 288 288
		550 70	1556.498 1556.772	115.64223 - 179.88903 125.44358 - 189.67907	3d²(a*G)4p - 3d²(a*G)4d 3d²(a*D)4p - 3d⁵(a*D)5s	$\begin{bmatrix} z^{2}H^{n} - e^{2}I \\ y^{2}F^{n} - e^{3}D \end{bmatrix}$	7-8	P P	288 288
		50 100 150 20	1556.903 1556.929 1557.581 1558.308 1558.545	114.94855 - 179.17862 118.16356 - 182.39255 136.23584 - 200.43794 118.24652 - 182.41870 118.24652 - 182.40891	$\begin{array}{l} 3d^5(a^+G)4p \ -\ 3d^5(a^+G)4d \\ 3d^5(a^+G)4p \ -\ 3d^5(a^+G)4d \\ 3d^5(a^+F)4p \ -\ 3d^5(a^+G)4d \\ 3d^5(a^+G)4p \ -\ 3d^5(a^+G)4d \\ 3d^5(a^+G)4p \ -\ 3d^5(a^+G)4d \end{array}$	$ \begin{array}{c} z^{5}H^{a} - e^{5}H \\ z^{3}F^{a} - e^{3}F \\ x^{5}F^{a} - h^{5}G \\ z^{5}F^{a} - e^{3}F \\ z^{3}F^{a} - e^{3}F \end{array} $	3 - 3 2 - 2 1 - 2 3 - 4 3 - 3	P P P P P	288 288 288 288 288 288
		$150 \\ 150 \\ 50 \\ 50 \\ 100 $	1559.468 1560.469 1560.474 1560.830 1560.849	118.68625 - 182.81066 115.11092 - 179.19422 115.64223 - 179.72531 118.35024 - 182.41870 115.11092 - 179.17862	3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d 3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d 3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d 3d ⁵ (a ⁴ G)4p - 3d ⁵ (a ⁴ G)4d 3d ⁵ (a ⁴ G)4d - 3d ⁵ (a ⁴ G)4d	$z^{3}H^{\circ} - e^{3}I$ $z^{5}H^{\circ} - e^{5}H$ $z^{5}H^{\circ} - e^{5}G$ $z^{3}F^{\circ} - e^{3}F$ $z^{5}H^{\circ} - e^{5}H$	4 - 5 4 - 4 7 - 6 4 - 4 4 - 3	P P P P	288 288 288 288 288 288
		10 10 20 150 200	1561.172 1561.197 1564.295 1564.513 1565 118	122.94415 - 186.99860 122.82955 - 186.88298 115.28991 - 179.21647 115.28991 - 179.20757 129.8984 - 186.70178	$3d^5(a^+D)4p - 3d^5(a^+D)4d$ $3d^5(a^+D)4p - 3d^5(a^+D)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$	$y^{5}D^{9} - e^{5}D$ $y^{5}D^{9} - e^{5}D$ $z^{5}H^{9} - e^{5}H$ $z^{5}H^{9} - e^{5}H$ $z^{5}H^{9} - e^{5}D$	$4 \cdot 4$ 3 - 3 5 - 6 5 - 5 2 - 2	P P P P	288 288 288 288 288 288
		200 70 200 20 50	1567.628 1568.696 1568.819 1569.038 1569.038	122.92137 - 186.71202 115.47425 - 179.22145 115.47425 - 179.21647 115.47425 - 179.20757 118.68625 - 182.41870	3d ⁵ (a ⁴ P)4p - 3d ⁵ (a ⁴ D)4d 3d ⁵ (a ⁴ C)4p - 3d ⁵ (a ⁴ C)4d 3d ⁵ (a ⁴ C)4p - 3d ⁵ (a ⁴ C)4d 3d ⁵ (a ⁴ C)4p - 3d ⁵ (a ⁴ C)4d 3d ⁵ (a ⁴ C)4p - 3d ⁵ (a ⁴ C)4d	$z^{3}D^{\circ} - e^{5}D$ $z^{5}H^{\circ} - e^{5}H$ $z^{5}H^{\circ} - e^{5}H$ $z^{5}H^{\circ} - e^{5}H$ $z^{5}H^{\circ} - e^{5}H$	1 - 1 6 - 7 6 - 6 6 - 5 4 - 4	P P P	288 288 288 288 288 288
		70 200 300 20 200	1571.237 1572.798 1572.841 1572.964 1577.071	136.79382 - 200.43794 125.44358 - 189.02453 115.64223 - 179.2145 115.64223 - 179.21647 116.31663 - 179.72531	$3d^{5}(a^{2}F)4p - 3d^{5}(a^{4}F)4d$ $3d^{5}(a^{4}D)4p - 3d^{5}(a^{4}F)4d$ $3d^{5}(a^{4}C)4p - 3d^{5}(a^{4}C)4d$ $3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$ $3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	w ³ D ⁰ - h ⁵ G y ³ F ⁰ - f ³ G z ⁵ H ⁰ - e ⁵ H z ⁵ H ⁰ - e ⁵ H z ⁵ F ⁰ - e ⁵ G	2 - 2 4 - 5 7 - 7 7 - 6 5 - 6	P P P P	288 288 288 288 288 288
		150 150 150 150 150	1577.938 1578.748 1580.215 1580.259 1580.698	125.63798 - 189.01184 116.41939 - 179.76072 116.47544 - 179.75798 116.46741 - 179.74817 116.31663 - 179.57983	$3d^5(a^4D)^4p - 3d^5(a^4D)^4d$ $3d^5(a^4P)^4p - 3d^5(a^4G)^4d$ $3d^5(a^4P)^4p - 3d^5(a^4G)^4d$ $3d^5(a^4G)^4p - 3d^5(a^4G)^4d$ $3d^5(a^4G)^4p - 3d^5(a^4G)^4d$	$y^{3}F^{\circ} - f^{3}G$ $z^{5}D^{\circ} - e^{5}G$ $z^{5}F^{\circ} - e^{5}G$ $z^{5}F^{\circ} - e^{5}G$ $z^{5}F^{\circ} - e^{5}F$	3 - 4 2 - 3 3 - 4 4 - 5 5 - 5	P P P P	288 288 288 288 288 288
		$ \begin{array}{c c} 70 \\ 20 \\ 20 \\ 200 \\ 200 \\ 20 \end{array} $	1581.072 1582.427 1582.634 1583.196 1583.968	$\begin{array}{c} 123.75039 \cdot 186.99860 \\ 116.46741 \cdot 179.66148 \\ 123.69718 \cdot 186.88298 \\ 116.46741 \cdot 179.63077 \\ 123.75039 \cdot 186.88298 \end{array}$	$\begin{array}{l} 3d^5(a^4D)4p - 3d^5(a^4O)4d\\ 3d^5(a^4G)4p - 3d^5(a^4G)4d\\ 3d^5(a^4D)4p - 3d^5(a^4D)4d\\ 3d^5(a^4D)4p - 3d^5(a^4C)4d\\ 3d^5(a^4D)4p - 3d^5(a^4C)4d\\ 3d^5(a^4D)4p - 3d^5(a^4D)4d \end{array}$	$ \begin{array}{c} x^{5}P^{o} - e^{5}D \\ z^{5}F^{o} - e^{5}F \\ x^{5}P^{o} - e^{5}F \\ z^{5}F^{o} - e^{5}F \\ x^{5}P^{o} - e^{5}F \end{array} $	3 - 4 4 - 3 2 - 3 4 - 4 3 - 3	Р Р Р Р	288 288 288 288 288 288
		150 70 70 70 70	1584.922 1591.801 1592.720 1592.898 1593.743	123.69718 - 186.79178 116.93757 - 179.73949 116.97505 - 179.76072 116.89822 - 179.67689 116.93757 - 179.68294	$3d^{5}(a^{4}D)4p - 3d^{5}(a^{4}D)4d$ $3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$ $3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$ $3d^{5}(a^{4}P)4p - 3d^{5}(a^{4}G)4d$ $3d^{5}(a^{4}G)4p - 3d^{5}(a^{4}G)4d$	$ x^{5}P^{n} - e^{5}D z^{5}F^{n} - e^{5}G z^{5}F^{n} - e^{5}G z^{5}F^{n} - e^{5}G z^{5}S^{n} - e^{5}F z^{5}F^{n} - e^{5}F $	$ \begin{array}{r} 2 - 2 \\ 1 - 2 \\ 2 - 3 \\ 2 - 2 \\ 1 - 1 \end{array} $	P P P P	288 288 288 288 288 288
	119	70 20 20 400 70	1593.897 1594.850 1595.166 1595.586 1597.625	$\begin{array}{c} 116.93757 \cdot 179.67689 \\ 116.97505 \cdot 179.67689 \\ 117.06856 \cdot 179.75798 \\ 89.08479 \cdot 151.75767 \\ 117.06856 \cdot 179.66148 \end{array}$	$3d^5(a^+G)4p - 3d^5(a^+G)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$ $3d^5(a^+G)4p - 3d^5(a^+G)4d$	$z^{5}F^{\circ} - e^{5}F$ $z^{5}F^{\circ} - e^{5}F$ $z^{5}D^{\circ} - e^{5}G$ $z^{5}P^{\circ} - e^{5}S$ $z^{5}D^{\circ} - e^{5}F$	$ \begin{array}{r} 1 - 2 \\ 2 - 2 \\ 3 - 4 \\ 3 - 2 \\ 3 - 3 \end{array} $	Р Р Р Р	288 288 288 288 288 288
	118 118 119 119 118	650 400 300 200 600	1601.204 1601.298 1601.970 1606.006 1607.727	89.08479 - 151.53780 89.08479 - 151.53413 89.33451 - 151.75767 89.49139 - 151.75767 80.33451 - 151.53413	3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)4d 3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)4d 3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)5s 3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)5s 3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)5s	$z^{5}P^{n} \cdot e^{5}D$ $z^{5}P^{n} \cdot e^{5}D$ $z^{5}P^{n} \cdot e^{5}S$ $z^{5}P^{n} \cdot e^{5}S$ $z^{5}P^{n} \cdot e^{5}S$	3 - 4 3 - 3 2 - 2 1 - 2 2 - 3	P P P P	288 288 288 288 288 288

D-	4	0
----	---	---

Multiple	t Rel. Int.	λ _{va} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
118	450	1611.726	89.49139 - 151.53668	3d5(a6S)4p - 3d5(a6S)4d	z ⁵ P° - e ⁵ D	1-1 P	288
118	450	1611.772	89.49139 - 151.53490	3d ⁵ (a ⁶ S)4p - 3d ⁵ (a ⁶ S)4d	$z^{5}P^{c} - e^{5}D$	1 - 2 P	288
	70	1614.611	70.72501 - 132.65917	3d°(a*G)4s - 3d°(a*I)4p	$b^3G \cdot y^3H^0$	3 - 4	188
	10	1017.171	70.72875 - 132.56471	$3d^{2}(a^{2}G)4s - 3d^{2}(a^{2}I)4p$ $2d^{3}(a^{4}G)4a - 2d^{5}(a^{2}I)4a$	b ³ G - y ³ H ⁶	4 - 5	188
	1.00	1024.200	70.09403 - 132.20200	3d (a G)4s - 3d (a-1)4p	b"G - y"H"	5-0	188
	200	1628.304	83.42961 - 144.84324	$3d^{5}(a^{2}I)4s - 3d^{5}(a^{2}H)4p$	$b^1I - x^1H^o$	6 - 5	188
	150	1656.831	$79.84012 \cdot 140.19633$	3d ⁵ (a ² I)4s - 3d ⁵ (a ² H)4p	$a^3l - y^3l^o$	7 - 7	188
	150	1695.036	$30.08884 \cdot 89.08479$	$3d^{2}(a^{\circ}S)4s - 3d^{2}(a^{\circ}S)4p$	$a'S - z^{3}P^{\circ}$	3 - 3	188
	200	1710.374	88.92307 147.40614 88.69467 147.16136	3d°(a ⁺ H)4s - 3d°(b ⁺ F)4p 3d ⁵ (a ² H)4s - 3d ⁵ (b ² F)4p	b ^o H - u ^o G ^o b ³ H - u ³ G ^o	6·5 5·4	188
	150	1717 414	00 ((007 14(0010				100
	150	1717.414	88.66387 - 146.8910	$3d^{3}(a^{2}H)4s - 3d^{3}(b^{2}F)4p$	b ³ H · u ³ G ^o	4 - 3	188
	250	1722.007	63 46630 121 24167	$3d^{5}(a^{4}C)4a = 3d^{5}(a^{4}D)4a$	a G · y F	0-5	100
	200	1738 468	63 48678 - 121 00878	$3d^{5}(a^{4}C)A_{2} = 3d^{5}(a^{4}D)A_{2}$	a G - y F 5 C + 5 F°	1 3	100
	20	1739.201	89.90785 - 147.40614	3d ⁵ (a ² G)4s - 3d ⁵ (b ² F)4p	$c^{3}G - u^{3}G^{n}$	5-5	188
	200	1744 233	63 49400 - 120 82617	3d ⁵ (a ⁴ C)4e - 3d ⁵ (a ⁴ D)4n	a ⁵ C - v ⁵ F"	3.2	188
	250	1745.638	66.46464 - 123.75039	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}D)4n$	a ⁵ P - x ⁵ P°	3-3	188
	70	1747.260	66.46464 - 123.69718	$3d^{5}(a^{4}P)4s + 3d^{5}(a^{4}D)4p$	a ⁵ P - x ⁵ P°	3 - 2	188
	150	1748.177	63.49456 - 120.69710	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}D)4p$	a ⁵ G · y ⁵ F°	2 - 1	188
	70	1749.052	66.52295 - 123.69718	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}D)4p$	a ⁵ P - x ⁵ P°	2 - 2	188
	20	1753.455	66.52295 - 123.55295	$3d^{5}(a^{4}P)4s + 3d^{5}(a^{4}D)4p$	a ⁵ P - x ⁵ P°	2 - 1	188
	200	1770.247	92.52391 - 149.01336	$3d^{5}(a^{2}H)4s - 3d^{5}(a^{2}H)4p$	a ¹ H - w ¹ G°	5 - 4	188
	400	1770.554	66.46464 - 122.94415	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ D)4p	a ⁵ P - y ⁵ D°	3 • 4	188
	150	1771.975	66.46464 - 122.89884	$3d^{\circ}(a^{4}P)4s - 3d^{\circ}(a^{4}P)4p$ $3d^{5}(u^{4}P)4s - 3d^{5}(a^{4}P)4p$	$a^{5}P - z^{3}D^{6}$	3 - 2	188
	10	1115.090	00.32293 - 122.92137	30 (a 1)45 · 30 (a 1)4p	a1-21)	2 • 1	100
	70	1775.267	66.59168 - 122.92137	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ P)4p	a ⁵ P - z ³ D°	1 - 1	188
	20	1775.566	$66.52295 \cdot 122.84303$	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ D)4p	a ^o P · y ^o D ^o	2 - 1 P	188
	400	1775.983	66.52295 - 122.82955	3d ³ (a*P)4s - 3d ³ (a*D)4p	$a^{3}P \cdot y^{3}D^{6}$	$2 \cdot 3$	188
	20	1791.345	$66.52295 \cdot 122.34661$	3d ⁻ (a ⁺ P)4s - 3d ⁻ (a ⁺ D)4p 3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ P)4p	a ⁵ P - z ³ D ⁰	$\begin{bmatrix} 1 \cdot 1 \\ 2 \cdot 3 \end{bmatrix}$	188
	70	1200 205	(0 (0570) 05 (4850		15m 3mm		
	20	1793.785	69.69573 · 125.44358 93.38875 - 149.01336	3d°(a*D)4s - 3d°(a*D)4p 3d ⁵ (b ² F)4s - 3d ⁵ (a ² H)4p	$b^{3}D - y^{3}\Gamma^{3}$	4 4	188
	200	1801.766	93.51264 - 149.01336	$3d^{5}(a^{2}G)4s - 3d^{5}(a^{2}H)4n$	$c^1G \cdot w^1G^0$	4.4	188
	70	1803.330	88.66387 - 144.11664	$3d^{5}(a^{2}H)4s - 3d^{5}(a^{2}G)4p$	$b^3H + v^3G^9$	4-3	188
	150	1805.337	88.69467 - 144.08597	$3d^{5}(a^{2}H)4s - 3d^{5}(a^{2}G)4p$	$b^3H - v^3G^o$	5 - 4	188
	20	1808.203	84.15955 - 139.46336	3d ⁵ (a ² F)4s - 3d ⁵ (a ⁴ F)4p	c ³ F - w ³ G°	4 - 5	188
	200	1811.924	73.72764 - 128.91751	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}D)4p$	$c^{3}P - y^{3}P^{0}$	2 - 2	188
	150	1812.974	69.69573 - 124.85404	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}D)4p$	$b^5D - y^3D^6$	4 - 3	188
	150	1819.480	88.92307 - 143.88374	$3d^{5}(a^{2}H)4s - 3d^{5}(a^{2}G)4p$	$b^{3}H - v^{3}G^{\circ}$	6 - 5	188
	70	1819.718	84.67187 - 139.62517	3d²(a²F)4s - 3d²(a*F)4p	$c^{\alpha}F - w^{\alpha}G^{\alpha}$	3 - 4	188
	70	1820.496	63.42517 - 118.35501	3d5(a4G)4s - 3d5(a4G)4p	a⁵G - z³H°	6 - 6	188
	20	1821.865	63.46639 - 118.35501	$3d^{3}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	a ⁵ G · z ³ H ⁰	5 - 6	188
	70	1824.659	89.69752 - 144.50174	$3d^{2}(a^{2}G)4s - 3d^{2}(b^{2}F)4p$	c°G - t°F°	3 - 2	188
	20	1826.267	73.84910 - 128.60565	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ D)4p	$a^{\circ}G - z^{\circ}F^{\circ}$ $c^{3}P - v^{3}P^{\circ}$	4-3	188
	70	1000 057			30 100		
	150	1828.857	89.90785 · 144.58683	$3d^{2}(a^{2}G)4s - 3d^{2}(a^{2}G)4p$ $2d^{2}(a^{4}G)4z - 2d^{2}(a^{4}G)4z$	c ³ G · y ⁴ H ⁶	5-5	188
17	200	1830.623	88 69467 - 143 32085	$3d^{3}(a^{2}H)A_{e} = 3d^{5}(a^{2}H)A_{e}$	a G · Z r b ³ H - w ³ H	5 6	188
	70	1834.096	73.84910 - 128.37153	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}D)4p$	$e^{3}P = v^{3}P^{0}$	1.0	188
	70	1837.422	89.90785 - 144.33221	3d ⁵ (a ² G)4s - 3d ⁵ (b ² F)4p	$e^{3}G - x^{1}G^{0}$	5 - 4	188
	250	1837.588	89.69752 - 144 11664	$3d^{5}(a^{2}G)4s + 3d^{5}(a^{2}G)4n$	$e^3 G = v^3 C^{\circ}$	9.9	188
17	450	1838.309	88.92307 - 143.32085	$3d^{5}(a^{2}H)4s - 3d^{5}(a^{2}H)4p$	$b^3H \cdot w^3H^\circ$	6.6	188
	70	1838.621	89.69752 - 144.08597	$3d^{5}(a^{2}G)4s - 3d^{5}(a^{2}G)4p$	$e^{3}G - v^{3}G^{\circ}$	3.4	188
	70	1838.698	82.41094 - 136.79705	$3d^5(a^2D)4s + 3d^5(a^2F)4p$	$c^{3}D \cdot w^{3}F^{\circ}$	2 - 3	188
97	200	1841.387	83.23786 - 137.54460	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	a ⁵ F - x ⁵ D°	3 · 2	188
	300	1841.536	89.78359 - 144.08597	$3d^{5}(a^{2}G)4s - 3d^{5}(a^{2}G)4p$	c ³ G - v ³ G°	4 - 4	188
	20	1841.96	83.23786 137.52792	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ² G)4p	a ⁵ F x ³ H	3-4 Q	645
97	300	1842.927	83.16148 - 137.42300	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	$a^{5}F \cdot x^{5}D^{\circ}$	4-3	188
17	250	1843.409	93.38875 • 147.63595	$3d^{5}(b^{2}F)4s - 3d^{5}(b^{2}F)4p$	$e^{3}F \cdot u^{3}D^{n}$	4 - 3	188
17	150	1843.502	88.66387 - 142.90848	3d°(a*H)4s - 3d°(a*H)4p	b'H - w'H'	4 - 5	188
	200	1843.999	82.38287 - 136.61278	$3d^{5}(a^{2}D)4s - 3d^{5}(a^{2}F)4p$	$c_{a}^{3}D - w_{a}^{3}F^{c}$	3 - 4	188
17	300	1844.263	93.39245 - 147.61465	$3d^{5}(b^{2}F)4s - 3d^{5}(b^{2}F)4p$	$e^{3}F - u^{3}D^{n}$	3 - 2	188
97	200	1044.047	83 35888 - 137 5611	3d ² (a ² H)4s - 3d ² (a ² H)4p 3d ⁵ (a ⁴ F)4a - 2d ⁵ (a ⁴ F)4a	b'H - w'H' ·	5-5	188
17	300	1845.304	88.66387 - 142.85550	ou ya 1748 - ou ya 174p 3d ⁵ (a ² H)4s - 3d ⁵ (a ² H)4n	ar - x 1/" h ³ H - w ³ H*	4.4	100
			SCHOOLS I MANUGOV	Sa (a min ba (a mir	5 11 - 11 11	• •	

	D-41

Multiplet	Kel. Int.	A_{vac} (in A)	Levels (in 10° cm)	Lonfigurations	lerms	J - J Notes	ne I
97	450 70 200 70 150	1845.521 1845.749 1846.943 1847.348 1847.637	$\begin{array}{c} 83.23786 + 137.42300 \\ 70.72501 + 124.90392 \\ 93.41293 + 147.55643 \\ 105.90623 + 160.0379 \\ 93.51264 + 147.63595 \end{array}$	$\begin{array}{l} 3d^5(a^4F)4s & 3d^5(a^4F)4p \\ 3d^5(a^4C)4s & 3d^5(a^4D)4p \\ 3d^5(b^2F)4s & 3d^5(b^2F)4p \\ 3d^3(b^2D)4s & 3d^5(b^2D)4p \\ 3d^5(a^2C)4s & 3d^5(b^2F)4p \\ 3d^5(a^2C)4s & 3d^5(b^2F)4p \end{array}$	$ \begin{array}{c} a^{5}F\cdot x^{5}D^{a}\\ b^{3}G\cdot y^{3}D^{v}\\ e^{3}F\cdot u^{3}D^{o}\\ d^{3}D\cdot v^{3}P^{o}\\ e^{1}G\cdot u^{3}D^{o} \end{array} $	$ \begin{array}{r} 3 \cdot 3 \\ 3 \cdot 2 \\ 2 \cdot 1 \\ 2 \cdot 2 \\ 4 \cdot 3 \end{array} $	188 188 188 188 188
	150 5 20 70 70	1848.130 1848.231 1848.428 1848.492 1848.883	$\begin{array}{r} 105.92916 & 160.0379 \\ 66.59168 & 120.69710 \\ 89.78359 & 143.88374 \\ 90.47253 & 144.57053 \\ 90.48394 & 144.57053 \end{array}$	$\begin{array}{l} 3d^5(b^2D)4s - 3d^5(b^2D)4p \\ 3d^5(a^4P)4s - 3d^5(a^4D)4p \\ 3d^5(a^2G)4s - 3d^5(a^2G)4p \\ 3d^5(a^2F)4s - 3d^5(b^2F)4p \\ 3d^5(a^4F)4s - 3d^5(b^2F)4p \\ 3d^5(a^4F)4s - 3d^5(b^2F)4p \end{array}$	$\begin{array}{c} d^{3}D + v^{3}P^{a} \\ a^{5}P + y^{5}F^{o} \\ c^{3}G + v^{3}G^{o} \\ d^{3}F + t^{3}F^{o} \\ d^{3}F + t^{3}F^{o} \end{array}$	$ \begin{array}{c} 3 - 2 \\ 1 - 1 \\ 4 - 5 \\ 4 - 3 \\ 3 - 3 \end{array} $	18 48 18 18 18 18
97 97 53 97	70 450 70 300 300	1849.172 1849.407 1849.648 1849.960 1850.200	90.42368 - 144.50174 83.13823 - 137.20973 83.35888 - 137.42300 63.46639 - 117.52191 83.16148 - 137.20973	$\begin{array}{l} 3d^5(a^4F)4s \cdot 3d^5(b^2F)4p \\ 3d^5(a^4F)4s \cdot 3d^5(a^4F)4p \\ 3d^5(a^4F)4s \cdot 3d^5(a^4F)4p \\ 3d^5(a^4F)4s \cdot 3d^5(a^4F)4p \\ 3d^5(a^4F)4s \cdot 3d^5(a^4F)4p \end{array}$	$\begin{array}{c} d^{3}F - t^{3}F^{o} \\ a^{5}F - x^{5}D^{o} \\ a^{5}F - x^{5}D^{o} \\ a^{5}G - z^{5}D^{o} \\ a^{5}G - z^{5}D^{o} \\ a^{5}F - x^{5}D^{o} \end{array}$	2 - 2 5 - 4 2 - 3 5 - 4 4 - 4	18 18 18 18 18 18
53 97	$70 \\ 400 \\ 70 \\ 400 \\ 150$	1850.650 1851.261 1852.366 1852.677 1852.812	63.48678 - 117.52191 93.38875 - 147.40614 88.92307 - 142.90848 89.90785 - 143.88374 83.23786 - 137.20973	$\begin{array}{l} 3d^5(a^4G)4s \ -\ 3d^5(a^4P)4p \\ 3d^3(b^2F)4s \ -\ 3d^5(b^2F)4p \\ 3d^5(a^2H)4s \ -\ 3d^5(a^2H)4p \\ 3d^5(a^2G)4s \ -\ 3d^5(a^2G)4p \\ 3d^5(a^4F)4s \ -\ 3d^5(a^4F)4p \end{array}$	$ \begin{array}{c} a^5G - z^5D^o \\ e^3F - u^3G^3 \\ b^3H - w^3H^o \\ c^3G - v^3G^o \\ a^5F - x^5D^o \ . \end{array} $	4 - 4 4 - 5 6 - 5 5 - 5 3 - 4	18 18 18 18 18
97 63 63 63	$200 \\ 600 \\ 300 \\ 200 \\ 450$	1854.384 1854.826 1854.975 1855.510 1856.690	83.64698 - 137.5732 69.83683 - 123.75039 69.78819 - 123.60718 93.51264 - 147.40614 69.83776 - 123.69718	$\begin{array}{rl} 3d^5(a^4F)4s &\cdot 3d^5(a^4F)4p \\ 3d^5(a^4D)4s &\cdot 3d^5(a^4D)4p \\ 3d^2(a^4D)4s &\cdot 3d^5(a^4D)4p \\ 3d^5(a^2G)4s &\cdot 3d^5(b^2F)4p \\ 3d^5(a^4D)4s &\cdot 3d^5(a^4D)4p \end{array}$	$\begin{array}{c} a^{5}F \cdot x^{5}D^{o} \\ b^{5}D \cdot x^{5}P^{o} \\ b^{5}D \cdot x^{5}P^{o} \\ c^{1}G \cdot u^{3}G^{o} \\ b^{5}D \cdot x^{5}P^{n} \end{array}$	$ \begin{array}{r} 1 & - & 0 \\ 3 & - & 3 \\ 1 & - & 2 \\ 4 & - & 5 \\ 2 & - & 2 \end{array} $	18 18 18 18 18
63 63 63	$300 \\ 300 \\ 200 \\ 200 \\ 150$	1858.542 1859.813 1859.955 1861.665 1862.446	69.74740 - 123.55295 93.39245 - 147.16136 69.78819 - 123.55295 69.83776 - 123.55295 90.42368 - 144.11664	$\begin{array}{rl} 3d^5(a^4D)4s & - 3d^5(a^4D)4p \\ 3d^5(b^2F)4s & - 3d^5(b^2F)4p \\ 3d^5(a^4D)4s & - 3d^5(a^4D)4p \\ 3d^5(a^4D)4s & - 3d^5(a^4D)4p \\ 3d^5(a^4F)4s & - 3d^5(a^2G)4p \end{array}$	$\begin{array}{c} b^5D \cdot x^5P^o \\ e^3F \cdot u^3G^o \\ b^5D \cdot x^5P^o \\ b^5D \cdot x^5P^o \\ d^3F \cdot y^3G^o \end{array}$	$ \begin{array}{c} 0 & -1 \\ 3 & -4 \\ 1 & -1 \\ 2 & -1 \\ 2 & -3 \end{array} $	18 18 18 18 18
62 54	$250 \\ 70 \\ 450 \\ 150 \\$	1863.317 1864.534 1865.202 1865.445 1865.606	69.78819 - 123.45592 90.48394 - 144.11664 97.04138 - 150.6549 86.84711 - 140.45310 90.48394 - 144.08597	3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ D)4p 3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ² G)4p 3d ⁵ (a ² F)4s - 3d ⁵ (a ² F)4p 3d ⁵ (a ² D)4s - 3d ⁵ (a ² F)4p 3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ² G)4p	$\begin{array}{c} b^5 D \cdot y^5 D^\circ \\ d^3 F \cdot v^3 G^\circ \\ c^1 F \cdot w^1 F^\circ \\ b^1 D \cdot y^1 F^\circ \\ d^3 F \cdot v^3 G^\circ \end{array}$	$ \begin{array}{r} 1 & - & 0 \\ 3 & - & 3 \\ 3 & - & 3 \\ 2 & - & 3 \\ 3 & - & 4 \end{array} $	18 18 18 18 18
53 53 52	600 300 150 650 250	1866.305 1866.554 1866.900 1869.828 1869.925	$\begin{array}{c} 63.48678 - 117.06856 \\ 63.49400 \cdot 117.06856 \\ 87.90187 - 141.46653 \\ 63.49400 \cdot 116.97505 \\ 93.41293 \cdot 146.8910 \end{array}$	3d5(a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p 3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p 3d ⁵ (a ² F)4s - 3d ⁵ (a ⁴ F)4p 3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p 3d ⁵ (b ² F)4s - 3d ³ (b ² F)4p		4 - 3 3 - 3 3 - 3 3 - 2 2 - 3	18 18 18 18
52	$600 \\ 150 \\ 20 \\ 400 \\ 250$	1871.152 1871.319 1871.435 1872.214 1872.515	63.49456 - 116.93757 83.35888 - 136.79705 83.35888 - 136.7938 89.90785 - 143.32085 63.49400 - 116.89822	$\begin{array}{l} 3d^5(a^4G)4s &- 3d^5(a^4G)4\rho\\ 3d^5(a^4F)4s &- 3d^5(a^2F)4\rho\\ 3d^5(a^4F)4s &- 3d^5(a^2F)4\rho\\ 3d^3(a^2G)4s &- 3d^5(a^2H)4\rho\\ 3d^5(a^4G)4s &- 3d^5(a^4P)4\rho\\ 3d^5(a^4G)4s &- 3d^5(a^4P)4\rho \end{array}$	$\begin{array}{c} a^{5}G \cdot z^{5}F^{\circ} \\ a^{5}F \cdot w^{3}F^{\circ} \\ a^{5}F \cdot w^{3}D^{\circ} \\ c^{3}G \cdot w^{3}H^{\circ} \\ a^{5}G \cdot z^{5}S^{\circ} \end{array}$	2 - 1 2 - 3 2 - 2 5 - 6 3 - 2	18 18 18 18 18
62	$ \begin{array}{r} 150 \\ 800 \\ 150 \\ 200 \\ 250 \end{array} $	1873.534 1877.989 1878.550 1880.620 1880.704	$\begin{array}{r} 83.23786 &- 136.61278 \\ 69.69573 &- 122.94415 \\ 66.46464 &- 119.69764 \\ 69.74740 &- 122.92137 \\ 82.38287 &- 135.55441 \end{array}$	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ² F)4p 3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ D)4p 3d ⁵ (a ⁴ P)4s - 3d ³ (a ⁴ P)4p 3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ P)4p 3d ⁵ (a ² D)4s - 3d ⁵ (a ² F)4p	$ \begin{array}{c} a^{5}F + w^{3}F^{\circ} \\ b^{5}D + y^{5}D^{\circ} \\ a^{5}P + z^{2}P^{\circ} \\ b^{5}D + z^{3}D^{\circ} \\ c^{3}D + y^{3}G^{\circ} \end{array} $	$ \begin{array}{r} 3 \cdot 4 \\ 4 \cdot 4 \\ 3 \cdot 2 \\ 0 \cdot 1 \\ 3 \cdot 4 \end{array} $	18 18 18 18
62 62	300 200 650 300 250	1881.178 1881.578 1882.047 1882.357 1882.979	89.69752 - 142.85559 83.64698 - 136.7938 69.69573 - 122.82955 89.78359 - 142.90848 69.83683 - 122.94415	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} c^3G \ \cdot \ w^3H^o \\ a^5F \ \cdot \ w^3D^o \\ b^5D \ \cdot \ y^5D^o \\ c^3G \ \cdot \ w^3H^o \\ b^5D \ \cdot \ y^5D^o \end{array}$	3 - 4 1 - 2 4 - 3 4 - 5 3 - 4	18 18 18 18
62	150 70 200 150 550	1883.185 1883.394 1883.816 1884.233 1884.596	$ \begin{array}{c} 87.90187 & -141.00299 \\ 69.74740 & -122.84303 \\ 69.83776 & -122.92137 \\ 89.78359 & -142.85559 \\ 69.83683 & -122.89884 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	b ¹ F - v ³ F° b ⁵ D - y ⁵ D° b ⁵ D - z ³ D° c ³ G - w ³ H° b ⁵ D - z ³ D°	3 - 4 0 - 1 2 - 1 4 - 4 3 - 2	18 18 18 18
96 96 52 62	600 300 300 800 70	1885.125 1885.947 1886.607 1886.757 1887.085	83.13823 - 136.18517 83.16148 - 136.18517 69.83776 - 122.84303 63.46639 - 116.46741 69.83776 - 122.82955	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ⁴ F)4p 3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ⁴ F)4p 3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ D)4p 3d ⁵ (a ⁴ C)4s - 3d ⁵ (a ⁴ C)4p 3d ⁵ (a ⁴ C)4s - 3d ⁵ (a ⁴ C)4p		5 - 5 4 - 5 2 - 1 5 - 4 2 - 3	18

lultiplet	Rel. Int.	λ _{vs} , (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J·J	Notes	References
52	550	1887.197	63 48678 / 116 47544	3d5(04G)45 - 2d5(04P)4m	_5C _5₽∞	4 2		199
52	550	1887.471	63.49456 - 116.47544	$3d^{5}(a^{4}G)4s = 3d^{5}(a^{4}P)4n$	a G • Z F a ⁵ G • 7 ⁵ F°	2.3		188
52	250	1887.734	63.49400 - 116.46741	$3d^{5}(a^{4}G)4_{5} + 3d^{5}(a^{4}G)4_{D}$	$a^{5}G - z^{5}F^{6}$	3 - 4		188
	150	1888.260	114.33995 - 167.2989	$3d^{5}(b^{2}G)4_{5} - 3d^{5}(b^{2}G)4_{p}$	d ³ G - t ³ G°	4.5		188
53	300	1889.451	63.49400 • 116.41939	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}P)4p$	$\mathbf{a}^{5}\mathbf{G}$ · $\mathbf{z}^{5}\mathbf{D}^{\circ}$	$3 \cdot 2$		188
	250	1889.735	86.84711 - 139.76448	$3d^{5}(a^{2}D)4s - 3d^{5}(a^{2}F)4p$	$b^1D + y^1D^0$	2 - 2	ļ	188
52	900	1890.669	63.42517 - 116.31663	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	a ⁵ G - z ⁵ F°	$6 \cdot 5$		188
53	150	1890.893	63.49456 - 116.38007	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}P)4p$	a ⁵ G - z ⁵ D°	2 - 1		188
96	250	1891.070	83.23786 - 136.11794	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ⁴ F)4p	a ⁵ F - x ⁵ F°	3 - 2	ĺ	188
96	200	1891.186	83.35888 - 136.23584	3d5(a4F)4s - 3d5(a4F)4p	a ⁵ F - x ⁵ F ^o	2 - 1		188
	70	1891.339	84.67187 - 137.54460	$3d^{5}(a^{2}F)4s - 3d^{5}(a^{4}F)4p$	$c^{3}F - x^{5}D^{\circ}$	3 - 2		188
	300	1891.516	82.41094 - 135.2790	$3d^{5}(a^{2}D)4s - 3d^{5}(a^{2}D)4p$	$c^3D - x^3D^\circ$	2 - 2		188
04	200	1891.909	82.38287 - 135.23974	3d°(a ² D)4s - 3d°(a ⁴ F)4p	c°D - y°G°	3 - 4		188
90 59	300	1892.073	83.13823 - 135.99062	3d°(a*F)4s - 3d°(a*F)4p	a ³ F - x ³ F ⁶	5 - 4		188
52	300	1892.140	63.40639 - 116.31663	3d"(a"G)4s - 3d"(a"G)4p	a G·z'F"	5.5		188
96	300	1892.247	83.16148 - 136.00874	$3d^{5}(a^{4}F)4s = 3d^{5}(a^{4}F)4p$	$a^5F \cdot x^5F^0$	$4 \cdot 3$		188
	70	1892.339	88.69467 • 141.53955	3d°(a ² H)4s - 3d°(a ² H)4p	b°H - yʻl°	5 - 6		188
	70	1892.488	09.78819 - 122.62834	$3d^{(a'D)}4s - 3d^{(a'D)}4p$	$b^{3}D - y^{3}D^{3}$	1 - 2		188
96	300	1892.398	83 16149 135 00069	$3d^{-}(a^{+}F)A_{2} = 3d^{-}(a^{+}F)A_{2} $	C°G - u°F° _5⊑ _5⊑9	3.2		188
70	500	1072.090	05.10140 - 155.99002	ou (a 1748 - ou (a 1744)	ar - x"f"	4-4		100
0.2	200	1893.113	105.90623 • 158.7293	$3d^{5}(b^{2}D)4s = 3d^{5}(b^{2}D)4p$	$d^{3}D_{3} - t^{3}D^{\circ}$	2 - 3		188
83	200	1893.981	79.86042 - 132.65917	3d°(a*1)4s - 3d°(a*1)4p	a°l - y°H°	5.4		188
	200	1094.202	09.83083 - 122.82834	$3d^{2}(a^{2}D)4s - 3d^{2}(a^{2}D)4p$ $3d^{5}(a^{2}D)4 - 2d^{5}(-2D)4$	b°D - y°D° _3ъ _3ъ∘	3-2		188
96	250	1894.983	83.23786 - 136.00874	3d (a D)45 - 3d ⁵ (a ⁴ F)4p 3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ⁴ F)4p	с D - х [.] .D" a ⁵ F - х ⁵ F°	3 - 3		188
34	1000	1895 456	30 08884 99 94650	3451-6614- 2151-0614-	.7€ _7D0	ا ہ و		199
94 96	1000	1895.635	30.08884 - 82.84039 83.93786 135.00069	$3d^{2}(a^{*}S)4s - 3d^{2}(a^{*}S)4p$ $3d^{5}(a^{4}E)4a - 2d^{2}(a^{4}E)4p$	a 5 - z P [∞] _5 ⊑5 ⊑∘	3.4	ł	188
	70	1895 912	114 33995 - 167 0850	$3d^{5}(h^{2}C)/4s = 3d^{5}(h^{2}C)/4n$	$\frac{a}{d^3C} = t^3C^{\circ}$	1 3	-	100
	250	1896.333	114.35192 - 167.0850	$3d^{5}(h^{2}G)4s - 3d^{5}(h^{2}G)4n$	$d^{3}G + t^{3}G^{\circ}$	3.3		188
	250	1896.734	82.49488 - 135.2171	$3d^{5}(a^{2}D)4s - 3d^{5}(a^{2}D)4p$	$\tilde{c}^{3}\tilde{D} \cdot x^{3}\tilde{D}^{\circ}$	1 - 1		188
83	600	1896.803	79.84474 - 132.56471	3d ⁵ (a ² I)45 - 3d ⁵ (a ² I)4n	a ³ l.v ³ H"	6.5		188
	250	1897.028	82.38287 - 135.09684	$3d^{5}(a^{2}D)4s - 3d^{5}(a^{4}F)4p$	$c^{3}D \cdot v^{5}G^{\circ}$	3.3		188
83	200	1897.379	79.86042 - 132.56471	$3d^{5}(a^{2}l)4s - 3d^{5}(a^{2}l)4p$	$a^{3}I - y^{3}H^{\circ}$	5 - 5		188
	400	1898.870	73.72764 - 126.39057	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}P)4p$	$c^{3}P \cdot z^{3}S^{\circ}$	2 - 1		188
96	300	1899.318	69.69573 - 122.34661	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}P)4p$	$b^5D - z^3D^\circ$	$4 \cdot 3$		188
	300	1899.931	105.92916 - 158.5627	3d ⁵ (b ² D)4s - 3d ⁵ (b ² D)4p	d ³ D · s ³ F°	3 - 4		188
	70	1900.575	89.69752 - 142.31290	3d ⁵ (a ² G)4s - 3d ⁵ (a ⁴ F)4p	c ³ G - u ³ F ^o	3 • 3		188
	600	1901.096	83.13823 - 135.73947	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ² 1)4p	a ⁵ F - z ¹ I ⁶	5 - 6		188
96	200	1901.379	82.38287 - 134.97622 83.64698 - 136.23584	3d ³ (a ² D)4s - 3d ³ (a ² D)4p 3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ⁴ F)4p	$c^{\circ}D - x^{\circ}D^{\circ}$ $a^{5}F - x^{5}F^{\circ}$	3-3		188
	0.00	1000.07/			for for			100
	300	1902.076	83.16148 - 135.73531	$3d^{2}(a^{+}F)4s - 3d^{2}(a^{+}F)4p$	a°F - y°G°	4 - 5		188
	300	1902.402	02.41094 - 134.97022 87 00187 - 140 45310	3d ⁵ (a ² E)4a 2d ⁵ (a ² E)4a	С°D - Х°D° ЫБ — 1Б°	2-3		100
	70	1903.159	83,16148 - 135 7057	3d ⁵ (a ⁴ F)4e - 3d ⁵ (a ² F)4n	ມີເ-ງີ ມີ 2 ⁵ Γ_ພ ³ ⊡°	3-3 4-2		188
	200	1903.257	73.84910 - 126.39057	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ P)4p	$c^{3}P - z^{3}S^{\circ}$	i - i	ľ	188
	70	1903.706	89.78359 - 142 31290	3d5(a2G)4s - 3d5(a4F)4n	$c^3 G = u^3 F^{\circ}$	4.3		188
1	70	1903.983	105.89535 - 158.4168	$3d^{5}(b^{2}D)4s - 3d^{5}(b^{2}D)4n$	$d^3D \cdot t^3D^{\circ}$	1.2		188
	150	1904.257	109.57084 - 162.0848	$3d^5(b^2D)4s \cdot 3d^5(b^2D)4p$	$\tilde{c}^1 \tilde{D} - w^1 \tilde{D}^o$	2 - 2		188
	250	1904.402	69.83683 - 122.34661	3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ P)4p	$b^{5}\overline{D} \cdot z^{3}\overline{D^{\circ}}$	3.3		188
	70	1905.214	105.92916 - 158.4168	$3d^{5}(b^{2}D)4s - 3d^{5}(b^{2}D)4p$	$d^{3}D - t^{3}D^{\circ}$	$3 \cdot 2$		188
96	150	1905.818	83.64698 - 136.11794	$3d^{5}(a^{4}F)4s + 3d^{5}(a^{4}F)4p$	a ⁵ F - x ⁵ F°	1 • 2		188
08	400	1906.457	84.15955 - 136.61278	$3d^{5}(a^{2}F)4s - 3d^{5}(a^{2}F)4p$	$c^{3}F \cdot w^{3}F^{o}$	4 - 4		188
0.0	400	1906.814	83.13823 - 135.58208	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	a ⁵ F - y ⁵ G°	5 - 6		188
83	650	1907.577	79.84012 - 132.26266	$3d^{\circ}(a^{2}I)4s - 3d^{\circ}(a^{2}I)4p$	$a^{3}l \cdot y^{3}H^{\circ}$	7 - 6		188
రర	250	1907.741	79.84474 - 132.26266	3d'(a*1)4s - 3d'(a*1)4p	a°l - y°H°	6 - 6	į	188
	150	1909.782	105.89535 - 158.2573	$3d^{5}(b^{2}D)4s - 3d^{5}(b^{2}D)4p$	$d^{3}D - t^{3}D^{\circ}$	1 - 1		188
	150	1909.846	117.95032 - 170.3106	$3d^{5}(b^{2}G)4s - 3d^{5}(b^{2}G)4p$	$d^{1}G - u^{1}F^{\circ}$	4 - 3		188
-7	70	1910.172	105.90623 - 158.2573	3d°(b ² D)4s - 3d ⁵ (b ² D)4p	$d_{D}^{2} - t_{D}^{2}$	2 - 1		188
37	400	1910.401	00.52295 - 118.86787	$3d^{\circ}(a^{*}P)4s - 3d^{\circ}(a^{*}P)4p$ $2J_{2}^{5}(a^{2}H)4z - 2J_{2}^{5}(a^{2}H)4z$	a'P - y ^a P ^o	2 - 1		188
53	400	1411'998	92.32391 - 144.84324	30"(a"H)45 - 30 (a"H)4p	a'H - x'H"	5 - 5		198
	100	1911.685	83.42961 - 135.73947	$3d^{5}(a^{2}I)4s - 3d^{5}(a^{2}I)4p$	$b^{1}I \cdot z^{1}I^{\circ}$	6 - 6	P	188
57	5U 950	1911.742	88.09467 - 141.00299	$3d^{2}(a^{*}H)4s - 3d^{2}(a^{*}G)4p$	b°H • v°F°	5 - 4	Р	188
51	200	1912.920	00.39108 - 118.80787	3d"(a T)4s - 3d"(a T)4p 3d ⁵ (u ² C)4a - 2J ⁵ (u ⁴ E)4-	a'P - y'P'	1 - 1		199
	250	1913.622	66 46464 . 118 72160	30 (a 5/45 - 30 (a 1/4p) 2,15(24D) 4 - 2,15(24D) 4 -	CG-U""" -5D5D◎	4-4		100
57 1	4	A			g			188

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
34	1000	1914.056	30.08884 - 82.33392	3d ⁵ (a'S)4s - 3d ⁵ (a''S)4p	a ⁷ S · z ⁷ P°	3 - 3		188
51	750	1915.083	63.42517 - 115.64223	3d°(a°G)4s - 3d°(a°G)4p	a°G - z°H° '	6-7		188
57	150	1915.750	00.02295 118.72100	$3d^{2}(a^{2}F)4s = 3d^{2}(a^{2}F)4p$ $2d^{5}(a^{4}F)4a = 2d^{5}(a^{2}F)4p$	a'r - y r 5F - x ³ C?	5.5		188
08	300 150	1917.087	84.36992 - 136.53245	$3d^{5}(a^{2}F)4s - 3d^{5}(a^{2}F)4p$	$c^3F - w^3F^2$	2 - 2	Ì	188
	250	1917.250	114.33995 - 166.498	$3d^{5}(b^{2}G)4_{5} - 3d^{5}(b^{2}G)4_{P}$	$d^3G - r^3F^{\circ}$	4 - 3		188
94	550	1917.351	83.16148 - 135.31642	$3d''(a^{*}F)4s - 3d''(a^{*}F)4p$	$a^{3}F \cdot y^{3}G^{3}$	4-5		188
01	150	1917.455	70 84474 131 00158	$3d^{5}(a^{2}h)a = 3d^{5}(a^{2}h)a = 3d^{5}(a^{2}h)a$	$a^{3}L = \tau^{1}K^{0}$	6.7		188
	400	1917.960	89.90785 - 142.0470	$3d^{5}(a^{2}G)4s - 3d^{5}(a^{4}F)4p$	$c^3G = u^3F^6$	5 4		188
57	450	1918.284	66.59168 - 118.72160	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}P)4p$	a ⁵ P - y ⁵ P	1 - 2		188
08	450	1918.459	84.67187 - 136.79705	3d ² (a ² F)4s - 3d ² (a ² F)4p 2 15(-4F)4 - 2 15(-4F)4.	C″F - W″F″ ມ3ນ …3ນາ	3-3	Р	188
07	200	1918.900	90.42308 - 142.33507 94.36009 136.4640	$3a^{2}(a^{2}F)4e = 3d^{2}(a^{2}F)4e$	ar-ar e ³ F, w ³ D ^o	2.2		188
95	250	1920.186	83.16148 - 135.23974	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	a ⁵ F - y ⁵ Ğ"	4 4	l	188
	150	1920.260	105.90623 - 157.9820	$3d^{5}(b^{2}D)4s - 3d^{5}(b^{2}D)4p$	$d^{3}D + s^{3}F^{5}$	$2 \cdot 3$		188
	150	1920.752	92.52391 - 144.58683	$3d^{\circ}(a^{*}H)4s - 3d^{\circ}(a^{*}G)4p$	a'H y'H'	5.5		188
	150	1921.152	105.92910 - 157.9820 88.66287 140.60336	$3d^{2}(y^{2}H)Ay = 3d^{2}(y^{2}L)Ay$	ар-яг b ³ Н. x ³ 6°	4.3		188
	70	1922.132	84.15955 - 136.18517	$3d^{5}(a^{2}F)4s + 3d^{5}(a^{4}F)4p$	$c^{3}F - x^{5}F^{*}$	4 - 5		188
51	1000	1922.789	63.46639 - 115.47425	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	$a^{5}G - z^{5}H^{\circ}$	5-6		188
95	450	1923.003	83.23786 - 135.23974	3d ² (a*F)4s - 3d ² (a*F)4p 2.15(.40)4. 2.45(.40)4.	a²ŀ - y°G° -50 - 500	3-4		188
57	450	1923.877	00.40404 - 118.44292	$3d^{3}(h^{2}F)4s = 3d^{5}(a^{2}H)4h$	ar-yr c ¹ F-w ¹ C ⁰	3.4		188
79	400	1924.532	76.95679 - 128.91751	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}D)4p$	$b^{3}D - y^{3}P^{*}$	3 - 2		188
	250	1925.271	84.67187 - 136.61278	$3d^{5}(a^{2}F)4s - 3d^{5}(a^{2}F)4v$	$e^{3}F - w^{3}F^{0}$	3 - 4	1	188
	200	1925.855	87.90187 - 139.82717	$3d^{5}(a^{2}F)4s - 3d^{5}(a^{2}G)4p$	$\mathbf{b}^{1}\mathbf{F} = \mathbf{y}^{1}\mathbf{G}^{*}$	3.4		188
	250	1926.036	83.35888 - 135.2790	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{2}D)4p$	$a^{5}F - x^{3}D^{2}$	2 - 2	P	188
57	250	1926.041	66.52295 - 118.44292	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}P)4p$	$a^{5}P - y^{5}P^{6}$	2 - 3	Р	188
34	1000	1926.304	30.08884 - 82.00173	3d"(a"5)4s - 3d"(a"5)4p	a'5 - z'P'	3 - 2	1	188
	200 300	1926.898 1927.436	114.32535 - 166.2222 82.38287 - 134.26542	3d ⁵ (b ² G)4s - 3d ⁵ (b ² G)4p 3d ⁵ (a ² D)4s - 3d ⁵ (a ² D)4p	d³G - r³F° e³D - x³P°	5 - 4 3 - 2		188 188
	150	1927.679						188
	250 100	$1928.178 \\ 1928.247$	87.90187 - 139.76448 84.67187 - 136.33245	3d°(a²F)4s - 3d°(a²F)4p 3d°(a²F)4s - 3d°(a²F)4p	$b^{1}F - y^{1}D^{0}$ $c^{3}F - w^{3}F^{0}$	3 - 2 3 - 2	P	188 188
05	200	1028 306	83 23786 - 135 00684	3d5(a4F)4= 3d5(a4F)4n	a ⁵ F - v ⁵ G°	3 - 3	P	188
9.0	250	1928.642	79.86042 - 131.71079	$3d^{5}(a^{2}I)4s - 3d^{5}(a^{2}I)4p$	$a^3I - z^1H^o$	5 - 5		188
	250	1928.837	86.84711 - 138.69181	$3d^{5}(a^{2}D)4s - 3d^{5}(a^{2}D)4p$	$b^1D - z^1P^n$	2 - 1		188
	-70	1928.991	$90.47253 \cdot 142.31290$	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	$d^3F - u^3F^\circ$	4 - 3		188
	250	1929.413	90.48394 - 142.31290	3d''(a*F)4s - 3d''(a*F)4p	մ°r - ս°r∘	3.3		168
51	70	1929.632	63.46639 - 115.28991	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	$a^{3}G - z^{3}H^{9}$	5 - 5		188
79	150	1929.941		3d°(a°U)4s - 3d°(a°U)4p 3d ⁵ (a ² H)4, 3d ⁵ (b ² F)4p	0'H - y'f"	2-2		100
51	1000	1930.184	63.48678 - 115.28991	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4v$	$a^{5}G \cdot z^{5}H^{\circ}$	4 - 5		188
	150	1930.917	105.89535 - 157.6843	$3d^{5}(b^{2}D)4s - 3d^{5}(b^{2}D)4p$	d³D - s³F⁰	$1 \cdot 2$		188
	70	1931.309	105.90623 - 157.6843	$3d^{5}(b^{2}D)4s - 3d^{5}(b^{2}D)4p$	$d^3D + s^3F^3$	2 - 2		188
61	950	1931.507	69.69573 - 121.46882	3d ⁵ (a*D)4s - 3d ⁵ (a*D)4p	6°D - y"F"	4-5		188
95	250	1932.818	80.00785 141.53055	$3d^{5}(a^{2}G)Ae = 3d^{5}(a^{2}H)An$	ar-yG c ³ C-y ¹ P	5.6		188
51	200	1937.077	63.48678 - 115.11092	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ C - z ⁵ H°	4-4		188
51	950	1937.345	63.49400 - 115.11092	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ G · z ⁵ H"	3 - 4		188
	250	1937.996	114.33995 - 165.9396	$3d^{5}(b^{2}G)4s - 3d^{5}(b^{2}G)4p$	d ³ G - v ³ H°	4 - 5		188
95	250	1938.775	83.35888 - 134.93784	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	a ² F y ² G ⁰	2-2		188
	650 70	1938.901 1939.107	84.15955 - 135.73531 83.64698 - 135.2171	$30^{\circ}(a^{-1})^{48} - 30^{\circ}(a^{-1})^{4p}$ $30^{5}(a^{4}F)^{48} - 30^{5}(a^{2}D)^{4p}$	$a^5F - x^3D^2$	4-5		188
61	550	1940.018	69.69573 - 121.24167	3d ⁵ (a*D)4s - 3d ⁵ (a*D)4p	b ⁵D - у ⁵ ⊮°	4 - 4		188
79	150	1940.604	77.07530 - 128.60565	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}D)4p$	$b^3D - y^3P^2$	1 - 1	P	188
	250	1940.769	93.51264 - 145.03861	$3d^{3}(a^{2}G)4s - 3d^{5}(a^{2}G)4p$	$e^{i}G = x^{i}F^{o}$	4 - 3	1	188
79 51	200	1941.633	77.10243 - 128.60565 63.40456 114.04955	30"(a"D)4s - 30"(a"D)4p 3d³(a*C)4a - 3d³(a*C)4a	D'D - y'P'' a ⁵ C - a ⁵ H°	2-1		188
91	900	1240.401	00.0000 00.00000	9.36 0.15/ 6014		~ · · ·		100
61	150	1943.715	30.8864 - 82.33392	3d" - 3d"(#`5)4p 2d5(a4D)da - 2d5(a4D)da	a'G - z'P° b⁵D - ⁵ ₩°	$\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$	V V	188
06	150	1945,724	84.15955 - 135.55441	3d ⁵ (a ² F)4s - 3d ⁵ (a ² F)4o	$e^{3}F - y^{3}G^{\circ}$	4 4		188
	20	1946.321	114.33995 - 165.7191	3d ⁵ (b ² G)4s - 3d ⁵ (b ² G)4p	$d^3G - v^3H^\circ$	4.4	}	188
	200	1946.769	114.35192 - 165.7191	3d°(b*G)4s - 3d°(b*G)4p	d'G - v'H'	3 - 4		188
			1	1	1		1	1

/*****. .

for the second s

D-4	4
-----	---

Aultiple	t Rel. Int.	λ_{vac} (in $\mathbf{\hat{A}}$)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	200	1948.280	117.95032 - 169.2776	3d ⁵ (b ² G)4s - 3d ⁵ (b ² G)4u	d ⁱ G - v ¹ G°	4.4		188
79	150	1949.462	77.07530 - 128.37153	3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ D)4p	$b^3D \cdot y^3P^0$	1.0		188
95	200	1949.666	83.64698 - 134.93784	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	a ⁵ F - y ⁵ G ^o	$1 \cdot 2$		188
16	650	1950.334	88.92307 - 140.19633	3d ³ (a ² H)4s - 3d ³ (a ² H)4p	$b^{3}H - y^{3}l^{9}$	6 - 7		188
68	800	1951.007	70.69403 - 121.94962	3d°(a'G)4s · 3d°(a'G)4p	b"G - 2"G"	5.5		188
68	200	1951.318	$70.69403 \cdot 121.94129$	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	$b^{3}G - z^{3}G'$	5 - 4		188
10	100	1952.329	70.72875 - 121.94962	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	$b^{3}G - z^{3}G^{0}$	4 - 5	P	188
68 68	200	1952.385	89.78359 - 141.00299	3d°(a°G)4s - 3d°(a°G)4p 3d ⁵ (a ⁴ C)4a - 3d ⁵ (a ⁴ C)4a	6°G - V°F°	2 4	Р	188
68	700	1952.648	70.72875 - 121.94129	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	$b^3G - z^3G^\circ$	4.4		188
	250	1953 202	93 38875 - 144 58683	$3d^{5}(h^{2}F)4s = 3d^{5}(a^{2}G)4n$	$a^{3}\mathbf{F}$, $v^{1}\mathbf{H}^{0}$	4.5		188
68	900	1953.322	70.72501 - 121.91974	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	$b^3G = z^3G^{\circ}$	3-3		188
68	650	1953.488	70.72875 - 121.91974	$3d^{5}(a^{4}C)4s = 3d^{5}(a^{4}C)4p$	$b^3G - z^3G^{\circ}$	4 - 3		188
	70	1953.821	93.38875 - 144.57053	$3d^{5}(b^{2}F)4s - 3d^{5}(b^{2}F)4p$	$e^{3}F + t^{3}F^{\circ}$	4 - 3	1	188
	250	1953.968	93.39245 - 144.57053	3d ^s (b ² F)4s - 3d ^s (b ² F)4p	$e^{3}F - t^{3}F''$	3 - 3		188
61	650	1954.223	69.83776 - 121.00878	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}D)4p$	b ⁵ D - y ⁵ F°	2 · 3		188
	250	1954.769	84.15955 - 135.31642	$3d^{5}(a^{2}F)4s = 3d^{5}(a^{2}F)4p$	$c^{3}\mathbf{F} \cdot \mathbf{y}^{3}\mathbf{G}^{\circ}$	4 · 5		188
10	550	1954.975	88.09467 - 139.84618	3d"(a*H)4s - 3d"(a*H)4p	b°H - y°l° "3D3D»	5.6	ļ	188
	200	1955.943	75.72704 - 124.85404 89.90785 - 141.00299	$3d^{(a^{2}G)4s} - 3d^{(a^{2}G)4p}$ $3d^{(a^{2}G)4s} - 3d^{(a^{2}G)4p}$	$c F - y^{-}D^{0}$ $c^{3}G - v^{3}F^{0}$	$\frac{2 \cdot 3}{5 \cdot 4}$		188
	150	1057.975		0 15/1 210) A 0 15/1 210) A	340 .3400			100
47	400	1957.375	93.41293 - 144.50174 93.51264 - 144.58683	3d"(b"F)4s - 3d"(b"F)4p 3d ⁵ (a ² G)4s - 3d ⁵ (a ² G)4p	$e^{T} - t^{\alpha}F^{\alpha}$	2 2 4 . 5		188
55	700	1958.583	66.46464 - 117.52191	$3d^{5}(a^{4}P)4s - 3d^{5}(a^{4}P)4n$	$a^{5}P \cdot z^{5}D^{\circ}$	3.4		188
	300	1958.732	89.69752 - 140.75098	$3d^{5}(a^{2}C)4s - 3d^{5}(a^{2}C)4p$	$c^3G - v^3F^*$	3 - 2		188
	200	1959.026	90.42368 - 141.46945	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	$d^3F - v^3D^o$	2 - 1		188
61	550	1959.324	69.78819 - 120.82617	3d ⁵ (a ⁴ D)4s - 3d ⁵ (a ⁴ D)4p	$b^5D - y^5F^0$	1 - 2	İ	188
82	900	1960.318	79.84012 - 130.85225	$3d^{5}(a^{2}I)4s - 3d^{5}(a^{2}I)4p$	$a^{3}I - z^{3}K^{\circ}$	7 - 8		188
	300	1961.010	90.47253 - 141.46653	$3d^{2}(a^{*}F)4s + 3d^{2}(a^{*}F)4p$	d°F • v°D° t≦n 5n	4.3		188
υL	70 ;	1961.456	90.48394 • 141.46653	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ⁴ F)4p	бър - у°к° d³F - v³D°	$3 \ 3$		188
	70	1061 794	00 49269 141 20004	2.45(-4E)4- 2.45(-4E)4-	1 ³ 17 ³ D ⁰		1	100
61	300	1961.724	69 74740 - 120 69710	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}D)4n$	α Γ -νD h ⁵ D-ν ⁵ F°	0.1		188
	250	1962.958	93.38875 - 144.33221	$3d^{5}(b^{2}F)4s - 3d^{5}(b^{2}F)4p$	$e^{3}F - x^{1}G^{0}$	4 - 4		188
	70	1963.209	84.15955 - 135.09684	$3d^{5}(a^{2}F)4s = 3d^{5}(a^{4}F)4p$	e³F − y⁵G°	4 - 3		188
	70	1963.461	88.69467 - 139.62517	3d5(a2H)4s - 3d5(a4F)4p	b ³ H - w ³ G ⁿ	5 - 4		188
81	200	1963.991	79.84012 - 130.75684	$3d^{5}(a^{2}I)4s - 3d^{5}(a^{2}I)4p$	$a^{3}I + z^{3}I^{\circ}$	7 - 6	P	188
	100	1964.054	90.48394 - 141.39904	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{4}F)4p$	$d^{3}F \cdot v^{3}D^{\circ}$	3 - 2	P	188
81 61	550	1964.169	79.84474 - 130.75684	$3d^{2}(a^{2}1)4s - 3d^{2}(a^{2}1)4p$ $3d^{5}(a^{2}C)4a - 2d^{5}(a^{2}C)4p$	$a^{3}l - z^{3}l^{5}$	6-0	i	188
81	550	1964.776	79.86042 - 130.75684	$3d^{5}(a^{2}I)4s - 3d^{5}(a^{2}I)4p$	$a^{3}I - z^{3}I^{\circ}$	5 - 6		188
~	550	1067 200	04 (7)07 125 55 (4)	9 15(-215)4 - 9 15(-215)4	3E3C*	9 A		100
90	200	1965.309	98 66268 - 149 52563	$3d^{5}(4^{2}S)4s - 3d^{5}(a^{2}S)4n$	cr-yGʻ a ³ S•w ³ P⁰	3-4	i	188
61	150	1966.201	69.83776 - 120.69710	$3d^{5}(a^{4}D)4s - 3d^{5}(a^{4}D)4p$	$b^{5}D \cdot v^{5}F'$	$\frac{1}{2} - 1$		188
16	550	1966.740	88.66387 - 139.50944	3d ⁵ (a ² H)4s - 3d ⁵ (a ² H)4p	b³H - ý³I⁰	4 - 5	ļ	188
	250	1967.352	117.95032 - 168.7801	$3d^{5}(b^{2}G)4s - 3d^{5}(b^{2}G)4p$	$d^1G = w^1H^n$	4 - 5		188
	150	1968.625	92.52391 - 143.32085	$3d^{5}(a^{2}H)4s + 3d^{5}(a^{2}H)4p$	$a^{1}H - w^{3}H^{\circ}$	5 - 6	[188
	150	1972.245	93.41293 - 144.11664	$3d^{5}(b^{2}F)4s - 3d^{5}(a^{2}G)4p$	$e_{3\Gamma}^{3}$ - v_{3G}^{3}	2 3		188
	150	1972.638	93.39245 - 144.08597	$3d''(b^{+}F)4s - 3d''(a^{+}G)4p$ $3d^{5}(a^{2}C)4a - 3d^{5}(-2F)4 =$	$e'F - v^{\circ}G^{\circ}$	3.4		188 188
55	550	1976.126	66.46464 - 117.06856	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ P · z ⁵ D ^o	3.3		188
55	250	1078 417	66 52205 117 06854	3d5(04D)As 3d5(04(1)As	a ⁵ D - ⁵ D ⁰	9 2		198
55	150	1978.626	88 92307 - 139 46336	$3d^{5}(a^{2}H)4s = 3d^{5}(a^{4}F)4n$	ат - 2 D″ h ³ H - w ³ C°	2.3	1	188
	70	1979.002	90.47253 - 141.00299	3d ⁵ (a ⁴ F)4s - 3d ⁵ (a ² G)4p	$d^3F \cdot v^3F^{\circ}$	4 - 4		188
	150	1980.392	93.38875 - 143.88374	$3d^{5}(b^{2}F)4s - 3d^{5}(a^{2}G)4p$	$e^{3}F - v^{3}G$	4 - 5		188
54	400	1982.076	66.52295 - 116.97505	3d5(a4P)4s - 3d5(a4G)4p	a ⁵ P - z ⁵ F°	2 - 2		188
56	550	1982.805	66.46464 - 116.89822	$3d_{5}^{5}(a^{4}P)4s - 3d_{5}^{5}(a^{4}P)4p$	a ⁵ P - z ⁵ S ^o	3 · 2	ľ	188
	20	1983.144	84.67187 - 135.09684	$3d^{3}(a^{2}F)4s - 3d^{5}(a^{4}F)4p$	$c^{3}F - y^{5}G^{*}$	3 - 3	P	188
01	150	1983.6	0.0 - 50.4123	3d° - 3d° 2,45(-21)4 2,45(-21)4	ga'D - b'P	4 - 2	F,P	375,487
o1 86	450	1983.070 1984.027	79.84474 - 130.25527 82.38287 - 132.78536	30°(a°1)45 - 30°(a°1)4p 3d ⁵ (a ² D)4s - 3d ⁵ (a ² D)4p	$a 1 \cdot z^{2} \mathbf{I}^{2}$ $c^{3} \mathbf{D} \cdot \mathbf{x}^{3} \mathbf{F}^{0}$	0 · 5 3 · 4		188
01	600	1004 999	70.06049 120.05607	2.15(-21)4-	-31310	с с		100
51 56	200	1984.288	79.86042 - 130.25627 66.52295 - 116.89822	30"(a*1)4s - 30"(a*1)4p 3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ P)4n	a ⁵ P - z ⁵ S°	5 - 5 2 - 2		188
	70	1987.006	90.42368 - 140.75098	$3d^{5}(a^{4}F)4s - 3d^{5}(a^{2}G)4p$	d ³ F • v ³ F°	2 - 2		188
50	1000	1987.503	63.42517 - 113.73962	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	$a^5G - z^5G^{\circ}$	6 - 6	Í	188
~ ~	200	1097 910	66 50168 116 80822	2.d?(a4D)Ac 2.d5(a4D)An	a>D a5C⁰	1.2		188

Multiplet	Rel. Int.	λ _{vec} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms] - J	Notes	References
		1989.0	0.0 - 50.2761	$3d^{6} - 3d^{6}$	ga ⁵ D - b ³ F	4.4	F,P	375,487
50	450	1989.975	63.42517 - 113.67701	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ G - z ⁵ G°	6 - 5		188
50	950	1991.613	63.46639 - 113.67701	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ G - z ⁵ G°	5 - 5		188
82	600	1992.017	79.84012 - 130.04056	$3d^{5}(a^{2}l)4s - 3d^{5}(a^{2}l)4p$	a³l - z³K°	7 - 7		188
82	600	1992.196	79.84474 - 130.04056	$3d^{5}(a^{2}l)4s - 3d^{5}(a^{2}l)4p$	a ³ 1 - z ³ K°	6 - 7		188
50	70	1992.427	63.48678 - 113.67701	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	$a^5G - z^5G^{\circ}$	4 - 5		188
06	400	1992.858	84.36992 - 134.54900	$3d^{5}(a^{2}F)4s - 3d^{5}(a^{2}F)4p$	$c^{3}F \cdot v^{3}G^{\circ}$	2.3		188
50	450	1993.262	63.46639 - 113.63534	$3d^{5}(a^{4}C)4s - 3d^{5}(a^{4}C)4p$	a ⁵ G - z ⁵ G°	5.4		188
50	900	1994.073	63.48678 - 113.63534	3d ⁵ (a ⁴ G)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ G - z ⁵ G⁰	4.4		188
50	70	1994.366	63.49400 - 113.63534	$3d^{5}(a^{4}G)4s - 3d^{5}(a^{4}G)4p$	a ⁵ G · z ⁵ G⁰	3 · 4		188
50	450	1995.266	63.48678 - 113.60537	3d ⁵ (a ⁺ C)4s - 3d ⁵ (a ⁴ C)4v	$a^5G \cdot z^5G^\circ$	4.3		188
50	800	1995.563	63.49400 - 113.60537	3d5(a4G)4s - 3d5(a4G)4p	a ⁵ G - z ⁵ G°	3 - 3		188
50	800	1996.420	63.49456 - 113.58420	$3d^{5}(a^{4}G)4s + 3d^{5}(a^{4}G)4p$	a ⁵ G z ⁵ G°	2.2		188
	70	1999.100	73.72764 - 123.75039	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ D)4p	$c^{3}P - x^{5}P^{9}$	2 - 3		188
54	600	1999.588	66.46464 - 116.47544	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ P)4p	a ⁵ P - z ⁵ F°	3 - 3		188
54	200	1999.893	66.46464 - 116.46741	3d ⁵ (a ⁴ P)4s - 3d ⁵ (a ⁴ G)4p	a ⁵ P - z ⁵ F ²	3 - 4		188

$\label{eq:IRON IV (Fe^{+3}), Z = 26} \\ \mbox{Ground State } 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 \ (^6S_{5/2}) \ (23 \ electrons) \\ \mbox{Ionization Potential [442 000] cm^{-1}; [54.8] eV} \\ \mbox{}$

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	4	446.569	35,2538 - 259,18382	3d ⁵ - 3d ⁴ (b ³ F)4p	a ⁴ P + ⁴ D°	5.3		958
	80	458,172	32.2455 - 250.50229	$3d^5 - 3d^4(b^3F)4p$	a4G - 4P	U Ž		958
	ĩ	458.307	0.0 - 218,19566	$3d^5 - 3d^4(a^3F)4n$	0a65.41%	\$ \$		958
•	30	458.746	32.2928 - 250.27906	$3d^5 - 3d^4(h^3F)4n$	a ⁴ G - ⁴ F°	2.1		958
	30	458.935	32.3012 - 250.19507	3d ⁵ - 3d ⁴ (b ³ F)4p	a4G - 4F"	5-5		958
	50	458.949	32.3057 - 250.19507	3d ⁵ - 3d⁴(b ³ F)4p	a⁴C - ⁴F°	7 - 5		958
	12	460.999	47.0905 - 264.01154	3d ⁵ - 3d ⁴ (b ¹ G)4p	$a^{2}I - {}^{2}H^{0}$	15 1		958
	12	461.492	35.2538 - 251.94403	3d ⁵ - 3d ⁴ (b ³ P)4p	a ⁴ P - ⁴ D°	$\frac{5}{2} - \frac{3}{2}$		958
	1	467.343	51.3942 - 265.36948	3d⁵ - 3d⁴(b¹G)4́p	$a^{2}F - {}^{2}F^{\circ}$	2 - 2		958
	12	469.085	38.7794 - 251.95894	3d⁵ - 3d⁴(b³P)4p̂	a⁴D - ⁴P°	⁷ / ₂ - ⁵ / ₂		958
	30	469.749	38.7794 - 251.65834	3d ⁵ - 3d ⁴ (b ³ P)4p	a ⁴ D - ⁴ D°	1 - 1		958
	1	471.118	38.8967 - 251.15694	3d⁵ - 3d⁴(b³P)4p	a⁴D - ⁴P°	$\frac{1}{2} - \frac{1}{2}$		958
	4	471.524	38.9351 - 251.01402	$3d^{5} - 3d^{4}(b^{3}P)4p$	$a^4D - {}^4D^\circ$	2 - 2		958
	4	471.800	38.9382 - 250.89105	3d ⁵ - 3d ⁴ (b ³ P)4p	a⁴D - ⁴P°	3 - 3		958
	12	481.592	56.3688 - 264.01154	3d ⁵ - 3d ⁴ (b ¹ G)4p	a ² H · ² H°	2.2		958
	80	481.905	56.3688 - 263.87691	3d ⁵ - 3d ⁴ (b ¹ G)4p	a ² H - ² G°	$\frac{11}{2} - \frac{9}{2}$		958
	1	482.241	57.7212 - 265.08477	3d⁵ - 3d⁴(b¹G)4p	$a^2G \cdot {}^2F^\circ$	2 - 2		958
	50	483.238	56.0583 - 262.99501	3d ⁵ - 3d⁴(b¹G)4p	a ² H - ² G°	$\frac{9}{2} - \frac{7}{2}$		958
	1	483.967	74.1331 - 280.75837	3d ⁵ - 3d ⁴ (b ¹ D)4p	$b^2D - {}^2P^{\circ}$	2 - 2		958
	4	484.261	56.0583 - 262.55777	3d⁵ - 3d⁴(b¹G)4p	a ² H - ² H ³	2 - 2		958
	1	484.990	56.3688 - 262.55777	$3d^5 \cdot 3d^4(b^1G)4p$	a ² H - ² H ²	11 - 9 2 - 2		958
	1	485.509	52.6207 - 258.59192	$3d^{5} - 3d^{4}(b^{3}F)4p$	a4F - 4D"	2 - 2		958
	1	487.383	61.1565 - 266.33524	3d ⁵ - 3d*(b ³ F)4p	$b^2F^{-2}D^{\circ}$	2 - 2		958
	4	489.409	49.5415 - 253.86843	3d ⁵ · 3d ⁴ (b ³ P)4p	$a^2D - ^2D^o$	3 - 2		958
	4	491.832	38.9382 - 242.25925	3d ⁵ - 3d4(a ¹ D)4p	a ⁴ D· ² P°	2 - 2		958
	30	492.152	82.8949 - 286.08472	$3d^{5} - 3d^{4}(b^{1}D)4p$	b²G - ²F⁰	$\frac{9}{2} - \frac{7}{2}$		958
	50	492.653	56.0583 - 259.03972	3d ³ - 3d ⁴ (b ⁴ F)4p	$a^2H - {}^2G^\circ$	2 - 2		958
	1	493.529	61.2544 - 263.87691	3d³ - 3d⁴(b¹G)4p	$b^2 F \cdot {}^2 G^0$	2 . 2		958
	110	494.567	56.3688 - 258.56602	3d° - 3d⁴(b³F)4p	$a^2H - {}^2G^\circ$	2 2		958
	30	494.669	82.8973 - 285.05277	3d° - 3d*(b'D)4p	$b^2 G \cdot {}^2 F^{\circ}$	2 - 2		958
	4	495.447	61.1565 - 262.99501	$3d^{5} - 3d^{4}(b^{1}G)4p$	$b^2 F - {}^2 G^{\circ}$	<u>5</u> - 7		958
	4	495.953	57.4080 - 259.03972	3d° 3d°(b°F)4p	a G - G°	2 - 2.		958
	50	496.171	52.6207 - 254.16484	3d³ - 3d⁴(b³F)4p	a*F - *G*	1 - 1		958
	4	496.724	57.7212 - 259.03972	3d° - 3d⁴(b³F)4p	$a^{z}C \cdot {}^{z}C^{\circ}$	2 - 2		958
	1	496.766	52.6207 - 253.92359	3d° - 3d°(b°F)4p	a*F-²F°	ž · ź		958

Multiplet Rel. Int.	$\lambda_{\rm vac}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
12	497.184	52.6954 - 253.82743	3d ⁵ - 3d ⁴ (b ³ F)4p	a*F - *G°			958
4	497.810	52.6954 - 253.57565	$3d^5 - 3d^4(b^3P)4p$	a4F - 2D°	7 - 9		958
1	497.896	57.7212 - 258.56602	$3d^5 - 3d^4(b^3F)4p$	$a^2G - {}^2G^o$	$\frac{1}{2} - \frac{1}{2}$		958
1	499.880	52.8371 - 252.88448	$3d^5 - 3d^4(b^3F)4p$	a4F - 4G"	3 - 5		958
4	500.558	52.1667 - 251.94403	3d⁵ - 3d⁴(b³P)4µ	$a^2F - {}^4D^\circ$	<u>5</u> - <u>3</u>		958
				475 47-1	1		
150	501.849	52.6954 - 251.95894	3d ⁵ - 3d ⁴ (b ³ P)4p	$a^{4}F - {}^{4}P^{2}$	2 - 2		958
30	502.142	52.8371 - 251.98420	3d ³ - 3d ⁴ (b ³ P)4p	a*F - *D*	12.12		958
80	502.246	52.8380 - 251.94403	3d" - 3d*(b°P)4p	a*F - 'D''	2 2		958
300	502.421	52.6207 - 251.65834	3d ³ - 3d ² (b ³ P)4p	a*F - *D"	2 2		958
80	504.240	52.6954 - 251.01402	3d" - 3d"(b"P)4p	a'F - 'D'	2-2		958
19	504 919	52 8380 - 250 89105	3d ⁵ - 3d ⁴ (b ³ P)4n	a ⁴ F - ⁴ P⁰	5.3	,	958
12	504.982	50 0514 - 248 07797	$3d^{5} - 3d^{4}(a^{1}F)4p$	$a^2D - ^2D^\circ$	ă ă		958
375	505 354	52.6207 - 250.50229	$3d^5 - 3d^4(b^3F)4p$	$a^4F - {}^4F^\circ$	·		958
4	505.545	52.6954 - 250.50229	$3d^{3} - 3d^{4}(b^{3}F)4p$	a⁴F - ¹F°	ž - ž		958
200	506.117	52.6954 - 250.27906	3d ⁵ - 3d⁴(b ³ F)4p	a4F - 4F°	ž - ž		958
:			1	4 4			
4	506.482	52.8380 - 250.27906	3d ³ - 3d ⁴ (b ³ F)4p	a ⁴ F - ⁴ F ^o	2.1		958
375	506.694	52.8380 - 250.19507	3d ³ - 3d ³ (b ³ F)4p	a*F - *F"	2 2		958
80	506.976	32.2455 - 229.49474	3d ³ - 3d [*] (a ³ D)4p	a*G - *F*	2 - 2		958
30	507.631	32.2928 - 229.28802	3d" - 3d"(a"D)4p	a*G - *F*	2 . 2		958
50	508.240	32.3057 - 229.06258	3d° - 3d*(a°D)4p	a'G · T°	2 - 2		958
19	508 740	32 3012 - 228 86261	3d ⁵ - 3d ⁴ (s ³ 1)\4p	a ⁴ G • ⁴ F°	5.3		958
12	500.742	57 7212 - 253 02350	$3d^{5} - 3d^{4}(h^{3}F)A_{D}$	$a^2 G = {}^2 F^0$	<u>9</u> 7		958
12	511 424	57 7212 - 253 25437	$3d^5 - 3d^4(h^3F)4n$	$a^2G - {}^4G^\circ$	20 - 27		958
12	511.570	57 4080 - 252 88448	$3d^5 - 3d^4(h^3F)4u$	$a^2G - {}^4G^\circ$	ž - ž		958
i i	516.253	35.3333 - 229.03702	$3d^{5} - 3d^{4}(a^{3}D)4p$	a⁴P - ⁴P°	ş - ş		958
4	517.099	0.0 - 193.38617	3d ⁵ - 3d ⁴ (a ⁵ D)4p	ga ⁶ S - ⁶ D°	$\frac{5}{2} \cdot \frac{7}{2}$		958
4	517.234	35.2538 - 228.58967	3d ⁵ - 3d ⁴ (a ³ D)4p	a ⁴ P - ⁴ P°	2 2		958
1	517.447	35.3333 - 228.58967	3d ⁵ - 3d ⁴ (a ³ D)4p	a ⁴ P - ⁴ P°	2 - 2		958
4	517.642	35.4066 - 228.58967	3d ⁵ - 3d ⁴ (a ³ D)4p	a⁴P - ⁴P°	2 - 2		958
30	518.908	61.1565 - 253.86843	3d° - 3d⁴(b³P)4p	b ² F - ² D ^o	2 - 2		958
150	510.005	25 2528 227 01005	9 15 9 14/ 3014	4D 4D0	5 5		059
150	519.035	35.2538 - 227.91905	3d" - 3d"(a"D)4p 2d ⁵ - 3d ⁴ (a ³ C)4p	a'r - 'r' *C *C°	u u		958
90	510 221	0.0 102 50528	$3d^5 - 3d^4(a^5D)A_{33}$	a 6 - 0	5 5		958
12	519.221	35 3333 - 227 01005	$3d^5 - 3d^4(a^3D)A_D$	⁹⁴ P 4P ²	3 5		958
50	519.962	61.2544 - 253.57565	3d ⁵ - 3d [*] (b ³ P)4 _P	$b^2F - D^2$	- ÷		958
4	521.570	35.2538 - 226.98358	3d [°] - 3d ⁴ (a ³ D)4p	$a^{4}P \cdot {}^{4}D^{\circ}$	2 2		958
50	521.665	0.0 - 191.69411	3d ³ - 3d [*] (a ³ D)4p	ga"S - "P"	2.2		958
4	521.782	35.3333 - 226.98358	3d ³ - 3d ³ (a ³ D)4p	a"P - "D"	2 2		958
4	522.000	51.3942 - 242.96562	3d" - 3d (a'F)4p	a r - r ·	2 . 2		958
1	522.810	74.0900 - 205.30948	30° - 30 (b°G)4p	b D - r	2 - 2		930
12	523 694	74 1331 - 265 08477	$3d^{5} - 3d^{4}(b^{1}G)4n$	$h^2D - {}^2F^\circ$	5.7		958
12	524.344	38.7794 - 229.49474	$3d^5 - 3d^4(a^3D)4v$	$a^4D - {}^4F^\circ$	7.9		958
30	525.339	38,9351 - 229,28802	$3d^5 - 3d^4(a^3D)4p$	a ⁴ D - ⁴ F°	5 - 7		958
900	525.689	0.0 - 190.22687	$3d^5 - 3d^4(a^5D)4p$	ga ⁶ S - ⁶ P ^o	3 - 7		958
50	525.930	38.8967 - 229.03702	3d ⁵ - 3d ⁴ (a ³ D)4p	°a⁴D - ⁴P°	$\frac{1}{2} - \frac{1}{2}$		958
			- 15	45 15	1 2 5 1		
12	525.976	38.9382 - 229.06258	3d ³ - 3d ⁴ (a ³ D)4p	a'D - 'F'	2 - 2		958
30	526.045	38.9382 - 229.03702	3d ³ - 3d ⁴ (a ³ D)4p	a 'D - "P"	2.2		958
700	526.293	0.0 - 190.00828	3d ³ - 3d ² (a ³ D)4p	ga S · P	2 - 2		958
4	526.411	38.8967 - 228.86261	3d ⁵ - 3d [*] (a ^o D)4p	a*D - *F" 4D 4E9	2 2		958
4	520.517	38.9331 - 228.86201	5a - 5a (a D)4p	a D - r	2 - 2		900
300	526.567	32.2455 - 222.15499	3d ⁵ - 3d ⁴ (a ³ G)4u	a⁴G - ⁴H°	ų. ų		958
520	526.634	0.0 - 189.88511	$3d^5 - 3d^4(a^5D)4p$	ga6S - 6P°	\$ 3		958
12	527.096	32.3012 - 222.02009	$3d^5 - 3d^4(a^3P)4p$	a ⁴ G - ² D ³	5.3		958
12	527.193	56.0583 - 245.74229	3d ⁵ - 3d ⁴ (a ¹ F)4p	a²H - ²G°	<u>9</u> .9		958
200	527.276	38.9351 - 228.58967	3d ⁵ - 3d⁴(a³D)4p	a4D - 4P°	$\frac{5}{2} \cdot \frac{3}{2}$		958
			- 15 14 - 20	4.00 4.000			
4	527.977	32.2455 - 221.64749	3d ³ - 3d ³ (a ³ G)4p	a'G - 'H'	2.2		958
50	528.056	50.3088 - 245.74229	3d" - 3d"(a'F)4p	a⁻ri • "G° •4C 4110	2 2		958
80	528.109	32.2928 - 221.04/49	3α° - 3α°(a°G)4p 9,35 - 9,34(-3π) 4	ate 'n° .400 400	2 - 2		900
110	528.710	38.7794 - 227.91905 29.9099 - 991.94404	30 - 30 (a D)4p 345 - 34(-30)4	a D - P''	2.2		900
30	528.951	32.2928 - 221.34000	əu - əu (a v)4p	a 6 - 1°	2 - 2		700
4	528.987	32.3057 - 221.34606	3d ⁵ - 3d ⁴ (a ³ G)4d	a4G - 4F°	7 - 7		958
30	529.057	32.3057 - 221.32054	3d ⁵ - 3d ⁴ (a ³ G)4µ	a ⁴ G · ⁴ F°	2 - 2		958
30	529.117	32.2455 - 221.23921	3d ⁵ - 3d ⁴ (a ³ G)4p	a ⁴ G - ⁴ F°	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		958
50	529.287	32.3057 - 221.23921	$3d^{5} - 3d^{4}(a^{3}G)4p$	a ⁴ G · ⁴ F°	7 - 2		958
12	529.328	32.3012 - 221.21929	3d° - 3d⁴(a³G)4p	a*G - *F°	2 - 2		958
1 1		I	1		1		

lultiplet	Rel. Int.	λ_{sec} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
!	80	529 469	32 2928 - 221 16102	$3d^5 \cdot 3d^4(a^3H)4n$	a ⁴ G - ² H°	5 8 H	1	958
	4	529,493	32.2455 - 221.10417	$3d^{\circ} - 3d^{4}(a^{3}G)4p$	$a^4G - {}^4H^\circ$	14.8	;	958
	12	529.628	32.2928 - 221.10417	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^{4}C + {}^{4}H^{0}$	2 - 2	.	958
	80	529.665	32.3057 - 221.10417	$3d^5 - 3d^4(a^3G)4p$	a⁴G - ⁴H°	2.2		958
	30	529.936	56.0583 - 244.75925	$3d^{5} - 3d^{4}(a^{1}F)4p$	a ² H - ² G°	$\frac{2}{2} \cdot \frac{7}{2}$		958
	250	530.562	38.7794 - 227.25880	$3d_1^5+3d_1^4(a^3D)4p$	$a^4D + {}^4D^{\circ}$	7 - 7		958
	300	530.907	32.3012 - 220.65804	3d ⁵ - 3d ⁴ (a ³ G)4p	a ⁴ G - ⁴ H ^o	2 - 2		958
Í	30	531.475	32.3057 - 220.46133	3d ³ - 3d ⁴ (a ³ H)4ρ	a*G = *H*	2 2		958
	300 150	531.777	38.9351 - 226.98358 57.7212 - 245.74229	3d² - 3d²(a²D)4p 3d⁵ - 3d⁴(a¹F)4o	$a^{*}D + {}^{*}D^{\circ}$ $a^{2}C + {}^{2}C^{\circ}$	N - 12		958 958
		501.007		a 15 a 14/ áro -	400 4700	1 3		050
	200	531.927	38.8967 - 226.89210	3d ^o - 3d ^o (a ^o D)4p 3d ⁵ - 3d ⁴ (a ³ D)4p	a 'D - 'D' a ⁴ D - ⁴ D'	1000		958
	4	532,157	38.9382 - 226.85193	$3d^5 - 3d^4(a^3D)4n$	$a^{4}D - D^{2}$	- Î		958
	4	532,209	32.3012 - 220.19725	$3d^{5} - 3d^{4}(a^{3}G)4p$	$a^4G - {}^2F^{\circ}$	5-5		958
	12	532.649	49.5415 - 237.28309	$3d^5 - 3d^4(a^1D)4p$	$a^2D - {}^2D^a$	\$ - ž		958
(1	532,828	51.3942 - 239.07140	3d ⁵ - 3d ⁴ (a ¹ D)4p	$a^2F - {}^2F^{\circ}$	3.3		958
	12	533.598	32.2928 - 219.70053	$3d^5 - 3d^4(a^3F)4p$	a ⁴ G · ⁴ D?	012 - 2		958
	12	533.628	32.2455 - 219.64076	3d ⁵ - 3d ⁴ (a ³ H)4p	$a^4G = {}^2I^\circ$	11 - 13	. !	958
1	80	533.757	57.4080 - 244.75925	3d ⁵ - 3d⁴(a¹F)4p	$a^2G - {}^2G^{\circ}$	2 - 2		958
	1	533,945	32.3057 - 219.59084	3d ⁵ - 3d ⁴ (a ³ F)4p	a*G - *D*	2 - 2		958
	1	534.421	51.3942 - 238.51284	$3d^{5} - 3d^{4}(a^{1}D)4p$	$a^{2}F - {}^{2}F^{\circ}$	2 - 5 2 - 7		958
	12	534.652	57.7212 - 244.75925	3d° - 3d°(a?F)4p	$a^{*}G = {}^{*}G^{0}$	3-23	ļ	958
	1	534.988	01.1305 - 248.07797	3d" - 3d"(a`t')4p 3d5 - 2d4(a'tru4-	D ⁻ F - [*] D ⁰	5 - 2 5 - 7		958 058
:	12	535.142	50.0514 - 236.91879	зи - за (а D/4р 3d⁵ - 3d⁴(а¹D)4р	$\mathbf{a} \mathbf{r} - \mathbf{r}^2$ $\mathbf{a}^2 \mathbf{D} - \mathbf{D}^2$	2002 - 12 2007 - 12		958 958
	50	535 350	32.3012 - 219.09167	3d ⁵ - 3d ⁴ (a ³ F)4n	a ⁴ C - ² D°	- 		958
ł	300	535 551	47 0786 - 233 80212	$3d^{5} - 3d^{4}(a^{1}))An$	a ² 1 - ² H ⁹	U 2		958
	250	536.006	32.3057 - 218.87121	$3d^{3} - 3d^{4}(a^{3}F)4m$	$a^4G - {}^2D^\circ$	3 5	[[958
	1	536.339	52.6207 - 239.07140	$3d^5 \cdot 3d^4(a^1D)4p$	$a^4F - {}^2F^9$	- 10 - 1		958
	600	536.609	32.2455 - 218.60103	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^4G - {}^4F^o$	lĩ - 2 2 - 2		958
	300	536.735	32.3012 - 218.61388	$3d^{5} - 3d^{4}(a^{3}P)4p$	a*G - *S°	5 - 3 -		958
	700	537.103	32.2928 - 218.47836	3d ⁵ - 3d ⁴ (a ³ F)4p	a*G - *F*	2 - 2		958
	200	537.133	32.3057 - 218.47836	3d" - 3d*(a°F)4p	a*G · *F°	2 - 2		958
	$\begin{array}{c} 520\\ 12\end{array}$	537.261	32.2455 - 218.37512 32.2928 - 218.37512	3d ⁷ - 3d ² (a ² H)4p 3d ⁵ - 3d ⁴ (a ³ H)4p	a 'G - "G" a ⁴ G - ⁴ G"	2 - 7 2 - 7		958 958
	50	C27 400	29 9465 919 92951	215 244(-311)4	40 400	11 9		0.29
i i	- 50 - 600	537 702	29 2028 218 22851	3d - 3d (a h)4p	a G - G 4C - 4C2	2 2		930 958
	520	537.192	32.2920 - 210.20001	30 - 50 (8 H)+p 34 ⁵ 34 ⁶ (s ³ F)4 ₁	a G • G a ⁴ C • ⁴ E ⁰	2.25		900
	150	538 021	32.2928 - 218.15977	$3d^5 - 3d^4(a^3H)4p$	a ⁴ G - ⁴ G°	2 7	j j	958
1	250	538.057	32.3057 - 218.15977	3d ⁵ - 3d ⁴ (a ³ H)4p	a4G - 4G2	$\frac{7}{2} - \frac{7}{2}$		958
	12	538.222	38.7794 - 224.57643	$3d^5 - 3d^4(a^3G)4a$	a4D - 4G°	7 - 8	1	958
	300	538,441	32.3012 - 218.02381	$3d^{5} - 3d^{4}(a^{3}P)4p$	a ⁴ G - ⁴ P°	- <u>-</u>		958
[30	538.450	32.3057 - 218.02381	3d ⁵ - 3d ⁴ (a ³ P)4p	a4G - 4P°	7 5	!	958
	200	538.968	32.3057 - 217.84529	3d ⁵ - 3d ⁴ (a ³ H)4p	$a^4G = {}^4G^\circ$	7 5		958
	4	539.127	74.0966 - 259.58164	3d° - 3d4(b3P)4p	$b^2D - {}^2P^o$	2 - 2		958
	80	539.388	35.2538 - 220.64922	$3d^{5} - 3d^{4}(a^{3}G)4p$	$a^{4}P - {}^{2}F^{\circ}$	5 - 7		958
	4	539.681	38.9351 - 224.23060	3d ³ - 3d ³ (a ³ G)4p	$a^{1}D - {}^{1}G^{0}$	32 - 27	i l	958
	4	539.829	57.7212 - 242.96562	$3d^2 - 3d^2(a^2F)4p$	$a^{2}C = {}^{2}F^{0}$	2.5	{	958 059
	12	539.938 540.058	57.4080 - 242.51460 32.3012 - 217.46619	3d ⁵ - 3d ⁴ (a ³ F)4p	a"G - "F" a ⁴ G - ⁴ F°	*15* *15*		958 958
	80	540 930	35 2538 - 220 36044	3d5 3d4(03D)40	$a^{4}D = 2D_{0}$	5 3		958
-	12	540.462	35.3333 - 220.36044	$3d^5 - 3d^4(a^3P)An$	a ⁴ P. ² P ^o	23 N N		958
1	80	540,675	35.4066 - 220.36044	3d5 - 3d4(a3P)4p	$a^4P - {}^2P^{\circ}$	1 - 1		958
	12	540.703	35.2538 - 220.19725	$3d^5 - 3d^4(a^3G)4p$	$a^{4}P - {}^{2}F^{o}$	5 - <u>5</u>		958
	50	540.743	49.5415 - 234.47200	3d ⁵ - 3d ⁴ (a ³ D)4p	$a^2D - {}^2D^o$	2 - 2		958
	50	540.896	74.1331 - 259.01148	3d ⁵ - 3d ⁴ (b ³ P)4p	$b^2D - {}^2P^n$	5 - 3	ļļ	958
	50	540.939	35.3333 - 220.19725	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^4P - {}^2F^{\circ}$	3 - 2		958
1	30	541.266	52.1667 - 236.91879	3d ⁵ - 3d ⁵ (a ¹ D)4p	$a^{2}F - {}^{2}D^{0}$	2 2		958
	4 12	541.342 541.557	35.3333 - 220.05933 = 35.4066 - 220.05933	3d° - 3d°(a°F)4p 3d° - 3d⁴(a³F)4p	a*P - *D° a*P - *D°	2 - 2 1 - 1		958 958
			53 (054 207 20000	a (5 m)4/ Janua	412 200-	7 5		050
	4	541.751 541.789	52.6954 - 237.28309 35.2538 - 219.82661	3d″ - 3d"(a'D)4p 3d ⁵ - 3d ⁴ (a ³ F)4n	a*F - *D* a*P - *D*	1 - 12 - 12 - 13		958 958
	200	542.028	35.3333 - 219.82661	3d ⁵ - 3d ⁴ (a ³ F)4p	a ⁴ P ⁴ D ^o	1302		958
	150	542.163	35.2538 - 219.70053	$3d^5 - 3d^4(a^3F)4p$	a ⁴ ₽ - ⁴ D°	5-5		958

ltiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	50	542 483	35 2538 - 210 50084	345 . 244/-3E14~	a ⁴ D 4D₀	5.5	058
	110	542 720	35 3333 . 210 50084	$3d^5 - 3d^4(a^3F)/4n$	ar-D ₂4P 4D⁰	2 - 2	930
İ	110	542.720	49 5415 - 233 78672	$3d^{5} - 3d^{4}(a^{1}S)An$	$a^{2}D^{2}D^{2}D^{0}$	2 2 3	936
	80	542.730	49.5415 - 233.78072	$3d^5 - 3d^4(a^3D)Ac$	$^{2}D^{2}F^{0}$	2 - 2 5 7	930
	30	543.078	32.2928 • 216.42844	3d ⁵ - 3d ⁴ (a ³ H)4p	$a^{4}G - {}^{2}G^{\circ}$	2 - 2 2 - 2	958 958
I	30	543.116	32.3057 - 216.42844	3d ⁵ - 3d⁴(a³H)4n	$a^4G \cdot {}^2G^\circ$	7.8	958
	ĩ	543.245	52.8380 - 236.91879	$3d^5 \cdot 3d^4(a^1D)4p$	$a^4F - ^2D^9$	5 3	958
	50	543.315	50.0514 - 234.10672	$3d^5 - 3d^4(a^3D)4p$	$a^2D - {}^2F^{\circ}$		958
	4	543.635	38.9351 - 222.88023	$3d^5 - 3d^4(a^3P)4n$	$a^4D - ^2D^\circ$	5 5	958
	12	543.691	35.4066 - 219.33390	$3d^5 - 3d^4(a^3P)4p$	$a^4P + {}^2P^{\circ}$	$\frac{1}{2} - \frac{1}{2}$	958
	80	543.845	50.0514 - 233.92712	3d ⁵ - 3d ⁴ (a ¹ S)4p	a ² D - ² P°	<u>1</u> 2 - 12	958
	50	543.956	35.2538 - 219.09167	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^{4}P - {}^{2}D^{\circ}$	2 2	958
	1	544.056	32.3057 - 216.11169	3d⁵ - 3d⁴(a³H)4p	a⁴G - ²G°	2 - 2	958
	300	544.196	32.2455 - 216.00272	3d ³ - 3d ⁴ (a ³ F)4p	a*G - *G°	월 - 월	958
ĺ	30	544.257	50.0514 - 233.78672	3d° - 3d⁴(a'S)4p	a²D - ²P⁰	2 - 2	958
ļ	30	544.336	32.2928 - 216.00272	$3d^{5} - 3d^{4}(a^{3}F)4p$	a ⁴ G · ⁴ G°	$\begin{vmatrix} 2 & -\frac{11}{2} \\ 2 & -\frac{2}{2} \end{vmatrix}$	958
	30	544.409	35.4066 - 219.09167	3d ³ - 3d ² (a ³ F)4p	$a^{*}P \cdot {}^{2}D^{\circ}$	2 - 2	958
	4	544.609	35.2538 - 218.87121	3d" - 3d"(a°F)4p	a [*] P - ⁴ D ⁰	2 - 2	958
	4	544.058	01.1503 - 244.75925	3d" - 3d"(a'l)4p	b-F - "G"	2 - 2	958
	12	544.708	32.2455 - 215.80891	3d" - 3d"(a"H)4p	a'G • 'l'	2-2	958
	50	544.911	32.2928 - 215.80891	$3d^5 - 3d^4(a^3H)4p$	$a^4G - {}^4I^\circ$	$\frac{9}{2} - \frac{11}{2}$	958
	12	545.377	35.2538 - 218.61388	3d" - 3d"(a"P)4p	a ⁺ P - "S"	2 - 2	958
	12	343.002 545.090	33.3333 - 218.01388	30" · 30"(a"P)4p 3,15 - 9,14(,-3D)4-	a'P - 'S' -4D 400	2 - 2	958 059
	80	546.031	32.2455 - 215.38523	3d ⁵ - 3d ⁴ (a ³ F)4p	a r - 55° a ⁴ G - ⁴ G°		958 958
	80	546 185	47 0905 - 230 10502	315 - 2146 1111 -	$a^2 I = 2 K^{*}$	13_15	058
	30	546 167	39 9098 915 38593	$3d^5 + 3d^4(a^3F)/an$	4 C 4 C 9	2 - 2	930
	300	546 216	51 3942 - 234 47200	$3d^5 - 3d^4(a^3D)4p$	$a^{2}F - {}^{2}D^{0}$	2 2 2	958
	30	546.408	56 0583 - 239 07140	3d ⁵ - 3d ⁴ (a ¹ D)4n	$a^{2}H - {}^{2}H^{0}$	2 2	958
	12	546.622	35.2538 - 218.19566	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^4P - {}^4F^\circ$	ž - ž	958
	50	546.715	32.2455 - 215.15569	3d ⁵ - 3d ⁴ (a ³ H)4p	a ⁴ G - ⁴ I°	<u>u</u> 8	958
	4	546.857	32.2928 - 215.15569	$3d^5 - 3d^4(a^3H)4p$	a ⁴ G - ⁴ I°		958
	50	546.897	32.3057 - 215.15569	$3d^5 - 3d^4(a^3H)4p$	a ⁴ G - ⁴ I°		958
1	80	546.995	52.1667 - 234.98435	3d ⁵ - 3d ⁴ (a ³ D)4p	$a^2F - ^2D^2$		958
	30	547.136	35.2538 - 218.02381	3d ⁵ - 3d ⁴ (a ³ P)4p	a ⁴ P - ⁴ P°	2 - 2	958
ļ.	30	547.222	32.2928 - 215.03381	3d ⁵ - 3d ⁴ (a ³ F)4p	a4G • 4G°	$\frac{2}{2} - \frac{7}{2}$	958
	30	547.254	32.3057 - 215.03381	3d ⁵ - 3d ⁴ (a ³ F)4p	a⁴G • ⁴G°	2 - 2	958
	12	547.373	35.3333 - 218.02381	3d ⁵ - 3d ⁴ (a ³ P)4p	a⁴P - ⁴P°	3 - 5	958
	12	547.673	35.2538 - 217.84529	3d ⁵ - 3d ⁴ (a ³ H)4p	a ⁴ P - ⁴ G°	2 - 2	958
	110	547.744	38.7794 - 221.34606	3d ⁵ - 3d ⁴ (a ³ G)4p	a ⁴ D - ⁴ F°	$\frac{7}{2} - \frac{7}{2}$	958
	12	547.818	38.7794 - 221.32054	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^4D - {}^4F^\circ$	- 2 - 2	958
	80	547.887	32.3012 · 214.82174	3d ⁵ - 3d ⁴ (a ³ F)4p	a4G - 4G°	2 - 2	958
	30	547.901	32.3057 - 214.82174	3d" - 3d"(a'F)4p	a*G - *G°	12 · 12	958
	50 250	548.029 548.066	82.8973 - 265.36948 38.7794 - 221.23921	3d° - 3d°(b⁺G)4p 3d⁵ - 3d⁴(a³G)4n	b*G - *F° a⁴D - ⁴F°	2 - 2	958 958
				ou ou (u o) rp	40 40	5 7	
	150	548.211 548.265	38.9351 - 221.34606 47.0786 - 220.47283	3d° - 3d°(a°G)4p 3d° - 3d4(a'U)4p	a*D - *F° s²I - ²K°	3 - 5 11 - 13	958 058
	250	548 208	38 9389 - 229.47200	3d ⁵ 3d ⁴ (a ³ C)/m	aı-∧` ₅4D 1⊑∘	2 - 2	200 058
	150	548 474	38 8967 - 991 91090	$3d^5 - 3d^4(a^3C)An$	a ມ- r ቃ ⁴ ⊓ - ⁴ ⊑∿	2 - 2	900 958
	110	548.605	38.9382 - 221.21929	3d ⁵ - 3d ⁴ (a ³ G)4p	a ⁴ D - ⁴ F°	2 - 2 2 - 2	958
	30	548.627	35,3333 - 217 60771	$3d^5 \cdot 3d^4(a^3P)4n$	a ⁴ P - ² S ^o	3 1	958
	12	548.763	47.0786 - 229.30661	3d ⁵ - 3d ⁴ (a ¹ G)4 _D	$a^2I - {}^2H^{\circ}$	ļý_ļ	958
	300	548.801	47.0905 - 229.30661	3d ⁵ - 3d ⁴ (a'G)4p	$a^2 I - {}^2 H''$	jų į	958
	80	548.878	82.8949 - 265.08477	3d ⁵ - 3d ⁴ (b ¹ G)4p	$b^2G - {}^2F^{\circ}$	$\frac{1}{2} - \frac{1}{2}$	958
	4	549.012	52.8380 - 234.98435	$3d^5 - 3d^4(a^3D)4p$	$a^4F - ^2D^\circ$	\$ - 3	958
	1	549.628	52.1667 - 234.10672	3d ⁵ - 3d ⁴ (a ³ D)4p	a ² F · ² F'	2.2	958
	50	549.843	38.7794 - 220.64922	$3d^{5} - 3d^{4}(a^{3}G)4p$	$a^4D - {}^2F^{\circ}$	2 - 2	958
	4	550.030	61.1565 - 242.96562	$3d^{5} - 3d^{4}(a^{1}F)4p$	$b^2F - {}^2F^{\circ}$	2 - 2	958
	110	550.122	35.2538 - 217.03189	3d ⁵ - 3d ⁴ (a ³ P)4p	$a^{4}P - {}^{4}P^{\circ}$	3 - 3	958
	375	550.315	47.0786 - 228.79386	3d" - 3d⁴(a'G)4p	a²I - ²H"	± - ž	958
	4	550.464	57.4080 - 239.07140	$3d^5 - 3d^4(a^1D)4p$	$a^2G - {}^2F^0$	$\frac{7}{2} - \frac{7}{2}$	958
	30 19	550.584	35.4000 - 217.03189	3d" - 3d"(a°P)4p	a"P - "P" 20 200	25-27	958
	12	550.017	52.1007 - 255.78080 108.9491 - 900.01077	30" - 30"(a"D)4p	a"F • "F" _2m 2me	2 2	958 059
	150	551.004	61 1565 - 249 61460	3d ⁵ - 3d ⁴ (a ¹ F)/a	с D - "D" Ь2Г 2Г°	2 - <u>2</u> 5 - 5	900 058
	100	001.024	01.1303 - 292.01400	ou•ou(ar)++p]	0 r · r	2 2	200

	Multiplet	Rel. Int.	λ _{vse} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		1 200 80 300 12	551.188 551.421 551.689 551.766 551.993	38.9351 - 220.36044 57.7212 - 239.07140 38.9382 - 220.19725 47.0786 - 228.31503 38.8967 - 220.05933	3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ¹ D)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ¹ D4p 3d ⁵ - 3d ⁴ (a ¹ D4p 3d ⁵ - 3d ⁴ (a ³ F)4p	$ \begin{array}{c} a^{4}D \cdot ^{2}P^{\circ} \\ a^{2}G \cdot ^{2}F^{\circ} \\ a^{4}D \cdot ^{2}F^{\circ} \\ a^{2}I \cdot ^{2}I^{\circ} \\ a^{4}D \cdot ^{4}D^{\circ} \end{array} $			958 958 958 958 958 958
		4 50 520 200 50	552.050 552.106 552.142 552.168 552.543	$\begin{array}{r} 32.3012 & - & 213.44505 \\ 47.0786 & - & 228.20433 \\ 47.0905 & - & 228.20433 \\ 57.4080 & - & 238.51284 \\ 82.8949 & - & 263.87691 \end{array}$	3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ¹ I)4p 3d ⁵ - 3d ⁴ (b ¹ G)4p		57 - 32 11 - 13 12 - 13 13 - 25 13 - 25 13 2 - 25 20 2 - 20 2 br>2 2 - 20 2 - 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		958 958 958 958 958
		4 375 80 4 30	552.705 552.739 552.827 553.063 553.201	$\begin{array}{r} 38.8967 \cdot 219.82661 \\ 32.2455 \cdot 213.16259 \\ 38.9382 \cdot 219.82661 \\ 38.7794 \cdot 219.59084 \\ 38.9351 \cdot 219.70053 \end{array}$	$\begin{array}{l} 3d^5 \cdot 3d^4(a^3F) 4\rho \\ 3d^5 \cdot 3d^4(a^3H) 4\rho \\ 3d^5 \cdot 3d^4(a^3F) 4\rho \\ 3d^5 \cdot 3d^4(a^3F) 4\rho \\ 3d^5 \cdot 3d^4(a^3F) 4\rho \\ 3d^5 \cdot 3d^4(a^3F) 4\rho \end{array}$	$a^{4}D - {}^{4}D^{9}$ $a^{4}G - {}^{4}H^{9}$ $a^{4}D - {}^{4}D^{9}$ $a^{4}D - {}^{4}D^{9}$ $a^{4}D - {}^{4}D^{9}$			958 958 958 958 958 958
		50 12 30 12 4	553.549 553.590 553.935 554.114 554.161	$\begin{array}{r} 38.9382 & - 219.59084 \\ 100.1180 & - 280.75837 \\ 35.3333 & - 215.86050 \\ 32.2455 & - 212.71437 \\ 35.4066 & - 215.86050 \end{array}$	3d ⁵ - 3d⁴(a ³ F)4p 3d ⁵ - 3d⁴(b ¹ D)4p 3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ³ H)4p 3d ⁵ - 3d⁴(a ³ P)4p	$a^{4}D - {}^{4}D^{0}$ $a^{2}P - {}^{2}P^{0}$ $a^{4}P - {}^{4}P^{0}$ $a^{4}G - {}^{4}H^{0}$ $a^{4}P - {}^{4}P^{0}$			958 958 958 958 958 958
		300 80 12 50 1	554.257 554.292 554.335 555.254 555.306	32.2928 - 212.71437 51.3942 - 231.80400 38.9382 - 219.33390 82.8973 - 262.99501 32.2928 - 212.37404	3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ¹ C)4p 3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (b ¹ C)4p 3d ⁵ - 3d ⁴ (b ¹ C)4p 3d ⁵ - 3d ⁴ (a ³ H)4p	$ \begin{array}{c} a^{4}G - {}^{4}H^{0} \\ a^{2}F + {}^{2}G^{0} \\ a^{4}D - {}^{2}P^{0} \\ b^{2}G - {}^{2}G^{0} \\ a^{4}G - {}^{4}H^{0} \end{array} $			958 958 958 958 958 958
		250 300 4 150 4	555.345 555.658 555.938 556.065 556.199	$\begin{array}{r} 32.3057 & - 212.37404 \\ 35.2538 & - 215.22067 \\ 57.4080 & - 237.28309 \\ 32.3012 & - 212.13579 \\ 74.1331 & - 253.92359 \end{array}$	3d ⁵ - 3d⁴(a³H)4p 3d ⁵ - 3d⁴(a³P)4p 3d ⁵ - 3d⁴(a¹D)4p 3d ⁵ - 3d⁴(a¹D)4p 3d ⁵ - 3d⁴(a³H)4p 3d ⁵ - 3d⁴(b³F)4p	$a^{4}G - {}^{4}H^{\circ}$ $a^{4}P - {}^{4}D^{\circ}$ $a^{2}G - {}^{2}D^{\circ}$ $a^{4}G - {}^{4}H^{\circ}$ $b^{2}D - {}^{2}F^{\circ}$			958 958 958 958 958 958
/ ~ ~		12 1 4 30 12	356.260 556.374 556.551 556.601 556.797	$\begin{array}{r} 74.0966 & \cdot & 253.86843 \\ 74.1331 & \cdot & 253.86843 \\ 38.9351 & \cdot & 218.61388 \\ 82.8973 & \cdot & 262.55777 \\ 49.5415 & \cdot & 229.13890 \end{array}$	3d ⁵ - 3d⁴(b³P)4p 3d ⁵ - 3d⁴(b³P)4p 3d ⁵ - 3d⁴(a³P)4p 3d ⁵ - 3d⁴(b¹C)4p 3d ⁵ - 3d⁴(a¹C)4p 3d ⁵ - 3d⁴(a¹C)4p	$\begin{array}{c} b^2D + {}^2D^{\circ} \\ b^2D + {}^2D^{\circ} \\ a^4D + {}^4S^{\circ} \\ b^2G + {}^2H^{\circ} \\ a^2D + {}^2F^{\circ} \end{array}$	STANDARY STAN		958 958 958 958 958 958
		30 12 12 12 12 80	557.281 557.360 557.700 557.853 557.895	74.1331 - 253.57565 38.7794 - 218.19566 52.1667 - 231.47332 38.9382 - 218.19566 38.7794 - 218.02381	3d ⁵ - 3d ⁴ (b ³ P)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ¹ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ P)4p	b ² D • ² D° a ⁴ D • ⁴ F° a ² F • ² G° a ⁴ D • ⁴ F° a ⁴ D • ⁴ P°			958 958 958 958 958 958
		1 50 110 80 4	558.280 558.383 558.457 558.708 558.943	74.1331 - 253.25437 50.0514 - 229.13890 35.2538 - 214.31721 35.3333 - 214.31721 38.9382 - 217.84529	3d ⁵ - 3d⁴(b³F)4p 3d ⁵ - 3d⁴(a²C)4p 3d ⁵ - 3d⁴(a²P)4p 3d ⁵ - 3d⁴(a³P)4p 3d ⁵ - 3d⁴(a³H)4p 3d ⁵ - 3d⁴(a³H)4p	b ² D - ⁴ G° a ² D - ² F° a ⁴ P - ⁴ D° a ⁴ P - ⁴ D° a ⁴ D - ⁴ G°	NGANGUNALINAGANAN NGANGUNALINAGANAN I I I I I	_	958 958 958 958 958 958
		12 1 4 50 4	558.984 559.433 559.558 559.742 561.192	50.0514 - 228.94659 74.1331 - 252.88448 38.8967 - 217.60771 49.5415 - 228.19367 35.2538 - 213.44505	3d ⁵ - 3d⁴(a³D)4p 3d ⁵ - 3d⁴(b³P)4p 3d ⁵ - 3d⁴(a³P)4p 3d ⁵ - 3d⁴(a³C)4p 3d ⁵ - 3d⁴(a³C)4p 3d ⁵ - 3d⁴(a³P)4p	$\begin{array}{c} a^2 D + {}^2 P^{\circ} \\ b^2 D + {}^4 G^{\circ} \\ a^4 D + {}^2 S^{\circ} \\ a^2 D + {}^2 F^{\circ} \\ a^4 P + {}^4 D^{\circ} \end{array}$	Naturatura-Naturatu Naturatura-Naturatu Naturatura-Naturaturatu		958 958 958 958 958 958
		1 50 80 30 1	561.373 561.447 561.494 561.678 562.294	$\begin{array}{r} 38.8967 & - 217.03189 \\ 35.3333 & - 213.44505 \\ 38.9351 & - 217.03189 \\ 35.4066 & - 213.44505 \\ 108.2421 & - 286.08472 \end{array}$	3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(b ¹ D)4p	$a^{4}D - {}^{4}P^{0}$ $a^{4}P - {}^{4}D^{0}$ $a^{4}D - {}^{4}P^{0}$ $a^{4}P - {}^{4}D^{0}$ $c^{2}D - {}^{2}F^{0}$	Naturation Naturation		958 958 958 958 958 958
		1 12 150 4 4	562.348 562.492 562.607 563.443 563.589	74.1331 - 251.95894 47.0905 - 224.87085 56.0583 - 233.80212 35.3333 - 212.81266 56.3688 - 233.80212	$\begin{array}{l} 3d^5 - 3d^4(b^3P)4p\\ 3d^5 - 3d^4(a^3G)4p\\ 3d^5 - 3d^4(a^1))4p\\ 3d^5 - 3d^4(a^1))4p\\ 3d^5 - 3d^4(a^3P)4p\\ 3d^5 - 3d^4(a^1))4p \end{array}$	b ² D - ⁴ P° a ² I - ⁴ G° a ² H - ² H° a ⁴ P - ⁴ D° a ² H - ² H°	2010 11 10 10 10 10 10 10 10 10		958 958 958 958 958 958
		30 30 12 200 30	563.679 564.141 564.285 565.062 565.220	$\begin{array}{r} 35.4066 & - 212.81266 \\ 52.1667 & - 229.42891 \\ 56.0583 & - 233.27284 \\ 52.1667 & - 229.13890 \\ 38.9382 & - 215.86050 \end{array}$	3d ⁵ - 3d⁴(a ³ P)4p 3d ⁵ - 3d⁴(a ⁴ D)4p 3d ⁵ - 3d⁴(a ¹ I)4p 3d ⁵ - 3d⁴(a ¹ G)4p 3d ⁵ - 3d⁴(a ¹ G)4p 3d ⁵ - 3d⁴(a ⁸ P)4p	a ⁴ P • ⁴ D ^o a ² F - ² P ^o a ² H - ² H ^u a ² F - ² F ^o a ⁴ D • ⁴ P ^o			958 958 958 958 958 958

iltiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	250	565.280	56 3688 - 233 27284	3d ⁵ - 3d ⁴ (a ¹ 1)4n	a ² H 2H ⁰	μ.u		958
	80	565.374	52.6207 - 229.49474	$3d^5 - 3d^4(a^3D)4p$	$a^4F - F^0$	3.9		958
	200	565.612	51.3942 - 228.19367	$3d^5 - 3d^4(a^1G)4p$	$a^2F - {}^2F^o$	3.3		958
	50	566.034	47.0786 - 223.74582	$3d^5 - 3d^4(a^3G)4p$	a ² I - ² H ^o	$\frac{11}{2} - \frac{5}{2}$		958
İ	30	566.274	52.6954 - 229.28802	$3d^5 \cdot 3d^4(a^3D)4p$	a ⁴ F - ⁴ F ^o	2 - 2		958
	30	566.406	47.0786 - 223.62959	$3d^{5} - 3d^{4}(a^{3}F)4p$	a²l · ²G°	12 - 2		958
	12	566.699	47.0905 - 223.55014	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^2 l \cdot {}^2 H^\circ$	2 - 2		958
	80	566.912	57.4080 - 233.80212	3d ⁵ - 3d ⁴ (a ¹ I)4p	$a^2G \cdot {}^2H^{\circ}$	2 - 2		958
	$\frac{12}{30}$	566.994	52.6954 - 229.06258 52.8380 - 229.13890	3d ⁵ - 3d ⁴ (a ³ D)4p 3d ⁵ - 3d ⁴ (a ¹ G)4p	a ⁴ F - ⁴ F° a ⁴ F - ² F°			958 958
	50 -	5 (7 000			20.20	7 9		250
	50 :	567.323	51.3942 - 227.00025 52.8380 - 220.06258	3d" - 3d"(a"G)4p 3d ⁵ - 3d ⁴ (a ³ D)4p	a ⁺ F - ⁺ G ^o	5.5		958
	12	567.500	51.3942 - 227.60473	$3d^5 - 3d^4(a^3G)4n$	$a^2 F = {}^2 G^0$		ļ	958
	80	567.718	82.8973 - 259.03972	$3d^{5} - 3d^{4}(b^{3}F)4p$	$\mathbf{h}^2 \mathbf{\hat{G}} - \mathbf{\hat{G}}^\circ$			958
	4	567.769	61.1565 - 237.28309	3d ⁵ - 3d ⁴ (a ¹ D)4p	$\tilde{b}^2 F \cdot {}^2 \tilde{D}^0$	2 - 2		958
	50	567.919	57.7212 - 233.80212	3d ⁵ - 3d⁴(a¹1)4p	a ² G · ² H°	3.8		958
	12	567.987	57.7212 - 233.78086	$3d^{5} - 3d^{4}(a^{3}D)4p$	$a^2G - {}^2F^0$	2 - 2		958
	200	568.091	61.2544 - 237.28309	$3d^5 \cdot 3d^4(a^1D)4p$	$b^2 F - {}^2 D^{\circ}$	7 - 5		958
	110	568.951	61.1565 - 236.91879	3d ⁵ - 3d ⁴ (a ¹ D)4p	$b^2 F - {}^2 D^\circ$	2 - 2		958
	110	569.246	82.8949 - 258.56602	3d" - 3d*(b"F)4p	b²G · ²G"	2 - 2		958
	50	569.634	57.7212 - 233.27284	$3d^5 - 3d^4(a^1I)4p$	$a^2G - {}^2H^{\circ}$	$\frac{9}{2} - \frac{11}{2}$		958
	200	569.672	66.7201 - 242.25925	3d [°] - 3d [°] (a ¹ D)4p	$a^2S - {}^2P^{\circ}$	11 0		958
	200	570.010	30.3088 · 231.80400	30° - 30°(a°G)4p 2,15 - 2,14(-10)4-	a H - G	2.2		958 058
:	30	571.215	47.0905 - 222.15499	3d ⁵ - 3d ⁴ (a ³ G)4p	a ² I - ⁴ H ^o	$\begin{vmatrix} \frac{2}{13} & \frac{2}{13} \\ \frac{13}{2} & \frac{13}{2} \end{vmatrix}$	ĺ	958 958
	А	572 180	52 8380 - 227 60473	3d5 - 2d4(03C)100	a ⁴ F ² C ^o	 5 Z		958
	80	572.189	52.6300 - 227.00473	3d ⁵ - 3d ⁴ (a ³ D)4n	ar- G a ⁴ F. ⁴ D°	2 - 2		958
	300	572.878	47.0905 - 221.64749	$3d^{5} - 3d^{4}(a^{3}G)4p$	$a^2 L \cdot {}^4 H^\circ$	ររូំ រំរុ		958
	4	573.050	49.5415 - 224.04602	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^2D - {}^2F^{\circ}$	2 - 3		958
	30	573.759	52.6954 - 226.98358	3d ⁵ - 3d ⁴ (a ³ D)4p	a ⁴ F - ⁴ D°	2 - 2		958
-	12	574.232	52.8380 - 226.98358	3d ⁵ - 3d ⁴ (a ³ D)4p	$a^4F - {}^4D^{\circ}$	2 - 2		958
	110	574.441	57.7212 - 231.80400	3d ⁵ - 3d ⁴ (a ¹ G)4p	a ² G - ² G"	2 - 2		958
	200	574.480	47.0905 - 221.16102	3d ⁵ - 3d ⁴ (a ³ H)4p	$a^2I - {}^2H^\circ$	2 - 2	P	958
	50	574.497	57.4080 - 231.47332	3d ³ - 3d ⁴ (a ⁺ G)4p	$a^2G - {}^2G^\circ$	2-2	P	958
	12	574.533	52.8380 - 226.89210	3d" - 3d"(a"D)4p	a*F - *D*	2 - 2		958
	80	574.626	47.0786 - 221.10417	$3d^5 - 3d^4(a^3G)4p$	$a^{2}I - {}^{4}H^{\circ}$	$\begin{vmatrix} 11 \\ 2 \\ 3 \\ 3 \end{vmatrix}$		958 959
	4	574.770	74.0966 - 248.07797	3d" • 3d"(a'F)4p	$b^{2}D - {}^{2}D^{2}$	2 - 2		958
	80	575 991	49.3413 - 223.39002	$3d^{-3} - 3d^{-3}(a^{-1}) + p$ $2d^{-5} - 2d^{-4}(a^{-3}D) + p$	a-D · -G h ² F ² 10°	2 - 2		938
	4	575.534	57.7212 - 231.47332	$3d^{5} - 3d^{4}(a^{1}G)4p$	$a^2G \cdot {}^2G^\circ$	2 - 2		958 958
	12	576 600	50.0514 222.47806	2.1 ⁵ 2.1 ⁴ (a ³ F)4p	$a^2 D = {}^2 \Gamma^{\circ}$	3 5		059
i	300	576 758	47 0786 - 220 46133	3d - 3d (ar)4p 3d ⁵ - 3d ⁴ (a ³ H)4n	а D · г 21 · ² Н°			958
	80	576.903	49.5415 - 222.88023	$3d^5 \cdot 3d^4(a^3P)4n$	$a^2D - ^2D^\circ$	3-5		958
	80	577.308	61.2544 - 234.47200	$3d^5 \cdot 3d^4(a^3D)4p$	$\tilde{b}^2 \tilde{F} - {}^2 \tilde{D}^\circ$	2-5		958
	4	577.336						958
I	30	577.687	56.3688 - 229.47283	3d ⁵ - 3d⁴(a¹I)4p	a ² H · ² K ^o	11 - 13		958
	12	578.199	61.1565 - 234.10672	$3d^{5} - 3d^{4}(a^{3}D)4p$	$b^2F - {}^2F^{\circ}$	2 - 2		958
	110	578.243	56.3688 - 229.30661	3d ² - 3d ³ (a ¹ G)4p	$a^{2}H - {}^{2}H^{\circ}$	2 - 2		958
	12	578.511 578.604	74.1331 - 246.99080	3d° - 3d4(a'F)4p 3d° - 3d4(a ³ P)4p	$b^2D - {}^2D^9$ $a^2D - {}^2D^9$	2 - 2		958 958
		510.007		ou outairp	·····	2 2		
	50 250	578.921 579 543	56.0583 - 228.79386 47.0905 - 219.64076	3d° - 3d4(a1G)4p 3d° - 3d4(a3H)4p	$a^{2}H - {}^{2}H^{\circ}$ $a^{2}I - {}^{2}I^{\circ}$	2 - 2 13 - 13		958 958
	12	579.624	61.2544 - 233.78086	$3d^{5} - 3d^{4}(a^{3}D)4D$	$b^2F - {}^2F^\circ$	3-3		958
	300	579.758	47.0786 - 219.56446	3d ⁵ - 3d ⁴ (a ³ H)4p	$a^{2}[2^{2}]$	ļų į	1	958
	50	579.783	49.5415 - 222.02009	3d ⁵ - 3d ⁴ (a ³ P)4p	$a^2D \cdot {}^2D^{\circ}$	2 . 2		958
	4	579.956	56.3688 - 228.79386	3d ⁵ - 3d ⁴ (a ¹ G)4p	$a^{2}H - {}^{2}H^{\circ}$	11 - 2	1	958
	50	580.211	51.3942 - 223.74582	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^2 \mathbf{F} \cdot {}^2 \mathbf{H}^\circ$	7 - 2		958
	12	580.531	56.0583 - 228.31503	$3d^{5} - 3d^{4}(a^{1}I)4p$	$a^2H - {}^2I^{\circ}$	2 - 2		958
	250	580.551	52.6207 - 224.87085	3d ³ - 3d ⁴ (a ³ G)4p	$a^{4}F - {}^{4}G^{\circ}$	2 - 2		958
	4	580.595	51.3942 - 223.62959	3d° - 3d⁴(a°F)4p	a²F - ²G°	2 - 2		958
	1	581.112	51.3942 - 223.47896	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^2 F - {}^2 F^{\circ}$	7 - 5 5 - 2	1	958
İ	80 : 1	581.176	52.1007 - 224.23060 50.0514 - 222.02000	3d" - 3d"(a"G)4p 3d ⁵ - 3d ⁴ (a ³ D)45	a"r - "G" a²n ²nº	2-2		958 058
	00	501.502	59 6907 994 57643	3d ⁵ 3d ⁴ (a ³ C)4n	a D · D a ⁴ F · ⁴ C ⁹	2 2		200
	30	301.345	12.02.01 * 2.2.* 1711*3	, 11 - , 11 (a) (+PAR)	a i · · · ·			956

(¹⁷⁷⁰),	Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Note	s References
		50 1 4 1 1	581.950 582.142 582.306 582.480 582.567	$\begin{array}{c} 56.3688 & -228.20433\\ 49.5415 & -221.32054\\ 57.4080 & -229.13890\\ 49.5415 & -221.21929\\ 57.4080 & -229.06258 \end{array}$	$\begin{array}{l} 3d^5 + 3d^4(a^1f)4p\\ 3d^5 + 3d^4(a^3G)4p\\ 3d^5 + 3d^4(a^3G)4p\\ 3d^5 + 3d^4(a^3G)4p\\ 3d^5 + 3d^4(a^3G)4p\\ 3d^5 + 3d^4(a^3D)4p \end{array}$	$a^{2}H - {}^{2}I^{\circ}$ $a^{2}D - {}^{4}F^{\circ}$ $a^{2}G - {}^{2}F^{\circ}$ $a^{2}D - {}^{4}F^{\circ}$ $a^{2}D - {}^{4}F^{\circ}$ $a^{2}G - {}^{4}F^{\circ}$	11	958 958 958 958 958 958
		12 50 150 4 110	582.742 582.972 583.138 583.342 583.458	$\begin{array}{c} 56.0583 & -227.66025\\ 52.6954 & -224.23060\\ 51.3942 & -222.88023\\ 52.6207 & -224.04602\\ 52.8380 & -224.23060 \end{array}$	3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	a ² H - ² G° a ⁴ F - ⁴ G° a ² F - ² D° a ⁴ F - ² F° a ⁴ F - ⁴ G°	12112200-1220 121122-1220 121122-1220 121122-1220	958 958 958 958 958 958
		$12 \\ 50 \\ 80 \\ 110 \\ 50$	583.799 583.869 584.002 584.083 584.222	$\begin{array}{c} 56.3688 & \cdot 227.66025\\ 82.8973 & \cdot 254.16913\\ 52.1667 & \cdot 223.39862\\ 52.8371 & \cdot 224.04596\\ 50.0514 & \cdot 221.21929 \end{array}$	3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (b ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p	$a^{2}H - {}^{2}G^{\circ}$ $b^{2}C - {}^{2}F^{\circ}$ $a^{2}F - {}^{2}G^{\circ}$ $a^{4}F - {}^{4}G^{\circ}$ $a^{2}D - {}^{4}F^{\circ}$	Neuroscience 	958 958 958 958 958 958
		$ \begin{array}{r} 12 \\ 110 \\ 30 \\ 30 \\ 80 \\ 80 \end{array} $	584.366 584.428 584.542 584.623 584.698	52.6207 - 223.74582 49.5413 - 220.64922 57.7212 - 228.79386 52.6954 - 223.74582 82.8949 - 253.92359	3d ⁵ - 3d⁴(a ³ G)4p 3d ⁵ - 3d⁴(a ³ G)4p 3d ⁵ - 3d⁴(a ³ G)4p 3d ⁵ - 3d⁴(a ³ G)4p 3d ⁵ - 3d⁴(b ³ F)4p		972/08/08/17208: • - • • • •	958 958 958 958 958 958
		150 80 50 30 1	585.036 585.416 585.777 585.976 586.018	$\begin{array}{c} 52.6207 - 223.55014 \\ 49.5415 - 220.36044 \\ 52.1667 - 222.88023 \\ 49.5415 - 220.19725 \\ 52.8371 + 223.47896 \end{array}$	3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	$a^{4}F - {}^{2}H^{\circ}$ $a^{2}D - {}^{2}P^{\circ}$ $a^{2}F - {}^{2}D^{\circ}$ $a^{2}D - {}^{2}F^{\circ}$ $a^{4}F - {}^{2}F^{\circ}$		958 958 958 958 958 958
		1 12 30 80 12 1	586.184 586.337 586.604 586.993 587.140	$\begin{array}{c} 57.7212 + 228.31503 \\ 61.2544 + 231.80400 \\ 57.7212 + 228.19367 \\ 82.8949 + 253.25437 \\ 61.1565 + 231.47332 \end{array}$	3d ⁵ - 3d ⁴ (a¹J)4p 3d ⁵ - 3d ⁴ (a¹G)4p 3d ⁵ - 3d ⁴ (a¹G)4p 3d ⁵ - 3d ⁴ (b³F)4p 3d ⁵ - 3d ⁴ (a¹G)4p 3d ⁵ - 3d ⁴ (a¹G)4p	$a^{2}C - {}^{2}L^{n}$ $b^{2}F - {}^{2}G^{o}$ $a^{2}G - {}^{2}F^{o}$ $b^{2}G - {}^{4}C^{n}$ $b^{2}F - {}^{2}G^{n}$	997729777 	958 958 958 958 958 958
jettere.		4 150 30 80 30	587.364 587.556 587.686 587.734 588.088	$\begin{array}{c} 57.4080 & - 227.66025\\ 57.4080 & - 227.60473\\ 49.5415 & - 219.70053\\ 50.0514 & - 220.19725\\ 52.8380 & - 222.88023\\ \end{array}$	3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	$a^{2}G - {}^{2}G^{u} a^{2}G - {}^{2}G^{u} a^{2}D - {}^{3}D^{u} a^{2}D - {}^{2}F^{u} a^{4}F - {}^{2}D^{u}$		958 958 958 958 958 958
		4 30 110 1 110	588.208 588.280 588.447 588.639 588.745	$\begin{array}{c} 50.0514 - 220.05933 \\ 82.8973 - 252.88448 \\ 57.7212 - 227.66025 \\ 57.7212 - 227.60473 \\ 52.1667 - 222.02009 \end{array}$	3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (b ³ F)4p 3d ⁵ - 3d ⁴ (a ³ C)4p 3d ⁵ - 3d ⁴ (a ³ C)4p 3d ⁵ - 3d ⁴ (a ³ C)4p 3d ⁵ - 3d ⁴ (a ³ P)4p	$ \begin{array}{c} a^{2}D - {}^{4}D^{\alpha} \\ b^{2}G - {}^{4}G^{\alpha} \\ a^{2}G - {}^{2}G^{\alpha} \\ a^{2}G - {}^{2}G^{\alpha} \\ a^{2}G + {}^{2}D^{\alpha} \end{array} $		958 - 958 958 958 958 958
		30 80 110 30 110	589.795 589.833 590.566 590.733 590.828	49.5415 - 219.09167 50.0514 - 219.59084 49.5415 - 218.87121 50.0514 - 219.33390 51.3942 - 220.64922	3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ³ C)4p	$ a^{2}D - {}^{2}D'' a^{2}D - {}^{4}D'' a^{2}D - {}^{2}D'' a^{2}D - {}^{2}P'' a^{2}F - {}^{2}F'' $	Ne-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	958 958 958 958 958 958
		$30 \\ 4 \\ 50 \\ 4 \\ 4 \\ 4$	591.076 591.180 591.465 591.529 591.574	$\begin{array}{c} 52.8380 + 222.02009 \\ 52.1667 + 221.32054 \\ 49.5415 + 218.61388 \\ 52.1667 + 221.21929 \\ 50.0514 + 219.09167 \end{array}$	3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ³ C)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	$a^{4}F - {}^{2}D^{\circ}$ $a^{2}F - {}^{4}F^{\circ}$ $a^{2}D - {}^{4}S^{\circ}$ $a^{2}F - {}^{4}F^{\circ}$ $a^{2}D - {}^{2}D^{\circ}$	Near-Julian-Near-Julian Near-Julian-Near-Julian Near-Julian-Near-Julian Near-J	958 958 958 958 958 958
		1 4 1 80 80	592.300 592.371 592.699 592.942 593.053	$\begin{array}{c} 74.1331 + 242.96562 \\ 56.0583 + 224.87085 \\ 47.0905 + 215.80891 \\ 52.6954 + 221.34606 \\ 52.6207 + 221.23921 \end{array}$	3d ⁵ - 3d ⁴ (a ¹ F)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p	$b^{2}D + {}^{2}F^{\circ}$ $a^{2}H + {}^{4}G^{\circ}$ $a^{2}I - {}^{4}I^{\circ}$ $a^{4}F + {}^{4}F^{\circ}$ $a^{4}F - {}^{4}F^{\circ}$		958 958 958 958 958 958
		4 4 50 110 4	593.255 593.315 593.409 593.533 593.792	$\begin{array}{c} 50.0514 + 218.61388 \\ 52.6954 + 221.23921 \\ 56.0583 + 224.57643 \\ 52.8380 + 221.32054 \\ 52.6954 + 221.10417 \end{array}$	3d ⁵ - 3d ⁴ (a ³ P)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p	a ² D - ⁴ S" a ⁴ F - ⁴ F" a ² H - ⁴ G" a ⁴ F - ⁴ F" a ⁴ F - ⁴ F"		958 958 958 958 958 958
		30 110 50 4 30	593.888 594.162 594.502 594.543 594.626	$\begin{array}{c} 52.8371 + 221.21929 \\ 49.5415 + 217.84529 \\ 56.3688 + 224.57643 \\ -51.3942 + 219.39084 \\ 56.0583 + 224.23060 \end{array}$	3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ F)4p 3d ⁵ - 3d ⁴ (a ³ G)4p	a ⁴ F - ⁴ F° a ² D - ⁴ G° a ² H - ⁴ G° a ² F - ⁴ D° a ² H - ⁴ G°		958 958 958 958 958 958

Multiplet Rel. Int.	λ_{vac} (in A)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Referen
: 12	594 664	74 0966 - 242 25925	3d ⁵ - 3d ⁴ (a ¹ D)4n	$b^2D = {}^2P^0$	3.3		058
50	594.795	74.1331 - 242.25925	$3d^5 - 3d^4(a^1D)4p$	$b^2D - {}^2P^n$	5.8		958
1	594.968	47.0786 - 215.15569	$3d^5 - 3d^4(a^3H)4p$	$a^2 l \cdot {}^4 l^{\circ}$	ļļį ģ	i i	958
30	595.133	$52.1667 \cdot 220.19725$	$3d^5 - 3d^4(a^3G)4p$	$a^{2}F - {}^{2}F^{0}$	2 - 2		958
! 110	595.289	61.1565 - 229.13890	$3d^{5} - 3d^{4}(a^{1}G)4p$	b ² F - ² F°	2 - 2		958
4	595.644	61.2544 - 229.13890	3d⁵ - 3d⁴(a¹G)4p	$b^2F - {}^2F^{\circ}$	7 - 2	ĺ	958
4	595.906	52.8380 - 220.64922	$3d^{5} - 3d^{4}(a^{3}G)4p$	$a^4F - {}^2F^\circ$	2 - 2		958
80	596.349	56.0583 - 223.74582	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^2H \cdot {}^2H^\circ$	2 - 2		958
1 50	596.446 596.764	52.1667 - 219.82661 56.0583 - 223.62959	3d° - 3d⁴(a³F)4p 3d⁵ - 3d⁴(a³F)4p	a ² F - ⁴ D" a ² H - ² G"	- 10 2013		958 958
				2	2 2		700
12	596.815	50.0514 - 217.60771	3d° - 3d°(a°P)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	$a^2D - {}^2S^0$ $a^2F = {}^4D^0$	3 . 1		958
12	597.010	52 6954 - 220 19725	$3d^5 - 3d^4(a^3G)A_D$	$a^{4}F + {}^{2}F^{0}$	2 2		930
12	597.288	52.1667 - 219.59084	$3d^5 \cdot 3d^4(a^3F)4n$	$a^2 F \cdot {}^4 D^\circ$	5 5		958
110	597.321	50.0514 - 217.46619	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^2D - {}^4F^{\circ}$	$\frac{2}{3}$ - $\frac{2}{3}$		958
200	597.456	56 3688 - 223.74582	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^{2}H - {}^{2}H^{0}$	4.8	1	958
80	597.535	35.2538 - 202.60833	$3d^5 - 3d^4(a^5D)4p$	a ⁴ P - ⁴ D°	3 4		958
200	597.589	56.0583 - 223.39862	$3d^5 - 3d^4(a^3F)4p$	$a^2H + {}^2G^{\circ}$	2 - 5		958
110	597.871	56.3688 - 223.62959	3d ⁵ - 3d ⁴ (a ³ F)4p	$a^2H \cdot {}^2G^{\circ}$	12.2		958
12	598.062	66.7201 - 233.92712	$3d^{5} - 3d^{4}(a^{1}S)4p$	$a^2S - {}^2P^{\circ}$	$\frac{1}{2} \cdot \frac{1}{2}$		958
80	598.156	56.3688 - 223.55014	$3d^{5} - 3d^{4}(a^{3}G)4p$	$a^2H - {}^2H^o$	<u><u><u></u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>		958
30	598.198	57.4080 - 224.57643	3d ⁵ - 3d ⁴ (a ³ G)4p	$a^2G - {}^4G^\circ$	7 - 2		958
50	598.267	57.7212 - 224.87085	3d ³ - 3d ⁴ (a ³ G)4p	$a^2G - {}^4G^\circ$	ž · ž		958
150 30	598.532 598.669	35.2538 - 202.32853 61.1565 - 228.19367	3d° - 3d*(a°D)4p 3d ⁵ - 3d4(a1G)4p	a*P - *D° b²F - ²F°	3-3-		958 958
	500.005	05.0000 000.0000	als automp	án in.	2 2		050
	598.825	35.3333 - 202.32853	3d [°] · 3d ⁴ (a [°] D)4p	$a^{+}P - {}^{+}D^{0}$	2 - 2		958
30	509.020	52 1667 - 210 00167	$3d^5 - 3d^4(a^3F)4p$	p = r - r $p^2 F - 2 p^2$	2 - 2		900 058
12	599,180	52.6954 - 219.59084	$3d^5 - 3d^4(a^3F)4n$	ar - D a ⁴ F - ⁴ D°	2 - 2	1	958
4	599.324	57.7212 - 224.57643	$3d^5 \cdot 3d^4(a^3G)4p$	$a^2G - {}^4G^\circ$	§ - 2 2 - 2	ĺ	958
12	599.407	35.2538 - 202.08522	$3d^{5} - 3d^{4}(a^{5}D)4D$	a ⁴ P - ⁴ D ^o	5.3	I	958
1	599.441	57.4080 - 224.23060	3d ⁵ - 3d ⁴ (a ³ G)4p	a ² G - ⁴ G°	2.2		958
50	599.692	35.3333 - 202.08522	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a⁴P • ⁴D"	$\frac{3}{2} - \frac{3}{2}$		958
30	599.958	35.4066 - 202.08522	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a ⁴ P - ⁴ D"	1 - 3	f	958
12	600.105	57.4080 - 224.04602	3d" - 3d4(a3F)4p	$a^2G - {}^2F^{o}$	$\frac{7}{2} - \frac{7}{2}$	ľ	958
12	600.290	35.3333 - 201.91938	$3d_{2}^{5} - 3d_{1}^{4}(a_{2}^{5}D)4p$	a ⁴ P - ⁴ D ^o	3.1		958
80	600.348	$49.5415 \cdot 216.11169$	3d ⁵ - 3d ⁴ (a ³ H)4p	$a^2D - {}^2G^{n}$	2 - 2	1	958
50	600.557	35.4066 - 201.91938	3d [°] - 3d [*] (a [°] D)4p	a*P - *D*	2 - 2		958
12 50	600.610 600.788	52.8371 - 219.33390 61.1565 - 227.60473	3d" - 3d"(a"1')4p 3d ⁵ - 3d ⁴ (a ³ G)4p	a"F - "P" b ² F - ² G"	*		958 958
110	600.044	61 0544 007 ((005	9.15 9.14 30M	120 200	7 9		050
110	601.141	01.2544 - 227.00025 61.2544 - 227.60473	3d" - 3d"(a"G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p	ք-Ի - "Ե" հ²Բ - ²Ը∘	2 - 2		958 958
150	601.237	57.7212 - 224.04602	$3d^5 \cdot 3d^4(a^3F)4n$	$a^2 G = {}^2 F^{\circ}$	2 2	1	958
12	601.493	52.8380 - 219.09167	$3d^{5} - 3d^{4}(a^{3}F)4p$	$a^4F \cdot {}^2D^\circ$	2 2	1	958
50	601.609	57.4080 - 223.62959	$3d^5 - 3d^4(a^3F)4p$	$a^2G - {}^2G^{\circ}$	2 - 2	[958
4.	601.651	100.1260 - 266.33524	3d ⁵ - 3d ⁴ (b ³ F)4n	$a^2P - {}^2D^{\circ}$	4.3		958
i	601.773	52.6954 - 218.87121	$3d^5 - 3d^4(a^3F)4p$	$\mathbf{a}^{4}\mathbf{F} \cdot \mathbf{\tilde{D}}^{o}$	72-5		958
150	602.155	57.4080 - 223.47896	3d5 - 3d4(a3F)4p	a ² G - ² F°	2 - 2	i	958
80	602.295	52.1667 - 218.19566	$3d^5 - 3d^4(a^3F)4p$	$a^{2}F - {}^{4}F^{0}$	5.5		958 956
50	602.319	57.7212 - 223.74582	3d" - 3d"(a"G)4p	a"G•*H"	2 - 2		958
110	602.444	57.4080 - 223.39862	$3d^{5} - 3d^{4}(a^{3}F)4p$	$a^{2}G - {}^{2}G^{\circ}$	$\frac{7}{2} - \frac{7}{2}$		958
110	602.481	52.5207 - 218.60103	30" - 30"(a"F)4p 2,45 - 2,44-3E)4-	$a^{2}F - {}^{2}F''$	2 2	1	958
00 20	603 033	01.1212 - 220.02909 57.7919 - 993 55014	$3d^{5} - 3d^{4}(a^{3}\Gamma)An$	a-GG" a ² C ² H"	2 · ž 2 · L	ĺ	908 052
80	603.199	52.6954 - 218.47836	3d ⁵ - 3d ⁴ (a ³ F)4p	a ⁺ F - ⁴ F°	$\frac{2}{2} - \frac{2}{7}$		958 958
5.0	603 301	59 6907 . 918 27519	3,15 9,14(~311)4~	a*E *C*	2 11		058
50 50	603.582	57.7212 - 223 39862	$3d^{5} - 3d^{4}(a^{3}F)4n$	$a^{2}G \cdot {}^{2}G''$	$\frac{2}{2}$ $\frac{2}{1}$		958
80	604.072	52.6954 - 218.23851	$3d^5 - 3d^4(a^3H)4n$	a ⁴ F - ⁴ G"	7 7	ł	958
12	604.255	49.5415 - 215.03381	$3d^5 - 3d^4(a^3F)4p$	$a^2D - {}^4G$	5.4	l l	958
30	604.750	52.8380 - 218.19566	3d ⁵ - 3d ⁴ (a ³ F)4p	a ⁴ F · ⁴ F	2 - 2		958
50	604.885	52.8380 - 218.15977	3d ⁵ - 3d ⁴ (a ³ H)4 _D	a4F - 4G°	5 - 7	}	958
150	605.038	56.3688 - 221.64749	3d5 - 3d4(a3G)4p	a^2H $^4H^\circ$	<u>1</u> 1 1	1	958
1	605.138	100.1180 - 265.36948	3d ⁵ - 3d ⁴ (b ¹ G)4p	$a^2P \cdot {}^2F$	3 5		958
30	605.382	52.8380 - 218.02381	$3d^5 - 3d^4(a^3P)4p$	$a^{4}F - {}^{4}P^{\circ}$	2.2		958
	60F 609		9 15 9 14/ 31 NA	288 2880			050

D-53

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J-J No	tes Kefe
	30	605.890	56.0583 221.10417	3d ⁵ - 3d ⁴ (a ³ G)4p	a²H - ⁴H°	$\frac{2}{2} - \frac{2}{2}$	958
	110	605.934	51.3942 - 216.42844	$3d^5 - 3d^4(a^3H)4p$	$a^2F - {}^2G^{\circ}$	$\frac{7}{2} - \frac{9}{2}$	958
	4	606.031	52.8371 - 217.84529	$3d^{5} - 3d^{4}(a^{3}H)4p$	a ⁴ F - ⁴ G"	2 - 2	958
	30	606.290	74.1331 239.07140	3d ⁵ - 3d ⁴ (a ¹ D)4p	$b^{2}D - {}^{2}F'$	5 - 5	958
	12	606.534	56.3688 - 221.23921	3d5 - 3d4(a3G)4p	a ² H - ⁴ F ⁰	$\frac{11}{2} - \frac{5}{2}$	958
	110	606 994	56 3688 221 16102	$3d^5 = 3d^4(s^3H)/4n$	2H 2H	.ų .ų	958
Í	110	607.024	50.5000 - 221.10102 #6.9600 - 991 10417	2.15 2.14(a 11)4p	2H 4H	11 2	058
	1	607.030	50.5068 - 221.10417	30 - 30 (a G/4p		2, 2	936
	12	607.100	51.3942 - 216.11169	3d" - 3d (a"H)4p		2 2	950
	600	607.427	52.8371 - 217.46619	3d° - 3d°(a°r)4p 3d⁵ - 3d⁴(a³G)4p	a'F - 'F" a ² H - ⁴ H"	2 - 2 9 - 5	958
	000	001.000			40.45		050
	80	607.702	32.2928 - 196.84682	3d ² - 3d ² (a ² D)4p	12D 2D	3 5	958
	12	008.213	74.0900 · 238.31204	30 - 30 (a D/4p 3.5 - 3.4(3104)	211 2119	2 2	930
	60	008.204	00.0000 - 220.40100 00.0000 - 107 54050	30 - 30 (a m)4p	a (1 - 11	2 2	930
	520 80	608.851	32.3057 - 196.54959	$3d^5 - 3d^4(a^5D)4v$	a ⁴ G - ⁴ F ^o	2-2	958
	200	(00 (40	20.2057 102.02462	2 15 - 2 14 - 5D - 4	-4C 4TN	7 5	0.5.9
	300	609.048	32.3037 - 190.33403 52 1667 - 916 11160	30° - 30°(a°D)4ρ 3d ⁵ - 3d⁴(a ³ Fl)4n	$a^{2}F^{2}C^{0}$	2 - 2	958
	30	610.099	57 4080 . 991 29054	$3d^5 - 3d^4(a^3C)An$	a ² C . ⁴ F⁰	2 5	058
	350	610.004	29 2019 106 10609	245 2.14(~51))/~	4C 4E%	5 3	059
l	200	610.393	38.7794 - 202.60833	$3d^{5} - 3d^{4}(a^{5}D)4p$	a ⁴ D - ⁴ D ^o	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	958
1	.	610.471	59 6907 916 49944	2,15 2.14(-311)4~	a ⁴ F ² C ^o	2.2	058
	30	610.4471	51 3942 - 215 15560	3d ⁵ - 3d ⁴ (a ³ H)4n	a ² F. ⁴ I ^o	2 2 2	958
	20	610.886	57 4080 - 221 10417	3d ⁵ - 3d ⁴ (a ³ C)/An	a ² C . ⁴ H ^o	7 9	058
	90	610.000	38 0351 . 202 60822	3d ⁵ - 2d ⁴ (a ⁵ D)/a	a 0 • 11 a ⁴ D • ⁴ D*	5 7	058
	50	611.436	38.7794 - 202.32853	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a ⁴ D - ⁴ D°	2 - 2	958
	110	611 500	56.0583 910 56446	245 234/-311/4	2TI 210	2 11	059
	50	611.999	57 7919 991 16109	3d ⁵ - 2d ⁴ (* ³ 40/4×	a 11 - 1 a ² C 2µ		058
	150	612.024	90 0251 909 99059	2.45 2.44(a 51)).4.	4D 4D"	2 - 2	058
	130	612.024	50.5551 × 202.52055	2.15 2.14(a ³ E)4a	45 40	2 11	058
	110	612.477	56.3688 - 219.64076	$3d^{5} - 3d^{4}(a^{3}H)4p$	$a^2H \cdot {}^2I^\circ$	$\frac{1}{1}$ $\frac{1}{2}$	958
		بيوموم چرو م	55 4000 DD0 (CD04	5 5 5 4 3 5 4	20 410	7 7	050
	1	612.555	57.4080 - 220.65804 38.8067 - 202.08522	3d" - 3d"(a°G)4p 3d5 - 3d%s5D)4p	$a^{*}G = {}^{*}H^{\circ}$	2 2	958
:	150	612.027	20 0202 202.00322	2.15 2.14(a ⁵ D)/a	4D 4D	3 3	058
1	150	612,957	27 4090 990 46122	50 · 50 (a D)4p	2C 2119	2-2	930
	30	613.409	37.4080 - 220.40133 38.8967 - 201.91938	$3d^{5} - 3d^{4}(a^{5}D)4p$	a G - 11 a ⁴ D - ⁴ D°	2 - 2	958
		10.570	20 0222 201 01020	0.15 0.14 SD) (40 400	3 1	070
	50	613.570	38.9382 - 201.91938	3d" - 3d"(a"1)/4p 3d ⁵ - 3d ⁴ (a ³ C)/4p	$a^{2}C - {}^{2}F^{0}$	2 2	958
	4	613 013	61 1565 . 224 04596	3d ⁵ - 3d ⁴ (a ³ C)4u	$b^2 F = {}^4 C^\circ$	Š Š	058
	12	614 071	22 2040 245 74220	2 d ³ 2 d ⁴ (a ¹ F) 4 a	$h^2C^{-2}C^{\circ}$	2 2	058
	80	614.169	74.0966 - 236.91879	$3d^{5} - 3d^{4}(a^{1}D)4p$	$b^2D - b^2D^\circ$	2 - 2	958
	50	614 994	57 4080 220 10795	9.45 9.44(-3C)A.	2C 2E	7 5	058
	20	614 475	57 7919 990 46133	3d ⁵ , 3d ⁴ /s ³ H)4a	a ² C - ² H ^o	2 2	058
	90	614 505	66 7201 220 42801	$3d^5 - 3d^4(a^3D)A_D$	26 200	1 3	058
ĺ	20	614.595	CO 60C4 915 90599	30 ~ 50 (a 17)4p	4F 4C	2 2	936
	30	615.417	61.2544 - 223.74582	3d ⁵ - 3d ⁴ (a ³ G)4p	$b^2F - {}^2H^\circ$	2 - 2 7 - 2 2 - 2	958
	10	615 526	E9 6054 915 15560	9.15 9.147.317.4.	417 410	7 9	ore
ļ	12	615.859	61 9544 - 210.10009	∋u - ∋α (a∵£1)4×p 3,45 - 2,44(∧3,63,47)	$h^2 F^2 C^0$	2 2	058
	00	616.060	61 1565 999 47006	2,45 2,14(~3E),4	125 25°	5 5	059
	20	616 366	61 1565 - 225.41030	3d - 5d (a t)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	125 200	\$ 7	058
	50	616.404	100.1180 - 262.34836	3d - 3d (a P)4p 3d ⁵ - 3d ⁴ (b ³ P)4p	$a^{2}P \cdot {}^{2}S^{\circ}$	$\frac{2}{3} - \frac{2}{1}$	958
	20	616 400	100 1960 969 94996	9,15 9,14/1.3m/a	20 200		0.56
	30	616 538	100.1200 - 202.34830	30° - 30°(b°12)4p 3d ⁵ - 3d ⁴ (a ³ F)4p	a P - 5° a ⁴ F - 4C°	2 2	958
	12	616 591	56 0583 - 218 23851	$3d^5 - 3d^4(a^3H)4m$	a ² H. ⁴ C°	2 2 2 2 8 - 5	958
	1	616.734	61.2544 - 223.30862	3d ⁵ - 3d ⁴ (a ³ F)4n	b ² F. ² C ^o	Ť.Ť	958
	i	617.264	56.3688 - 218.37512	3d ⁵ - 3d ⁴ (a ³ H)4p	a ² H - ⁴ G°		958
Ì	4	617 341	52 8371 - 214 82174	3d5 - 3d4(a3F)An	a4F.4Cv	3 5	058
Í	4	617.810	82.8973 - 244.75925	$3d^{5} - 3d^{4}(a^{1}F)4p$	b ² G - ² G ^o	2 2	958
	4	618.337	61.1565 - 222.88023	$3d^{5} - 3d^{4}(a^{3}P)4p$	b ² F · ² D°	5.5	958
	80	618.712	61.2544 - 222.88023	$3d^{5} - 3d^{4}(a^{3}F)4b$	b ² F - ² D ^o	2.5	958
	50	619.032	32.2455 - 193.78919	3d5 - 3d4(a5D)4p	a⁴G - °D°	$\frac{11}{2} - \frac{5}{2}$	958
	1	619 207	32.2928 - 193 78919	3d ⁵ - 3d ⁴ (a ⁵ D)4n	a ⁴ G - ⁶ D°	8.8	958
	4	619.979	35.2538 - 196.54959	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a ⁴ P - ⁴ F°	5.5	958
	12	620.756	32.2928 - 193.38617	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a4G - 6D°	2.3	958
	ī	620.804	32.3057 - 193.38617	3d ⁵ - 3d ⁴ (a ^s D)4p	a4G - 6D°	1	958
	î	621,110	35.3333 - 196.33463	$3d^5 - 3d^4(a^5D)4n$	a4P . 4F	3 5	958

Multiplet	Rel. Int.	λ _{ve} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	12 30 12 30 4	621.553 621.643 621.691 623.680 624.724	$\begin{array}{c} 74.0966 & - 234.98435 \\ 61.1565 & - 222.02009 \\ 74.1331 & - 234.98435 \\ 74.1331 & - 234.47200 \\ 82.8949 & - 242.96562 \end{array}$	$3d^5 - 3d^4(a^3D)4p$ $3d^5 - 3d^4(a^3P)4p$ $3d^5 - 3d^4(a^3P)4p$ $3d^5 - 3d^4(a^3D)4p$ $3d^5 - 3d^4(a^3P)4p$ $3d^5 - 3d^4(a^3F)4p$	$ \begin{array}{c} b^2 D & - {}^2 D^{\prime\prime} \\ b^2 F & - {}^2 D^{\prime\prime} \\ b^2 D & - {}^2 D^{\prime\prime} \\ b^2 D & - {}^2 D^{\prime\prime} \\ b^2 D & - {}^2 D^{\prime\prime} \\ b^2 G & - {}^2 F^{\prime\prime} \end{array} $			958 958 958 958 958 958
		$\begin{array}{c} 624.768\\ 624.791\\ 624.960\\ 625.662\\ 626.107 \end{array}$	$\begin{array}{c} 56.3688 & 216.42844 \\ 56.0583 & 216.11169 \\ 74.0966 & 234.10672 \\ 74.0966 & 233.92712 \\ 82.8973 & 242.61460 \end{array}$	3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ⁴ D)4p 3d ⁵ - 3d ⁴ (a ⁴ D)4p 3d ⁵ - 3d ⁴ (a ¹ S)4p 3d ⁵ - 3d ⁴ (a ¹ F)4p	$ \begin{array}{c} a^{2}H - {}^{2}G^{n} \\ a^{2}H - {}^{2}G^{n} \\ b^{2}D - {}^{2}F^{n} \\ b^{2}D - {}^{2}P^{n} \\ b^{2}G - {}^{2}F^{n} \end{array} $			958 958 958 958 958 958
		626.211 626.356 626.379 627.134 627.195	$\begin{array}{c} 74.0966 & \cdot 233.78672 \\ 74.1331 & \cdot 233.78672 \\ 74.1331 & \cdot 233.78676 \\ 100.1260 & \cdot 259.58164 \\ 56.3688 & \cdot 215.80891 \end{array}$	$3d^5 - 3d^4(a^{1}S)4p$ $3d^5 - 3d^4(a^{1}S)4p$ $3d^5 - 3d^4(a^{*}D)4p$ $3d^5 - 3d^4(a^{*}D)4p$ $3d^5 - 3d^4(b^{3}P)4p$ $3d^5 - 3d^4(a^{3}H)4p$	$b^{2}D - {}^{2}P^{o} \\ b^{2}D - {}^{2}P^{o} \\ b^{2}D - {}^{2}F^{o} \\ a^{2}P - {}^{2}P^{o} \\ a^{2}H - {}^{4}I^{o}$	азиази - азиази - азиази - а - а - а - а - а - а - а - а - а - а	P P	958 958 958 958 958 958
	30 30 12 50 12	627.373 628.767 629.350 630.096 631.130	$\begin{array}{c} 61.2544 & - 220.64922 \\ 61.1565 & - 220.19725 \\ 100.1180 & - 259.01148 \\ 57.7212 & - 216.42844 \\ 61.2544 & - 219.70053 \end{array}$	3d ⁵ - 3d ⁴ (a ³ C)4p 3d ⁵ - 3d ⁴ (a ³ C)4p 3d ⁵ - 3d ⁴ (b ³ P)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ⁴ F)4p	$\begin{array}{c} b^{2}F & {}^{2}F' \\ b^{2}F & {}^{2}F' \\ a^{2}P & {}^{2}P'' \\ a^{2}G & {}^{2}G'' \\ b^{2}F & {}^{4}D'' \end{array}$			958 958 958 958 958 958
	4 150 80 4 12	631.175 631.733 632.051 632.539 632.604	$\begin{array}{c} 61.1565 & 219.59084\\ 35.2538 & 193.54925\\ 35.3333 & 193.54925\\ 108.2421 & 266.33524\\ 108.2583 & 266.33524 \end{array}$	3d ⁵ - 3d⁴(a³F)4p 3d ⁵ - 3d⁴(a ⁵ P)4p 3d ⁵ - 3d⁴(a ⁶ P)4p 3d ⁵ - 3d⁴(a ⁶ P)4p 3d ⁵ - 3d⁴(b ³ F)4p 3d ⁵ - 3d⁴(b ³ F)4p	$\begin{array}{c} b^{2}F \cdot {}^{4}D^{o}\\ a^{4}P \cdot {}^{6}D^{o}\\ a^{4}P \cdot {}^{6}D^{o}\\ c^{2}D \cdot {}^{2}D^{o}\\ c^{2}D \cdot {}^{2}D^{o}\end{array}$			958 958 958 958 958 958
	$ \begin{array}{r} 80 \\ 110 \\ 50 \\ 12 \\ 30 \end{array} $	632.646 632.843 633.159 633.220 633.456	$\begin{array}{r} 38.7794 & \cdot 196.84682 \\ 35.2538 & \cdot 193.27127 \\ 108.2421 & \cdot 266.18109 \\ 108.2583 & \cdot 266.18109 \\ 35.4066 & \cdot 193.27127 \end{array}$	3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (b ³ F)4p 3d ⁵ - 3d ⁴ (b ³ F)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p	$\begin{array}{c} a^{4}D - {}^{4}F^{\circ} \\ a^{4}P - {}^{6}D^{\circ} \\ c^{2}D - {}^{2}D^{\circ} \\ c^{2}D - {}^{2}D^{\circ} \\ a^{4}P - {}^{6}D^{\circ} \end{array}$			958 958 958 958 958 958
	$50 \\ 30 \\ 4 \\ 50 \\ 1$	633.768 633.832 634.059 634.452 635.092	35.3333 - 193.12034 38.7794 - 196.54959 35.4066 - 193.12034 38.9351 - 196.54959 61.1565 - 218.61388	3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ³ P)4p	$\begin{array}{c} a^4 P & - {}^6 D^{\prime\prime} \\ a^4 D & - {}^4 F^{\prime\prime} \\ a^4 P & - {}^6 D^{\prime\prime} \\ a^4 P & - {}^4 F^{\prime\prime} \\ b^2 D & - {}^4 F^{\prime\prime} \\ b^2 F & - {}^4 S^{\prime\prime} \end{array}$			958 958 958 958 958 958
	12 80 150 30 50	635.184 635.332 635.560 635.766 635.881	$\begin{array}{c} 57.7212 & 215.15569 \\ 38.9382 & 196.33463 \\ 35.2538 & 192.59528 \\ 38.8967 & 196.18688 \\ 35.3333 & 192.59528 \end{array}$	3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p	$a^{2}G - {}^{4}I^{o}$ $a^{4}D - {}^{4}F^{o}$ $a^{4}P - {}^{4}P^{o}$ $a^{4}D - {}^{4}F^{o}$ $a^{4}D - {}^{4}F^{o}$			958 958 958 958 958 958
	30 12 12 80 50	635.933 636.428 636.493 636.928 637.581	38.9382 - 196.18688 108.2421 - 265.36948 108.2583 - 265.36948 61.1565 - 218.15977 108.2421 - 265.08477	3d ⁵ - 3d⁴(a ⁵ D)4p 3d ⁵ - 3d⁴(b ¹ G)4p 3d ⁵ - 3d⁴(b ¹ G)4p 3d ⁵ - 3d⁴(b ⁴ G)4p 3d ⁵ - 3d⁴(a ³ H)4p 3d ⁵ - 3d⁴(b ¹ G)4p	$\begin{array}{c} {a}^{4}D + {}^{4}F^{\circ}\\ {c}^{2}D + {}^{2}F^{\circ}\\ {c}^{2}D + {}^{2}F^{\circ}\\ {b}^{2}F + {}^{4}G^{\circ}\\ {c}^{2}D + {}^{2}F^{\circ} \end{array}$			958 958 958 958 958 958
	1 150 12 50 80	638.522 639.223 639.547 639.846 642.312	$\begin{array}{c} 32.2928 & \cdot 188.90455 \\ 35.2538 & \cdot 191.69411 \\ 35.3333 & \cdot 191.69411 \\ 35.4066 & \cdot 191.69411 \\ 35.3333 & \cdot 191.02118 \end{array}$	3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p	$a^{4}G - {}^{6}F^{\circ}$ $a^{4}P - {}^{4}P^{\circ}$ $a^{4}P - {}^{4}P^{\circ}$ $a^{4}P - {}^{4}P^{\circ}$ $a^{4}P - {}^{4}P^{\circ}$			958 958 958 958 958 958
	30 4 150 4 4	642.609 643.931 644.435 644.985 645.121	$\begin{array}{r} 82.8973 \cdot 238.51284 \\ 74.1331 \cdot 229.42891 \\ 61.2544 \cdot 216.42844 \\ 74.0966 \cdot 229.13890 \\ 38.7794 \cdot 193.78919 \end{array}$	3d ⁵ - 3d ⁴ (a ¹ D)4p 3d ⁵ - 3d ⁴ (a ⁴ D)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ⁴ C)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p	$\begin{array}{c} b^2G & -{}^2F^o \\ b^2D & -{}^2P^o \\ b^2F & -{}^2G^o \\ b^2D & -{}^2F^o \\ a^4D & -{}^6D^o \end{array}$			958 958 958 958 958 958
-		645.349 646.120 646.185 646.702 646.771	$\begin{array}{c} 61.1565 \cdot 216.11169\\ 38.7794 \cdot 193.54925\\ 35.2538 \cdot 190.00828\\ 35.2538 \cdot 189.88511\\ 38.9351 \cdot 193.54925 \end{array}$	3d ⁵ - 3d ⁴ (a ³ H)4p 3d ³ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p	$ \begin{array}{c} b^2F \cdot ^2G^\circ \\ a^+D \cdot ^6D^\circ \\ a^+P \cdot ^6P^\circ \\ a^4P \cdot ^6P^\circ \\ a^4P \cdot ^6P^\circ \\ a^4D \cdot ^6D^\circ \end{array} $	neuropauseuropause		958 958 958 958 958 958
	$ \begin{array}{c} 1 \\ 12 \\ 80 \\ 12 \\ 4 \end{array} $	647.340 647.777 647.939 648.408 648.581	35.4066 - 189.88511 38.8967 - 193.27127 38.9382 - 193.27127 38.8967 - 193.12034 38.9382 - 193.12034	3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p	$a^{4}P - {}^{6}P^{\circ}$ $a^{4}D - {}^{6}D^{\circ}$ $a^{4}D - {}^{6}D^{\circ}$ $a^{4}D - {}^{6}D^{\circ}$ $a^{4}D - {}^{6}D^{\circ}$			958 958 958 958 958 958

Aultiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Not	es References
	30	648.799	61.2544 - 215.38523	$3d^{5} - 3d^{4}(a^{3}F)4p$	b²F - ⁴G°	; 7 - 2	958
-	12	649.766	61.2544 - 215.15569	3d ⁵ 3d ⁴ (a ³ H)4p	b²F - ⁴I°	2 - 2	958
	12	649.869	61.1565 - 215.03381	$3d^{5} - 3d^{4}(a^{3}F)4p$	$b^2F - {}^4G^9$	2 2	958
	110	650.129	38.7794 - 192.59528	3d ⁵ - 3d ⁴ (a ⁵ D)4p	$a^{4}D - P^{\circ}$	2 - 2	958
	4	650.409	100.1180 - 253.86843	3d° - 3d'(b°P)4p	a*P - *D*	2 - 2	958
	30	650.439	100.1260 - 253.86843	3d ⁵ - 3d ⁴ (b ³ P)4p	$a^2 P \cdot {}^2 D^\circ$	$\frac{1}{2} - \frac{3}{2}$	958
	80	650.785	38.9351 - 192.59528	3d - 3d (a'D)4p	a'D - 'P''	2 2	958
	4	651.589	74.1331 - 227.60473	3d° - 3d°(a°G)4p	5~D - ~G*	2 2	958
	30	654.460	38.8967 - 191.69411	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a ⁻ P - ⁻ D ⁻ a ⁴ D - ⁴ P ^o	$\frac{2}{2}$ - $\frac{2}{3}$	958
	900	654 690	28.0251 101.60411	245 244(~5D)4m	a ⁴ I) ⁴ I%	5 3	059
	200	655 555	40 5415 - 202 08522	$3d^5 - 3d^4(a^5D)4n$	$a^{2}D \cdot {}^{4}D^{6}$	2 - 2	058
- [1 i i	655 860	35.4066 - 187.87881	$3d^{5} - 3d^{4}(a^{5}D)4n$	a4P - 9F9	1.1	958
	50	657.357	38.8967 - 191.02118	$3d^{5} - 3d^{4}(a^{5}D)4p$	$a^{4}D - {}^{4}P^{0}$	<u>1</u> - <u>1</u>	958
	12	657.538	38.9382 - 191.02118	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a4D - 4P4	2 - 2	958
}	1	657.749	50.0514 - 202.08522	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a ² D · ⁴ D ⁹	1 - 3	958
	12	658.467	50.0514 - 201.91938	$3d^{3} - 3d^{4}(a^{5}D)4\hat{p}$	a ² D • ⁴ D°	$\frac{3}{2} - \frac{1}{2}$	958
1	4	658.582	100.1180 - 251.95894	$3d^5 \cdot 3d^4(b^3P)4p$	a ² P - ⁴ P°	10 - 10	958
1	12	660.836	108.2583 - 259.58164	3d° - 3d4(b3P)4p	$c^2 D - {}^2 P''$	¥ - ‡	958
	12	661.250	38.7794 - 190.00828	3d° - 3d⁴(a`D)4p	a°D•°P°	2 - 2	958
	50	661.337	82.8973 - 234.10672	$3d^5 - 3d^4(a^3D)4p$	$b^2G - {}^2F^{\circ}$	7 - 2	958
	1	662.475	38.9351 - 189.88511	3d ³ - 3d ³ (a ³ D)4p	a*D - "P"	2 - 2	958
		662.538	51.3942 - 202.32853	3d° - 3d (a°D)4p	$a^{2}F + D^{2}$	2 2	958
:	50	662.754	82.8973 - 233.80212 82.8949 - 233.78086	3d ⁵ - 3d ⁴ (a ³ D)4p	$b^{2}G - {}^{2}F^{\circ}$	2 - 2	958
	30	663 964	108 2421 250 01148	2.45 2.440.3D14m	$-^{2}D - ^{2}P^{2}$	5 3	059
	30	662 224	100.2421 • 209.01140	2.15 2.14(b.3D)A.	~20 200	3 3	936
	80	664.002	89 8040 933 97984	3d ⁵ 3d ⁴ (a ¹ D4a	$b^{2}C = {}^{2}H^{0}$	2 2	058
	12	665.945	52 1667 - 202 32853	$3d^5 \cdot 3d^4(a^5D)4n$	$a^{2}F - 4D''$	5	958
	ĩ	666.236	74.1331 - 224.23060	3d ⁵ - 3d ⁴ (a ³ G)4p	$\hat{b}^2\hat{D} = {}^4\hat{G}^{*}$	2 - 2	958
	250	666.722	52.6207 - 202.60833	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a [‡] F - ⁴ D°	2.2	958
	4	666.894	74.0966 - 224.04596	$3d^5 - 3d^4(a^3G)4p$	հ ²D - ⁴G∘	3 - 5	958
	200	667.054	52.6954 - 202.60833	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a4F - 4D°	2 - 2	958
	250	667.689 668.301	52.8380 - 202.60833	3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 2d ⁴ (a ⁵ D)4p	$a^{4}F - {}^{4}D^{6}$	2 - 2 - 5	958
	2.00	000.001	52.0954 · 202.52555	50 - 50 (a 5)+p	ar-D	2 - 2	>30
	50	668.938	52.8380 - 202.32853	$3d^3 - 3d^4(a^5D)4p$	$a^{3}F - {}^{4}D^{6}$	27-22	958
	50	669.423	74.0906 - 223.47890	3d° - 3d°(a P)4p	12D - 2P	2 - 2	958
	1	660.049	74.1331 - 223.47890	50° - 30° (a°F)4p 235 - 244(-3F)4-	$b^{-}D - T^{-}$ $b^{2}D - 2C_{0}$	2 2	958
	200	670.028	52.8380 - 202.08522	$3d^{5} - 3d^{4}(a^{5}D)4p$	a'F - 'D'	2 - 2	958
	110	670 768	52 8371 201 01038	2.4 ⁵ 2.1% SDM	₀ ⁴ ₽ ⁴ D⁰	3 1	058
	12	671 549	82 8949 - 231 80400	$3d^{5} - 3d^{4}(a^{1}C)An$	h^2C , $^2C^{\circ}$	2 2	958
	ĩ	672.279	74.1331 - 222.88023	3d ⁵ - 3d [*] (a ³ P)4p	$\tilde{b}^2 \tilde{D} - {}^2 \tilde{D}^{\circ}$	3.3	958
	30 I	673.056	82.8973 - 231.47332	3d5 - 3d4(a1G)4p	$b^2G - {}^2G^\circ$	1 2 . 2	958
	4	683.003	82.8949 - 229.30661	$3d^5 + 3d^4(a^1G)4p$	$b^2 \hat{G} = {}^2 \hat{H}^{\circ}$	$\frac{9}{2} - \frac{11}{2}$	958
	1	684.293	50.0514 - 196.18688	3d ⁵ - 3d ⁴ (a ⁵ D)4p	$a^2D - {}^4F^{\circ}$	$\frac{3}{2} - \frac{3}{2}$	958
	4	685.350	$108.2583 \cdot 254.16913$	$3d^5 \cdot 3d^4(b^3F)4p$	$c^2 D + {}^2 F^{\circ}$	32 - 32	958
	30	685.415	82.8973 - 228.79386	$3d^3 - 3d^4(a^1C)4p$	$b^2 G - {}^2 H^2$	2-2	958
	4	686.430 686.764	108.2421 - 253.92359 108.2583 - 253.86843	$3d^5 + 3d^4(b^3F)4p$ $3d^5 + 3d^4(b^3F)4p$	$c^2D + {}^2F^{\circ}$ $c^2D + {}^2D^{\circ}$	- 12 - 12	958 958
		600.70F	100.2007 - 200.00070	ou ou (p r rep	· · · ·	2.3	
1	1	688.072	108.2421 - 253.57565	3d ⁹ - 3d ⁴ (b ³ P)4p	$c^{*}D - {}^{2}D^{*}$	1 - 2	958
	4	088.245 680 507	62.8973 - 228.19307 108.9491 959.95497	30" - 30"(a'G)4p 245 - 240.3134	b"G - *t" ' ₀215 - 4€°	2 2	958
	4	680.678	74.0066 910.00167	242 244°3L/45	6°D - 6° -	2 - 2	950
	1	690.190	57.7212 - 202.60833	3d - 3d (a 1)4p 3d ⁵ - 3d⁴(a ⁵ D)4p	$a^2G - {}^4D^\circ$	2 - 2 2 - 2	958
	80	690 772	82 8949 , 227 66025	3d ⁵ . 2d ⁴ (3)(1)4n	$h^2C = {}^2C^2$	2 2	958
	12	690,903	74.1331 - 218.87121	3d ⁵ - 3d ⁴ (a ³ F)4n	$\tilde{b}^2 D - ^2 D^2$	1 3	958
	50	691.051	82.8973 - 227.60473	3d5 - 3d4(a3G)4p	$b^2G - {}^2G^\circ$	2 - 2	958
	4	691.437	108.2583 - 252.88448	$3d^{3} + 3d^{4}(b^{3}F)4p$	$e^2D - {}^4G^\circ$	2 - 2	958
	1	692.602	52.1667 - 196.54959	$3d^5 - 3d^4(a^5D)4p$	$a^{2}F - {}^{4}F'$	2 - 2	958
1	200	693.356	52.6207 - 196.84682	$3d^5 - 3d^4(a^5D)4p$	a⁴F - ⁴F°	2 - 2	958
[12	693.635	52.1667 - 196.33463	3d ⁵ - 3d ⁴ (a ⁵ D)4p	a ² F - ⁴ F°	2 - 2	958
	30	693.713	52.6954 - 196.84682	3d° - 3d4(a°D)4p	a*F *F°	2 - 2	958
ł	4	694.343	52.1667 - 196.18688	$3d^3 - 3d^4(a^5D)4p$	a ² F · ⁴ F ^o	22 - 22	958
	30	094.786	52.6207 - 196.54959	3d' - 3d"(a°D)4p	a'l' *t°	ž - ž	958

D	56
---	----

Multiplet Kel. Int.	A_{var} (in A)	Levels (in 10° cm ⁻⁺)	Configurations	Terms	J - J Notes	References
$ \begin{array}{r} 110 \\ 50 \\ 30 \\ 110 \\ 4 \end{array} $	695.150 695.837 696.188 696.880 697.499	$\begin{array}{r} 52.6954 & \cdot 196.54959 \\ 52.8380 & \cdot 196.54959 \\ 52.6954 & \cdot 196.33463 \\ 52.8380 & \cdot 196.33463 \\ 74.0966 & \cdot 217.46619 \end{array}$	3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁶ D)4p 3d ⁵ - 3d ⁴ (a ⁵ D)4p 3d ⁵ - 3d ⁴ (a ⁵ F)4p	$\begin{array}{c} a^{4}F - {}^{4}F^{\circ} \\ a^{4}F - {}^{4}F^{\circ} \\ a^{4}F - {}^{4}F^{\circ} \\ a^{4}F - {}^{4}F^{\circ} \\ b^{2}D - {}^{4}F^{\circ} \end{array}$		958 958 958 958 958 958
80 12 4 12 1	697.598 708.373 709.980 710.566 711.737	$\begin{array}{r} 52.8371 & -196.18688\\ 52.6207 & -193.78919\\ 82.8973 & -223.74582\\ 82.8949 & -223.62959\\ 82.8973 & -223.39862\\ \end{array}$	$3d^5 - 3d^4(a^5D)4p$ $3d^5 - 3d^4(a^5D)4p$ $3d^5 - 3d^4(a^3G)4p$ $3d^5 - 3d^4(a^3F)4p$ $3d^5 - 3d^4(a^3F)4p$ $3d^5 - 3d^4(a^3F)4p$	$ \begin{array}{c} a^{4}F - {}^{4}F^{o} \\ a^{4}F - {}^{6}D^{o} \\ b^{2}G - {}^{2}H^{o} \\ b^{2}G - {}^{2}G^{o} \\ b^{2}G - {}^{2}G^{o} \end{array} $	390060700 - 200760700 - 200760750 - 20076752	958 958 958 958 958 958
4 12 4 4	720.711 723.243 723.553 726.935 728.337	82.8949 - 221.64749 82.8949 - 221.16102 82.8973 - 221.10417 82.8973 - 220.46133 82.8973 - 220.19725	3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p 3d ⁵ - 3d ⁴ (a ³ G)4p	$ \begin{array}{c} b^2G \ - \ ^4H^{\circ} \\ b^2G \ - \ ^2H^{\circ} \\ b^2G \ - \ ^2H^{\circ} \\ b^2G \ - \ ^2H^{\circ} \\ b^2G \ - \ ^2F^{\circ} \end{array} $		958 958 958 958 958 958
4 4 4 1 30	729.048 738.857 744.305 747.331 748.873	$\begin{array}{r} 100.1180 & -237.28309 \\ 82.8949 & -218.23851 \\ 100.1180 & -234.47200 \\ 100.1180 & -233.92712 \\ 82.8949 & -216.42844 \end{array}$	3d ⁵ - 3d ⁴ (a ¹ D)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ³ D)4p 3d ⁵ - 3d ⁴ (a ³ D)4p 3d ⁵ - 3d ⁴ (a ³ H)4p 3d ⁵ - 3d ⁴ (a ³ H)4p	$ \begin{array}{c} a^{2}P - {}^{2}D^{a} \\ b^{2}G - {}^{4}G^{a} \\ a^{2}P - {}^{2}D^{a} \\ a^{2}P - {}^{2}P^{a} \\ b^{2}G - {}^{2}G^{a} \end{array} $		958 958 958 958 958 958
$ \begin{array}{c} 1 \\ 12 \\ 4 \\ 30 \\ 80 \end{array} $	750.670 754.784 789.107 1247.823 1253.807	$\begin{array}{r} 82.8973 \cdot 216.11169 \\ 82.8973 \cdot 215.38523 \\ 108.2583 \cdot 234.98435 \\ 138.33883 \cdot 218.47836 \\ 138.84403 \cdot 218.60103 \end{array}$	$\begin{array}{r} 3d^5 \cdot 3d^4(a^3H)4p\\ 3d^5 \cdot 3d^4(a^3F)4p\\ 3d^5 \cdot 3d^4(a^3F)4p\\ 3d^5 \cdot 3d^4(a^3D)4p\\ 3d^4(a^5D)4s \cdot 3d^4(a^3F)4p\\ 3d^4(a^5D)4s \cdot 3d^4(a^3F)4p\end{array}$	$ \begin{array}{ccc} b^2G & - ^2G^\circ \\ b^2G & - ^4G^\circ \\ c^2D & - ^2D^\circ \\ ^4D & - ^4F^\circ \\ ^4D & - ^4F^\circ \end{array} $		958 958 958 958 958 958
$\begin{vmatrix} 1\\ 1\\ 4\\ 30\\ 4\end{vmatrix}$	1308.238 1320.800 1328.842 1329.868 1336.099	$\begin{array}{c} 162.07442 & -238.51284 \\ 161.57159 & -237.28309 \\ 167.71250 & -242.96562 \\ 162.08781 & -237.28309 \\ 162.07442 & -236.91879 \end{array}$	$\begin{array}{l} 3d^4(a^3F)4s \cdot 3d^4(a^1D)4p \\ 3d^4(a^3P)4s \cdot 3d^4(a^1D)4p \\ 3d^4(a^1G)4s \cdot 3d^4(a^1F)4p \\ 3d^4(a^3F)4s \cdot 3d^4(a^1D)4p \\ 3d^4(a^3F)4s \cdot 3d^4(a^1D)4p \end{array}$	² F - ² F ⁰ ² P - ² D ⁰ ² G - ² F ⁰ ² F - ² D ⁰ ² F - ² D ⁰	NACINA-INACINALINES NACINA-INACINAL	958 958 958 958 958 958
12 1 30 80 80	1357.247 1370.08 1371.561 1381.523 1394.829	$\begin{array}{r} 165.39258 & \cdot 239.07140\\ 35.2538 & \cdot 108.2421\\ 162.07442 & \cdot 234.98435\\ 162.08781 & \cdot 234.47200\\ 162.08781 & \cdot 233.78086 \end{array}$	$\begin{array}{rrrr} 3d^4(a^3G)4_8&\cdot&3d^4(a^1D)4p\\ &3d^5&\cdot&3d^5\\ 3d^4(a^3F)4_8&\cdot&3d^4(a^3D)4p\\ 3d^4(a^3F)4_8&\cdot&3d^4(a^3D)4p\\ 3d^4(a^3F)4_8&\cdot&3d^4(a^3D)4p\\ 3d^4(a^3F)4_8&\cdot&3d^4(a^3D)4p \end{array}$	${}^{2}G - {}^{2}F'' \\ a^{4}P - c^{2}D \\ {}^{2}F - {}^{2}D' \\ {}^{2}F - {}^{2}D'' \\ {}^{2}F - {}^{2}D'' \\ {}^{2}F - {}^{2}F'' $	97-7558 75-75-75 75-75-75 75-75-75 75-75 75-75	958 958 958 958 958 958
4 4 12 12 4	1396.252 1401.366 1405.708 1407.774 1408.227	$\begin{array}{r} 171.34533 \cdot 242.96562 \\ 167.71250 \cdot 239.07140 \\ 171.47639 \cdot 242.61460 \\ 156.22488 \cdot 227.25880 \\ 177.06672 \cdot 248.07797 \end{array}$	$\begin{array}{l} 3d^4(a^3D)4s & 3d^4(a^1F)4p \\ 3d^4(a^1C)4s & 3d^4(a^1D)4p \\ 3d^4(a^3D)4s & 3d^4(a^1F)4p \\ 3d^4(a^3F)4s & 3d^4(a^3D)4p \\ 3d^4(a^1D)4s & 3d^4(a^1F)4p \end{array}$	${}^{2}D + {}^{2}F''$ ${}^{2}G - {}^{2}F''$ ${}^{2}D + {}^{2}F''$ ${}^{4}F - {}^{4}D''$ ${}^{2}D - {}^{2}D''$	10000000000000000000000000000000000000	958 958 958 958 958 958
$12 \\ 50 \\ 30 \\ 200 \\ 50$	1410.156 1411.237 1412.778 1414.255 1420.224	171.34533 - 242.25925 156.12377 - 226.98358 171.47639 - 242.25925 183.15961 - 253.86843 183.16449 - 253.57565	$\begin{array}{l} 3d^4(a^3D)4s & 3d^4(a^1D)4p \\ 3d^4(a^3F)4s & 3d^4(a^3D)4p \\ 3d^4(a^3D)4s & 3d^4(a^1D)4p \\ 3d^4(a^1F)4s & 3d^4(b^3P)4p \\ 3d^4(a^1F)4s & 3d^4(b^3P)4p \\ 3d^4(a^1F)4s & 3d^4(b^3P)4p \end{array}$	${}^{2}D - {}^{2}P^{o}$ ${}^{4}F - {}^{4}D^{o}$ ${}^{2}D - {}^{2}P^{o}$ ${}^{2}F - {}^{2}D^{o}$ ${}^{2}F - {}^{2}D^{o}$		958 958 958 958 958 958
$\begin{array}{c} 4\\ 4\\ 150\\ 50\\ 80\end{array}$	1421.305 1421.986 1422.131 1422.927 1423.145	$\begin{array}{r} 154.51267 & 224.87085 \\ 158.73869 & 229.06258 \\ 195.86415 & 266.18109 \\ 159.01039 & 229.28802 \\ 159.22790 & 229.49474 \end{array}$	$\begin{array}{l} 3d^4(a^3H)4s & 3d^4(a^3G)4p \\ 3d^4(a^3G)4s & 3d^4(a^3D)4p \\ 3d^4(b^3P)4s & 3d^4(b^3F)4p \\ 3d^4(a^3G)4s & 3d^4(a^3D)4p \\ 3d^4(a^3G)4s & 3d^4(a^3D)4p \\ 3d^4(a^3G)4s & 3d^4(a^3D)4p \end{array}$	⁴ H - ⁴ G° ⁴ G - ⁴ F° ² P - ² D° ⁴ G - ⁴ F° ⁴ G - ⁴ F°		958 958 958 958 958 958
12 375 450 200 200	1423.475 1425.480 1425.728 1426.040 1426.234	$\begin{array}{c} 154.32596 & - 224.57643 \\ 159.34288 & - 229.49474 \\ 154.73129 & - 224.87085 \\ 158.73869 & - 228.86261 \\ 196.22071 & - 266.33524 \end{array}$	$\begin{array}{l} 3d^4(a^3H)4_5 & 3d^4(a^3G)4p\\ 3d^3(a^3G)4_5 & 3d^3(a^3D)4p\\ 3d^4(a^3H)4_5 & 3d^4(a^3G)4p\\ 3d^4(a^3G)4_5 & 3d^4(a^3D)4p\\ 3d^4(b^3F)4_5 & 3d^4(b^3F)4p\\ 3d^4(b^3F)4_5 & 3d^4(b^3F)4p \end{array}$	⁴ H - ⁴ G" ⁴ G - ⁴ F' ⁴ H - ⁴ G" ⁴ G - ⁴ F" ² F - ² D"	200750120120120120120120120120120120120120120	958 958 958 958 958 958
300 250 250 250 30	1427.268 1427.346 1427.511 1427.553 1427.657	$\begin{array}{c} 154.51267 & 224.57643 \\ 159.22790 & 229.28802 \\ 159.01039 & 229.06258 \\ 196.13119 & 266.18109 \\ 154.18585 & 224.23060 \end{array}$	$\begin{array}{l} 3d^4(a^3H)4s & 3d^4(a^3G)4p \\ 3d^4(a^3G)4s & 3d^4(a^3D)4p \\ 3d^4(a^3G)4s & 3d^4(a^3D)4p \\ 3d^4(b^3F)4s & 3d^4(b^3F)4p \\ 3d^4(a^3H)4s & 3d^4(a^3G)4p \end{array}$	⁴ H · ⁴ G ⁰ ⁴ G · ⁴ F ⁰ ⁴ G · ⁴ F ⁰ ² F · ² D ⁰ ⁴ H · ⁴ G ⁰	112005-55-55-55-55-55-55-55-55-55-55-55-55-	958 958 958 958 958 958
80 200 520 80 150	1428.884 1430.517 1431.432 1434.314 1434.387	$\begin{array}{r} 177.00597 & -246.99080 \\ 154.32596 & -224.23060 \\ 154.18585 & -224.04596 \\ 154.32596 & -224.04602 \\ 162.08781 & -231.80400 \end{array}$	3d ⁴ (a ¹ D)4s - 3d ⁴ (a ¹ F)4p 3d ⁴ (a ³ H)4s - 3d ⁴ (a ³ G)4p 3d ⁴ (a ³ H)4s - 3d ⁴ (a ³ G)4p 3d ⁴ (a ³ H)4s - 3d ⁴ (a ³ F)4p 3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ F)4p	${}^{2}D - {}^{2}D^{o}$ ${}^{4}H - {}^{4}G^{o}$ ${}^{4}H - {}^{4}G^{o}$ ${}^{4}H - {}^{2}F^{o}$ ${}^{2}F - {}^{2}G^{o}$		958 958 958 958 958 958

	<u></u>		T		······	i		
Multiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		1400 (00)	100 07500 000 00501	0.14/1.310.4 (0.14/1.310.4	20 20.6	1 3		050
		1439.688	196.87562 - 266.33524	3d (b [*] P)4s - 3d (b [*] F)4p	² P - ² D ²	2-2		958
	110	1440.946	162.07442 - 231.47332	3d*(a*F)4s - 3d*(a*G)4p	25 25	2 2		958
	30	1444.294	196.13119 - 205.30948	3d (b"r)4s - 3d (b"G)4p	411 2110	2 - 2		958
	200	1444.403	154.51207 - 225.74582	$3d^{2}(a^{2}H)4s - 3d^{2}(a^{2}U)4p$		2 - 2		958
	150	1440.000	164.95050 - 254.10672	50 (a G)48 - 50 (a D)4p	6.4	2 - 2		958
	30	1446.154	196.22071 - 265.36948	3d4(b3F)4s - 3d4(b1G)4p	$^{2}\mathbf{F} - ^{2}\mathbf{F}^{o}$	5 - 5		958
	50	1447.742	154.32596 - 223.39862	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}F)4p$	⁴ H - ² G ^o	2 - 2		958
	30	1449.028	189.97501 - 258.98664	3d ⁴ (b ³ P)4s - 3d ⁴ (b ³ F)4p	$^{4}P - ^{4}D^{\circ}$	2-2		958
	12	1450.252	196.13119 - 265.08477	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{1}G)4p$	${}^{2}F - {}^{2}F'$	2 - 2		958
	150	1452.393	164.95050 - 233.80212	3d*(a ³ G)4s - 3d*(a'1)4p	$^{2}G - ^{2}H^{\circ}$	2-2		958
	150	1452.478	190.40645 - 259.25434	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	⁴ F - ⁴ D°	3-1		958
	300	1453.089	154.73129 - 223.55014	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}C)4p$	⁴ H - ² H ^o	1 <u>3</u> - <u>1</u>		958
	80	1453.962	190.40645 - 259.18382	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	4 F - ⁴D°	3 - 3		958
	250	1454.585	190.43547 - 259.18382	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	4 F • ⁴ D°	2 - 2		958
	30	1455.712	160.77860 · 229.47283	3d4(a3H)4s - 3d4(a1)4p	$^{2}\text{H} \cdot ^{2}\text{K}^{\circ}$	$\frac{1}{2}$ $\frac{1}{2}$	ł	958
	150	1456.751	156.22488 - 224.87085	3d4(a3F)4s - 3d4(a3G)4n	4F - 4G*	8 . 14		958
	300	1457 369	189 97501 - 258 59192	$3d^{4}(h^{3}P)4s = 3d^{4}(h^{3}F)4p$	4P.4D°	5.1	Í	958
	250	1458 524	190 42414 - 258 98664	$3d^4(b^3F)4e - 3d^4(b^3F)4p$	4F . 4D	1 5		958
	110	1458 763	190 43547 - 258 98664	$3d^4(h^3F)4s - 3d^4(h^3F)4p$	4F - 4D°	5.5		958
	250	1459.257	160.77860 - 229.30661	3d4(a3H)4s - 3d4(a1G)4p	² H - ² H	11 - 11		958
	200	1460 220	160 31164 228 70286	234630140 23461 Film	24 211	2 2		058
	150	1400.229	156 19977 994 57649	34(-3E)(4-2)4(-3C)(4-2)4(-3C)(4-2)		2 2 2		930
	200	1469 940	165 20250 222 70006	30 (a r) 48 - 30 (a G) 4p 9.14(.3C) 4a - 9.14(.3T) 4a	2C 2E	2 2		900
	200	1402.240	150 94900 997 66095	$3d (a G)48 \cdot 3d (a D)4p$ $9.14(a^3C)4a \cdot 2.14(a^3C)4a$	40 200	2 - 2		900
	300	1464.694	139.34288 - 221.00023	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	4F - 4D°	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		958 958
					45 45.	3 5		
	200	1466.820	190.81179 - 258.98664	3d*(b*P)4s - 3d*(b*F)4p	'P - 'D'	7 7		958
	110	1466.966	190.42414 - 258.59192	3d*(b*F)4s - 3d*(b*F)4p	*F - *D*	2-2		958
	12	1467.501	128.19154 - 196.33463	3d*(a ³ D)4s - 3d*(a ³ D)4p	⁶ D - *F*	ž - ž	ĺ	958
	80	1470.421	128.54185 - 196.54959	3d*(a°D)4s · 3d*(a°D)4p	³ D - ³ F ³ 217 - 210	2 - 2		958
	110	1470.514	160.31164 - 228.31503	3d (a H)4s - 3d (a 1)4p	-H - T	2-2		958
	50	1472.395	191.33782 - 259.25434	$3d^{4}(b^{3}P)4s - 3d^{4}(b^{3}F)4p$	⁴ P - ⁴ D°	$\frac{1}{2} - \frac{1}{2}$		958
	450	1473.201	128.96767 - 196.84682	3d4(a°D)4s - 3d4(a°D)4p	°D - *F°	ž - ž		958
	80	1473.926	191.33782 - 259.18382	$3d^{4}(b^{3}P)4s - 3d^{4}(b^{3}F)4p$	*P • *D°	2 - 2		958
	150	1480.863	189.97501 - 257.50326	3d*(b3P)4s - 3d*(b3P)4p	*P *S*	2 - 2		958
	12	1481.017	156.22488 - 223.74582	3d*(a*F)4s · 3d*(a*G)4p	*F - ² H°	ž-ž	[958
	375	1483.145	154.73129 - 222.15499	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}G)4y$	⁴ H - ⁴ H°	13 13		958
	110	1486.040	160.31164 - 227.60473	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}G)4v$	² H - ² G ^o	$\frac{1}{2} - \frac{7}{2}$		958
	1	1488.810	171.34533 - 238.51284	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{1}D)4p$	${}^{2}D + {}^{2}F^{\circ}$	<u>7</u> - <u>7</u>		958
	450	1489.534	154.51267 - 221.64749	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}G)4p$	⁴ H - ⁴ H°	<u>11</u> - <u>1</u>		958
	250	1491.095	162.07442 - 229.13890	3d4(a3F)4s - 3d4(a1G)4p	² F • ² F°	2 - 2		958
	250	1493.026	222.84058 - 289.81877	3d4(b1D)4s - 3d4(b1D)4o	${}^{2}D - {}^{2}D^{\circ}$	5.5		958
	30	1493.270	222.85168 - 289.81877	$3d^{4}(h^{1}D)4s - 3d^{4}(h^{1}D)4n$	${}^{2}D - {}^{2}D^{\circ}$	3 5		958
	150	1494.467	154.32596 - 221.23921	$3d^{4}(a^{3}H)4s \cdot 3d^{4}(a^{3}G)4n$	⁴ H - ⁴ F⁰	5 5		958
	450	1495.185	160.77860 - 227.66025	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}G)4p$	${}^{2}H - {}^{2}G^{\circ}$	ųĩ. Ş		958
	250	1497.492	154.32596 - 221.10417	3d4(a3H)4s - 3d4(a3G)4p	⁴ H - ⁴ H°	92 - 9		958
	200	1400 430	190 81179 - 257 50326	3d4(h3PMe - 3d4(h3PMn	4p 4So	3 3		058
	200	1500 412	154 51267 221 16102	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4n$	⁴ H ² H ^o	μĨμ		958
	50	1501 688	154.51267 - 221.10102	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}C)4n$	⁴ H ⁴ H ^o	រុំ ខ្ខ័		958
	110	1502 652	222 85168 - 289 40072	$3d^4(h^1D)4s - 3d^4(h^1D)4p$	${}^{2}\Omega^{2}\Omega^{2}$	3 3		958
	250	1503.243	164.95050 - 231.47332	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{1}G)4p$	${}^{2}G - {}^{2}G^{\circ}$	7 - 7		958
	50	1504 110	105 06415 060 04006	0.14-1.370.4 0.14/1.370.4	20 200	3 1		050
	200	1504.118	195.80415 - 202.34830	3d'(b'P)4s - 3d'(b'P)4p	-P - 5° 411 - 4110	2 - 2		958
	300	1504.379	165 20259 221 20400	$3d^{(a' H)}4s - 3d^{(a' G)}4p$	$\frac{1}{2}C + \frac{1}{2}C $	2 2		958
	200	1505.700	165.59258 - 231.80400	$3d^{-}(a^{-}C)4s = 3d^{-}(a^{-}C)4p$ $244^{-}3D4 = 244^{-}3E4$	*G • *G* 40 400	2-2		958
	50	1505.640	167 70509 934 10679	3d(a'r)4s - 3d(a'r)4p $2d^4(a^4C)4a - 2d^4(a^3G)4a$	$\frac{1}{2}C + \frac{1}{2}V_{2}$	2 2		938
		1000.047	101.19094 - 404.10072	ou la cares - ou la marp	9-r	2~2		730
	110	1508.856	154.18585 - 220.46133	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	⁴ H - ² H°	7 - 2		958
	50	1511.365	191.33782 - 257.50326	3d*(b°P)4s - 3d*(b°P)4p	*P - *S°	\$ - \$		958
	80	1512.728	162.08781 - 228.19367	3d"(a°F)4s - 3d"(a'G)4p	${}^{2}\mathbf{F} - {}^{2}\mathbf{F}^{\circ}$	<u>z</u> - <u>z</u>		958
	150	1513.587	167.71250 - 233.78086	3d"(a'G)4s - 3d"(a'D)4p	~G · ² F°	ž - ž		958
	30	1515.012	167.79592 - 233.80212	3d*(a'G)4s - 3d*(a'1)4p	4G - ″H°	2 - 2		958
(250	1516.081	177.00597 - 242.96562	3d ⁴ (a ¹ D)4s - 3d ⁴ (a ¹ F)4p	² D - ² F°	§.7		958
	250	1516.577	171.34533 - 237.28309	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{1}D)4p$	2 D - 2 D°	2 - 2		958
	200	1517.780	154.47485 - 220.36044	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	⁴ P - ² P°	$\frac{3}{2} - \frac{3}{2}$		958
	375	1523.921	127.92912 - 193.54925	3d ⁴ (a ⁵ D)4s - 3d ⁴ (a ⁵ D)4p	°D 6D°	2 - 2		958
	50	1524.368	155.74487 - 221.34606	3d*(a ³ P)4s - 3d ⁴ (a ³ G)4p	⁴P•⁴F°	$\frac{3}{2} - \frac{7}{2}$		958

farra a

Inplet	Rel. Int.	$\lambda_{v_{R'}}$ (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J	Notes	References
1	375	1526.066	150 34988 - 224 87085	$2d^{4}(a^{3}C)(4a - 2d^{4}(a^{3}C)(4a - 2d^{4}(a^{3}C))(4a - 2d^{4}(a^{3}C)(4a - 2d^{4}(a^{3}))(4a - 2d^{4}(a^{3})(4a - 2d^{4}(a^{3}))(4a - 2d^{4}(a^{3})(4a - 2d^{4}(a^{3}))(4a - 2d^{4}(a^{3})(4a - 2d^{4}(a^{3}))(4a - 2d^{4}(a^{3})(4a - 2d^{4}(a^{3}))(4a - 2d^{4}(a^{3})(4a - 2d^{4}(a^{3}))(4a - 2d^{4}(a$	40 40%	Тшп		059
	520	1526.598	127.76615 - 193.27127	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁶ D · ⁶ D ^o	1 3		958
	150	1528.067	171.47639 - 236.91879	$3d^{4}(a^{3}D)4s = 3d^{4}(a^{1}D)4p$	² D · ² D°	3 - 2		958
	80	1528.529	156.22488 - 221.64749	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}G)4p$	⁴ F - ⁴ H°	$\frac{9}{2} - \frac{11}{2}$		958
	150	1530.040	128.19154 - 193.54925	3d*(a°D)4s - 3d*(a°D)4p	°D - °D°	2 - 2		958
	150	1530.125	127.76615 - 193.12034	$3d^4(a^5D)4s - 3d^4(a^5D)4p$	⁶ D - ⁶ D ^o	$\frac{1}{2} - \frac{1}{2}$		958
	375	1530.250	159.22790 - 224.57043	$3d^{4}(a^{3}C)4s = 3d^{4}(a^{3}C)4p$	*G - *G* *C - *C*	2 - 2		958
	200	1531.474	156.04932 - 221.34606	$3d^{4}(a^{3}F)4s + 3d^{4}(a^{3}G)4p$	4F - 4F°	2 2		950
	150	1532.069	156.04932 - 221.32054	3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ G)4p	⁴ F - ⁴ F°	267 - 20 20 - 20		958
	250	1532.485	177.00597 - 242.25925	3d ⁴ (a ¹ D)4s - 3d ⁴ (a ¹ D)4p	$^{2}\text{D} \cdot ^{2}\text{P}^{\circ}$	8-3		958
	600	1532.634	128.54185 - 193.78919	$3d^{4}(a^{5}D)4s = 3d^{4}(a^{5}D)4p$	⁶ D • ⁶ D ^o	2 - 2		958
Ì	520	1532.907	168.56643 - 233.80212	$3d^{4}(a^{1}l)4s - 3d^{4}(a^{1}l)4p$	${}^{2}l - {}^{2}H^{\circ}$	12 - 2		958
	200	1533.576	159.01039 - 224.23060 156.01229 - 221.21929	3d*(a*G)4s - 3d*(a*G)4p 3d*(a*F)4s - 3d*(a*G)4p	'G - 'G" ⁴F - ⁴F°	2-2		958 958
	700	1533.863	128 10154 103 38617	3,44(a ⁵ D)/a 3,44(a ⁵ D)/a	6D 6Da	5 7		059
ĺ	520	1533.952	127.92912 • 193.12034	$3d^{4}(a^{5}D)4_{\odot} - 3d^{4}(a^{5}D)4_{D}$	۵۰۰ <u>۵</u> ، ۳۵	3.5		958
	150	1535.723	154.47485 - 219.59084	$3d^{4}(a^{3}P)4s = 3d^{4}(a^{3}F)4p$	${}^{4}P + {}^{4}D^{\circ}$	13 - 15 12 - 12		958
	600	1536.584	128.19154 - 193.27127	$3d^4(a^5D)4s - 3d^4(a^5D)4p$	⁶ D - ⁶ D ⁶	5.3		958
	200	1538.120	156.22488 - 221.23921	3d*(a*F)4s - 3d*(a*G)4p	*F - *F°	ž - ž		958
	450	1538.289	128.54185 - 193.54925	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁶ D - ⁶ D ⁰ 2D - 200	7 - 52		958
	250	1540.593	103.13901 - 248.07797	30 (a'r)4s - 30 (a'r)4p 3d ⁴ (a ³ P)4s - 3d ⁴ (a ³ C)4p	-Γ - 2D° 4D _ 2F°	205		958
	520	1542.157	128.54185 - 193.38617	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4n$	"D·"D"	2 2		958
	600	1542.696	128.96767 - 193.78919	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	°D - °D°	2 - 2 2 - 2		958
	300	1544.489	168.52637 - 233.27284	$3d^4(a^1I)4s - 3d^4(a^1I)4p$	2 I - 2 H°	$\begin{vmatrix} 13 \\ 2 \\ 2 \\ 2 \end{vmatrix}$		958
	80	1544.636	158.73869 - 223.47896	$3d^4(a^3G)4s - 3d^4(a^3F)4p$	${}^{4}G \cdot {}^{2}F^{\circ}$	2 - 2		958
	450	1545.438	108.50043 - 233.27284 197.09019 109.50599	$3d^{4}(a^{1})4s - 3d^{4}(a^{5})Ma$	*I-*H* 61\ 4De	2.2		958
	250	1549.959	159.22790 - 223.74582	3d ⁴ (a ³ G)4s - 3d ⁴ (a ³ G)4p	4G - ² H°	$\begin{vmatrix} 2 & 2 \\ 9 & 9 \\ 2 & 2 \end{vmatrix}$		958
1	150	1551.535	155.74487 - 220.19725	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}G)4n$	4P. 2F"	\$. \$		958
	300	1552.211	156.22488 220.64922	3d4(a3F)4s - 3d4(a3G)4p	${}^{4}F - {}^{2}F'$	$\frac{5}{2} - \frac{5}{2}$		958
ĺ	450	1552.353	128.96767 - 193.38617	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	°D · °D°	2 - 2		958
	$\frac{450}{200}$	1552.709 1553.172	128.19154 - 192.59528 137.70081 - 202.08522	3d*(a*D)4s - 3d*(a*D)4p 3d*(a*D)4s - 3d*(a*D)4p	°D - 4P° 4D - 4D°	3 - 3		958 958
	300	1553 206	137 04020 202 22853	3d4(a5D)4a 2d4(a5D)4a	 4D 4D⊍	3 5		059
	200	1554.667	159.22790 - 223.55014	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}G)4p$	⁴ G - ² H°	2 - 2 2 - 4		958
	50	1554.934	156.04932 - 220.36044	3d4(a3F)4s - 3d4(a3P)4p	${}^{4}F - {}^{2}P^{0}$	<u>5</u> - <u>5</u> i		958
	250 300	1555.950	138.33883 - 202.60833	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$ $3d^{4}(a^{3}H)4c - 3d^{4}(a^{3}C)4p$	${}^{4}D - {}^{4}D^{\circ}$	- 7 2 2 2		958
		1756 006	150,51107 - 224,57(045)	$a_{1}a_{2}a_{3}a_{4}a_{5}a_{5}a_{6}a_{6}a_{7}a_{7}a_{7}a_{7}a_{7}a_{7}a_{7}a_{7$	11 · G	2 - 2		<i>30</i> 0
1	30	1556.306	170.72949 - 234.98435	$3d^{*}(a^{-5}S)4s - 3d^{*}(a^{-5}D)4p$	² S - ² D° 4D 4D°	1 - 1 1 - 1		958
	300	1557.450	159.34288 - 223.55014	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}G)4n$	10 - D 10 - 2H°			958
	200	1558.668	201.21222 - 265.36948	3d ⁴ (b ¹ G)4s - 3d ⁴ (b ¹ G)4p	${}^{2}G - {}^{2}F^{\circ}$	1		958
	30	1558.909	156.04932 - 220.19725	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}G)4p$	${}^{4}F \cdot {}^{2}F^{\circ}$	<u>5</u> - <u>5</u>		958
	375	1559.191	137.94929 - 202.08522	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	${}^{4}\text{D} - {}^{4}\text{D}^{\circ}$	3 - 3		958
	375	1560.272	167.71250 - 231.80400	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{1}G)4p$	${}^{2}G \cdot {}^{2}G^{\circ}$	9617 - 55	I	958
	375	1561.355	120.34183 - 192.39528	3a (a' D)4s - 3d' (a''D)4p 3d ⁴ (a ³ F)4a - 3d ⁴ (a ³ F)4n	ישיי- שיי 4°F - 4D∘	2 2		958 958
	375	1562.259	154.18585 - 218.19566	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}F)4p$	⁴ H - ⁴ F°	$\frac{2}{7} - \frac{2}{5}$		958
	450	1562.458	165.49310 - 229.49474	$3d^{4}(a^{3}D)4s + 3d^{4}(a^{3}D)4p$	⁴ D - ⁴ F ^o	7 - 2	;	958
	375	1562.753	138.33883 - 202.32853	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	${}^{4}D + {}^{4}D^{\circ}$	51 - 10 10 10		958
	150	1563.133	154.18585 - 218.15977	$3d^{*}(a^{\circ}H)4s - 3d^{4}(a^{\circ}H)4p$	*H - *G ⁰ 4D - 4D0	\$ - \$ 3 1		958
	375	1563.579	155.74487 - 219.70053	$3d^{4}(a^{3}P)4s = 3d^{4}(a^{3}F)4n$	υ·· 4Ρ.4Ω°	2-2		958
	200	15(4.0/0		out Spie out free	6 m 4 m -	2 - 2		
	300 100	1564.263	127.76615 - 191.69411 165.39258 - 229.30661	3d*(a*D)4s - 3d*(a*D)4p 3d*(a*G)4s - 3d*(a*G)4p	^o D - ³ P ^o ² G - ² H ^o	1 - 1 2 - 1 2 - 1	Р	958 958
	150	1564.638	154.32596 - 218.23851	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	4H 4G°	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P	958
ļ	300	1564.780	201.17805 - 265.08477	$3d^4(b^1G)4s - 3d^4(b^1G)4p$	$^{2}G - ^{2}F^{\circ}$	2 - 1		958
	250	1565.867	154.51267 - 218.37512	$3d^{4}(a^{3}H)4s + 3d^{4}(a^{3}H)4p$	⁴ H - ⁴ G ^o	<u>1</u> 2 • 12		958
	520	1566.256	190.31834 - 254.16484	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	${}^{4}\mathbf{F} \cdot {}^{4}\mathbf{G}^{o}$	$\frac{9}{2} \cdot \frac{11}{2}$		958
1	300	1300.404	154.18585 - 218.02381 154.32596 - 218 15077	$3d^{(a^{*}H)}4s + 3d^{(a^{*}P)}4p = 3d^{4}(a^{3}H)4a + 3d^{4}(a^{3}H)4a$	™ · °P° 4H - 4C°	20 7		958 958
1	250	1566.747	183.16449 - 246.99080	$3d^{4}(a^{1}F)4s - 3d^{4}(a^{1}F)4p$	${}^{2}F - {}^{2}D^{\circ}$	2 - 2		958
	30	1567.046	156.01229 - 219.82661	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	${}^{4}F - {}^{4}D^{\circ}$	3.3	i	958

					,	,	
Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J Notes	References
	375 600 375 375 80	1567.955 1568.274 1568.711 1569.221 1569.427	156.04932 - 219.82661 138.84403 - 202.60833 138.33883 - 202.08522 154.51267 - 218.23851 195.86415 - 259.58164	$\begin{array}{l} 3d^4(a^3F)4_5 & - 3d^4(a^3F)4_9\\ 3d^4(a^5D)4_8 & - 3d^4(a^3D)4_9\\ 3d^4(a^5D)4_8 & - 3d^4(a^5D)4_9\\ 3d^4(a^5D)4_8 & - 3d^4(a^5D)4_9\\ 3d^4(a^5D)4_8 & - 3d^4(a^2H)4_9\\ 3d^4(a^5D)4_8 & - 3d^4(a^5H)4_9\\ \end{array}$	${}^{4}F - {}^{4}D^{0}$ ${}^{4}D - {}^{4}D^{0}$ ${}^{4}D - {}^{4}D^{0}$ ${}^{4}H - {}^{4}G^{0}$ ${}^{2}P - {}^{2}P^{u}$	1997	958 958 958 958 958 958
	450 450 450 150 250	$1570.178 \\ 1570.418 \\ 1571.245 \\ 1573.770 \\ 1574.602$	165.60096 - 229.28802 167.79592 - 231.47332 154.73129 - 218.37512 156.04932 - 219.59084 171.47639 - 334.98435	$\begin{array}{c} 3d^4(a^3D)4_{\%} - 3d^4(a^3D)4p\\ 3d^4(a^3C)4_{\%} - 3d^4(a^1C)4p\\ 3d^4(a^3C)4_{\%} - 3d^4(a^3C)4p\\ 3d^4(a^3F)4_{\%} - 3d^4(a^3F)4p\\ 3d^4(a^3F)4_{\%} - 3d^4(a^3F)4p\\ 3d^4(a^3D)4_{\phi} - 3d^4(a^3E)44p\\ \end{array}$	${}^{4}D - {}^{4}F^{0}$ ${}^{2}G - {}^{2}G^{0}$ ${}^{4}H - {}^{4}G^{0}$ ${}^{4}F - {}^{4}D^{0}$ ${}^{2}D - {}^{2}D^{0}$		958 958 958 958 958 958
	200 200 300 250 250	$1574.736 \\1575.105 \\1575.190 \\1575.409 \\1575.613$	128.19154 - 191.69411 190.43547 - 253.92359 138.84403 - 202.32853 156.22488 - 219.70053 156.12377 - 219.59084	$3d^4(a^5D)4s - 3d^4(a^5D)4p$ $3d^4(b^4P)4s - 3d^4(b^3P)4p$ $3d^4(a^5D)4s - 3d^4(a^5D)4p$ $3d^4(a^5P)4s - 3d^4(a^5P)4p$ $3d^4(a^3P)4s - 3d^4(a^4P)4p$	${}^{6}D - {}^{4}P^{\circ}$ ${}^{4}F - {}^{2}F^{\circ}$ ${}^{4}D - {}^{4}D^{\circ}$ ${}^{4}F - {}^{4}D^{\circ}$ ${}^{4}F - {}^{4}D^{\circ}$		958 958 958 958 958 958
	200 4 450 450 250	1576.442 1576.845 1577.205 1577.758 1578.023	$\begin{array}{c} 160.31164 &\cdot 223.74582 \\ 165.72094 &\cdot 229.13890 \\ 190.42414 &\cdot 253.82743 \\ 153.65174 &\cdot 217.03189 \\ 154.47485 &\cdot 217.84529 \end{array}$	$\begin{array}{l} 3d^4(a^3H)4s &- 3d^4(a^3G)4p\\ 3d^4(a^3D)4s &- 3d^4(a^4G)4p\\ 3d^4(b^3F)4s &- 3d^4(b^3F)4p\\ 3d^4(a^3P)4s &- 3d^4(a^5P)4p\\ 3d^4(a^3P)4s &- 3d^4(a^3H)4p\\ 3d^4(a^3P)4s &- 3d^4(a^3H)4p \end{array}$	${}^{2}H + {}^{2}H^{n} \\ {}^{4}D + {}^{2}F^{n} \\ {}^{4}F + {}^{4}G^{n} \\ {}^{4}P + {}^{4}P^{n} \\ {}^{4}P + {}^{4}G^{n} $		958 958 958 958 958 958
;	$110 \\ 375 \\ 200 \\ 375 \\ 200 \\ 375 \\ 200 \\$	1578.611 1578.743 1579.236 1579.368 1580.904	$\begin{array}{c} 155.74487 & - 219.09167 \\ 165.72094 & - 229.06258 \\ 156.01229 & - 219.33390 \\ 165.72094 & - 229.03702 \\ 127.76615 & - 191.02118 \end{array}$	$\begin{array}{l} 3d^4(a^3P)4s & 3d^4(a^3F)4p \\ 3d^4(a^3D)4e & 3d^4(a^3D)4p \\ 3d^4(a^3F)4s & 3d^4(a^3P)4p \\ 3d^4(a^3F)4s & 3d^4(a^3P)4p \\ 3d^4(a^3D)4s & 3d^4(a^3D)4p \\ 3d^4(a^5D)4s & 3d^4(a^5D)4p \end{array}$	⁴ P - ² D° ⁴ D - ⁴ F° ⁴ F - ² P° ⁴ D - ⁴ P° ⁶ D - ⁴ P°		958 958 958 958 958 958
	$250 \\ 200 \\ 150 \\ 12 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 10 \\ 10$	1581,174 1581,471 1582,330 1583,049 1583,600	$\begin{array}{c} 222.84058 & \cdot 286.08472 \\ 165.80447 & \cdot 229.03702 \\ 170.72949 & \cdot 233.92712 \\ 190.40645 & \cdot 253.57565 \\ 195.86415 & \cdot 259.01148 \end{array}$	3d ⁴ (b ¹ D)4s - 3d ⁴ (b ¹ D)4p 3d ⁴ (a ³ D)4s - 3d ⁴ (a ³ D)4p 3d ³ (a ¹ S)4s - 3d ³ (a ¹ S)4p 3d ⁴ (b ³ F)4s - 3d ⁴ (b ³ F)4p 3d ⁴ (b ³ F)4s - 3d ⁴ (b ³ F)4p	${}^{2}D = {}^{2}F^{*}$ ${}^{4}D = {}^{4}P^{o}$ ${}^{2}S = {}^{2}P^{o}$ ${}^{4}F = {}^{2}D^{o}$ ${}^{2}P = {}^{2}P^{o}$		958 958 958 958 958 958
	200 250 200 375 300	1583.741 1583.960 1584.117 1584.969 1585.116	165.72094 - 228.86261 154.47485 - 217.60771 171.34533 - 234.47200 127.92912 - 191.02118 160.31164 - 223.39862	$\begin{array}{l} 3d^4(a^3D)4s + 3d^4(a^3D)4p \\ 3d^4(a^3P)4s + 3d^4(a^2P)4p \\ 3d^4(a^3D)4s + 3d^4(a^3D)4p \\ 3d^4(a^5D)4s + 3d^4(a^5D)4p \\ 3d^4(a^3H)4s + 3d^4(a^3F)4p \end{array}$	${}^{4}D + {}^{4}F^{\circ}$ ${}^{4}P - {}^{2}S^{\circ}$ ${}^{2}D - {}^{2}D^{\circ}$ ${}^{6}D + {}^{4}P^{\circ}$ ${}^{2}H - {}^{2}G^{\circ}$		958 958 958 958 958 958
	$375 \\ 300 \\ 250 \\ 450 \\ 150$	1585.841 1587.594 1588.127 1590.616 1590.863	$\begin{array}{c} 165.80447 & - 228.86261 \\ 165.60096 & - 228.58967 \\ 160.77860 & - 223.74582 \\ 155.74487 & - 218.61388 \\ 156.01229 & - 218.87121 \end{array}$	$\begin{array}{l} 3d^4(a^3D)4s & 3d^4(a^3D)4p \\ 3d^4(a^3D)4s & 3d^4(a^3D)4p \\ 3d^4(a^3H)4s & 3d^4(a^3C)4p \\ 3d^4(a^3H)4s & 3d^4(a^3P)4p \\ 3d^4(a^3F)4s & 3d^4(a^3F)4p \\ 3d^4(a^3F)4s & 3d^4(a^3F)4p \end{array}$	${}^{4}D - {}^{4}F^{\circ}$ ${}^{4}D - {}^{4}P^{\circ}$ ${}^{2}H - {}^{2}H',$ ${}^{4}P - {}^{4}S^{\circ}$ ${}^{4}F - {}^{2}D',$	nden de l'Arrenden de la contraction 1 - 1	958 958 958 958 958 958
	375 520 300 300 520	1591.062 1591.509 1591.802 1591.878 1592.048	$\begin{array}{c} 160.77860 & - 223.62959\\ 201.17805 & - 264.01154\\ 156.04932 & - 218.87121\\ 190.43547 & - 253.25437\\ 159.34288 & - 222.15499 \end{array}$	3d ⁴ (a ³ H)4s - 3d ⁴ (a ³ F)4p 3d ⁴ (b ¹ G)4s - 3d ³ (b ¹ G)4p 3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ F)4p 3d ⁴ (b ³ F)4s - 3d ⁴ (b ³ F)4p 3d ⁴ (a ³ G)4s - 3d ⁴ (a ³ G)4p	² H - ² G° ² G - ² H° ⁴ F - ² D° ³ F - ⁴ G° ⁴ G - ⁴ H°	An and the second of the secon	958 958 958 958 958 958
	$200 \\ 150 \\ 300 \\ 12 \\ 30$	1592.333 1592.724 1593.089 1593.276 1593.343	$\begin{array}{r} 165.39258 & \cdot 228.19367 \\ 165.80447 & \cdot 228.58967 \\ 160.77860 & \cdot 223.55014 \\ 190.81179 & \cdot 253.57565 \\ 171.34533 & \cdot 234.10672 \end{array}$	$\begin{array}{l} 3d^4(a^3G)4s & 3d^4(a^1G)4p\\ 3d^4(a^3D)4s & 3d^4(a^3D)4p\\ 3d^4(a^3H)4s & 3d^4(a^3G)4p\\ 3d^4(a^3H)4s & 3d^4(a^3G)4p\\ 3d^4(b^3P)4s & 3d^4(b^3P)4p\\ 3d^4(a^3D)4s & 3d^4(a^3D)4p \end{array}$	² G · ² F ⁿ ⁴ D · ⁴ P ^o ² H - ² H ^o ⁴ P · ² D ^o ² D · ² F ^o		958 958 958 958 958 958
	30 200 300 375 450	1594.744 1594.921 1595.800 1596.065 1596.668	$\begin{array}{l} 196.87562 & \cdot 259.58164\\ 201.17805 & \cdot 263.87691\\ 201.21222 & \cdot 263.87691\\ 164.95050 & \cdot 227.60473\\ 171.47639 & \cdot 234.10672 \end{array}$	$\begin{array}{l} 3d^4(b^3P)4s \cdot 3d^5(b^5P)4\rho \\ 3d^4(b^4G)4s \cdot 3d^3(b^4G)4p \\ 3d^4(b^4G)4s \cdot 3d^4(b^4G)4p \\ 3d^4(a^3G)4s \cdot 3d^4(a^3G)4\rho \\ 3d^4(a^3D)4s \cdot 3d^4(a^3D)4p \end{array}$	${}^{2}P - {}^{2}P'$ ${}^{2}G - {}^{2}G''$ ${}^{2}G - {}^{2}G''$ ${}^{2}G - {}^{2}G''$ ${}^{2}G - {}^{2}G''$ ${}^{2}D - {}^{2}F''$		958 958 958 958 958 958
	250 30 520 150 200	1597.397 1597.907 1598.012 1598.350 1598.543	$\begin{array}{c} 156.01229 & \cdot 218.61388\\ 158.73869 & \cdot 221.32054\\ 183.16449 & \cdot 245.74229\\ 156.04932 & \cdot 218.61388\\ 154.47485 & \cdot 217.03189 \end{array}$	$\begin{array}{l} 3d^4(a^3F)4s - 3d^4(a^3P)4p\\ 3d^4(a^3G)4s - 3d^2(a^4G)4p\\ 3d^4(a^1F)4s - 3d^4(a^1F)4p\\ 3d^4(a^3F)4s - 3d^4(a^3P)4p\\ 3d^4(a^3P)4s - 3d^4(a^3P)4p\\ 3d^4(a^3P)4s - 3d^3(a^3P)4p \end{array}$	4F - 4S° 4G - 4F↓ 2F - 2G° 4F - 4S° 4P - 4P₀	1000 (1000 - 1000 (1000 - 1000) 	958 958 958 958 958 958
	250 450 520 150 520	1600.294 1600.503 1600.580 1601.503 1601.670	$\begin{array}{r} 162.08781 & -224.57643 \\ 158.73869 & -221.21929 \\ 156.12377 & -218.60103 \\ 171.34533 & -233.78672 \\ 196.13119 & -258.56602 \end{array}$	$\begin{array}{l} 3d^4(a^3f)4s + 3d^4(a^3G)4p\\ 3d^4(a^3G)4s + 3d^4(a^3G)4p\\ 3d^4(a^4F)4s + 3d^4(a^3F)4p\\ 3d^4(a^4P)4s + 3d^4(a^3F)4p\\ 3d^4(a^4D)4s + 3d^4(a^4S)4p\\ 3d^4(b^3F)4s + 3d^4(b^3F)4p \end{array}$	${}^{2}F - {}^{4}G^{\circ}$ ${}^{4}G - {}^{4}F^{\circ}$ ${}^{4}F - {}^{4}F^{\circ}$ ${}^{2}D - {}^{2}P^{\circ}$ ${}^{2}F - {}^{2}G^{\circ}$	00000000000000000000000000000000000000	958 958 958 958 958 958

2

ມ–ດບ

Multiplet Rel.	lnt. λ _{vae} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
2	50 1601.826	156.04932 - 218.47836	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	${}^{4}F \cdot {}^{4}F^{\circ}$	5-2		958
37	75 1601.900	165.49310 - 227.91905	$3d^{*}(a^{3}D)4s - 3d^{*}(a^{3}D)4p$	4D - 3P ^a	<u>2</u> - 2		958
50	20 1602.078	159.22790 - 221.04749	$3d^{4}(a^{3}E)Ae = 3d^{4}(a^{3}E)Ae$	'G - 'H' 4⊑ 4⊑∘	2 - 2		958
52	20 1603.730	156.12377 - 218.47836	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	4F - 4F"	$\frac{2}{2} - \frac{2}{2}$		958
37	75 1604.669	165.60096 · 227.91905	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{3}D)4p$	$4D - 4P^{n}$	5-5		958
192	20 - 1604.885	159.01039 • 221.32054	3d*(a*G)4s - 3d*(a*G)4p 3d*(a*G)4e - 3d*(a*G)4p	4C - 4H			958
52	20 1605.678	155.74487 - 218.02381	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	i 4P.4P°	2 2		958
7(0 1605.970	165.39258 - 227.66025	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}G)4p$	${}^{2}G - {}^{2}G''$	- 9 2 - 2		958
20		156.22488 - 218.47836	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	${}^{4}\mathbf{F} - {}^{4}\mathbf{F}^{0}$	9. 4		958
	30 1607.402	165 30958 - 227 60473	$3d^{4}(a^{3}C)Aa = 3d^{4}(a^{3}C)Aa$	$^{2}C^{-2}C^{0}$	2-2		958
13	50 1608.855	162.07442 • 224.23060	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}G)4n$	² F - ⁴ G [∂]	5 7		958
37	75 1609.003	156.22488 - 218.37512	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	⁴ F - ⁴ G ^o	2 - 11 2 - 2		958
90	0 1609.100	154.73129 - 216.87783	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	$\frac{4}{4}$ H - $\frac{4}{4}$ P	$\begin{vmatrix} 13 \\ 2 \\ - \frac{15}{2} \end{vmatrix}$	(958
00	1609.832	159.22790 - 221.34606	3d'(a°G)4s - 3d'(a°G)4p	*G • *F* 4C • 4C0	2 - 5		958
37	5 1610.041	156.04932 - 218.15977	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	4F - 4G	2 2		958
25	1610.300	155.74487 - 217.84529	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}H)4p$	⁴ P - ⁴ G°	4577	1	958
52	1610.472	159.01039 - 221.10417	3d4(a3G)4s - 3d4(a3G)4p	4G - 4H°	7 - 9	İ	958
20	0 1610.850	127.92912 • 190.00828	$3d^{4}(a^{2}D)4s - 3d^{4}(a^{2}D)4p$	⁶ D - ⁶ P ⁶ 47 - 476	21 22	ĺ	958
	2 1011.037 20 1611.909	150.12377 - 218.19506	3d"(a"F)4s - 3d"(a"F)4p 3d4(a)D)4a - 3d4(a)D)4r	¹ F - ² F ³ ² D ² F ⁶	2 2 5 7		958 058
15	60 1611.202	128.19154 - 190.22687	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	°D - °P°	$\frac{2}{2} \cdot \frac{2}{7}$		958 958
37	5 1612.550	156.22488 - 218.23851	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	${}^{4}F - {}^{4}G^{\circ}$	9 - 9 2 - 2	i	958
20	0 1612.599	$159.22790 \cdot 221.23921$	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}G)4p$	${}^{4}G - {}^{4}F^{\circ}$	2-2	1	958
37	5 + 1012.798 0 + 1613.326	160.01588 - 222.02009	3d*(a*P)4s - 3d*(a*P)4p 3d4(b3P)4e - 3d4(b3P)4p	' ² P - ² D ⁰ 4p _ 4p ⁰	2 - 2		958 958
52	1613.643	162.07442 - 224.04596	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}G)4p$	${}^{2}F - {}^{4}G^{\circ}$	<u>5</u> - 5		958
60	0 1613.991	162.08781 - 224.04602	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	${}^{2}F - {}^{2}F^{0}$	ž - ž	P	958
	0 1614.049	127.92912 - 189.88511	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁶ D · ⁶ P ⁶	2 - 2	P	958
52	0 1614.645	159.22790 - 221.16102	3d [*] (a [*] G)4s - 3d [*] (a [*] H)4p 3d ⁴ (a ³ C)4s - 3d ⁴ (a ³ C)4p	4C 4H			958
11	0 1615.103	154.51267 - 216.42844	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	$^{4}\text{H} \cdot {}^{2}\text{G}^{\circ}$	$\frac{11}{2} - \frac{2}{2}$		958
45	0 1615.609	159.34288 - 221.23921	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}G)4p$	${}^{4}G + {}^{4}F^{\circ}$	11 - 2 2 - 2		958
15	0 1616.130	$159.22790 \cdot 221.10417$	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}G)4p$	⁴ G - ⁴ H ^o	2 - 2		958
80	0 1616.682	154.51267 - 216.36780	$3d^{(a')}(1)4s - 3d^{(a')}(1)4p$	H - T 4E - 4Ce	2 - 2		958
60	0 1617.682	128.19154 - 190.00828	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	°D - °P°	2 - 2 5 - 2 2 - 2		958 958
15	0 1618.225	156.04932 - 217.84529	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	⁴ F - ⁴ G ^o	5 - 5		958
30	0 1618.571	201.21222 - 262.99501	$3d^{4}(b^{1}G)4s - 3d^{4}(b^{1}G)4p$	$^{2}G - ^{2}G^{\circ}$	ž - ž		958
60	0 1619.025	105.49310 - 227.25880	3d (a°D)4s + 3d*(a°D)4p 3d4(a ³ C)4e + 3d4(a ³ C)4m		$\frac{1}{14}$, 2	1	958 958
45	0 1620.912	128.19154 - 189.88511	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	"D - "P"	2 2 2 2		958
52	$0 \frac{1}{1621.155}$	128.54185 - 190.22687	$3d^4(a^5D)4s - 3d^4(a^5D)4p$	⁶ D - ⁶ P ^o	$\frac{1}{2} \cdot \frac{1}{2}$		958
30	0 1621.362	154.32596 - 216.00272	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}F)4p$	4H - 4G°	9 - 11 13 - 15		958
60 27	0 1621.570 5 1621.854	168.52637 - 230.19502	3d7(a'1)4s • 3d7(a'1)4p 3d4(a3F)4s • 3d4(a3C)4p	² I - ² K ⁰ ² Γ ² Π ⁰	2 2		958 058
15	0 1622.126	159.01039 - 220.65804	$3d^{4}(a^{3}G)4s \cdot 3d^{4}(a^{3}G)4p$	⁴ G - ⁴ H ^o	$\frac{2}{2} - \frac{2}{2}$		958
52	0 1623.385	183.15961 - 244.75925	$3d^{4}(a^{1}F)4s - 3d^{4}(a^{1}F)4p$	${}^{2}\mathbf{F} \cdot {}^{2}\mathbf{G}^{n}$	<u>5</u> - <u>7</u>		958
52	0 1623.532	167.71250 - 229.30661	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{1}G)4p$	${}^{2}G - {}^{2}H^{\circ}$	$\frac{9}{2} - \frac{11}{2}$	1	958
' 5 97	0 1623.964	190.40645 - 251.98420	3d*(b°F)4s - 3d*(b°P)4p 3d*(o ³ F)4e - 2d*(o ³ F)4p	${}^{2}F - {}^{2}D^{0}$	1 - t 1 - 1 - 2	1	958 058
1	2 1625.025	190.40645 - 251.94403	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}P)4p$	⁴ F - ⁴ D ^o	$\frac{2}{3} - \frac{2}{3}$ $\frac{3}{2} - \frac{3}{2}$		958
5	0 1625.098	190.42414 - 251.95894	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}P)4p$	⁴ F - ⁴ P ^o	ž - 5		958
8	0 1625.395	190.43547 - 251.95894	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}P)4p$	⁴ F • ⁴ P°	- 10 - 10	1	958
8	0 1625.788	190.43547 • 251.94403	3d*(b°F)4s - 3d*(b°P)4p 3d*(p ³ H)4e - 2-3*(p ³ E)4p	*F - *D ^o 411 - 4C ^o	2 2 11 11		958 058
70	0 1626.470	154.32596 - 215.80891	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	• H - 6 •H - •l°	$\frac{2}{2} - \frac{1}{2}$		958
60	0 1626.903	128.54185 - 190.00828	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁶ D - ⁶ P ^o	7 2		958
20	0 1627.237	156.01229 - 217.46619	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	*F • *F*	12-32		958
30	0 = 1627.319 0 = 1627.451	177.06672 - 238.51284	30 (a 17)45 - 30 (a 11)4p 304(a D)4s - 304(a D)4n	$^{2}D - ^{2}F^{0}$	2 2		958
				1 1 1	£ 5 (

for the second second

Multiplet	Rel. Int.	λ _{ese} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Note	s References
	520	1628,535	162.07442 - 223.47896	3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ F)4n	${}^{2}\mathbf{F} + {}^{2}\mathbf{F}'$	5.5	958
	80	1628.898	162.08781 - 223.47896	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4v$	${}^{2}F - {}^{2}F^{0}$		958
	250	1629.045	154.47485 - 215.86050	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	4P 4P	3.1	958
	375	1629.294	160.77860 - 222.15499	3d4(a3H)4s - 3d4(a3G)4p	² H - ⁴ H ^o	ų <u>1</u> 3	958
	375	1630.110	201.21222 - 262.55777	$3d^{4}(b^{1}G)4s - 3d^{4}(b^{1}G)4p$	${}^{2}G + {}^{2}H^{a}$	$\frac{7}{2} - \frac{7}{2}$	958
	520	1630.183	167.79592 - 229.13890	3d4(a1G)4s - 3d4(a1G)4p	${}^{2}G - {}^{2}F^{0}$	7.5	958
	50	1630.266	190.31834 - 251.65834	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}P)4p$	⁺ F - ⁴D°	$\frac{9}{2} - \frac{7}{2}$	958
	300	1630.363	$160.31164 \cdot 221.64749$	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}C)4p$	${}^{2}H - {}^{4}H^{0}$	$\frac{9}{2} - \frac{11}{2}$	958
	375	1630.679 1631.077	$162.07442 \cdot 223.39862$ $128.96767 \cdot 190.27685$	3d⁴(a³F)4s - 3d⁴(a³F)4p 3d⁴(a⁵II)4s - 3d⁴(a⁵II)4n	² F - ² G՝ ՙՈ - ՙԲ՚	22 · 2 29 · 11	958 958
		1601.011			477 176		0.50
	50 250	1631.421 1631.558	154.51267 - 215.80891 165.60096 - 226.89210	3d*(a°H)4s - 3d*(a°H)4p 3d*(a ³ D)4s - 3d*(a ³ D)4o	*H - *I* 4D - 40*	2 - 2	958
	200	1631 664	155 74487 - 217 03189	$3d^4(a^3P)4a - 3d^4(a^3P)4n$	4p 4p	5 3	058
	450	1632.079	154,73129 - 216,00272	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}F)4n$	4H 4C°	už lu	058
	50	1632.209	167.79592 - 229.06258	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}D)4p$	²G - ⁴F°	² / ₂ - ² / ₂	958
	600	1632.404	128.96767 - 190.22687	3d4(a3D)4s - 3d4(a5D)4p	6D - 6Po	8 . 7	958
	300	1633.065	190.42414 - 251.65834	3d4(b3F)4s - 3d4(b3P)4p	⁴F · ⁴D°	1 5 - 5	958
	520	1634.006	154.18585 - 215.38523	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}F)4p$	⁴ H - ⁴ G°	5-5	958
	300	1634.758	165.72094 - 226.89210	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{3}D)4p$	⁴ D - ⁴ D°	3 - 3	958
	375	1635.396	190.81179 - 251.95894	3d4(b3P)4s - 3d4(b3P)4p	⁴ P - ⁴ P°	2 - 2	958
	250	1635.797	190.81179 - 251.94403	3d ⁴ (b ³ P)4s - 3d ⁴ (b ³ P)4p	⁴ P - ⁴ D°	3 - 3	958
	150	1636.992	165.80447 - 226.89210	3d4(a3D)4s - 3d4(a3D)4p	⁴D - ⁴D°	2 - 2	958
	250	1637.262	154.73129 - 215.80891	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	4H - 4Io	12 - 12	958
	450	1638.070	165.80447 - 226.85193	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{3}D)4p$ $3d^{4}(b^{3}D)4 - 2d^{4}(b^{3}D)4p$	⁴ D - ⁴ D° ⁴ D - ⁴ D°	2 - 2	958
	400	1050.290	109.97304 - 231.01402	50 (b f)48 - 50 (b f)46	1 · D	2 - 2	9.00
	600	1639.404	167.79592 - 228.79386	3d ⁴ (a ¹ G)4s - 3d ⁴ (a ¹ G)4p	² G • ² H ³	7 - 2	958
	800	1640.039	128.54185 - 189.51588	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	6D - 6F°	$\frac{7}{2} - \frac{9}{2}$	958
	600	1640.165	154.18585 - 215.15569	3d4(a3H)4s - 3d4(a3H)4p	4 <u>H</u> - 4 <u>I</u> °	2 - 2	958
	300	1640.782	168.52637 - 229.47283	$3d^{*}(a^{1}I)4s - 3d^{*}(a^{1}I)4p$ $3d^{3}(s^{3}H)4s - 3d^{4}(s^{3}C)4c$	2I - 2K° 2H 4F9	$\frac{13}{2} - \frac{13}{2}$ $\frac{13}{2} - \frac{13}{2}$	958
		1041.272	100.01104 • 221.20921	50 (a 11)45 - 50 (a 5)4p		2 2	300
ĺ	300	1641.600 1641.866	189.97501 - 250.89105	$3d^{4}(b^{3}P)4s - 3d^{4}(b^{3}P)4p$ $3d^{4}(a^{1}D4a - 3d^{4}(a^{1}D4a)$	*P · *P° 21 2K°	$\frac{3}{2} - \frac{3}{2}$ 11 13	958
	375	1649 786	154 51967 915 99599	$3d^{4}(a^{3}H)A_{2} = 2d^{4}(a^{3}F)A_{2}$	411 4C°		938
	450	1642.780	160 77860 221 64740	$3d^4(a^3U)4a = 2d^4(a^3C)4u$	11 - G 20 400	2 - 2	938
	375	1644.944	162.08781 - 222.88023	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}P)4p$	${}^{2}\mathbf{F} \cdot {}^{2}\mathbf{D}^{\circ}$	2 - 2 7 - 5 2 - 2	958
	700	1647 093	128 19154 . 188 00455	3d4(a ⁵ D)4# 3d4(a ⁵ D)4;)	۵ ۲ ۰ ۵۳۰	5 Z	058
ĺ	375	1647.241	154 32596 - 215 03381	$3d^4(a^3H)As = 3d^4(a^3F)Ar_1$	44.40	2 - 2	950
	150	1648.902	191.33782 - 251.98420	$3d^4(h^3P)4e - 3d^4(h^3P)4n$	4P - 4D°		958
	250	1648.993	154.51267 - 215.15569	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4n$	4H - 410	11 2	958
	250	1649.189	154.18585 - 214.82174	3d4(a3H)4s - 3d4(a3F)4p	4H - 4G°	² / ₂ - ² / ₂	958
	200	1649.996	191.33782 - 251.94403	3d*(b3P)4s - 3d*(b3P)4o	4₽- *D°	1.3	958
	150	1650.091	167.71250 - 228.31503	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{1}I)4p$	${}^{2}G - {}^{2}I^{\circ}$	ş ţ	958
	80	1650.749	190.43547 - 251.01402	3d4(b3F)4s - 3d4(b3P)4p	⁴ F - ⁴ D⁰	5.5	958
	700	1651.578	128.96767 - 189.51588	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	6D - 6F°	2 - 2	958
	700	1652.901	127.92912 - 188.42878	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	°D - °F∿	3 - 2	958
	520	1653.406	167.71250 - 228.19367	3d ⁴ (a ¹ G)4s - 3d ⁴ (a ¹ G)4p	² G - ² F ^o	$\frac{2}{2} - \frac{7}{2}$	958
	80	1653.643	159.22790 - 219.70053	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	${}^{4}G = {}^{4}D^{\circ}$	2 - 2	958
	200	1654.291	161.57159 - 222.02009	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	${}^{2}P - {}^{2}D^{3}$	3 - 3	958
	520	1656.106	160.77860 - 221.16102	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$ $3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	² H - ² H ^v ⁶ D ⁶ F ^o		958
	100	1050.049	120.0410.0 - 100.90430		D ~ F	2 - 2	900
	300	1657.133	190.81179 - 251.15694	$3d^{4}(b^{3}P)4s - 3d^{4}(b^{3}P)4p$	${}^{4}P - {}^{4}P^{\circ}$	3 - 2	958
	200	1037.370	159.22790 - 219.56446	3d (a'G)4s - 3d (a'H)4p	*G - *[* 2) - 4140	2 - 2	958
	450	1657 994	100.77000 - 221.10417 197.76615 100.00505	30 (a ⁻ n)4s - 30 (a ⁻ 6)4p	"H - 'H' 9D 9D	2.2	958
	430 375	1658.247	156.12377 - 216.42844	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	⁴ F - ² G ⁹	\$17 77 2	958
	470	1659 499	150 24999 020 44094	9.34(-3(1).4, 9.14/ 3TT).4	40 214	11 13	ore
-	375	1650 019	177 00507 - 927 99200	3d4(a11)4a 3d4(a11)4p	ີບ-1 2 ກີ່ 2 ກະ	5 5	958
1	600	1660 101	128 10154 . 188 49879	$3d^4(a^{5}f))Aa = 3d^4(a^{5}f))Aa$	6D 6E0	2 2	900
	30	1661.037	156.22488 . 216 42844	$3d^4(a^3F)4a = 3d^4(a^3F)4a$	4 F 2 C	2 2	950
	450	1661.573	190.31834 - 250.50229	3d4(b3F)4s - 3d4(b3F)4p	4F - 4F	20 2 2 2	958
	520	1662,319	127.92912 - 188 08605	3d4(a51)14 . 2d4(a51)140	6D - 6E"	3 3	958
	520	1662.520	160.31164 - 220 46133	$3d^4(a^3H)4s - 3d^4(a^3H)4n$	² H . ² H ^o	2 2	958
	520	1663.542	127.76615 - 187.87881	$3d^4(a^5D)4s - 3d^4(a^5D)4n$	۰D • ۴۳۰	1 1 1	958
	200	1664.471	190.81179 - 250.89105	3d ⁴ (b ³ P)4s - 3d ⁴ (b ³ P)4n	4P - 4P	3-5	958
		1					1

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	iltiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J No	tes Referen
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		110	1667.000	156 19277 016 1140	914(-35)4 914-311-4	40 200	7 7	050
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		110	1667.000	150.12377 - 210.11109	3d (a'r)4s - 3d (a'r)4p	1 - G	2 2	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		130	1669.090	190.31034 • 230.27900	2 14(-5D) 4 - 2 14(-5D) 4 -	Γ · Γ 6D 6E∞	2-2:	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		520	1008.089	127.92912 - 187.87881	$3d^{(a^{*}D)4s} - 3d^{(a^{*}D)4p}$	^o D • ^o F ^o	2 2	958
9 9 9 9 1006320 17.00377 23.0151.188.42678 3472703.37470304 70.770 1.2 450 1606.066 128.1155.188.42678 3472703.37470304 70.771 9 1.4 50 1670.711 100.4241.250.27006 3474703.3747034 70.771 9 1.4 600 1671.041 190.4241.250.224293 3474704.3476744 70.771 1.4 7.7 </td <td></td> <td>4</td> <td>1668.181</td> <td>222.02009 - 128.96767</td> <td>3d*(a³P)4p 3d*(a³D)4s</td> <td>*D" - *D</td> <td>2 - 2</td> <td>958</td>		4	1668.181	222.02009 - 128.96767	3d*(a ³ P)4p 3d*(a ³ D)4s	*D" - *D	2 - 2	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J)4P	1668.426	177.00597 - 236.91879	3d*(a'D)4₃ - 3d*(a'D)4p	² D - ² D ^o	2 - 2	43D,58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		450	1669.606	128.19154 - 188.08605	3d ⁴ (a ⁵ D)4s - 3d ⁴ (a ⁵ D)4p	۴D - ۴F°	5 - 2	958
		375	1669.816	128.54185 - 188.42878	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁶ D - ⁶ F ^o	3 - 3	958
50 1670.782 177.06672 - 235.04879 3dta (h) her 3dta (h) her 3dta (h) her her <ther< th=""> her<td></td><td>150</td><td>1670.711</td><td>190.42414 - 250.27906</td><td>$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$</td><td>⁴F - ⁴F^o</td><td>3.3</td><td>958</td></ther<>		150	1670.711	190.42414 - 250.27906	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	⁴ F - ⁴ F ^o	3.3	958
		50	1670.782	177.06672 - 236.91879	$3d^{4}(a^{1}D)4s = 3d^{4}(a^{1}D)4p$	${}^{2}D - {}^{2}D^{\circ}$	3 - 3	958
		600	1671.041	190.40645 - 250.24939	$3d^{4}(b^{3}F)4s - 3d^{4}(b^{3}F)4p$	⁴F - ⁴F°	3 - 3	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		150	1671.990	167.79592 - 227.60473	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}G)4p$	${}^{2}G - {}^{2}G^{\circ}$	7 - 7	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		300	1672.211	183.16449 - 242.96562	$3d^{4}(a^{1}F)4s = 3d^{4}(a^{1}F)4p$	${}^{2}F - {}^{2}F'$	3.3	958
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		250	1672.427	153.65174 - 213.44505	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	⁴ P ⋅ ⁴ D°	1.3	958
		80 -	1672.561	168.52637 - 228.31503	$3d^{4}(a^{1}I)4s - 3d^{4}(a^{1}I)4p$	${}^{2}I - {}^{2}I^{o}$	ļā ļi	958
		450	1672.858	156.22488 - 216.00272	3d4(a3F)4s - 3d4(a3F)4p	⁴ F - ⁴ G°	2 · 11	958
		150	1673.059	190 42414 - 250 19507	$3d^{4}(h^{3}F)A_{5} + 3d^{4}(h^{3}F)A_{5}$	4F 4F0	2 5	058
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		150	1673 365	190 43547 • 250 19507	$3d^{4}(h^{3}F)4s - 3d^{4}(h^{3}F)4n$	4F.4F⁰	2 - 2 5 - 5	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		520	1673 683	168 56643 - 228 31 503	3d ⁴ (a ¹ 1)4s - 3d ⁴ (a ¹ 1)4n	21 21	มู้ มู้	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	1675 535	160 77860 - 220 46133	$3d^{4}(a^{3}H)4s = 3d^{4}(a^{3}H)4n$	2H 2Ho		950
		600	1675.661	168.52637 - 228.20433	$3d^{4}(a^{1}l)4s - 3d^{4}(a^{1}l)4p$	${}^{2}I \cdot {}^{2}I^{o}$	$\begin{array}{cccc} 2 & 2 \\ 13 & 13 \\ 2 & 2 \end{array}$	958
$ \begin{array}{c} 100.107 \\ 100.107 \\ 110 \\ 107.124 \\ 110 \\ 1061.285 \\ 110 \\ 1061.285 \\ 1062.284 \\ 105.00224 \\ 224.87085 \\ 30 \\ 1061.285 \\ 1062.281 \\ 105.00224 \\ 224.87085 \\ 30 \\ 1061.285 \\ 1062.282 \\ 1062.281 \\ 100.1039 \\ 218.4748 \\ 218.22067 \\ 30 \\ 1062.082 \\ 1$		450	1676 294	169 56642 990 90499	2.14/01114- 2.14/01114-	21 210	11 13	059
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		450	1070.784	108.00040 - 228.20430	$3d^{2}(a^{-1})4s = 3d^{2}(a^{-1})4p$ $3d^{4}(a^{3}C)4s = 3d^{4}(a^{3}C)4p$	$^{-1} \cdot ^{-1}$ $^{2}C + C^{0}$	2 2	958
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		110	1681 295	165 30958 - 994 97095	$3d^4(n^3C)A_{\pm} = 2d^4(n^3C)A_{\pm}$	2C 4C	2 - 2	920
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		590	1001.200	103.37490 * 444.07000 1	ou (a or)45 ≤ ou (a°or)44p 3,d4(₀3p)4₂ = 3,d4(₂3p)4≟	G•'G″ 40) 4⊡∘	2 2	900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		30	1681.573	159.01039 - 218.47836	3d (a 1)+15 - 3d (a 1)+19 3d ⁴ (a ³ G)45 - 3d ⁴ (a ³ F)4p	r - D' ⁴G - ⁴F°	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	958 958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1/01.010			2- 2-	5.5	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		450	1681.948	183.15961 - 242.61460	3d*(a'F)4s - 3d*(a'F)4p	"F - "F" 2r - 2r"	ž - ž	958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		30	1082.082	183.10449 - 242.01400	30 (a r)4s - 30 (a r)4p	-F - F	2 - 2	958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	1004.203	160.01599 910.22200	30 (a G)45 - 30 (a F)4p	G - F 2n 2no	2 - 2	958
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		80	1686.770	158.73869 - 218.02381	3d ⁴ (a ³ G)4s - 3d ⁴ (a ³ P)4n	4G - 4P°	2 - 2	958
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						- ·-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		300	1687.439	156.12377 - 215.38523	$3d^{*}(a^{3}F)4s - 3d^{*}(a^{3}F)4p$ $3d^{4}(a^{3}G)4a - 2d^{4}(a^{3}F)4a$	*F - *G° *C *E°	1 - 2 1 - 2	958
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		700	1687 690	159.54200 • 210.00103	$3d^{4}(a^{3}H)A_{a} = 2d^{4}(a^{3}H)A_{a}$	211 210	2 - 2 2 11	930
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		150	1690.619	100.31109 - 219.30940	อน (a m)48 - อน (a°m)4p อู่สุ4(₀3C)д₀3t*\д_	40 100	2 - 2	950
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ĺ	375	1690.304	153.65174 - 212.81266	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	⁴P - ⁴D°	$\begin{bmatrix} 2 & -2 \\ 1 & -2 \\ -2 & -2 \end{bmatrix}$	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						10 10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		300	1690.628	159.01039 - 218.15977	$3d^{*}(a^{*}G)4s - 3d^{*}(a^{*}H)4p$ 2 $4^{*}(-^{3}G)4 - 24^{*}(-^{3}H)4 -$	*G • *G*	2-2	958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	50	16091.071	150.75009 - 217.04529	$3d(a G)4s - 3d(a \pi)4p$ 344(-3C)4a - 344(-3E)4a	2C 2E9	2 - 2	930
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		250	1603.089	150 34999 919 37519	$3d^{4}(a^{3}C)4a = 3d^{4}(a^{3}U)4a$	4C 4C		930
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		110	1694.611	159.22790 - 218.23851	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}H)4p$	⁴G - ⁴G°	2 · 2 9 · 9 5 - 5	958
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		200			0.14/ 3FN 4 0.14/ 3FN 4		0 7	0.55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		300	1695.035	156.22488 - 215.22067	3d*(a*F)4s - 3d*(a*P)4p	"F - "D"	<u> </u>	958
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3/5	1695.357	156.04932 - 215.03381	3d [*] (a [*] F)4s - 3d [*] (a [*] F)4p	TF - "G"	2 - 2	958
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		300	1095.770	154.47485 - 213.44505	30'(a'P)4s - 30'(a'P)4p	"P' - "D" 4T 4T	¥ - ¥	958
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		375	1690.904	150.22488 - 215.15569	3d [*] (a [*] F)45 + 3d [*] (a [*] H)4p 3d ⁴ (a ³ F)45 - ³ d ⁴ (a ³ F)4n	1 - 1° 47 - 40°	2 - 2 7 - 7	958 958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		010	1071.001	100.12017 - 210.00001	ou (a 1775 - ou (a 1774)	r - 0	2 2	200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		700	1698.878	160.77860 - 219.64076	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	${}^{2}H - {}^{2}I^{\circ}$	$\frac{11}{2} - \frac{13}{2}$	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		50	1699.664	159.01039 - 217.84529	3d*(a°G)4s - 3d*(a°H)4p	⁺G · ⁺G°	2 - 2	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		450	1700.405	156.01229 - 214.82174	3d*(a°F)4s - 3d*(a°F)4p	°F · °G°	2 - 2	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		375	1700.815	164.95050 - 223.74582	3d*(a°G)4s - 3d*(a°G)4p	<u><u></u>²G · ²H^o</u>	2 - 2	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		300	1701.011	161.57159 - 220.36044	3d*(a°P)4s - 3d*(a°P)4p	*P - ² P*	2 - 2	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		150	1701.084	160.77860 - 219.56446	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	² H - ² I ^o	<u>u</u> . <u>u</u>	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ł	375	1701.483	156.04932 - 214.82174	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	⁴ F - ⁴ G"	3 - 5	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l	3	1703.09	49.5415 - 108.2583	$3d^{5} - 3d^{5}$	$a^2D + c^2D$	5-3 F.	P 958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	1703.56	49.5415 - 108.2421	$3d^5 - 3d^5$	$a^2D - c^2D$	2-2 F,	P 958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		375	1703.592	170.72949 - 229.42891	$3d^{4}(a^{4}S)4s - 3d^{4}(a^{3}D)4p$	$^{2}S - ^{2}P^{\circ}$	$\frac{1}{2} - \frac{3}{2}$	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ì	375	1704.186	164.95050 - 223.62959	3d4(a3G)4s - 3d4(a3F)4D	² G - ² G°	7-3	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		450	1704.932	165.39258 - 224.04602	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	${}^{2}\mathbf{G} \cdot {}^{2}\mathbf{F}^{9}$	2 - 2	958
$ \begin{array}{ c c c c c c c c } \hline 200 & 1706.542 & 160.01588 \cdot 218.61388 \\ 1706.641 & 222.85168 \cdot 281.44630 & 3d^4(a^3P)4s \cdot 3d^4(a^3P)4p & ^{2}P \cdot \frac{4}{5}S & \frac{1}{2} \cdot \frac{3}{2} & P \\ \hline 80 & 1706.965 & 162.07442 \cdot 220.65804 & 3d^4(a^3F)4s \cdot 3d^4(a^3G)4p & ^{2}F \cdot \frac{4}{3}H & \frac{5}{2} \cdot \frac{7}{2} \\ \hline 375 & 1707.284 & 155.74487 \cdot 214.31721 & 3d^4(a^3P)4s \cdot 3d^4(a^3P)4s & \frac{3}{2} \cdot \frac{4}{2} & P \\ \hline 375 & 1707.606 & 162.07442 \cdot 220.66929 & 2d^4(a^3P)4s - 3d^4(a^3P)4p & ^{4}P \cdot \frac{4}{9}P & \frac{4}{9}P $		50	1706.066				1 1	958
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		200	1706.542	160.01588 - 218.61388	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	$^{2}P - ^{4}S^{\circ}$	1 - 2	958
80 1706.965 162.07442 · 220.65804 $3d^4(a^3F)4s \cdot 3d^4(a^3F)4p$ $^2F \cdot {}^4H^{\circ}$ $\frac{5}{2} \cdot \frac{7}{2}$ 375 1707.284 155.74487 · 214.31721 $3d^4(a^3P)4s \cdot 3d^4(a^3P)4p$ $^4P \cdot {}^4D^{\circ}$ $\frac{5}{2} \cdot \frac{7}{2}$ 375 1707.606 162.08781 · 290.64022 $2d^4(a^3F)4s - 3d^4(a^3P)4p$ $^4P \cdot {}^4D^{\circ}$ $\frac{5}{2} \cdot \frac{7}{2}$			1706.641	222.85168 - 281.44630	$3d^{4}(b^{1}D)4s - 3d^{4}(b^{1}D)4p$	${}^{2}D - {}^{2}P^{o}$	$\begin{vmatrix} \frac{3}{2} - \frac{1}{2} \end{vmatrix} P$	958
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		80	1706.965	162.07442 - 220.65804	3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ G)4n	²F - ⁴H°	8.3	958
375 1707 606 162 08781 290 64099 34443544 3544 3644 $25 259 \frac{7}{7}$	İ	375	1707.284	155.74487 - 214.31721	3d4(a3P)4s - 3d4(a3P)4p	${}^{4}P - {}^{4}D^{\circ}$	5 - 5 2 - 2	958
oro iroroboo io2.ooroi 22.0.049222 ou (a r)48 - ∂u (a b)49) "r - "r 5 - 5		375	1707.606	162.08781 - 220.64922	3d4(a3F)4s - 3d4(a3G)4p	${}^{2}F - {}^{2}F^{o}$	2-3	958
375 1708.579 164.95050 223.47896 $3d^4(a^3G)4s - 3d^4(a^3F)4p$ $^2G - {}^2F^{\circ}$ $\frac{7}{2} + \frac{5}{2}$		375	1708.579	164.95050 - 223.47896	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	${}^{2}G - {}^{2}F^{o}$	7 - 5	958
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		520	1709.808	137.70081 - 196.18688	3d4(a5D)4s - 3d4(a5D)4p	4 D - 4 F°	1 - 3	958

/~~	Multiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	700 600 110 80 450	1711.410 1712.757 1714.156 1716.215 1717.109	$\begin{array}{c} 154.73129 & -213.16259 \\ 137.94929 & -196.33463 \\ 154.47485 & -212.81266 \\ 156.04932 & -214.31721 \\ 137.94929 & -196.18688 \end{array}$	$\begin{array}{l} 3d^4(a^3H)4s & 3d^4(a^3H)4p \\ 3d^4(a^5D)4s & 3d^4(a^5D)4p \\ 3d^4(a^5P)4s & 3d^4(a^5P)4p \\ 3d^4(a^3F)4s & 3d^4(a^3P)4p \\ 3d^4(a^5D)4s & 3d^4(a^5D)4p \end{array}$	${}^{4}H - {}^{4}H^{*}$ ${}^{5}D - {}^{4}F^{*}$ ${}^{5}P - {}^{5}D^{*}$ ${}^{4}F' - {}^{5}D^{*}$ ${}^{4}D - {}^{4}F^{*}$	1	958 958 958 958 958
	200 600 600 450 600	1717.709 1717.899 1718.155 1718.417 1719.464	170.72949 - 228.94659 138.33883 - 196.34959 154.51267 - 212.71437 156.12377 - 214.31721 165.39258 - 223.55014	$\begin{array}{l} 3d^4(a^5S)4s & \cdot 3d^4(a^3D)4p \\ 3d^4(a^5D)4s & \cdot 3d^4(a^5D)4p \\ 3d^4(a^3H)4s & \cdot 3d^4(a^3H)4p \\ 3d^4(a^3F)4s & \cdot 3d^4(a^3P)4p \\ 3d^4(a^3C)4s & \cdot 3d^4(a^3C)4p \end{array}$	² S - ² P° ⁴ D - ⁴ F'· ⁴ H - ⁴ H° ⁴ F - ⁴ D' ² C - ² H°	+ + + + + + + + + + + + + + + + + + +	958 958 958 958 958
	$150 \\ 375 \\ 600 \\ 30 \\ 150$	1720.492 1721.660 1722.710 1723.010 1723.568	$\begin{array}{r} 162.07442 & -220.19725 \\ 171.34533 & -229.42891 \\ 154.32596 & -212.37404 \\ 196.13119 & -254.16913 \\ 161.57159 & -219.59084 \end{array}$	$\begin{array}{l} 3d^4(a^3F)4s & 3d^4(a^3G)4\rho \\ 3d^4(a^3E)4s & 3d^4(a^3D)4\rho \\ 3d^4(a^3H)4s & 3d^4(a^3H)4\rho \\ 3d^4(b^3F)4s & 3d^4(b^3F)4\rho \\ 3d^4(a^3P)4s & 3d^4(a^3F)4\rho \\ 3d^4(a^3P)4s & 3d^4(a^3F)4\rho \end{array}$	${}^{2}F - {}^{2}F^{\circ}$ ${}^{2}D - {}^{2}P^{\circ}$ ${}^{4}H - {}^{4}H^{\circ}$ ${}^{2}F - {}^{2}F^{\circ}$ ${}^{2}P - {}^{4}D^{\circ}$		958 958 958 958 958 958
	600 450 375 800 375	1724.057 1724.265 1724.644 1725.629 1726.584	138.84403 - 196.84682 138.33883 - 196.33463 154.73129 - 212.71437 154.18585 - 212.13579 222.84058 - 280.75837	$\begin{array}{l} 3d^4(a^5D)4s & 3d^4(a^5D)4p \\ 3d^4(a^5D)4s & 3d^4(a^5D)4p \\ 3d^4(a^3H)4s & 3d^4(a^3H)4p \\ 3d^4(a^3H)4s & 3d^4(a^3H)4p \\ 3d^4(a^3H)4s & 3d^4(a^3H)4p \\ 3d^4(b^5D)4s & 3d^4(b^5D)4p \end{array}$		147000011111111111111111111111111111111	958 958 958 958 958 958
	250 150 250 375 300	1728.265 1729.430 1729.809 1730.324 1731.235	$\begin{array}{c} 154.51267 & 212.37404 \\ 160.77860 & 218.60103 \\ 154.32596 & 212.13579 \\ 196.13119 & 253.92359 \\ 161.57159 & 219.33390 \end{array}$	$\begin{array}{l} 3d^4(a^3H)4s & 3d^4(a^3H)4p \\ 3d^4(a^3H)4s & 3d^4(a^3F)4p \\ 3d^4(a^3H)4s & 3d^4(a^3F)4p \\ 3d^4(a^3H)4s & 3d^4(a^3F)4p \\ 3d^4(b^3F)4s & 3d^4(b^3F)4p \\ 3d^4(a^3P)4s & 3d^4(a^3P)4p \end{array}$	${}^{4}H - {}^{4}H'' \\ {}^{2}H - {}^{4}F'' \\ {}^{4}H - {}^{4}H'' \\ {}^{2}F' - {}^{2}F'' \\ {}^{2}P - {}^{2}P'' \\ {}^{2}P - {}^{2}P'' \\ {}^{2}P'' - {}^{2}P'' \\ {}^{2}P'' - {}^{2}P'' \\ {}^{2}P'' - {}^{2}P'' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P''' - {}^{2}P''' \\ {}^{2}P''' - {}^{2}P'' - {}^{2}P''' \\ {}^{2}P''' - {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P''' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P'' - {}^{2}P''' \\ {}^{2}P''' - {}^{2}P''' \\ {}^{2}P'''$		958 958 958 958 958 958
	250 375 110 110 250	1732.756 1732.932 1733.095 1734.677 1735.728	195.86415 - 253.57565 138.84403 - 196.54959 155.74487 - 213.44505 196.22071 - 253.86843 162.08781 - 219.70053	$3d^4(b^3P)4s \cdot 3d^4(b^3P)4p$ $3d^4(a^5P)4s \cdot 3d^4(a^5P)4p$ $3d^4(a^3P)4s \cdot 3d^4(a^3P)4p$ $3d^4(b^3P)4s \cdot 3d^4(b^3P)4p$ $3d^4(b^3P)4s \cdot 3d^4(a^3P)4p$ $3d^4(a^3P)4s \cdot 3d^4(a^3P)4p$	${}^{2}P - {}^{2}D^{o}$ ${}^{4}D - {}^{4}F^{o}$ ${}^{4}P - {}^{4}D^{o}$ ${}^{2}F - {}^{2}D^{o}$ ${}^{2}F - {}^{4}D''$	Naraharan (naraharan) 	958 958 958 958 958 958
/m.	300 80 200 50 110	1736.356 1738.637 1740.153 1740.634 1740.816	$\begin{array}{c} 160.01588 & 217.60771 \\ 162.07442 & 219.59084 \\ 177.00597 & 234.47200 \\ 160.01588 & 217.46619 \\ 196.13119 & 253.57565 \end{array}$	$\begin{array}{l} 3d^4(a^3P)4s & 3d^4(a^3P)4p \\ 3d^4(a^3F)4s & 3d^4(a^3F)4p \\ 3d^4(a^4P)4s & 3d^4(a^3P)4p \\ 3d^4(a^3P)4s & 3d^4(a^3F)4p \\ 3d^4(b^3F)4s & 3d^4(b^3P)4p \\ 3d^4(b^3F)4s & 3d^4(b^3P)4p \end{array}$	${}^{2}p - {}^{2}S''$ ${}^{2}F - {}^{4}D''$ ${}^{2}D - {}^{2}D'''$ ${}^{2}p - {}^{4}F''$ ${}^{2}F - {}^{2}D''$		958 958 958 958 958 958
	1 300 150 110 80	1741.171 1741.611 1742.289 1742.984 1745.209	$\begin{array}{c} 156.01229 & 213.44505 \\ 159.01039 & 216.42844 \\ 156.04932 & 213.44505 \\ 158.73869 & 216.11169 \\ 161.57159 & 218.87121 \end{array}$	3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ P)4p 3d ⁴ (a ³ G)4s - 3d ⁴ (a ³ H)4p 3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ P)4p 3d ⁴ (a ³ C)4s - 3d ⁴ (a ³ H)4p 3d ⁴ (a ³ F)4s - 3d ⁴ (a ³ F)4p	$\begin{array}{c} {}^{4}F = {}^{4}D^{0} \\ {}^{4}G = {}^{2}G^{0} \\ {}^{4}F = {}^{4}D^{0} \\ {}^{4}G = {}^{2}G^{0} \\ {}^{2}P = {}^{2}D^{0} \end{array}$		958 958 958 958 958 958
	30 300 300 150 4	1748.233 1750.602 1751.755 1753.082 1753.351	$\begin{array}{c} 159.22790 & 216.42844 \\ 196.13119 & 253.25437 \\ 159.34288 & 216.42844 \\ 161.57159 & 218.61388 \\ 196.22071 & 253.25437 \end{array}$	$\begin{array}{l} 3d^4(a^3G)4s \cdot 3d^4(a^3H)4p \\ 3d^5(h^3F)4s \cdot 3d^4(h^3F)4p \\ 3d^4(a^3G)4s \cdot 3d^4(a^3H)4p \\ 3d^4(a^3P)4s \cdot 3d^4(a^3P)4p \\ 3d^4(b^3F)4s \cdot 3d^4(h^3F)4p \\ 3d^4(b^3F)4s \cdot 3d^4(b^3F)4p \end{array}$	${}^{4}G - {}^{2}G^{\alpha}$ ${}^{2}F + {}^{4}G^{\alpha}$ ${}^{4}G - {}^{2}C^{\alpha}$ ${}^{2}P - {}^{4}S^{\alpha}$ ${}^{2}F - {}^{4}G^{\alpha}$	0-1-1-2 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	958 958 958 958 958 958
	200 200 110 80 2	1753.619 1753.837 1754.602 1757.972 1758.58	$\begin{array}{c} 159.34288 & 216.36780 \\ 162.07442 & 219.09167 \\ 196.87562 & 253.86843 \\ 159.22790 & 216.11169 \\ 51.3942 & 108.2583 \end{array}$	$\begin{array}{l} 3d^4(a^3G)4s &\cdot 3d^4(a^3H)4p \\ 3d^4(a^3E)4s &\cdot 3d^4(a^3F)4p \\ 3d^4(b^3P)4s &\cdot 3d^4(b^3P)4p \\ 3d^4(a^3G)4s &\cdot 3d^4(a^3H)4p \\ 3d^5 &\cdot 3d^5 \end{array}$	${}^{4}C - {}^{4}\Gamma^{9}$ ${}^{2}F - {}^{2}D^{9}$ ${}^{2}P - {}^{2}D^{9}$ ${}^{4}G - {}^{2}C^{9}$ ${}^{2}F - {}^{2}D$	11 - 13 2 - 3 - 3 	958 958 958 958 958 958
	30 22 110 30 520	1758.695 1759.08 1760.552 1760.658 1761.085	$\begin{array}{c} 177.06672 & -233.92712 \\ 51.3942 & -108.2421 \\ 156.01229 & 212.81266 \\ 162.07442 & -218.87121 \\ 162.08781 & -218.87121 \\ \end{array}$	$\begin{array}{r} 3d^4(a^1D)4_8 & - 3d^4(a^1S)4p\\ 3d^5 & - 3d^5\\ 3d^4(a^3F)4_8 & - 3d^4(a^3P)4p\\ 3d^4(a^3F)4_8 & - 3d^4(a^3F)4p\\ 3d^4(a^3F)4_8 & - 3d^4(a^3F)4p\\ 3d^4(a^3F)4_8 & - 3d^4(a^3F)4p \end{array}$	${}^{2}D - {}^{2}P^{\circ}$ ${}^{2}F - {}^{2}D$ ${}^{4}F - {}^{4}D^{\circ}$ ${}^{2}F - {}^{2}D^{\circ}$ ${}^{2}F - {}^{2}D^{\circ}$	37 - 120 - 22 -	958 958 958 958 958 958
	200 450 450 250 110	1764.795 1764.920 1767.355 1768.681 1774.794	196.22071 - 252.88448 159.34288 - 216.00272 159.22790 - 215.80891 162.07442 - 218.61388 168.52637 - 224.87085	$\begin{array}{l} 3d^4(b^3F)4s &- 3d^4(b^3F)4\rho \\ 3d^4(a^3G)4s &\cdot 3d^4(a^3F)4\rho \\ 3d^4(a^3G)4s &- 3d^4(a^3F)4\rho \\ 3d^4(a^3F)4s &\cdot 3d^4(a^3P)4\rho \\ 3d^4(a^3F)4s &\cdot 3d^4(a^3G)4\rho \\ 3d^4(a^1G)4s &\cdot 3d^4(a^3G)4\rho \end{array}$	${}^{2}F - {}^{4}G^{\circ}$ ${}^{4}G - {}^{4}G^{\circ}$ ${}^{4}G - {}^{4}I^{\circ}$ ${}^{2}F - {}^{4}S^{\circ}$ ${}^{2}I - {}^{4}G^{\circ}$	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	958 958 958 958 958 958
	50 300 110 150 11	1776.349 1780.708 1781.090 1782.264 1782.80	$\begin{array}{c} 158.73869 \cdot 215.03381 \\ 159.22790 \cdot 215.38523 \\ 159.01039 \cdot 215.15569 \\ 162.08781 \cdot 218.19566 \\ 52.1667 \cdot 108.2583 \end{array}$	3d*(a ³ C)4s - 3d*(a ³ F)4p 3d*(a ³ C)4s - 3d*(a ³ F)4p 3d*(a ³ C)4s - 3d*(a ³ H)4p 3d*(a ³ F)4s - 3d*(a ³ F)4p 3d ⁴ (a ³ F)4s - 3d ⁵	${}^{4}G - {}^{4}G^{\circ}$ ${}^{4}G - {}^{4}G^{\circ}$ ${}^{4}G - {}^{4}F^{\circ}$ ${}^{2}F - {}^{4}F^{\circ}$ ${}^{2}F - {}^{2}D$	52 - 72	958 958 958 958 958 958

Multiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	12	1782.944	156.04932 - 212.13579	$3d^{4}(a^{3}f)4s + 3d^{4}(a^{3}H)4n$	⁴F - ⁴Hª	ş.7		958
	375	1783.066	158.73869 - 214.82174	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	⁴ G • ⁴ G ^o	\$. \$	1	958
	3	1783.31	52.1667 - 108.2421	3d ⁵ - 3d ⁵	$a^2F \cdot c^2D$	5.5	F.P	958
	250	1784.647	167.71250 - 223.74582	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}G)4p$	$^{2}G - ^{2}H^{\circ}$	\$. §		958
	375	1784.967	159.01039 - 215.03381	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	4G - 4G°	ž - ž		958
	4	1785.394	168.56643 - 224.57643	$3d^{4}(a^{1}I)4s - 3d^{4}(a^{3}G)4p$	² I - ⁴ G°	' <u>₩</u> - <u></u>		958
	1	1787.758	162.08781 - 218.02381	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}P)4p$	${}^{2}F - {}^{4}P^{\circ}$	3-5		958
	1	1788.361	167.71250 - 223.62959	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}F)4p$	${}^{2}G - {}^{2}G^{\circ}$	- 9 - 9		958
	200	1788.685	183.16449 - 239.07140	$3d^{4}(a^{1}F)4s - 3d^{4}(a^{1}D)4p$	${}^{2}F - {}^{2}F^{0}$	7 - 7		958
	150	1790.681	160.01588 - 215.86050	$3d^{4}(a^{3}P)4s - 3d^{4}(a^{3}P)4p$	² P - ⁴ P°	$\frac{1}{2} - \frac{1}{2}$		958
	1	1790.911	167.71250 · 223.55014	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}G)4p$	² G - ² H ⁿ	2 - 11 2 - 12		958
	1	1791.751	159.01039 - 214.82174	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	⁴G - ⁴G°	3.3		958
	520	1792.102	160.31164 - 216.11169	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	${}^{2}H - {}^{2}G^{\circ}$	2.7		958
	375	1793.127	165.39258 - 221.16102	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}H)4p$	² G - ² H ^o	$\frac{1}{2} - \frac{1}{2}$		958
	300	1793.477	162.08781 - 217.84529	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	${}^{2}F - {}^{4}G^{\circ}$	2 . 2		958
	250	1793.876	165.60096 - 221.34606	3d ⁴ (a ³ D)4s - 3d ⁴ (a ³ G)4p	⁴ D - ⁴ F°	5 - 7		958
	1	1794.695	165.60096 - 221.32054	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{3}G)4p$	⁴ D - ⁴ F ^o	2 - 2		958
	520	1796.932	160.77860 - 216.42844	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	² H - ² G ^o	$\frac{11}{2} - \frac{9}{2}$		958
	200	1798.457	167.79592 - 223.39862	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}F)4p$	² G · ² G [*]	1 - 1		958
	250	1798.563	137.94929 - 193.54925	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁶ D°	$\frac{3}{2} - \frac{5}{2}$		958
	50	1799.514	137.70081 - 193.27127	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁶ D°	$\frac{1}{2} - \frac{3}{2}$		958
	1	1800.29	52.6954 - 108.2421	3d ⁵ - 3d ⁵	$a^4F - c^2D$	2 - 2	F,P	958
	300	1801.444	164.95050 - 220.46133	3d4(a3G)4s - 3d4(a3H)4p	² G - ² H ^o	$\frac{7}{2} - \frac{9}{2}$		958
	1	1804.39	52.8380 - 108.2583	3d ⁵ - 3d ⁵	$a^4F - c^2D$	2 - 2	F,P	958
	250	1804.416	137.70081 - 193.12034	3d4(a5D)4s - 3d4(a5D)4p	⁴ D - ⁶ D ^a	2 - 2		958
	110	1804.570	165.80447 - 221.21929	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{3}G)4p$	⁴D - ⁴F°	$\frac{1}{2} - \frac{3}{2}$		958
	450	1805.319	162.07442 - 217.46619	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	² F - ⁴ F ^o	$\frac{5}{2} \cdot \frac{3}{2}$	1	958
	110	1806.577	$183.15961 \cdot 238.51284$	3d ⁴ (a ¹ F)4s - 3d ⁴ (a ¹ D)4p	${}^{2}F - {}^{2}F^{0}$	$\frac{5}{2} \cdot \frac{5}{2}$		958
	375	1807.597	137.94929 - 193.27127	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	${}^{4}D - {}^{6}D^{\circ}$	3 - 3		958
	110	1808.087	159.01039 - 214.31721	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}P)4p$	⁴G - ⁴D°	2 - 2		958
	375	1809.734	165.39258 - 220.64922	3d ⁴ (a ³ G)4s - 3d ⁴ (a ³ G)4p	${}^{2}G \cdot {}^{2}F^{o}$	2.7		958
	300	1810.055	164.95050 - 220.19725	3d4(a3G)4s - 3d4(a3G)4p	${}^{2}G - {}^{2}F^{0}$	2.2		958
	375	1811.247	138.33883 - 193.54925	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁶ D°	2 - 2		958
	4	1812.267	$168.56643 \cdot 223.74582$	$3d^{4}(a^{1}I)4s - 3d^{4}(a^{3}G)4p$	${}^{2}I - {}^{2}H^{\circ}$	1 <u>1</u> - 2		958
	200	1812.544	137.94929 - 193.12034	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁶ D°	$\frac{3}{2} - \frac{1}{2}$		958
	200	1816.094	168.56643 - 223.62959	$3d^{4}(a^{1}I)4s - 3d^{4}(a^{3}F)4p$	² I - ² G ^o	11 - 2 2 - 2		958
	50	1816.620	138.33883 - 193.38617	3d4(a5D)4s - 3d4(a5D)4p	⁴ D - ⁶ D ^o	5 - 7		958
	250	1817.391	168.52637 - 223.55014	$3d^{4}(a^{1}I)4s - 3d^{4}(a^{3}G)4p$	${}^{2}I - {}^{2}H^{\circ}$	1 <u>3</u> - 11 2 - 2		958
	300	1819.994	138.84403 - 193.78919	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴D · ⁶ D°	7 - 2		958
	450	1820.417	138.33883 - 193.27127	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁶ D ^o	\$- <u>3</u>		958
	80	1823.348	160.31164 - 215.15569	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	² H - ⁴ I°	2-2		958
	250	1827.417	160.31164 - 215.03381	$3d^{4}(a^{3}H)4s = 3d^{4}(a^{3}F)4p$	² H - ⁴ G°	2 - 2		958
	520	1827.982	138.84403 - 193.54925	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴D - ⁰D°	2 - 2	1	958
	250	1830.149	164.95050 - 219.59084	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}F)4p$	${}^{2}G - {}^{4}D^{\circ}$	7 - 2		958
	4	1831.629	165.60096 - 220.19725	$3d^{4}(a^{3}D)4s - 3d^{4}(a^{3}G)4p$	⁴ D - ² F ^o	2 - 2		958
]	250	1839.009	160.77860 - 215.15569	3d4(a3H)4s - 3d4(a3H)4p	${}^{2}H - {}^{4}I^{9}$	11 - 2 2 - 2		958
	450	1840.240	162.08781 - 216.42844	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	² F - ² G ^o	$\frac{7}{2} - \frac{9}{2}$	ļ	958
	150	1843.102	138.33883 - 192.59528	3d4(a5D)4s - 3d4(a5D)4p	⁴ D - ⁴ P ^o	2 - 2		958
	300	1850.578	162.07442 - 216.11169	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	${}^{2}F - {}^{2}G^{\circ}$	$\frac{5}{2} - \frac{7}{2}$		958
	80	1852.085	137.70081 - 191.69411	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁴ P°	$\frac{1}{2} - \frac{3}{2}$		958
	80	1854.084	167.71250 - 221.64749	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}G)4p$	² G - ⁴ H°	2 - 11 2 - 12		958
	375	1858.057	159.34288 - 213.16259	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}H)4p$	⁴ G - ⁴ H°	$\frac{1}{2}$ $\frac{1}{2}$		958
	450	1860.422	138.84403 - 192.59528	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴D - ⁴P°	2 5		958
	375	1860.645	137.94929 - 191.69411	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁴ P ⁿ	$\frac{3}{2} - \frac{3}{2}$		958
	450	1869.635	159.22790 - 212.71437	$3d^{4}(a^{3}G)4s - 3d^{4}(a^{3}H)4p$	⁴G - ⁴H°	9 - <u>1</u> 1 2 - 2		958
	300	1870.964	167.71250 - 221.16102	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}H)4p$	² G - ² H ^o	2. U		958
	300	1872.761	158.73869 - 212.13579	3d ⁴ (a ³ G)4s 3d ⁴ (a ³ H)4p	⁴G - ⁴H°	5 - 7		958
	300	1873.938	159.01039 - 212.37404	$3d^{4}(a^{3}G)4s + 3d^{4}(a^{3}H)4p$	⁴G - ⁴H°	7.2		958
	450	1874.226	138.33883 - 191.69411	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	${}^{4}D - {}^{4}P^{0}$	5.3		958
	300	1875.457	137.70081 - 191.02118	$3d^{4}(a^{5}D)4s - 3d^{4}(a^{5}D)4p$	⁴ D - ⁴ P°	$\frac{1}{2} \cdot \frac{1}{2}$		958
	12	1875.884	167.79592 - 221.10417	$3d^{4}(a^{1}G)4s - 3d^{4}(a^{3}G)4p$	²G - ⁴H°	3.8		958
	150	1876.259	162.08781 - 215.38523	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}F)4p$	² F - ⁴ G ^o	1 ÷ ÷		958
	300	1884.234	137.94929 - 191.02118	$3d^{4}(a^{5}D)4s = 3d^{4}(a^{5}D)4p$	^{4}D $^{4}P^{o}$	$\frac{3}{2} \cdot \frac{1}{2}$		958
	150	1884.381	162.08781 - 215.15569	$3d^{4}(a^{3}F)4s - 3d^{4}(a^{3}H)4p$	${}^{2}F \cdot {}^{4}I^{0}$	1 7 - 9		958
	130		101.00.01 100.0000			2 2 1		200

general second

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	250	1895.896	201.17805 - 253.92359	3d4(b1G)4s - 3d4(b3F)4p	² G - ² F ^o	2 - 7	1	958
	110	1898.772	$167.79592 \cdot 220.46133$	$3d^{4}(a^{1}C)4s - 3d^{4}(a^{3}H)4p$	${}^{2}G - {}^{2}H^{\circ}$	7 - 9		958
	30	1908.980	160.77860 - 213.16259	$3d^{4}(a^{3}H)4s - 3d^{4}(a^{3}H)4p$	² H - ⁴ H°	1. 13		958
	50	1953.038	196.87562 - 248.07797	$3d^{4}(b^{3}P)4s - 3d^{4}(a^{1}F)4p$	${}^{2}P - {}^{2}D^{\circ}$	3 - 3		958
	110	1954.615	164.95050 - 216.11169	3d4(a3G)4s - 3d4(a3H)4p	² G ~ ² G°	$\frac{1}{2} - \frac{1}{2}$		958
	110	1956.400	168.52637 - 219.64076	$3d^{4}(a^{1}l)4s - 3d^{4}(a^{3}H)4p$	² I • ² I ⁰	13 - 13		958
	80	1960.860	168.56643 - 219.56446	$3d^{4}(a^{1}l)4s - 3d^{4}(a^{3}H)4p$	² I - ² I ^o	Ģ . Ģ		958
	1	1974.36	32.2455 - 82.8949		a ⁴ G - b ² G	ļų ş	F.P	958
	110	1975.647	183.16449 - 233.78086	3d ⁴ (a ¹ F)4s - 3d ⁴ (a ³ D)4p	${}^{2}F - {}^{2}F^{0}$	- - - - - -		958
	1	1976.44	32.3012 - 82.8973	$3d^{5} - 3d^{5}$	a ⁴ G - b ² G	5 - 7 2 - 2	F,P	958
	2	1976.89	49.5415 - 100.1260	$3d^{5} - 3d^{5}$	$a^2D \cdot a^2P$	§ - 1	F,P	958
	7	1977.20	49.5415 - 100.1180	$3d^5 - 3d^5$	$a^2D - a^2P$	5 - 3	F,P	958
	3	1997.02	50.0514 - 100.1260	3d⁵ - 3d⁵	$a^2D \cdot a^2P$	$\frac{3}{2} - \frac{1}{2}$	F,P	958
	3	1997.34	50.0514 - 100.1180	$3d^{5} + 3d^{5}$	a ² D - a ² P	3 - 3	F.P	958

IRON V (Fe^{+ 4}), Z = 26

Ground State 1s²2s²2p⁶3s²3p⁶3d⁴ (⁵D₀) (22 electrons) Ionization Potential [605 000] cm⁻¹; [75.0] eV

Multiplet	Rél. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1	302 543	8031 - 331 2338	2d ⁴ . 2d ³ (b ² D)/4 p	((a ⁵ E) ³ E⁰	3.9		220
	5	305 313	0.0000 - 327 5338	$3d^4 - 3d^3(b^2D)4p$	$a^{5}D^{-3}D^{\circ}$	0.1		220
	15	201 201	94.0554 335.9679	24 ⁴ 24 ³ 0 ² DM				229
	1.0	200.975	24.0334 - 333.2078	34 - 34 (D D)40 34 - 33(L2D)4.	- 3D 300	1 1		229
	2	344.473	24.9129 - 333.2010	3d - 3d (D 1)4p	ar r -30 300	1 1 1		229
	1	323.835	20,4083 - 555,2078	3a" - 3a"(b"D)4p	a P - P	2.1	l	2.29
	15	324.634	26.4683 - 334.5091	3d ⁴ - 3d ³ (b ² D)4p	$a^{3}P - {}^{3}P^{\circ}$	2 - 2		229
	5	325.027	26.8423 - 334.5091	$3d^4 - 3d^3(b^2D)4p$	a ³ F - ³ P°	3 - 2	1 1	229
	5	326.658	29.8171 - 335.9474	$3d^4 - 3d^3(b^2D)4p$	a ³ G - ¹ F ^o	3 - 3		229
	3	327.029	1.2828 - 307.0644	$3d^4 - 3d^3(a^2F)4p$	ga ⁵ D - ³ G°	4 - 5		229
	5	327.823	26.9740 - 332.0173	3d ⁴ - 3d ³ (b ² D)4p	a³F · ³F°	4 - 4		229
	40	329.514	24.0554 - 327.5338	3d4 - 3d3(b2D)4o	a ³ P - ³ D ^o	0.1		229
	40	330 434	24 9729 - 327 6054	$3d^4 + 3d^3(b^2D)4p$	a ³ P ³ D ^o	1.2		229
	2	330 512	24 9729 - 327 5338	$3d^4 - 3d^3(b^2D)4p$	30 3nº	1.1		229
	125	331 579	30 4301 - 332 0173	$3d^4 - 3d^3(b^2D)4p$	3C 3F0	5.4		220
	80	331 656	29.8171 - 331 3338	$3d^4 + 3d^3(h^2D)4n$	a ³ C ³ F ⁹	3.2		229
	0.0	501.000	22.0111 001.000	ou ou (b b)+p	u 0 - 1	0.2		22,
	80	331.723	26.4683 - 327.9244	3d ⁴ - 3d ³ (b ² D)4p	$a^{3}P - {}^{3}D^{\circ}$	2 - 3		229
	30	331.874	1.2828 - 302.6025	$3d^4 - 3d^3(a^2F)4p$	ga ⁵ D - ⁸ F⁰	4 - 4		229
	100	331.986	30.1470 - 331.3670	$3d^4 - 3d^3(b^2D)4p$	a ³ G - ³ F°	4 - 3		229
	1	332.074	26.4683 - 327.6054	$3d^4 - 3d^3(b^2D)4p$	a ³ P - ³ D ^o	2 - 2		229
	10	332.135	26.8423 - 327.9244	3d ⁴ - 3d ³ (b ² D)4p	a ³ F - ³ D°	3 - 3		229
	150	332 280	26 0740 - 327 0244	$3d^{4} - 3d^{3}(b^{2}D)4n$	3F 3D	4.3		220
	50	332 476	26 7607 . 327 5338	$3d^4 = 3d^3(b^2D)4n$	3F. 3D	2.1	р	220
	100	332.410	26.9493 397.6054	$3d^4 - 3d^3(b^2D)4\pi$	a ³ F ³ D ⁰	2 2	D	220
	100	332.400	20.0423 * 327.0034	$2d^4 - 2d^3(b^2D)/m$		2 2	1	22.9
	100	224 045	29.0171 - 329.0400	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		1 2		229
	100	554.045	30.3003 - 333.9474	5a - 5a (b D)4p	a G - T	4-3		229
	25	334.763	36.9254 - 335.6427	3d ⁴ - 3d ³ (b ² D)4p	a ³ D · ³ P°	1 - 0	ļ	229
	70	334.997	36.7585 - 335.2678	3d* - 3d°(b°1)4p	a ² D - ² P ^o	2 - 1		229
	25	335.185	36.9254 - 335.2678	3d ⁴ - 3d ³ (b ² D)4p	$a^{3}D - {}^{3}P^{\circ}$	1 - 1		229
	125	335.709	36.6301 - 334.5091	$3d^4 \cdot 3d^3(b^2D)4p$	a ³ D - ³ P ^o	3 - 2		229
	25	335.853	36.7585 - 334.5091	3d ⁴ - 3d ³ (b ² D)4p	a ³ D - ³ P°	2 . 2		229
	2	339,235	36.5863 - 331.3670	$3d^4 - 3d^3(b^2D)4b$	a ¹ G - ³ F°	4.3		229
	5	339.871	.4173 - 294.6440	3d4 - 3d3(a4P)4p	ga ⁵ D - ³ S ^o	2 - 1		229
	2	341,192	36.7585 - 329.8486	$3d^4 - 3d^3(b^2D)4q$	$a^{3}D - D^{\circ}$	2 - 2		229
	30	343 295	36.6301 - 327.9244	$3d^4 - 3d^3(b^2D)4n$	$a^3D - ^3D^o$	3 - 3	1 1	229
	ĩ	343.446	36.7585 - 327.9244	$3d^4 - 3d^3(b^2D)4p$	a ³ D - ³ D ^o	2 - 3		229
	20	242 994	36 7585 397 6054	24 ⁴ 24 ³ (h ² D)4~	3D 3Do	2 2		990
	20	244.022	36 0954 - 397 6054	$2d^4 = 3d^3(h^2D)/4\mu$	³ D ³ D ⁰	1 5		220
	3	244 106	26 0254 - 327 5330	24 ⁴ 24 ³ (h ² D)4-	3D 3D	1 1 1		227
	100	245 936	A6 9019 335 0474	34 · 34 (D D)4p		2 2	!	229
	100	249.230	1491 986 9697	3d - 3d (D D)4p 3d ⁴ 3d ³ (a ⁴ D)4~	a D - F (10 ⁵ D 3D)	1 2 - 3	(247
	10	340.112	.1421 - 200.0027	əu •əu (a r)4p	ga D · D	1 - 2		227

T		6	6
	-	n	n
\mathcal{L}		U	U.

Multiplet	Rel. Int.	$\lambda_{\rm vac}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1 200 150 100 100	351.349 353.087 354.679 354.813 354.999	$\begin{array}{c} 24.0554 & - & 308.6715 \\ 52.7327 & - & 335.9474 \\ 0.0000 & - & 281.9449 \\ 25.2259 & - & 307.0644 \\ 24.9325 & - & 306.6228 \end{array}$	$\begin{array}{r} 3d^4 & -3d^3(a^2F)4p\\ 3d^4 & -3d^3(b^2D)4p\\ 3d^4 & -3d^3(a^2F)4p\\ 3d^4 & -3d^3(a^2F)4p\\ 3d^4 & -3d^3(a^2F)4p\\ 3d^4 & -3d^3(a^2F)4p \end{array}$	$\begin{array}{c} a^{3}P & - \ ^{3}D^{o} \\ a^{1}F & - \ ^{1}F^{o} \\ ga^{5}D & - \ ^{3}P^{o} \\ a^{3}H & - \ ^{3}G^{o} \\ a^{3}H & - \ ^{3}G^{o} \end{array}$	$ \begin{array}{r} 0 & -1 \\ 3 & -3 \\ 0 & -1 \\ 5 & -5 \\ 4 & -4 \end{array} $		229 229 229 229 229 229 229
	250 200 10 15 150	355.196 355.370 355.411 355.466 355.542	$\begin{array}{r} 25.5285 & \cdot 307.0644 \\ 25.2259 & \cdot 306.6228 \\ 29.8171 & \cdot 311.1809 \\ 26.8423 & \cdot 308.1650 \\ 24.9325 & \cdot 306.1939 \end{array}$	$\begin{array}{l} 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \end{array}$		6 - 5 5 - 4 3 - 4 3 - 2 4 - 3		229 229 229 229 229 229
	200 200 150 5 5	357.029 357.425 357.870 357.970 358.892	$\begin{array}{r} 26.9740 & \cdot 307.0644 \\ 26.8423 & \cdot 306.6228 \\ 26.7607 & \cdot 306.1939 \\ 26.8423 & \cdot 306.1939 \\ 52.7327 & \cdot 331.3670 \end{array}$	$\begin{array}{c} 3d^4 \cdot 3d^3(a^2F)4p \\ 3d^4 \cdot 3d^3(a^2F)4p \\ 3d^4 \cdot 3d^3(a^2F)4p \\ 3d^4 \cdot 3d^3(a^2F)4p \\ 3d^4 \cdot 3d^3(a^2F)4p \\ 3d^4 \cdot 3d^3(b^2D)4p \end{array}$	$a^{3}F - {}^{3}G^{\circ}$ $a^{3}F - {}^{3}G^{\circ}$ $a^{3}F - {}^{3}G^{\circ}$ $a^{3}F - {}^{3}G^{\circ}$ $a^{1}F - {}^{3}F^{\circ}$	4 - 5 3 - 4 2 - 3 3 - 3 3 - 3		229 229 229 229 229 229 229
	50 30 50 80 150	359.227 359.937 360.434 360.521 360.658	$\begin{array}{r} .4173 & 278.7942 \\ 29.8171 & 307.6444 \\ 24.9325 & 302.3771 \\ 25.2259 & 302.6025 \\ .8031 & 278.0758 \end{array}$	$\begin{array}{c} 3d^4 & 3d^3(a^2G)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^4F)4p \end{array}$	$\begin{array}{c} ga^{5}D & - \ ^{3}G^{o} \\ a^{3}G & - \ ^{1}D^{o} \\ a^{3}H & - \ ^{3}F^{o} \\ a^{3}H & - \ ^{3}F^{o} \\ ga^{5}D & - \ ^{5}D^{o} \end{array}$	2 - 3 3 - 2 4 - 3 5 - 4 3 - 4		229 229 229 229 229 229
	$30 \\ 40 \\ 300 \\ 150 \\ 200$	360.827 360.857 361.281 361.470 361.486	$\begin{array}{r} 30.1470 & 307.2887 \\ 52.7327 & 329.8486 \\ 1.2828 & 278.0758 \\ .4173 & 277.0685 \\ 30.4301 & 307.0644 \end{array}$	$\begin{array}{c} 3d^4 - 3d^3(a^2F)4p \\ 3d^4 - 3d^3(b^2D)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^2F)4p \end{array}$	$\begin{array}{r} a^{3}G \ - \ ^{3}D^{o} \\ a^{1}F \ - \ ^{1}D^{o} \\ ga^{5}D \ - \ ^{5}D^{o} \\ ga^{5}D \ - \ ^{5}D^{o} \\ a^{3}G \ - \ ^{3}G^{o} \end{array}$	4 - 3 3 - 2 4 - 4 2 - 3 5 - 5		229 229 229 229 229 229
	50 150 150 100 50	361.512 361.694 361.823 361.863 361.935	$\begin{array}{c} .1421 & 276.7592 \\ 30.1470 & 306.6228 \\ 29.8171 & 306.1939 \\ .4173 & 276.7659 \\ .1421 & 276.4349 \end{array}$	$\begin{array}{c} 3d^4 & 3d^3(a^4P)4p \\ 3d^3 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^4P)4p \\ 3d^4 & 3d^3(a^4P)4p \end{array}$	$\begin{array}{c} ga^5D \ - \ {}^5D^o \\ a^3G \ - \ {}^3G^o \\ a^3G \ - \ {}^3G^o \\ ga^5D \ - \ {}^3P^o \\ ga^5D \ - \ {}^3P^o \end{array}$	$1 \cdot 2$ $4 \cdot 4$ $3 \cdot 3$ $2 \cdot 1$ $1 \cdot 0$		229 229 229 229 229 229
	100 150 150 200 200	361.972 362.064 362.256 362.376 362.601	$\begin{array}{c} .8031 & - 277.0685 \\ 30.4301 & - 306.6228 \\ 30.1470 & - 306.1939 \\ .8031 & - 276.7592 \\ 1.2828 & - 277.0685 \end{array}$	$\begin{array}{c} 3d^4 & 3d^3(a^4P)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^4P)4p \\ 3d^4 & 3d^3(a^4P)4p \\ 3d^4 & 3d^3(a^4P)4p \end{array}$	$\begin{array}{c} ga^{5}D & \cdot & {}^{5}D^{o} \\ a^{3}G & \cdot & {}^{3}G^{o} \\ a^{3}G & \cdot & {}^{3}G^{o} \\ ga^{5}D & \cdot & {}^{5}D^{o} \\ ga^{5}D & \cdot & {}^{5}D^{o} \end{array}$	3 - 3 5 - 4 4 - 3 3 - 2 4 - 3		229 229 229 229 229 229 229
	40 200 50 200 20	362.631 362.806 362.821 362.930 363.102	$\begin{array}{r} 26.8423 & \cdot 302.6025 \\ 26.9740 & \cdot 302.6025 \\ 26.7607 & \cdot 302.3771 \\ 26.8423 & \cdot 302.3771 \\ 26.9740 & \cdot 302.3771 \end{array}$	$\begin{array}{c} 3d^4 - 3d^3(a^2F)4p \\ 3d^4 - 3d^3(a^2F)4p \\ 3d^4 - 3d^3(a^2F)4p \\ 3d^4 - 3d^3(a^2F)4p \\ 3d^4 - 3d^3(a^2F)4p \\ 3d^4 - 3d^3(a^2F)4p \end{array}$	a ³ F - ³ F ^o a ³ F - ³ F ^o a ³ F - ³ F ^o a ³ F - ³ F ^o a ³ F - ³ F ^o	3 - 4 4 - 4 2 - 3 3 - 3 4 - 3		229 229 229 229 229 229
	150 70 50 100 100	363.332 363.444 363.630 363.693 363.699	$\begin{array}{c} .1421 & 275.3743 \\ 0.0000 & 275.1466 \\ .1421 & 275.1466 \\ .4173 & 275.3743 \\ 36.5863 & 311.5387 \end{array}$	$\begin{array}{c} 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^2(a^4P)4p \\ 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(a^2F)4p \end{array}$	$\begin{array}{l} ga^5D - {}^3P^o \\ ga^5D - {}^5D^o \\ ga^5D - {}^5D^o \\ ga^5D - {}^3P^o \\ a^1G - {}^1F^o \end{array}$	1 - 2 0 - 1 1 - 1 2 - 2 4 - 3	P P	229 229 229 229 229 229
	50 20 80 50 150	363.760 363.999 364.148 364.170 364.202	$\begin{array}{c} 36.6301 \cdot 311.5387 \\ .4173 \cdot 275.1466 \\ .1421 \cdot 274.7533 \\ 36.5863 \cdot 311.1809 \\ .8031 \cdot 275.3743 \end{array}$	$\begin{array}{l} 3d^4 & \cdot 3d^3(a^2F)4p \\ 3d^4 & \cdot 3d^3(a^4P)4p \\ 3d^4 & \cdot 3d^3(a^4P)4p \\ 3d^4 & \cdot 3d^3(a^2F)4p \\ 3d^4 & \cdot 3d^3(a^2F)4p \\ 3d^4 & \cdot 3d^3(a^4P)4p \end{array}$	$\begin{array}{c} a^{3}D \ - \ ^{1}F^{o} \\ ga^{5}D \ - \ ^{5}D^{o} \\ ga^{5}D \ - \ ^{5}D^{o} \\ a^{1}G \ - \ ^{1}G^{o} \\ ga^{5}D \ - \ ^{3}P^{o} \end{array}$	$ \begin{array}{r} 3 - 3 \\ 2 - 1 \\ 1 - 0 \\ 4 - 4 \\ 3 - 2 \end{array} $		229 229 229 229 229 229
	200 250 200 250 300	364.280 364.795 364.974 365.338 365.434	$\begin{array}{r} .4173 & .274.9303 \\ .8031 & .274.9303 \\ .1421 & .274.1361 \\ .4173 & .274.1361 \\ 1.2828 & .274.9303 \end{array}$	$\begin{array}{l} 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \\ 3d^4 - 3d^3(a^4P)4p \end{array}$	ga ⁵ D - ⁵ P ^o ga ⁵ D - ⁵ P ^o ga ⁵ D - ⁵ P ^o ga ⁵ D - ⁵ P ^o ga ⁵ D - ⁵ P ^o	2 - 3 3 - 3 1 - 2 2 - 2 4 - 3		229 229 229 229 229 229
	$250 \\ 100 \\ 300 \\ 250 \\ 150$	365.632 365.742 365.855 365.997 366.663	$\begin{array}{c} .1421 & 273.6431 \\ 61.8544 & 335.2678 \\ .8031 & 274.1361 \\ .4173 & 273.6431 \\ 62.9142 & 335.6427 \end{array}$	$\begin{array}{l} 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(b^2D)4p \\ 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(a^4P)4p \\ 3d^4 \cdot 3d^3(b^2D)4p \end{array}$	$\begin{array}{c} ga^5D - {}^5P^o\\ b^3P - {}^3P^o\\ ga^5D - {}^5P^o\\ ga^5D - {}^5P^o\\ b^3P - {}^3P^o\\ \end{array}$	$ \begin{array}{r} 1 & \cdot & 1 \\ 2 & \cdot & 1 \\ 3 & \cdot & 2 \\ 2 & \cdot & 1 \\ 1 & \cdot & 0 \end{array} $		229 229 229 229 229 229
	200 100 200 150 100	366.764 366.890 367.007 367.033 367.168	$\begin{array}{c} 61.8544 & \cdot 334.5091 \\ 29.8171 & \cdot 302.3771 \\ 29.8171 & \cdot 302.2927 \\ 30.1470 & \cdot 302.6025 \\ 62.9142 & \cdot 335.2678 \end{array}$	$\begin{array}{l} 3d^4 & 3d^3(b^2D)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(a^2F)4p \\ 3d^4 & 3d^3(b^2D)4p \end{array}$	$\begin{array}{c} b^{3}P \ - \ ^{3}P^{o} \\ a^{3}G \ - \ ^{3}F^{o} \\ a^{3}G \ - \ ^{3}F^{o} \\ a^{3}G \ - \ ^{3}F^{o} \\ b^{3}P \ - \ ^{3}P^{o} \end{array}$	2 - 2 3 - 3 3 - 2 4 - 4 1 - 1		229 229 229 229 229 229

D~07	D~	6	7
------	----	---	---

munplet		A_{var} (in A)		Configurations	I erins J	- J Notes	here
	250 250 10 150 160	367.338 367.415 367.453 367.852 367.992	$\begin{array}{c} 30.1470 - 302.3771 \\ 30.4301 - 302.6025 \\ 62.3644 - 334.5091 \\ 63.4200 - 335.2678 \\ 36.9254 - 308.6715 \end{array}$	$\begin{array}{c} 3d^4 + 3d^3(a^2F) 4p \\ 3d^4 + 3d^3(a^2F) 4p \\ 3d^4 + 3d^3(a^2F) 4p \\ 3d^4 + 3d^3(b^2D) 4p \\ 3d^4 + 3d^3(a^2F) 4p \\ 3d^4 + 3d^3(a^2F) 4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3 - 4 - 2 - 1 - 1	229 229 229 229 229 229
	$150 \\ 150 \\ 5 \\ 200 \\ 2$	368.196 368.451 368.677 369.470 369.565	$\begin{array}{c} 62.9142 + 334.5091 \\ 36.7585 + 308.1650 \\ 36.9254 + 308.1650 \\ 36.6301 + 307.2887 \\ 24.0554 + 294.6440 \end{array}$	$\begin{array}{l} 3d^3 - 3d^3(a^2b^2D) 4p \\ 3d^3 - 3d^3(a^2b) 4p \\ 3d^3 - 3d^3(a^2b) 4p \\ 3d^3 - 3d^3(a^2b) 4p \\ 3d^3 - 3d^3(a^2b) 4p \\ 3d^4 - 3d^3(a^2b) 4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 - 2 - 2 - 3 - 1	229 229 229 229 229 229
	7 130 250 125 5	370.381 370.589 370.673 370.847 371.083	36.6301 - 306.6228 62.2381 - 332.0173 62.3644 - 332.0173 61.8544 - 331.3338	$3d^4 - 3d^3(a^2F)^4p$ $3d^4 - 3d^3(b^2D)^4p$ $3d^4 - 3d^3(b^2D)^4p$ $3d^4 - 3d^3(b^2D)^4p$	$a^{3}D - {}^{3}G^{a}$ 3 $b^{3}F - {}^{3}F^{a}$ 4 $b^{3}F - {}^{3}F^{a}$ 3 $b^{3}P - {}^{3}F^{a}$ 2	- 4 - 4 - 2	229 432 229 229 229
ļ	15 200 100 250 200	371.454 371.568 371.683 371.732 371.742	$\begin{array}{c} 26.7607 & - 295.9732 \\ 62.2381 & - 331.3670 \\ 62.3211 & - 331.3670 \\ 62.3211 & - 331.3338 \\ 62.3644 & - 331.3670 \end{array}$	$\begin{array}{l} 3d^4 + 3d^3(a^2P)4\rho\\ 3d^4 + 3d^3(b^2P)4p\\ 3d^5 + 3d^4(b^2D)4p\\ 3d^5 + 3d^3(b^2D)4p\\ 3d^5 + 3d^3(b^2D)4p\\ 3d^4 + 3d^3(b^2D)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- J - 3 - 3 - 2 - 3	229 229 229 229 229 229 229
	150 70 70 250 100	371.788 372.890 373.720 373.795 373.835	62.3644 - 331.3338 26.4683 - 294.6440 24.9325 - 292.5132 62.3211 - 329.8486 24.9325 - 292.4307	$\begin{array}{l} 3d^4 - 3d^3(b^2 D) 4p \\ 3d^4 - 3d^3(a^4 P) 4p \\ 3d^4 - 3d^3(a^2 P) 4p \\ 3d^4 - 3d^3(a^2 P) 4p \\ 3d^4 - 3d^3(b^2 D) 4p \\ 3d^4 - 3d^3(a^2 P) 4p \end{array}$		- 2 - 1 - 3 - 2 - 4	229 229 229 229 229 229 229
!	$300 \\ 20 \\ 150 \\ 10 \\ 300$	374.244 374.356 374.444 374.761 374.870	25.2259 - 292.4307 8031 - 267.9286 25.2259 - 292.2876 25.5285 - 292.3659 25.5285 - 292.2876	$\begin{array}{l} 3d^4-3d^3(a^2H)4p\\ 3d^4-3d^3(a^4F)4p\\ 3d^4-3d^4(a^2H)4p\\ 3d^4-3d^4(a^2H)4p\\ 3d^4-3d^3(a^2H)4p\\ 3d^4-3d^3(a^2H)4p \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 4 - 4 - 5 - 6 - 5	229 229 229 229 229 229
	30 15 150 20 300	375.030 375.196 375.518 375.837 375.979	$\begin{array}{r} 1.2828 + 267.9286 \\ 24.0554 + 290.5837 \\ 24.9325 + 291.2314 \\ 61.8544 + 327.9244 \\ 36.6301 + 302.6025 \end{array}$	$\begin{array}{l} 3d^4 - 3d^4(a^4 F) 4p \\ 3d^4 - 3d^4(a^2 F) 4p \\ 3d^4 - 3d^3(a^2 F) 4p \\ 3d^4 - 3d^3(a^2 F) 4p \\ 3d^4 - 3d^5(b^2 F) 4p \\ 3d^5 - 3d^3(a^2 F) 4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 4 - 1 - 3 - 3 - 4	229 229 229 229 229 229
	5 1 50 50 200	376.038 376.209 376.290 376.298 376.382	24.9729 - 290.9034 .8031 - 266.6128 26.7607 - 292.5132 36.6301 - 302.3771 62.2381 - 327.9244	$\begin{array}{l} 3d^4 + 3d^3(a^2D)^4p\\ 3d^5 + 3d^3(a^2P)^4p\\ 3d^4 + 3d^4(a^2R)^4p\\ 3d^4 + 3d^3(a^2P)^4p\\ 3d^4 + 3d^3(a^2P)^4p\\ 3d^4 + 3d^3(b^2D)^4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0 - 2 - 3 P - 3 P - 3 P	229 229 229 229 229 229
	150 200 150 70 40	376.404 376.48] 376.560 376.596 376.708	$\begin{array}{r} 26.8423 + 292.5132 \\ 36.7585 + 302.3771 \\ 62.3644 + 327.9244 \\ 36.7585 + 302.2927 \\ 26.9740 + 292.4307 \end{array}$	$\begin{array}{l} 3d^4 - 3d^3(a^2H) 4p \\ 3d^4 - 3d^3(a^2F) 4p \\ 3d^3 - 3d^3(b^2D) 4p \\ 3d^5 - 3d^3(a^2r) 4p \\ 3d^5 - 3d^3(a^2r) 4p \\ 3d^4 - 3d^3(a^2H) 4p \end{array}$	$ \begin{array}{cccc} a^{3}F & - \ ^{3}G^{\circ} & \left(\begin{array}{c} 3 \\ a^{3}D & - \ ^{3}F^{\circ} \end{array} \right) & 2 \\ b^{3}F & - \ ^{3}D^{\circ} & 3 \\ a^{3}D & - \ ^{3}F^{\circ} & 2 \\ a^{3}F & - \ ^{3}G^{\circ} & 4 \\ \end{array} $	- 3 - 3 - 3 - 2 - 4	229 229 229 229 229 229
	1 200 150 50 200	376.741 376.837 376.952 377.006 377.016	$\begin{array}{r} 24.9729 - 290.4077 \\ 36.9254 - 302.2927 \\ 62.3211 - 327.6054 \\ 46.2912 - 311.5387 \\ 62.3644 - 327.6054 \end{array}$	$\begin{array}{l} 3d^3 - 3d^3(a^2D)4p\\ 3d^4 - 3d^3(a^2F)4p\\ 3d^4 - 3d^2(b^2D)4p\\ 3d^4 - 3d^2(b^2D)4p\\ 3d^4 - 3d^3(a^2F)4p\\ 3d^4 - 3d^3(b^2D)4p\\ \end{array}$	$ \begin{array}{c} a^{3}P - {}^{3}f^{\mu \nu} & 1 \\ a^{3}D - {}^{3}F^{\nu} & 1 \\ b^{3}F - {}^{3}D^{\nu} & 2 \\ a^{1}D - {}^{1}F^{\nu} & 2 \\ b^{3}F - {}^{3}D^{\nu} & 3 \end{array} $	- 2 - 2 - 2 - 3 - 2 - 2 P	229 229 229 229 229 229
	250 40 1 200 125	377.054 377.386 377.800 377.829 377.909	62.3211 - 327.5338 24.9325 - 289.9130 62.9142 - 327.6054 71.2803 - 335.9474 24.0554 - 288.6698	$\begin{array}{l} 3d^4 - 3d^3(b^2D)4p\\ 3d^4 - 3d^3(a^2D)4p\\ 3d^4 - 3d^4(b^2D)4p\\ 3d^4 - 3d^4(b^2D)4p\\ 3d^4 - 3d^3(b^2D)4p\\ 3d^4 - 3d^3(a^2D)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1 - 3 - 2 - 3 - 1	229 229 229 229 229 229
	200 200 70 150 5	377.970 378.191 378.327 378.419 378.622	25.5285 - 290.0991 24.9729 - 289.3897 25.2259 - 289.5459 26.9740 - 291.2314 26.4683 - 290.5837	$\begin{array}{l} 3d^4 - 3d^3(a^2fl) 4p \\ 3d^4 - 3d^3(a^2l) 4p \\ 3d^4 - 3d^3(a^2l) 4p \\ 3d^4 - 3d^3(a^2l) 4p \\ 3d^4 - 3d^3(a^2l) 4p \\ 3d^4 - 3d^3(a^2l) 4p \end{array}$	$ \begin{array}{c} a^{3}H - {}^{4}H^{*} & 6 \\ a^{3}P - {}^{3}D^{*} & 1 \\ a^{3}H - {}^{4}C^{*} & 5 \\ a^{3}F - {}^{4}F^{*} & 4 \\ a^{3}P - {}^{3}P^{*} & 2 \end{array} $	- 5 - 2 - 4 - 3 - 1	229 229 229 229 229 229
	80 200 150 250 5	378.875 379.032 379.223 379.300 379.414	$\begin{array}{c} 26.4683 - 290.4077 \\ 1.2828 - 265.1126 \\ 24.9729 - 283.6698 \\ 25.5285 - 289.1719 \\ 26.8423 - 290.4077 \end{array}$	${ m 3d}^4 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^4 - { m 3d}^3(a^4P){ m 4p} \ { m 3d}^4 - { m 3d}^3(a^4P){ m 4p} \ { m 3d}^4 - { m 3d}^3(a^2P){ m 4p} \ { m 3d}^4 - { m 3d}^3(a^2P){ m 4p} \ { m 3d}^4 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 4p} \ { m 3d}^3 - { m 3d}^3(a^2D){ m 3d}^3 - { m 3d}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 - 5 - 1 - 7 - 2	229 229 229 229 229 229

for the second

l'^{arre}

tiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	300	379 586	26.4683 - 289 9130	3d ⁴ - 3d ³ (₂²D)4n	a ³ P - ³ D⁰	2 - 3		229
	30	380.009	26.7607 - 289.9130	$3d^4 \cdot 3d^3(a^2D)4p$	$a^{3}F + {}^{3}D^{\circ}$	$2 \cdot 3$		229
	100	380.131	26.8423 - 289.9130	$3d^4 \cdot 3d^3(a^2D)4p$	$a^{3}F + {}^{3}D^{\circ}$	3 - 3		229
	200	380.313	25.2259 - 288.1672	$3d^4 - 3d^3(a^2H)4p$	$a^{3}H - {}^{3}I^{\circ}$	5 - 6	Р	229
	100	380.316	26.9740 - 289.9130	$3d^4 - 3d^3(a^2D)4p$	a ³ F - ³ D ^o	4 - 3	P	229
	250	380.340	26.4683 - 289.3897	$3d^{4} \cdot 3d^{3}(a^{2}D)4p$	$a^{3}P - {}^{3}D^{0}$	2 - 2		229
	250	380.667	29.8171 - 292.5132	$3d^4 - 3d^3(a^2H)4p$	• a ³ G - ³ G°	3 - 3		229
	150	380.752	25.5285 - 288.1672	$3d^4 - 3d^3(a^2H)4p$	a³H - ³I°	6 - 6		229
	150	380.764	26.7607 - 289.3897	$3d^4 - 3d^3(a^2D)4p$	a ³ F - ³ D ^o	2 - 2		229
	125	380.786	29.8171 - 292.4307	3d ⁴ - 3d ³ (a ² H)4p	$a^3G - {}^3G^\circ$	3 - 4		229
	250	380.883	26.8423 - 289.3897	$3d^4 - 3d^3(a^2D)4p$	$a^{3}F - {}^{3}D^{\circ}$	$3 \cdot 2$		229
	200	380.940	24.9325 - 287.4405	3d [*] - 3d [*] (a [*] H)4p	a"H - 1"	4 • 5	1	229
	100	381.104	25.2259 • 287.6202	3d ⁴ - 3d ⁹ (a ² D)4p	a"H - "F"	5-4	l l	229
	150	381.147	30.1470 - 292.5132	3d [*] - 3d [*] (a [*] H)4p	a°G - °G° 36 - 36°	4-3		229
	300	381.200	30.1470 - 292.4307	30° - 30°(a°ri)4p	a G - "G	4 - 4		229
	250	381.366	25.2259 - 287.4405	$3d^4 - 3d^3(a^2H)4p$	$a^{3}H - {}^{3}I^{\circ}$	5 - 5		229
	150	201.472	20.4201 202.2070	30 - 30 (a - 11)4p $31^4 - 31^3(a^2 U)/a$	3C 3C	4.5		229
	200	301.000	30.4301 - 292.4307	ou + ou (a n/4p 3d ⁴ - 3d ³ /a ² /1/4s	a G - G 3C - Ho	5.6		229
	250	381.812	26.7607 - 288.6698	$3d^{4} - 3d^{3}(a^{2}D)4p$	a ³ F - ³ D°	2 · 1		229
	250	381,887	30.4301 - 292.2876	$3d^4 - 3d^3(a^2H)4n$	a ³ G - ³ G°	5 - 5		229
	20	382.411	24.9325 - 286.4313	$3d^4 - 3d^3(a^4P)4p$	$a^{3}H + {}^{3}D^{\circ}$	4.3		229
	200	382.536	29.8171 - 291.2314	$3d^4 - 3d^3(a^2D)4p$	$a^{3}G - {}^{1}F^{0}$	3 - 3		229
	250	382.624	46.2912 - 307.6444	$3d^4 - 3d^3(a^2F)4\rho$	$a^{1}D - {}^{1}D^{\circ}$	2 - 2		229
	200	382.827	24.9729 - 286.1877	$3d^4 - 3d^3(a^2P)4\rho$	a ³ P - ³ S"	1 - 1		229
	150	383.159	24.9729 - 285.9617	3d ⁴ - 3d ³ (a ² D)4p	a ³ P - ¹ P°	1 - 1	,	229
	200	383.491	.4173 - 261.1796	3d ⁴ - 3d ³ (a ⁴ F)4p	ga⁵D • ³D°	2 - 3		229
	40	383.817	24.9325 - 285.4740	3d4 - 3d3(a2P)4p	$a^{\circ}H - {}^{\circ}D^{\circ}$	4 - 3		229
	150	384.033	26.4683 - 286.8627	$3d^4 - 3d^3(a^4P)4p$	a [°] P · [°] D [°]	$2 \cdot 2$		229
	200	384.058	.8031 - 261.1796	3d" • 3d"(a"1')4p	ga"D • "D"	3-3		229
	250	384.219	26.8423 - 287.1096	$3d^4 - 3d^3(a^2D)4p$	$a^{3}F - {}^{3}F^{0}$	$3 \cdot 3$		229
	250	384.410	26.9740 - 287.1096	3d' - 3d'(a'D)4p	-3F 3D0	4.3		229
	200	384.479	20.7007 - 280.8333	od - od (ar)4p o.14 o.1 ³ (α ³ μ)1 ₂	ar-U	2 9		229
	200	384.622	.4173 - 260.4114	3d - 3d (a F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p	ga ⁵ D - ³ D°	$2 \cdot 2$		229
	200	384 659	25 2259 - 285 1961	$3d^4 + 3d^3(a^2H)4n$	a ³ H - ³ H°	; 5-6		229
	150	384.707	24 9729 - 284 9112	$3d^4 \cdot 3d^3(a^2P)4n$	$a^{3}P - {}^{3}D^{\circ}$	1 - 2		229
	150	384.768	1.2828 - 261.1796	$3d^4 \cdot 3d^3(a^4F)4p$	ga ⁵ D - ³ D°	4 - 3		229
	150	384.825	24.9325 - 284.7908	$3d^4 \cdot 3d^3(a^2H)4p$	a ³ H - ³ H°	4 - 5	P	229
	100	384.833	.1421 - 259.9952	$3d^4 - 3d^3(a^4F)4p$	ga ⁵ D - ³ D°	1 - 1	Р	229
	300	384.958	1.2828 - 261.0519	3d4 - 3d3(a4F)4p	ga ⁵ D - ⁵ F°	4 - 5		229
	300	384.972	24.9325 - 284.6903	3d ⁴ - 3d ³ (a ² H)4p	a ³ H - ³ H ^o	4 - 4		229
	200	385.031	26.4683 - 286.1877	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P - {}^{3}S^{\circ}$	2 - 1	Р	229
	100	385.033	.8031 - 260.5210	$3d^4 \cdot 3d^3(a^4\Gamma)4p$	$ga^{5}D - {}^{5}F^{\circ}$	3 - 4	Р	229
	300	385.108	25.5285 - 285.1961	3d4 - 3d3(a2H)4p	a ³ H - ³ H°	6 - 6		229
	100	385.196	.8031 - 260.4114	$3d^4 - 3d^3(a^4F)4p$	$ga^5D - {}^3D^\circ$	3 2		229
	100	385.226	26.8423 - 286.4313	3d" - 3d'(a*P)4p	$a^{\alpha}F - {}^{\alpha}D^{\alpha}$	3-3		229
	300	385.251	29.8171 - 289.3897	3d ⁴ - 3d ⁵ (a ² D)4p	a"G - "D"	3-2		229
	300 300	385.262 385.300	$25.2259 \cdot 284.7908$.4173 $\cdot 259.9547$	3d* - 3d°(a²H)4p 3d* - 3d³(a⁴F)4p	a'H - 'H' ga ⁵ D - ⁵ F'	$5 - 5 \\ 2 - 3$		229 229
	100	295 490	96 0740 996 4919	2,14 2,13/_4D\4	_3E 3D₀	4 9		220
	200	385.420	20.9740 - 280.4313 26.7607 - 286 1540	əa∵+ əd"(a°1′)4p 3a4 - 3a3(a²1))4∞	a F - "D" a ³ F - ³ F ⁰	4-3		229 229
	70	385.637	26.8423 . 286 1549	$3d^4 \cdot 3d^3(a^2t))4n$	a ³ F. ³ F	3.2	İ	229
	20	385 719	20.0423 + 200.1349 25.5285 - 284.7008	$3d^4 \cdot 3d^3(a^2H)\Delta_N$	ат • г з ³ Н - ³ Н°	6.5		229
	100	385.746	1.2828 - 260.5210	3d ⁴ - 3d ³ (a ⁴ F)4p	$ga^{5}D - F^{0}$	4 - 4	Р	229
Ì	200	385 752	1421 - 259 3761	3d ⁴ - 3d ³ (s ⁴ F)4n	ga ⁵ D - ⁵ F⁰	1.2	Р	229
	300	385.875	.8031 - 259 9547	$3d^4 - 3d^3(a^4F)4n$	$a^{5}D - F^{6}$	3 3	•	229
	150	385.928	30.4301 - 289.5459	$3d^4 - 3d^3(a^2H)4n$	$\tilde{a}^{3}\tilde{G} - {}^{1}\tilde{G}^{0}$	5 - 4	4	229
	100	386.093	26.4683 · 285.4740	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P - {}^{3}D^{\circ}$	2 - 3	1	229
	100	386.162	.4173 - 259.3761	$3d^4 - 3d^3(a^4F)4p$	ga ⁵ D - ⁵ F°	2 - 2	Р	229
	250	386.163	36.7585 - 295.7164	$3d^4 - 3d^3(a^2D)4p$	$a^{3}D - D^{\circ}$	2 - 2	Р	229
	250	386.261	0.0000 - 258.8915	$3d^4 - 3d^3(a^4F)4p$	ga ⁵ D - ⁵ D°	0 - 1	ļ	229
	200	386.389	$52.7327 \cdot 311.5387$	$3d^{*} - 3d^{3}(a^{2}F)4p$	a'F - 'F'	3 3	ł	229
	150	386.428	24.9729 - 283.7540	3d* - 3d°(a*P)4p	a°P - °D°	1 - 1	Ĥ	229
	200	386 476	1421 - 258 8915	3d* - 3d*(a*F)4n	ga"D + °D°	. 1 - 1 -	1	229

D-	69
----	----

ultiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	250	386.528	24.9729 - 283.6863	3d ⁴ - 3d ³ (a ² P)4n	a ³ P - ³ P°	1.2		229
	250	386.590	1.2828 - 259.9547	$3d^4 - 3d^3(a^4F)4p$	ga ⁵ D - ⁵ F°	4 . 3		229
	200	386.652	26.8423 - 285.4740	$3d^4 - 3d^3(a^2P)4p$	a ³ F - ³ D ^o	3 - 3		229
	300	386.739	.8031 - 259.3761	$3d^4 - 3d^3(a^4F)4p$	$ga^5D - {}^5F^9$	3 - 2		229
	300	386.785	.8031 - 259.3448	3d ⁴ - 3d ³ (a ⁴ F)4p	ga ⁵ D - ⁵ D°	3 - 4		229
	300	386.847	26.9740 - 285.4740	$3d^{4} - 3d^{3}(a^{2}P)4p$	$a^{3}F - {}^{3}D^{\circ}$	4 - 3		229
	300	386.878	.1421 - 258.6195	3d ⁴ - 3d ³ (a ⁴ F)4p	ga ⁵ D - ⁵ D°	1.0		229
	350	386.885	.4173 - 258.8915	3d ⁴ - 3d ³ (a ⁴ F)4p	ga⁵D - ⁵D°	2 · 1		229
	100	386.924	52.7327 - 311.1809	3d ⁴ - 3d ³ (a ² F)4p	a ¹ F · ¹ G°	3 - 4		229
	400	387.202	.4173 - 258.6800	3d* - 3d°(a*F)4p	ga°D - °D°	2 - 3		229
	200	387.371	26.7607 - 284.9112	$3d^4 - 3d^3(a^2P)4p$	$a^{3}F - {}^{3}D^{\circ}$	2 · 2		229
	100	387.493	26.8423 - 284.9112	$3d^* - 3d^3(a^2P)4p$	a ⁵ F - ⁵ D ⁹	3 - 2	P	229
	300	387.504	1.2828 - 259.3448	3d [*] - 3d [*] (a [*] F)4p	ga"D - "D"	4.4	P	229
	300	387.018	.1421 - 238.1285	30° - 30° (a° r)4p 2.44 - 2.4∂(-2C)4-	ga*D - *D* .30 100	1 • 2		229
	100	201-009	24.9020 - 202.0719	su - su (a Grep	4 11 - 11	9.5		229
	200	387.763	24.0554 - 281.9449	3d ⁴ - 3d ³ (a ² P)4p	a ³ P - ³ P°	$0 \cdot 1$	Р	229
	200	387.769	36.7585 - 294.6440	3d ⁴ - 3d ³ (a ⁴ P)4p	$a^{3}D - {}^{3}S^{\circ}$	$2 \cdot 1$	P	229
	400	387.781	.8031 - 258.6800	$3d^4 - 3d^3(a^4F)4p$	ga ⁵ D - ⁵ D°	3 - 3		229
	20	387.895	29.8171 - 287.6202	$3d^4 - 3d^3(a^2D)4p$	a ³ C - ³ F ^o	3 - 4		229
	300	387.984	0.0000 - 257.7423	3d* - 3d ³ (a*F)4p	ga°D - °F°	$0 \cdot 1$		229
	150	388.030	.4173 - 258.1285	3d ⁴ - 3d ³ (a ⁴ F)4p	ga ⁵ D - ⁵ D°	2 - 2		229
l	100	388.129	25.2259 - 282.8719	$3d^4 - 3d^3(a^2G)4p$	a'H H	5 - 5	Р	229
	100	388.140	24.9325 - 282.5716	$3d^4 - 3d^3(a^2G)4p$	$a^{3}H - {}^{1}F^{\circ}$	4 - 3	P	229
	100	388.199	.1421 - 257.7423	$3d^4 - 3d^3(a^4F)4p$	ga ⁵ D - ⁵ F	1.1		229
	200	388.390	30.1470 - 287.6202	3d* - 3d ³ (a ² D)4p	a°G - °F°	4 - 4		229
	250	388.504	1.2828 - 258.6800	3d ⁴ - 3d ³ (a ⁴ F)4p	ga⁵D · ⁵D°	4 - 3		229
l	200	388.586	25.5285 - 282.8719	$3d^4 - 3d^3(a^2G)4p$	a ³ H - ¹ H ^o	6 - 5		229
	300	388.613	.8031 - 258.1285	$3d^4 - 3d^3(a^4F)4p$	ga ^s D - ^s D ^o	3 - 2		229
	150	388.661	30.1470 - 287.4405	$3d^4 - 3d^3(a^2H)4p$	$a^3G - {}^3I^\circ$	4 - 5		229
	200	388.709	24.9729 - 282.2345	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P - {}^{3}P^{\circ}$	1 - 0		229
	200	388.775	26.4683 - 283.6863	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P \cdot {}^{3}P^{\circ}$	2 · 2		229
	300	388.817	30.4301 - 287.6202	3d ⁴ - 3d ³ (a ² D)4p	a ³ G - ³ F°	5 - 4		229
	200	388.947	24.9325 - 282.0381	3d ⁴ - 3d ³ (a ² G)4p	a'H - 'G'	4 - 4		229
l	250	389.035	29.8171 - 286.8627	$3d^4 - 3d^3(a^4P)4p$	a'G - 'D'	3 • 2		229
	200	389.115	26.7607 - 283.7540	3d* - 3d°(a*P)4p	a°F - °D°	2 - 1		229
ļ	200	389.146	24.9729 - 281.9449	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P - {}^{3}P^{\circ}$	1 - 1		229
	200	389.161	30.1470 - 287.1096	$3d^4 - 3d^3(a^2D)4p$	$a^3G - {}^3F^\circ$	4 - 3		229
	7	389.339	26.8423 - 283.6863	$3d^4 - 3d^3(a^2P)4p$	$a^{3}F - {}^{3}P'$	3 - 2		229
	200	389.390	25.2259 - 282.0381	3d ⁴ - 3d ² (a ² G)4p	a°H - 'G°	5 - 4		229
	70	389.642	71.2803 - 327.9244	3d* - 3d°(b*D)4p	P ₁ C - ₃ D ₀	4 - 3		229
	80	389.689	29.8171 - 286.4313	3d ⁴ - 3d ³ (a ⁴ P)4p	a ³ G · ³ D°	3 - 3	_	229
	150	390.107	39.6334 - 295.9732	$3d^{4} - 3d^{2}(a^{2}P)4p$	a'S • 'P'	0 - 1	P	229
	150	390.110	29.8171 - 286.1549	3d* - 3d°(a*D)4p	a°G - °F°	3 - 2	P	229
	300	390.191	30.1470 - 280.4313	30° - 30° (a°P)4p	a "G - "D"	4.3		229
	э	390.021	40.4914 - 202.2927	əu - əu (a r <i>)</i> 4p	a D - "F"	2 - 2		227
ł	200	390.692	26.4683 - 282.4235	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P - {}^{1}D^{\circ}$	2.2		229
İ.	200	390.735	36.5863 - 292.5132	3d* · 3d°(a'H)4p	a'G - °G°	4.3		229
	300	390.777	24.9325 - 280.8322	3d [*] - 3d [*] (a [*] G)4p	a"H - 'F"	4-3		229
	200	390.845	1.2828 - 257.1580	$3d^{2} - 3d^{2}(a^{2}t)/4p$ $2d^{4} - 2d^{3}(a^{2}t)/4p$	$ga^{*}D - G^{*}C^{*}$	4-5		229
1	200	390.001	30.3003 - 292.4307	50 × 50 (a 11)4p	a G - G	4-4		229
1	150	390.913	26.7607 - 282.5716	$3d^{4} - 3d^{3}(a^{2}G)4p$	$a^{3}F - {}^{1}F^{\circ}$	2 - 3		229
÷	40	390.985	26.8423 - 282.6048	3d* - 3d*(a*P)4p	a [°] F - [°] S [°]	3 - 2	1	229
	200	391.038	26.8423 - 282.5716	$3d^4 - 3d^3(a^2G)4p$	a°F - 'F"	3 - 3]	229
	200	391.141	26.7607 - 282.4235	3d* - 3d*(a ² P)4p	a'F - 'D'	2-2		229
	150	391.239	26.9740 - 282.5716	30° - 30°(a°6)4p	a*F - 'F*	4 - 3		449
	150	391.424	26.4683 - 281.9449	$3d^4 - 3d^3(a^2P)4p$	$a^{3}P - {}^{3}P'$	2 - 1		229
	250	391.489	24.9325 - 280.3672	3d* - 3d°(a*G)4p	a"H - "F"	4.4	1	229
	50	391.580	.8031 - 256.1779	3d* - 3d*(a*F)4p	ga ³ D · ³ G ⁹	3-4		229
	250	391.650	30.1470 - 285.4740 26.8423 - 282.0381	30" - 30"(a"r)4p 3d ⁴ - 3d ³ (a ² G)4p	a ³ F - ¹ G°	4 3 4		229
	200	201.020	25 2250 200 2672	2.14 2.134 2.014	377 31-0			990
	30	391.938 392.010	23.2239 - 280.3072	$3d^{4} - 3d^{3}(a^{2}P)4n$	a'ri - "F" a ³ C - ³ D°	3.9		229
	300	392.058	26.9740 - 282.0381	$3d^4 \cdot 3d^3(a^2G)4n$	$a^3F \cdot {}^1G^9$	4 4		229
	40	392.137	39.6334 - 294.6440	$3d^4 - 3d^3(a^4P)4n$	a'S - 3S°	0.1		229
	5	392.183	.4173 - 255.3992	3d ⁴ - 3d ³ (a ⁴ F)4v	ga ⁵ D - ⁵ G°	2 - 3		229
	- 1			· · · · · ·	U	i		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Multiplet Rel. Int.	λ_{su} (in \tilde{A})	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J-J Note	es References
$ \begin{array}{c} 2-1 & 400(10^{-1} & 400(10^{-1} & 400(200) & 40^{-1} & 400(10^{-1} & 10^{-1} &$	350	100.070		i and and the	1.315 3356	ф. т. А. А.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	200	100.079	02.2081 - 307.2887 26.0251 - 291.0440		$D^{*}F = ^{*}D^{*}$	4.3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	408.261		2.4 ⁴ - 2.4 ³ (c ² 1)) 4.	a D - P	1 • 1	229
$ \begin{array}{c} 250 & 108 153 & 62.201 & 307 0641 & 307 3644 & 307 3646 & $	10	.408.289	62 3644 - 307 2887	2.12 - 20 (a 1798p 2.12 - 2.13(a-k)45	ар - г Б ³ Г ³ О°	2 - 0	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	250	408.153	62.2381 - 307.0644	$3d^{2} - 3d(a^{2}F)4p$ $3d^{3} - 3d^{3}(a^{2}F)4p$	$b^3F + {}^3G^\circ$	4 - 5	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	408.613	62.9142 - 307.6444	$3d^{4} + 3d^{3}(a^{2}F)4v$	$b^{3}P = {}^{4}D^{c}$	$1 \cdot 2$	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	409,190	62.2381 - 306.6228	$3d^4 - 3d^4(a^2F)4p$	$b^3 F + {}^3 G^c$	4 - 4	229
	10	409.265	61.8544 - 306.1939	$3d^4 - 3d^3(a^3F)4p$	$b^3P = {}^3G^6$	2 - 3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	409,400	62.3644 - 306.6228	$3d^4 - 3d^3(a^2F)4p$	$b^3F + {}^3G^6$	3 - 4	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	409,419	36.5863 - 280.8322	$3d^4-3d^3(a^2G)4p$	$a^{1}G + {}^{3}F^{0}$	4 - 3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	109,496	36.6301 - 280.8322	$3d^4$ - $3d^3(a^2G)4p$	a ³ D - ³ F°	3 - 3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	409.638	39.6334 - 283.7540	3d ⁴ - 3d ³ (a ² P)4p	$a^{1}S = {}^{3}D^{*}$	0 - 1	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-100	409.712	36.7585 - 280.8322	3d ⁺ - 3d ⁺ (a ² G)4p	a 'D - 'F'	2 - 3	229
	200	410.049	62.3211 - 306.1939	$3d^2 - 3d^2(a^2F)4p$	b'F - °G" 1311 - 3C2	2 - 3	229
	.0	410.121	02.0044 - 300.1353	50 - 50 (arr)4p	pr - ()		229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.400	410,204	36.7585 - 280.5397	$3d^4 - 3d^3(a^2G)4p$	$a^{3}D - {}^{3}F^{o}$	$\frac{2}{2} \cdot \frac{2}{4}$	229
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	250	410.278	36.6301 - 280.3672	3d1 - 3d2(a*G)4p	a 'D - "F"	3 - 4	229
	250	410.483	30.9254 - 280.5397	3d - 3d (a*G)/4p	a"D - "F"	1 - 2	229
	000	411.049	26.7862 970.5026	001 - 00 (a 17/4p 9.14 - 9.13 - 2004 -	a' r = D	0-2	229
	10	411.00a	50.5605 - 279.3020	5a - 5a (a G) 45	a () - ()	4-4	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	411.739	36.6301 - 279.5026	$3d^4 - 3d^3(a^2G)4p$	$a^3D = {}^3G^3$	3 - 4	229
	20	412.577	46.2912 - 288.6698	$3d^{4} - 3d^{2}(a^{2}D)4p$	$a^{\dagger}D = {}^{3}D^{\circ}$	2 - 1	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	412.693	39.6334 - 281.9449	3d' - 3d'(a'P)4p	a'S - "P"	0 - 1	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30 50	413.025 413.162	93.8323 - 335.9474 36 7585 - 278 7942	3d1 - 3d1(b1D)4p 3d3 - 3d5(a2G)4p	$\mathbf{b}'\mathbf{D} = \mathbf{F}''$ $\mathbf{a}^{3}\mathbf{D} = {}^{3}\mathbf{G}''$	$\frac{2}{2}$	229
				in a comp	a 17 - 07	2 - 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	125	414.787	26.8423 - 267.9286	$3d^{3} - 3d^{3}(a^{3}F)4p$	a'F - 'F	3 - 4	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	415.013	26.9740 - 267.9286	3d' - 3d'(a*F)4p	a"F - "F"	4-4	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	415.089	40.2912 - 280.8555	301 - 301 (a 17)4p	a D - D Vad 3Ds	2 - 1	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	415.834	26.7607 - 267.2401	3d - 3d (a r)%p 3d ⁴ - 3d ³ (a*F)4n	$\mathbf{p} \mathbf{r} + \mathbf{r}$ $\mathbf{a}^{3}\mathbf{F} + {}^{3}\mathbf{F}^{e}$	2 - 3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					200		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	415.906	36.6301 - 277.0685	3d* - 3d°(a*P)4p	$a^{2}D - D^{2}D^{2}$	3 - 3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	415.977	20.8423 - 207.2401	30' - 30'(a' F)4p	a'i' - 'i' 1312 - 3120	3-3	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	410.057	96 0740 - 267 2401	$3a^4 - 3a^4(a^4F)4p$	0 F - F	4 - 4 4 - 9 - 12	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	416.218	71.2803 - 311.5387	$3d^4 + 3d^3(a^2F)4p$	$\mathbf{b}^{1}\mathbf{G} = {}^{1}\mathbf{F}^{n}$	4-3 P	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0	414.979	(3.3644	9.13 9.13/ 2154	1312 315		220
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 200	+10.200	02.3044 - 302.0022 36.6301 - 976 7509	od ' - od (a*r)/sp 2.4 ⁴ - 2.43(a*D)4a	0°F - F 		229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	416.568	62 3211 - 302 3771	$3d^3 - 3d^3(a^2F)4p$	a D · D 1.31 · 310	2 2	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	416.655	36.7585 - 276.7659	$3d^4 - 3d^3(a^4P)4p$	$a^{3}D + {}^{3}P^{\circ}$	2.1	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	125	416.717	62.3211 - 302.2927	$3d^4 - 3d^3(a^2F)4p$	$b^{3}F + {}^{3}F^{\circ}$	2 - 2	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	416.839	71.2803 - 311 1809	$3d^4 - 3d^3(a^2F)4n$	$h^1G + {}^1G^{\circ}$	4.4 P	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	416.846	46.2912 - 286.1877	$3d^{+} - 3d^{3}(a^{2}P)4p$	$a^{1}D + {}^{3}S^{n}$	2 I P	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	416.864	25.2259 - 265.1126	3d ⁺ - 3d ³ (a ⁺ F)4p	$a^{3}H = {}^{3}G^{\circ}$	5-5	229
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	416.925	26.7607 - 266.6128	$3d^4 - 3d^3(a^4F)4\omega$	$a^{3}F + {}^{3}F^{0}$	2 - 2	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	416.944	36.9254 - 276.7659	3d ⁴ - 3d ³ (a ⁴ P)4p	a ³ D - ³ P°	1 - 1	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	417.064	26.8423 - 266.6128	$3d^4 - 3d^3(a^4F)4p$	$a^3F + {}^3F^{\circ}$	3 - 2	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	417.194	52.7327 - 292.4307	$3d^4 - 3d^3(a^2H)^4p$	$a^3F + {}^3G^n$	3 - 4	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	417.241	46.2912 - 285.9617	$3d^4 - 3d^3(a^2D)4p$	$\mathbf{a}^{T}\mathbf{D} + {}^{T}\mathbf{P}^{o}$	2 - 1	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	700	417.391	25.5285 - 265.1126	$3d^{4} - 3d^{3}(a^{4}F)4p$	$a^{3}H - {}^{3}G^{*}$	6 - 5	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	417.520	36.9254 - 276.4349	3d* - 3d²(a*P)4p	a'D - 'P"	1 · 0 P	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	417.534	24.9325 - 264.4342	3d ⁴ - 3d ³ (a ⁴ F)4p	$a^{3}H = {}^{3}G^{3}$	-4 - 4 = P	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700	418.045	25.2259 - 264.4342	3d ⁴ - 3d ³ (a ³ F)4p	a3H - 3G°	5 - 4	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	418.472	24.9325 - 263.8986	3d ⁴ - 3d ³ (a ⁴ F)4p	$a^{3}H \cdot {}^{3}G^{\circ}$	4 - 3	229
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	418.862	36.6301 - 275.3743	$3d^4 - 3d^9(a^4P)4p$	$a^{2}D - ^{2}P^{2}$	3 - 2	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	419.082	36.7585 - 275.3743	3d* - 3d*(a*P)4p	a"D - "P"	2 - 2	229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	419.291	52.7327 - 291.2314	$3d^4 - 3d^3(a^2D)4p$	$\mathbf{a}^{T}\mathbf{F} = \mathbf{F}^{n}$	3 - 3	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150	419.487	36.7585 - 275.1466	3d* - 3d [*] (a*P)4p	$a^{2}D - {}^{2}D^{2}$	2 - 1	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	419.782	30.9254 - 275.1466	3d" - 3d'(a P)4p	a"D - "D" 31: 34%	1 - I 4 - F	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	419.924 490.475	20.9740 - 265.1126 36.0254 - 274.7522	3d1 - 3d2(a1)4p 2d4 - 2d3(-40)4-	a"r - "G" -313 - 5139	4-5	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	420.475	00.9204 - 274.7000	ou - on (a r)4p	a 17 - "D"	1 - 0	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	420.559	30.1470 - 267.9286	$3d^4 - 3d^3(a^4F)4p$	$a^{3}G - {}^{3}F^{\circ}$	4 - 4	229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	420.892 491.055	20.8423 - 204.4342 30.4301 - 967 0986	- 3d1 - 3d1(a1h)小p スd2 - 2d3(a4⊾34)	$a^{n} r = "G'$ $a^{3} r = {}^{3} u^{n}$	3-4- 5-4	229
$250 421.188 29.8171 267.2401 34^{1} - 34^{1}a^{4}r^{4}b_{4} a^{*}G^{-3}F^{**} 3 - 3 229$	200	421.194	26.9740 - 264.4349	3d ⁴ - 3d ³ (a ⁴ F)4n	а ст. г а ³ Е - ³ С ^о	4.4	229
	250	421.188	29.8171 - 267.2401	$3d^3 - 3d^3(a^4F)4p$	$a^3G = {}^3F^0$	3 - 3	229

D-	7	1

Multiplet Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Noti	se Refe
70 30 200 500	421.240 421.622 421.697 421.777	46.2912 - 283.6863 52.7327 - 289.9130 26.7607 - 263.8986 30.1470 - 267.2401	$rac{3d^4}{3d^2}(a^2f)4p$ $3d^4-3d^3(a^2f)4p$ $3d^4-3d^4(a^4f)4p$ $3d^4-3d^4(a^4f)4p$		$ \begin{array}{r} 2 & -2 \\ 3 & -3 \\ 2 & -3 \\ 4 & -3 \end{array} $	229 229 229 229 229
150	421.942	26.8423 - 263.8986	$3d^4 + 3d^3(a^4F)4\gamma$	$\mathbf{a}^{3}\mathbf{f}^{2} - {}^{3}\mathbf{G}^{0}$	3 - 3	229
300	422.277	52.7327 - 289.5459	$3d^4 - 3d^3(a^2\Xi)4p$	i a'F 'C'	3 . 4 :	229
00	422.300	29.8171 - 200.0128 46.2012 - 282.6048	30 - 3d (a'r)4p 3d* - 3d*(s*P)4a	a'G - F a'D - ^S S"	2 - 2	229
300	423.229	46.2912 - 282.5716	$3d^4 - 3d^3(a^2G)4_1$	$a^1D + {}^1F^0$	2 - 3	229
10	423.286	24.9325 - 261.1796	$3d^4 - 3d^3(a^4F)4p$	$a^{3}M = {}^{3}O^{2}$	4 - 3	229
70	423.494	46.2912 - 282.4235	$3d^4 - 3d^3(a^2P)4p$	$a^{1}D - {}^{1}D^{\circ}$	2 - 2	229
100	423.700	9318323 - 329.8486	$3d^3 - 3d^3(b^2D)4p$	$b^{\dagger}D - {}^{\dagger}D^{\circ}$	2 - 2 P	229
100	423.714	24.0554 - 250.0052	$3d^4 - 3d^3(s^4F)dn$	^{3}P , $^{3}D^{\circ}$	· · · · · · · · · · · · · · · · · · ·	270
20	424.354	46.2912 - 281.9449	$3d^4 - 3d^3(a^2P)4p$	a'D - ³ P	2 - 1	229
100	424.587	25.5285 - 261.0519	$3d^4 - 3d^3(a^4F)4u$	a ³ H - ⁵ F	6 - 5	229
200	424.741	24.9729 - 260.4114	$3d^4 - 3d^3(a^4F)^4p$	$a^{3}P - {}^{3}D^{0}$	1 - 2	229
40	424.914	71.2803 - 306.6228	$3d^3 - 3d^3(a^2F)4p$	$\mathbf{b}_{\mathbf{A}}^{I}\mathbf{G} = \frac{\mathbf{A}}{\mathbf{G}}^{o}$	4.1	229
1 70	425.000	25.2259 - 260.5210	$3d^{*} - 3d^{*}(a^{*}F)Ap$ $2d^{*} - 2d^{*}d^{*}MAz$	a°⊟ - '}** _3p 3r∞	5 - 4	229
190	942 3.4993	ムル・ティンプ・ ムウン・オブウン	-202 - 30 (A T 24p	ar- 1/	1 - 1	429
125	425.595	30.1470 - 265.1126 71 2803 - 206 1020	$3d^4 - 3d^3(a^4F)4p$ 2.44 - 2.13(2)(1.4)	a ³ G - ³ G° 14C - 3C2	4 - 5	229
50	425.840	24.0554 - 258.8915	$3d^{4} - 3d^{3}(a^{4}F)4c$	a ³ P - ⁵ D ⁵	0.1.0	047
500	426.056	26.4683 - 261.1796	$3d^4 - 3d^3(a^4F)4p$	$a^{3}F - {}^{3}D^{3}$	2 - 3	229
500	426.108	30.4301 - 265.1126	$3d^4 - 3d^3(a^4l^2)4p$	a ³ G - ³ G ³	5 - 5	229
100	426.229	29.8171 - 264.4342	$3d^4 - 3d^3(a^+F)4p$	$a^3G \cdot {}^3G^c$	3.4	229
70	426.364	46.2912 - 280.8322	3d' - 3d'(a'G)4p 2.4 - 2.36-4m4	a'U - "?" 3D5D%	$\begin{bmatrix} 2 & 3 \\ 1 & 9 \end{bmatrix}$	229
5	426.663	52 7327 - 287 1096	$3d^4 - 3d^2(a^2D)A_D$	a F - F	$3 \cdot 3$	229
150	426.740	26.8423 - 261.1796	$3d^{4} - 3d^{3}(a^{4}F)4p$	$\mathbf{a}^{3}\mathbf{F} + {}^{3}\mathbf{D}^{c}$	3 - 3	229
300	426.829	30.1470 - 264.4342	$3d^4 - 3d^3(a^4F)4p$	a ³ G - ³ G"	4.4	229
350	426.974	26.9740 - 261.1796	$3d^{4} - 3d^{3}(a^{2}F)4p$	$a^{3}F + {}^{3}D^{\circ}$	$4 \cdot 3$	229
10	427.115	52.7327 - 286.8627	3d* - 3d°(a*P)4p 2.44 - 2.43(-20)4-	$\mathbf{a}^{T}\mathbf{F} = \mathbf{D}^{n}$	3 - 2	229
250	427.201	01 .65949 - 275.9752 29 .8171 - 263.8986	3d ⁴ - 3d ³ (a ⁴ F)4p	a ³ G - ³ G ⁵	3 - 3	229
30	427.343	$30.4301 \cdot 264.4342$	$3d^4 - 3d^3(a^4F)4w$	$a^3G - {}^3G^\circ$	5 - 4	229
200	427.453	26.4683 - 260.4114	3d4 - 3d3(a4F)4p	$a^{3}P = {}^{3}D^{0}$	2 - 2	229
1	427.498	24.9729 - 258.8915	$3d^4 - 3d^3(a^4F)4p$	$a^{3}P \cdot {}^{5}D^{\circ}$	1 - 1	829
· 710 30	4?7.772 427.804	93.8323 - 327.8054 30.1470 - 263.8986	3d* - 3d*(6*12)4p 3d* - 3d*(a*F)4p	b'D - 'D' a'G - 'G'	2 - 2 4 - 3	432 229
150	497.094	94.0554 -250.7499	9.14 9.13/. 4Th 4	_3p 560	: 0 1	200
70	427 987	26.7607 - 260.4114	$3d^4 - 3d^3(a^4F)4p$	$a^{3}F + {}^{3}D'$	2 - 2	229
30	428.138	26.8423 - 260.4114	3d4 - 3d3(a4F)4p	$a^3 F + {}^3 U^2$	$3 \cdot 2$	229
1 70	428.218	26.4683 - 259.9952	$3d^4 - 3d^3(a^4F)4p$	a ³ P - ³ D ² .30 5 5 5	2-1	229
10	428.290	20.3085 - 259,9547	pa, - pa (s r)sh	a e - e	2>	2,29
5	428.540	62.3644 - 295.7164	$3d^4 - 3d^3(a^2D)4p$	$b^{3}F \cdot b^{1}D^{n}$	$\frac{3}{2} \cdot \frac{2}{1}$	229
200	428 898	20.7007 - 209.9902 24.9729 - 258 1285	30° - 36 (8° 1949 3d4 - 3d3(a46)4a	a r - "D" a ³ P - ⁵ D"	1 - 2	279
40	429.077	62.9142 - 295.9732	$3d^4 - 3d^3(a^2P)/1p$	$b^3P + {}^1P^*$	1 - 1	229
5	429.223	26.9740 - 259.9547	$3d^4 - 3d^3(a^4F)4p$	a ³ F - ⁵ F°	4.3	229
5	429.353	26.4683 - 259.3761	$3d^4 - 3d^3(a^4F)4p$	$a^{3}P - {}^{5}F^{\circ}$	2 - 2	229
	429.573	61.8544 - 294.6440	$3d^{2} - 3d^{2}(a^{2}P)4p$ $3d^{2} - 2d^{2}(d^{2}N)4$	5° - 3°d	12-1	229
- 145 50	430.042	24.9(29 - 201.1423 26 8423 - 259 3761	$\frac{\partial u}{\partial d^4} = \frac{\partial u}{\partial d^3} (a^4 F) 4 u$	ar - r a'F - ⁵ F°	3 - 2	220
70	430.103	46.2912 - 278.7942	$3d^4 - 3d^3(a^2G)4p$	a ¹ D - ³ G°	2 - 3	229
150	430.640	26.4683 - 258.6800	$3d^4 \cdot 3d^3(a^4F)4p$	a ³ P - ⁵ D ^o	2.3	229
1	430.792	26.7607 - 258.8915	$3d^4 \cdot 3d^3(a^4T)4p$	$a^{3}F - {}^{5}D^{\circ}$	2 - 1	229
2	431.116	52.7327 - 284.6903	$3d^4 - 3d^3(a^2H)4p$	a'F - 311	3 - 4	229
125	951.558 431.580	02.9142 - 294.0440 26 9740 - 258.6800	301 - 3d"(a1174p 3d⁴ - 3d³(a³17)4p	o 1' - "S" a³₽ - ⁵ D'	4 - 3	279 229
100	421 666	96 4682 959 1995	2,24 9.13(41)A	340 S. 50	9 9	000
5	431.759	25.5285 · 257 1380	3d ⁴ - 3d ³ (a ⁴ F)4p	at - ₽ a ³ ∰ - ⁵ G°	6-5	229
125	432.341	36.6301 - 267.9286	$3d^4 - 3d^3(a^4F)4_P^4$	$\mathbf{a}^{2}\mathbf{D} + {}^{3}\mathbf{F}^{0}$	3 - 4	229
100	432.363	26.8423 - 258.1285	$3d^{a} = 3d^{3}(a^{a}F)Ap$	a'f' - 'f." Lan an	$\frac{3}{0}$	229
145	452.460	153.962077 · Z(245.0494)	an - 90 (a chub	D1 - 3	V - 1	2.29

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms J - J	Notes References
	150 5 70 30	432.935 432.988 433.610 433.629	26.7607 - 257.7423 52.7327 - 283.6863 30.4301 - 261.0519 36.6301 - 267.2401	3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ² P)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p	$\begin{array}{ccccccc} a^{3}F & {}^{5}F^{\circ} & 2 & \cdot & 1 \\ a^{1}F & {}^{3}P^{\circ} & 3 & \cdot & 2 \\ a^{3}G & {}^{5}F^{\circ} & 5 & \cdot & 5 \\ a^{3}D & {}^{3}F^{\circ} & 3 & \cdot & 3 \\ a^{3}D & {}^{3}F^{\circ} & 3 & \cdot & 3 \end{array}$	229 229 229 229 229
	150 300 70 200 250 125	433.872 434.418 434.499 434.658 434.686 435.374	36.7585 - 267.2401 62.3211 - 292.5132 62.3644 - 292.5132 62.3644 - 292.4307 62.2381 - 292.2876 36 9254 - 266 6128	3d* - 3d*(a*F)4p 3d* - 3d*(a*F)4p 3d* - 3d*(a*F)4p 3d* - 3d*(a*F)4p 3d* - 3d*(a*F)4p 3d* - 3d*(a*F)4p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229 229 229 229 229 229 229
	1 20 30 100 150	435.623 436.697 436.851 437.200 437.538	29.8171 - 259.3761 62.2381 - 291.2314 62.3211 - 291.2314 61.8544 - 290.5837 61.8544 - 290.4077	$3d^4 - 3d^3(a^4F)4p$ $3d^4 - 3d^3(a^2F)4p$ $3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$		229 229 229 229 229 229 229
-	3 50 80 300 5	438.516 438.618 438.865 439.225 439.469	$\begin{array}{c} 62.3644 & - 290.4077 \\ 62.9142 & - 290.9034 \\ 62.2381 & - 290.0991 \\ 62.2381 & - 289.9130 \\ 62.3644 & - 289.9130 \end{array}$	$\begin{array}{c} 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^2H)4p\\ 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^2D)4p \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	229 229 229 229 229 229 229
	70 20 10 250 200	439.574 440.213 440.400 440.479 441.799	$\begin{array}{c} 62.9142 & 290.4077 \\ 63.4200 & 290.5837 \\ 62.3211 & 289.3897 \\ 62.3644 & 289.3897 \\ 62.3211 & 288.6698 \end{array}$	$3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$ $3d^4 - 3d^3(a^2D)4p$	$\begin{array}{c cccc} b^3P & {}^3P^\circ & 1 & 2 \\ b^3P & {}^3P^\circ & 0 & 1 \\ b^3F & {}^3D^\circ & 2 & 2 \\ b^3F & {}^3D^\circ & 3 & 2 \\ b^3F & {}^3D^\circ & 3 & 2 \\ b^3F & {}^3D^\circ & 2 & 1 \end{array}$	229 229 229 229 229 229
	5 300 150 200 300	443.690 444.701 445.334 445.368 445.438	$\begin{array}{c} 62.2381 & -287.6202 \\ 62.2381 & -287.1096 \\ 36.6301 & -261.1796 \\ 62.3211 & -286.8553 \\ 62.3644 & -286.8627 \end{array}$	$\begin{array}{c} 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^4F)4p\\ 3d^4 & 3d^3(a^4F)4p\\ 3d^4 & 3d^3(a^4P)4p\\ 3d^4 & 3d^3(a^4P)4p \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	229 229 229 229 229 229 229
	5 300 80 40 150	445.588 446.042 446.295 446.762 446.846	$\begin{array}{r} 36.7585 & -261.1796 \\ 62.2381 & -286.4313 \\ 62.3644 & -286.4313 \\ 62.3211 & -286.1549 \\ 62.3644 & -286.1549 \end{array}$	$\begin{array}{l} 3d^4 & 3d^3(a^4F)4p\\ 3d^4 & 3d^3(a^4P)4p\\ 3d^4 & 3d^3(a^4P)4p\\ 3d^4 & 3d^3(a^2D)4p\\ 3d^4 & 3d^3(a^2D)4p\\ 3d^5 & 3d^5(a^2D)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229 229 229 229 229 229
		447.119 447.781 447.959 448.212 448.286	$36.7585 \cdot 260.4114$ $36.6301 \cdot 259.9547$ $62.2381 \cdot 285.4740$ $62.3644 \cdot 285.4740$ $36.9254 \cdot 259.9952$	3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ² P)4p 3d ⁴ - 3d ³ (a ² P)4p 3d ⁴ - 3d ³ (a ⁴ F)4p	$\begin{array}{cccc} a^3D \cdot {}^3D^{\circ} & 2 \cdot 2 \\ a^3D \cdot {}^5F^{\circ} & 3 \cdot 3 \\ b^3F \cdot {}^3D^{\circ} & 4 \cdot 3 \\ b^3F \cdot {}^3D^{\circ} & 3 \cdot 3 \\ a^3D \cdot {}^3D^{\circ} & 1 \cdot 1 \end{array}$	229 229 229 229 229 229
	$100 \\ 30 \\ 60 \\ 50 \\ 200$	449.347 450.350 450.795 451.734 451.810	62.3644 - 284.9112 36.6301 - 258.6800 61.8544 - 283.6863 36.7585 - 258.1285 121.1302 - 342.4622	$\begin{array}{l} 3d^4\cdot 3d^3(a^2P)4p\\ 3d^4\cdot 3d^4(a^4F)4p\\ 3d^4\cdot 3d^3(a^2P)4p\\ 3d^4\cdot 3d^3(a^2P)4p\\ 3d^4\cdot 3d^3(a^4F)4p\\ 3d^4\cdot 3d^3(b^2D)4p \end{array}$	$\begin{array}{cccc} b^3F\cdot {}^3D^\circ & 3 \cdot 2 \\ a^3D\cdot {}^5D^\circ & 3 \cdot 3 \\ b^3P\cdot {}^3P^\circ & 2 \cdot 2 \\ a^3D\cdot {}^5D^\circ & 2 \cdot 2 \\ b^1S\cdot {}^1P^\circ & 0 \cdot 1 \end{array}$	229 229 229 229 229 229
	60 10 5 70 70	452.474 452.864 454.360 454.648 455.220	$\begin{array}{c} 71.2803 \cdot 292.2876 \\ 36.9254 \cdot 257.7423 \\ 61.8544 \cdot 281.9449 \\ 71.2803 \cdot 291.2314 \\ 62.3644 \cdot 282.0381 \end{array}$	$\begin{array}{l} 3d^4 \cdot 3d^3(a^2H)4p\\ 3d^4 \cdot 3d^3(a^4F)4p\\ 3d^4 \cdot 3d^3(a^2P)4p\\ 3d^4 \cdot 3d^3(a^2P)4p\\ 3d^4 \cdot 3d^3(a^2D)4p\\ 3d^4 \cdot 3d^3(a^2G)4p \end{array}$	$\begin{array}{ccccc} b^1G & {}^3G^\circ & 4 \cdot 5 \\ a^3D & {}^5F' & 1 \cdot 1 \\ b^3P & {}^3P^\circ & 2 \cdot 1 \\ b^1G & {}^1F^\circ & 4 \cdot 3 \\ b^3F & {}^1G^\circ & 3 \cdot 4 \end{array}$	229 229 229 229 229 229
	$250 \\ 5 \\ 300 \\ 20 \\ 20 \\ 20$	457.001 457.736 458.158 458.251 459.135	$\begin{array}{c} 71.2803 & 290.0991 \\ 62.3644 & 280.8322 \\ 71.2803 & 289.5459 \\ 62.3211 & 280.5397 \\ 62.2381 & 280.0396 \end{array}$	3d ⁴ - 3d ³ (a ² H)4p 3d ⁴ - 3d ³ (a ² G)4p 3d ⁴ - 3d ³ (a ² G)4p 3d ⁴ - 3d ³ (a ² G)4p 3d ⁴ - 3d ³ (a ² G)4p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229 229 229 229 229 229
	150 50 70 150 200	459.338 465.309 465.319 467.701 468.339	93.8323 - 311.5387 61.8544 - 276.7659 61.8544 - 276.7592 93.8323 - 307.6444 61.8544 - 275.3743	$\begin{array}{l} 3d^4 \cdot 3d^3(a^2F)4p\\ 3d^4 \cdot 3d^3(a^4P)4p\\ 3d^4 \cdot 3d^3(a^4P)4p\\ 3d^4 \cdot 3d^3(a^2F)4p\\ 3d^4 \cdot 3d^3(a^2F)4p\\ 3d^4 \cdot 3d^3(a^4P)4p \end{array}$	$ \begin{array}{c c} b^1 D \cdot {}^1 F^* & 2 \cdot 3 \\ b^3 P \cdot {}^3 P^* & 2 \cdot 1 \\ b^3 P \cdot {}^5 D^* & 2 \cdot 2 \\ b^1 D \cdot {}^1 D^* & 2 \cdot 2 \\ b^3 P \cdot {}^3 P^* & 2 \cdot 2 \end{array} $	229 229 229 229 229 229
	70 10 40 30 50	468.577 468.717 468.839 469.464 470.678	$\begin{array}{c} 71.2803 & 284.6903 \\ 63.4200 & 276.7659 \\ 61.8544 & 275.1466 \\ 62.3644 & 275.3743 \\ 62.9142 & 275.3743 \end{array}$	3d ⁴ - 3d ³ (a ² H)4p 3d ⁴ - 3d ³ (a ⁴ P)4p 3d egin{array}{c ccccccccccccccccccccccccccccccccccc$	229 229 229 229 229 229	

		······································				
ultiplet Rel. Int.	λ _{vse} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	Reference
20 10 5 100 2	471.178 472.059 472.309 472.608 474.481	62.9142 - 275.1466 62.9142 - 274.7533 63.4200 - 275.1466 71.2803 - 282.8719 71.2803 - 282.081	3d ⁴ - 3d ³ (a ⁴ P)4p 3d ⁴ - 3d ³ (a ⁴ P)4p 3d ⁴ - 3d ³ (a ⁴ P)4p 3d ⁴ - 3d ³ (a ² C)4p 3d ⁴ - 3d ³ (a ² C)4p	$b^{3}P - {}^{5}D^{\circ}$ $b^{3}P - {}^{5}D^{\circ}$ $b^{3}P - {}^{5}D^{\circ}$ $b^{1}G - {}^{1}H^{\circ}$ $b^{1}C - {}^{1}C^{\circ}$	$ \begin{array}{r} 1 - 1 \\ 1 - 0 \\ 0 - 1 \\ 4 - 5 \\ 4 - 4 \end{array} $	229 229 229 229 229
100 300 5 10 2	481.899 486.168 486.464 487.796 487.996	71.2803 - 278.7942 62.2381 - 267.9286 62.3644 - 267.9286 62.3281 - 267.9286 62.3281 - 267.2401 62.3211 - 267.2401	3d ⁴ - 3d ³ (a ² G)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d up>1</sup> G - ³ G° b ³ F - ³ F° b ³ F - ³ F° b ³ F - ³ F° b ³ F - ³ F°	$\begin{array}{c} 4 - 4 \\ 4 - 3 \\ 4 - 4 \\ 3 - 4 \\ 4 - 3 \\ 2 - 3 \end{array}$	229 229 229 229 229 229 229	
250 150 5 10 100	488.100 489.498 489.600 492.913 494.566	$\begin{array}{c} 62.3644 \cdot 267.2401 \\ 62.3211 \cdot 266.6128 \\ 62.3644 \cdot 266.6128 \\ 62.2381 \cdot 265.1126 \\ 62.2381 \cdot 264.4342 \end{array}$	3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p 3d ⁴ - 3d ³ (a ⁴ F)4p	b ³ F - ³ F° b ³ F - ³ F' b ³ F - ³ F° b ³ F - ³ G° b ³ F - ³ G°	3 - 3 2 - 2 3 - 2 4 - 5 4 - 4	229 229 229 229 229 229 229
2 1 5	494.705 529.832 1039.96 1056.39 1062.976	93.8323 - 295.9732 93.8323 - 282.5716 24.9729 - 121.1302 26.4683 - 121.1302 233.8489 - 327.9244	$\begin{array}{c} 3d^4 - 3d^3(a^2P)4p \\ 3d^4 - 3d^3(a^2G)4p \\ 3d^4 - 3d^4 \\ 3d^4 - 3d^4 \\ 3d^4 - 3d^4 \\ 3d^4 - 3d^4 \end{array}$	$b^{1}D - {}^{1}P^{\circ}$ $b^{1}D - {}^{1}F^{\circ}$ $a^{3}P - b^{1}S$ $a^{3}P + b^{1}S$ ${}^{3}F - {}^{3}D^{\circ}$	2 - 1 2 - 3 1 - 0 F,P 2 - 0 F,P 3 - 3	229 229 229 375 229
$ 1 \\ 40 \\ 40 \\ 30 \\ 30 \\ 30 $	1101.921 1111.830 1112.651 1114.054 1118.384	216.5381 - 307.2887 217.1225 - 307.0644 221.3052 - 311.1809 216.8604 - 306.6228 216.7791 - 306.1939	$\begin{array}{l} 3d^3(a^2D)4s \ - \ 3d^3(a^2F)4p \\ 3d^3(a^2H)4s \ - \ 3d^3(a^2F)4p \\ 3d^3(a^2H)4s \ - \ 3d^3(a^2F)4p \\ 3d^3(a^2H)4s \ - \ 3d^3(a^2F)4p \\ 3d^3(a^2H)4s \ - \ 3d^3(a^2F)4p \\ 3d^3(a^2H)4s \ - \ 3d^3(a^2F)4p \end{array}$	³ D - ³ D ^o ³ H - ³ G ^o ¹ H - ¹ G ^o ³ H - ³ G ^o ³ H - ³ G ^o	3 - 3 6 - 5 5 - 4 5 - 4 4 - 3	229 229 229 229 229 229
1 20 10	1122.734 1123.865 1149.118 1185.23 1187.6	$\begin{array}{r} 213.5341 & - 302.6025\\ 195.9330 & - 284.9112\\ 220.6210 & - 307.6444\\ 36.7585 & - 121.1302\\ 36.9254 & - 121.1302 \end{array}$	$\begin{array}{l} 3d^3(a^2G)4s\cdot3d^3(a^2F)4\mu\\ 3d^3(a^4F)4s\cdot3d^3(a^2F)4p\\ 3d^3(a^2D)4s\cdot3d^3(a^2F)4p\\ 3d^4\cdot3d^4\\ 3d^4\cdot3d^4\\ 3d^4\cdot3d^4\\ \end{array}$	¹ G - ³ F° ³ F - ³ D° ¹ D - ¹ D° a ³ D - b ¹ S a ³ D - b ¹ S	4 - 4 3 - 2 2 - 2 2 - 0 1 - 0 F,P	229 229 229 229 229 375,229
60 50 30 10 40	1195.103 1198.593 1200.183 1207.115 1208.257	208.8382 - 292.5132 212.5421 - 295.9732 209.1101 - 292.4307 209.5239 - 292.3659 209.5239 - 292.2876	$\begin{array}{l} 3d^3(a^2G)4s\cdot3d^3(a^2H)4p\\ 3d^3(a^2P)4s\cdot3d^3(a^2P)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2H)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2H)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2H)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2H)4p \end{array}$	³ G - ³ G° ³ P - ¹ P° ³ G - ³ G° ³ G - ¹ I° ³ G - ³ G°	3 - 3 0 - 1 4 - 4 5 - 6 5 - 5	229 229 229 229 229 229
20 50 10 20 150	1214.711 1217.993 1224.417 1228.126 1234.648	$\begin{array}{c} 213.6492 & \cdot 295.9732 \\ 212.5421 & \cdot 294.6440 \\ 220.6210 & \cdot 302.2927 \\ 204.7299 & \cdot 286.1549 \\ 213.6492 & \cdot 294.6440 \end{array}$	$\begin{array}{l} 3d^3(a^4P)4s \ - \ 3d^3(a^2P)4p \\ 3d^3(a^4P)4s \ - \ 3d^3(a^4P)4p \\ 3d^3(a^2D)4s \ - \ 3d^3(a^2F)4p \\ 3d^3(a^2P)4s \ - \ 3d^3(a^2D)4p \\ 3d^3(a^4P)4s \ - \ 3d^3(a^2D)4p \\ 3d^3(a^4P)4s \ - \ 3d^3(a^4P)4p \end{array}$	³ P . ¹ P° ³ P . ³ S° ¹ D . ³ F° ⁵ P . ³ F° ³ P . ³ S°	$\begin{array}{c} 2 & -1 \\ 0 & -1 \\ 2 & -2 \\ 1 & -2 \\ 2 & -1 \end{array}$	229 229 229 229 229 229
20 20 200 10 2	1237.221 1249.496 1250.736 1257.531 1258.564	$\begin{array}{c} 195.9330 & \cdot 276.7592 \\ 214.6114 & \cdot 294.6440 \\ 262.5093 & \cdot 342.4622 \\ 187.7190 & \cdot 267.2401 \\ 187.1575 & \cdot 266.6128 \end{array}$	$\begin{array}{l} 3d^3(a^4F)4s \ - \ 3d^3(a^4P)4p \\ 3d^3(a^2P)4s \ - \ 3d^3(a^4P)4p \\ 3d^3(b^2D)4s \ - \ 3d^3(b^2D)4p \\ 3d^3(a^4F)4s \ - \ 3d^3(a^4F)4p \\ 3d^3(a^4F)4s \ - \ 3d^3(a^4F)4p \\ 3d^3(a^4F)4s \ - \ 3d^3(a^4F)4p \end{array}$	³ F - ⁵ D° ³ P - ³ S° ¹ D - ¹ P° ⁵ F - ³ F° ⁵ F - ³ F°	$ \begin{array}{r} 3 & -2 \\ 1 & -1 \\ 2 & -1 \\ 4 & -3 \\ 3 & -2 \end{array} $	229 229 229 229 229 229
20 10 20 20 30	1259.759 1263.844 1266.524 1269.784 1270.470	216.5927 - 295.9732 216.5927 - 295.7164 204.7299 - 283.6863 213.5341 - 292.2876 204.9754 - 283.6863	$\begin{array}{l} 3d^3(a^2D)4s\cdot3d^3(a^2P)4p\\ 3d^3(a^2D)4s\cdot3d^3(a^2D)4p\\ 3d^3(a^4P)4s\cdot3d^3(a^2P)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2P)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2P)4p\\ 3d^3(a^4P)4s\cdot3d^3(a^2P)4p \end{array}$	³ D · ¹ P° ³ D - ¹ D° ⁵ P - ³ P° ¹ G - ³ G° ⁵ P - ³ P°	$ \begin{array}{r} 2 - 1 \\ 2 - 2 \\ 1 - 2 \\ 4 - 5 \\ 2 - 2 \end{array} $	229 229 229 229 229 229
30 50 100 50 50	1276.647 1279.591 1280.471 1280.650 1281.367	209.1101 - 287.4405 205.5364 - 283.6863 209.5239 - 287.6202 212.8181 - 290.9034 212.5421 - 290.5837	$\begin{array}{l} 3d^3(a^2G)4s\cdot3d^3(a^2H)4p\\ 3d^3(a^2P)4s\cdot3d^3(a^2P)4p\\ 3d^3(a^2G)4s\cdot3d^3(a^2D)4p\\ 3d^3(a^4P)4s\cdot3d^3(a^2D)4p\\ 3d^3(a^4P)4s\cdot3d^3(a^2D)4p\\ 3d^3(a^4P)4s\cdot3d^4(a^2D)4p \end{array}$	³ G - ³ P ⁵ P - ³ P ³ G - ³ F ³ P - ³ P ³ P - ³ P	4 - 5 3 - 2 5 - 4 1 - 0 0 - 1	229 229 229 229 229 229
20 70 20 80 70	1281.652 1282.058 1283.613 1284.109 1285.918	208.8382 - 286.8627 209.1101 - 287.1096 233.6336 - 311.5387 204.7299 - 282.6048 212.8181 - 290.5837	$\begin{array}{l} 3d^3(a^2G)4s - 3d^3(a^4P)4p \\ 3d^3(a^2G)4s - 3d^3(a^2D)4p \\ 3d^3(a^2F)4s - 3d^3(a^2F)4p \\ 3d^3(a^2F)4s - 3d^3(a^4P)4p \\ 3d^3(a^4P)4s - 3d^3(a^4P)4p \\ 3d^3(a^4P)4s - 3d^3(a^2D)4p \end{array}$	³ G - ³ D° ³ G - ³ F° ³ F - ¹ F° ⁵ P - ⁵ S° ³ P - ³ P°	3 · 2 4 · 3 4 · 3 1 · 2 1 · 1	229 229 229 229 229 229
125 125 2 20 125	1287.101 1288.169 1288.720 1289.533 1291.191	$\begin{array}{c} 204.7299 & 282.4235 \\ 204.9754 & 282.6048 \\ 204.9754 & 282.5716 \\ 233.6336 & 311.1809 \\ 204.9754 & 282.4235 \end{array}$	$\begin{array}{l} 3d^3(a^4P)4s \; - \; 3d^3(a^2P)4p \\ 3d^3(a^4P)4s \; - \; 3d^3(a^4P)4p \\ 3d^3(a^4P)4s \; - \; 3d^3(a^2G)4p \\ 3d^3(a^4P)4s \; - \; 3d^3(a^2F)4p \\ 3d^3(a^2F)4s \; - \; 3d^3(a^2F)4p \\ 3d^3(a^4P)4s \; - \; 3d^3(a^2P)4p \end{array}$	⁵ P · ¹ D ⁰ ⁵ P - ⁵ S ⁰ ⁵ P - ¹ F ⁰ ³ F - ¹ G ⁰ ⁵ P · ¹ D ⁰	$ \begin{array}{r} 1 - 2 \\ 2 - 2 \\ 2 - 2 \\ 4 - 4 \\ 2 - 2 \end{array} $	229 229 229 229 229 229

`

D-7	4
-----	---

			and the second second second second second second second second second second second second second second second			
Multiplet Rel. Int.	$\lambda_{\rm sac}$ (in Å) .	Levels (in 10^3 cm)	Configurations :	Terms	J J Notes	References
.		200.0400 021.1600	0.13. 215a - 0.13. 215a.	312 1722	9 4	220
20	1293.125	200.0407 - 011.1007	30(a r) 35 = 30(a r) 39 $34^3(a^2 r) 4a = 34^3(a^4 P) 4a$	sc. m	1.3	220
100	1293.303	209.1101 - 200.4515 208.8382 - 286.1540	$3d^3(a^2f)(b_{-}, 3d^3(a^2D)A_D)$	3G . 3F	3.2	229
250	1295.577	200.0302 200.1349	$3d^{2}(a^{4}P)4s = 3d^{2}(a^{4}P)4s$	$\overline{p} = \overline{s}$	3 - 2	229
200	1300,608	205.5364 282.4235	$3d^{2}(a^{3}P)4s + 3d^{3}(a^{2}P)4p$	P D	3 - 2	$\frac{1}{229}$
150	1300.846	238 7695 . 335 6427	$3d^{3}(b^{2}D)4_{2} + 3d^{3}(b^{2}D)4_{2}$	$^{4}\mathrm{D}$ - $^{4}\mathrm{P}^{2}$	1 - 0	229
10	1303-081	187.1575 - 263.8986	3d3(a4F)4s - 3d3(a4F)4p	${}^{5}F + {}^{3}G^{\circ}$	3 - 3	229
150	1303,489	188,3953 - 265,1126	$3d^{3}(a^{4}F)4s = 3d^{3}(a^{4}F)4s$	$^{9}F = ^{9}G^{\circ}$	5 - 5	229
200	1304.816	258.6285 - 335.2678	$3d^{3}(h^{2}D)4s > 3d^{3}(h^{2}D)4p$	$^{3}D = ^{4}P^{\circ}$	$2 \cdot 1$	229
100	1305,971	212.8181 - 289.3897	3d²(a ⁴ P)4s + 3d²(a²D)4p	'P - 'D"	1 - 2	229
150	1306.080	213.5341 + 290.0991	$3d^3(a^2G)4s = 3d^3(a^2H)4p$	$G = H^{\circ}$	4 - 5	229
100	1307.219	258.7695 - 335.2678	$3d^{\circ}(b^{\circ}D)4s = 3d^{\circ}(b^{\circ}D)4p$	"D ~ 'P"	1 - 1	229
200	1307.424	219.4869 - 295.9732	3d"(a"1')4s - 3d"(a"1')4p 9 13d 2cta - 9 13d 26ta	$3C - 3D_{2}$	1 * L 4 - 2	229
, 0 2	1310.751	209.1101 - 285.4740 214.6114 - 290.9034	3d (a C)4s - 5d (a F)4p 3d ³ (a ² P)4s - 3d ³ (a ² D)4p	$^{3}P - ^{3}P^{\circ}$	1.0	229
-		012 (400 - 000 0120	3.1%.3DM. 9.136.2DM.	310 ⁽ 10°	·) '2	220
150	1311.239	213.0492 - 209.9130 210.4860 - 205.7164	$30^{\circ}(a + 945 - 50^{\circ}(a + 1946))$ $3d^{3}(a^{2}P)A_{2} = 3d^{3}(a^{2}D)A_{2}$	1 - 12 P - 10°	1.2	229
1.50	1311.020	219,4009 229.11104	$3d^3(a^4P)A_5 = 3d^3(a^2D)A_0$	$32 \cdot 10^{\circ}$	0 - Ī	229
200	1314.529	208.8382 - 284 9112	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}P)4p$	${}^{3}G = {}^{3}D^{*}$	3 - 2	229
400	1317.862	258.6285 - 334.5091	$3d^3(h^2D)4s = 3d^3(h^2D)4p$	$^{3}D + ^{3}P^{\circ}$	2 - 2	229
300	1318.354	208.8382 - 284.6903	$3d^{3}(a^{2}G)4s = 3d^{3}(a^{2}H)4p$	$^{\circ}G = {}^{3}H^{\circ}$	3 - 4	229
100	1320.312	258.7695 - 334.5091	$3d^{3}(b^{2}D)4_{8} + 3d^{3}(b^{2}D)4p$	${}^{3}D = {}^{3}P^{n}$	1 - 2	229
300	1320.410	$216.7791 \circ 292.5132$	$3d^3(a^2H)4s = 3d^3(a^2H)4p$	$H = G^{\circ}$	4 - 3	229
300	1321.341	209.1101 - 284.7998	3d'(a*G)4s - 3d'(a*H)3p 2.39.3014 - 2.48(a*H)4a	244 - 21H" 340 - 31H2	4 - 5	229
300	1321.490	209.5239 - 285.1901	əri (a. 0)48 - əbi (a. 11)4p	<u> 6 - п</u>	0.0	227
100	1321.850	216.7791 - 292.4307	$3d^3(a^2H)4s = 3d^2(a^2H)4p$	³ H - ³ G ⁿ	4 - 4	229
10	1323.097	209.1101 284.6903 .	$3d^3(a^2G)4s - 3d^3(z^2H)4p$	"G - ∖H"	4 - 4	229
400	1323.269	216.8604 - 292.4307	3d ^o (a [*] H)4s - 3d ^o (a [*] H)4p	"H - "G" 311 - 10	5 · 4 5 · 6	229
80	1324.403	216.8604 - 292.3659	3d (a*H)4s - 3d (a*H)4p 243/2204	11 - 1 31 - 30	a - 0 5 - 5	229
125	1323.781	210.8004 - 292.2870	ou (a 11798 - ou (a 1178p	11 * 17	.,,	
125	1327.101	220.6210 - 295.9732	$3d^3(a^2D)4s = 3d^3(a^2P)4p$	^{1}D , $^{1}\text{P}^{0}$ 311 - 116	2 - 1	229
50	1329.025	217.122.5 - 292.3059	3df(a*ff)98 - 3df(a*ff)9p 243(-2ff)4 243(-2ff)4.	30 3Ce	0.0	229
-1110) 1.50	1330.401	217.1225 - 292.2870	$3d^3(a^2D)4a = 3d^3(a^2D)4a$	3 D 3 P	1.0	229
150	1331.640	213.7620 + 290.9054 220.6210 + 295.7164	$3d^3(a^2D)4s - 3d^3(a^2D)4p$	$^{+}D = ^{+}D^{\circ}$	2 - 2	229
9	1339.069	913.6402 - 988.6608 -	3d ³ (a ⁴ P)4s = 3d ³ (a ² D)4p	${}^{3}\mathbf{P}$, ${}^{3}\mathbf{D}^{n}$	2 · 1	229
80	1336.039	208.8382 - 283.6863	$3d^{3}(a^{2}G)4 = 3d^{5}(a^{2}P)4p$	${}^{3}\mathbf{G} = {}^{3}\mathbf{P}^{5}$	$\frac{1}{3} \cdot \frac{1}{2}$	229
	1336.20	46.2912 - 121.1302	$3d^4 - 3d^4$	$a^{1}D + b^{1}S$	$2 - 0 = F_*P$	229
70	1337.287	214.6114 - 289.3897	$3d^{3}(a^{2}P)4s = 3d^{3}(a^{2}D)4p$	${}^{3}P + {}^{3}D^{\circ}$	1 - 2	229
150	1338.803	216.5381 - 291.2314	$3d^3(a^2D)4s - 3d^3(a^2D)4p$	$^{3}D - ^{4}F^{6}$	3 - 3	229
200	1339.691	234.0274 + 308.6715	$3d^{3}(a^{2}F)4s + 3d^{3}(a^{2}F)4p$	${}^{3}F + {}^{3}D^{\circ}$	$2 \cdot 1$	229
100	1343.121	186.7255 - 261.1796	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	${}^{5}F - {}^{3}D^{\circ}$	2 3	229
300	1345.611	233.8489 - 308.1656	$3d^{3}(a^{2}F)4a = 3d^{3}(a^{2}F)4p$	$^{3}F \sim ^{3}D^{*}$	3 - 2	229
70	1348.838	234.0274 - 308.1650	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	$^{\circ}F - ^{\circ}D^{\circ}$	2 · 2	229
125	1350,535	212.8181 - 286.8627	3d"(a"P)4s - 3d"(a"P)4p	"P - "D	1 - 2	229
50	1350.677	212.8181 - 286.8553	$3d^3(a^4P)4s + 3d^3(a^4P)4p$	$^{3}P + ^{3}D^{o}$	1 - 1	229
10	1350.948	187.1575 - 261.1796	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4p	$^{\circ}\mathrm{F}$ \sim $^{\circ}\mathrm{D}^{\circ}$	3 - 3	229
100	1351.755	186.4336 - 260.4114	3d ⁵ (a*F)4s = 3d ⁵ (a*F)4p	$^{\circ}F = ^{\circ}D^{\circ}$	1 - 2	229
150	1354.847	237.7296 - 311.5387	3d'(a*F)4a 3d'(a*F)4p 2d'(a*C)4a 2d3(a*D)4p	1F + 1F" 3C - 5S"	3-3-	229
1007	1355.024	200.0002 - 202.0040	ou (a topas - ou ta i pap	(),		22,
70	1356.232	208.8382 - 282.5716	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4p$	$^{3}G - ^{1}F^{*}$	3 - 3	229
100	1357.114	186.7255 - 260.4114	3d"(a'F)45 · 3d"(a'F)4p 2d3(-2F)4. 2d3(-2F)4.	1" - "D" 31: 3130	Z · Z · A 3 ·	229
200	1357.075	233.0330 - 307.2887	$3d^{3}(a^{4}D)A_{2} = 3d^{3}(a^{2}D)A_{1}$	3D 3Se	0.1	229
50	1358 386	212.3421 - 200.1077	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	${}^{3}F = {}^{3}D^{2}$	2 - 2	229
00				30 304	1 0	220
125	1358.567	215.7826 - 289.3897	3d"(a*D)4s - 3d"(a*D)4p 2.130.2014 2.130.2014.	°D - °D″ 3D 3₽9	$1 \cdot 2$ 3 4	229
400	1339.005	208.4341 - 332.0173	243(a4EMa 243(a4EMa)	5F 3D°	1.1	229
196	1359元430 1361-970	100.4330 - 237.9732 187.7100 - 261.1706	$3d^{3}(a^{4}F)4a = 3d^{3}(a^{4}F)4a$	ir in	4.3	229
300	1361.447	237.7296 - 311.1809	3d ³ (a ² F)4s - 3d ³ (a ² F)4p	$\mathbf{F} = \mathbf{I} \mathbf{G}^{*}$	3 - 4	229
200	1361.692	262.5093 - 335.9474	3d3(b2D)4s - 3d3(b2D)4p	$^{1}\mathbf{D} = {}^{1}\mathbf{F}^{a}$	2 - 3	229
600	1361.825	233.6336 - 307.0644	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	${}_{i}^{3}\mathbf{F} = {}_{i}^{3}\mathbf{G}^{*}$	4 - 5	229
250	1362.864	216.5381 - 289.9130	$3d^3(a^2D)4s - 3d^3(a^2D)4p$	${}^{3}D - {}^{3}D^{2}$	3 - 3	229
300	1363.077	187.1575 - 260.5210	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	${}^{\circ}\mathbf{F} = {}^{\circ}\mathbf{F}^{\circ}$	3 - 4 -	229
100	1363.376	209.5239 - 282.8719	3d"(a*G)4s - 3d*(a*G)4p	"G - 'Hº	5 - a	229
plet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	Reference
----------------	-------------------------------	---	---	--	------------------	-------------
200	1363 649	197 7100 961 0510	2.1 ³ (., ⁴ E)A. 9.1 ³ (., ⁴ E)A.	5 11 510-	4 5	220
200	1264 994	106 7955 950 (8059	$3d^3(a^4E)Aa = 2d^3(a^4E)Aa$	512 3120	9 1	220
250	1264 024	934 0274 - 207 9997	$24^3(-2E)A_2 = 24^3(-2E)A_3$	3 E 3 E 9	2 2	220
250	1365 115	187 1575 - 260 d114	$3A^{3}(a^{4}b^{3}A_{2} - 3A^{3}(a^{4}b^{3}A_{2})$	$5g \cdot 3D^{\circ}$	3 9	223
200	1365.571	186.7255 - 259.9547	$3d^{3}(a^{4}E)4s - 3d^{3}(a^{2}E)4p$	5F 5V	2 - 3	229
				10 200	0.0	
100	1365.876	213.6492 - 286.8627	3d"(a"P)4s - 3d"(a"P)4p 9.3%40\4s - 9.4%270\4s	P - 'D" i 3ρ 1ρ.	2 - 2	229
100	1270.202	212.0101 + 260.2013	30 (CT /48 - 30 (A D)40 3 (3)(-2134 - 3 (3)(-21))4	377 1770	4 5	220
120	1370.303	217.1220 - 290.0991	od (a. r.)48 • 30 (a. r.)49p	11 - 11 312 - 5754	4.9	22.9
250	1370.947	269 1101 - 282 9381	3d ³ (a ² G)4s - 3d ³ (a ² f)4a	$\mathbf{r} \cdot \mathbf{r}$ ${}^{3}\mathbf{G} \cdot {}^{1}\mathbf{C}^{\circ}$	1 - 2	229
00	101133.1		the factories and factories			
150	1371.987	215.7826 - 288.6698	$3d^3(a^2D)4s - 3d^3(a^2D)4p$	$^{3}D - ^{3}D^{\circ}$	1 - 1	229
700	1972.007	197 7100 - 209.5097	243(a41)48 - 14 (a 175p	312 3129	3-2	229
100	1070.007 .	107.7190 • 200.0210	9.13(-4E) 4. 9.13(-4E) 1.	5 F - F	3 3	229
250	1373.97%	213 6402 - 286 4313	$3d^3(a^4P)4s = 3d^3(a^4P)4s$	3P - 3D"	2.3	229
				200		
300	1374.116	233.8489 - 396.6228	$3d^{2}(a^{2}F)4s - 3d^{2}(a^{2}F)4p$ $2J^{3}(a^{2}H)J_{2} - 2J^{3}(a^{2}H)J_{2}$	F - 3G°	3-4	229
30	13 (4 201	210.7797 • 209.8489		3D 3D	9.44	229
230	10/9-70/	200.0200 + 001.007U	30 (D D)98 - 30 (D*D)40 9.33(-271)4 - 9.33(-271)4	311 100		229
80	15 (5. (84	210.0009 - 289.5459	00"(a"17945 - 50"(a"1794p	11 - 16" 510 - 510"	0 - 4 -	449
500	1379.337	188.5955 • 201.0519	od (a rives - od (a rivep	r · · · ·	0.0	229
300	1376.455	186.7255 - 259.3761	$3d^3(a^4F)4s - 3d^3(a^4F)4p$	F F	2 - 2	229
60	1377.723	214.5 258 - 287.1096	3d3(a ² P)4a - 3d3(a ² D)4p	$ ^{3}P - ^{3}F' $	2 - 3	229
250	1378.092	258.7695 - 331.3338	$3d^{3}(b^{2}b)4s - 3d^{3}(b^{2}b)4p$	10 °F	1 - 2	229
500	1378.560	205.5364 - 278.0758	$3d^{3}(a^{app})4s - 3d^{3}(a^{ap})4p$	P - D	3 - 4	229
20	1379.206	213.6492 - 286.1549	$3d^{3}(a^{2}P)4s + 3d^{3}(a^{2}D)4p$	*F - *F	2 - 2	229
250	1380.112	186.4336 - 258.8915	$3d^3(a^4F)4s - 3d^3(a^4F)4p$	5F + 5D°	1.1	229
20	1382.270	233.8489 • 306.1939	$3d^3(a^2F)4s - 3d^3(a^2F)4v$	${}^{3}F - {}^{3}G^{*}$	3 - 3	432
60	1382.414	214 .5258 - 286.8627	$3d^{2}(a^{2}l')4s = 3d^{2}(a^{4}l')4p$	³ P - ³ D	2 - 2	229
4.0	1382.560	214.5258 - 286.8553	$3d^{2}(a^{2}P)4s = 3d^{3}(a^{4}P)4s$	³ P - ³ D ⁿ	2 - 1	229
80	1384.055	214.6114 - 286.8627	$3d^3(a^2P)4s - 3d^3(a^4P)4p$	$^{3}P - ^{3}D^{*}$	1 - 2	229
80	1384.201	214.6114 - 286.8553	3d ³ (a ² P)4s - 3d ³ (a ⁴ P)4o	${}^{3}\mathbf{F} + {}^{3}\mathbf{D}^{5}$	1 - 1	229
80	1384.688	187.1575 - 259.3761	3d3(a4F)4s - 3d3(a4F)4p	${}^{5}F - {}^{5}F^{*}$	3 - 2	229
200	1385,313	186.4336 - 258 6195	3d3(a4F)4s - 3d3(a4F)4p	${}^{5}F - {}^{5}D^{\circ}$	1 - 0	229
360	1385.685	234.0274 - 306.1939	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	${}^{3}F - {}^{3}G'$	2 - 3	229
10	1386.467	188.3953 - 260.5210	3d3(a*F)4s - 3d3(a*F)4p	⁵ F - ⁵ F	5 - 4	229
200	1387 092	204 9754 - 277 0685	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{4}P)4n$	5P.5D°	2.3	229
200	1387 029	917 1995 999 1710	3/13/42 Mag = 2,3/62 MAn	314 31e	6.7	229
10	1392 040	105 1063 - 267 9401	$2d^3(a^4F)A_a = 2d^3(a^4h)A_a$	317 31,4	2 - 3	220
200	1299 105	204 7900 - 976 7650	$3d^{3}(a^{4}D)A_{2} = 3d^{3}(a^{4}D)A_{1}$	5p_3ps	1.1	220
200	1328 328	204.7299 - 276.7599	$3d^{3}(a^{4}P)4s = 3d^{3}(a^{4}P)4n$	5P.5D°	1.2	229
2.30	1000-020	£V/7×1 972 * £112-14776	on (a s jus - ou (a s j up			
200	1389.000	208.8382 - 280.8322	$3d^3(a^3G)4s - 3d^3(a^2G)4p$ $3d^3(a^4G)4s - 2d^3G^4G)4s$	*G - *F* *** ****	3-3	229 220
23	1339.702	100.7203 - 200.0000 914 0000 - 906 4919	$2d^3(a^2t)A_a = 2d^3(a^4t)A_a$	3D 3De	2 3	229
80	1390.713	219.0200 · 200.9010 200.6010 · 000 \$190	$2^{3/2}$ (a 1/*5 - 50 (a 1/*p) $2^{3/2}$ (b) (a 1/*p)	10 - 3Co	2.3	44.7 220
100	1392.269	220.0210 - 292.5132 213.6492 - 285.4740	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{2}P)4v$	3P 3D	2.3	229
				5		000
50	1392.941	204.9754 - 276.7659	$3d'(a^*P)4s - 3d'(a^*P)4p$ $2d^3(a^4P)A - 2d^3(a^4P)A$.	P • P 50 5150	2 - 1	229
: 200	1393.073	204.9704 - 270.7392	50 (a 17945 - 50 (a 1794) 532-2014 - 533-2014 -	$\frac{\Gamma}{3C} = \frac{U}{3\Sigma^2}$	4 3	220
250	1394.272	209.1101 - 280.8322	30 (8 1) 48 - 30 (8 1) 49 23 (- *D) 4- 23 (- *D) 4-	50 - "F"	4-3	229
50 250	1394.599	208.8382 - 280.5397	ən ia 1745 - əd (a 1749) 3d3(a2G)45 - 3d3(a2G)40	°	3-2	229
				3 · · · · ·		226
80	1395.442	214.5258 - 286.1877	$3d^{2}(a^{2}F)^{4}s - 3d^{2}(a^{2}F)^{4}p$ $3d^{2}(a^{2}F)^{4}a - 2d^{2}(a^{2}F)^{4}a$	"P "S" 3p 3c	2 - 1	229 990
100	1207 242	219.0119 - 200.1877	2d3(2) 20 A 2 3 43 - 20 (2) C 20 A 2	310 3100 	1.2	229 970
100	1391.133	213.01133 · 200.1049 205 526.1 · 977 0695	$9.13(_{a}^{4}O)A_{a}$ $9.13(_{a}^{4}O)A_{a}$	r · r Sp Spe	3 3	220 220
400	1398.166	205.5504 - 217.0065 187.1575 - 258.6800	$3d^{2}(a^{4}F)4s = 3d^{3}(a^{4}F)4p$	5F - 5D°	3 - 3	229
				3 ** 3 ***		990
600	1400.243	195.1963 - 266.6128	$3d^{2}(a^{*}F)4s - 3d^{2}(a^{*}F)4p$ $3d^{3}(a^{2}E)d_{2} = 2d^{3}(a^{2}E)(4x)$	'F-°F° *⊡ '⊡'	2 - 2 - 1	229
50	1401.555	214.0114 - 283.9017	50 (a 1748 - 50 (a 1749) 24364134. 94364134	$\mathbf{r} - \mathbf{r}'$ $3\mathbf{r} - 3\mathbf{r}_{2}$	1-1 2-2	220
800	1402.388	193.9300 - 207.2401	on (a. ⊭)48 - on (a. ⊭)4p 9.337.2m - 9.337.2m 4.	$\mathbf{r} - \mathbf{r}$	3-3	220
10	1403.370	215.5341 - 284.7908 205.5364 - 276.7592	30 (a 17/45 - 30°(a 11/30) 3d ³ (a ⁴ P)45 - 3d ³ (a ⁴ P)40	5P - 5D	* - 3 3 - 2	229
	1404.050			340 3400		000
160	1404.260	212.5421 - 283.7540 196 8386 - 267 9286	3d"(a"F)4s - 3d"(a"F)4p 3d"(a#F)4s - 3d"(a"F)4n	2P - 2D 3P - 3P	0 - 1	229
400	I A A T I T T T A A A A A A A	12000000 * 201.22000	Julia I jao - Julia I jau	r - r	-	
400	1406.824	216 5381 . 287 6202	$3d^3(a^2I)/4s = 3d^3(a^2I)/4s$	3D - 3F2	3 - 4	229
400 500	1406.824	216.5381 - 287.6202 215.7826 - 286.8553	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}D)4p$ $3d^{3}(a^{2}D)4s - 3d^{3}(a^{4}P)4p$	³ D - ³ F ² ³ D - ³ D ²	3 - 4	229

1000

farren.

D-	7	6
----	---	---

let Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	Referen
150	1407.568	217.1225 - 288.1672	3d ³ (a ² H)4s - 3d ³ (a ² H)4p	³ H - ³ I ^a	6-6	229
250	1408.117	186.7255 - 257.7423	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	⁵ F - ⁵ F°	2 - 1	229
150	1408.301	221.3052 - 292.2876	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	${}^{1}H + {}^{3}G^{\circ}$	5 - 5	229
300	1409.026	187.1575 - 258.1285	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4n	5 F + 5 D°	3 - 2	229
300	1409.220	187.7190 - 258.6800	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4p	⁵ F - ⁵ D"	4 - 3	229
600	1409.451	188 3053 - 250 3448	$3d^{3}(a^{4}F)Ae = 3d^{3}(a^{4}F)Ae$	5E 5De	5.4	220
80	1409.431	212 212 212 212 212 212 212 212 212 212	$2d^3(a^4D)Aa = 2d^3(a^2D)Aa$	3D 3D9	1 1	229
150	1400.846	200 1101 200.0306	$3d^{3}(a^{2}C)4a = 3d^{3}(a^{2}C)4a$	$-3C^{-3}C^{0}$	1 5	220
130	1411.060	209.1101 • 200.0390	$3 J_{3}^{3}(a^{4}D) A_{2} = 2 J_{3}^{3}(a^{2}D) A_{2}$	30 30	4-0	227
200	1411.566	209.5239 - 280.3672	$3d(a^2G)4s - 3d(a^2G)4p$ $3d^3(a^2G)4s - 3d^3(a^2G)4p$	${}^{1}{}^{2}{}^{2}{}^{3}{}^{3}{}^{3}{}^{3}{}^{6}{}^{0}$	5 - 4	229
200	1414 020	107 0220 266 6120	2 13(-4E) 4 . 2 13(-4E) 4	3E 3E9	2.9	
200 -	1414.052	208 8382 - 279 5026	$3d^{3}(a^{2}C)4s = 3d^{3}(a^{2}C)4n$	³ G . ³ G	3-4:	229
400	1415 196	216 7791 - 287 4405	$3d^{3}(a^{2}H)4s = 3d^{3}(a^{2}H)4n$	³ H . ³ I ⁰	4.5	229
200	1416 216	220 6210 - 201 2314	$3d^{3}(a^{2}D)4a + 3d^{3}(a^{2}D)4n$	1D . 1F0	2.3	220
40	1416.832	216.8604 - 287.4405	3d ³ (a ² H)4s - 3d ³ (a ² H)4p	³ H · ³ I ⁿ	5.5	229
100	1417.001	216 5381 - 287 1096	$3d^{3}(a^{2}D)4s = 3d^{3}(a^{2}D)4p$	3D - 3Fo	3.3	229
300	1418.123	209.5239 - 280.0396	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4p$	${}^{3}\overline{G} - {}^{3}\overline{G}^{0}$	5-5	229
200	1420.124	204.7299 - 275.1466	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{4}P)4p$	⁵ P - ⁵ D°	1 - 1	229
470	1420.419	196.8386 - 267.2401	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4n$	${}^{3}F - {}^{3}F^{0}$	4 - 3	432
600	1420.465	204.9754 - 275.3743	3d3(a4P)4s - 3d3(a4P)4p	⁵ P - ³ P ^o	2 - 2	229
200	1420.602	209,1101 - 279 5026	3d ³ (a ² G)4s - 3d ³ (a ² G)4n	³ G - ³ G ^o	4 - 4	229
100	1420.749	214.5258 - 284.9112	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}P)4p$	${}^{3}P - {}^{3}D^{\circ}$	2.2	229
150	1421.016	215.7826 - 286.1549	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}D)4p$	${}^{3}D + {}^{3}F^{\circ}$	1 - 2	229
25	1421.981	216.5381 - 286.8627	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{4}P)4p$	$^{3}\tilde{\mathbf{D}} \cdot ^{3}\tilde{\mathbf{D}}^{\circ}$	3 - 2	229
200	1422.481	214.6114 - 284.9112	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}P)4p$	$\tilde{\mathbf{P}} - \tilde{\mathbf{D}}^{\circ}$	$1 \cdot 2$	229
50	1423.082	216.5927 - 286.8627	3d ³ (a ² D)4s - 3d ³ (a ⁴ P)4n	³ D - ³ D ^o	2 - 2	229
50	1423,233	216.5927 - 286.8553	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{4}P)4n$	³ n ³ n ³	2 - 1	229
150	1425.088	204 9754 - 275 1466	$3d^{3}(a^{4}P)4s = 3d^{3}(a^{4}P)4p$	5P.5D	2.1	229
10	1426.432	213.6492 - 283.7540	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{2}P)4p$	³ P · ³ D ^o	2 - 1	229
100	1427.815	213.6492 - 283.6863	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{2}P)4p$	${}^{3}\mathbf{P} + {}^{3}\mathbf{P}^{0}$	2 - 2	229
125	1428.090	204.7299 - 274.7533	3d ³ (a ⁴ P)4s - 3d ³ (a ⁴ P)4n	5p.5D°	1 - 0	229
150	1429.004	209.5239 - 279.5026	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4v$	${}^{3}G - {}^{3}G'$	5 - 4	229
30	1429.330	220.6210 - 290.5837	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}D)4p$	${}^{1}D - {}^{3}P^{o}$	2 - 1	229
250	1429.472	208.8382 - 278.7942	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4p$	${}^{3}G - {}^{3}G^{\circ}$	3 - 3	229
150	1430.309	237.7296 - 307.6444	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	${}^{1}\overline{\mathbf{F}} - {}^{1}\overline{\mathbf{D}}^{n}$	3 - 2	229
800	1430.573	188.3953 - 258.2974	3d³(a4F)45 - 3d³(a4F)4n	⁵ F - ⁵ G°	5 - 6	229
150	1430.751	216.5381 - 286.4313	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{4}P)4p$	$\mathbf{\hat{D}} - \mathbf{\hat{D}}^{\circ}$	3 - 3	229
100	1431.891	205.5364 - 275.3743	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{4}P)4p$	⁵ P - ³ P ^o	3 - 2	229
100	1432.936	220.6210 - 290.4077	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}D)4p$	$^{1}D - ^{3}P^{o}$	2 - 2	229
	1433.1	24.0554 - 93.8323	$3d^4 - 3d^4$	a ³ P · b ¹ D	0 - 2 F,P	375,229
150	1435,046	209.1101 - 278.7942	3d ³ (a ² G)4s - 3d ³ (a ² G)4p	³ G - ³ G ^o	4 - 3	229
70	1437.561	216.5927 - 286.1549	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}D)4p$	${}^{3}D - {}^{3}F^{\circ}$	$2 \cdot 2$	229
200	1439.052	258.4341 - 327.9244	$3d^{3}(b^{2}D)4s = 3d^{3}(b^{2}D)4p$	$^{3}D \cdot ^{3}D^{\circ}$	3 - 3	229
800	1440.528	187.7190 - 257.1380	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	⁵ F - ⁵ G ^o	4 - 5	229
300	1440.792	204.7299 - 274.1361	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{4}P)4p$	⁵ P - ⁵ P°	$1 \cdot 2$	229
250	1441.049	205.5364 - 274.9303	3d ³ (a ⁴ P)4s - 3d ³ (a ⁴ P)4p	⁵ P - ⁵ P°	3 - 3	229
400	1442.221	213.5341 - 282.8719	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4p$	$^{1}G - ^{1}H^{\circ}$	4 - 5	229
100	1443.163	220.6210 - 289.9130	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}D)4p$	${}^{1}D = {}^{3}D^{0}$	2 - 3	229
200	1445.686	258.4341 - 327.6054	3d3(b2D)45 3d3(b2D)4p	${}^{3}D + {}^{3}D^{\circ}$	3 - 2	229
150	1445.910	204.9754 - 274.1361	3d ³ (a ⁴ P)4s - 3d ³ (a ⁴ P)4p	${}^{5}\overline{P} + {}^{5}\overline{P}^{o}$	2 - 2	229
80	1446.285	214.6114 - 283.7540	3d ³ (a ² P)4s - 3d ³ (a ² P)4p	${}^{3}P - {}^{3}D^{\circ}$	1 - 1	229
800	1446.618	209.5239 - 278.6507	3d ³ (a ² G)4s - 3d ³ (a ² G)4p	³ G - ³ H ^o	5 - 6	229
100	1447.709	214.6114 - 283.6863	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}P)4p$	${}^{3}\mathbf{P} - {}^{3}\mathbf{P}^{0}$	$1 \cdot 2$	229
250	1448.494	213.5341 - 282.5716	$3d^{3}(a^{2}G)4s = 3d^{3}(a^{2}G)4p$	${}^{1}G - {}^{1}F^{o}$	4 - 3	229
700	1448.846	187.1575 - 256.1779	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	⁵ F - ⁵ G°	3 - 4	229
100	1449.757	258.6285 - 327.6054	3d³(b²D)4s - 3d³(b²D)4p	${}^{3}D - {}^{3}D^{\circ}$	2 - 2	229
400	1449.928	233.6336 - 302.6025	$3d^{3}(a^{2}F)4s + 3d^{3}(a^{2}F)4p$	${}^{3}F - {}^{3}F^{0}$	4 - 4	229
100	1451.103	204.7299 - 273.6431	$3d^{3}(a^{4}P)4s - 3d^{3}(a^{4}P)4p$	⁵ P - ⁵ P°	1 - 1	229
80	1451.264	258.6285 - 327.5338	$3d^{3}(b^{2}D)4s - 3d^{3}(b^{2}D)4p$	${}^{3}D + {}^{3}D^{\circ}$	$2 \cdot 1$	229
	1451.38	24.9325 - 93.8323	3d* - 3d*	a'H - b'D	4 - 2 F,P	229
	1452.2	24.9729 - 93.8323	$3d^4 - 3d^4$	$a^{3}P - b^{1}D$	1 - 2 F,P	375,229
10 -	1452.252	262 5003 . 321 2239	3.d ³ (b ² L))4e = 3.d ³ (b ² D)4m	10 300	2.2	229 220
250	1452.907	202.3093 - 331.3338	30 (D ⁻ D)45 - 30 (D ⁻ D)4p 23 ³ (2 ² U)4c - 23 ³ (2 ² U)4c	ים ביים יים יים יים ביים ביים יים יים יים יים יים יים יי	2-2	229
100	1453.010	221.3032 - 290.0991	ου (a 11)45 - ου (a*11)4p 3d ³ (b ² D)4α - 2d ³ (b ² D)4α	n - 'n'' 3D 3Do	0-0 1 1	229
	ィエリエ・ムモリ	200.1070 * 021.0000)	ou (n n) 18 - ou (n 17140	D • D	1 - 1	447

D-77

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Referenc
	2	1454.471	233.8489 - 302.6025	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	${}^{3}F - {}^{3}F^{\circ}$	3 - 4	-	229
	200	1454.701		$3d^{3}(a^{*}F)4s - 3d^{3}(a^{*}F)4p$	°F - °G°	5 - 5		229
	50	1455.559	195.1905 • 205.8980 216 7701 - 285 4740	$3d^{3}(a^{2}H)A_{a} = 2J^{3}(a^{2}D)A_{a}$	3U 3De	2-3		229
	700	1455.161	186.7255 - 255.3992	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$ $3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	⁵ F · ⁵ G°	2 - 3		229
ļ	150	1456.285	204.9754 - 273.6431	3d ³ (a ⁴ P)4s - 3d ³ (a ⁴ P)4p	⁵ P - ⁵ P°	2 - 1		229
	250	1457.727	205.5364 - 274.1361	3d ³ (a ⁴ P)4s - 3d ³ (a ⁴ P)4p	⁵ P - ⁵ P°	3 - 2		229
	250	1459.254	233.8489 - 302.3771	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4p$	${}^{3}F - {}^{3}F^{\circ}$	3 - 3	1	229
	150 500	1459.763 1459.831	213.5341 - 282.0381 195.9330 - 264.4342	3d³(a²G)4s - 3d³(a²G)4p 3d³(a⁴F)4s - 3d³(a⁴F)4p	'G - 'G° ³ F - ³ G°	4 - 4		229 229
	400	1460 726	187 7190 - 256 1779	$3d^{3}(a^{4}F)A_{2} = 3d^{3}(a^{4}F)A_{2}$	517 500	4 4		220
	125	1461.050	233.8489 - 302.2927	$3d^{3}(a^{2}F)4s - 3d^{3}(a^{2}F)4n$	3F.3F	3.2		229
	100	1462.563	216.5381 - 284.9112	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}P)4p$	${}^{3}D - {}^{3}D^{\circ}$	3.2		229
	500	1462.631	186.4336 - 254.8033	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	⁵ F - ⁵ G°	1.2		229
	30	1463.067	234.0274 - 302.3771	3d ³ (a ² F)4s - 3d ³ (a ² F)4p	³ F - ³ F ^o	2 - 3		229
	70	1463.364	216.8604 - 285.1961	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	³ H - ³ H ^o	5 - 6	Р	432
	40	1464.224	213.6492 - 281.9449	$3d^{3}(a^{*}P)4s - 3d^{3}(a^{2}P)4p$	°P - °P°	2 - 1		229
	200	1404.083	190.8380 - 205.1120 234.0274 202.2027	30°(a°F)45 - 30°(a°F)4p 343(a26)4a - 943(a26)4a	"F - 'G" 3≣ 31₽0	4 - 5		229 220
	100	1465.380	187.1575 - 255.3992	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4p	⁵ F - ⁵ G°	2 - 2 3 - 3	Р	229 229
	400	1465.401	221.3052 - 289.5459	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4v$	¹ H - ¹ G°	5 - 4	Р	229
- 1	400	1466.649	209.1101 - 277.2927	3d3(a2G)4s - 3d3(a2G)4p	³ G - ³ H ^o	4 - 5		229
	150	1468.870	214.5258 - 282.6048	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{4}P)4p$	³ P • ⁵ S ^o	2 · 2		229
	150 500	1468.911 1469.000	186.7255 - 254.8033 217.1225 - 285.1961	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$ $3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	⁵ F - ⁵ G° ³ H - ³ H°	$2 \cdot 2$ 6 · 6		229 229
	100	1460 500	914 5950 909 5714	2	3n 1m			000
	70	1409.399	219.0206 - 282.0710 215 7826 - 283 7540	$30^{\circ}(a^{\circ}T)4s - 30^{\circ}(a^{\circ}G)4p$ $3d^{3}(a^{2}T)14a - 3d^{3}(a^{2}D)4m$	³ D ³ D ⁶	2 3	- 1	229
	80	1471,331	195,9330 - 263,8986	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4u	3F - 3G°	3.3	ļ	229
1	250	1472.098	216.8604 - 284.7908	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	³ H - ³ H ^o	5.5		229
1	250	1472.512	216.7791 - 284.6903	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	${}^{3}\overline{H} - {}^{3}\overline{H}^{\circ}$	4 4		229
	100	1472.805	214.5258 - 282.4235	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}P)4p$	${}^{3}\mathbf{P} - {}^{1}\mathbf{D}^{\circ}$	2 - 2		229
	100	1474.275	$216.8604 \cdot 284.6903$	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	³ H - ³ H ^o	5 - 4		229
	200	1475.302	188.3953 - 256.1779	$3d^{\circ}(a^{*}F)4s - 3d^{\circ}(a^{*}F)4p$	³ F - ³ G ⁶	5.4		229
	80	1475.604	209.5239 - 277.2927 187.7190 - 255.3992	$3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$ $3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	⁵F - ⁵G°	5-5		229 229
ļ	100	1477.798	217.1225 - 284.7908	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	3H - 3Ho	6 . 5		229
	70	1478.288	187.1575 - 254.8033	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4p	⁵ F - ⁵ G°	3 - 2	[229
	200	1478.785	214.6114 - 282.2345	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}P)4p$	${}^{3}P - {}^{3}P^{\circ}$	1 - 0		229
	20 500	$1479.388 \\ 1479.471$	196.8386 - 264.4342 208.8382 - 276.4297	3d³(a²F)4s - 3d³(a²F)4p 3d³(a²G)4s - 3d³(a²G)4p	³ F - ³ G ^o ³ G - ³ H ^o	4 - 4		229 229
	900	1492.950	914 5959 991 0440	$2 13(-27) A_{1} = 2 13(-27) A_{1}$	310 3100			220
l l	200	1465.259	214.5258 - 281.9949 210.4860 - 286.8627	$3d^{3}(a^{2}P)As - 3d^{3}(a^{4}P)Ap$ $3d^{3}(a^{2}P)As - 3d^{3}(a^{4}P)Ap$	$^{1}P - ^{3}P^{2}$	$\begin{vmatrix} 2 - 1 \\ 1 - 2 \end{vmatrix}$		229
	10	1484.372	219,4869 - 286,8553	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{4}P)4n$	¹ P. ³ D ^o	1.1		229
		1484.47	26.4683 - 93.8323	$3d^4 - 3d^4$	$\mathbf{a}^{3}\mathbf{P} - \mathbf{b}^{1}\mathbf{D}$	$ \tilde{2}\cdot\hat{2} $	F,P	229
	150	1485.017	262.5093 - 329.8486	$3d^{3}(b^{2}D)4s - 3d^{3}(b^{2}D)4p$	${}^{1}D - {}^{1}D^{o}$	2 - 2		229
	150	1485.450	209.1101 - 276.4297	$3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4p$	${}^{3}G - {}^{3}H^{\circ}$	4 . 4		229
	80	1485.927	213.5341 - 280.8322	$3d^{\circ}(a^{\circ}G)4s + 3d^{\circ}(a^{\circ}G)4p$	'G - 'F'	4-3	l	229
	120	1409.257	210.5581 - 285.0803	$3d^{3}(a^{2}D)4a^{2} = 3d^{3}(a^{2}D)4a^{2}$	°D-ິP ³ 3 ⊔ 3 ນາ	3-2		229
	J	1490.9	26.7607 - 93.8323	$3d^4 - 3d^4$	$a^{3}F \cdot b^{1}D$	$\frac{2}{2} - \frac{2}{2}$	F,P	375,229
	1	1492.8	26.8423 - 93.8323	3d⁴ - 3d⁴	a ³ F - b ¹ D	3 - 2	F,P	375,229
	40	1494.639	209.5239 - 276.4297	$3d^{3}(a^{2}C)4s - 3d^{3}(a^{2}C)4p$	${}^{3}G - {}^{3}H^{\circ}$	5 - 4		229
	80	1495.616	221.3052 - 288.1672	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}H)4p$	¹ H - ³ I°	5 - 6		229
	250	1495.70 1496.266	26.9740 - 93.8323 213.5341 - 280.3672	3d* - 3d* 3d³(a²G)4s - 3d³(a²G)4p	a°F - b'D 'G - ³ F°	$4 \cdot 2$ 4 - 4	F,P	229 229
	10	1400 999	210 4260 206 1077	2.d ³ (a ² D)/a 2.d ³ /-2D)/a	17. 300			220
1	40	1500.581	219.4009 - 200.1077 215 7826 - 982 4935	$3d^{3}(a^{2}I))4a - 3d^{3}(a^{2}P)4n$	"r-∵5" 3D_1Dª	1.9		229
	60	1504.329	219.4869 - 285.9617	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}D)4v$	¹ P - ¹ P ^o	1.1		229
	20	1504.848	215.7826 - 282.2345	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{2}P)4p$	³ D - ³ P°	1 - 0		229
	70	1508.153	214.5258 - 280.8322	$3d^{3}(a^{2}P)4s - 3d^{3}(a^{2}G)4p$	³ P - ³ F°	2 - 3		229
	70	1509.792	220.6210 - 286.8553	$3d^{3}(a^{2}D)4s - 3d^{3}(a^{4}P)4p$ $3d^{3}(a^{2}D)4s - 2d^{3}(a^{4}P)4p$	³ D - ³ D° ³ D - ³ D°	$2 \cdot 1$		229
	70	1511.429	213.7020 - 281.9449 214.5258 - 280.5207	ou (a 17)48 - 50" (a"1')4p 3d ³ (2 ² P)4, 2d ³ (. ² C)4,	°D - °P' 3p 3ro	1 - 1		229
	40	1514.881	214.5256 - 260.5597	3d ³ (a ² H)4s - 3d ³ (a ² G)4n	ar - ar s 3Hi - 1Ho	5.5		229
	10	1515.533	195.1963 - 261.1796	3d ³ (a ⁴ F)4s - 3d ³ (a ⁴ F)4o	${}^{3}F - {}^{3}D^{9}$	2.3		229
	40 10	1514.881 1515.533	216.8604 - 282.8719 195.1963 - 261.1796	$3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}G)4p$ $3d^{3}(a^{2}H)4s - 3d^{3}(a^{2}G)4p$ $3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p$	${}^{3}H - {}^{1}H^{\circ}$ ${}^{3}F - {}^{3}D^{\circ}$	2 - 2 5 - 5 2 - 3		229 229 229

100		÷.,	~
D-		15	2
D-	- 1		э

Multiplet	Rel. Int.	$\lambda_{\rm vac}~({\rm in}~{\rm \AA})$	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	100 50 70 80	1516.804 1519.519 1525.165 1528.490	214.6114 - 280.5397 220.6210 - 286.4313 220.6210 - 286.1877 219.4869 - 284.9112	$\begin{array}{l} 3d^3(a^2P)4s & - 3d^3(a^2G)4p \\ 3d^3(a^2D)4s & - 3d^3(a^4P)4p \\ 3d^3(a^2D)4s & - 3d^3(a^2P)4p \\ 3d^3(a^2P)4s & - 3d^3(a^2P)4p \\ 3d^3(a^2P)4s & - 3d^3(a^2P)4p \end{array}$	${}^{3}P - {}^{3}F^{\circ}$ ${}^{1}D - {}^{3}D^{\circ}$ ${}^{1}D - {}^{3}S^{\circ}$ ${}^{1}P - {}^{3}D^{\circ}$	$1 \cdot 2$ 2 - 3 2 - 1 1 - 2		229 229 229 229
	150 80 740 630 2 200	1530.439 1532.330 1532.647 1533.387 1535.034 1543.234	220.6210 - 285.9617 213.5341 - 278.7942 195.9330 - 261.1796 195.1963 - 260.4114 213.6492 - 278.7942 195.1963 - 259.9952	$\begin{array}{c} 3d^{2}(a^{2}D)4s - 3d^{2}(a^{2}D)4p \\ 3d^{3}(a^{2}G)4s - 3d^{3}(a^{2}G)4p \\ 3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p \\ 3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p \\ 3d^{3}(a^{4}F)4s - 3d^{3}(a^{2}G)4p \\ 3d^{3}(a^{4}F)4s - 3d^{3}(a^{4}F)4p \\ \end{array}$	${}^{1}\text{G} - {}^{3}\text{G}^{\circ}$ ${}^{3}\text{F} - {}^{3}\text{D}^{\circ}$ ${}^{3}\text{F} - {}^{3}\text{D}^{\circ}$ ${}^{3}\text{P} - {}^{3}\text{G}^{\circ}$ ${}^{3}\text{F} - {}^{3}\text{D}^{\circ}$	$ \begin{array}{r} 2 - 1 \\ 4 - 3 \\ 3 - 3 \\ 2 - 2 \\ 2 - 3 \\ 2 - 1 \end{array} $	P P	229 229 432 432 229 229
	760 300 100 100 100	1550.907 1554.219 1555.442 1557.051 1557.311	195.9330 - 260.4114 196.8386 - 261.1796 220.6210 - 284.9112 212.5421 - 276.7659 196.8386 - 261.0519	$\begin{array}{l} 3d^3(a^4F)4s & 3d^3(a^4F)4p \\ 3d^3(a^4F)4s & 3d^3(a^4F)4p \\ 3d^3(a^2D)4s & 3d^3(a^2P)4p \\ 3d^3(a^4P)4s & 3d^3(a^4P)4p \\ 3d^3(a^4F)4s & 3d^3(a^4F)4p \end{array}$	${}^{3}F - {}^{3}D^{\circ}$ ${}^{3}F - {}^{3}D^{\circ}$ ${}^{1}D - {}^{3}D^{\circ}$ ${}^{3}P - {}^{3}P^{\circ}$ ${}^{3}F - {}^{5}F^{\circ}$	3 - 2 4 - 3 2 - 2 0 - 1 4 - 5	Р	432 229 229 229 229 229
	50 70 10 100	$1557.645 \\ 1558.114 \\ 1561.978 \\ 1562.1 \\ 1563.778$	219.4869 - 283.6863 195.1963 - 259.3761 195.9330 - 259.9547 29.8171 - 93.8323 212.8181 - 276.7659	$\begin{array}{l} 3d^3(a^2P)4s &- 3d^3(a^2P)4p \\ 3d^3(a^4F)4s &- 3d^3(a^4F)4p \\ 3d^3(a^4F)4s &- 3d^3(a^4F)4p \\ & 3d^4 &- 3d^4 \\ 3d^3(a^4P)4s &- 3d^3(a^4P)4p \end{array}$	${}^{1}P - {}^{3}P^{\circ} \\ {}^{3}F - {}^{5}F^{\circ} \\ {}^{3}F - {}^{5}F^{\circ} \\ {}^{3}G - b^{1}D \\ {}^{3}P - {}^{3}P^{\circ} $	$ \begin{array}{c} 1 & -2 \\ 2 & -2 \\ 3 & -3 \\ 3 & -2 \\ 1 & -1 \end{array} $	F,P	229 229 229 375,229 229
	80 60 50 125	$1563.934 \\ 1568.407 \\ 1569.985 \\ 1570.22 \\ 1571.910$	212.8181 - 276.7592 213.5341 - 277.2927 195.1963 - 258.8915 30.1470 - 93.8323 212.8181 - 276.4349	$\begin{array}{r} 3d^3(a^4P)4s &- 3d^3(a^4P)4p \\ 3d^3(a^2G)4s &- 3d^3(a^2G)4p \\ 3d^3(a^4F)4s &- 3d^3(a^4F)4p \\ 3d^4 &- 3d^4 \\ 3d^3(a^4P)4s &- 3d^3(a^4P)4p \end{array}$	${}^{3}P - {}^{5}D^{\circ}$ ${}^{1}G - {}^{3}H^{\circ}$ ${}^{3}F - {}^{5}D^{\circ}$ $a{}^{3}G - b{}^{1}D$ ${}^{3}P - {}^{3}P^{\circ}$	1 - 2 4 - 5 2 - 1 4 - 2 1 - 0	F,P	229 229 229 229 229 229
	100 30 80 125	$\begin{array}{c} 1576.212 \\ 1580.3 \\ 1582.802 \\ 1583.958 \\ 1584.337 \end{array}$	$\begin{array}{c} 195.9330 & -259.3761 \\ .1421 & -63.4200 \\ 216.8604 & -280.0396 \\ 220.6210 & -283.7540 \\ 219.4869 & -282.6048 \end{array}$	$\begin{array}{r} 3d^3(a^4F)4s &- 3d^3(a^4F)4p \\ & 3d^4 &- 3d^4 \\ 3d^3(a^2H)4s &- 3d^3(a^2G)4p \\ 3d^3(a^2D)4s &- 3d^3(a^2P)4p \\ 3d^3(a^2P)4s &- 3d^3(a^4P)4p \end{array}$	$\begin{array}{c} {}^{3}F - {}^{5}F^{\circ} \\ ga{}^{5}D - b{}^{3}P \\ {}^{3}H - {}^{3}G^{\circ} \\ {}^{1}D - {}^{3}D^{\circ} \\ {}^{1}P - {}^{5}S^{\circ} \end{array}$	3 - 2 1 - 0 5 - 5 2 - 1 1 - 2	F,P P	229 375,229 229 229 229 229
	$125 \\ 150 \\ 60 \\ 100$	1584.367 1584.530 1585.655 1587.2 1588.199	213.6492 - 276.7659 213.6492 - 276.7592 220.6210 - 283.6863 .4173 - 63.4200 216.5381 - 279.5026	$\begin{array}{l} 3d^3(a^4P)4s &- 3d^3(a^4P)4p \\ 3d^3(a^4P)4s &- 3d^3(a^4P)4p \\ 3d^3(a^2D)4s &- 3d^3(a^2P)4p \\ & 3d^4 &- 3d^4 \\ 3d^3(a^2D)4s &- 3d^3(a^2G)4p \end{array}$	${}^{3}P - {}^{3}P^{o}$ ${}^{3}P - {}^{5}D^{o}$ ${}^{1}D - {}^{3}P^{o}$ $ga^{5}D - b^{3}P$ ${}^{3}D - {}^{3}G^{o}$	2 - 1 2 - 2 2 - 2 2 - 0 3 - 4	P F,P	229 229 229 375,229 229
	100 80 70 10	1588.906 1589.013 1589.390 1589.47 1589.941	219.4869 - 282.4235 195.1963 - 258.1285 217.1225 - 280.0396 0.0000 - 62.9142 213.5341 - 276.4297	$\begin{array}{l} 3d^3(a^2P)4s & - 3d^3(a^2P)4p \\ 3d^3(a^4F)4s & - 3d^3(a^4F)4p \\ 3d^3(a^2H)4s & - 3d^3(a^2C)4p \\ & 3d^4 & - 3d^4 \\ 3d^3(a^2C)4s & - 3d^3(a^2C)4p \end{array}$	${}^{1}P - {}^{1}D^{o}$ ${}^{3}F - {}^{5}D^{o}$ ${}^{3}H - {}^{3}G^{o}$ $ga^{5}D - b^{3}P$ ${}^{1}G - {}^{3}H^{o}$	1 - 2 2 - 2 6 - 5 0 - 1 4 - 4	F,P	229 229 229 229 229 229
	$100 \\ 40 \\ 100 \\ 100$	1593.1 1593.708 1596.365 1598.556 1598.824	$\begin{array}{r} .1421 \cdot 62.9142 \\ 195.9330 \cdot 258.6800 \\ 216.8604 \cdot 279.5026 \\ 212.8181 \cdot 275.3743 \\ 195.1963 \cdot 257.7423 \end{array}$	$\begin{array}{r} 3d^4 - 3d^4 \\ 3d^3(a^4F)4s - 3d^3(a^4F)4p \\ 3d^3(a^2H)4s - 3d^3(a^2G)4p \\ 3d^3(a^4P)4s - 3d^3(a^4P)4p \\ 3d^3(a^4F)4s - 3d^3(a^4F)4p \end{array}$	$\begin{array}{c} ga^5D - b^3P \\ {}^3F - {}^5D^o \\ {}^3H - {}^3G^o \\ {}^3P - {}^3P^o \\ {}^3F - {}^5F^o \end{array}$	1 - 1 3 - 3 5 - 4 1 - 2 2 - 1	F,P	375,229 229 229 229 229 229 229
	10 60 50	$\begin{array}{c} 1599.842 \\ 1600.08 \\ 1602.766 \\ 1604.6 \\ 1606.675 \end{array}$	196.8386 - 259.3448 .4173 - 62.9142 205.5364 - 267.9286 0.0000 - 62.3211 214.5258 - 276.7659	$\begin{array}{r} 3d^3(a^4F)4s \ \ 3d^3(a^4F)4p \\ 3d^4 \ \ 3d^5 \\ 3d^3(a^4P)4s \ \ 3d^3(a^4F)4p \\ 3d^4 \ \ 3d^4 \ \ 3d^4 \\ 3d^3(a^2P)4s \ \ 3d^3(a^4P)4p \end{array}$	$\begin{array}{r} {}^{3}F + {}^{5}D^{o} \\ ga^{5}D + b^{3}P \\ {}^{5}P + {}^{3}F^{o} \\ ga^{5}D + b^{3}F \\ {}^{3}P + {}^{3}P^{o} \end{array}$	$ \begin{array}{r} 4 - 4 \\ 2 - 1 \\ 3 - 4 \\ 0 - 2 \\ 2 - 1 \end{array} $	F,P F,P	229 229 229 375,229 229
	150 100	1607.1 1607.830 1608.26 1610.0 1614.186	$\begin{array}{r} .1421 \cdot 62.3644 \\ 195.9330 \cdot 258.1285 \\ .1421 \cdot 62.3211 \\ .8031 \cdot 62.9142 \\ 220.6210 \cdot 282.5716 \end{array}$	$\begin{array}{c} 3d^4 - 3d^4 \\ 3d^3(a^4F)4s - 3d^3(a^4F)4p \\ 3d^4 - 3d^4 \\ 3d^4 - 3d^4 \\ 3d^3(a^2D)4s - 3d^3(a^2G)4p \end{array}$	$\begin{array}{c} ga^5D & -b^3F \\ {}^3F & {}^5D^\circ \\ ga^5D & -b^3F \\ ga^5D & {}^bB^\circ \\ {}^1D & {}^1F^\circ \end{array}$	1 - 3 3 - 2 1 - 2 3 - 1 2 - 3	F,P F,P F,P	375,229 229 229 375,229 229
	100	1614.28 1615.41 1617.039 1617.6 1618.057	$\begin{array}{c} .4173 & - 62.3644 \\ .4173 & - 62.3211 \\ 196.8386 & - 258.6800 \\ .4173 & - 62.2381 \\ 220.6210 & - 282.4235 \end{array}$	$\begin{array}{r} 3d^4 - 3d^4 \\ 3d^4 - 3d^4 \\ 3d^3(a^4F)4s - 3d^3(a^4F)4p \\ 3d^4 - 3d^4 \\ 3d^3(a^2D)4s - 3d^3(a^2P)4p \end{array}$	$\begin{array}{c} ga^5D \ \cdot \ b^3F \\ ga^5D \ \cdot \ b^3F \\ {}^3F \ \cdot \ {}^5D^{\circ} \\ ga^5D \ \cdot \ b^3F \\ {}^1D \ \cdot \ {}^1D^{\circ} \end{array}$	2 - 3 2 - 2 4 - 3 2 - 4 2 - 2	F,P F,P F,P	229 229 229 375,229 229
	30 150 200	$1618.383 \\ 1620.087 \\ 1620.42 \\ 1624.251 \\ 1624.40$	$\begin{array}{c} 216.8604 & - 278.6507 \\ 213.6492 & - 275.3743 \\ .1421 & - 61.8544 \\ 221.3052 & - 282.8719 \\ .8031 & - 62.3644 \end{array}$	$\begin{array}{c} 3d^3(a^2H)4s & 3d^3(a^2G)4p\\ 3d^3(a^4P)4s & 3d^3(a^4P)4p\\ 3d^4 & 3d^4\\ 3d^3(a^2H)4s & 3d^4\\ 3d^3(a^2H)4s & 3d^3(a^2G)4p\\ & 3d^4 & 3d^4 \end{array}$	${}^{3}H - {}^{3}H^{\circ}$ ${}^{3}P - {}^{3}P^{\circ}$ $ga^{5}D - b^{3}P$ ${}^{1}H - {}^{1}H^{\circ}$ $ga^{5}D - b^{3}F$	5 - 6 2 - 2 1 - 2 5 - 5 3 - 3	F,P F,P	229 229 229 229 229 229 229

Multiplet Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Note	8 References
250 100	1625.264 1625.54 1626.077 1627.7 1627.74	217.1225 - 278.6507 .8031 - 62.3211 213.6492 - 275.1466 .4173 - 61.8544 .8031 - 62.2381	$\begin{array}{c} 3d^3(a^2li)4s - 3d^3(a^2C)4p \\ & 3d^4 - 3d^4 \\ 3d^3(a^4P)4s - 3d^5(a^4P)4p \\ & 3d^4 - 3d^4 \\ & 3d^4 - 3d^4 \end{array}$	³ H - ³ H ^o ga ⁵ D - b ³ F ³ P - ⁵ D ^o ga ⁵ D - b ³ P ga ⁵ D - b ³ F	6 - 6 3 - 2 2 - 1 2 - 2 3 - 4 F,P	229 229 229 375,229 229
1 10	1630.841 1637.15 1638.0 1639.794 1640.55	$\begin{array}{c} 212.8181 + 274.1361 \\ 1.2828 + 62.3644 \\ 80.31 + 61.8544 \\ 215.7826 + 276.7659 \\ 1.2828 + 62.2381 \end{array}$	$\begin{array}{c} 3d^3(a^4P)46+3d^3(a^4P)4\rho\\ 3d^4+3d^4\\ 3d^3+3d^4\\ 3d^3+3d^4\\ 3d^3(a^2D)4s+3d^3(a^4P)4\rho\\ 3d^4+3d^4\end{array}$	$\begin{array}{c} {}^{3}P + {}^{5}P^{*} \\ ga^{5}D + b^{3}F' \\ ga^{5}D + b^{3}P \\ {}^{3}D - b^{3}P^{*} \\ ga^{5}D + b^{3}F \end{array}$	1 · 2 4 · 3 F,P 3 · 2 F,P 1 · 1 4 · 4 F,P	229 229 375,229 220 229
2 50 10 15	$\begin{array}{c} 1643.427\\ 1645.742\\ 1648.743\\ 1650.9\\ 1651.927\end{array}$	$\begin{array}{c} 214.5258 & 275.3743 \\ 214.6114 & 275.3743 \\ 215.7826 & 276.4349 \\ 1.2828 & 61.8544 \\ 214.6114 & 275.1466 \end{array}$	$\begin{array}{l} 3d^2(a^2f) 4s & 3d^3(a^4f) 4p \\ 3d^3(a^2f) 4s & 3d^3(a^4f) 4p \\ 3d^3(a^2f) 4s & 3d^3(a^4f) 4p \\ 3d^4 & 3d^4 \\ 3d^4 & 3d^4 \\ 3d^2(a^2f) 4s & 3d^3(a^4f) 4p \end{array}$	$\begin{array}{r} {}^{3}\dot{H} = {}^{3}\dot{H}^{\alpha} \\ {}^{3}\dot{P} = {}^{3}\dot{P}^{\alpha} \\ {}^{3}\dot{D} = {}^{3}\dot{P}^{\alpha} \\ {}^{3}\dot{D} = {}^{3}\dot{P}^{\alpha} \\ {}^{3}\dot{P} = {}^{5}\dot{D}^{\alpha} \end{array}$	2 · 2 1 · 2 1 · 0 4 · 2 F,P 1 · 1	229 229 229 375,229 229
15 70 150 40 50	1652.531 1653.257 1654.744 1659.897 1660.551	$\begin{array}{c} \textbf{216.7791} + \textbf{277.2927} \\ \textbf{213.6492} + \textbf{274.1361} \\ \textbf{216.8604} + \textbf{277.2927} \\ \textbf{195.9330} + \textbf{256.1779} \\ \textbf{216.5381} + \textbf{276.7592} \end{array}$	$\begin{array}{l} 3d^3(a^2fl)4_5 & 3d^3(a^2G)4p\\ 3d^3(a^4P)4s & 3d^3(a^4P)4p\\ 3d^3(a^2P)4s & 3d^3(a^2G)4p\\ 3d^3(a^2P)4s & 3d^3(a^2G)4p\\ 3d^3(a^4P)4s & 3d^3(a^4P)4p\\ 3d^2(a^2D)4s & 3d^5(a^4P)4p \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	4 - 5 2 - 2 5 - 5 3 - 4 3 - 2	229 229 229 229 229 229 229
$30 \\ 1 \\ 10 \\ 200 \\ 150$	1661.048 1661.959 1652.742 1668.926 1676.441	$\begin{array}{c} 195.1963 - 255.3992 \\ 217.1225 - 277.2927 \\ 214.6114 - 274.7533 \\ 220.6210 - 280.5397 \\ 216.7791 - 276.4297 \end{array}$	$\begin{array}{l} 3d^3(a^4b')4s & 3d^3(a^4F)4p \\ 3d^3(a^2H)4s & 3d^3(a^2G)4p \\ 3d^3(a^2P)4s & 3d^3(a^4P)4p \\ 3d^3(a^2P)4s & 3d^3(a^4P)4p \\ 3d^3(a^2P)4s & 3d^3(a^2G)4p \\ 3d^3(a^2H)4s & 3d^5(a^2G)4p \end{array}$	${}^{3}F + {}^{5}G^{o}$ ${}^{3}H + {}^{3}H^{o}$ ${}^{3}P + {}^{5}D^{o}$ ${}^{1}D + {}^{3}F^{o}$ ${}^{3}H + {}^{3}H^{o}$	$ \begin{array}{r} 2 \cdot 3 \\ 6 \cdot 5 \\ 1 \cdot 0 \\ 2 \cdot 2 \\ 4 \cdot 4 \end{array} $	229 229 229 229 229 229
2 70 160 150	1678.726 1687.0 1699.636 1704.923 1709.809	$\begin{array}{c} \textbf{216.8604} + \textbf{276.4297} \\ \textbf{61.8544} + \textbf{121} \ \textbf{1302} \\ \textbf{216.5381} + \textbf{275.3743} \\ \textbf{233.6336} + \textbf{292.2876} \\ \textbf{234.0274} + \textbf{292.5132} \end{array}$	$\begin{array}{l} 3d^3(a^2H)4s-3d^3(a^2G)4p\\ 3d^4-3d^4\\ 3d^5(a^2D)4s-3d^3(a^4P)4p\\ 3d^5(a^2P)4s-3d^3(a^2P)4p\\ 3d^3(a^2F)4s-3d^3(a^2H)4p\\ 3d^3(a^2F)4s-3d^3(a^2H)4p \end{array}$	${}^{3}H + {}^{3}H^{a}$ ${}^{3}P + b^{1}S$ ${}^{3}D - {}^{3}P^{a}$ ${}^{3}F - {}^{3}G^{a}$ ${}^{3}F - {}^{3}G^{a}$	5 - 4 2 - 0 3 - 2 4 - 5 2 - 3	229 375,229 229 229 229 229
60 50	1713 694 1714.157 1717.74 1720.282 1730.864	$\begin{array}{c} 215.7826 + 274.1361 \\ 216.5927 + 274.9303 \\ 62.9142 + 121.1302 \\ 209.1101 + 267.2401 \\ 208.8362 + 266.6128 \end{array}$	$\begin{array}{l} 3d^3(a^2D)4s+3d^3(a^4P)4p\\ 3d^3(a^3L)4s+3d^3(a^4P)4p\\ 3d^4+3d^4\\ 3d^3(a^2C)4s+3d^4(a^4P)4p\\ 3d^3(a^2C)4s+3d^3(a^4P)4p\\ 3d^3(a^4C)4s+3d^3(a^4P)4p \end{array}$	${}^{3}D = {}^{5}P^{\circ}$ ${}^{3}D = {}^{5}P^{\circ}$ ${}^{3}P = {}^{5}P^{\circ}$ ${}^{3}G = {}^{3}F^{\circ}$ ${}^{3}G = {}^{3}F^{\circ}$	1 - 2 2 - 3 1 - 0 F,P 4 - 3 P 3 - 2 P	229 229 229 375 375
	1746.85 1748.18 1752.12 1757.26 1776.849	36.5863 - 93.8323 36.6301 - 93.8323 36.7585 - 93.8323 36.9254 - 93.8323 233.6336 - 289.9130	$\begin{array}{rrrr} 3d^4 & \cdot 3d^4 \\ 3d^4 & \cdot 3d^4 \\ 3d^4 & \cdot 3d^4 \\ 3d^4 & \cdot 3d^4 \\ 3d^4 & \cdot 3d^4 \\ 3d^3(a^2F)4s & \cdot 3d^3(a^2D)4p \end{array}$	$ \begin{array}{c} a^{1}G - b^{1}D \\ a^{3}D - b^{1}D \\ a^{3}D - b^{1}D \\ a^{3}D - b^{1}D \\ a^{3}D - b^{1}D \\ a^{3}F - ^{3}D \end{array} $	4 · 2 F,P 3 - 2 F,P 2 - 2 F,P 1 - 2 F,P 4 - 3 P	229 229 229 229 229 375
	1785.635 1798.691 1798.927 1800.478 1807.530	209.1101 - 265.1126 208.8382 - 264.4342 209.5239 - 265.1126 233.8489 - 289.3897 209.1101 - 264.4342	$\begin{array}{l} 3d^3(a^2C)4s+3d^3(a^5F)4p\\ 3d^3(a^2C)4s+3d^3(a^4F)4p\\ 3d^3(a^2C)4s+3d^3(a^4F)4p\\ 3d^3(a^2G)4s+3d^3(a^2F)4p\\ 3d^3(a^2F)4s+3d^3(a^2D)4p\\ 3d^3(a^2C)4s+3d^3(a^4F)4p \end{array}$	${}^{3}G + {}^{3}G^{o}$ ${}^{3}G + {}^{3}G^{o}$ ${}^{3}G + {}^{3}G^{o}$ ${}^{3}F + {}^{3}D^{o}$ ${}^{3}G + {}^{3}G^{o}$	4 - 5 3 - 4 5 - 5 3 - 2 P 4 - 4 P	375 375 375 375 375 375
	1816.137 1821.152 1825.200 1830.081 1845.06	$\begin{array}{c} 208.8382 + 263.8986 \\ 209.5239 + 264.4342 \\ 209.1101 + 263.8986 \\ 234.0274 + 288.6698 \\ 39.6334 + 93.8323 \end{array}$	$\begin{array}{l} 3d^3(a^2C)4s+3d^3(a^4F)4p\\ 3d^3(a^2C)4s+3d^4(a^4F)4p\\ 3d^3(a^2C)4s+3d^3(a^4F)4p\\ 3d^3(a^2C)4s+3d^3(a^4F)4p\\ 3d^3(a^2F)4s+3d^3(a^2D)4p\\ 3d^4+3d^4\end{array}$	${}^{3}G - {}^{3}G^{9}$ ${}^{3}G - {}^{3}G^{9}$ ${}^{3}C - {}^{3}G^{9}$ ${}^{3}F - {}^{3}U^{9}$ ${}^{3}F - {}^{3}U^{9}$ ${}^{4}S - b^{1}U$	3 - 3 5 - 4 4 - 3 2 - 1 0 - 2 F,P	375 375 375 375 229
	1852.311 1858.446 1859.728 1862.038 1869.096	233.6336 - 287.6202 205.5364 - 259.3448 233.8489 - 287.6202 204.9754 - 258.6800 237.7296 - 291.2314	$\begin{array}{l} 3d^3(a^2fi)4s - 3d^3(a^2D)4p\\ 3d^3(a^4fi)4s - 3d^3(a^4F)4p\\ 3d^3(a^2F)4s - 3d^3(a^2D)4p\\ 3d^3(a^2F)4s - 3d^3(a^4F)4p\\ 3d^3(a^2F)4s - 3d^3(a^4F)4p\\ 3d^3(a^2F)4s - 3d^3(a^2D)4p \end{array}$	${}^{3}F - {}^{3}F''$ ${}^{5}P - {}^{5}D''$ ${}^{3}F - {}^{3}F''$ ${}^{5}P - {}^{5}D''$ ${}^{1}F - {}^{5}F''$	4 - 4 P 3 - 4 P 3 - 4 P 2 - 3 F 3 - 3 P	375 375 375 375 375 375 375
	1869.998 1872.708 1877.557 1883.871 1886.301	$\begin{array}{r} 233.6336 + 287.1096 \\ 204.7299 + 258.1285 \\ 233.8489 + 287.1096 \\ 234.0274 + 287.1096 \\ 233.8489 + 286.8627 \end{array}$	$\begin{array}{l} 3d^3(a^2F)4s + 3d^3(a^2D)4p\\ 3d^4(a^4P)4a + 3d^3(a^4F)4p\\ 3d^3(a^2F)4s + 3d^3(a^2D)4p\\ 3d^3(a^2F)4s + 3d^3(a^2D)4p\\ 3d^3(a^2F)4s + 3d^3(a^2D)4p\\ 3d^3(a^2F)4s + 3d^3(a^4P)4p \end{array}$	³ F - ³ F ⁹ ³ P - ⁵ D" ³ F - ³ F" ³ F - ³ F" ³ F - ³ D"	4 - 3 P 1 - 2 P 3 - 3 P 2 - 3 P 3 - 2 P	375 375 375 375 375 375
	1892.939 1894.022 1911.827 1918.373 1928.997	$\begin{array}{r} 234.0274 + 286.8553 \\ 233.6536 + 286.4313 \\ 233.8489 + 286.1549 \\ 234.0274 + 286.1549 \\ 233.6336 + 285.4740 \end{array}$	$3d^3(a^2F)4_8 + 3d^3(a^4P)4_P$ $3d^3(a^2F)4_8 + 3d^3(a^4P)4_P$ $3d^4(a^2F)4_8 + 3d^3(a^4P)4_P$ $3d^3(a^2F)4_8 + 3d^3(a^2D)4_P$ $3d^3(a^2F)4_8 + 3d^3(a^2D)4_P$	${}^{3}F + {}^{3}D^{\circ}$ ${}^{3}F + {}^{3}D^{\circ}$ ${}^{3}F + {}^{3}F^{\circ}$ ${}^{3}F + {}^{3}F^{\circ}$ ${}^{3}F + {}^{3}D^{\circ}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	375 375 375 375 375 375

1999

1. and

Multiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1945.885 1958.392 1960.896 1974.435 1998.281	216.5381 - 267.9286 233.8489 - 284.9112 209.5239 - 260.5210 216.5927 - 267.2401 258.6285 - 308.6715	$\begin{array}{l} 3d^3(a^2D)4s & \cdot 3d^3(a^4F)4p \\ 3d^3(a^2F)4s & \cdot 3d^3(a^2P)4p \\ 3d^4(a^2C)4s & \cdot 3d^3(a^4F)4p \\ 3d^3(a^2D)4s & \cdot 3d^3(a^4F)4p \\ 3d^3(b^2D)4s & \cdot 3d^3(a^4F)4p \\ 3d^3(b^2D)4s & \cdot 3d^3(a^2F)4p \end{array}$	${}^{3}D - {}^{3}F^{\circ}$ ${}^{3}F - {}^{3}D^{\circ}$ ${}^{3}G - {}^{5}F^{\circ}$ ${}^{3}D - {}^{3}F^{\circ}$ ${}^{3}D - {}^{3}D^{\circ}$	3 - 4 3 - 2 5 - 4 2 - 3 2 - 1	P P P P	375 375 375 375 375 375

$\label{eq:IRON VI (Fe^{+5}), Z = 26} \\ \mbox{Ground State } 1s^22s^22p^63s^23p^63d^3~({}^4F_{3/2})~(21~electrons) \\ \mbox{Ionization Potential [799~000] cm^{-1}; [99.1] eV} \\ \end{tabular}$

ultiplet Rel. Int	λ_{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	<u>Configurations</u>	Terms	J - J	Notes	References
	955 461	10.0400 410.2005	2.13 2.12(10)4-	-40 -200	3 3		500
· Z	255.401	18.9420 - 410.3695	30° - 30 (*3)4p		2-2	0	220
20	260.289	26.2149 - 410.3895	3d° - 3d°(-S)4p	$a^{-}P \cdot x^{-}P^{-}$	2 2	ĮŲ	820
200	261.786	26.2149 - 408.2074	3d ³ - 3d ² ('S)4p	$a^2P \cdot x^2P^0$	2 - 2	ļ	228
250	261.846	$28.4843 \cdot 410.3895$	3d ³ - 3d ² (¹ S)4p	$a^2D - x^2P^0$	2 - 2		228
150	261.944	28.6279 - 410.3895	$3d^3 - 3d^2(^{1}S)4p$	$a^2D \cdot x^2P^o$	3 - 3		228
50	261.977	26.4955 - 408.2074	3d ³ - 3d ² (¹ S)4p	$a^2P - x^2P^o$	1/2 - 1/2	j	228
100	263.449	28.6279 - 408.2074	$3d^3 - 3d^2(^1S)4p$	$a^2D \cdot x^2P^o$	3.1		228
2	269.879	0.0000 + 370.5381	$3d^3 - 3d^2(^3P)4p$	$ga^4F \cdot x^2D^6$	3.3		228
-	273.60	0.0000 - 365.4940	$3d^3 - 3d^2(^3P)4n$	ga ⁴ F - 7 ⁴ P ^o	3 . 3	0	437
10	274.494	1.1883 - 365.4940	$3d^3 - 3d^2(^3P)4p$	ga ⁴ F - z ⁴ P°	2	Y	228
80	276 173	5113 , 362 6029	$3d^3 - 3d^2(^1\Pi)4n$	$\sigma a^4 F \cdot v^2 D^0$	5.5		228
50	276.359	0.0000 261.0029	213 212(10)4	$a^4\mathbf{F} u^2\mathbf{D}^9$	$\frac{2}{3}$ $\frac{2}{3}$		220
1 50	210.002	0.0000 - 301.0302	2 13 2 12 (3D) 4 P	gar·yD	2 - 2		220
40	270.427	.5113 ~ 302.2700	30° - 30°(-1°)4p	gar · y'D'	2 - 2		220
150	2/0.090	1.1883 - 302.0029	3d" - 3d"("D)4p	garr y 2D°	2 2	1	228
50	276.742	.5113 - 361.8582	3d3 - 3d2(1D)4p	ga*F · y*D*	2 - 2		228
250	276.945	1.1883 - 362.2700	$3d^3 - 3d^2(^3P)4p$	ga ⁴ F - y ⁴ D°	1 - 7		228
50	277.232	0.0000 - 360.7071	3d3 - 3d2(3P)4p	ga ⁴ F - y ⁴ D ⁰	2 - 2		228
800	277.570	$2.0006 \cdot 362.2700$	$3d^3 - 3d^2(^{3}P)4p$	ga ⁴ F y ⁴ D°	$\frac{9}{2} - \frac{7}{2}$		228
300	277.626	.5113 - 360.7071	$3d^3 - 3d^2(^3P)4p$	ga ⁴ F - y ⁴ D"	5.5		228
300	277.947	0.0000 - 359.7813	$3d^3 - 3d^2(^3P)4p$	ga ⁴ F - y ⁴ D°	$\frac{3}{2} - \frac{3}{2}$		228
800	278.150	1.1883 - 360.7071	$3d^3 \cdot 3d^2(^{3}P)4p$	ga ⁴ F - v ⁴ D ^o	3-8		228
300	278.244	0.0000 - 359.3959	$3d^3 - 3d^2(^3P)4p$	$ga^4F \cdot v^4D^0$	3 - J		228
500	278 343	5113 350 7913	$3d^3 - 3d^2(^3P)Ap$	$a^{4}F = v^{4}D^{2}$	5.5		228
300	279.474	0.0000 350.0003	3d ³ 3d ² (1)4p	$a^4 L^2 u^2 D^0$	3 1		220
100	070.707	1,1002 - 250,0040	2 13 - 2 1 ² (1)4p	4Γ $2\Gamma^{2}$	2 2	ļ ,	220
100	2/8./8/	1.1883 - 359.8840	3d 3d (.D)4b	gar-y-r	2-2		228
300	278.970	$20.6164 \cdot 379.0776$	$3d^3 - 3d^2({}^1G)4p$	$a^2G \cdot x^2F^{\circ}$	7 - 2		228
250	279.421	2.0006 - 359.8840	3d° - 3d°('D)4p	ga"F - y"F"	₹ - <u>‡</u>	(I	228
20	279.466	.5113 - 358.3346	3d ³ - 3d ² ('D)4p	ga ⁴ F - y ² F ^o	2 - 2		228
100	279.997	1.1883 - 358.3346	$3d^3 - 3d^2(^1D)4p$	ga ⁴ F · y ² F°	$\frac{7}{2} - \frac{5}{2}$		228
300	280.397	21.3150 - 377.9518	$3d^3 - 3d^2({}^1G)4p$	$a^2G \cdot x^2F^{\circ}$	2 - 2	1	228
2	281.572	.5113 - 355.6571	3d ³ - 3d ² (³ P)4p	ga ⁴ F - z ⁴ S°	ş.ş		228
150	283.396	26.2149 - 379.0776	$3d^3 - 3d^2(^1C)4p$	$a^2P - x^2F^{\circ}$	3 - 5	j	228
300	283.776	21.3150 - 373 7061	$3d^3 \cdot 3d^2({}^1G)4p$	$a^2 G = z^2 H^{\circ}$	ខ្ញុំ ដ្		228
500	284 385	18 9420 - 370 5796	$3d^3 - 3d^2(^3P)4p$	$a^{4}\mathbf{P} \cdot \mathbf{x}^{2}\mathbf{D}^{0}$	3.5		228
250	284.513	20.6164 - 372.0956	3d ³ - 3d ² (¹ G)4p	$a^2G \cdot z^2H^{\circ}$	$\frac{2}{2} - \frac{2}{2}$		228
10	284 928	19 6108 - 370 5796	3d ³ - 3d ² (³ P)4n	a ⁴ P , x ² D ^o	ā. ā		228
· 10	204.020	21 2150 272 0056	343 342/1C)4~	a^2C a^2U^3	$\frac{2}{2}$ $\frac{2}{9}$		2220
1 7	203.079	21.3130 - 372.0930	242 - 24 CM	a G · Z Π	2 2		440
5	203.231	28.4040 - 379.0770	5a - 5a°(°G)4p		2 - 2		220
150	285.349	28.6279 - 379.0776	3d" - 3d*("G)4p	a*D - x*F*	2 - 2		228
5	285.746	20.6164 - 370.5796	3d" - 3d"("P)4p	$a^{2}G - x^{2}D^{0}$	2 - 2		228
250	286.150	28.4843 - 377.9518	3d ³ - 3d ² (¹ G)4p	a ² D - x ² F°	<u>2</u> - 7		228
100	286.347	28.7243 - 377.9518	3d ³ - 3d ² (¹ G)4p	$a^2H \cdot x^2F^{\circ}$	ş.,		228
70	286.674	$1.1883 \cdot 350.0178$	$3d^3 - 3d^2({}^3F)4n$	$\sigma a^4 F - z^2 G^{\circ}$	1. ŝ.		228
10	286.986	5113 - 348 9621	$3d^3 + 3d^2(^3F)4n$	a^4F τ^2C°	5 7		228
: 250	200.900	96 9140 - 374 4956	243 24 ² (3P)4~	gar - 20	2 2		220
200	201.102	40.41T2 - 0(4.4200	ou - ou (r)4-p	ar•yr	2 - 2		440

D-8	1
-----	---

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	$100 \\ 150 \\ 300 \\ 40 \\ 200$	287.343 287.415 287.461 287.545 287.694	$\begin{array}{c} 2.0006 & \cdot 350.0178\\ 26.4955 & \cdot 374.4256\\ 26.2149 & \cdot 374.0883\\ 1.1883 & \cdot 348.9621\\ 26.4955 & \cdot 374.0883 \end{array}$	$3d^3 \cdot 3d^2({}^3F)4p$ $3d^3 \cdot 3d^2({}^3F)4p$ $3d^3 \cdot 3d^2({}^3P)4p$ $3d^3 \cdot 3d^2({}^3P)4p$ $3d^3 \cdot 3d^2({}^3F)4p$ $3d^3 \cdot 3d^2({}^3P)4p$	$\begin{array}{c} ga^4F \cdot z^2G^*\\ a^2P \cdot y^2P^\circ\\ a^2P \cdot y^2P^\circ\\ ga^4F \cdot z^2G^*\\ a^2P \cdot y^2P^\circ\end{array}$			228 228 228 228 228 228
	500 400 100 800 300	288.557 289.066 289.096 289.115 289.187	$\begin{array}{r} 18.9420 & -365.4940 \\ 28.4843 & -374.4256 \\ 0.0000 & -345.9071 \\ 19.6108 & -365.4940 \\ 28.6279 & -374.4256 \end{array}$	3d ³ - 3d ²⁽³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p	$ \begin{array}{c} a^{4}P \cdot z^{4}P^{o} \\ a^{2}D \cdot y^{2}P^{o} \\ ga^{4}F \cdot z^{2}D^{o} \\ a^{4}P \cdot z^{4}P^{o} \\ a^{2}D \cdot y^{2}P^{o} \end{array} $			228 228 228 228 228 228
	250 200 200 400 200	289.307 289.469 289.478 289.524 289.682	18.7383 - 364.3929 28.6279 - 374.0883 18.9420 - 364.3929 .5113 - 345.9071 18.7383 - 363.9457	3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p	$\begin{array}{c} a^{4}P \ - \ z^{4}P^{\circ} \\ a^{2}D \ - \ y^{2}P^{\circ} \\ a^{4}P \ - \ z^{4}P^{\circ} \\ ga^{4}F \ - \ z^{2}D^{\circ} \\ a^{4}P \ - \ z^{4}P^{\circ} \end{array}$		P P	228 228 228 228 228 228
	700 100 30 800 600	289.853 289.871 289.959 290.040 290.092	18.9420 - 363.9457 28.7243 - 373.7061 20.6164 - 365.4940 19.6108 - 364.3929 1.1883 - 345.9071	3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (¹ C)4p 3d ³ - 3d ² (² P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ F)4p	$\begin{array}{c} a^{4}P - z^{4}P^{\circ} \\ a^{2}H - z^{2}H^{\circ} \\ a^{2}G - z^{4}P^{\circ} \\ a^{4}P - z^{4}P^{\circ} \\ ga^{4}F - z^{2}D^{\circ} \end{array}$			228 228 228 228 228 228 228
	300 400 900 700 200	290.147 290.149 290.273 290.309 290.390	$\begin{array}{c} 0.0000 & . 344.6526 \\ 20.6164 & . 365.2666 \\ 29.2029 & . 373.7061 \\ 20.6164 & . 365.0770 \\ 26.2149 & . 370.5796 \end{array}$	3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (¹ G)4p 3d ³ - 3d ² (¹ G)4p 3d ³ - 3d ² (¹ G)4p 3d ³ - 3d ² (⁵ P)4p	$\begin{array}{c} ga^{4}F - z^{2}D^{0} \\ a^{2}G - y^{2}G^{\circ} \\ a^{2}H - z^{2}H^{\circ} \\ a^{2}G - y^{2}G^{\circ} \\ a^{2}P - x^{2}D^{\circ} \end{array}$	3100001 	P P	228 228 228 228 228 228 228
	300 800 125 400 200	290.500 290.579 290.661 290.739 290.900	$\begin{array}{c} 1.1883 \cdot 345.4226 \\ .5113 \cdot 344.6526 \\ 26.4955 \cdot 370.5381 \\ 21.3150 \cdot 365.2666 \\ .5113 \cdot 344.2733 \end{array}$	$3d^3 - 3d^2({}^3F)4p$ $3d^3 - 3d^2({}^3F)4p$ $3d^3 - 3d^2({}^3F)4p$ $3d^3 - 3d^2({}^3F)4p$ $3d^3 - 3d^2({}^3F)4p$	$\begin{array}{c} ga^{4}F - z^{4}D^{o} \\ ga^{4}F - z^{2}D^{o} \\ a^{2}P - x^{2}D^{o} \\ a^{2}G - y^{2}G^{o} \\ ga^{4}F - z^{4}D^{o} \end{array}$			228 228 228 228 228 228
	80 700 800 800 100	290.985 291.020 291.187 291.229 291.365	$\begin{array}{c} 18.9420 & 362.6029 \\ 0.0000 & 343.6193 \\ 2.0006 & 345.4226 \\ 28.7243 & 372.0956 \\ 0.0000 & 343.2109 \end{array}$	3d ³ - 3d ² (¹ D)4p 3d ³ - 3d ² (² F)4p 3d ³ - 3d ² (² F)4p 3d ³ - 3d ² (¹ G)4p 3d ³ - 3d ² (¹ G)4p 3d ³ - 3d ² (³ F)4p	$\begin{array}{c} a^{4}P - y^{2}D^{o} \\ ga^{4}F - z^{4}D^{o} \\ ga^{4}F - z^{4}D^{o} \\ a^{2}H - z^{2}H^{o} \\ ga^{4}F - z^{2}H^{o} \\ ga^{4}F - z^{4}D^{o} \end{array}$			228 228 228 228 228 228 228
	$100 \\ 900 \\ 300 \\ 60 \\ 250$	291.444 291.473 291.552 291.617 291.635	18.7383 - 361.8582 1.1883 - 344.2733 19.6108 - 362.6029 18.9420 - 361.8582 29.2029 - 372.0956	3d ³ - 3d ² (¹ D)4ρ 3d ³ - 3d ² (¹ F)4p 3d ³ - 3d ² (¹ F)4p 3d ³ - 3d ² (¹ D)4p 3d ³ - 3d ² (¹ D)4p 3d ³ - 3d ² (¹ G)4p	$\begin{array}{c} a^{4}P - y^{2}D^{\circ} \\ ga^{4}F - z^{4}D^{\circ} \\ a^{4}P - y^{2}D^{\circ} \\ a^{4}P - y^{2}D^{\circ} \\ a^{4}P - y^{2}D^{\circ} \\ a^{2}H - z^{2}H^{\circ} \end{array}$	NLT NEW ACTIVITY		228 228 228 228 228 228
	800 600 70 200 50	291.801 291.835 291.909 292.039 292.185	$\begin{array}{r} .5113 \cdot 343.2109 \\ 19.6108 \cdot 362.2700 \\ 0.0000 \cdot 342.5715 \\ 1.1883 \cdot 343.6082 \\ 19.6108 \cdot 361.8582 \end{array}$	3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (⁴ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (¹ D)4p	$\begin{array}{c} ga^{4}F \cdot z^{4}D^{o} \\ a^{4}P \cdot y^{4}D^{o} \\ ga^{4}F \cdot z^{2}F^{o} \\ ga^{4}F \cdot z^{2}F^{o} \\ a^{4}P \cdot y^{2}D^{o} \end{array}$	tativite-industriation 		228 228 228 228 228 228
	30 60 20 200 100	292.314 292.346 292.352 292.409 292.437	28.4843 - 370.5796 .5113 - 342.5715 28.4843 - 370.5381 20.6164 - 362.6029 28.6279 - 370.5796	3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (⁴ P)4p 3d ³ - 3d ² (⁴ P)4p	$ \begin{array}{c} a^2 D - x^2 D^{\circ} \\ g a^4 F \cdot z^2 F^{\circ} \\ a^2 D - x^2 D^{\circ} \\ a^2 G - y^2 D^{\circ} \\ a^2 D - x^2 D^{\circ} \\ a^2 D - x^2 D^{\circ} \end{array} $	haland-shalunagunagu • • • •	P P	228 228 228 228 228 228
	300 100 800 300 150	292.599 292.693 292.733 293.043 293.171	18.9420 - 360.7071 20.6164 - 362.2700 2.0006 - 343.6082 1.1883 - 342.4344 18.7383 - 359.7813	3d ³ - 3d ² (² P)4p 3d ³ - 3d ² (² P)4p 3d ³ - 3d ² (² F)4p 3d ³ - 3d ² (² F)4p 3d ³ - 3d ² (² F)4p 3d ³ - 3d ² (² P)4p	$\begin{array}{c} a^{4}P - y^{4}D^{o} \\ a^{2}C - y^{4}D^{o} \\ ga^{4}F - z^{2}F^{o} \\ ga^{4}F - z^{4}F^{o} \\ a^{4}P - y^{4}D^{o} \end{array}$			228 228 228 228 228 228
	200 300 300 200 800	293.217 293.293 293.380 293.391 293.488	$\begin{array}{c} 18.7383 & \cdot 359.7813\\ 21.3150 & \cdot 362.2700\\ \cdot 5113 & \cdot 341.3653\\ 18.9420 & \cdot 359.7813\\ 2.0006 & \cdot 342.7306 \end{array}$	3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (⁴ F)4p 3d ³ - 3d ² (⁴ F)4p 3d ³ - 3d ² (⁴ F)4p	$\begin{array}{c} a^{4}P - y^{4}D^{\circ} \\ a^{2}G - y^{4}D^{\circ} \\ ga^{4}F - z^{4}F^{\circ} \\ a^{4}P - y^{4}D^{\circ} \\ ga^{4}F - z^{4}G^{\circ} \end{array}$			228 228 228 228 228 228
-	200 900 100 700 300	293.549 293.742 293.806 293.820 293.881	18.7383 - 359.3959 2.0006 - 342.4344 18.7383 - 359.0993 0.0000 - 340.3440 19.6108 - 359.8840	3d ³ - 3d ² (³ P)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (⁴ D)4p 3d ³ - 3d ² (⁴ F)4p 3d ³ - 3d ² (⁴ F)4p				228 228 228 228 228 228

Multiplet Rel. Int.	$\lambda_{v_{ac}}$ (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J Notes	References
800 300	293.965 204 n39	1.1883 - 341.3053 20.6164 - 360.7071	3d ⁵ - 3d ² (*F)4p 3d ³ - 3d ² (*P)4p	$ga^4F + z^4F^6$ $a^2G + y^4D^6$	4 - 4 2 - 2	228 228
900	204.262	.5113 - 340.3440	$3d^3 - 3d^2(^3F)4p$	$ga^4F + z^4F^6$	* . *	228
800	294.337	1.1883 - 340.9350	$3d^3 - 3d^2(^3F)4p$	$ga^{4}F = z^{4}G^{6}$	5 - 5	228
700	294.516	0.0000 - 339.5398	$3d^3 - 3d^2(^3F)4p$	$ga^{4}F - z^{4}F^{6}$	1961 - 1961 - 1965 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 -	228
]()() (200	294.645 294.668	18.9420 - 358.3346 - 2.0006 - 341.3653	3d ⁵ - 3d²(³ D)4p 3d ³ - 3d²(³ F)4p	$a^{3}P + y^{2}F^{n}$ $ga^{4}F + z^{4}F^{n}$	3 - 3 9 - 5	228 228
500	294.751	20.6164 - 359.8840	$3d^3 - 3d^2(^1D)4p$	$a^2G + v^2F^{o}$	3 - 5	228
250	294.850	1.1883 - 340.3440	3d ^a - 3d ² (^a F)4p	ga¹F - z⁴F`	<u>§</u> - 8 :	228
300	294.960	.5113 - 339.5398	$3d^3 - 3d^2(^3F)4p$	ga⁺F - z⁺F"	ž - ž	228
700	295.015	.5113 - 339.4770	$3d^3 - 3d^2(^3F)4p$	$ga^{4}F = z^{4}G^{0}$	3-5	228
700	295.042	2.0006 - 340.9350	3d" - 3d"("194p 9.13 - 9.12610.4.	ga'r - z'G'	3-3	228
150	295.147	18.9420 - 357.7352	$3d^3 - 3d \in D(4p)$	$a^{+}P = v^{2}F^{0}$	3 3	228
.30 500	295.224	71 7076 - 410 3895	$3d^3 - 3d^2(^1S)4n$	$b^2D - x^2P$	3 - 3	228
300	290.202	01.010 - 010.0070	9.13 - 9.12/Dy4.	$r^2 C = r^2 \Gamma^0$	2 7	222
800	295.360	21.3150 - 359.8840	30 - 303 1749 233 - 23205Ma	a G - y r $b^2 D - y^2 P^0$	3.3	228
150	295.500	12.0469 - 410.3693 1.1883 - 330.4770	3d ³ - 3d ² (3F)4n	$ra^{4}F - z^{4}G^{6}$	2 2 5 - 5	228
200	295.634	0.0000 - 338.2564	$3d^3 - 3d^2(^3F)4p$	$ga^{4}F - z^{4}G^{\circ}$	3 - 3	228
80	295.702	26.2149 - 364.3929	$3d^3 - 3d^2(^3P)4p$	$a^2P - z^4P^2$	3 - 3	228
200	295.732	19.6108 - 357.7552	$3d^3 - 3d^2(^1D)4p$	$a^4P - y^2P^2$	<u>8</u> - <u>8</u>	228
80	295.947	26.4955 - 364.3929	$3d^3 - 3d^2(^3P)4p$	$a^2P - z^3P^2$	· 출-철	228
70	296.077	.5113 - 338.2564	3d ^o - 3d ² (^o F)4p	ga*F - z*G*	1 S	388
900 200	296.106 296.317	20,6164 - 358.3346 2 0006 - 339 4770	3d ² - 3d ² (³ D)4p 3d ³ - 3d ² (³ F)4v	$a^{+}G = v^{+}F$ $ga^{+}F = z^{4}G^{+}$	2 - 2 5 - 5	228 228
200	270.317	2.0000 00001110	out outdays			390
80	296.676	1.1883 - 338.2564	3d" - 3d"("1')4p 243 - 24263Dv1s	$\frac{ga^{T}}{a^{2}D} = \frac{ga^{2}}{a^{4}D}$	2-2	228
200	290.725	20,4043 - 303,4940	$3d^3 + 3d(1)^{4}p$ $3d^3 + 3d^2(^{3}P)^{4}p$	$a^{4}P \cdot z^{4}S$	1 - 2 1 - 3	228
400	296.851	28.6279 - 365.4940	$3d^3 - 3d^2(^3P)4p$	$a^2D = z^4P^2$	3 - 3	228
500	296.988	18.9420 - 355.6571	$3d^3 - 3d^2(^3P)4p$	$a^{4}P + z^{4}S^{0}$	3 - 3	228
200	297.139	28.7243 - 365.2666	$3d^3 + 3d^2(^3G)4p$	$a^2H = y^2G^2$	2 - 2	228
250	297.275	26.2149 - 362.6029	$3d_1^3 - 3d_1^2(^1D)4p$	$a^2P = y^2D^2$	<u>*</u> - <u>*</u>	228
800	297.307	28.7243 - 365.0770	$3d^3 - 3d^2(^1G)4p$	$a^2H = v^2G^2$	<u> </u>	228
300	297.479	72.0489 - 408.2074	3d° - 3d°(*S)4p	$b^{*}D + x^{*}P^{*}$	3 - 5 LI 9	228
800	297.561	29.2029 - 365.2000	oar - oart Gi≉p	an-yo	2 - 2	220
500	297.579	19.6108 - 355.6571	$3d^3 - 3d^2(^3P)4p$	$a^{4}P + z^{4}S^{*}$	¥ - ¥	228
100	297.828	28.6279 - 364.3929	3d" - 3d"("P)4p	$a^{2}D - z^{2}F^{2}$	3 3	228
200	297.934	20.2149 - 301.8382	3d - 3d (D)4p 3d ³ - 3d ² (D)4n	$a \mathbf{r} + \mathbf{v} \mathbf{D}$ $a^2 \mathbf{P} + v^2 \mathbf{D}^2$	1.3	220
100	290.104	20.4955 - 501.6562 28.6279 - 363.9457	$3d^3 - 3d^2(^3P)4n$	$a^2D \cdot z^4P^6$		228
100	270.224	20.0219 0.00.7071	9.13 9.123D(4).	- ² D ⁴ D ⁰	33	220
10	298,960	29.2149 - 300.7071 38.4843 - 363.6030	$3d^3 - 3d(1)4p$	$a \rightarrow b = a^2 D + a^2 D^2$	* *	228
100	299.293	28.4843 - 362.2700	$3d^3 - 3d^2(^3P)4v$	$a^2D - y^4D^\circ$	¥ - 5	228
100	299.803	26.2149 - 359.7813	$3d^3 - 3d^2(^3P)4p$	$a^2P - y^4D^6$	3 - 3	046
300	299.963	28.4843 - 361.8582	$3d^3 - 3d^2(D)4p$	$a^2D - y^2D^6$	<u>3</u> - 3	228
100	300.043	26.4955 - 359.7813	$3d^3 - 3d^2(^3P)4p$	$a^2 P = v^4 D^6$	1 - 3 3 - 3	228
400	300.092	28.6279 - 361.8582	3d° - 3d*('D)4p	a*D - y*D" "2D4D0	5-5 1	228
10	300.136	26.2149 - 359.3939	30 - 30 (F)4p 3.1 ³ - 3.1 ² (³ D)4n	$a \mathbf{r} - \mathbf{y} D$ $a^4 \mathbf{p} = \pi^2 \mathbf{Q}^2$		228
200	300.240 300.390	26.4955 - 359.3959	$3d^3 - 3d^2(^3P)4p$	$a^{-1} = z^{-1}$ $a^2 P = y^4 D^6$	į . į	228
1 (1)(1)	300.193	18 9420 - 351 8058	$3d^3 - 3d^2t^3P)4n$	a⁺P - z ² €°	∦.∔ P	228
50	300.426	16.2173 - 379.0776	$3d^3 - 3d^2(^1G)4p$	$a^2F - x^2F^{\alpha}$	4 4 P	228
300	300.657	26.4955 - 359.0993	$3d^3 - 3d^2(^4D)4p$	$a^2P - y^2P^0$	1 - 1	228
500	300.776	46.6037 - 379.0776	$3d^3 - 3d^2(^3G)4p$	$a^2 F - x^2 F^0$	월 - 월 :	228
200	301.002	28.4843 - 360.7071	3d ⁴ - 3d ² (⁴ P)4p	$a^2D = y^*D^{\alpha}$	3 - 2	228
100	301.095	26.2149 - 358.3346	$3d^{3} - 3d^{2}(D)4p$	$a^2P - y^2F$	<u>8</u> - <u>8</u>	228
800	301.445	46.2173 - 377.9518	$3d^3 - 3d^2({}^1G)4p$	$a^{2}F - x^{2}F^{0}$	<u>+</u> - <u>+</u> ' 3 3	228
800	301.622	26.2149 - 357.7552	3d" - 3d"('D)4p	$a^{+}P = v^{+}P^{+}$	2 - 2	228 998
100-100	$301.750 \\ 301.796$	28.4843 - 359.8840 46.6037 - 377.9518	3d ³ - 3d ² (¹ G)4p	$a^2F - x^2F^6$	3 - 5	228
1444	301 844	28.4843 - 359 7813	$3d^3 - 3d^2(^3P)4u$	$a^2D = v^4D^2$	à - à .	228
250	301.878	26.4955 - 357.7552	$3d^3 - 3d^2(^{1}D)4p$	$a^2P = v^2P''$	1 - 2	228
100 -	301,969	28.7243 - 359.8840	$3d^{3} - 3d^{2}(^{1}D)4p$	$a^2H = v^2F^6$	$\frac{3}{2} - \frac{3}{2} = \frac{P}{2}$	228
50	301.975	28.6279 - 359.7813	$3d^3 - 3d^2(^3P)4p$	$a^2D = v^4D^6$	3-8 P	228
250	302.327	28.6279 - 359.3959	3d* - 3d*(°P)4p	a"D - v"D"	<u>3</u> - 2	220

Multiplet	Rel. Int.	λ _{ae} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	1 - 1 [Votes References
	300 200 150 160 300	302.598 303.167 303.299 303.543 303.580	$\begin{array}{c} 28.6279 & -359.0993 \\ 28.4843 & -358.3346 \\ 28.6279 & -358.3346 \\ 26.2149 & -355.6571 \\ 20.6164 & -350.0173 \end{array}$	${f 3d^3-3d^2({}^15){}^4p}\ {f 3d^3-3d^2({}^15){}^4p}\ {f 3d^3-3d^2({}^1D){}^4p}\ {f 3d^3-3d^2({}^1P){}^4p}\ {f 3d^3-3d^2({}^3P){}^4p}\ {f 3d^3-3d^2({}^3P){}^4p}\ {f 3d^3-3d^2({}^3F){}^4p}$	$\begin{array}{c} a^2 D - y^2 P^6 \\ a^2 D - y^2 P^6 \\ a^2 D - y^2 P^6 \\ a^2 D - y^2 P^6 \\ a^2 P - z^4 S^6 \\ a^2 G - z^2 G^6 \end{array}$		228 228 228 228 228 228
	20 800 800 100 300	203.833 304.227 304.558 305.043 305.206	$\begin{array}{r} 28.6279 & 357.7552 \\ 21.3150 & 350.0173 \\ 20.6164 & 348.9621 \\ 46.6037 & 374.4256 \\ 21.3150 & 348.9621 \end{array}$	3d ³ - 3d ² (¹ D)4p 3d ³ - 3d ² (³ F)4p 3d	$\begin{array}{c} a^2 D - y^2 P^{o} \\ a^2 G - z^2 G^{o} \\ a^2 G - z^2 G^{o} \\ a^2 F - y^2 P^{o} \\ a^2 G - z^2 G^{o} \end{array}$		228 228 228 228 228 228 228
07	100 200 300 70 500	305.837 306.470 306.829 306.862 306.926	$\begin{array}{r} 18.9420 & \cdot 345.9071 \\ 19.6108 & \cdot 345.9071 \\ 18.7383 & \cdot 344.6526 \\ 46.2173 & \cdot 372.0956 \\ 19.6108 & \cdot 345.4226 \end{array}$	3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p	$ \begin{array}{c} a^{4}P - z^{2}D^{\circ} \\ a^{4}f^{\circ} - z^{2}D^{\circ} \\ a^{4}P - z^{2}D^{\circ} \\ a^{2}F - z^{2}H^{\circ} \\ a^{2}F - z^{4}H^{\circ} \\ a^{4}P - z^{4}D^{\circ} \end{array} $	NGCRAH-HAH-FOCRAGE 	046 228 228 228 228 228
	250 300 300 250 200	307.021 307.134 307.380 307.398 307.415	$\begin{array}{c} 18.9420 &- 344.6526\\ 26.2149 &\cdot 351.8058\\ 18.9420 &\cdot 344.2733\\ 26.4955 &\cdot 351.8058\\ 20.6164 &\cdot 345.9071 \end{array}$	3d ³ - 3d ³ (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (³ F)4p 3d ³ - 3d ² (⁴ F)4p 3d ³ - 3d ² (⁴ F)4p 3d ³ - 3d ² (³ F)4p		10000000000000000000000000000000000000	228 228 228 228 228 228
	70 250 40 100 300	307.653 307.805 307.875 307.999 308.012	$\frac{19.6108 \cdot 344.6526}{18.7383 \cdot 343.6193}\\20.6164 \cdot 345.4226\\18.9420 \cdot 343.6193\\19.6108 \cdot 344.2733$	$3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^3(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$	$\begin{array}{c} a^{4}P-z^{2}D^{**}\\ a^{4}P-z^{4}D^{**}\\ a^{2}G-z^{4}D^{**}\\ a^{4}P-z^{4}D^{**}\\ a^{4}P-z^{4}D^{**}\\ a^{4}P-z^{5}D^{**}\\ \end{array}$	999	228 228 228 228 228 228 228
	300 900 300 700 700	308.191 308.296 308.385 308.539 308.644	$\begin{array}{r} 18.7383 & -343.2109 \\ 46.2173 & -370.5796 \\ 18.9420 & -343.2109 \\ 21.3150 & -345.4226 \\ 19.6108 & -343.6082 \end{array}$	${3d^3} - {3d^2({}^3F)^4p} \ {3d^3} - {3d^3} - {3d^3} - {3d^3} - {3d^3} - {3d^3} - {3$	$\begin{array}{c} a^{4}P - z^{4}D^{0} \\ a^{2}F - x^{2}D^{0} \\ a^{4}P - z^{4}D^{0} \\ a^{2}G - z^{4}D^{0} \\ a^{2}F - z^{2}F^{0} \end{array}$		228 228 228 228 228 228 228
	100 800 200 200 80	308.666 308.704 308.969 308.995 309.022	46.6037 - 370.5796 46.6037 - 370.5381 20.6164 - 344.2733 18.9420 - 342.5715 19.6168 - 343.2109	${3d^3-3d^2(^3P)4p}\ {3d^3-3d^3(^3P)4p}\ {3d^3-3d^3(^3P)4p}\ {3d^3-3d^2(^3F)4p}\ {3d^3-3d^2(^3F)4p}\ {3d^3-3d^2(^3F)4p}\ {3d^3-3d^2(^3F)4p}$	$\begin{array}{c} a^{2}F + x^{2}D^{*} \\ a^{2}F + x^{2}D^{*} \\ a^{2}G + z^{4}D^{*} \\ a^{4}P + z^{2}F^{*} \\ a^{4}P + z^{4}D^{*} \end{array}$		228 223 228 228 228 228 228
	200 50 200 700 700	309.426 309.604 309.635 310.276 310.602	$\begin{array}{c} 28.6279 - 351.3058\\ 20.6164 - 343.6082\\ 19.6108 - 342.5715\\ 21.3150 - 343.6082\\ 20.6164 - 342.5715 \end{array}$	$3d^3 - 3d^2(^3P)4p$ $3d^3 - 3d^2(^4F)4p$ $3d^3 - 3d^2(^4F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$			228 228 228 228 228 228 228
	$10 \\ 100 \\ 100 \\ 300 \\ 50$	310.736 310.796 311.137 311.241 311.410	20.6164 - 342.4344 19.6108 - 341.3653 18.9420 - 340.3440 28.7243 - 350.0178 21.3150 - 342.4344	${3d^3} - 3d^2(^3F)4p$ ${3d^3} - 3d^2(^3F)4p$ ${3d^3} - 3d^2(^3F)4p$ ${3d^3} - 3d^2(^3F)4p$ ${3d^3} - 3d^2(^3F)4p$ ${3d^3} - 3d^2(^3F)4p$	$ \begin{array}{c} a^2G - z^4F^* \\ a^4P - z^4F^* \\ a^4P - z^4F^* \\ a^2H - z^2G^* \\ a^2G - z^4F^* \end{array} $	7 40 57 50 50 50 50 50 50 50 50 50 50 50 50 50	228 228 228 228 228 228 228
	900 80 70 800 10	311.706 311.786 311.918 312.268 312.769	$\begin{array}{r} 29.2029 & -3.50.0178 \\ 19.6108 & -340.3440 \\ 18.9420 & -339.5398 \\ 28.7243 & -348.9621 \\ 20.6164 & -340.3440 \end{array}$	$\begin{array}{r} 3d^3 - 3d^2(^3F)4p\\ 3d^3 - 3d^3(^3F)4p\\ 3d^3 - 3d^2(^3F)4p\\ 3d^3 - 3d^2(^3F)4p\\ 3d^3 - 3d^2(^3F)4p\\ 3d^3 - 3d^2(^3F)4p \end{array}$		99200000000000000000000000000000000000	228 228 228 228 228 228 228
	300 100 80 300 500	312.801 312.872 313.170 313.207 313.432	$\begin{array}{r} 26.2149 & \cdot 345.9071 \\ 21.3150 & \cdot 340.9350 \\ 18.9420 & \cdot 338.2564 \\ 46.2173 & \cdot 365.4940 \\ 46.2173 & \cdot 365.2666 \end{array}$	$3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3P)4p$ $3d^3 - 3d^2(^3G)4p$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		228 228 228 228 228 228 228
	$ \begin{array}{r} 20 \\ 300 \\ 300 \\ 500 \\ 150 \end{array} $	313.587 313.999 314.033 314.310 314 408	$\begin{array}{r} 46.6037 & 365.4940 \\ 46.6037 & 365.0770 \\ 26.2149 & 344.6526 \\ 26.4955 & 344.6526 \\ 26.2149 & 344.2733 \end{array}$	$3d^3 - 3d^2(^3P)4p$ $3d^3 - 3d^2(^4C)4p$ $3d^3 - 3d^2(^4C)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$ $3d^3 - 3d^2(^3F)4p$	$ \begin{array}{c c} a^{2}F & z^{4}F' \\ a^{2}F & y^{2}C' \\ a^{2}F & z^{2}D'' \\ a^{2}P & z^{2}D'' \\ a^{2}P & z^{2}D'' \\ a^{2}P & z^{4}D' \end{array} $		228 228 228 228 228 228
	20 300 500 709 309	314.675 314.824 315.038 315.182 315.462	$\begin{array}{c} 46.6037 & -364.3929 \\ 20.6164 & -338.2564 \\ 23.4843 & -345.9071 \\ 28.6279 & -345.9071 \\ 26.2149 & -343.2109 \end{array}$	$3d^3 + 3d^2(^3P)4p$ $3d^3 + 3d^2(^3F)4p$ $3d^3 + 3d^2(^3F)4p$ $3d^3 + 3d^2(^3F)4p$ $3d^3 + 3d^2(^3F)4p$ $3d^3 + 3d^2(^3F)4p$	$\begin{array}{c} a^{2}F - z^{4}P^{\prime\prime} \\ a^{2}G - z^{4}G^{\prime\prime} \\ a^{2}D - z^{2}D^{\prime\prime} \\ a^{2}D - z^{2}D^{\prime\prime} \\ a^{2}P - z^{4}D^{\prime\prime} \end{array}$		228 228 228 228 228 228 228

, server,

,.....

D	8	4
---	---	---

let	Rel. Int.	λ _{sac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J-J Notes	References
į	200	215 591	99 4949 945 4996	2.1 ³ 2.1 ² / ³ E).4 -	-2D -4D°	57	990
	250	315 742	26 4955 - 343 2109	$3d^3 \cdot 3d^2({}^3F)4n$	$a^2 P \cdot z^4 D^\circ$	2 - 2	228
	200	316.071	46 2173 - 362 6029	$3d^3 - 3d^2(^1D)Ap$	$a^2 F \cdot y^2 D^0$	2 2 2	228
	300	316 100	26 2149 - 342 5715	$3d^3 - 3d^2(^3F)4p$	$a^{2}P = z^{2}F^{0}$	3 5	220
	150	316.289	28.4843 - 344.6526	$3d^3 - 3d^2(^3F)4p$	$a^2D - z^2D^\circ$	2 - 2 - 2 - 2 - 2 - 2	228
	50	316.404	46.2173 - 362.2700	$3d^3 - 3d^2(^3P)4p$	$a^2F - v^4D^\circ$	3 - 3	228
	200	316.433	$28.6279 \cdot 344.6526$	$3d^3 - 3d^2(^3F)4p$	$a^2D - z^2D^{\circ}$	3.3	228
	20	316.669	28.4843 - 344.2733	$3d^3 - 3d^2(^3F)4p$	$a^2D \cdot z^4D^{\circ}$	5 - 5	228
	300	316.813	28.6279 - 344.2733	$3d^3 - 3d^2(^3F)4p$	$a^2D - z^4D^\circ$		228
	200	317.205	46.6037 - 361.8582	3d ³ - 3d ² (¹ D)4p	$a^2 F \cdot y^2 D^\circ$	\$ - 3	228
	500	317.337	28.4843 - 343.6082	3d ³ - 3d ² (³ F)4p	$a^2D - z^2F^{\circ}$	5 - 2	228
	70	317.737	28.4843 - 343.2109	$3d^3 - 3d^2(^3F)4p$	$a^2D \cdot z^4D^\circ$	2 - 2	228
	150	317.883	$28.6279 \cdot 343.2109$	$3d^3 - 3d^2(^3F)4p$	a²D - z4D°	$\frac{3}{2} - \frac{3}{2}$	228
	70	318.342	26.2149 - 340.3440	$3d^3 - 3d^2(^3F)4p$	a ² P - z ⁴ F"	3 - 5	228
	300	318.384	28.4843 - 342.5715	3d ³ - 3d ² (³ F)4p	$a^2D - z^2F^{\circ}$	2 - 2	228
	80	318.530	28.6279 - 342.5715	$3d^3 - 3d^2(^3F)4p$	$a^2D \cdot z^2F^{\circ}$	3 - 5	228
	250	318.811	46.2173 - 359.8840	$3d^3 - 3d^2(^1D)4p$	$a^2F - y^2F^n$	2 - 2	228
	100	319.159	26.2149 - 339.5398	$3d^{2} - 3d^{2}({}^{\circ}F)4p$	a'P · z'F	* • *	228
	100	319.254	29.2029 - 342.4344	3d° - 3d°(°F)4p	a ² H - z ⁴ F ^o	2 - 2	228
	80	319.445	26.4955 - 339.5398	3d° - 3d²(°F)4p	a'P - z*F"	2-2	228
ĺ	30	319.856	28.7243 - 341.3653	$3d^3 - 3d^2({}^3F)4p$	$a^{2}H_{2F} - z^{4}F^{\circ}_{2F'}$	$\frac{9}{2} - \frac{7}{2}$	228
	100	320.395	40.2173 - 358.3340	30" - 30"("D)4p	a"F - y"F"	2 - 2 3 5	228
	100	320.472	20.2149 - 338.2504	30° - 30°(°F)4p 3d3 - 2d2/3€\4-	a ⁻ P - z ⁻ G ^o a ² D -4E ^o	2-2	220
	250	320.058	20.4043 · 340.3440 28.6279 · 340.3440	за - за (т)4р 3d ³ - 3d ² (³ F)4р	$a^2D - z^4F^2$	2 - 2 3 - 2	228
!	20	321,389	46 6037 - 357 7559	$3d^3 - 3d^2(1))A_{22}$	$a^2 \mathbf{F} = v^2 \mathbf{P}^0$	\$. 3	228
	100	321 552	28.4843 - 339.4770	$3d^3 = 3d^2({}^3F)A_{\rm P}$	a^{1} y^{1} a^{2} D z^{4} C ^o	2 2 5 7	228
	50	321.635	28.6279 - 339 5398	$3d^3 - 3d^2({}^3F)4n$	$a^2D - z^4F'$		228
	30	321.798	28.7243 - 339 4770	$3d^3 - 3d^2({}^3F)4n$	$a^2H - z^4G^0$	5 5 5	228
	100	322.969	28.6279 - 338.2564	$3d^3 - 3d^2({}^3F)4p$	$a^2D \cdot z^4G^\circ$	<u>3</u> <u>2</u> - <u>2</u>	228
	200	325.342	71.7076 - 379.0776	3d ³ - 3d ² (¹ G)4 _D	$b^2D - x^2F^{*}$	ž - ž	228
	500	325.704	72.0489 - 379.0776	$3d^3 - 3d^2({}^{1}G)4p$	$b^2D - x^2F'$	3 - 3	228
Ì	500	326.538	71.7076 - 377.9518	$3d^3 - 3d^2({}^1G)4p$	$b^2D \cdot x^2F^n$	3-3	228
	500	330.341	71.7076 - 374.4256	$3d^3 - 3d^2(^3P)4p$	$b^2D - y^2P^0$	2 - 2	228
	200	330.714	72.0489 - 374.4256	$3d^3 - 3d^2(^3P)4p$	$b^2D - y^2P^{\prime\prime}$	$\frac{3}{2} - \frac{3}{2}$	228
ł	300	331.084	72.0489 - 374.0883	$3d^{3} - 3d^{2}(^{3}P)4p$	$b^2 D - y^2 P^\circ$	$\frac{3}{2} - \frac{1}{2}$	228
	70	333.678	46.2173 - 345.9071	$3d^3 - 3d^2({}^3F)4_P$	$a^2F - z^2D^\circ$	2 - 2	228
	40	334.108	46.6037 - 345.9071	3d ³ - 3d ² (³ F)4p	$a^2F - z^2D^{o}$	2 - 2	228
	200	334.219	46.2173 - 345.4226	$3d^3 - 3d^2({}^3F)4p$	a ² F - z ⁴ D°	ž - ž	228
	300	334.593	71.7076 - 370.5796	3d" - 3d²('P)4p	$\mathbf{b}^2\mathbf{D} \cdot \mathbf{x}^2\mathbf{D}^6$	2 - 2	228
	150	334.639	71.7076 - 370.5381	$3d^3 - 3d^2(^3P)4p$	$b^2D - x^2D^c$	$\frac{3}{2} = \frac{3}{2}$	228
	250	334.974	72.0489 - 370.5796	$3d^3 - 3d^2(^3P)4_P$	$b^2D - x^2D^\circ$	3 - 2	228
	300	335.021	72.0489 - 370.5381	$3d^3 - 3d^2(^3P)4p$	$b^2D - x^2D^\circ$	3 - 3	228
	5	335.514	46.6037 - 344.6526	$3d^{3} - 3d^{2}(^{3}F)4p$	$a^2 F - z^2 D''$	2 - 2	228
	150	335.945	46.6037 - 344.2733	3d3 - 3d2(3F)4p	a ² F - z ⁴ D"	2 - 2	228
	250	336.258	46.2173 - 343.6082	$3d^3 - 3d^2(^3F)4p$	$a^2 \mathbf{F} \cdot z^2 \mathbf{F}^{\circ}$	2 - 2	228
	5	336.696	46.6037 - 343.6082	3d" - 3d*("F)4p	a'f z'f"	2 - 2	228
	10	337.434	46.21/3 - 342.5715	3d - 3d (°F)4p	a'f' - z'f"	<u> </u>	228
	200 ± 50	337.875 340.994	40.0037 - 342.5715 46.2173 - 339.4770	3d" - 3d"("F)4p 3d ³ - 3d ² (³ F)4p	a r z r ' a²F z4G'	ž - ž ž - ž	228 228
	9	241 360	46 6037 - 330 5308	3.43 _ 3.42/3F14~	2F .4F0	5 3	228
Ì	∠ 60	342.871	46 6037 - 338 9564	3d ³ - 3d ² / ³ k ³ A ₂	аг-гг 9 ² F - 7 ⁴ С°	2 2	220
	80	343,766	71.7076 - 362.6029	$3d^3 - 3d^2(^1D)4n$	$h^2D = v^2D^\circ$	2 2 1 2 1 3 3 4 1	228
	60	344.161	71.7076 - 362.2700	$3d^3 - 3d^2(^3P)4n$	$\mathbf{b}^2 \mathbf{D} \cdot \mathbf{v}^4 \mathbf{D}^6$	5.5	228
	100	345.054	72.0489 - 361.8582	$3d^3 - 3d^2(^1D)4p$	$\tilde{b}^2 \tilde{D} - \tilde{y}^2 \tilde{D}^{"}$	<u>3</u> - <u>3</u>	228
	5	346.021	71.7076 - 360.7071	$3d^3 - 3d^2(^3P)4p$	$b^2D - y^4D^o$	ž - ž	228
	10	346.430	72.0489 - 360.7071	3d ³ - 3d ² (³ P)4p	$b^2D - y^4D^6$	3 - 5	228
	150	347.010	71.7076 - 359.8840	$3d^3 - 3d^2(^1D)4p$	$b^2D \cdot y^2F^{\circ}$	2 - 2	228
l	50	348.886	71.7076 - 358.3346	$3d^3 - 3d^2(^1D)4p$	$b^2D \cdot y^2 f^{o}$	2 - 2	228
	60	349.303	72.0489 - 358.3346	$3d^3 - 3d^2(^1D)4p$	$b^2D = y^2F^0$	3 - 2	228
ĺ	2	349.592	71.7076 - 357.7552	$3d^3 - 3d^2(^1D)4p$	$b^2D - y^2P''$	2 - 2	228
	100	364.696	71.7076 - 345.9071	$3d^3 - 3d^2({}^3F)4p$	$b^2D - z^2D^2$	2 - 2	228
1	40	365.152	72.0489 - 345.9071	3d ³ - 3d ² (³ F)4p	$b^2D \cdot z^2D^3$	1 - 12 1 - 12	228
	80	366.833	72.0489 - 344.6526	3d° - 3d°(°F)4p	$b^{+}D - z^{+}D^{0}$	ž - ž	228
	100	301.111	11.1070 - 343.0082	3d" - 3d"("F)4o	b"D-z"F"	7 - 5	228

ъ	0	5
υ	~0	2

ultiplet Rel	l. Int.	λ _{vae} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	40 50 50 150 10	368.780 369.187 369.652 372.72 1018.835	$\begin{array}{c} 72.0489 & .343.2109 \\ 71.7076 & .342.5715 \\ 72.0489 & .342.5715 \\ 72.0489 & .340.3440 \\ 264.1183 & .362.2700 \end{array}$	3d ³ - 3d²(²F)4p 3d ³ - 3d²(²F)4p 3d ³ - 3d²(²F)4p 3d ³ - 3d²(²F)4p 3d² - 3d²(²F)4p 3d²(³F)4s - 3d²(²F)4p	$\begin{array}{c} b^2 D - z^4 D^{\circ} \\ b^2 D - z^2 F^{\circ} \\ b^2 D - z^2 F^{\circ} \\ b^2 D - z^2 F^{\circ} \\ b^2 D - z^4 F^{\circ} \\ b^4 F - y^4 D^{\circ} \end{array}$		Q	228 228 228 730 228
	40 10 5 10 5	1024.898 1026.560 1042.352 1057.153 1078.541	$\begin{array}{r} 263.1359 & \cdot 360.7071 \\ 262.3684 & \cdot 359.7813 \\ 269.1402 & \cdot 365.0770 \\ 270.6726 & \cdot 365.2666 \\ 269.1402 & \cdot 361.8582 \end{array}$	$\begin{array}{l} 3d^2({}^3F)4s & 3d^2({}^3P)4p \\ 3d^2({}^3F)4s & 3d^2({}^3P)4p \\ 3d^2({}^3F)4s & 3d^2({}^3F)4p \\ 3d^2({}^3F)4s & 3d^2({}^3G)4p \\ 3d^2({}^3F)4s & 3d^2({}^3G)4p \\ 3d^2({}^3F)4s & 3d^2({}^1D)4p \end{array}$	b ⁴ F - y ⁴ D" b ⁴ F - y ⁴ D" b ² F - y ² G" b ² F - y ² G" b ² F - y ² D"	NETRO-JARONGANA-J AGENACOA-JARONGANA-J AGENACOA-JARONGANA-J		228 228 228 228 228 228
	50 20 300 50 250	1115.094 1120.934 1152.770 1160.504 1165.672	280.9015 - 370.5796 270.6726 - 359.8840 292.3301 - 379.0776 287.9192 - 374.0883 288.6383 - 374.4256	$3d^{2}(^{1}D)4s - 3d^{2}(^{2}P)4p$ $3d^{2}(^{3}F)4s - 3d^{2}(^{1}D)4p$ $3d^{2}(^{1}G)4s - 3a^{2}(^{2}G)4p$ $3d^{2}(^{3}P)4s - 3d^{2}(^{3}P)4p$ $3d^{2}(^{3}P)4s - 3d^{2}(^{3}P)4p$	$\begin{array}{c} c^2 D \cdot x^2 D^{\circ} \\ b^2 F \cdot y^2 F^{\circ} \\ b^2 C \cdot x^2 F^{\circ} \\ b^2 P \cdot y^2 P^{\circ} \\ b^2 P \cdot y^2 P^{\circ} \\ b^2 P \cdot y^2 P^{\circ} \end{array}$			228 228 228 228 228 228
	500 40 50 100 200	1167.699 1167.923 1170.279 1182.140 1186.580	292.3130 - 377.9518 292.3301 - 377.9518 288.6383 - 374.0883 280.9015 - 365.4940 281.2178 - 365.4940	$\begin{array}{l} 3d^2({}^1G)4s - 3d^2({}^1G)4p \\ 3d^2({}^1G)4s - 3d^2({}^1G)4p \\ 3d^2({}^3P)4s - 3d^2({}^2P)4p \\ 3d^2({}^1P)4s - 3d^2({}^2P)4p \\ 3d^2({}^1D)4s - 3d^2({}^3P)4p \\ 3d^2({}^1D)4s - 3d^2({}^3P)4p \end{array}$	$\begin{array}{c} b^2 G \cdot x^2 F^{\circ} \\ b^2 G \cdot x^2 F^{\circ} \\ b^2 P \cdot y^2 P^{\circ} \\ c^2 D \cdot z^4 P^{\circ} \\ c^2 D \cdot z^4 P^{\circ} \end{array}$			228 228 228 228 228 228
	300 80 30 500 60	1189.550 1197.728 1202.281 1206.032 1207.566	261.8414 - 345.9071 280.9015 - 364.3929 281.2178 - 364.3929 281.4770 - 364.3929 261.8414 - 344.6526	$3d^{2}({}^{3}F)4s - 3d^{2}({}^{2}F)4p$ $3d^{2}({}^{1}D)4s - 3d^{2}({}^{2}P)4p$ $3d^{2}({}^{1}D)4s - 3d^{2}({}^{3}P)4p$ $3d^{2}({}^{3}P)4s - 3d^{2}({}^{3}P)4p$ $3d^{2}({}^{3}F)4s - 3d^{2}({}^{3}F)4p$	$\begin{array}{c} b^{4}F \cdot z^{2}D^{\circ} \\ c^{2}D \cdot z^{4}P^{\circ} \\ c^{2}D \cdot z^{4}P^{\circ} \\ b^{4}P \cdot z^{4}P^{\circ} \\ b^{4}F \cdot z^{2}D^{\circ} \end{array}$	Nation Nation And Annual State 		228 228 228 228 228 228
	250 80 200 400 150	1208.151 1208.781 1210.379 1211.503 1212.577	$\begin{array}{c} 263.1359 & - 345.9071 \\ 281.2178 & - 363.9457 \\ 287.9192 & - 370.5381 \\ 282.9519 & - 365.4940 \\ 281.4770 & - 363.9457 \end{array}$	$\begin{array}{l} 3d^2({}^3F)4s & 3d^2({}^3F)4p \\ 3d^2({}^1D)4s & 3d^2({}^3P)4p \\ 3d^2({}^3P)4s & 3d^2({}^3P)4p \\ 3d^2({}^3P)4s & 3d^2({}^3P)4p \\ 3d^2({}^3P)4s & 3d^2({}^3P)4p \\ 3d^2({}^3P)4s & 3d^2({}^3P)4p \end{array}$			P	228 228 228 228 228 228
	80 400 400 300 200	1214.212 1215.296 1220.388 1220.841 1220.926	282.0350 - 364.3929 262.3684 - 344.6526 288.6383 - 370.5796 282.0350 - 363.9457 262.3684 - 344.2733	$3d^{2}(^{3}P)4_{9} - 3d^{2}(^{3}P)4_{P}$ $3d^{2}(^{2}F)4_{8} - 3d^{2}(^{3}F)4_{P}$ $3d^{2}(^{3}P)4_{8} - 3d^{2}(^{3}P)4_{P}$ $3d^{2}(^{3}P)4_{9} - 3d^{2}(^{3}P)4_{P}$ $3d^{2}(^{3}F)4_{8} - 3d^{2}(^{3}F)4_{P}$	$b^4P - z^4P^5$ $b^4F - z^2D^0$ $b^2P - x^2D^0$ $b^4P - z^4P^0$ $b^4F - z^4D^0$	rsenseurseurseurseurseu 		228 228 228 228 228 228
	100 300 400 300 500	1221.002 1222.824 1223.969 1227.882 1228.604	288.6383 - 370.5381 261.8414 - 343.6193 280.9015 - 362.6029 282.9519 - 364.3929 292.3130 - 373.7061	$3d^2(^{3}P)4s - 3d^2(^{3}P)4p$ $3d^2(^{3}F)4s - 3d^2(^{3}F)4p$ $3d^3(^{1}D)4s - 3d^2(^{1}D)4p$ $3d^2(^{3}P)4s - 3d^2(^{3}P)4p$ $3d^2(^{1}C)4s - 3d^2(^{1}C)4p$	$\begin{array}{l} b^2 P \cdot x^2 D^{\circ} \\ b^4 F \cdot z^4 D^{\circ} \\ c^2 D \cdot y^2 D^{\circ} \\ b^4 P \cdot z^4 P^{\circ} \\ b^2 G \cdot z^2 H^{\circ} \end{array}$			228 228 228 228 228 228
	200 250 400 150 300	1228.725 1228.961 1229.948 1230.926 1232.479	281.2178 - 362.6029 261.8414 - 343.2109 264.1183 - 345.4226 262.3684 - 343.6082 263.1359 - 344.2733	$\begin{array}{l} 3d^2(^1D)4s \cdot 3d^2(^1D)4p \\ 3d^2(^3F)4s \cdot 3d^2(^3F)4p \\ 3d^2(^3F)4s \cdot 3d^2(^3F)4p \\ 3d^2(^3F)4s \cdot 3d^2(^3F)4p \\ 3d^2(^3F)4s \cdot 3d^2(^3F)4p \\ 3d^2(^3F)4s \cdot 3d^2(^3F)4p \end{array}$	$\begin{array}{c} c^2 D \ - \ y^2 D^\circ \\ b^4 F \ - \ z^4 D^\circ \\ b^4 F \ - \ z^4 D^\circ \\ b^4 F \ - \ z^2 F^\circ \\ b^4 F \ - \ z^2 F^\circ \\ b^4 F \ - \ z^4 D^\circ \end{array}$	NH-INTERNACIONALINA 		228 228 228 228 228 228
	200 150 250 50 150	1236.967 1238.698 1240.067 1241.192 1242.664	$\begin{array}{c} 262.3684 & \cdot 343.2109\\ 261.8414 & \cdot 342.5715\\ 281.2178 & \cdot 361.8582\\ 282.0350 & \cdot 362.6029\\ 263.1359 & \cdot 343.6082 \end{array}$	$3d^2(^3F)4s - 3d^2(^3F)4p$ $3d^2(^3F)4s - 3d^2(^3F)4p$ $3d^2(^1D)4s - 3d^2(^1D)4p$ $3d^2(^3P)4s - 3d^2(^1D)4p$ $3d^2(^3F)4s - 3d^2(^3F)4p$	$b^{4}F - z^{4}D^{\circ}$ $b^{4}F - z^{2}F^{\circ}$ $c^{2}D - y^{2}D^{\circ}$ $b^{4}P - y^{2}D^{\circ}$ $b^{4}F - z^{2}F^{\circ}$			228 228 228 228 228 228
	30 200 200 500 200	1244.068 1246.833 1252.769 1252.789 1253.054	$\begin{array}{c} 281.4770 & 361.8582 \\ 262.3684 & 342.5715 \\ 282.0350 & 361.8582 \\ 269.1402 & 348.9621 \\ 280.9015 & 360.7071 \end{array}$	$\begin{array}{l} 3d^2({}^3P)4s + 3d^2({}^1D)4p \\ 3d^2({}^3F)4s + 3d^2({}^2F)4p \\ 3d^2({}^2P)4s + 3d^2({}^1D)4p \\ 3d^2({}^3F)4s + 3d^2({}^3F)4p \\ 3d^2({}^3F)4s + 3d^2({}^3P)4p \\ 3d^2({}^1D)4s + 3d^2({}^2P)4p \end{array}$	$b^4P - y^2D^\circ$ $b^4F - z^2F^\circ$ $b^4P - y^2D^\circ$ $b^2F - z^2G^\circ$ $c^2D - y^4D^\circ$	ndenskandenska • • • • • Mentskandenska	P P	228 228 228 228 228 228
	400 200 100 200 200	1253.676 1255.476 1258.022 1258.031 1258.879	292.3301 - 372.0956 282.9519 - 362.6029 264.1183 - 343.6082 281.2178 - 360.7071 263.1359 - 342.5715	$\begin{array}{l} 3d^2({}^1\mathrm{G})4\mathrm{s} & 3d^2({}^1\mathrm{G})4\mathrm{p} \\ 3d^2({}^3\mathrm{P})4\mathrm{s} & 3d^2({}^1\mathrm{D})4\mathrm{p} \\ 3d^2({}^3\mathrm{P})4\mathrm{s} & 3d^2({}^3\mathrm{P})4\mathrm{p} \\ 3d^2({}^1\mathrm{D})4\mathrm{s} & 3d^2({}^3\mathrm{P})4\mathrm{p} \\ 3d^2({}^3\mathrm{F})4\mathrm{s} & 3d^2({}^3\mathrm{F})4\mathrm{p} \end{array}$	$\begin{array}{ccc} b^2G \cdot z^2H^{\circ} \\ b^4P \cdot y^2D^{\circ} \\ b^4F \cdot z^2F^{\circ} \\ c^2D \cdot y^4D^{\circ} \\ b^4F \cdot z^2F^{\circ} \end{array}$		P P	228 228 228 228 228 228
	700 600 500 400 500	$1260.314 \\ 1260.741 \\ 1261.060 \\ 1265.874 \\ 1266.103$	270.6726 - 350.0178 282.9519 - 362.2700 263.1359 - 342.4344 262.3684 - 341.3653 280.9015 - 359.8840	$3d^2(^3F)4s - 3d^2(^3F)4p$ $3d^2(^3P)4s - 3d^2(^3P)4p$ $3d^2(^3F)4s - 3d^2(^3F)4p$ $3d^2(^3F)4s - 3d^2(^3F)4p$ $3d^2(^3F)4s - 3d^2(^3P)4p$		1		228 228 228 228 228 228

Multiplet_Rel. Int.	$\lambda_{vac} (in ~\tilde{\mathbf{A}})$	Levels (in 10^3 cm ⁻¹)	Configurations	Terms J - J Notes	References
10 250 800 200 200	1267.748 1271.095 1272.065 1272.859 1273.837	280.9015 - 359.7813 282.0350 - 360.7071 264.1183 - 342.7306 281.2178 - 359.7813 261.8414 - 340.3440	$\begin{array}{l} 3d^2t^4D)4s + 3d^2t^4P)4p\\ 3d^2t^4P)4s + 3d^2t^2P)4p\\ 3d^2t^4P)4s + 3d^2t^3P)4p\\ 3d^2t^4D)4s + 3d^2t^3P)4p\\ 3d^2t^4D)4s + 3d^2t^3P)4p\\ 3d^2t^4P)4s + 3d^2t^3P)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228 228
$\begin{array}{c} 700\\ 250\\ 200\\ 600\\ 109 \end{array}$	1276.876 1277.077 1277.316 1278.291 1279.129	$\begin{array}{c} 264.1183+342.4344\\ 281.4770+359.7813\\ 270.6726+348.9621\\ 263.1359+341.3653\\ 281.2178+359.3959 \end{array}$	$\begin{array}{l} 3d^2({}^{1}F)4s = 3d^2({}^{1}F)4p\\ 3d^2({}^{1}P)4s = 3d^2({}^{1}P)4p\\ 3d^2({}^{1}F)4s = 3d^2({}^{1}F)4p\\ 3d^2({}^{1}F)4s = 3d^2({}^{1}F)4p\\ 3d^2({}^{1}F)4s = 3d^2({}^{1}P)4p\\ 3d^2({}^{1}D)4s = 3d^2({}^{1}P)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
509 200 150 709 209	1282.452 1283.388 1283.998 1285.366 1286.992	$\begin{array}{c} 262.3684 + 340.3440\\ 281.4770 + 359.3959\\ 281.2178 + 359.6993\\ 263.1359 + 340.9350\\ 263.1359 + 340.9350\\ 282.9519 + 360.7071 \end{array}$	3d ² (⁴ P)4s - 3d ² (⁴ P)4p 3d ² (⁴ P)4s - 3d ² (⁴ P)4p 3d ² (⁴ D)4s - 3d ² (⁴ P)4p 3d ² (⁴ P)4s - 3d ² (⁴ P)4p 3d ² (⁴ P)4s - 3d ² (⁴ P)4p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
$200 \\ 300 \\ 200 \\ 200 \\ 100 \\ 100$	1286.235 1287.030 1288.294 1291.436 1292.638	$\begin{array}{c} 282.0350+359.7813\\ 261.8414+339.5398\\ 281.4770+359.0993\\ 280.9015+358.3346\\ 282.0350+359.3959\end{array}$	$3d^2(^1P)4s - 3d^2(^1P)4p$ $3d^2(^1P)4s - 3d^2(^1P)4p$ $3d^2(^1P)4s - 3d^2(^1P)4p$ $3d^2(^1D)4s - 3d^2(^1D)4p$ $3d^2(^1P)4s - 3d^2(^1P)4p$	$\begin{array}{c} h^4P + v^4D^* & \frac{3}{2} + \frac{3}{2} \\ h^4F + z^4F^* & \frac{3}{2} + \frac{3}{2} \\ h^4P + v^4P^* & \frac{3}{2} + \frac{3}{2} \\ h^2P + v^2P^* & \frac{3}{2} + \frac{3}{2} \\ h^4P + v^4D^* & \frac{3}{2} + \frac{3}{2} \end{array}$	228 228 228 228 228 228
600 -400 -300 -300 -600	1294.545 1295.201 1295.813 1296.738 1296.871	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^2(^1F)4s + 3d^2(^2F)4p$ $3d^2(^1F)4s + 3d^2(^3F)4p$ $3d^2(^1F)4s + 3d^2(^3F)4p$ $3d^2(^1D)4s + 3d^2(^1D)4p$ $3d^2(^1F)4s + 3d^2(^2P)4p$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
$100 \\ 200 \\ 150 \\ 600 \\ 5$	1299.844 1301.172 1301.584 1301.796 1302.646	$\begin{array}{c} 282.9519+359.8840\\ 280.9015+357.7552\\ 282.9519+359.7813\\ 264.1183+340.9350\\ 269.1402+345.9071 \end{array}$	$3d^2(^4P)4s - 3d^2(^4D)4p$ $3d^2(^4D)4s - 3d^2(^4D)4p$ $3d^2(^4P)4s - 3d^2(^4P)4p$ $3d^2(^4P)4s - 3d^2(^3F)4p$ $3d^2(^4P)4s - 3d^2(^3F)4p$	$ \begin{array}{l} b^4P + v^2F^{**} & \frac{3}{2} + \frac{5}{2} \\ c^2D + v^2P^{**} & \frac{3}{2} + \frac{3}{2} \\ b^4P + v^4D^{**} & \frac{3}{2} + \frac{3}{2} \\ b^4F + v^4G^{**} & \frac{3}{2} + \frac{3}{2} \\ b^2F + v^2D^{**} & \frac{3}{2} + \frac{3}{2} \end{array} $	228 228 228 228 228 228 228
$500 \\ 600 \\ 150 \\ 60 \\ 40$	1308.045 1309.911 1310.621 1310.917 1310.986	201.8114 - 338.2504 263.1359 - 339.4770 282.0350 - 358.3346 260.1402 - 345.4226 + 281.4770 - 357.7552	3d ² (⁴ F)4ş - 3d ² (³ F)4p 3d ² (⁴ F)4ş - 3d ² (³ F)4p 3d ² (⁴ P)4ş - 3d ² (³ P)4p 3d ² (⁴ P)4ş - 3d ² (³ P)4p 3d ² (⁴ P)4ş - 3d ² (⁴ D)4p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
20 400 10 68 300	1315.339 1317.736 1320.058 1320.649 1324.283	287.9192 - 363.9457 262.3684 - 338.2564 288.6383 - 364.3929 282.0350 - 357.7552 269.1402 - 344.6526	$3d^2(^3P)4s - 3d^2(^3P)4p$ $3d^2(^3F)4s - 3d^2(^3F)4p$ $3d^2(^3P)4s - 3d^2(^3P)4p$ $3d^2(^3P)4s - 3d^2(^3P)4p$ $3d^2(^3F)4s - 3d^2(^3F)4p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
70 500 300 250 250	1326.988 1329.172 1330.968 1331.184 1336.843	$\begin{array}{c} 264.1183 + 339.4770 \\ 270.6726 + 345.9071 \\ 269.1402 + 344.2733 \\ 263.1359 + 338.2564 \\ 282.9519 + 357.7552 \end{array}$	$3d^2t^2F)4s - 3d^2t^3F)4p$ $3d^2t^3F)4s - 3d^2t^3F)4p$ $3d^2t^3F)4s - 3d^2t^3F)4p$ $3d^2t^3F)4s - 3d^2t^3F)4p$ $3d^2t^3F)4s - 3d^2t^3F)4p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
250 400 100 150 100	1337.695 1337.788 1342.859 1343.380 1348.074	280.9015 - 355.6571 270.6726 - 345.4226 269.1402 - 343.6082 281.2178 - 355.6571 281.4770 - 355.6571	3d ² (¹ D)4s - 3d ² (² P)4p 3d ² (¹ F)4s - 3d ² (² F)4p 3d ² (¹ F)4s - 3d ² (² F)4p 3d ² (¹ D)4s - 3d ² (² P)4p 3d ² (¹ P)4s - 3d ² (² P)4p	$\begin{array}{cccc} c^2 D & z^4 S^{\circ} & \left[& \frac{5}{2} + \frac{3}{4} \\ b^2 F & z^4 D^{\circ} & \frac{1}{2} + \frac{5}{2} \\ b^2 F & z^2 F^{\circ} & \frac{3}{2} + \frac{3}{2} \\ c^2 D & z^4 S^{\circ} & \frac{3}{2} + \frac{3}{2} \\ b^4 P & z^4 S^{\circ} & \frac{1}{2} + \frac{3}{2} \end{array}$	228 228 228 228 228 228 228
300 40 20 150 80	1350.072 1352.000 1352.478 1358.280 1358.679	269.1402 - 343.2109 288.6383 - 362.6029 287.9192 - 361.8582 282.0350 - 355.6571 270.6726 - 344.2733	$\begin{array}{l} 3d^2(^3F)4s + 3d^2(^3F)4p \\ 3d^2(^3P)4s + 3d^2(^1D)4p \\ 3d^2(^3P)4s + 3d^2(^1D)4p \\ 3d^2(^3P)4s + 3d^2(^3P)4p \\ 3d^2(^3F)4s + 3d^2(^3F)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228
600 500 100 300 300	1361.819 1370.728 1371.056 1371.073 1374.627	269.1402 - 342.5715 292.3130 - 365.2666 292.3301 - 365.2666 270.6726 - 343.6082 292.3301 - 365.0770	$\begin{array}{l} 3d^2({}^3F)4s - 3d^2({}^3F)4p \\ 3d^2({}^1G)4s - 3d^2({}^1G)4p \\ 3d^2({}^1G)4s - 3d^2({}^1G)4p \\ 3d^2({}^3F)4s - 3d^2({}^3F)4p \\ 3d^2({}^4F)4s - 3d^2({}^4F)4p \\ 3d^2({}^1G)4s - 3d^2({}^4G)4p \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228 228
$ \begin{array}{r} 100 \\ 60 \\ 60 \\ 20 \end{array} $	1375.412 1387.95 1390.840 1391.548 1393.499	$\begin{array}{r} 282.9519 + 355.6571 \\ 0.0000 + 72.0489 \\ 270.6726 + 342.5715 \\ 287.9192 + 359.7813 \\ 270.6726 + 342.4344 \end{array}$	$\begin{array}{l} 3d^2({}^3P)4s = 3d^2({}^3P)4p \\ 3d^3 = 3d^3 \\ 3d^2({}^3P)4w = 3d^2({}^3P)4p \\ 3d^2({}^3P)4w = 3d^2({}^3P)4p \\ 3d^2({}^3P)4w = 3d^2({}^3F)4w \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 228 228 228 228 228 228

D-87	
------	--

Multiplet	Rel. Int.	λ.,, (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms] - J	Notes	References
		1394 55	0.0000 - 71.7076	$3d^3 - 3d^3$	ga ⁴ f - b ² D	à . à	F.P	223
	1	1397.87	.5113 - 72.0489	$3d^3 - 3d^3$	$ga^{A}F \cdot b^{2}D$	ş.ş	F.P	228
	50	1404.420	269.1402 340.3440	3d2(°F)45 - 3d2(°F)4p	b ² F · z ⁴ F	j.j.		228
		1404.57	.5113 - 71.7076	341 - 343	$za^{1}F + b^{2}D$	1 . j	F,P	228
	ĺ	1411.22	1.1883 - 72.0489	$3d^3 - 3d^3$	$ga^4F = b^2D$	2 - 2	F,P	228
	20	1413.281	283.6383 - 359.3959	3d ² (³ f')4s - 3d ² (³ P)4p	$b^{2}P \cdot y^{*}D^{*}$	1 - 1		228
	40	1414.578	270.6726 - 341.3653	3d ² (F)4s - 3d ² (F)4p	$\mathbf{b}^{2}\mathbf{F} = \mathbf{z}^{*}\mathbf{F}^{*}$	ž - ž		228
	5	1416.678	281.2178 - 351.8058	3d ² (¹ D)4s - 3d ² (¹ P)4p	$c^2 D - z^2 S^*$	$\frac{3}{2} - \frac{1}{2}$		228
		1418.05	1.1883 - 71.7076	$3d^3 - 3d^3$	$ga^{4}F - h^{2}U$	÷- 2	F.P	228
	60	1433.272	282.0350 - 351.8058	$3d^{2}(^{3}P)4_{5} + 3d^{2}(^{3}P)4_{P}$	b'P - z ² S*	₹ - ±	:	228
		1434.58	2.0006 - 71.7076	$3d^{3} - 3d^{3}$	$ga^4F + b^2O$	§ - ž	F,P	228
	150	1565.263	287.9192 - 351.8058	3d²(³ F)4s - 3d²(³ F)4p	b ² P - z ² S"	$\frac{1}{2} - \frac{1}{2}$		228
	200	1583.089	288.6383 - 351.8058	3d ² (³ P)4s - 3d ² (³ P)4p	$b^2P = z^2S^2$	2 - 1		228
	1	1732.958	292.3130 - 350.0178	3d ² (¹ G)4s - 3d ² (¹ F)4p	$b^2G - z^2G^0$	ž - ž	P	375
	1	1733.472	292.3301 - 350 0178	3d ² (¹ G)4s - 3d ² (² F)4p	$b^2G = x^2G^2$	2 - 2	P	375
		1746.151	288.6383 - 345.9071	3d ² (³ P)4s - 3d ² (³ F)4p	$b^2P \cdot z^2D^0$	2.1	P	375
	ł	1762.630	287.9192 - 344.6526	3d ² (³ P)4s - 3d ² (³ F)4p	$b^2P \cdot z^2D^{\prime\prime}$	1 - 1	P	375
		1765.253	292.3130 348.9621	3d ² ('G)4s 3d ² ('F)4p	b ² G x ² G"	2 - 1	P	375
		1765.786	292.3301 - 348.9621	3d ² (¹ G)4s - 3d ² (³ F)4p	$b^2G - z^2G^n$	2 - 2	P	375
		1875.80	18.7383 - 72.0489	$3d^3 - 3u^3$	$a^{4}P \cdot b^{2}D$	2-2	F,P	228
		1882.99	18.9420 - 72.0489	3d ³ - 3d ³	a ⁴ P - b ² D	3 - 3	F,P	2.28
	1 1	1887.89	18.7383 - 71.7076	3d3 - 3d3	a ⁴ P - b ² D	1 - 1	F,P	228
	1	1895.17	18.9420 - 71.7076	3d ³ - 3d ³	a ⁴ P - b ² D	3 - 1	F,P	228
	1 1	1907.01	19.6108 - 72.0489	$3d^3 - 3d^3$	a ⁴ P - b ² D −	5.1	F.P	228
		1919.50	19.6108 - 71.7076	$3d^3 - 3d^3$	$a^4P - b^2D$	2 - 2	F,P	228
	ļ	1944.30	20.6164 - 72.0489	$3d^{3} + 3d^{3}$	a2G - 620	3.3	F.P	228
	1	1949.500	292.3130 - 343.6082	3d2("Gyls - 3d2("F)4p	b ² G · z ² F"	2 - 2	P	373
	1	1957.28	20.6164 71.7076	$3d^3 - 3d^3$	a ² G · b ³ D	2.1	F.P.	228
		1984.42	21.3159 - 71.7075	3d ³ - 3d ³	$a^2G - b^2D$	2.5	F,P	228
		1990.390	292.3301 - 342.5715	3d ² (¹ G)4s - 3d ² (² F)4p	b ² G - z ² k [∞]	2.9	P	375

IRON VII (Fe^{+ 6}), Z == 26

Ground State $1s^22s^22p^63s^23p^63d^2$ (³F₂) (20 electrons)

Ionization Potential 1 008 000 cm⁻¹; 125.0 eV

	104.838 104.972 106.285 106.418	1.0515 - 954.904 2.3315 - 954.966	3p ⁶ 3d ² - 3p ⁶ 3d19f 3x ⁶ 3d ² - 3x ⁶ 3d10f	g ³ F • ³ G"	3 - 4		1103
	104.972 106.285 106.418	2.3315 - 954.966	3,63,12, 3,63,1106	P			1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1	106.285 106.418	10515 041010		¥* • * G*	4 - 5		1103
i i	106.418	1.0.010 - 99(1.910	3p ⁶ 3d ² - 3p ⁶ 3d9f	2°F - 3G	3 - 4		1103
î j		2.3315 . 942.022	30°3d2 - 3163d9f	$^{3}F - ^{3}G$	4 - 5		1103
•	107.947	28.9273 - 955.307	3p ⁶ 3d ² - 3p ⁶ 3d10f	[™] G•¹H	4.5		1103
10	108.381	1.0515 - 923.716	3p ⁶ 3d ² - 3p ⁶ 3d8f	r³F ³ G∵	3.4		1103
i i	108.495	0.0 • 921.694	3p ⁶ 3d ² · 3p ⁶ 3d8f	g'F - 'F	2.3		1103
25	108,519	2.3315 - 923.838	3p ⁶ 3d ² - 3p ⁶ 3d8f	2 ³ F - ³ C	4.5		1103
4	108.533	2.3315 - 923.716	3p ⁶ 3d ² - 3p ⁶ 3d8f	g'F - 'G"	4 - 4		1103
10	108.584	2.3315 - 923 282	3p°3d² - 3p^3d8f	g'F 'F'	4 - 4	1	1103
4	108.620	1.0515 - 921.694	3p ⁶ 3d ² - 3p ⁶ 3d8f	2 ³ F - ³ F ²	3.3		1103
4	109.463	28.9273 - 942.477	3p ⁶ 3d ² · 3p ⁶ 3d9f	²¹ G • ¹ H ^o	4 - 5		1103
i L	109.742	17.4755 • 928.684	$3p^{6}3d^{2} - 3p^{5}(3d^{2}4e(^{4}P))$	¹ D - ³ P [*]	2.2		1103
i !	110,103	20.4301 - 928.684	$3p^{2}3d^{2} - 3p^{5}(3d^{2}4;(^{4}P))$	³ P - ³ P	1.2		1103
ī	110.205	21.2786 - 928.684	3p ⁶ 3d ² - 3p ⁵ (3d ² 4s(⁴ P))	³ P - ³ P*	2 - 2		1103
1	110.593	17.4755 • 921.694	$3p^{6}3d^{2} - 3p^{6}3d8f$	'D - "F"	2.3		1103
25	111.604	1.0515 897.077	3n°3d - 3n°3d7f	g ³ F - ³ G"	3.4		1103
10	111.638	0.0 - 895.744	3p ⁶ 3d ² - 3p ⁶ 3d7f	2°F - "G"	2.3		1103
i	111.663	28.9273 - 924.479	3p ⁶ 3d ² - 3p ⁶ 3d8f	"G - ЧГ	4.5		1103
i	111.691	1.0515 896.382	3p ⁶ 3d ² - 3p ⁶ 3d7f	$g^3F - {}^3F^{\circ}$	3 - 4		1103
	10 1 25 4 10 4 4 1 1 25 10 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Multiplet Rel	l. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	40 4 1 10 4	111.742 111.767 111.812 111.849 112.012	$\begin{array}{c} 2.3315 & + 897.254 \\ 1.0515 & + 895.744 \\ 28.9273 & + 923.282 \\ 2.3315 & + 896.382 \\ 28.9273 & + 921.694 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d7f 3p ⁶ 3d ² - 3p ⁶ 3d7f 3p ⁶ 3d ² - 3p ⁶ 3d8f 3p ⁶ 3d ² - 3p ⁶ 3d8f 3p ⁶ 3d ² - 3p ⁶ 3d8f	$\begin{array}{c} g^{3}F + {}^{3}G^{\circ} \\ g^{3}F + {}^{3}G^{\circ} \\ {}^{1}G - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \end{array}$	$ \begin{array}{r} 4 - 5 \\ 3 - 3 \\ 4 - 4 \\ 4 - 4 \\ 4 - 3 \end{array} $	1103 1103 1103 1103 1103 1103
	$ \begin{array}{c} 4 \\ 10 \\ 25 \\ 4 \\ 1 \end{array} $	112.030 113.861 113.964 114.356 114.490	$\begin{array}{r} 2.3315 & 894.944 \\ 17.4755 & 895.744 \\ 17.4755 & 894.944 \\ 21.2786 & 895.744 \\ 21.2786 & 895.744 \\ 21.2786 & 394.718 \end{array}$	3p°3d ² - 3p°3d7f 3p°3d ² - 3p°3d7f 3p°3d ² - 3p°3d7f 3p°3d ² - 3p°3d7f 3p°3d ² - 3p°3d7f 3p°3d ² - 3p°3d7f	$\begin{array}{c} g^{3}F - {}^{3}F^{\circ} \\ {}^{1}D - {}^{3}G^{\circ} \\ {}^{1}D - {}^{3}F^{\circ} \\ {}^{3}P - {}^{3}G^{\circ} \\ {}^{3}P - {}^{3}F^{\circ} \end{array}$	$ \begin{array}{r} 4 - 3 \\ 2 - 3 \\ 2 - 3 \\ 2 - 3 \\ 2 - 2 \\ \end{array} $	1103 1103 1103 1103 1103 1103
	$40 \\ 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	115.033 115.164 115.281 115.472 116.715	$\begin{array}{c} 28.9273 & 898.243 \\ 28.9273 & 897.254 \\ 28.9273 & 896.382 \\ 28.9273 & 896.382 \\ 28.9273 & 894.944 \\ 0.0 & 856.797 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d7f 3p ⁶ 3d ² - 3p ⁶ 3d7f 3p ⁶ 3d ² - 3p ⁶ 3d7f 3p ⁶ 3d ² - 3p ⁶ 3d7f 3p ⁶ 3d ² - 3p ⁶ 3d6f		4 - 5 4 - 5 4 - 4 4 - 3 2 - 3	1103 1103 1103 1103 1103 1103
	25 1 4 4	116.809 116.836 116.853 116.882 116.951	$\begin{array}{c} 0.0 & 856.109 \\ 0.0 & 855.903 \\ 1.0515 & 856.811 \\ 2.3315 & 857.881 \\ 1.0515 & 856.109 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f	$\begin{array}{l} g^{3}F - {}^{3}D^{\circ} \\ g^{3}F - {}^{3}D^{\circ} \\ g^{3}F - {}^{3}P^{\circ} \\ g^{3}F - {}^{1}H^{\circ} \\ g^{3}F - {}^{1}D^{\circ} \end{array}$	2 - 3 2 - 2 3 - 2 4 - 5 3 - 3	1103 1103 1103 1103 1103 1103
	$ \begin{array}{c} 40 \\ 40 \\ 1 \\ 60 \\ 25 \end{array} $	116.970 116.993 117.034 117.104 117.135	$\begin{array}{c} 1.0515 - 855.969 \\ 0.0 - 854.760 \\ 2.3315 - 856.797 \\ 2.3315 - 856.260 \\ 1.0515 - 854.767 \end{array}$	3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f	$\begin{array}{c} g^{3}F - {}^{3}G^{\alpha} \\ g^{3}F - {}^{3}G^{\alpha} \\ g^{3}F - {}^{1}F^{\alpha} \\ g^{3}F - {}^{3}G^{\alpha} \\ g^{3}F - {}^{3}G^{\alpha} \\ g^{3}F - {}^{3}F^{\alpha} \end{array}$	3 - 4 2 - 3 4 - 3 4 - 5 3 - 4	1103 1103 1103 1103 1103 1103
	10 10 10 10 10	117.144 117.174 117.281 117.310 117.335	$\begin{array}{c} 2.3315 & 855.969 \\ 0.0 & 853.433 \\ 1.0515 & 853.697 \\ 2.3315 & 854.767 \\ 1.0515 & 853.307 \end{array}$	3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f 3p ⁶ 3d ² · 3p ⁶ 3d6f	g ³ F - ³ G ^o g ³ F - ³ F ^o g ³ F - ³ F ^o g ³ F - ³ F ^o g ³ F - ¹ G ^o	4 - 4 2 - 2 3 - 3 4 - 4 3 - 4	1103 1103 1103 1103 1103 1103
	1 4 1 25	117.432 117.459 117.512 117.610 119.144	1.0515 - 852.601 2.3315 - 853.697 2.3315 - 853.307 2.3315 - 852.601 17.4755 - 856.797	3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f	$\begin{array}{c} g^{3}F \cdot {}^{3}H^{\circ} \\ g^{3}F \cdot {}^{3}F^{\circ} \\ g^{3}F \cdot {}^{1}G^{\circ} \\ g^{3}F \cdot {}^{3}H^{\circ} \\ g^{3}F \cdot {}^{3}H^{\circ} \\ \end{array}$	3 - 4 4 - 3 4 - 4 4 - 4 2 - 3	1103 1103 1103 1103 1103 1103
	$25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	119.240 119.273 119.422 119.435 119.482	$\begin{array}{c} 17.4755 & 856.109 \\ 17.4755 & 855.903 \\ 17.4755 & 854.838 \\ 17.4755 & 854.838 \\ 17.4755 & 854.760 \\ 20.0403 & 856.975 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f	${}^{1}D \cdot {}^{3}D^{\circ}$ ${}^{1}D \cdot {}^{3}D^{\circ}$ ${}^{1}D \cdot {}^{1}D^{\circ}$ ${}^{1}D \cdot {}^{3}G^{\circ}$ ${}^{3}P \cdot {}^{3}P^{\circ}$	$ \begin{array}{r} 2 & - & 3 \\ 2 & - & 2 \\ 2 & - & 2 \\ 2 & - & 2 \\ 2 & - & 3 \\ 0 & - & 1 \end{array} $	1103 1103 1103 1103 1103 1103
	4 4 1 1 4	119.524 119.541 119.561 119.587 119.623	$\begin{array}{c} 20.4301 & 857.082 \\ 20.4301 & 856.975 \\ 20.4301 & 856.811 \\ 17.4755 & 853.697 \\ 17.4755 & 853.433 \end{array}$	3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f	${}^{3}P - {}^{3}P''$ ${}^{3}P - {}^{3}P''$ ${}^{3}P - {}^{3}P''$ ${}^{1}D - {}^{3}F''$ ${}^{1}D - {}^{3}F''$	$ \begin{array}{r} 1 \cdot 0 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ 2 \cdot 3 \\ 2 \cdot 2 \end{array} $	1103 1103 1103 1103 1103 1103
1	$ \begin{array}{r} 60 \\ 4 \\ 25 \\ 25 \\ 4 \end{array} $	119.686 119.692 119.715 119.785 119.813	$\begin{array}{c} 21.2786 - 856.811 \\ 20.4301 - 855.903 \\ 20.0403 - 855.346 \\ 21.2786 - 856.109 \\ 21.2786 - 855.903 \end{array}$	3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f 3p°3d ² - 3p°3d6f	${}^{3}P \cdot {}^{3}P^{\circ}$ ${}^{3}P \cdot {}^{3}D^{\circ}$ ${}^{3}P \cdot {}^{3}D^{\circ}$ ${}^{3}P \cdot {}^{3}D^{\circ}$	$ \begin{array}{r} 2 & -2 \\ 1 & -2 \\ 0 & -1 \\ 2 & -3 \\ 2 & -2 \end{array} $	1103 1103 1103 1103 1103 1103
	$25 \\ 1 \\ 1 \\ 4 \\ 4 \\ 4$	119.846 119.896 119.978 120.030 120.131	$\begin{array}{c} 20.4301 + 854.838 \\ 21.2786 + 855.346 \\ 21.2786 + 854.760 \\ 0.0 + 833.128 \\ 21.2786 + 853.697 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ² (3d ² 4s(² G)) 3p ⁶ 3d ² - 3p ⁶ 3d6f	${}^{3}P - {}^{3}D^{\circ}$ ${}^{3}P - {}^{3}D^{\circ}$ ${}^{3}P - {}^{3}G^{\circ}$ ${}^{3}F - {}^{3}G^{\circ}$ ${}^{3}P - {}^{3}F^{\circ}$	$ \begin{array}{c} 1 & -2 \\ 2 & -1 \\ 2 & -3 \\ 2 & -3 \\ 2 & -3 \\ 2 & -3 \end{array} $	$ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 $
]	4 10 25 120 1	120.181 120.214 120.401 120.636 120.789	$\begin{array}{c} 1.0515 + 833.128 \\ 1.0515 + 832.893 \\ 2.3315 + 832.889 \\ 28.9273 + 857.881 \\ 28.9273 + 856.797 \end{array}$	$\begin{array}{l} 3p^{6}3d^{2}\cdot3p^{5}(3d^{2}4s(^{2}C))\\ 3p^{6}3d^{2}\cdot3p^{5}(3d^{2}4s(^{2}C))\\ 3p^{6}3d^{2}\cdot3p^{5}(3d^{2}4s(^{2}C))\\ 3p^{6}3d^{2}\cdot3p^{6}3d6f\\ 3p^{6}3d^{2}\cdot3p^{6}3d6f \end{array}$	$ \begin{array}{c} g^{3}F & - \ ^{3}G^{*} \\ g^{3}F & - \ ^{3}G^{*} \\ g^{3}F & - \ ^{3}G^{*} \\ ^{1}G & - \ ^{1}H^{*} \\ ^{1}G & - \ ^{1}F^{*} \end{array} $	3 - 3 3 - 4 4 - 5 4 - 5 4 - 3	$ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 $
	$ \begin{array}{c} 4 \\ 1 \\ 25 \\ 4 \\ 25 \end{array} $	120.872 120.915 121.090 121.183 121.304	28.9273 - 856.260 28.9273 - 855.969 28.9273 - 854.767 2.3315 - 827.533 28.9273 - 853.307	3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ 3d6f 3p ⁶ 3d ² - 3p ⁶ (3d ² 4s(⁴ P)) 3p ⁶ 3d ² - 3p ⁶ 3d6f	${}^{1}G - {}^{3}G^{\circ}$ ${}^{1}G - {}^{3}G^{\circ}$ ${}^{1}G - {}^{3}F^{\circ}$ ${}^{2}G - {}^{3}F^{\circ}$ ${}^{3}F - {}^{3}D^{\circ}$ ${}^{2}G - {}^{1}G^{\circ}$	$ \begin{array}{r} 4 \cdot 5 \\ 4 \cdot 4 \\ 4 \cdot 4 \\ 4 \cdot 3 \\ 4 \cdot 4 \end{array} $	$ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 $

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Γ.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ltiplet R	evels (in 10 ³ cm ⁻¹) Configurations	s Terms	J - J Notes	References
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 3d^24s(^4P)) & g^3F & {}^3D^\circ \\ id6f & iG & {}^3H^\circ \\ 3d^24s(^4P)) & g^3F & {}^3D^\circ \\ 3d^24s(^4P)) & g^3F & {}^3D^\circ \\ 3d^24s(^2P)) & iD & {}^3S^\circ \end{array}$	$ \begin{array}{r} 2 \cdot 2 \\ 4 \cdot 4 \\ 3 \cdot 2 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \end{array} $	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{r} 0 & -1 \\ 2 & -1 \\ 1 & -1 \\ 2 & -1 \\ 3 & -2 \end{array} $	1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 · 2 4 · 3 2 · 1 2 · 2 2 · 3	1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{ccccccc} 21.2786 & 827.533 & 3p^63d^2 & 3p^5(32) \\ 20.0403 & 826.106 & 3p^63d^2 & 3p^6(32) \\ 20.4301 & 826.106 & 3p^63d^2 & 3p^6(32) \\ 21.2786 & 826.106 & 3p^63d^2 & 3p^6(32) \\ 28.9273 & 832.889 & 3p^63d^2 & 3p^6(32) \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 2 & - & 3 \\ 0 & - & 1 \\ 1 & - & 1 \\ 2 & - & 1 \\ 4 & - & 5 \end{array}$	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{r} 1 & -2 \\ 4 & -5 \\ 2 & -2 \\ 0 & -1 \\ 1 & -1 \end{array} $	1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{ccccccc} 1.0515 & 802.462 & 3p^6 3d^2 & 3p^5 (3) \\ 2.3315 & 802.462 & 3p^6 3d^2 & 3p^5 (3) \\ 2.3315 & 800.633 & 3p^6 3d^2 & 3p^5 (3) \\ 0.0 & 797.257 & 3p^6 3d^2 & 3p^5 (3) \\ 20.0403 & 817.195 & 3p^6 3d^2 & 3p^5 (3) \\ \end{array}$	$\begin{array}{lll} 3d^24s(^2F)) & g^3F - {}^1G^\circ \\ 3d^24s(^2F)) & g^3F - {}^1G^\circ \\ 3d^24s(^4F)) & g^3F - {}^3G^\circ \\ 3d^24s(^2D)) & g^3F - {}^3F^\circ \\ 3d^24s(^2P)) & {}^3P - {}^3D^\circ \end{array}$	3 - 4 4 - 4 4 - 5 2 - 3 0 - 1	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccc} 20.4301 & - 817.195 & 3p^63d^2 & - 3p^8(3) \\ 1.0515 & - 797.712 & 3p^93d^2 & - 3p^8(3) \\ 17.4755 & - 813.877 & 3p^93d^2 & - 3p^8(3) \\ .0515 & - 797.257 & 3p^93d^2 & - 3p^8(3) \\ 21.2786 & - 817.195 & 3p^93d^2 & - 3p^8(3) \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{r} 1 & -1 \\ 3 & -4 \\ 2 & -2 \\ 3 & -3 \\ 2 & -1 \end{array} $	1103 1103 1103 1103 1103 1103
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & g^3F & {}^3F^\circ \\ & g^3F & {}^3F^\circ \\ & bd^24s(^2P)) & f & 0 \\ & bd^24s(^4F)) & g^3F & {}^3G^\circ \\ & bd^24s(^2P)) & {}^3P & {}^3D^\circ \\ & bd^24s(^4F)) & g^3F & {}^3G^\circ \end{array}$	4 - 3 2 - 3 2 - 3 1 - 2 3 - 3	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 3d^24s(^2P)) & ^{3}P - ^{3}D^{\circ} \\ 3d^24s(^2\Gamma)) & ^{3}P - ^{3}D^{\circ} \\ d^24s(^2D)) & ^{1}D - ^{1}F^{\circ} \\ d5f & g^{3}F - ^{1}F^{\circ} \\ d5f & g^{3}F - ^{3}P^{\circ} \end{array}$	2 - 2 2 - 3 2 - 3 2 - 3 2 - 3 2 - 2	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} d5f & & & & & & & & \\ d5f & & & & & & & \\ d5f & & & & & & & \\ d5f & & & & & & & & \\ d5f & & & & & & & & \\ d5f & & & & & & & & & \\ d5f & & & & & & & & & \\ & & & & & & & & & $	4 - 5 2 - 3 3 - 3 2 - 2 2 - 1	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 - 3 3 - 2 3 - 4 2 - 3 4 - 3	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcccccc} {\rm d} {\rm 5f} & {\rm g}^{3} {\rm F} - {}^{3} {\rm C}^{\circ} \\ {\rm d} {\rm 5f} & {\rm g}^{3} {\rm F} - {}^{3} {\rm C}^{\circ} \\ {\rm d} {\rm 5f} & {\rm g}^{3} {\rm F} - {}^{3} {\rm C}^{\circ} \\ {\rm d} {\rm 5f} & {\rm g}^{3} {\rm F} - {}^{3} {\rm F}^{\circ} \\ {\rm d} {\rm 5f} & {\rm g}^{3} {\rm F} - {}^{3} {\rm F}^{\circ} \\ {\rm d} {\rm 5f} & {\rm g}^{3} {\rm F} - {}^{3} {\rm F}^{\circ} \end{array}$	4 - 5 3 - 3 4 - 4 2 - 3 3 - 4	1103 1103 1103 1103 1103 1103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{ccccccc} 1.0515 & .785.012 & & & & & & & & & & & & & & & & & & &$	$\begin{array}{cccc} d5f & g^{3}F \cdot {}^{3}F^{\circ} \\ d5f & g^{3}F \cdot {}^{3}F^{\circ} \\ d5f & g^{3}F \cdot {}^{3}F^{\circ} \\ d5f & g^{3}F \cdot {}^{3}F^{\circ} \\ d5f & g^{3}F \cdot {}^{3}H^{\circ} \\ d^{2}4s({}^{2}F)) & g^{3}F \cdot {}^{3}F^{\circ} \end{array}$	3 - 3 3 - 2 4 - 4 3 - 4 2 - 3	1103 1103 1103 1103 1103 1103

pares.

e de la com

D		0	\cap	
D	-	7	U	

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Not	es References
		127.763 127.852 127.867 128.147 128.240	2.3315 - 785.012 2.3315 - 784.477 1.0515 - 783.119 2.3315 - 782.690 17.4755 - 797.257	$\begin{array}{c} 3p^{6}3d^{2} \cdot 3p^{6}3d5f\\ 3p^{6}3d^{2} \cdot 3p^{6}3d5f\\ 3p^{6}3d^{2} \cdot 3p^{5}(3d^{2}4s(^{2}F))\\ 3p^{6}3d^{2} \cdot 3p^{5}(3d^{2}4s(^{2}F))\\ 3p^{6}3d^{2} \cdot 3p^{5}(3d^{2}4s(^{2}F))\\ 3p^{6}3d^{2} \cdot 3p^{5}(3d^{2}4s(^{2}D))\end{array}$	$\begin{array}{c} g^{3}F & - \ ^{3}F^{\circ} \\ g^{3}F & - \ ^{3}H^{\circ} \\ g^{3}F & - \ ^{3}F^{\circ} \\ g^{3}F & - \ ^{3}F^{\circ} \\ g^{3}F & - \ ^{3}F^{\circ} \\ 1 D & - \ ^{3}F^{\circ} \end{array}$	$ \begin{array}{r} 4 - 3 \\ 4 - 4 \\ 3 - 3 \\ 4 - 4 \\ 2 - 3 \end{array} $	1103 1103 1103 1103 1103
	25 1 4 1 40	128.368 128.417 128.449 128.538 128.638	$\begin{array}{c} 0.0 & .779.009 \\ 28.9273 & .807.627 \\ 1.0515 & .779.575 \\ 1.0515 & .779.009 \\ 1.0515 & .778.420 \end{array}$	$\begin{array}{l} 3p^63d^2 & 3p^5(3d^24s(^2D))\\ 3p^63d^2 & 3p^5(3d^24s(^2D))\\ 3p^63d^2 & 3p^5(3d^24s(^2G))\\ 3p^63d^2 & 3p^5(3d^24s(^2D))\\ 3p^63d^2 & 3p^5(3d^24s(^2D))\\ 3p^63d^2 & 3p^5(3d^24s(^2G)) \end{array}$	$\begin{array}{c} g_{1}^{3}F & - \ ^{1}D^{o} \\ {}^{1}G & - \ ^{1}F^{o} \\ g_{3}^{3}F & - \ ^{3}F^{o} \\ g_{3}^{3}F & - \ ^{1}D^{o} \\ g_{3}^{3}F & - \ ^{3}F^{o} \end{array}$	2 - 2 4 - 3 3 - 4 3 - 2 3 - 3	1103 1103 1103 1103 1103
	$40 \\ 120 \\ 90 \\ 10 \\ 4$	128.659 128.682 128.753 128.852 129.278	$\begin{array}{c} 2.3315 & .779.575 \\ 28.9273 & .806.033 \\ 17.4755 & .794.149 \\ 2.3315 & .778.420 \\ 28.9273 & .802.462 \end{array}$	$\begin{array}{l} 3p^63d^2 & 3p^5(3d^24s(^2G))\\ 3p^93d^2 & 3p^5(3d^24s(^2G))\\ 3p^63d^2 & 3p^5(3d^24s(^4F))\\ 3p^63d^2 & 3p^5(3d^24s(^4F))\\ 3p^93d^2 & 3p^5(3d^24s(^2G))\\ 3p^93d^2 & 3p^5(3d^24s(^2F)) \end{array}$	$\begin{array}{c} g_{1}^{3}F - {}^{3}F^{o} \\ {}^{1}G - {}^{1}H^{o} \\ {}^{1}D - {}^{3}G^{o} \\ g_{1}^{3}F - {}^{3}F^{o} \\ {}^{1}G - {}^{1}G^{o} \end{array}$	$ \begin{array}{r} 4 - 4 \\ 4 - 5 \\ 2 - 3 \\ 4 - 3 \\ 4 - 4 \end{array} $	1103 1103 1103 1103 1103 1103
	90 90 60 10 1	$129.330 \\ 129.579 \\ 129.730 \\ 129.777 \\ 129.789$	17.4755 - 790.708 17.4755 - 789.215 17.4755 - 788.303 17.4755 - 788.030 17.4755 - 787.945	$3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$	${}^{1}D - {}^{1}P^{o}$ ${}^{1}D - {}^{1}F^{o}$ ${}^{1}D - {}^{3}D^{o}$ ${}^{1}D - {}^{3}D^{o}$ ${}^{1}D - {}^{3}D^{o}$	$ \begin{array}{r} 2 & -1 \\ 2 & -3 \\ 2 & -3 \\ 2 & -2 \\ 2 & -1 \end{array} $	1103 1103 1103 1103 1103 1103
	$1 \\ 120 \\ 150 \\ 10 \\ 40$	129.822 129.872 129.980 129.996 130.017	$\begin{array}{c} 20.4301 & .790.708 \\ 0.0 & .769.991 \\ 17.4755 & .786.830 \\ 17.4755 & .786.732 \\ 20.0403 & .789.172 \end{array}$	$3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{5}(3d^{2}4s(^{2}F))$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{6}3d5f$	$\begin{array}{c} {}^{3}P \ , \ {}^{1}P^{o} \\ g_{1}^{3}F \ , \ {}^{3}G^{o} \\ {}^{1}D \ , \ {}^{1}D^{o} \\ {}^{1}D \ , \ {}^{3}G^{o} \\ {}^{3}P \ , \ {}^{3}P^{o} \end{array}$	$ \begin{array}{r} 1 & \cdot & 1 \\ 2 & \cdot & 3 \\ 2 & \cdot & 2 \\ 2 & \cdot & 3 \\ 0 & \cdot & 1 \end{array} $	1103 1103 1103 1103 1103 1103
	$ \begin{array}{r} 40 \\ 25 \\ 60 \\ 60 \\ 250 \end{array} $	$130.050 \\ 130.112 \\ 130.221 \\ 130.226 \\ 130.248$	$\begin{array}{c} 1.0515 & -769.991 \\ 20.4301 & -788.995 \\ 20.0403 & -787.945 \\ 21.2786 & -789.172 \\ 1.0515 & -768.813 \end{array}$	$3p^{6}3d^{2} - 3p^{5}(3d^{2}4s(^{2}F))$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{5}(3d^{2}4s(^{2}F))$	$\begin{array}{c} g_{3}^{3}F + {}^{3}G^{\circ} \\ {}^{3}P + {}^{3}P^{\circ} \\ {}^{3}P + {}^{3}D^{\circ} \\ {}^{3}P + {}^{3}P^{\circ} \\ g_{3}^{3}F + {}^{3}G^{\circ} \end{array}$	3 - 3 1 - 2 0 - 1 2 - 1 3 - 4	1103 1103 1103 1103 1103 1103
	60 40 10 90 10	$\begin{array}{c} 130.257 \\ 130.277 \\ 130.336 \\ 130.374 \\ 130.419 \end{array}$	$\begin{array}{c} 21.2786 & -788.995 \\ 20.4301 & -788.030 \\ 17.4755 & -784.733 \\ 21.2786 & -788.303 \\ 21.2786 & -788.030 \end{array}$	$3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$ $3p^{6}3d^{2}$ - $3p^{6}3d5f$	${}^{3}P - {}^{3}P^{\circ}$ ${}^{3}P - {}^{3}D^{\circ}$ ${}^{1}D - {}^{3}F^{\circ}$ ${}^{3}P - {}^{3}D^{\circ}$ ${}^{3}P - {}^{3}D^{\circ}$	$ \begin{array}{r} 2 & - & 2 \\ 1 & - & 2 \\ 2 & - & 2 \\ 2 & - & 3 \\ 2 & - & 2 \end{array} $	1103 1103 1103 1103 1103
	25 10 1 1 300	$130.467 \\130.481 \\130.608 \\130.623 \\130.779$	$\begin{array}{c} 2.3315 & -768.813 \\ 20.4301 & -786.830 \\ 17.4755 & -783.119 \\ 21.2786 & -786.830 \\ 2.3315 & -766.991 \end{array}$	$\begin{array}{l} 3p^63d^2 & 3p^5(3d^24s(^2F))\\ 3p^63d^2 & 3p^63d5f\\ 3p^63d^2 & 3p^5(3d^24s(^2F))\\ 3p^63d^2 & 3p^63d5f\\ 3p^63d^2 & 3p^5(3d^24s(^2F)) \end{array}$	$\begin{array}{c} g_{3}^{3}F & - \ ^{3}G^{\circ} \\ {}^{3}P & - \ ^{1}D^{\circ} \\ {}^{1}D & - \ ^{3}F^{\circ} \\ {}^{3}P & - \ ^{1}D^{\circ} \\ g_{3}^{3}F & - \ ^{3}G^{\circ} \end{array}$	4 - 4 1 - 2 2 - 3 2 - 2 4 - 5	1103 1103 1103 1103 1103
	4 250 120 25 10	130.838 131.193 131.318 131.531 131.713	$\begin{array}{c} 20.4301 & - \ 784.733 \\ 28.9273 & - \ 791.168 \\ 17.4755 & - \ 779.009 \\ 28.9273 & - \ 789.215 \\ 28.9273 & - \ 788.146 \end{array}$	$3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{5}(3d^{2}4s(^{2}D))$ $3p^{6}3d^{2} - 3p^{6}3d5f$ $3p^{6}3d^{2} - 3p^{6}3d5f$	${}^{3}P - {}^{3}F^{\circ}$ ${}^{1}G - {}^{1}H^{\circ}$ ${}^{1}D - {}^{1}D^{\circ}$ ${}^{1}G - {}^{1}F^{\circ}$ ${}^{1}G - {}^{3}G^{\circ}$	$ \begin{array}{r} 1 & -2 \\ 4 & -5 \\ 2 & -2 \\ 4 & -3 \\ 4 & -5 \\ \end{array} $	1103 1103 1103 1103 1103
	$ \begin{array}{r} 1 \\ 40 \\ 25 \\ 150 \\ 25 \end{array} $	131.782 132.120 132.355 132.407 132.593	28.9273 - 787.737 28.9273 - 785.809 28.9273 - 784.477 28.9273 - 784.174 28.9273 - 783.119	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{1}G - {}^{3}G^{o}$ ${}^{1}G - {}^{3}F^{o}$ ${}^{1}G - {}^{3}H^{o}$ ${}^{1}G - {}^{1}G^{o}$ ${}^{1}G - {}^{3}F^{o}$	$ \begin{array}{r} 4 - 4 \\ 4 - 4 \\ 4 - 4 \\ 4 - 4 \\ 4 - 3 \end{array} $	1103 1103 1103 1103 1103
	10 25 25 25 25 25	132.667 132.792 133.055 133.123 133.165	$\begin{array}{c} 28.9273 & -782.690 \\ 20.4301 & -773.488 \\ 20.0403 & -771.612 \\ 20.4301 & -771.612 \\ 17.4755 & -768.425 \end{array}$	$\begin{array}{l} 3p^63d^2 &- 3p^5(3d^24s(^2F))\\ 3p^63d^2 &- 3p^5(3d^24s(^2P))\\ 3p^63d^2 &- 3p^5(3d^24s(^2P))\\ 3p^63d^2 &- 3p^5(3d^24s(^2P))\\ 3p^63d^2 &- 3p^5(3d^24s(^2P))\\ 3p^63d^2 &- 3p^5(3d^24s(^2P)) \end{array}$	${}^{1}G - {}^{3}F^{\circ}$ ${}^{3}P - {}^{3}P^{\circ}$ ${}^{3}P - {}^{3}P^{\circ}$ ${}^{3}P - {}^{3}P^{\circ}$ ${}^{1}D - {}^{3}P^{\circ}$	$ \begin{array}{r} 4 - 4 \\ 1 - 0 \\ 0 - 1 \\ 1 - 1 \\ 2 - 2 \end{array} $	1103 1103 1103 1103 1103
	$25 \\ 1 \\ 25 \\ 40 \\ 90$	133.274 133.424 133.670 133.691 133.842	$\begin{array}{c} 21.2786 & .771.612 \\ 28.9273 & .778.420 \\ 1.0515 & .749.166 \\ 20.4301 & .768.425 \\ 21.2786 & .768.425 \end{array}$	$\begin{array}{l} 3p^63d^2 & - 3p^5(3d^24s(^2P)) \\ 3p^63d^2 & - 3p^5(3d^24s(^2G)) \\ 3p^63d^2 & - 3p^5(3d^24s(^2F)) \\ 3p^63d^2 & - 3p^5(3d^24s(^2P)) \\ 3p^63d^2 & - 3p^5(3d^24s(^2P)) \end{array}$		$ \begin{array}{r} 2 & -1 \\ 4 & -3 \\ 3 & -3 \\ 1 & -2 \\ 2 & -2 \end{array} $	$ \begin{array}{r} 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \end{array} $
	$25 \\ 90 \\ 60 \\ 40 \\ 10$	$133.874 \\133.899 \\134.063 \\134.128 \\134.940$	$\begin{array}{c} 0.0 & .746.965 \\ 2.3315 & .749.166 \\ 1.0515 & .746.965 \\ 0.0 & .745.556 \\ 28.9273 & .769.991 \end{array}$	$\begin{array}{l} 3p^63d^2 & 3p^5(3d^24s(^2F))\\ 3p^63d^2 & 3p^5(3d^24s(^2F))\\ 3p^63d^2 & 3p^6(3d^24s(^2F))\\ 3p^63d^2 & 3p^5(3d^24s(^2F))\\ 3p^63d^2 & 3p^5(3d^24s(^2F))\\ 3p^63d^2 & 3p^5(3d^24s(^2F)) \end{array}$	$\begin{array}{c} g^{3}F & {}^{3}D^{o} \\ g^{3}F & {}^{3}D^{o} \\ g^{3}F & {}^{3}D^{o} \\ g^{3}F & {}^{3}D^{o} \\ g^{3}F & {}^{3}C^{o} \end{array}$	2 - 2 4 - 3 3 - 2 2 - 1 4 - 3	$ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 $

Multiplet	Rel. Int.	$\lambda_{\rm vac}~(in$ Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	$ \begin{array}{c} 1 \\ 10 \\ 90 \\ 40 \\ 4 \end{array} $	135.488 136.671 137.384 137.640 137.802	28.9273 - 766.991 17.4755 - 749.166 21.2786 - 749.166 20.4301 - 746.965 21.2786 - 746.965	$\begin{array}{l} 3p^63d^2 + 3p^5(3d^24s(^2F))\\ 3p^63d^2 + 3p^5(3d^24s(^2F))\\ 3p^63d^2 + 3p^5(3d^24s(^2F))\\ 3p^63d^2 + 3p^5(3d^24s(^2F))\\ 3p^63d^2 + 3p^5(3d^24s(^2F))\\ 3p^63d^2 + 3p^5(3d^24s(^2F)) \end{array}$	${}^{1}G - {}^{3}G^{0}$ ${}^{1}D - {}^{3}D^{0}$ ${}^{3}P - {}^{3}D^{0}$ ${}^{3}P - {}^{3}D^{0}$ ${}^{3}P - {}^{3}D^{0}$	$4 \cdot 5$ 2 - 3 2 - 3 1 - 2 2 - 2		$ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 1103 $
	$ \begin{array}{c} 10 \\ 4 \\ 60 \\ 1 \\ 4 \end{array} $	137.833 137.907 138.191 138.841 150.186	20.0403 - 745.556 20.4301 - 745.556 67.0783 - 790.708 28.9273 - 749.166 0.0 - 665.832	$\begin{array}{r} 3p^63d^2 & \cdot 3p^5(3d^24s(^2F))\\ 3p^63d^2 & \cdot 3p^5(3d^24s(^2F))\\ 3p^63d^2 & \cdot 3p^63d5f\\ 3p^63d^2 & \cdot 3p^5(3d^24s(^2F))\\ 3p^63d^2 & \cdot 3p^63d4f \end{array}$	${}^{3}P - {}^{3}D^{o}$ ${}^{3}P - {}^{3}D^{o}$ ${}^{1}S - {}^{1}P^{o}$ ${}^{1}G - {}^{3}D^{o}$ $g^{3}F - {}^{3}D^{o}$	$ \begin{array}{c} 0 & -1 \\ 1 & -1 \\ 0 & -1 \\ 4 & -3 \\ 2 & -1 \end{array} $		1103 1103 1103 1103 1103
	10 4 25 25 90	$150.282 \\ 150.403 \\ 150.521 \\ 150.530 \\ 150.807$	$\begin{array}{c} 0.0 & - \ 665.417 \\ 1.0515 & - \ 665.923 \\ 1.0515 & - \ 665.417 \\ 2.3315 & - \ 666.651 \\ 0.0 & - \ 663.097 \end{array}$	$\begin{array}{r} 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \end{array}$	$\begin{array}{c}g_{3}^{3}F & \cdot & {}^{1}F^{\circ} \\g_{3}^{3}F & \cdot & {}^{3}D^{\circ} \\g_{3}^{3}F & \cdot & {}^{1}F^{\circ} \\g_{3}^{3}F & \cdot & {}^{3}D^{\circ} \\g_{3}^{3}F & \cdot & {}^{3}G^{\circ} \end{array}$	2 - 3 3 - 2 3 - 3 4 - 3 2 - 3		1103 1103 1103 1103 1103
	$90 \\ 150 \\ 10 \\ 40 \\ 50$	$\begin{array}{c} 150.852 \\ 151.023 \\ 151.046 \\ 151.145 \\ 151.268 \end{array}$	1.0515 - 663.950 2.3315 - 664.482 1.0515 - 663.097 2.3315 - 663.950	$\begin{array}{r} 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \\ 3p^63d^2 & \cdot 3p^63d4f \end{array}$	$\begin{array}{c} g_{3}^{3}F + {}^{3}G^{\circ} \\ g_{3}^{3}F + {}^{3}G^{\circ} \\ g_{3}^{3}F + {}^{3}G^{\circ} \\ g_{3}^{3}F + {}^{3}G^{\circ} \end{array}$	3 - 4 4 - 5 3 - 3 4 - 4		1103 1103 1103 1103 209
	$ \begin{array}{r} 40 \\ 25 \\ 60 \\ 90 \\ 4 \end{array} $	151.432 151.488 151.512 151.675 151.754	$\begin{array}{c} 0.0 & - \ 660.358 \\ 1.0515 & - \ 661.169 \\ 0.0 & - \ 660.015 \\ 1.0515 & - \ 660.358 \\ 1.0515 & - \ 660.015 \end{array}$	$3p^63d^2 - 3p^63d4f$ $3p^63d^2 - 3p^63d4f$ $3p^63d^2 - 3p^63d4f$ $3p^63d^2 - 3p^63d4f$ $3p^63d^2 - 3p^63d4f$ $3p^63d^2 - 3p^63d4f$	$\begin{array}{c} g^{3}F + {}^{3}F^{\circ} \\ g^{3}F + {}^{3}F^{\circ} \\ g^{3}F + {}^{3}F^{\circ} \\ g^{3}F + {}^{3}F^{\circ} \\ g^{3}F + {}^{3}F^{\circ} \\ g^{3}F + {}^{3}F^{\circ} \end{array}$	$2 \cdot 3$ $3 \cdot 4$ $2 \cdot 2$ $3 \cdot 3$ $3 \cdot 2$		$1103 \\ $
	$120 \\ 4 \\ 40 \\ 50 \\ 1$	151.782 151.971 152.072 152.906 153.663	2.3315 - 661.169 2.3315 - 660.358 2.3315 - 659.917 17.4755 - 668.253	3p ⁶ 3d ² - 3p ⁶ 3d4f 3p ⁶ 3d ² - 3p ⁶ 3d4f 3p ⁶ 3d ² - 3p ⁶ 3d4f 3p ⁶ 3d ² - 3p ⁶ 3d4f	$g^{3}F - {}^{3}F^{o}$ $g^{3}F - {}^{3}F^{o}$ $g^{3}F - {}^{1}G^{o}$ ${}^{1}D - {}^{3}P^{o}$	4 - 4 4 - 3 4 - 4 2 - 1		1103 1103 1103 209 1103
	$\begin{array}{c}1\\25\\1\\4\\10\end{array}$	$153.747 \\ 154.042 \\ 154.216 \\ 154.271 \\ 154.307$	$\begin{array}{c} 17.4755 & \cdot & 667.899 \\ 17.4755 & \cdot & 666.651 \\ 17.4755 & \cdot & 665.923 \\ 20.0403 & \cdot & 668.253 \\ 20.4301 & \cdot & 668.489 \end{array}$	$3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$	${}^{1}D - {}^{3}P^{o}$ ${}^{1}D - {}^{3}D^{o}$ ${}^{1}D - {}^{3}D^{o}$ ${}^{3}P - {}^{3}P^{o}$ ${}^{3}P - {}^{3}P^{o}$	$ \begin{array}{c} 2 \cdot 2 \\ 2 \cdot 3 \\ 2 \cdot 2 \\ 0 \cdot 1 \\ 1 \cdot 0 \end{array} $		1103 1103 1103 1103 1103 1103
	120 25 1 25 90	$\begin{array}{c} 154.335 \\ 154.363 \\ 154.447 \\ 154.565 \\ 154.650 \end{array}$	$\begin{array}{r} 17.4755 & \cdot & 665.417 \\ 20.4301 & \cdot & 668.253 \\ 20.4301 & \cdot & 667.899 \\ 21.2786 & \cdot & 668.253 \\ 21.2786 & \cdot & 667.899 \end{array}$	$3p^{\circ}3d^2 - 3p^{\circ}3d4f$ $3p^{\circ}3d^2 - 3p^{\circ}3d4f$ $3p^{\circ}3d^2 - 3p^{\circ}3d4f$ $3p^{\circ}3d^2 - 3p^{\circ}3d4f$ $3p^{\circ}3d^2 - 3p^{\circ}3d4f$	${}^{1}D - {}^{1}F^{o}$ ${}^{3}P - {}^{3}P^{o}$ ${}^{3}P - {}^{3}P^{o}$ ${}^{3}P - {}^{3}P^{o}$ ${}^{3}P - {}^{3}P^{o}$	$2 \cdot 3$ $1 \cdot 1$ $1 \cdot 2$ $2 \cdot 1$ $2 \cdot 2$		1103 1103 1103 1103 1103 1103
	90 25 4 60 40	154.705 154.848 154.888 154.921 154.941	$\begin{array}{r} 17.4755 & - 663.871 \\ 20.0403 & - 665.832 \\ 17.4755 & - 663.097 \\ 20.4301 & - 665.923 \\ 20.4301 & - 665.832 \end{array}$	$3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$ $3p^{6}3d^{2} - 3p^{6}3d4f$	${}^{1}D - {}^{1}D^{o}$ ${}^{3}P - {}^{3}D^{o}$ ${}^{1}D - {}^{3}G^{o}$ ${}^{3}P - {}^{3}D^{o}$ ${}^{3}P - {}^{3}D^{o}$	$2 - 2 \\ 0 - 1 \\ 2 - 3 \\ 1 - 2 \\ 1 - 1$		$1103 \\ $
	90 1 10 1	$\begin{array}{c} 154.949\\ 155.124\\ 155.150\\ 155.247\\ 155.414\end{array}$	$\begin{array}{r} 21.2786 &- 666.651 \\ 21.2786 &- 665.923 \\ 21.2786 &- 665.832 \\ 21.2786 &- 665.417 \\ 20.4301 &- 663.871 \end{array}$	$3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$	${}^{3}P - {}^{3}D^{o}$ ${}^{3}P - {}^{3}D^{o}$ ${}^{3}P - {}^{3}D^{o}$ ${}^{3}P - {}^{1}F^{o}$ ${}^{3}P - {}^{1}D^{o}$	2 - 3 2 - 2 2 - 1 2 - 3 1 - 2		1103 1103 1103 1103 1103 1103
	$\begin{array}{c}1\\1\\1\\120\\4\end{array}$	$\begin{array}{c} 155.549 \\ 155.619 \\ 155.632 \\ 155.994 \\ 156.808 \end{array}$	$\begin{array}{r} 17.4755 & - \ 660.358 \\ 21.2786 & - \ 663.871 \\ 17.4755 & - \ 660.015 \\ 28.9273 & - \ 669.978 \\ 28.9273 & - \ 666.651 \end{array}$	$3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$ $3p^63d^2 \cdot 3p^63d4f$	${}^{1}D - {}^{3}F^{o}$ ${}^{3}P - {}^{1}D^{o}$ ${}^{1}D - {}^{3}F^{o}$ ${}^{1}G - {}^{1}H^{o}$ ${}^{1}G - {}^{3}D^{o}$	$2 \cdot 3$ $2 \cdot 2$ $2 \cdot 2$ $4 \cdot 5$ $4 \cdot 3$		1103 1103 1103 1103 1103
	$10 \\ 150 \\ 150 \\ 120 \\$	157.112 157.689 158.168 158.481 163.183	$\begin{array}{r} 28.9273 & -665.417 \\ 28.9273 & -663.097 \\ 28.9273 & -661.169 \\ 28.9273 & -659.917 \\ 17.4755 & -630.283 \end{array}$	$\begin{array}{l} 3p^63d^2 & 3p^63d4f \\ 3p^63d^2 & 3p^63d4f \\ 3p^63d^2 & 3p^63d4f \\ 3p^63d^2 & 3p^63d4f \\ 3p^63d^2 & 3p^63d4f \\ 3p^63d^2 & 3p^{9}(^2P^{\circ})(3d^3(b^2D)) \end{array}$	${}^{1}G - {}^{1}F^{\circ}$ ${}^{1}G - {}^{3}G^{\circ}$ ${}^{1}G - {}^{3}F^{\circ}$ ${}^{1}G - {}^{1}G^{\circ}$ ${}^{1}D - {}^{1}D$	$ \begin{array}{c} 4 \cdot 3 \\ 4 \cdot 3 \\ 4 \cdot 4 \\ 4 \cdot 4 \\ ^{1}P^{o} 2 \cdot \end{array} $	l	1103 1103 1103 1103
	$ \begin{array}{c} 4 \\ 25 \\ 25 \\ 90 \\ 1 \end{array} $	$\begin{array}{c} 163.974 \\ 164.203 \\ 164.955 \\ 165.087 \\ 165.444 \end{array}$	$\begin{array}{c} 20.4301 & \cdot & 630.283 \\ 21.2786 & \cdot & 630.283 \\ 17.4755 & \cdot & 623.699 \\ 67.0783 & \cdot & 672.820 \\ 1.0515 & \cdot & 605.489 \end{array}$	$\begin{array}{r} 3p^63d^2 & \cdot & 3p^5(^2P^o)(3d^3(b^2D)) \\ 3p'63d^2 & \cdot & 3p^5(^2P^o)(3d^3(b^2D)) \\ 3p^63d^2 & \cdot & 3p^5(^2P^o)(3d^3(a^4P)) \\ & & 3p^63d^2 & \cdot & 3p^63d4f \\ 3p'03d^2 & \cdot & 3p^5(^2P^o)(3d^3(a^2H)) \end{array}$	${}^{3}P - {}^{1}P^{\circ}$ ${}^{3}P - {}^{1}P^{\circ}$ ${}^{1}D - {}^{3}S^{\circ}$ ${}^{1}S - {}^{1}P^{\circ}$ $g^{3}F - {}^{1}G^{\circ}$	$ \begin{array}{c} 1 & \cdot & 1 \\ 2 & \cdot & 1 \\ 2 & \cdot & 1 \\ 0 & \cdot & 1 \\ 3 & \cdot & 4 \end{array} $		1103 1103 1103 1103 1103

ć.

Multiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	150 60 40 1 60	165.490 165.630 165.658 165.724 165.764	$\begin{array}{c} 0.0 & - & 604.270 \\ 0.0 & - & 603.757 \\ 20.0403 & - & 623.699 \\ 0.0 & - & 603.419 \\ 20.4301 & - & 623.699 \end{array}$	$\begin{array}{l} 3p^63d^2-3p^5(^2P^9)(3d^3(a^4F))\\ 3p^63d^2-3p^5(^2P^9)(3d^3(a^4F))\\ 3p^63d^2-3p^5(^2P^9)(3d^3(a^4F))\\ 3p^63d^2-3p^5(^2P^9)(3d^3(a^4F))\\ 3p^63d^2-3p^5(^2P^9)(3d^3(a^4F))\\ \end{array}$	$\begin{array}{c} g^{3}F & - \ ^{3}D^{o} \\ g^{3}F & - \ ^{3}D^{o} \\ ^{3}P & - \ ^{3}S^{o} \\ g^{3}F & - \ ^{3}D^{o} \\ g^{3}F & - \ ^{3}D^{o} \\ 3^{3}P & - \ ^{3}S^{o} \end{array}$	2 - 1 2 - 2 0 - 1 2 - 3 1 - 1	1103 1103 1103 1103 1103 1103
	150 60 40 200 50	165.919 165.996 166.010 166.365 166.629	$\begin{array}{c} 1.0515 & - 603.757 \\ 21.2786 & - 623.699 \\ 1.0515 & - 603.419 \\ 2.3315 & - 603.419 \end{array}$	$\begin{array}{l} 3p^63d^2+3p^5(2P^{o})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{o})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{o})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{o})(3d^3(a^4F))\\ \end{array}$	$\begin{array}{c} g^{3}F + {}^{3}D^{a} \\ {}^{3}P + {}^{3}S^{a} \\ g^{3}F + {}^{3}D^{a} \\ g^{3}F + {}^{3}D^{a} \end{array}$	$ \begin{array}{c} 3 \cdot 2 \\ 2 \cdot 1 \\ 3 \cdot 3 \\ 4 \cdot 3 \end{array} $	1103 1103 1103 1103 209
	$ \begin{array}{c} 40 \\ 25 \\ 4 \\ 25 \\ 40 \end{array} $	167.047 170.417 170.565 170.664 171.166	$\begin{array}{c} 0.0 & 598.638 \\ 17.4755 & 604.270 \\ 17.4755 & 603.757 \\ 17.4755 & 603.419 \\ 20.0403 & 604.270 \end{array}$	$\begin{array}{l} 3p^63d^2+3p^5(2P^{\circ})(3d^3(a^2P))\\ 3p^63d^2+3p^5(2P^{\circ})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{\circ})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{\circ})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{\circ})(3d^3(a^4F))\\ 3p^63d^2+3p^5(2P^{\circ})(3d^3(a^4F)) \end{array}$	$g_{1}^{3}F - {}^{1}P^{n}$ ${}^{1}D - {}^{3}D^{n}$ ${}^{1}D - {}^{3}D^{n}$ ${}^{1}D - {}^{3}D^{n}$ ${}^{3}P - {}^{3}D^{n}$	$ \begin{array}{r} 2 & -1 \\ 2 & -1 \\ 2 & -2 \\ 2 & -3 \\ 0 & -1 \end{array} $	$1103 \\ $
	$25 \\ 60 \\ 40 \\ 40 \\ 90$	171.279 171.432 171.529 171.680 171.779	$\begin{array}{c} 20.4301 - 604.270 \\ 20.4301 - 603.757 \\ 21.2786 - 604.270 \\ 21.2786 - 603.757 \\ 21.2786 - 603.419 \end{array}$	$\begin{array}{l} 3p^53d^2-3p^5(^2P^{*})(3d^3(a^4F))\\ 3p^53d^2-3p^5(^2P^{*})(3d^3(a^4F))\\ 3p^53d^2-3p^5(^2P^{*})(3d^3(a^4F))\\ 3p^53d^2-3p^5(^2P^{*})(3d^3(a^4F))\\ 3p^53d^2-3p^5(^2P^{*})(3d^3(a^4F))\\ 3p^63d^2-3p^5(^2P^{*})(3d^3(a^4F))\\ \end{array}$	³ p - ³ D ⁰ ³ p - ³ D ⁰ ³ p - ³ D ⁰ ³ p - ³ D ⁰	$ \begin{array}{r} 1 & -1 \\ 1 & -2 \\ 2 & -1 \\ 2 & -2 \\ 2 & -3 \\ \end{array} $	$1103 \\ $
	$90 \\ 4 \\ 1 \\ 25 \\ 200$	172.069 172.831 172.948 173.203 173.441	$\begin{array}{r} 17.4755 & 598.638 \\ 20.0403 & 598.638 \\ 20.4301 & 598.638 \\ 21.2786 & 598.638 \\ 28.9273 & 605.489 \end{array}$	$\begin{array}{l} 3p^63d^2+3p^5(2^{P^*})(3d^3(a^2P))\\ 3p^63d^2+3p^5(2^{P^*})(3d^3(a^2P))\\ 3p^63d^2+3p^5(2^{P^*})(3d^3(a^2P))\\ 3p^63d^2+3p^5(2^{P^*})(3d^3(a^2P))\\ 3p^63d^2+3p^5(2^{P^*})(3d^3(a^2H))\\ 3p^63d^2+3p^5(2^{P^*})(3d^3(a^2H)) \end{array}$		$ \begin{array}{c} 2 & -1 \\ 0 & -1 \\ 1 & -1 \\ 2 & -1 \\ 4 & -4 \end{array} $	1103 1103 1103 1103 1103 1103
	$ \begin{array}{c} 4 \\ 90 \\ 60 \\ 250 \\ 40 \end{array} $	174.069 176.345 176.599 176.744 176.904	$\begin{array}{c} 28.9273 & 603.419 \\ 1.0515 & 568.118 \\ 0.0 & 566.256 \\ 2.3315 & 568.118 \\ 0.0 & 565.275 \end{array}$	$\begin{array}{l} 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4F))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4F))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4F))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4F))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4P))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4P))\\ \end{array}$	$ \begin{array}{c} {}^{1}G - {}^{3}D^{9} \\ g_{}^{3}F - {}^{3}F^{9} \\ g_{}^{3}F - {}^{3}F^{9} \\ g_{}^{3}F - {}^{3}F^{9} \\ g_{}^{3}F - {}^{3}P^{9} \end{array} $	$ \begin{array}{r} 4 - 3 \\ 3 - 4 \\ 2 - 3 \\ 4 - 4 \\ 2 - 2 \end{array} $	$1103 \\ $
	$250 \\ 200 \\ 10 \\ 120 \\ 60$	176.928 177.172 177.235 177.329 177.503	$\begin{array}{r} 1.0515 \cdot 566.256 \\ 0.0 \cdot 564.425 \\ 1.0515 \cdot 565.275 \\ 2.3315 \cdot 566.256 \\ 1.0515 \cdot 564.425 \end{array}$	$\begin{array}{l} 3p^63d^2 & \cdot 3p^5(^2P^{\circ})(3d^3(a^4F)) \\ 3p^63d^2 & \cdot 3p^{5(^2P^{\circ})}(3d^3(a^4F)) \end{array}$	$g^{3}F - {}^{3}F^{0}$ $g^{3}F - {}^{3}F^{0}$ $g^{3}F - {}^{3}P^{0}$ $g^{3}F - {}^{3}F^{0}$ $g^{3}F - {}^{3}F^{0}$	$ \begin{array}{r} 3 - 3 \\ 2 - 2 \\ 3 - 2 \\ 4 - 3 \\ 3 - 2 \end{array} $	1103 1103 1103 1103 1103 1103
	60 4 4 60 25	177.555 179.656 179.720 180.059 180.477	$\begin{array}{c} 67.0783 & 630.283 \\ 67.0783 & 623.699 \\ 0.0 & 556.422 \\ 1.0515 & 556.422 \\ 2.3315 & 556.422 \end{array}$	$\begin{array}{l} 3p^63d^2 + 3p^5(^2P^*)(3d^3(b^2D))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^4P))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^2G))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^2G))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^2G))\\ 3p^63d^2 + 3p^5(^2P^*)(3d^3(a^2G)) \end{array}$	$ \begin{array}{c} {}^{1}S + {}^{1}P^{n} \\ {}^{1}S - {}^{3}S^{n} \\ {}^{g}{}^{3}F - {}^{1}F^{n} \\ {}^{g}{}^{3}F - {}^{1}F^{n} \\ {}^{g}{}^{3}F - {}^{1}F^{n} \\ {}^{g}{}^{3}F - {}^{1}F^{n} \end{array} $	$\begin{array}{c} 0 & -1 \\ 0 & -1 \\ 2 & -3 \\ 3 & -3 \\ 4 & -3 \end{array}$	1103 1103 1103 1103 1103 1103
	10 25 25 60 10	180.760 181.104 181.646 182.071 182.221	$\begin{array}{c} 0.0 & 553.220 \\ 1.0515 & 553.220 \\ 1.0515 & 551.568 \\ 2.3315 & 551.568 \\ 17.4755 & 566.256 \end{array}$	$\begin{array}{rl} 3p^63d^2 & -3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 & -3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 & -3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 & -3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 & -3p^5(^2P^*)(3d^3(a^4F))\\ \end{array}$	$\begin{array}{c} g^{3}F - {}^{1}D^{o} \\ g^{3}F - {}^{1}D^{o} \\ g^{3}F - {}^{3}D^{o} \\ g^{3}F - {}^{3}D^{o} \\ g^{3}F - {}^{3}D^{o} \\ {}^{1}D - {}^{3}F^{o} \end{array}$	$ \begin{array}{r} 2 & -2 \\ 3 & -2 \\ 3 & -3 \\ 4 & -3 \\ 2 & -3 \end{array} $	1103 1103 1103 1103 1103 1103
	40 90 200 40)(3D3	182.740 183.539 183.825 183.884 184.114	$\begin{array}{r} 1.0515 \cdot 548.274 \\ 20.4301 \cdot 565.275 \\ 21.2786 \cdot 565.275 \\ 561.303 \cdot 21.2786 \\ 20.0403 \cdot 561.303 \end{array}$	$\begin{array}{rl} 3p^63d^2 & 3p^5(^2P^{*})(3d^3(a^2F))\\ 3p^63d^2 & 3p^5(^2P^{*})(3d^3(a^4P))\\ 3p^63d^2 & 3p^5(^2P^{*})(3d^3(a^4P))\\ 3p^5(^2P^{*})(3d^3(a^4P)) & 3p^63d^2\\ 3p^63d^2 & 3p^5(^2P^{*})(3d^3(a^4P)) \end{array}$	$\begin{array}{c} g^{3}F - {}^{3}D^{\circ} \\ {}^{3}P - {}^{3}P^{\circ} \\ {}^{3}P - {}^{3}P^{\circ} \\ {}^{3}P - {}^{3}P \\ {}^{3}P - {}^{3}P \\ {}^{3}P - {}^{3}P \end{array}$	3 - 2 1 - 2 2 - 2 2 - 1 0 - 1 F	$ 1103 \\ 1103 \\ 1103 \\ 1103 \\ 03 $
	40 25 4)(3D3)(3D3	184.886 185.176 185.465 185.547 186.657	$\begin{array}{c} 20.4301 & -561.303 \\ 21.2786 & -561.303 \\ 568.118 & -17.4755 \\ 538.290 & -17.4755 \\ 556.422 & -17.4755 \end{array}$	$\begin{array}{rl} 3p^63d^2 &- 3p^5(^2P^{*})(3d^3(a^4P))\\ 3p^63d^2 &- 3p^5(^2P^{*})(3d^3(a^4P))\\ 3p^5(^2P^{*})(3d^3(a^4F)) &- 3p^63d^2\\ 3p^5(^2P^{*})(3d^3(a^4P)) &- 3p^63d^2\\ 3p^5(^2P^{*})(3d^3(a^2G)) &- 3p^63d^2\\ 3p^5(^2P^{*})(3d^3(a^2G)) &- 3p^63d^2\\ \end{array}$	$ \begin{array}{r} {}^{3}\mathbf{P} - {}^{3}\mathbf{P}^{o} \\ {}^{3}\mathbf{P} - {}^{3}\mathbf{P}^{o} \\ {}^{3}\mathbf{F}^{o} - {}^{1}\mathbf{D} \\ {}^{1}\mathbf{D}^{o} - {}^{1}\mathbf{D} \\ {}^{1}\mathbf{F}^{o} - {}^{1}\mathbf{D} \end{array} $	1 - 1 2 - 1 4 - 4 2 - 2 F 2 - 3 F	1103 1103 1103 03 03
)(3D3 40 40 150 150	187.235 187.990 188.125 188.396 188.576	$\begin{array}{c} 20.4301 & -553.220 \\ 21.2786 & -553.220 \\ 67.0783 & -598.638 \\ 17.4755 & -548.274 \\ 21.2786 & -551.568 \end{array}$	$\begin{array}{l} 3p^63d^2 + 3p^5(^2P^{*})(3d^3(a^2F))\\ 3p^63d^2 + 3p^5(^2P^{*})(3d^3(a^2F))\\ 3p^63d^2 + 3p^5(^2P^{*})(3d^3(a^2F))\\ 3p^63d^2 + 3p^5(^2P^{*})(3d^3(a^2F))\\ 3p^63d^2 + 3p^5(^2P^{*})(3d^3(a^2F))\\ 3p^63d^2 + 3p^5(^2P^{*})(3d^3(a^2F)) \end{array}$	${}^{3}P - {}^{1}D^{o}$ ${}^{3}P - {}^{1}D''$ ${}^{1}S - {}^{1}P^{o}$ ${}^{1}D - {}^{3}D^{o}$ ${}^{3}P - {}^{3}D^{o}$	1 - 2 2 - 2 0 - 1 2 - 2 2 - 3	03 1103 1103 1103 1103 1103
	90)(3D3 150 4 350	189.450 189.573 192.006 193.421 195.391	$\begin{array}{c} 20.4301 - 28.9273 \\ 21.2786 + 548.274 \\ 17.4755 + 538.290 \\ 21.2786 + 538.290 \\ 2.3315 + 514.133 \end{array}$	$\begin{array}{l} 3p''3d^2 & - 3p''3d^2 \\ 3p''3d^2 & - 3p''(2P'')(3d^3(a^2F)) \\ 3p''3d^2 & - 3p''(2P'')(3d^3(a^2D)) \\ 3p''3d^2 & - 3p''(2P'')(3d^3(a^2D)) \\ 3p''3d^2 & - 3p''(2P'')(3d^3(a^2H)) \\ 3p''3d^2 & - 3p''(2P'')(3d^3(a^2H)) \end{array}$	${}^{3}P - {}^{1}G \\ {}^{3}P - {}^{3}D^{\alpha} \\ {}^{1}D - {}^{1}D^{\alpha} \\ {}^{3}P - {}^{1}D^{\alpha} \\ {}^{g}^{3}F - {}^{3}G^{\alpha} $	1 - 2 2 - 2 2 - 2 2 - 2 2 - 2 4 - 5	1103 03 1103 1103 1103

Multiplet	Rel. Int.	λ _{νac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	150 120 40 25 60	196.046 196.423 196.453 196.944 201.855	0.0 - 510.086 1.0515 - 510.158 2.3315 - 510.158 2.3315 - 510.086 1.0515 - 2.3315	$\begin{array}{r} 3p^63d^2 + 3p^5(^2P^\circ)(3d^3(a^2H))\\ 3p^63d^2 + 3p^{5(2}P^\circ)(3d^3(a^2H))\\ 3p^63d^2 + 3p^5(^2P^\circ)(3d^3(a^2H))\\ 3p^63d^2 + 3p^5(^2P^\circ)(3d^3(a^2H))\\ 3p^63d^2 + 3p^63d^2 \end{array}$	g ³ F - ³ G° g ³ F - ³ G° g ³ F - ³ G° g ³ F - ³ G° g ³ F - g ³ F	2 - 3 3 - 4 4 - 4 4 - 3 3 - 4	-	1103 1103 1103 1103 1103 1103
)(3D3 25 300 1 90	202.378 206.096 207.712 207.831 208.167	$\begin{array}{c} 21.2786 & 510.086 \\ 28.9273 & 514.133 \\ 0.0 & 481.435 \\ 28.9273 & 510.086 \\ 1.0515 & 481.435 \end{array}$	$\begin{array}{l} 3p^63d^2-3p^5({}^2P^{\prime})(3d^3(a^2H))\\ 3p^63d^2-3p^5({}^2P^{\prime})(3d^3(a^2H))\\ 3p^63d^2-3p^5({}^2P^{\prime})(3d^3(a^2F))\\ 3p^63d^2-3p^5({}^2P^{\prime})(3d^3(a^2H))\\ 3p^63d^2-3p^5({}^2P^{\prime})(3d^3(a^2F))\\ 3p^63d^2-3p^5({}^2P^{\prime})(3d^3(a^2F))\\ \end{array}$	³ P - ³ G ^o ¹ G - ³ G ^o g ³ F - ³ G ^o ¹ G - ³ G ^o g ³ F - ³ G ^o	$ \begin{array}{r} 2 - 3 \\ 4 - 5 \\ 2 - 3 \\ 4 - 3 \\ 3 - 3 \end{array} $	F	03 1103 1103 1103 1103 1103
	4 150)(3D3 25 150	208.724 211.930 212.509 213.893 216.591	$\begin{array}{c} 2.3315 - 481.435 \\ 1.0515 - 2.3315 \\ 2.3315 - 472.559 \\ 28.9273 - 496.454 \\ 2.3315 - 464.034 \end{array}$	$\begin{array}{rl} 3p^63d^2 &- 3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 &- 3p^63d^2\\ 3p^63d^2 &- 3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 &- 3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 &- 3p^5(^2P^*)(3d^3(a^2F))\\ 3p^63d^2 &- 3p^5(^2P^*)(3d^3(a^2G))\\ \end{array}$	$\begin{array}{c} g^{3}F - {}^{3}G^{\circ} \\ g^{3}F - g^{3}F \\ g^{3}F - {}^{3}G^{\circ} \\ {}^{1}G - {}^{1}G^{\circ} \\ g^{3}F - {}^{1}H^{\circ} \end{array}$	4 - 3 3 - 4 4 - 5 4 - 4 4 - 5	F	1103 1103 03 1103 1103
	$150 \\ 4 \\ 1 \\ 4 \\ 20$	225.411 225.505 227.918 228.584 228.866	28.9273 - 472.559 0.0 - 443.4470 1.0515 - 439.8116 2.3315 - 439.8116 0.0 - 436.9522	$3p^{6}3d^{2} - 3p^{5}(^{2}P^{\circ})(3d^{3}(a^{2}F))$ $3p^{6}3d^{2} - 3p^{6}3d4p$ $3p^{6}3d^{2} - 3p^{6}3d4p$ $3p^{6}3d^{2} - 3p^{6}3d4p$ $3p^{6}3d^{2} - 3p^{6}3d4p$	¹ G - ³ G° g ³ F - ¹ P° g ³ F - ¹ F° g ³ F - ¹ F° g ³ F - ³ P°	$ \begin{array}{r} 4 \cdot 5 \\ 2 \cdot 1 \\ 3 \cdot 3 \\ 4 \cdot 3 \\ 2 \cdot 1 \end{array} $	Q	1103 1103 1103 1103 93
, T	90 120 4 400 60	229.828 231.044 231.693 231.728 232.047	$\begin{array}{r} 28.9273 & - 464.034 \\ 1.0515 & - 433.8712 \\ 0.0 & - 431.6095 \\ 2.3315 & - 433.8712 \\ 0.0 & - 430.9486 \end{array}$	3p ⁶ 3d ² - 3p ⁵ (² P°)(3d ³ (a ² G)) 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p	$ \begin{array}{c} {}^{1}G - {}^{1}H^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}D^{\circ} \end{array} $	$ \begin{array}{r} 4 - 5 \\ 3 - 4 \\ 2 - 3 \\ 4 - 4 \\ 2 - 3 \end{array} $		1103 1103 1103 1103 1103 1103
	200 300 10 60 400	232.256 232.442 232.613 232.946 233.015	$\begin{array}{c} 1.0515 & + 431.6095 \\ 0.0 & + 430.2134 \\ 1.0515 & + 430.9486 \\ 2.3315 & + 431.6095 \\ 1.0515 & + 430.2134 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p	$\begin{array}{c} g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}D^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \\ g^{3}F - {}^{3}F^{\circ} \end{array}$	$3 \cdot 3$ 2 - 2 3 - 3 4 - 3 3 - 2		1103 1103 1103 1103 1103 1103
	250 90 300 150 25	233.308 233.762 234.337 234.757 235.081	$\begin{array}{c} \textbf{2.3315} & \textbf{-430.9486} \\ \textbf{0.0} & \textbf{-427.7847} \\ \textbf{1.0515} & \textbf{-427.7847} \\ \textbf{1.0515} & \textbf{-427.7847} \\ \textbf{17.4755} & \textbf{-443.4470} \\ \textbf{0.0} & \textbf{-425.3861} \end{array}$	$3p^{6}3d^2 - 3p^{6}3d4p$ $3p^{6}3d^2 - 3p^{6}3d4p$ $3p^{6}3d^2 - 3p^{6}3d4p$ $3p^{6}3d^2 - 3p^{6}3d4p$ $3p^{6}3d^2 - 3p^{6}3d4p$	$\begin{array}{c} g^{3}F - {}^{3}D^{\circ} \\ g^{3}F - {}^{3}D^{\circ} \\ g^{3}F - {}^{3}D^{\circ} \\ {}^{1}D - {}^{1}P^{\circ} \\ g^{3}F - {}^{1}D^{\circ} \end{array}$	$ \begin{array}{r} 4 - 3 \\ 2 - 2 \\ 3 - 2 \\ 2 - 1 \\ 2 - 2 \end{array} $		1103 1103 1103 1103 1103 1103
	90 200 10 50 60	235.221 235.662 236.180 236.388 236.778	$\begin{array}{c} 0.0 & 425.1286 \\ 1.0515 & 425.3861 \\ 20.0403 & 443.4470 \\ 20.4301 & 443.4470 \\ 17.4755 & 439.8116 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p	$g^{3}F - {}^{3}D^{\circ}$ $g^{3}F - {}^{1}D^{\circ}$ ${}^{3}P - {}^{1}P^{\circ}$ ${}^{3}P - {}^{1}P^{\circ}$ ${}^{1}D - {}^{1}F^{\circ}$	2 - 1 3 - 2 0 - 1 1 - 1 2 - 3		1103 1103 1103 209 1103
	60 25 40 25 120	236.872 238.048 238.393 238.929 239.734	$\begin{array}{c} 21.2786 & + 443.4470 \\ 17.4755 & + 437.5580 \\ 17.4755 & + 436.9522 \\ 21.2786 & + 439.8116 \\ 20.4301 & + 437.5580 \end{array}$	3p'3d ² - 3p ⁶ 3d4p 3p'3d ² - 3p'3d4p 3p'3d ² - 3p'3d4p 3p'3d ² - 3p'3d4p 3p'3d ² - 3p'3d4p 3p'3d ² - 3p'3d4p	³ P - ¹ P ⁰ ¹ D - ³ P ^a ¹ D - ³ P ⁰ ³ P - ¹ F ⁰ ³ P - ³ P ⁰	$2 \cdot 1$ $2 \cdot 2$ $2 \cdot 1$ $2 \cdot 3$ $1 \cdot 2$)	1103 1103 1103 1103 1103 1103
	120 90 90 300 120	239.860 240.053 240.083 240.223 240.572	$\begin{array}{r} 20.0403 & + 436.9522 \\ 20.4301 & + 437.0013 \\ 20.4301 & + 436.9522 \\ 21.2786 & + 437.5580 \\ 21.2786 & + 436.9522 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p	³ P . ³ P ⁰ ⁵ P - ³ P ⁰ ³ P - ³ P ⁰ ³ P - ³ P ⁰	$ \begin{array}{r} 0 & -1 \\ 1 & -0 \\ 1 & -1 \\ 2 & -2 \\ 2 & -1 \end{array} $		1103 1103 1103 1103 1103 1103
	120 125 120 400 120	241.467 241.853 242.284 243.379 243.705	$\begin{array}{r} 17.4755 & 431.6095 \\ 17.4755 & 430.9486 \\ 17.4755 & 430.2134 \\ 28.9273 & 439.8116 \\ \textbf{21.2786} & 431.6095 \end{array}$	3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p	¹ D - ³ F° ¹ D - ³ D° ¹ D - ³ F° ¹ C - ¹ F° ³ P - ³ F°	2 - 3 2 - 3 2 - 2 4 - 3 2 - 3		1103 1103 1103 1103 1103 1103
	4 90 120 350 120	244.030 244.098 244.541 245.153 245.488	$\begin{array}{c} 20.4301 & + 430.2134 \\ 21.2786 & + 430.9486 \\ 21.2786 & + 430.2134 \\ 17.4755 & + 425.3861 \\ 20.4301 & + 427.7847 \end{array}$	3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p 3p°3d² - 3p°3d4p	³ P - ³ F° ³ P - ³ F° ³ P - ³ F° ¹ D - ¹ D° ³ P - ³ D°	$1 \cdot 2$ 2 - 3 2 - 2 2 - 2 2 - 2 1 - 2		1103 1103 1103 1103 1103 1103
	60 40 25 25 120	246.000 246.859 246.943 247.098 247.458	$\begin{array}{c} 21.2786 & + 427.7847 \\ 20.0403 & + 425.1286 \\ 20.4301 & + 425.3861 \\ 20.4301 & + 425.1286 \\ 21.2786 & + 425.3861 \end{array}$	3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p 3p ⁶ 3d ² - 3p ⁶ 3d4p	³ P - ³ D ⁰ ³ P - ³ D ⁰ ³ P - ¹ D ⁰ ³ P - ³ D ⁰ ³ P - ¹ D ⁰	$2 - 2 \\ 0 - 1 \\ 1 - 2 \\ 1 - 1 \\ 2 - 2$		1103 1103 1103 1103 1103 1103

......

D~94

Multiplet	Rel. Int.	$\lambda_{\rm vac}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	10	248.743	28.9273 - 430.9486	$3p^63d^2 - 3p^63d4p$	$^{i}G \sim {}^{3}D^{*}$	4 - 3	1103
	150	265.697	67.0783 - 443.4470	$3p^{6}3d^{2} - 3p^{6}3d4p$	$^{1}S = ^{1}P^{1}$	0 - 1	1103
	1	270.363	67.0783 - 436.9522	$3p^{\circ}3d^{2} - 3p^{\circ}3d4p$	$^{1}S = ^{3}P^{2}$	0 - 1	1103
		289.68	1.0515 - 346.2622	3p*3d2 - 3p*3d4s	$g^3F + {}^3D$	3-3 F.P	375,1103
		289.83	0.0 - 345.0287	$3\dot{p}^{0}3d^{2}$ - $3\dot{p}^{0}3d4s$	$g^{3}F + {}^{3}D$	2-2 F.P	375.1103
		290.31	0.0 - 344.4633	$3p^{6}3d^{2}$ - $3p^{6}3d4s$	$g^3F = {}^3D$	2 - 1 F.P	375,1103
		290.72	1.0515 - 345.0287	$3p^{6}3d^{2} - 3p^{6}3d4s$	$g^{3}F = {}^{3}D$	3 - 2 F,P	375,1103
		290.76	2.3315 - 346.2622	$3p^{6}3d^{2} = 3p^{6}3d4s$	$g^3F = {}^3D$	4 - 3 E.P	375.1103
		291.20	1.0515 - 344.4633	$3p^{6}3d^{2} + 3p^{6}3d4s$	$\overline{\mathbf{g}}^{3}\mathbf{F} = {}^{3}\mathbf{D}$	3 1 F.P	375,1103
		291.80	2.3315 + 345.0287	$3p^63d^2 - 3p^63d4s$	$g^{3}F = {}^{3}D$	4 - 2 F,P	375,1103
		300,43	17.4755 - 350.3326	$3p^63d^2 + 3p^63d4s$	'D - 'D	2 · 2 F.P	375,1103
		306.91	20.4301 - 346.2622	$3p^{6}3d^{2} - 3p^{6}3d4s$	${}^{3}P - {}^{3}D$	1-3 F.P	375,1103
		307.70	20.0403 - 345.0287	$3p^{6}3d^{2} + 3p^{6}3d4s$	$^{4}P + ^{4}D$	0 2 F.P	375.1103
		307.71	21.2786 - 346.2622	$3p^{6}3d^{2} - 3p^{6}3d4s$	3P - 3D	2 - 3 = F, P	375,1103
		308.07	20.4301 - 345.0287	$3\dot{p}^{6}3d^{2}$ - $3\dot{p}^{6}3d4\pi$	³ P + ³ D	1-2 F,P	375,1103
		308.24	20.0403 - 344.4633	$3p^63d^2$ - $3p^63d4s$	$^{3}P - ^{3}D$	0 - 1 = F,P	375,1103
		311.13	28.9273 - 350.3326	$3p''3d^2 - 3p''3d4s$	¹ G - ¹ D	4 - 2 F,P	375,1103
		353.04	67.0783 - 350.3326	$3p^{6}3d^{2} - 3p^{6}3d4s$	$^{1}S = D$	0 - 2 F.P	375.1103
	.1	1010.260	344.4633 - 443.4470	3p ⁶ 3d4s - 3p ⁶ 3d4p	$^{3}D = ^{1}P^{\circ}$	1 - 1	1103
	ł	1016.072	345.0287 - 443.4470	3p'3d4* - 3p'3d4p	${}^{3}D + {}^{1}P^{n}$	2 - 1	1103
	.1()	1073.953	350.3326 - 443.4479	3p°3d4s - 3p°3d4p	$^{1}D = ^{1}P^{c}$	2 - 1	1103
	10	1080.637	344.4633 - 437.0013	$3p^{6}3d4s - 3p^{6}3d4p$	${}^{3}D + {}^{3}P^{c}$	1 - 0	1103
	1	1080.736	345.0287 + 437.5580	$3p^{0}3d4s + 3p^{0}3d4p$	$^{3}D = ^{3}P^{3}$	2 · 2	1103
	10	1087.861	345.0287 - 436.9522	$3p^{6}3d4s - 3p^{6}3d4p$	${}^{3}D = {}^{3}P^{0}$	2 - 1	1103
	90	1095.343	346.2622 - 437.5580	3p"3d4s - 3p^3d4p	$^{3}D + ^{3}P^{\alpha}$	3 - 2	1103
	90	1117.580	350.3326 - 439.8116	3p°3d4s - 3p°3d4p	¹ D - ¹ F°	2 - 3	1103
	250	1141.435	346.2622 - 433.8712	3p°3d4s 3p°3d4p	³ D - ³ F°	3 - 4	1103
	40	1154.992	345.0287 - 431.6095	$3p^63d4s = 3p^63d4p$	3D - 3F°	2 - 3	1103
	60	1163.879	345.0287 - 430.9486	$3p^{6}3d4s - 3p^{6}3d4p$	${}^{3}D - {}^{3}D'$	2 - 3	1103
	150	1166.183	344.4633 - 430.2134	$3p^{\circ}3d4s - 3p^{\circ}3d4p$	³ D - ³ F ⁵	1 - 2	1103
	-1	1173.915	345.0287 - 430.2134	3p'3d4s - 3p'3d4p	3 D + 3 F ^a	2 - 2	1103
	-1-0	1180.823	346.2622 - 430.9486	$3p^{6}3d4s - 3p^{6}3d4p$	³ D - ³ D'	3 - 3	1103
	-10	1208.375	345.0287 - 427.7847	3p'3d4s - 3p'3d4p	${}^{3}D - {}^{3}D^{\circ}$	2 - 2	1103
	60	1226.653	346.2622 + 427.7847	$3p^{\circ}3d4s - 3p^{\circ}3d4p$	${}^{3}D + {}^{3}D''$	3 - 2	1103
	00	1239,690	344.4633 - 425.1286	$3p^63d4s = 3p^63d4p$	${}^{3}D + {}^{3}D^{\circ}$	1 - 1	1103
	I	1244.442	345.0287 - 425.3861	$3p^{\circ}3d4s + 3p^{\circ}3d4p$	${}^{3}D + {}^{1}D^{\circ}$	2 - 2	1103
	10	1263.844	346.2622 - 425.3861	$3p^{\circ}3d4s - 3p^{\circ}3d4p$	${}^{3}D + {}^{1}D'$	3 - 2	1103
	90	1332.381	350.3326 - 425.3861	$3p^{6}3d4s - 3p^{6}3d4p$	${}^{1}D = {}^{1}D^{\circ}$	$2 \cdot 2$	1103
	0	1490.80	0.0 - 67.0783	$3p^63d^2 - 3p^63d^2$	$g^3F + {}^1S$	2 - 0 F.P	1103

IRON VIII (Fe^{+7}), Z = 26

Ground State $1s^22s^22p^63s^23p^63d\;(^2D_{3/2})\;(19\;electrons)$

lonization Potential 1 218 400 cm⁻¹; 151.06 eV

Multiplet Rel. Inv.	$\lambda_{\rm vac}$ (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Tenns	J - J Notes	References
4	93.469	0.000 - 1069.87	$3p^{6}3d - 3p^{6}7f$	$g^2 D = {}^2 F^{\alpha}$	8 - 8	1085
	93.616	1.836 + 1070.03	$3b^{0}3d - 3b^{0}7f$	$g^{2}D = {}^{2}F^{2}$	3 - 5	1085
8	98.371	0.000 - 1016.56	$3\mathbf{p}^{0}3\mathbf{d} + 3\mathbf{p}^{0}6\mathbf{f}$	$g^2 D = {}^2 F'$		1085
10	98.548	1.836 - 1016.57	3p°3d - 3p°6f	$g^2D = {}^2F^{\circ}$		1085
25	107.868	0.000 - 927.059	3p°3d - 3p°5f	$g^2 D = 2F'$	3 - 3	1085
30	108.077	1.836 927.102	3p°3d - 3p°5f	$u^2 D = {}^2 F^{\circ}$		1085
1	112.252	0.000 - 890.845	$3p^{5}3d - 3p^{5}3df^{3}D^{5})4s$	$g^2D + ^2D^{\circ}$	3.3	1085
15	112.472	0.0 - 889.113	$3p^{5}3d - 3p^{5}3d(^{3}D^{5})4s$	$g^2 D = {}^2 D^{\circ}$	3.3.	1085
20	112.486	1.836 - 890.845	$3n^{6}3d - 3n^{5}3d(^{3}D^{6})4s$	$g^2D + {}^2D''$		1085
2	112.704	1.836 - 889.113	$3p^63d - 3p^53d(^3D^c)4s$	$g^2D = {}^2D^{\circ}$	10 - 21 11 - 21	1085
25	112.932	1.836 - 887.325	$3p^{0}3d - 3p^{2}3d(^{1}F^{0})4s$	$g^2D + {}^2F^6$	<u>8</u> = 3 .	1085
1	113.081	0.000 - 884.331	$3p^{6}3d - 3p^{5}3d^{1}D^{6}4s$	$g^2D = D^{\circ}$	\$. \$	1085
10	113.315	1.836 - 884.331	$3p''3d - 3p''3d(^{1}D'')4s$	$g^2D = D^{\circ}$		1085
5	113.463	0.000 - 881.345	$3p^{9}3d - 3p^{3}3d(^{1}D^{9})4s$	$\frac{1}{2}^2 D = {}^2 D^2$	8.8	1085
7	113.763	0.000 - 879.021	$3p^{\circ}3d = 3p^{\circ}3d(^{1}F^{\circ})4s$	$g^2D = {}^2F^{o}$	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1085

Multiplet	Rel. Int.	λ_{cas} (in Å)	Level+ (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1	113.861	0.000 - 272.964	9 (19) 9 50 Million		1	(*********** 	<u> </u>
	2	113.963	0.000 - 010.204	3p/3d - 3p/3d('D')4s	$ g^2 D - {}^3 D^{\circ}$	$\frac{3}{2} - \frac{1}{2}$	ĺ	1085
	5	114 295	1.926 976 767	3p"3d - 3p'3d('D')4s	$g^2 D = {}^3 D''$	3.8		1085
	4	114 564	1.000 - 010.100	3p°3d - 3p°3d(3D°)4s	$g^2 D = {}^4 D^0$			1085
	95	116.104	1.830 - 874.711	3p*3d - 3p*3d(30*)4s	$g^2 D - 3 D^{\prime\prime}$	1 3 . 4		1085
	.,.)	100.190	0.000 - 860.612	$3p^{6}3d - 3p^{3}3d(^{3}F^{\circ})4_{5}$	$g^2D + {}^2F^{n}$	3 - 2		1085
	1	116.442	1.836 + 869.615	$3p^63d - 3n^53d(^3F^6)4_5$	$a^2(3 - 2t^3)$	55		1005
	60	117.197	1.836 + 855.100	3p63d - 3p53d6F04-	5 D - 1 2 D - 2 D -	2 2		1085
	1	117.254	0.000 + 852.849	3p63d - 3653dCF94-	6 D - 1 64D - 4E9	2 - 2		1085
	8	117.661	0.000 - 849,899	3034 . 30530(310)4-	80.0	3 - 5 '		1085
	8	118.300	1.836 + 847.145	3p*3d - 3p*3d(*F*)4s	$g^{1}D - T^{2}$ $g^{2}D - F^{2}$	2 - 2 3 - 5		1085 1085
1	3	118.648	0.000 - 842.829	32624 9-5246604	211 2110			
	25	118.907	1.836 - 842.829	Steps and a state of the state	g' U - "P"	2 2		1085
	15	119.380	0.000 - 837 661	2.624 2 52 1000 4	g-D - 4	2 . 2		1085
	150	120.31	1.836 - 833.000	ab ag • ab ag (1)48	g_D - "P"	2 . 2	1	1085
!	150	130.941	0.000 762 702	op od - op od("P")4s	g²D - ⁴ P°	2 2	0	261
			0.000 - 705,705	3p"3d - 3p"4f	$g^2D - {}^2F^n$	3 - 5	Ì	1085
i	200	131.240	1.836 - 763.799	3062d 3064f	212 2000	İ		
	80	131.255	1.836 - 763.703	$3n^{5}34 - 2n^{6}44$	g D - 'F'	ž - ž		1085
i	400	167.486	0.000 - 597 965	2.521 2.50 123m	gʻD - 'F"	2 - 2		1085
1	200	167.656	0.000 - 596 463	a to a a fa isara	g ² D - ² D"	2 - 2		1085
	150	168.002	1.836 507.065	3p 3d - 3p (3d*(*F))	g°D - ²D°	ž • ž	í	1085
			1.000 - 097.000	3b.3q - 3b.(3q.(sF))	$g^2D + ^2D^{\circ}$	§ - 3		1085
	100	168.024	0.000 + 595.152	3nº3d . 3n5(342020)	$-2\mathbf{D} = 2\mathbf{D}$	3 3	!	
	500	168.172	1.836 - 596.463	30634 303(2.4265)	g D - 'P'	ž - ž !		1085
	450	168.545	1.836 - 595.152	$3a^{0}3a = 3a^{3}(2A^{2}/3D)$	g U - "D"	ž - ž	1	1085
	250	168.929	0.000 - 591.964	2.62.4 2.5(2.42/3m)	8.0 - To	ž - ž -		1085
	100	174.02		op ou - op (ou (Tr))	g*D - *P"	2 - 2		1085
	700	176.94		[1		010
	700	185.213	1836 . 541 755	9 (9) 9 509 12 300				010
	600	186.601	0.000 . 535.000	op od - sp(3d*("F))	$g^2 D - {}^2 F^0$	<u> -</u>		1085
)	300	187.237	1936 535 000	3p"3d - 3p"(3d*(°F))	$g^2D - F$	2 - 2		1085
	200	192.004	0.000 530,909	3p[3d + 3p](3d'(2F))	$g^2D - {}^2F'$		(1085
			0.000 - 320.622	3p°3d - 3p°(3d²(1S))	$g^2D - {}^2P^n$	3 - 2		1085
	100	193.967	0.000 - 515.550	3p ⁶ 3d - 3p ⁶ 4p	$\rho^2 \mathbf{D} \cdot {}^2 \mathbf{P}^{\circ}$	3 3		1005
	200	194.062	1.336 - 515.550	$3p^{+}3d - 3p^{+}4p$	$\frac{2}{2}$ D $\frac{2}{2}$ P	2 2 2 5 3		1005
ł	400	195.972	0.000 - 510.277	3p'3d - 3p'4n	$\frac{6}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	2 - 2	ĺ	1085
	40	196.650	0.000 - 508.518	30°3d - 305(3d2(18))	g D 200	2 - 2)	I	1085
	230	197.362	1.836 - 508.518	$3p^{6}3d - 3p^{5}(3d^{2}(^{1}S))$	$g^2D - P^2$ $g^2D - P^2$	2 - 2 3 - 3	i	1085 1085
	300	217.691	0.000 - 459.367	2-624 2-5(212/11)	210 -			•
	60	218.564	1.836 - 459 367	2,224 2 5(247(11))	$g^{2}D \cdot {}^{2}F^{2}$	2 - 2		1085
1	500	224.305	1 886 447 659	3p 3d - 3p"(3d*('D))	$g^2 D - {}^2 F^{\alpha}$	2 - 2		1085
	260	231.097	1936 434 555	3p 3d - 3p (3d ('D))	$g^2 D - {}^2F^{\circ}$	5 - 2		1085
	200	231 884	0.000 491.960	3p°3d - 3p ³ (3d*(*G))	$g^2D + {}^2F'$	5 - ž	Í	1085
	100		0.000 - 451,250	³ p ⁻³ d - 3p ⁵ (3d ² (¹ G))	$\tilde{g}^2 D - {}^2 F^{\circ}$	3 - 2		1085
	20	232.876	1.836 - 431.250	3063d - 305(3d2(1C))	-2D 2D	5 5		
		370.427	515.550 - 785.51	$3n^64n \times 3n^65s$	2100 2C	ž - ž	0	1085
				5 F. J. 5 F. 10	r - 5	2 - 2	V	009

 $\label{eq:IRON-IX-Fe} \begin{array}{l} IRON \ IX \ (Fe^{+\, 2}), \ Z \ = \ 26 \\ \\ Ground \ State \ 1s^2 2s^2 2p^6 3s^2 3p^6 \ (^1S_0) \ (18 \ electrons) \\ \\ Ionization \ Potential \ 1 \ 884 \ 000 \ cm^{-1}; \ 233.6 \ eV \end{array}$

Maltiplet	Rel. Int.	$\lambda_{\rm var}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
01	10 20 30 40	72.85 72.891 73.618 82.430 83.457	$\begin{array}{c} 0.000 & +1372.67 \\ 0.000 & +1371.9 \\ 0.000 & +1358.36 \\ 0.000 & +1213.15 \\ 0.000 & +1198.22 \end{array}$	$3s^23p^6 - 3s^23p^5(2P_1^{\circ})5s$ $3s^23p^6 - 3s3p^6(2P_1^{\circ})5s$ $3s^23p^6 - 3s^23p^6(2P_2^{\circ})5s$ $3s^23p^6 - 3s^23p^54d^2$ $3s^23p^6 - 3s^23p^54d$	$\begin{array}{c} g^{1}S + (_{1/2,1/2})^{\circ} \\ g^{1}S + (_{P'})^{\circ} \\ g^{1}S + (_{3/2,1/2})^{\circ} \\ g^{1}S + (_{3/2,1/2})^{\circ} \\ g^{1}S + ^{1}P^{\circ} \\ g^{1}S + ^{3}P^{\circ} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	009 440 729,9 241,9 241,9
	80 60 25 10 20	103.566 105.208 111.557 111.713 111.791	$\begin{array}{c} 0.000 = 965.57 \\ 0.000 = 950.500 \\ 413.662 = 1310.15 \\ 405.765 = 1300.92 \\ 408.307 = 1302.83 \end{array}$	$\frac{3 \pi^2 3 p^6}{3 \pi^2 3 p^5 (^2 P^{\circ}) 4 s}$ $3 \pi^2 3 p^6 - 3 \pi^2 3 p^3 (^2 P^{\circ}) 4 s$ $3 \pi^2 3 p^5 3 d - 3 \pi^2 3 p^3 (^2 P^{\circ}) 4 f$ $3 \pi^2 3 p^5 3 d - 3 \pi^2 3 p^3 (^2 P^{\circ}_2) 4 f$ $3 \pi^3 3 p^5 3 d - 3 \pi^2 3 p^5 (^2 P^{\circ}_2) 4 f$	$ \begin{array}{c} \mathbf{g}^{1}\mathbf{S} = (_{1/2*1/2})^{o} \\ \mathbf{g}^{1}\mathbf{S} = (_{3/2*1/2})^{o} \\ ^{o}\mathbf{P}^{o} = _{3/2}[_{7/2}]^{o} \\ ^{3}\mathbf{P}^{o} = _{3/2}[_{3/2}]^{o} \\ ^{3}\mathbf{P}^{o} = _{3/2}[_{3/2}]^{o} \end{array} $	$\begin{array}{c c} 0 & -1 \\ 0 & -1 \\ 2 & -3 \\ 0 & -1 \\ 1 & -2 \end{array} \qquad Q$	241,366 241,366 856 241,806 241,806

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	10	112.017	409 307 1300 09	3-23-524 2-22-5/2D°\4f	3100[]0	1 1		720
	40	112.017	412 669 1305 76	$2_{2}^{2} + \frac{5}{2} + $	3 De []e	0 2		241 906
	50	112.090	413.002 • 1303.70	$3^{2}3^{5}2^{3}3^{2}3^{5}2^{2}5^{2}2^{5}4^{2}$	3Fo 0	2-3	Ă	241,000
	30	112.373	495 000 1204 50	2.22.52 2.22-5/2D AC	315° 1/2[5/2]	2-3	Y Y	941 956
	20	113,793	425.800 • 1504.59	35 3 p 30 - 35 3 p (r,)41 2,22,52 J 2,22,5(2 p)41	Γ - 3/2[9/2] 3Γ° []0	9-5		241,000
	40	114.024	429.311 - 1300.32	5s 5p 5a - 5s 5p ("r ₂)4t	г - <u>3/2[9/2]</u>	3.4		241,000
l	20	114.111	433.807 - 1310.15	3s²3p ⁵ 3d - 3s²3p ⁵ (²P°)4f	³ F° - 3/2[7/2]°	2 - 3		241,806
	30	115.353	456.744 - 1323.65	3s ² 3p ⁵ 3d - 3s ² 3p ⁵ (² P [*])4f	${}^{1}\text{D}^{\circ} \cdot {}_{1/2}[{}_{5/2}]^{\circ}$	2 - 3		241,806
í	30	115.996	462.609 - 1324.71	3s²3p⁵3d · 3s²3p⁵(²P*)4f	$^{3}D^{\circ} \cdot \frac{1}{2} [7/2]^{\circ}$	2 · 3		241,806
	60	116.408	465.8217 - 1324.80	$3s^23p^53d - 3s^23p^5(^2P')4f$	${}^{1}F^{\circ} - {}_{1/2}[{}_{7/2}]^{\circ}$	3 - 4	i	729
	50	116.803	455.612 - 1311.75	$3s^23p^53d - 3s^23p^5(^2P_2^4)4f$	${}^{3}D^{\circ} - {}_{3/2}[_{7/2}]^{\circ}$	3 · 4		241,806
	00	171.075	0.000 - 584 547	3=23n6 - 3=23n53d	0 ¹ S - ¹ P°	0.1		856
	40	217 108	0.000 - 460.609	$3e^{2}3p^{6} - 3e^{2}3p^{5}3d$	$^{2}S - ^{3}D^{9}$			856
		218 035	$0.0 \pm C + 456.744$	$3s^23n^6$, $3s^23n^53d$	⁵¹ S - ¹ D ^o	0.2	F	923
	60	210.935	$0.0 \pm C - 413.662$	$3s^23n^6 + 3s^23n^53d$	1S. 3Po	0.2	F	856
	40	241.139	0.00 + 0.0413.002	$3e^23n^6$, $3e^23n^53d$	als 3po	0.1		856
	70	277.712	0.000 - 400.001	03 0p · 03 0p 0u				000
ĺ	1	585.2	413.662 - 584.547	3s²3p53d - 3s²3p53d	³ P ^o - ¹ P ^o	$2 \cdot 1$	F.P	375,616
	-	663.4	433.807 - 584.547	3s ² 3p ⁵ 3d - 3s ² 3p ⁵ 3d	³ F ^o - ¹ P ^o	2 - 1	F,P	375,616
	i	775.6	455.612 - 584.547	$3s^23p^53d - 3s^23p^53d$	³ D° - ¹ P°	3 - 1	F.P	375.616
	(782.5	456.744 - 584.547	$3s^23n^53d - 3s^23n^53d$	¹ D° - ¹ P°	2 . 1	F.P	375.616
		806.9	460.609 - 584.547	3s ² 3p ⁵ 3d - 3s ² 3p ⁵ 3d	$^{3}D^{\circ} - {}^{1}P^{\circ}$	1 - 1	F,P	375,616
	1	820.1	462 609 . 584 547	3e ² 3p ⁵ 3d - 3e ² 3p ⁵ 3d	³ D ^o - ¹ D ^o	2 - 1	FP	375 616
		842.3	465 8917 584 547	3e ² 3n ⁵ 3d - 3e ² 3n ⁵ 3d	1F0_1P0	3.1	F P	375 616
	1	1730	408 307 465 8217	3e ² 3n ⁵ 3d - 3e ² 3n ⁵ 3d	300 100	1.3	FP	375.616
		1750	405 765 469 600	3,23,534 3,23,534	300 300	0 2	FP.	375 616
	1	1992	405 765 460 600	3,23,53,4 3,23,53,4	300 300	0.1	F P	375 616
	1	1023.	403.703 - 400.009	58 5p 5u - 58 5p 5u		0.1	1,1	515,010
	1	1841.55	408.307 - 462.609	3s²3p⁵3d - 3s²3p⁵3d	³ P ^o - ³ D ^o	1 - 2	F	940
		1912.	408.307 - 460.609	3s ² 3p ⁵ 3d - 3s ² 3p ⁵ 3d	${}^{3}P^{o} - {}^{3}D^{o}$	1.1	F,P	375,616
	3	1917.21	413.662 - 465.8217	$3s^23p^53d - 3s^23p^53d$	${}^{3}P^{o} - {}^{1}F^{o}$	2 - 3	Ē (940
1	-	1962.	405.765 456.744	$3s^23n^53d + 3s^23n^53d$	${}^{3}P^{\circ} - {}^{3}D^{\circ}$	0 - 2	F.P	375.616

$IRON \; X \; (Fe^{+\;9}), \; Z \;=\; 26$ Ground State $1s^2 2s^2 2p^6 3s^2 3p^5 \; (^2P^o_{3/2}) \; (17 \; electrons)$

Ionization Potential 2 114 000 cm⁻¹; 262.1 eV

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10^3 cm^{-1})	Configurations	Terms	J - J	Notes	References
	30	62.8 75.685 76.006 76.495 76.53	$\begin{array}{c} 0. & \cdot & 1592.4 \\ 0. & \cdot & 1321.27 \\ 0. & \cdot & 1315.69 \\ 15.6832 & \cdot & 1322.96 \\ 0. & \cdot & 1306.68 \end{array}$	$\begin{array}{c} 3s^23p^5 - 3s^23p^4(^1D)5s\\ 3s^23p^5 - 3s^23p^4(^1D)4d\\ 3s^23p^5 - 3s^23p^4(^1D)4d\\ 3s^23p^5 - 3s^23p^4(^1D)4d\\ 3s^23p^5 - 3s^23p^4(^1D)4d\\ 3s^23p^5 - 3s^23p^4(^1D)4d \end{array}$	$\begin{array}{c} g^2 P^{\circ} - {}^2 D \\ g^2 P^{\circ} - {}^2 D \\ g^2 P^{\circ} - {}^2 P \\ g^2 P^{\circ} - {}^2 D \\ g^2 P^{\circ} - {}^2 S \end{array}$			271 241 241 241,93 271
	10 20	76.822 76.923 77.45 77.627 77.728	$\begin{array}{c} 15.6832 & - & 1317.39 \\ 15.6832 & - & 1315.69 \\ 15.6832 & - & 1306.68 \\ 0. & - & 1288.21 \\ 0. & - & 1286.54 \end{array}$	$\begin{array}{l} 3s^23p^5 \cdot 3s^23p^4(^1D)4d\\ 3s^23p^5 \cdot 3s^23p^4(^1D)4d\\ 3s^23p^5 \cdot 3s^23p^4(^1D)4d\\ 3s^23p^5 \cdot 3s^23p^4(^3P)4d\\ 3s^23p^5 \cdot 3s^23p^4(^3P)4d\\ 3s^23p^5 \cdot 3s^23p^4(^3P)4d \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P P	856 856 271 241 241
03	20 20 400	77.812 77.865 78.151 78.769 94.012	$\begin{array}{c} 0. & -1285.18 \\ 0. & -1284.27 \\ 15.6832 & -1295.26 \\ 15.6832 & -1285.18 \\ 0. & -1063.69 \end{array}$	$\begin{array}{l} 3s^23p^5 & -3s^23p^4(^3P)4d \\ 3s^32p^5 & 3s^23p^4(^3P)4d \\ 3s^23p^5 & -3s^23p^4(^3P)4d \\ 3s^23p^5 & -3s^23p^4(^3P)4d \\ 3s^23p^5 & -3s^23p^4(^3P)4d \\ 3s^23p^5 & -3s^23p^4(^4D)4s \end{array}$	$\begin{array}{c} g^2 P'' + {}^2 D \\ g^2 P'' + {}^2 D \\ g^2 P'' + {}^2 P \\ g^2 P'' + {}^2 D \\ g^2 P'' + {}^2 D \\ g^2 P'' + {}^2 D \end{array}$			241 241,93 241 241,93 182
02 03 02 02 01	100 300 400 200 300	95.338 95.374 96.122 96.788 97.122	$\begin{array}{c} 0. & \cdot \ 1048.90 \\ 15.6832 & \cdot \ 1064.19 \\ 0. & \cdot \ 1040.35 \\ 15.6832 & \cdot \ 1048.90 \\ 0. & \cdot \ 1029.63 \end{array}$	$\begin{array}{l} 3s^23p^5 \cdot 3s^23p^4(^3P)4s\\ 3s^23p^5 \cdot 3s^23p^4(^1D)4s\\ 3s^23p^2 \cdot 3s^23p^4(^3P)4s\\ 3s^23p^5 \cdot 3s^23p^4(^3P)4s\\ 3s^23p^5 \cdot 3s^23p^4(^3P)4s\\ 3s^23p^5 \cdot 3s^23p^4(^3P)4s \end{array}$	$g^{2}P^{o} - {}^{2}P \\ g^{2}P^{o} - {}^{2}D \\ g^{2}P^{o} - {}^{2}P \\ g^{2}P^{o} - {}^{2}P \\ g^{2}P^{o} - {}^{2}P \\ g^{2}P^{o} - {}^{4}P \end{cases}$	rateria-rateria-rate		182 182 182 182 182 182
02 01	10 10 15	97.591 97.838 100.026 101.733 101.846	$\begin{array}{c} 15.6832 & -1040.35 \\ 0. & -1022.10 \\ 368.7080 + B & -1388.44 + B \\ 426.765 + B & -1409.73 + B \\ 428.297 + B & -1410.17 + B \end{array}$	$\begin{array}{c} 3s^23p^5 & 3s^23p^4(^3P)4s\\ 3s^23p^5 & 3s^23p^4(^3P)4s\\ 3s^23p^4(^3P)3d & 3s^23p^4(^3P)4f\\ 3s^23p^4(^3P)3d & 3s^23p^4(^3P)4f\\ 3s^23p^4(^3P)3d & 3s^23p^4(^3P)4f\\ 3s^23p^4(^3P)3d & 3s^23p^4(^3P)4f \end{array}$	$\begin{array}{c} g^2 P^{\circ} \cdot {}^2 P \\ g^2 P^{\circ} \cdot {}^4 P \\ {}^4 D \cdot {}^4 F^{\circ} \\ {}^4 F \cdot {}^4 G^{\circ} \\ {}^4 F \cdot {}^4 G^{\circ} \end{array}$	Notes (and the second se		182 182 241,93 241 241

+	nei. int.	λ_{vac} (in A)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
		102.095	417.6500 + B - 1397 13 + B	3s23n4(3P)3d - 3s23n4(3P)4f	4F - 4C°	1 2 LI		241
		102.192	450.7527 + B - 1429.30 + B	$3s^23n^4(^1D)3d = 3s^23n^4(^1D)4f$	2 G 2 H			241
		102.348	4227931 + B - 139985 + B	$3s^23n^4(^3P)3d = 3s^23n^4(^3P)4f$	4F 4C°			241
Í	í I	102.829	511 77 - 1484 26	$3s^23n^4(^{1}S)3d = 3s^23n^4(^{1}S)4f$	² D 2F°	2 2		241
		103.164	440.8393 + B · 1410.17 + B	3s ² 3p ⁴ (³ P)3d - 3s ² 3p ⁴ (³ P)4f	${}^{2}F + {}^{2}G^{\circ}$	2 - 2 7 - 2 2 - 2		241
		103.319	521.30 - 1489.18	3s²3p⁴(¹S)3d - 3s²3p⁴(¹S)4f	$^{2}D - ^{2}F^{\circ}$	\$- 3	0	241
		103.724	452.73 - 1416.83	3s ² 3p ⁴ (³ P)3d - 3s ² 3p ⁴ (³ P)4f	² F - ² G ^o	5.7	, i	241
	1	104.221	450.7527 + B = 1410.17 + B	$3s^23p^4(^1D)3d - 3s^23p^4(^3P)4f$	${}^{2}G - {}^{2}G^{\circ}$	3.3	0	900
	i	104.248	476.70 - 1435.95	3s ² 3p ⁴ (¹ D)3d - 3s ² 3µ ⁴ (¹ D)4f	${}^{2}F - {}^{2}G^{2}$	5.7	ì	241
		104.638	$485.9800 + B \cdot 1441.65 + B$	3s²3p⁴(¹D)3d - 3s²3p⁴(¹D)4f	${}^{2}F - {}^{2}G^{\circ}$	7 - 2		241
		108.697	564.208 - 1484.26	$3s^2 3p^4 (^{3}P) 3d - 3s^2 3p^4 (^{1}S) 4f$	$^{2}P - ^{2}F^{\circ}$	3 - 2	Q	900
	i	109.160	572.964 - 1489.18	3s ² 3p ⁺ (³ P)3d - 3s ² 3p ⁴ (⁴ S)4f	$^{2}D - ^{2}F^{*}$	2 - 2	Q	900
		137.027	$388.7080 + B \cdot 1118.49 + B$	3s ² 3p ⁴ ('P)3d - 3s ² 3p ⁴ ('P)4p	*D - *P*	$\frac{7}{2} - \frac{5}{2}$		241
		139.868	$\begin{array}{c c} 450.7527 + B & 1165.71 + B \\ 443.90 & 1156.68 \end{array}$	3s ² 3p ⁴ (³ P)3d - 3s ² 3p ⁴ (³ P)4p 3s ² 3p ⁴ (³ P)3d - 3s ² 3p ⁴ (³ P)4p	² G - ² F° ⁴ P - ⁴ D°	2 - 2		241 241
		140.679	451.0997 + B 1161.09 + D	2.22.4(ID)21.2.22.4(ID)4	20 200	7 5		
		140.070	431.0627 + D - 1101.92 + D 495.0900 + D - 1179.94 + D	$3s^{2}9 \cdot 4(D) 2d - 3s^{2}9 \cdot 4(D) 4p$	2E 200	2 . 2		241
		170 58	11/0.04+D	3,22,5 2,22,4/30,93	r - "D" "2p∞ 2n	2 2 3		2491 044
	90	174 534	0 . 579 064	3.223n ⁵ , 2.222n ^{4/3} D)2.1	gr · · D g ² D ⁰ ² D	2 2 3		744 044 954
	50	175.266	15.6832 - 586.254	3s ² 3p ⁵ - 3s ² 3p ⁴ (³ P)3d	$g^2P^{\circ} - ^2D$	$\frac{2}{1}$ - $\frac{2}{3}$		944,856 944,856
	30	175.474	0 569.882	3s²3p ⁵ - 3s²3p⁴(³P)3d	g²P° - ²P	3.4		944.856
	80	177.243	0 564.208	3s ² 3p ⁵ - 3s ² 3v ⁴ (³ P)3d	$\mathbf{g}^2 \mathbf{P}^\circ - \mathbf{P}$	3.5		944.856
ļ		180.45	15.6832 - 569.882	$3s^23\mu^5 - 3s^23\mu^4(^{3}P)3d$	$g^2 P^\circ - {}^2 P$	Ĵ.Ĵ		260
	30	182.310	15.6832 - 564.208	$3s^23p^5 - 3s^23p^4(^{3}P)3d$	$g^2 P^\circ - {}^2 P$	Į į į		944.856
	60	184.542	0 541.880	$3s^23p^5 - 3s^23p^4(^1D)3d$	$g^2 P^\circ - {}^2S$	$\frac{5}{2} \cdot \frac{1}{2}$		944,856
	50	190.044	15.6832 - 541.880	$3s^23p^5 - 3s^23p^4(^1D)3d$	$g^2P^0 - {}^2S$	$\frac{1}{2} - \frac{1}{2}$		944,856
		195.399	0 511.77	$3s^23p^5 - 3s^23p^4(^1S)3d$	$\tilde{g}^2 P^\circ - ^2 D$	$\frac{3}{2} - \frac{3}{2}$		944
	30	201.556	15.6832 - 511.77	$3s^23p^5 - 3s^23p^4(^1S)3d$	$\tilde{g}^2 P^\circ \cdot {}^2 D$	$\frac{1}{2} - \frac{3}{2}$	1	944,856
	30	209.776	0 476.70	3s ² 3p ⁵ - 3s ² 3p ⁴ (¹ D)3d	$g^2P^\circ - {}^2F$	3 - 5	Q	944,856
	7	220.882	0 452.73	3s²3p ⁵ - 3s²3p⁴(³P)3d	$g^2P^\circ - {}^2F$	3 - 2	Q	944,923
	10	226.320	0 441.87	$3s^{2}3p^{5} - 3s^{2}3p^{4}(^{3}D)3d$	$g_{2D0}^2 - {}^2D_{4D}$	3-5	Q	923
		229.99	0 434.80	3s ² 3p ² - 3s ² 3p ⁴ (P)3d	g ² P ⁰ - 'P	2 - 2		944
	1	230.069	0 434.01		g"P" - "D	ž - ž	~	944
		234.330	1105.71 + B - 1592.4	$3s^{-}3p^{-}(1)4p - 3s^{-}3p^{-}(1)3s$	² F ³ - ² D	2-2	Q	944
		200.12	15.0832 - 434.01	3s*3p* → 3s*3p*(*D)3d	g-P D	2 - 2		944
		240.243 256.38	15.6832 - 431.93 0 - 390.010 + B	$3s^23p^5 - 3s^23p^4(^{1}D)3d$ $3s^23n^5 - 3s^23n^{4/3}P)3d$	$g^2 P^\circ - {}^2 P$	1 - 3 2 - 2 3 - 3	0	944 044
	45	257.262	$0 = 3887080 \pm B$	3e ² 3n ⁵ , 3e ² 3n ⁴ (³ P)3d	$g^2 P^0$, $4D$	2 2	ă I	023
	1	317 043	390 019 ± B - 705 429 ± B	3.23.4(3P)34 . 3.3.5(3P)34	40.4F°	3 3	Ŷ	746
	25	318.599	391.554+B - 705.429+B	3s ² 3p ⁴ (³ P)3d - 3s3p ⁵ (³ P [*])3d	4D - 4F°	$\frac{1}{2} - \frac{3}{2}$		746
	10	319.936	390.019+B - 702.584+B	3s²3p4(³P)3d - 3s3p5(³P°)3d	⁴ D - ⁴ F ^o	3.5		746
	60	321.766	388.7080 + B - 699.491 + B	3s ² 3p ⁴ (³ P)3d - 3s3p ⁵ (³ P")3d	⁴ D - ⁴ F ^o	5 - 7		746
)	324.71	388.7080 + B - 696.660 + B	3s ² 3p ⁴ (³ P)3d - 3s3p ⁵ (³ P'')3d	⁴ D - ⁴ F°	2.2	Q	437
	220	345.723	0 289.2488	3s ² 3p ⁵ - 3s3p ⁶	$g^2P^{\circ} - {}^2S$	3. ž	•	726
	1	354.824	417.6500 + B - 699.491 + B	$3s^23p^4(^{3}P)3d - 3s3p^5(^{3}P)3d$	⁴ F • ⁴ F°	9 - 7 2 - 2		746
	40	358.414	$417.6500 + B \cdot 696.660 + B$	$3s^23p^4(^{3}P)3d - 3s3p^5(^{3}P')3d$	⁴ F - ⁴ F°	9 - 9		746
	1	358.867	$426.765 + B \cdot 705.429 + B$	3s ² 3p ⁴ (³ P)3d - 3s3p ⁵ (³ P ^o)3d	⁴ F - ⁴ F°	2.2		746
	4	360.833	428.297 + B - 705.429 + B	3s ² 3p ⁴ (°P)3d - 3s3p ⁵ (°P°)3d	$^{+}F \cdot ^{+}F^{\circ}$	2 - 2		746
	10	361.409	422.7931 + B - 699.491 + B	$3s^{2}3p^{2}(^{\circ}P)3d - 3s3p^{2}(^{\circ}P')3d$	*F - *F°	2-2		746
	10	302.547	420.705 + B - 702.584 + B	3s*3p*(*P)3d - 3s3p*(*P*)3d	*F - *F°	2-2		746
	1	364.589 365 144	428.297 + B - 702.584 + B 422.7931 + B - 696.660 + B	3s ² 3p ⁴ (³ P)3d - 3s3p ⁵ (³ P ⁰)3d 3s ² 3p ⁴ (³ P)3d - 3s3p ⁵ (³ P ⁰)3d	⁴ F - ⁴ F° 4F 4₽0	3 - 5 7 - 9		746 746
	Ę	365 543	15 6832 - 280 2488	3°55°2 - 3°270	r - r ,,2p₀ 2c			796
1	4	366 667	426 765 ± B 600 401 ± B	3. 23. 4(3P) 34 2. 3. 5/3D 4 2.	81 - 3 4F 4F0	5 7	1	746
	7	1028.04	388.7080+B - 485.9800+B	$3s^23p^4(^{3}P)3d \cdot 3s^23p^4(^{1}D)3d$	4D - 2F	$\frac{2}{2} - \frac{2}{2}$	F,P	746
	2	1463.50	417.6500 + B - 485.9800 + B	3s ² 3p ⁴ (³ P)3d - 3s ² 3p ⁴ (¹ D)3d	⁴F - ² F	3-3	F	940
	1	1582.60	422.7931+B 485.9800+B	$3s^{2}3p^{4}(^{3}P)3d \cdot 3s^{2}3p^{4}(^{1}D)3d$	${}^{4}F - {}^{2}F$	2.3	F	940
	2	1603.21	388.7080 + B - 451.0827 + B	3s ² 3p ⁴ (³ P)3d 3s ² 3p ⁴ (¹ D)3d	⁴D - ² G	5-7	F	442.940
1	0	1611.70	388.7080 + B - 450.7527 + B	$3s^23p^4(^{3}P)3d + 3s^23p^4(^{1}D)3d$	⁴D - 2G	7 - 2	F	442,940
		1010 05	1 200 7000 D 440 0202 D	2 22 4/3m 2 1 2 22 4/3m 2 1	40. 20	1 7 7 1		440.040

farme.

per la

$\label{eq:IRON XI (Fe^{+10}), Z = 26} \\ \mbox{Ground State } 1s^22s^22p^63s^23p^4\ ({}^3P_2)\ (16\ electrons) \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential Potential 2 341 000 cm^{-1}; 290.3 eV} \\ \mbox{Ionization Potential P$

: Multiplet	Re]. Int.	: λ	Levels (in 10^3 cm^3)	Configurations 1	Terms J - J Notes	References
. •	10 80	71.029 72.166 72.310 72.635 77.00	$\begin{array}{c} 12.6678 + 1420.68 \\ 37.7427 + 1423.44 \\ 37.7427 + 1420.68 \\ 0. + 1376.75 \\ 80.8305 + 1379.5 \end{array}$	$\begin{array}{l} 3s^2 3p^4 \cdot 3s^2 3p^5 (^2D^{\circ}) 4d \\ 3s^2 3p^4 \cdot 3s^2 3p^4 (^2D^{\circ}) 4d \\ 3s^2 3p^4 \cdot 3s^2 3p^4 (^2D^{\circ}) 4d \\ 3s^2 3p^4 \cdot 3s^2 3p^3 (^4S^{\circ}) 4d \\ 3s^2 3p^4 \cdot 3s^2 3p^4 (^3S^{\circ}) 4d \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241 241 241 241,856 271
02 02 02	$ \begin{array}{r} 10 \\ 100 \\ 200 \\ 120 \\ 10 \end{array} $	86.149 86.513 86.772 87.025 87.995	$\begin{array}{c} 37.7427 + 1193.64 \\ 0. + 1152.45 \\ 0. + 1149.10 \\ 12.6678 + 1149.10 \end{array}$	$\begin{array}{l} 3s^2 3p^4 - 3s^2 3p^3 (^2P^{*}) 4s \\ 3s^2 3p^4 - 3s^2 3p^3 (^2D^{*}) 4s \\ 3s^2 3p^4 - 3s^2 3p^3 (^2D^{*}) 4s \\ 3s^2 3p^4 - 3s^2 3p^3 (^2D^{*}) 4s \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	181 181 181 181 181
02 02 02	$ 10 \\ 10 \\ 200 \\ 100 \\ 10 $	88.029 88.167 89.104 89.185 89.703	$\begin{array}{c} 12.6678 + 1148.58 \\ 14.3073 + 1148.58 \\ 37.7427 + 1160.03 \\ 0 + 1121.260 \\ 37.7427 + 1152.45 \end{array}$	$\begin{array}{l} 3s^2 3p^4 \cdot 3s^2 3p^{42} b^{\prime\prime})^{4s} \\ 3s^2 3p^4 \cdot 3s^2 3p^{4\prime} l^{\prime\prime} b^{\prime\prime})^{4s} \\ 3s^2 3p^4 \cdot 3s^2 3p^{4\prime} l^{\prime\prime} b^{\prime\prime})^{4s} \\ 3s^2 3p^5 \cdot 3s^2 3p^{4\prime} l^{\prime\prime} b^{\prime\prime})^{4s} \\ 3s^2 3p^4 \cdot 3s^2 3p^{4\prime} l^{\prime\prime} b^{\prime\prime})^{4s} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	181 18] 181 181 93
01 01	10 100 10	89.771 90.205 90.345 91.394 91.472	12.6678 • 1121.260 14.3073 • 1121.260 428.6 + Y • 1522.76 + Y 431.9 + Y • 1525.13 + Y	$\begin{array}{r} 3s^2 3p^4 - 3s^2 3p^3 ({}^4S') 4s \\ 3s^2 3p^4 - 3s^2 3p^3 ({}^4S') 4s \\ 3s^2 3p^3 ({}^2D') 3d - 3s^2 3p^3 ({}^2D') 4f \\ 3s^2 3p^3 ({}^2D') 3d - 3s^2 3p^3 ({}^2D') 4f \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	181 181 181 241 241
		91.63 91.733 92.81 92.87 93.018	$\begin{array}{c} 394.8+Z-1486.10+Z\\ 396.0+Z-1486.12+Z\\ 453.8+W-1531.30+W\\ 456.2+W-1533.00+W\\ 490.3+S-1565.36+S \end{array}$	$\begin{array}{l} 3s^2 3p^3(^{+}S^{*})3d - 3s^2 3p^3(^{+}S^{*})4f \\ 3s^2 3p^3(^{+}S^{*})3d - 3s^2 3p^3(^{+}S^{*})4f \\ 3s^2 3p^3(^{+}D^{*})3d - 3s^2 3p^3(^{+}D^{*})4f \\ 3s^2 3p^3(^{+}C^{*})3d - 3s^2 3p^3(^{+}D^{*})4f \\ 3s^2 3p^3(^{+}C^{*})3d - 3s^2 3p^3(^{+}D^{*})4f \end{array}$		241 241 241 241 241 241
		93.433 121.419 121.747 123.470 123.504	$\begin{array}{c} 462.2+ U & + 1532.49 + U \\ 396.0+ Z & + 1219.59 + Z \\ 394.8+ Z & + 1216.18 + Z \\ 453.8+ W & + 1263.71 + W \\ 456.2+ W & + 1265.89 + W \end{array}$	$\begin{array}{l} 3s^2 3p^4 (^2D'') 3d &- 3s^2 3p^4 (^2D'') 4f \\ 3s^2 3p^4 (^8C'') 3d &- 3s^2 3p^3 (^8C'') 4p \\ 3s^2 3p^3 (^8C'') 3d &- 3s^2 3p^3 (^8C'') 4p \\ 3s^2 3p^3 (^2D'') 3d &- 3s^2 3p^3 (^2D'') 4p \\ 3s^2 3p^3 (^2D'') 3d &- 3s^2 3p^3 (^2D'') 4p \\ 3s^2 3p^3 (^2D'') 3d &- 3s^2 3p^3 (^2D'') 4p \end{array}$		241 241 241 241 241 241
		123.572 123.822 124.725 176.620	$\begin{array}{c} 488.1 + \mathrm{S} + 1297.34 + \mathrm{S} \\ 451.9 + \mathrm{W} + 1259.51 + \mathrm{W} \\ 462.2 + \mathrm{U} + 1263.96 + \mathrm{U} \\ 12.6678 + 578.87 \\ 0. + 561.601 \end{array}$	$\begin{array}{c} 3s^2 3p^4 (^2 \mathrm{P}^{\mathrm{o}}) 3d &- 3s^2 3p^3 (^2 \mathrm{P}^{\mathrm{o}}) 4p \\ 3s^2 3p^4 (^2 \mathrm{D}^{\mathrm{o}}) 3d &- 3s^2 3p^4 (^2 \mathrm{D}^{\mathrm{o}}) 4p \\ 3s^2 3p^4 (^2 \mathrm{D}^{\mathrm{o}}) 3d &- 3s^2 3p^4 (^2 \mathrm{D}^{\mathrm{o}}) 4p \\ 3s^2 3p^4 &- 3s^2 3p^4 (^2 \mathrm{D}^{\mathrm{o}}) 3d \\ 3s^2 3p^4 &- 3s^2 3p^4 (^2 \mathrm{S}^{\mathrm{o}}) 3d \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	241 241 241 944 944,856
	$40 \\ 40 \\ 90 \\ 30 \\ 40 \\ 60$	179.762 180.407 180.600 181.140 182.173	$\begin{array}{r} 37.7427 - 594.04 \\ 0. & 554.302 \\ 12.6678 & 566.370 \\ 14.3073 & 566.370 \\ 12.6678 & 561.601 \end{array}$	$\begin{array}{l} 3s^23p^4 + 3s^23p^3(^2D')3d\\ 3s^23p^4 + 3s^23p^4(^2S')3d\\ 3s^23p^4 + 3s^23p^3(^{1}S'')3d\\ 3s^23p^4 + 3s^23p^3(^{1}S'')3d\\ 3s^23p^4 + 3s^23p^3(^{1}S'')3d\\ 3s^23p^4 + 3s^23p^3(^{1}S'')3d \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 944,856\\ 944,856\\ 944,856\\ 944,856\\ 944,856\\ 944,856\end{array}$
	30 70	184.41 184.70 184.800 187.446 188.219	$\begin{array}{c} 80.8305 - 623.08 \\ 0. + 541.41 \\ 37.7427 + 578.87 \\ 0. + 533.46 \\ 0. + 531.294 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	944 375 944,856 944 944
	30 30 30 30	189.017 189.129 189.735 189.940 192.020	$\begin{array}{c} 12.6678 - 541.72 \\ 12.6678 - 541.41 \\ 14.3073 - 541.41 \\ 0 526.48 \\ 12.6678 - 533.46 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 944,856\\ 944,856\\ 944,856\\ 944,856\\ 944,856\\ 944\end{array}$
	20 50	192.641 192.819 198.549 201.575 201.737	$\begin{array}{c} 14.3073 - 533.46 \\ 12.6678 - 531.294 \\ 37.7427 - 541.41 \\ 0 496.09 \\ 37.7427 - 533.46 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	944,856 944,856 944 944 944 944
	40 20 160	$\begin{array}{c} 224.39\\ 308.534\\ 341.113\\ 349.046\\ 352.661\end{array}$	$\begin{array}{c} 80.8305 + 526.48 \\ 37.7427 + 361.857 \\ 0 + 293.158 \\ 12.6678 + 299.163 \\ 0 + 283.558 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	375 726 726 726 726

Multiplet	Rel. Int.	λ _{vsc} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
	1 5 20 20	355.837 356.519 358.621 369.154 1237.2	80.8305 - 361.857 12.6678 - 293.158 14.3073 - 293.158 12.6678 - 283.558 0 80.8305	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} {}^{1}S - {}^{1}P^{a} \\ g^{3}P - {}^{3}P^{a} \\ g^{3}P - {}^{3}P^{a} \\ g^{3}P - {}^{3}P^{a} \\ g^{3}P - {}^{3}S \end{array} $	0 - 1 1 - 1 0 - 1 1 - 2 2 - 0 F,P	726 726 726 726 375,940
	6	1467.08	12.6678 - 80.8305	$3s^23p^4 - 3s^23p^4$	g ³ P - 'S	1-0 F	940

$$\begin{split} & \text{IRON XII (Fe^{+11}), Z = 26} \\ & \text{Ground State } 1s^2 2s^2 2p^6 3s^2 3p^3 \left({}^4\text{S}^\circ_{_{3/2}} \right) (15 \text{ electrons}) \\ & \text{Ionization Potential } [2 \ 668 \ 000] \text{ cm}^3; [330.8] \text{ eV} \end{split}$$

Multiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
60	63.56	46.8891 - 1619 3	$3s^23p^3 - 3s^23p^2(^1S)4d$	$^{2}D^{*}$, ^{2}D	\$.5		271
40	65.608	41.5551 - 1565.75	$3s^23u^3 - 3s^23n^2(^1D)4d$	${}^{2}\widetilde{\mathbf{D}}^{\mu}$, ${}^{2}\widetilde{\mathbf{P}}$	1 3 . 3	P	271
	65.805	46.0891 - 1565.75	$3s^23n^3 - 3s^23n^2(^1D)4d$	${}^{2}0^{\circ} \cdot {}^{2}P$	5.5	•	241
	65.905	0 1517.34	$3s^2 3o^3 - 3s^2 3o^2 (^3P) 4d$	g¹S° - ⁴P	3.5		241
10	66.047	$0. \cdot 1514.07$	$3s^23p^3 - 3s^23p^2(^3P)4d$	g'S' - 'F	- ž		241,93
	66.225	41.5551 - 1551.45	$3s^23p^3 - 3s^23p^2(^1D)4d$	${}^{2}D' - {}^{2}F$	1 2 - 5		241
40	66.297	0 1508.36	$3s^23p^3 \cdot 3s^23p^2(^{3}P)4d$	g⁴S° - ⁴P	3 - 2		241,271
	66.43	46.0891 - 1551.45	$3s^23p^3 - 3s^23p^2(^1D)4d$	$^{\circ}^{2}$ D° - 2 F	2 - 2	Q	241
	66.526	46.0891 - 1549.28	$3s^23p^3 - 3s^23p^2(^1D)4d$	${}^{2}D' - {}^{2}F$	2 - 2		241
	66.960	41.5551 - 1534.99	$3s^23p^3 - 3s^23p^2(^3P)4d$	${}^{2}D' + {}^{2}D$	2 - 2		241
· · · · ·	67.164	80.5147 - 1569.41	$3s_a^2 3p_a^3 + 3s_a^2 3p_a^2 (^1_{a}D)4d$	${}^{2}P^{n} - {}^{2}S$	$\frac{3}{2} - \frac{1}{2}$		241
	67.291	46.0891 - 1532.19	3s ² 3p ³ - 3s ² 3p ² (³ P)4d	$D^{\circ} - D^{\circ}$	2 - 2		241
	67.702	46.0891 - 1523.17	$35^2 3p^3 - 35^2 3p^2(^3P)4d$	$^{2}D^{2} - ^{2}F$	2 - 2		241
20	67.78	41.5551 - 1517.34	35°3p° - 36°3p°(°P)4d	~0° - *P	2 - 2	Q	271
	67.821	41.5551 - 1516.03	3s ² 3p ³ · 3s ² 3p ² ('P)4d	2D° - 2F	2 - 2		241
	67.972	80.5147 - 1551.64	$3s^23p^3 - 3s^23p^2(^1D)4d$	${}^{2}P^{\circ} - {}^{2}D$	3 - 5	[241
	68.382	74.1081 - 1536.48	$3s^23\rho^3 - 3s^23\rho^2(^3P)4d$	${}^{2}P^{o} - {}^{2}D$	2 - 2		241
100	69.60	80.5147 - 1517.34	$3s^2 3p^3 - 3s^2 3p^2 (^3P) 4d$	²₽º - ⁴P	$\frac{3}{2} - \frac{3}{2}$	Q	271
60	70.01	80.5147 - 1508.36	$3s^23p^3 + 3s^23p^2(^3P)4d$	² P ^o - ¹ P	2 - 2	Q	271
60	77,58	0 1289.06	$3s^23p^3 - 3s^23p^2('D)4s$	$g^4S^\circ - {}^2D$	2 - 2	Q	271
30	79.488	0 1258.05	$3s_{2}^{2}3p_{1}^{3} + 3s_{2}^{2}3p_{1}^{2}(_{1}^{3}P)4s$	$g^4S^6 - {}^4P$	3 - 5		241,93
15	80.022	0 1249.66	$3s^23p^3 - 3s^23p^2(^{3}P)4s$	g*S - *P	2 - 2		241,93
	80.160	41.5551 - 1289.06	$3s^23\rho^3 - 3s^23\rho^2(D)4s$	${}^{1}D^{n} - {}^{2}D$	2 - 2		241
120	80.23	41.5551 - 1287.70	$3s^23p^3 - 3s^23p^2(^1D)4s$	${}^{2}D^{3} - {}^{2}D$	2 - 2	; Q	271
35	80.510	0 1242.20	$3s^23p^3 + 3s^23p^2(^{3}P)4s$	g⁴S° - ⁴P	2 - 2		241,93
80	81.651	41.5551 - 1266.38	$3s_1^2 3p_1^3 - 3s_1^2 3p_1^2 (^3P) 4s_1^3$	${}^{2}D^{2} - {}^{2}P$	$\frac{3}{2} - \frac{3}{2}$	ÍÍÍ	241,812
93	81.943	46.0891 - 1266.38	$3s_{2}^{2}3p_{1}^{3} - 3s_{2}^{2}3p_{1}^{2}(^{2}P)4s$	$^{2}D^{\circ} - ^{2}P$	2 - 2		241,812
	82.226	41.5551 - 1257.72	$3s^23p^3 + 3s^23p^2(^3P)4s$	$^{2}D^{\circ} - ^{2}P$	2 . 2		241
	82.744	80.5147 - 1289.06	3s ² 3p ³ - 3s ² 3p ² ('D)4s	${}^{2}P^{*} - {}^{2}D$	3.5		241
160	82.837	80.5147 - 1287.70	3s ² 3p ³ - 3s ² 3p ² ('D)4s	² P ^o - ² D	2 - 2		241,271
4	84.456	427.4+B - 1611.45+B	$3s^23p^2(^{3}P)3d + 3s^23p^2(^{3}P)4f$	${}^{4}F - {}^{4}G^{0}$	$\frac{3}{2} - \frac{5}{2}$	P	241,93
7	84.490	437.2+B - 1620.77+B	$3s^23p^2(^{3}P)3d - 3s^23p^2(^{3}P)4f$	⁴ F - ⁴ G°	2 - 2	P	241,93
10	84.517	444.3 + B - 1627.49 + B	$3s^23p^2(^{3}P)3d - 3s^23p^2(^{3}P)4f$	⁺F • ⁴G°	2 - 1	P	241,93
5	84.533	431.4+B - 1614.37+B	$3s^{2}3p^{2}(^{3}P)3d - 3s^{2}3p^{2}(^{3}P)4f$	⁴ F - ⁴ G°	2 - 2	P	241,93
	84.768	448.0+B - 1627.69+B	3s²3p²(°P)3d - 3s²3p²(°P)4f	${}^{\circ}\mathbf{D} = {}^{\circ}\mathbf{F}^{\circ}$	2 - 2		241
	84.85	453.4 + B - 1632.00 + B	$3s^23p^2(^{3}P)3d + 3s^23p^2(^{3}P)4f$	${}^{4}D - {}^{4}F$	2 2		241
	84.86	443.8+B - 1622.2+B	$3s^{2}3p^{2}(D)3d - 3s^{2}3p^{2}(P)4f$	2F - 2G	2 - 2	1 1	241
	85.14	494.9 + B - 1669.40 + B	$3s^{*}3p^{2}(D)3d - 3s^{2}3p^{2}(D)4f$	${}^{2}G - {}^{2}H^{\circ}$	2 - 2		241
50	85.477	498.2 + B - 1668.11 + B	$3s^{*}3p^{*}(10)3d + 3s^{*}3p^{*}(10)4f$	² G - ² H ⁰	1 2 - 2		241,93
	85.669	603.95 - 1771.21	35*3p*(*P)3d - 35*3p*(*S)4f	*D - *F*	2 - 2		241
	108.440	444.3 + B - 1366.47 + B	$3s^2 3p^2 (^{3}P) 3d - 3s^2 3p^2 (^{3}P) 4p$	⁴ F - ⁴ D"	$\frac{2}{2} - \frac{7}{2}$		241
	108.605	437.2+B - 1357.97+B	3s^3p ² (°P)3d - 3s ² 3p ² (°P)4p	${}^{4}\mathbf{F} \cdot {}^{4}\mathbf{D}^{6}$	2 - 2		241
	108.862	431.4 + B - 1349.99 + B	3s'3p'('P)3d - 3s ² 3p ² ('P)4p	°F - ℃	2 2]	241
	109.015	448.0 + B + 1365.30 + B	3s*3p*('P)3d - 3s*3p*('P)4p	*D - *P*	2 - 2		241
	109.509	403.3+B • 1375.47+B	3s*3p*(*D)3d - 3s*3p*(*D)4p	*F - *D"	2 2 2		241

D	100
---	-----

Multiplet Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
20	109.712 110.591 110.732 178.725 179.265	$\begin{array}{c} 453.4+B&\cdot 1364.88+B\\ 498.2+B&\cdot 1402.43+B\\ 494.9+B&\cdot 1397.98+B\\ 46.0891&\cdot 605.54\\ 46.0891&\cdot 603.95\end{array}$	$\begin{array}{r} 3s^23p^2({}^3P)3d & - 3s^23p^2({}^3P)4p\\ 3s^23p^2({}^1D)3d & - 3s^23p^2({}^1D)4p\\ 3s^23p^2({}^1D)3d & - 3s^23p^2({}^1D)4p\\ 3s^23p^2({}^3D)3d & - 3s^23p^2({}^2P)3d\\ 3s^23p^3 & - 3s^23p^2({}^2P)3d\\ 3s^23p^3 & - 3s^23p^2({}^2P)3d \end{array}$	${}^{4}D - {}^{2}D''$ ${}^{2}G - {}^{2}F''$ ${}^{2}G - {}^{2}F''$ ${}^{2}D'' - {}^{2}D$ ${}^{2}D'' - {}^{2}D$	100-100-100-100-100-100-100-100-100-100	241 241 241 856 943
17	186.856 186.880 188.170 188.45 189.561	41.5551 - 576.73 46.0891 - 581.19 74.1081 - 605.54 46.0891 - 576.73	3s ² 3p ³ - 3s ² 3p ² (³ P)3d 3s ² 3p ³ - 3s ² 3p ² (² P)3d 3s ² 3p ³ - 3s ² 3p ² (² P)3d 3s ² 3p ³ - 3s ² 3p ² (³ P)3d	² D ^o - ² F ² D ^o - ² F ² P ^o - ² O ² D ^o - ² F	1201-1201-1201-1201-1201-1201-1201-1201	943 943,923 943 943 943 943
20 25 60	190.06 190.459 191.045 192.394 193.509	$\begin{array}{c} 0. & -526.14 \\ 80.5147 & -605.54 \\ 80.5147 & -603.95 \\ 0. & -519.766 \\ 0. & -516.772 \end{array}$	3s ² 3p ³ - 3s ² 3p ² (¹ S)3d 3s ² 3p ³ - 3s ² 3p ² (¹ P)3d 3s ² 3p ³ - 3s ² 3p ² (² P)3d 3s ² 3p ³ - 3s ² 3p ² (² P)3d 3s ² 3p ³ - 3s ² 3p ² (⁴ P)3d	$\begin{array}{c} g^4 S^{o} - {}^2 D \\ {}^2 P^{o} - {}^2 D \\ {}^2 P^{o} - {}^2 D \\ g^4 S^{o} - {}^4 P \\ g^4 S^{o} - {}^4 P \\ g^4 S^{o} - {}^4 P \end{array}$		943 943 943,856 943,923 943,923
90	194.61 194.920 195.119 195.19 196.640	$\begin{array}{c} 0. & 513.84 \\ 41.5551 & 554.60 \\ 0. & 512.508 \\ 41.5551 & 553.90 \\ 46.0891 & 554.60 \end{array}$	$\begin{array}{l} 3s^2 3p^3 & 3s^2 3p^2 ({}^3P) 3d \\ 3s^2 3p^3 & 3s^2 3p^2 ({}^3D) 3d \\ 3s^2 3p^3 & 3s^2 3p^2 ({}^3P) 3d \\ 3s^2 3p^3 & 3s^2 3p^2 ({}^3P) 3d \\ 3s^2 3p^3 & 3s^2 3p^2 ({}^3D) 3d \\ 3s^2 3p^3 & 3s^2 3p^2 ({}^4D) 3d \end{array}$	$\begin{array}{c} g^4S^\circ - {}^2P \\ {}^2D^\circ - {}^2D \\ g^4S^\circ - {}^4P \\ {}^2D^\circ - {}^2D \\ {}^2D^\circ - {}^2D \\ {}^2D^\circ - {}^2D \end{array}$		943 943 943,923 943 943,923
200	196.923 198.58 199.26 200.356 201.121	$\begin{array}{c} 46.0891 & -553.90 \\ 74.1081 & -577.72 \\ 0. & -501.80 \\ 80.5147 & -579.62 \\ 80.5147 & -577.72 \end{array}$	$\begin{array}{r} 3s^23p^3-3s^23p^2({}^1D)3d\\ 3s^23p^3-3s^23p^2({}^1D)3d\\ 3s^23p^3\cdot3s^23p^2({}^2P)3d\\ 3s^23p^3\cdot3s^23p^2({}^2P)3d\\ 3s^23p^3\cdot3s^23p^2({}^1D)3d\\ 3s^23p^3\cdot3s^23p^2({}^1D)3d \end{array}$	$\begin{array}{c} {}^{2}D^{\circ}-{}^{2}D\\ {}^{2}P^{\circ}-{}^{2}P\\ {}^{2}g^{4}S^{\circ}-{}^{2}P\\ {}^{2}P^{\circ}-{}^{2}S\\ {}^{2}P^{\circ}-{}^{2}S\\ {}^{2}P^{\circ}-{}^{2}P\end{array}$	97-99199 97-9919 97-9	943 463 814 943 943
	201.413 201.540 202.090 203.272 204.743	$\begin{array}{r} 41.5551 \cdot 538.04 \\ 80.5147 \cdot 576.73 \\ 74.1081 \cdot 568.93 \\ 46.0891 \cdot 538.04 \\ 80.5147 \cdot 568.93 \end{array}$	3s²3p³ - 3s²3p²('S)3d 3s²3p³ - 3s²3p²('P)3d 3s²3p³ - 3s²3p²('D)3d 3s²3p³ - 3s²3p²('D)3d 3s²3p³ - 3s²3p²('S)3d 3s²3p³ - 3s²3p²('D)3d	$\begin{array}{c} {}^{2}D^{\circ} - {}^{2}D \\ {}^{2}P^{\circ} - {}^{2}F \\ {}^{2}P^{\circ} - {}^{2}P \\ {}^{2}D^{\circ} - {}^{2}D \\ {}^{2}D^{\circ} - {}^{2}D \\ {}^{2}P^{\circ} - {}^{2}P \end{array}$	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	943 923 943 943 943 943
30 20 20	206.368 208.318 208.410 209.14 210.932	$\begin{array}{r} 41.5551 \cdot 526.14 \\ 46.0891 \cdot 526.14 \\ 74.1081 \cdot 553.90 \\ 41.5551 \cdot 519.766 \\ 80.5147 \cdot 554.60 \end{array}$	$3s^23p^3 - 3s^23p^2(^1S)3d$ $3s^23p^3 - 3s^23p^2(^1S)3d$ $3s^23p^3 - 3s^23p^2(^1D)3d$ $3s^23p^3 - 3s^23p^2(^1D)3d$ $3s^23p^3 - 3s^23p^2(^1D)3d$ $3s^23p^3 - 3s^23p^2(^1D)3d$	$\begin{array}{c} {}^{2}D^{\circ} - {}^{2}D \\ {}^{2}D^{\circ} - {}^{2}D \\ {}^{2}P^{\circ} - {}^{2}D \\ {}^{2}P^{\circ} - {}^{2}D \\ {}^{2}D^{\circ} - {}^{4}P \\ {}^{2}P^{\circ} - {}^{2}D \end{array}$	7 - 32 7 7 7 7 7 7 7 7	943,856 943,856 943,856 1076 943
30 20 30 11	211.738 214.415 217.271 218.562 219.438	$\begin{array}{r} 41.5551 \cdot 513.84 \\ 46.0891 \cdot 512.508 \\ 41.5551 \cdot 501.80 \\ 80.5147 \cdot 538.04 \\ 46.0891 \cdot 501.80 \end{array}$	$\begin{array}{l} 3s^23p^3 & 3s^23p^2({}^3P){}^3d\\ 3s^23p^3 & 3s^23p^2({}^3P){}^3d\\ 3s^23p^3 & 3s^23p^2({}^3P){}^3d\\ 3s^23p^3 & 3s^23p^2({}^3P){}^3d\\ 3s^23p^3 & 3s^23p^2({}^3P){}^3d\\ 3s^23p^3 & 3s^23p^2({}^3P){}^3d \end{array}$	${}^{1} \qquad {}^{2}D^{0} - {}^{2}P \\ {}^{2}D^{0} - {}^{4}P \\ {}^{2}D^{0} - {}^{2}P \\ {}^{2}P^{0} - {}^{2}D \\ {}^{2}P^{0} - {}^{2}P \\ {}^{2}D^{0} - {}^{2}P$		943,856 93 943,856 943 943,923
8	230.79 283.64 287.23 291.010 335.06	80.5147 - 513.84 41.5551 - 394.12 41.5551 - 389.72 46.0891 - 389.72 41.5551 - 340.01	3s ² 3p ⁴ - 3s ² 3p ² (³ P)3d 3s ² 3p ³ - 3s3p ⁴ 3s ² 3p ³ - 3s3p ⁴ 3s ² 3p ³ - 3s3p ⁴ 3s ² 3p ³ - 3s3p ⁴ 3s ² 3p ³ - 3s3p ⁴	${}^{2}P^{a} - {}^{2}P \\ {}^{2}D^{a} - {}^{2}P \\ {}^{2}D^{a} - {}^{2}P \\ {}^{2}D^{a} - {}^{2}P \\ {}^{2}D^{a} - {}^{2}D^{a} - {}^{2}D \\ {}^{2}D^{a} - {}^{2}D^{a$	21-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	943 943 437 943,923 943
8 20 30 40 150	338.263 346.852 352.107 364.468 382.83	$\begin{array}{c} 46.0891 & 341.73 \\ 0. & 288.307 \\ 0. & 284.005 \\ 0. & 274.372 \\ 80.5147 & 341.73 \end{array}$	$3s^23p^3 \cdot 3s3p^4 3s^23p^3 \cdot 3s3p^4 3s^23p^3 \cdot 3s3p^4 3s^23p^4 \cdot 3s3p^4 3s^23p^4 \cdot 3s3p^4 3s^23p^3 \cdot 3s3p^4$	$\begin{array}{c} {}^{2}D^{0}-{}^{2}D\\ g^{4}S^{0}-{}^{4}P\\ g^{4}S^{0}-{}^{4}P\\ g^{4}S^{0}-{}^{4}P\\ g^{4}S^{0}-{}^{4}P\\ {}^{2}P^{0}-{}^{2}D \end{array}$	1	943,923 943,856 943,856 943,856 943,856 943,437
14 8	$1242.03 \\ 1349.38$	0 80.5147 0 74.1081	$\frac{3s^23p^3}{3s^23p^4} \cdot \frac{3s^23p^3}{3s^23p^4}$	$\begin{array}{c}g^4S^n+{}^2P^n\\g^4S^n+{}^2P^n\end{array}$	$\frac{3}{2} - \frac{3}{2}$ F $\frac{3}{2} - \frac{3}{2}$ F	940 940

, eren

der.

f.

$\label{eq:IRON XIII (Fe^{+12}), Z = 26} \\ \mbox{Ground State $1s^22s^22p^63s^23p^2$ (3P_0) (14 electrons)} \\ \mbox{Ionization Potential [2 912 000] cm$^-1$; [361.0] eV} \\ \end{tabular}$

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	60 60	61.659 61.876 62.099 62.354 62.387	$9.3025 \cdot 1619.6$ $0. \cdot 1603.75$ $48.0691 \cdot 1650.62$	3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4d	$g^{3}P - {}^{3}P^{\circ}$ $g^{3}P - {}^{3}D^{\circ}$ $g^{1}D - {}^{1}P^{\circ}$	$1 \cdot 0$ 0 - 1 2 - 1	Q Q Q	241 241 241,271,970 241,271,970 241
	100	62.466 62.694 62.72 62.963 63.188	$\begin{array}{c} 18.5610 & \cdot 1619.43 \\ 9.3025 & \cdot 1604.22 \\ 9.3025 & \cdot 1603.75 \\ 18.5610 & \cdot 1606.79 \\ 48.0691 & \cdot 1630.65 \end{array}$	3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4d	$\begin{array}{c} g^{3}P - {}^{3}F^{\circ} \\ g^{3}P - {}^{3}D^{\circ} \\ g^{3}P - {}^{3}D^{\circ} \\ g^{3}P - {}^{3}D^{\circ} \\ g^{3}P - {}^{3}D^{\circ} \\ {}^{1}D - {}^{1}F^{\circ} \end{array}$	2 - 3 1 - 2 1 - 1 2 - 3 2 - 3	Q Q	241,970 241,271 970 970 970
	92 25	64.139 74.327 74.629 74.845 75.241	91.5102 - 1650.62 9.3025 - 1354.68 362.33 - 1702.30 + K 18.5610 - 1354.68	3s ² 3p ² - 3s ² 3p4d 3s ² 3p ² - 3s ² 3p4s 3s3p ³ - 3s ² 3p4f 3s ² 3p ² - 3s ² 3p4s	${}^{1}S - {}^{1}P^{n}$ $g^{3}P - {}^{3}P^{n}$ ${}^{1}D^{n} - {}^{3}C$ $g^{3}P - {}^{3}P^{n}$	0 - 1 1 - 2 2 - 3 2 - 2	Q	970 241,812 970 241,856 970
	93 20 80 20	75.892 76.117 78.462 78.56 78.770	9.3025 · 1327.2 48.0691 · 1361.83 446.9+K · 1721.40+K 429.4+K · 1702.30+K 436.4+K · 1705.92+K	3s ² 3p ² - 3s ² 3p4s 3s ² 3p ² - 3s ² 3p4s 3s ² 3p3d - 3s ² 3p4f 3s ² 3p3d - 3s ² 3p4f 3s ² 3p3d - 3s ² 3p4f	g ³ P - ³ P° ¹ D - ¹ P° ³ F' - ³ G ³ F° - ³ G ³ F° - ³ G	$1 \cdot 0$ $2 \cdot 1$ 4 - 5 $2 \cdot 3$ $3 \cdot 4$		241,812 241,93 241,271 241 241,93
		81.154 82.010 84.275 85.461 98.128	503.34 - 1735.57 509.250 - 1728.61 556.91 - 1743.46 570.715 - 1740.84 446.9+K - 1466.00+K	3s ² 3p3d - 3s ² 3p4f 3s ² 3p3d - 3s ² 3p4f 3s ² 3p2d - 3s ² 3p4f 3s ² 3p3d - 3s ² 3p4f 3s ² 3p3d - 3s ² 3p4f	³ P ^o - ³ D ³ D ^o - ³ F ¹ F ^o - ¹ C ¹ P ^o - ¹ D ³ F ^o - ³ D	0 - 1 2 - 3 3 - 4 1 - 2 4 - 3	Q Q	970 970 241 970 241
	50	98.387 98.523 98.826 107.384 196.525	$\begin{array}{c} 498.87 \cdot 1515.26 \\ 436.4+K \cdot 1451.39+K \\ 429.4+K \cdot 1441.28+K \\ 556.91 \cdot 1488.11 \\ 48.0691 \cdot 556.91 \end{array}$	3s ² 3p3d - 3s ² 3p4p 3s ² 3p3d - 3s ² 3p4p 3s ² 3p3d - 3s ² 3p4p 3s ² 3p3d - 3s ² 3p4p 3s ² 3p3d - 3s ² 3p4p 3s ² 3p ² - 3s ² 3p3d	¹ D° - ¹ P ³ F° - ³ D ³ F° - ³ D ¹ F° - ¹ D ¹ D - ¹ F°	$2 \cdot 1$ 3 \cdot 2 2 \cdot 1 3 \cdot 2 2 \cdot 3	1	241 241 241 241 943,856
	30 60 70 80 40	197.434 200.021 201.121 202.044 202.424	$\begin{array}{c} 0. & 506.502\\ 9.3025 & 509.250\\ 9.3025 & 506.502\\ 0. & 494.942\\ 9.3025 & 503.34\end{array}$	3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d	g ³ P - ³ D° g ³ P - ³ D° g ³ P - ³ D° g ³ P - ³ P» g ³ P - ³ P°	$\begin{array}{c} 0 & -1 \\ 1 & -2 \\ 1 & -1 \\ 0 & -1 \\ 1 & -0 \end{array}$		943,856 943,856 943,856 943,856 943,856 943,856
	8 70 40 50 20	203.793 203.826 204.263 204.942 208.679	18.5610 - 509.250 18.5610 - 509.176 9.3025 - 498.87 18.5610 - 506.502 91.5102 - 570.715	3s ² 3y ² - 3s ² 3y3d 3s ² 3y ² - 3s ² 3y3d 3s ² 3y ² - 3s ² 3y3d 3s ² 3p ² - 3s ² 3y3d 3s ² 3p ² - 3s ² 3y3d	$\begin{array}{c} g^{3}P - {}^{3}D^{\circ} \\ g^{5}P - {}^{3}D^{\circ} \\ g^{3}P - {}^{1}D^{\circ} \\ g^{3}P - {}^{3}D^{\circ} \\ g^{3}P - {}^{3}D^{\circ} \\ S - {}^{1}P^{\circ} \end{array}$	2 - 2 2 - 3 1 - 2 2 - 1 0 - 1		943,923 943,856 943,856 943,856 943,856 943,856
	40 50 40 40	209.617 209.916 213.770 216.88 221.822	$\begin{array}{r} 9.3025 & 486.358 \\ 18.5610 & 494.942 \\ 18.5610 & 486.358 \\ 48.0691 & 509.176 \\ 48.0691 & 498.87 \end{array}$	3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s ² 3p3d	$g^{3}P \cdot {}^{3}P^{\circ}$ $g^{3}P \cdot {}^{3}P^{\circ}$ $g^{3}P \cdot {}^{3}P^{\circ}$ $g^{3}P \cdot {}^{3}D^{\circ}$ ${}^{1}D - {}^{3}D^{\circ}$ ${}^{1}D - {}^{1}D^{\circ}$	$ \begin{array}{r} 1 \cdot 2 \\ 2 \cdot 1 \\ 2 \cdot 2 \\ 2 \cdot 3 \\ 2 \cdot 2 \\ 2 \cdot 3 \\ 2 \cdot 2 \end{array} $		943,856 943,856 943,856 804 943,856
	10 30 50 50 50	228.18 233.234 240.713 246.208 251.953	$\begin{array}{r} 48.0691 - 486.358 \\ 9.3025 - 438.05 \\ 0 415.462 \\ 9.3025 - 415.462 \\ 18.5610 - 415.462 \end{array}$	3s ² 3p ² - 3s ² 3p3d 3s ² 3p ² - 3s3p ³ 3s ² 3p ² - 3s3p ³ 3s ² 3p ² - 3s3p ³ 3s ² 3p ² - 3s3p ³	${}^{1}D - {}^{3}P^{\circ}$ $g^{3}P - {}^{1}P^{\circ}$ $g^{3}P - {}^{3}S^{\circ}$ $g^{3}P - {}^{3}S^{\circ}$ $g^{3}P - {}^{3}S^{\circ}$	$\begin{array}{c} 2 & - \\ 1 & - \\ 1 & - \\ 0 & - \\ 1 & - \\ 1 & - \\ 2 & - \\ 1 \end{array}$		620 943,856 943,856 943,856 943,856 943,856
	2 8 3 7	256.42 311.552 312.164 318.21 320.800	48.0691 - 438.05 9.3025 - 330.279 9.3025 - 329.647 48.0691 - 362.33 18.5610 - 330.279	$\begin{array}{c} 3s^{2}3p^{2} & \cdot 3s3p^{3} \\ 3s^{2}3p^{2} & \cdot 3s3p^{3} \\ 3s^{2}3p^{2} & \cdot 3s3p^{3} \\ 3s^{2}3p^{2} & \cdot 3s3p^{3} \\ 3s^{2}3p^{2} & \cdot 3s3p^{3} \\ 3s^{2}3p^{2} & \cdot 3s3p^{3} \end{array}$	${}^{1}D - {}^{1}P^{\circ}$ $g^{3}P - {}^{3}P^{\circ}$ $g^{3}P - {}^{3}P^{\circ}$ $g^{4}D - {}^{1}D^{\circ}$ $g^{3}P - {}^{3}P^{\circ}$	$\begin{array}{c} 2 & -1 \\ 1 & -2 \\ 1 & -1 \\ 2 & -2 \\ 2 & -2 \\ 2 & -2 \end{array}$		943 923 923 943,923 923
	120 20 10 4 50	321.47 348.184 359.638 359.837 368.12	$\begin{array}{r} \textbf{18.5610} & \textbf{329.647} \\ \textbf{0.} & \textbf{287.205} \\ \textbf{9.3025} & \textbf{287.360} \\ \textbf{9.3025} & \textbf{287.360} \\ \textbf{9.3025} & \textbf{287.205} \\ \textbf{18.5610} & \textbf{290.21} \end{array}$	$\begin{array}{c} 3s^2 3p^2 - 3s 3p^3 \\ 3s^2 3p^2 - 3s 3p^3 \\ 3s^2 3p^2 - 3s 3p^3 \\ 3s^2 3p^2 - 3s 3p^3 \\ 3s^2 3p^2 - 3s 3p^3 \\ 3s^2 3p^2 - 3s 3p^3 \end{array}$	$\begin{array}{c} g_{3}^{3}P - {}^{3}P^{\circ} \\ g_{3}^{5}P - {}^{3}D^{\circ} \\ g_{3}^{3}P - {}^{3}D^{\circ} \\ g_{3}^{3}P - {}^{5}D^{\circ} \\ g_{3}^{3}P - {}^{5}D^{\circ} \end{array}$	$2 \cdot 1 \\ 0 \cdot 1 \\ 1 \cdot 2 \\ 1 \cdot 1 \\ 2 \cdot 3$	Q	437 923 923,856 923 943,856

Multiplet Rel. Int.	$\lambda_{\rm vac}$ (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J Notes References
6	1216.43 1370.8	9.3025 - 91.5102 18.5610 - 91.5102	$\frac{3s^23p^2+3s^23p^2}{3s^23p^2+3s^23p^2}$	$g^{3}P = {}^{4}S$ $g^{3}P = {}^{4}S$	1 - 0 F 442 2 - 0 F.P 375,442

IRON XIV (F e^{+13}), Z = 26

Ground State $1s^22s^22p^63s^23p$ (${}^2P^o_{1/2}$) (13 electrons) Ionization Potential [3 163 000] cm⁻¹; [392.2] eV

					-		
ultiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J Notes	Reference
. 1	200	70 04 9	0.00 1/07.00	0.20 0.241	2Dg 2D	1 3	190
)])]	200	50,905	0.00 - 1695.98	55-5p - 55-4d	g r - D	3 3 3	100
) [300	59.579	18.8506 - 1697.29	35°3g - 35°4d	g*P* - *D	<u>5</u> - <u>5</u>	180
		69.176	$356.71 \pm K + 1802.30 \pm K$	3s3p ² · 3s3p4s	*P - *P'	ž - ž	241
		69.386	348.52 + K + 1789.73 + K	3s3p ⁺ - 3s3p4s	*P - *P*	<u>5</u> - 5	241
		69.636	366.26 + K - 1802.30 + K	3s3p² - 3s3p4s	'P - *P"	8-8; P	241
		69.685	0.00 - 1435.02	$3s^23p - 3s^24s$	g ² P - ² S	½-½ P	241
		70.251	366.26 + K + 1789.73 + K	$3s3p^2 - 3s3p4s$	[™] P - ⁴ P°	2 - 3	241
		70.613	18.8506 - 1435.02	$3s^2 3p - 3s^2 4s$	$g^2 P^{\circ} - {}^2 S$	3. 1	241
	10	71.377	301.472 - 1702.49	3s3p ² - 3s3p4s	$^{2}D + ^{2}P^{0}$	5 3	241,93
	80	71.87	396.515 - 1788. + K	$3s3p^2 - 3s3p4s$	² P - ⁴ P ^o	$\frac{3}{2} - \frac{1}{2} = Q$	271
		72.796	800. + K - 2173.7 + K	3s3u3d - 3s3u4f	*F° - *G	ş. y	241
		72.95	$800 \pm K + 2170.8 \pm K$	3s3n3d - 3s3n4f	+F° - 4G	: \$. .	241
		73.08	$800 \pm k \cdot 2168.36 \pm K$	3e3n3d - 3e3n4f	4F° - 4Č		241
	35	76.022	473 227 1788 64	3.223A - 3.224f	^{2}D $^{2}F^{0}$	- <u>3</u> .5	241.03
	.,.,	76.159	475 217 1700.04	2.224 2.241	$^{2}D^{-2}F^{0}$	- <u>2</u> - 2	241,75
		70.152	473.217 - 1700.30	əs əd - əs 4i	D · r	2 - 2	291
	20	91.009	475.217 - 1574.01	$3s^23d - 3s^24p$	${}^{2}D - {}^{2}P''$	2 - 3	241,93
		91.273	473.227 - 1568.84	$3s^23d - 3s^24p$	${}^{2}D - {}^{2}P''$	3 - 1	241
	80	211.328	$0.00 \cdot 473.227$	$3s^23n + 3s^23d$	$\sigma^2 P^{\circ} + {}^2 D$	1 . 1 ·	856
		216.95	$356.71 \pm K + 817.64 \pm K$	3s3n ² + 3s3n3d	² ⁴ P - ⁴ D ^α	ŝ. ŝ	239
		217.9	$301.472 \cdot 760.4 + S$	3s3p² - 3s3p3d	$^{2}D - ^{2}F^{o}$	2 - 2 P	1075
		218 21	$366.26 \pm K = 824.53 \pm K$	$3s3n^2 + 3s3n3d$	⁴ P - ⁴ D°	8.3	239
	60	219 135	18 8506 - 475 217	3e ² 3n - 3e ² 3d	$\alpha^2 \mathbf{P}^{\mu} + {}^2 \mathbf{D}$	1 \$ \$	856
	60	220.005	18.8506 473.227	20 ² 20 20 ² 24	$a^2 \mathbf{p}^2 = 2\mathbf{D}$	3 3	856
	00	220.09.0	900 949 745 0 1 8	2-2-2 2-2-2-	$g_{1} - D$ $g_{1} - 2D$	$\frac{2}{3}$ $\frac{2}{5}$ D	1075
	10	220.9	299.246 - 743.9+5	$3 s_{2} p - 3 s_{2} p_{2} q$	2D0 2D	2 · 2 F	1073
	40	252.190	0.00 - 390.515	3s"3p - 3s3p"	g-PP	2 - 2	820
	50	257.385	0.00 - 388.510	$3s^23p + 3s3p^2$	$g^2P^2 + {}^2P$	1 1 - 1	856
	60	264.779	18.8506 - 396.515	$3s^23p + 3s3p^2$	$g^2 P^{\circ} - {}^2 P$	3.3	856
	50	270.512	18.8506 - 388.510	$3s^23n + 3s3n^2$	$\tilde{\sigma}^2 P^0 = {}^2 P$	1 1 1 1	856
	60	274 203	0.00 - 364 693	$3s^23p - 3s^2p^2$	$r^2 P^{n} = {}^2 S$	1.1	923 856
	0.0	280.69	356.71 + K > 712.96 + K	$3s3p^2 - 3p^3$	*P - 'S'	; ž - ž ;	239
		288.45	$366.96 \pm K = 712.96 \pm K$	$3e3n^2 - 3n^3$	4 P . 4 S ⁰	3.4	230
	10	200.40	18 8506 364 603	$3n^{2}3n^{2}3n^{2}3n^{2}$	2D0 2C	3 1	232 854
	50	209,100	0.00 200 249	əsəp-əsəp ə.29. ə.9.2	2 D 2 D		923,030
	30	004.178 050.000	0.00 - 299.248	$3s 3p \cdot 3s 3p^{-}$	$g^{*}P^{*} + D^{*}D$	2 2	830
	30	555.858	18.8500 - 301.472	as ap · as ap	g'P' - "D	2 - 2	050
	Э	356.59	18.8506 - 299.248	3sf3p - 3s3pf	g P° - D	ž - ž i	856

IRON XV (Fe⁺¹⁴), Z = 26Ground State $1s^22s^22p^63s^2$ (¹S₀) (12 electrons) Ionization Potential 3 686 000 cm⁻¹; 457.0 cV

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	0 5 1 7 0	$15.498 \\ 17.300 \\ 17.345 \\ 17.355 \\ 17.57$	$\begin{array}{c} 0, \ \ 6452.44\\ 253.82 \ \ \ 6034.2\\ 0, \ \ 5765.35\\ 253.82 \ \ \ 5950.2\\ 762.103 \ \ \ 6452.44 \end{array}$	3s² - 2p ⁵ 3s²3d 3s3p - 2p ⁵ 3s²3p 3s² - 2p ⁵ 3s²3d 3s3p - 2p ⁵ 3s²3p 3s3d - 2p ⁵ 3s²3d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 \cdot 1 \\ 2 \cdot 1 \\ 0 \cdot 1 \\ 2 \cdot 2 \\ 2 \cdot 1 \\ 2 \cdot 1$	Q	716 979 643 979 208
	19 19 11 7	17.593 17.620 17.880 17.917 38.95	$\begin{array}{r} \textbf{351.914} & \textbf{6035.0} \\ \textbf{253.82} & \textbf{5929.2} \\ \textbf{351.914} & \textbf{5950.2} \\ \textbf{351.914} & \textbf{5933.2} \\ \textbf{0.} & \textbf{2567.40} \end{array}$	383p - 2p ⁵ 38 ² 3p 383p - 2p ⁵ 38 ² 3p 383p - 2p ⁵ 38 ² 3p 383p - 2p ⁵ 38 ² 3p 383p - 2p ⁵ 38 ² 3p 38 ² - 385p	$ \begin{array}{r} {}^{1}P^{o} - {}^{3}D \\ {}^{3}P^{o} - {}^{3}D \\ {}^{1}P^{o} - {}^{3}P \\ {}^{1}P^{o} - {}^{1}P \\ {}^{g}S - {}^{1}P^{o} \end{array} $	$1 \cdot 2$ 2 - 3 1 - 2 1 - 1 0 - 1	•	979 979 979 979 266
	3 10 20	41.559 41.663 41.903 42.93 43.39	$\begin{array}{c} 233.95 & 2640.17 \\ 239.67 & 2639.88 \\ 253.82 & 2640.28 \\ 762.103 & 3091.50 \\ 681.41 & 2986.10 \end{array}$	3s3p - 3s5d 3s3p - 3s5d 3s3p - 3s5d 3s3d - 3s6f 3s3d - 3s6f 3s3d - 3s6f	$\begin{array}{c} {}^{3}P^{o} , {}^{3}D \\ {}^{3}P^{o} , {}^{3}D \\ {}^{3}P^{o} , {}^{3}D \\ {}^{1}D , {}^{1}F^{u} \\ {}^{3}D , {}^{3}F^{u} \end{array}$	$\begin{array}{c} 0 \cdot 1 \\ 1 \cdot 2 \\ 2 \cdot 3 \\ 2 \cdot 3 \\ 3 \cdot 4 \end{array}$		237 237 237 266 266
03 03 03	1 10 100	43.65 49.49 50.062 50.085 50.120	$\begin{array}{c} 253.82 & 2544.80 \\ 762.103 & 2782.70 \\ 678.86 & 2676.38 \\ 679.79 & 2676.40 \\ 681.41 & 2676.62 \end{array}$	383p - 3858 383d - 385f 383d - 385f 383d - 385f 383d - 385f 383d - 385f	${}^{3}P^{o} + {}^{3}S$ ${}^{1}D + {}^{1}F^{o}$ ${}^{3}D + {}^{3}F^{o}$ ${}^{3}D + {}^{3}F^{o}$ ${}^{5}D + {}^{3}F^{o}$	$2 \cdot 1$ $2 \cdot 3$ $1 \cdot 2$ $2 \cdot 3$ $3 \cdot 4$		266 266 180 180 180
02 02 02 02 02	300 100 200 10 300	52.911 55.635 55.793 55.815 56.200	$\begin{array}{c} 0, -1889.97\\ 233.95 - 2031.34\\ 239.67 - 2032.02\\ 239.67 - 2031.34\\ 253.82 - 2033.18\end{array}$	3s ² - 3s4p 3s3p - 3s4d 3s3p - 3s4d 3s3p - 3s4d 3s3p - 3s4d 3s3p - 3s4d	$\begin{array}{c} {}_{3}{}_{3}{}_{5}{}_{5}{}_{-1}{}_{1}{}_{9}{}_{0}{}_{-3}{}_{3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{1}{}_{0}{}_{-3}{}_{-3}{}_{0}{}_{-3}{}_$	$\begin{array}{c} 0 - 1 \\ 0 - 1 \\ 1 - 2 \\ 1 - 1 \\ 2 - 3 \end{array}$		180 180 180 180 180
02	1 12 1 3	56.236 59.404 63.96 65.370 65.612	$\begin{array}{c} 253.82 + 2032.02\\ 351.914 + 2035.32\\ 559.61 + 2123.17\\ 233.95 + 1763.67\\ 239.67 + 1763.67\end{array}$	3s3p - 3s4d 3s3p - 3s4d 3p ² - 3s4f 3s5p - 3s4s 3s3p - 3s4s 3s3p - 3s4s	${}^{3}P^{o} \cdot {}^{3}D$ ${}^{3}P^{o} \cdot {}^{3}D$ ${}^{3}D \cdot {}^{3}F^{o}$ ${}^{3}F^{o} \cdot {}^{3}S$ ${}^{3}P^{o} \cdot {}^{3}S$	$\begin{array}{c} 2 - 2 \\ 1 - 2 \\ 2 - 3 \\ 0 - 1 \\ 1 - 1 \end{array}$		180 241,856 137 237 237
	3	66.238 68.860 68.884 68.897 69.049	253.82 - 1763.67 949.66 - 2401.88 938.19 - 2389.91 + R 928.45 - 2380.00 938.19 - 2386.44	3s3p - 3s4s 3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f	³ P ^o - ³ S ³ F ^o - ³ G ³ F ^o - ³ G ³ F ^o - ³ G	2 - 1 4 - 5 3 - 3 2 - 3 3 - 4	Q	237 970 970 970 970
01 01 01	200 300 400	69.534 69.66 69.945 69.987 70.054	$\begin{array}{c} 1090.00+T-2528.15+T\\ 351.914-1787.4\\ 678.86-2108.55\\ 679.79-2108.63\\ 681.41-2108.88 \end{array}$	3p3d - 3p4f 3s3p - 3s4s 3s3d - 3s4f 3s3d - 3s4f 3s3d - 3s4f 3s3d - 3s4f	${}^{1}D^{a} - {}^{1}F$ ${}^{1}P^{a} - {}^{1}S$ ${}^{3}D - {}^{3}F^{a}$ ${}^{3}D - {}^{3}F^{a}$ ${}^{3}D - {}^{3}F^{a}$	$ \begin{array}{r} 2 - 3 \\ 1 - 0 \\ 1 - 2 \\ 2 - 3 \\ 3 - 4 \end{array} $		970 137 180 180 180
		70.224 70.519 70.53 70.59 70.601	$\begin{array}{c} 976.13+R & 2400.14+R\\ 982.43+R & 2400.49+R\\ 982.69+R & 2400.49+R\\ 982.69+R & 2309.16+R\\ 982.69+R & 2399.16+R\\ 982.69+R & 2399.16+R\\ \end{array}$	3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f	${}^{3}P^{a} \cdot {}^{3}D$ ${}^{3}P^{a} \cdot {}^{3}D$ ${}^{3}D^{a} \cdot {}^{3}D$ ${}^{3}D^{a} \cdot {}^{3}D$ ${}^{3}D^{e} \cdot {}^{3}D$	$\begin{array}{c} 0 & -1 \\ 1 & 2 \\ 2 & -2 \\ 3 & -3 \\ 2 & -3 \end{array}$		970 970 241 241 970
	30 40	71.062 71.267 73.199 73.471 224.745	$\begin{array}{c} 982.69+R + 2389.91+R\\ 982.69+R + 2386.44\\ 1079.86+5 + 2446.00+5\\ 762.103 + 2123.17\\ 233.95 + 678.86 \end{array}$	3p3d - 3p4f 3p3d - 3p4f 3p3d - 3p4f 3s3d - 3p4f 3s3d - 3s4f 3s3p - 3s3d	${}^{3}D^{n} - {}^{3}F$ ${}^{3}D^{n} - {}^{3}G$ ${}^{1}F^{n} - {}^{1}G$ ${}^{1}D - {}^{1}F^{n}$ ${}^{3}D^{n} - {}^{3}D$	$3 \cdot 4$ $3 \cdot 4$ $3 \cdot 4$ $2 \cdot 3$ $0 \cdot 1$	Q	970 970 970 970,856 856
	20 30 50	227.208 227.70 233.865 234.73 243.783	239.67 - 679.79 239.67 - 678.86 253.82 - 681.41 253.82 - 679.79 351.914 - 762.103	3x3p - 3x3d 3x3p - 3x3d 3x3p - 3x3d 3x3p - 3x3d 3x3p - 3x3d 3x3p - 3x3d	${}^{3}P^{o} - {}^{3}D$ ${}^{3}P^{o} - {}^{3}D$ ${}^{3}P^{o} - {}^{3}D$ ${}^{3}P^{o} - {}^{3}D$ ${}^{1}P^{o} - {}^{1}D$	$1 \cdot 2$ $1 \cdot 1$ $2 \cdot 3$ $2 \cdot 2$ $1 \cdot 2$	Q	988,856 242 856 437 856
	80	284.147 292.36 302.45 303.40 305.00	0 351.914 239.67 - 581.71 233.95 - 564.58 351.914 - 679.79	38² - 383p 383p - 3p² 383p - 3p² 383p - 3p3 383p - 383d	g ¹ S - ¹ P ^a ³ P ^a - ³ P ³ P ^a - ³ P	$ \begin{array}{c} 0 & -1 \\ 1 & -2 \\ 0 & -1 \\ 1 & -2 \end{array} $		856 242 242 241 242 242

يمتعر

/~~~

Aultiplet	Rel. Int.	λ _{we} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	$5 \\ 120 \\ 200 \\ 120$	307.78 312.55 317.61 321.78 324.97	$\begin{array}{r} 239.67 & -564.58 \\ 239.67 & -559.61 \\ 239.67 & -554.51 \\ 253.82 & -564.58 \\ 351.914 & -659.64 \end{array}$	3s3p - 3p ² 3s3p - 3p ² 3s3p - 3p ² 3s3p - 3p ² 3s3p - 3p ² 3s3p - 3p ²	${}^{3}P^{0} + {}^{3}P \\ {}^{3}P^{0} + {}^{1}D \\ {}^{3}P^{0} + {}^{3}P \\ {}^{3}P^{0} + {}^{3}P \\ {}^{1}P^{0} + {}^{1}S$	$ \begin{array}{c} 1 & -1 \\ 1 & 2 \\ 1 & 0 \\ 2 & -1 \\ 1 & 0 \end{array} $	Q	242 856 437 437 437,983
	14	327.03 372.78 387.00 400.65 417.24	$\begin{array}{c} 253.82 \cdot 559.61 \\ 681.41 \cdot 949.66 \\ 679.79 \cdot 938.19 \\ 678.86 \cdot 928.45 \\ 0 \cdot 239.67 \end{array}$	3s3p - 3p ² 3s3d - 3p3d 3s3d - 3p3d 3s3d - 3p3d 3s3d - 3p3d 3s ² - 3s3p	${}^{3}P^{\circ} - {}^{1}D \\ {}^{3}D - {}^{3}F^{\circ} \\ {}^{3}D - {}^{3}F^{\circ} \\ {}^{3}D - {}^{3}F^{\circ} \\ {}^{3}D - {}^{3}F^{\circ} \\ {}^{3}S - {}^{3}P^{\circ} $	$ \begin{array}{c} 2 \cdot 2 \\ 3 \cdot 4 \\ 2 \cdot 3 \\ 1 \cdot 2 \\ 0 \cdot 1 \end{array} $		137 242 242 242 856
	150	481.46	351.914 - 559.61	$3s3p \cdot 3p^2$	$^{1}P^{n} - ^{1}D$	1 - 2		437

$\label{eq:IRON XVI (Fe^{+15}), Z = 26} \\ \mbox{Ground State $1s^22s^22p^63s$ ($^2S_{1/2}$) (11 electrons)$} \\ \mbox{Ionization Potential 3 946 300 cm$^{-1}$; $489.27 eV$} \end{cases}$

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1 17 77 88 1	15.158 15.313 15.508 15.536 15.558	$\begin{array}{c} 0. & 6596.1 \\ 0. & 6530.8 \\ 277.163 & 6724.7 \\ 0. & 6436.8 \\ 298.145 & 6724.7 \end{array}$	$\begin{array}{r} 2\mu^63s & -2p^53s(^3P'')3d\\ 2p^63s & -2p^5(^2P_{1/2}')3s3d(^3D_{3/2})\\ 2p^63s & -2p^53s(^3P'')3p\\ 2p^63s & -2p^53s(^3P_{1/2}'')3d\\ 2p^63p & -2p^53s(^3P_{1/3}'')3p \end{array}$	$\begin{array}{cccc} g^2S & - \ ^2P^\circ \\ g^2S & - \ ^2P^\circ \\ ^2P^\circ & - \ ^2S \\ g^2S & - \ ^2P^\circ \\ ^2P^\circ & - \ ^2S \end{array}$		Q Q Q Q Q Q Q	643 945 643 643 643
	1 5 7 13 2	15.567 16.696 16.839 16.890 16.952	$\begin{array}{c} 0. & - \ 6422.9 \\ 277.163 & - \ 6266.6 \\ 277.163 & - \ 6216.0 \\ 675.477 & - \ 6596.1 \\ 675.477 & - \ 6574.5 \end{array}$	$\begin{array}{c} 2p^63s - 2p^53s(^1P^*_{1/2})3d\\ 2p^63p - 2p^5(^2P^*_{-2})3s3p(^1P^{*/2})\\ 2p^63p - 2p^5(^2P^{*/2})3s3p(^1P^{*/2})\\ 2p^63d - 2p^53s(^{1/2}P^*_{1/2})\\ 2p^63d - 2p^53s(^{1/2}P^*_{1/2})3s3d(^3D_{1/2})\\ \end{array}$	g ² S - ² P ⁰ ² P ⁰ - ² S ² P ⁰ - ² D ² D - ² P ⁰ ² D - ² P ⁰		Q	643 979 979 979 979 979
	7 9 15 25 16	16.993 17.025 17.087 17.124 17.161	$\begin{array}{r} 675.477 & - 6560.2 \\ 0. & - 5873.7 \\ 678.421 & - 6530.8 \\ 678.421 & - 6518.2 \\ 298.145 & - 6125.3 \end{array}$	$\begin{array}{r} 2p^63d + 2p^5(^2P_{1/2}^{\circ})3s3d(^1D_{3/2}) \\ & 2p^63s + 2p^53s^2 \\ 2p^63d + 2p^5(^2P_{1/2}^{\circ})3s3d(^3D_{3/2}) \\ 2p^63d + 2p^5(^2P_{1/2}^{\circ})3s3d(^3D_{5/2}) \\ 2p^63p + 2p^5(^2P_{3/2}^{\circ})3s3p(^1P_{1/2}^{\circ}) \end{array}$	$\begin{array}{c} {}^{2}D - {}^{2}F^{\sigma} \\ g^{2}S - {}^{2}P^{\sigma} \\ {}^{2}D - {}^{2}P^{\sigma} \\ {}^{2}D - {}^{2}F^{\sigma} \\ {}^{2}P^{\sigma} - {}^{2}P \end{array}$			979 979 979 979 979 979
	17 10 3 2 8	17.206 17.249 17.285 17.323 17.337	$\begin{array}{c} 298.145 & - 6110.1 \\ 298.145 & - 6095.6 \\ 678.421 & - 6463.8 \\ 0. & - 5772.7 \\ 678.421 & - 6446.4 \end{array}$	$\begin{array}{c} 2p^63p-2p^53s(^3P'')3p\\ 2p^63p-2p^5(^2P'_{,2})3s3p(^3P'_{,2})\\ 2p^63d-2p^5(^2P^{4/2})3s3d(^1D^{3/2})\\ 2p^63s-2p^53s^2\\ 2p^63d-2p^5(^2P'_{,2})3s3d(^1D_{3/2})\\ \end{array}$	$\begin{array}{c} {}^{2}P^{o} - {}^{2}D \\ {}^{2}P^{o} - {}^{4}P \\ {}^{2}D - {}^{2}D^{o} \\ g^{2}S - {}^{2}P^{o} \\ {}^{2}D - {}^{2}F^{o} \end{array}$			979 979 979 979 979 979
	16 18 14 16 13	17.366 17.399 17.413 17.449 17.467	$\begin{array}{r} 678.421 & - 6436.8 \\ 675.477 & - 6422.9 \\ 298.145 & - 6041.0 \\ 675.477 & - 6406.5 \\ 277.163 & - 6002.2 \end{array}$	$\begin{array}{c} 2p^63d \cdot 2p^53s(^1P^3{}_{-2})3d\\ 2p^63d \cdot 2p^53s(^1P^4{}_{-2})3d\\ 2p^63p \cdot 2p^5(^2P^3{}_{-2})3s3p(^3P^{4/2}{}_{-2})\\ 2p^63d \cdot 2p^5(^2P^3{}_{-2})3s3d(^3D^3{}_{-1/2})\\ 2p^63p \cdot 2p^5(^2P^3{}_{-3/2})3s3p(^3P^3{}_{-1/2})\end{array}$	${}^{2}D - {}^{2}P^{o}$ ${}^{2}D - {}^{2}P^{o}$ ${}^{2}P^{a} - {}^{2}S$ ${}^{2}D - {}^{4}F^{o}$ ${}^{2}P^{o} - {}^{2}P$			979 979 979 979 979 979
	40 40	17.498 17.59 27.88 28.67 29.93	$\begin{array}{c} 298.145 & - \ 6013.1 \\ 298.145 & - \ 5982.2 \\ 0. & - \ 3587. \\ 0. & - \ 3487.97 \\ 0. & - \ 3341. \end{array}$	$\begin{array}{c} 2p^{6}3p - 2p^{5}(^{2}P^{2}, _{2})3s3p(^{3}P^{2}, _{2})\\ 2p^{6}3p - 2p^{5}(^{2}P^{3,2}_{3,2})3s3p(^{3}P^{3,2}_{1,2})\\ 2p^{6}3s - 2p^{6}9p\\ 2p^{6}3s - 2p^{6}9p\\ 2p^{6}3s - 2p^{6}9p\\ 2p^{6}3s - 2p^{6}7p\end{array}$	$\begin{array}{r} {}^{2}P^{o} \cdot {}^{4}P \\ {}^{2}P^{u} \cdot {}^{4}D \\ g^{2}S {}^{2}P^{o} \\ g^{2}S {}^{2}P^{o} \\ g^{2}S {}^{2}P^{u} \\ g^{2}S {}^{2}P^{u} \end{array}$		Q	979 736 266 266 266
	3 20 10	30.10 30.33 31.041 31.242 32.166	$\begin{array}{c} 277.163 \cdot 3599.\\ 298.145 \cdot 3595.\\ 277.163 \cdot 3498.71\\ 298.145 \cdot 3498.96\\ 0. \cdot 3108.87\end{array}$	2p ⁶ 3p - 2p ⁶ 9d 2p ⁶ 3p - 2p ⁶ 9d 2p ⁶ 3p - 2p ⁶ 8d 2p ⁶ 3p - 2p ⁶ 8d 2p ⁶ 3s - 2p ⁶ 8d 2p ⁶ 3s - 2p ⁶ 6p	$\begin{array}{c} {}^{2}P^{o} + {}^{2}D \\ {}^{2}P^{o} + {}^{2}D \\ {}^{2}P^{o} + {}^{2}D \\ {}^{2}P^{o} + {}^{2}D \\ {}^{2}P^{o} + {}^{2}D \\ {}^{2}S + {}^{2}P^{o} \end{array}$			266 266 237 237 237
	6 10 35	32.192 32.433 32.652 32.84 33.04	$\begin{array}{c} 0. & 3106.36\\ 277.163 & 3360.44\\ 298.145 & 3360.74\\ 277.163 & 3323.5\\ 298.145 & 3323.5\end{array}$	$\begin{array}{c} 2p^{\circ}3s & -2p^{\circ}6p\\ 2p^{\circ}3p & -2p^{\circ}7d\\ 2p^{\circ}3p & -2p^{\circ}7d\\ 2p^{\circ}3p & -2p^{\circ}7s\\ 2p^{\circ}3p & -2p^{\circ}7s\\ 2p^{\circ}3p & -2p^{\circ}7s\end{array}$	$\begin{array}{c} {\bf g}^2 {\bf S} - {}^2 {\bf P}^0 \\ {}^2 {\bf P}^0 - {}^2 {\bf D} \\ {}^2 {\bf P}^0 - {}^2 {\bf D} \\ {}^2 {\bf P}^0 - {}^2 {\bf S} \\ {}^2 {\bf P}^0 - {}^2 {\bf S} \end{array}$			237 237 237 266 266

D-	1	0	5
----	---	---	---

Multiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	20 60 1 3	34.21 34.857 35.106 35.333 35.368	678.421 - 3602. 277.163 - 3146.03 298.145 - 3146.66 675.477 - 3505.70 678.421 - 3505.83	2p°3d - 2p°9f 2p°3p - 2p°6d 2p°3p - 2p°6d 2p°3d - 2p°8f 2p°3d - 2p°8f 2p°3d - 2p°8f	$\begin{array}{cccc} {}^{2}D & - {}^{2}F^{o} \\ {}^{2}P^{o} & - {}^{2}D \\ {}^{2}P^{o} & - {}^{2}D \\ {}^{2}D & - {}^{2}F^{o} \\ {}^{2}D & - {}^{2}F^{o} \\ {}^{2}D & - {}^{2}F^{o} \end{array}$			266 237 237 237 237 237
	60 20	35.59 35.71 36.01 36.749 36.803	678.421 - 3487.97 277.163 - 3076.3 298.145 - 3076.3 0 2721.16 0 2717.17	2p°3d - 2p°8p 2p°3p - 2p°6s 2p°3p - 2p°6s 2p°3s - 2p°5p 2p°3s - 2p°5p	$ \begin{array}{c} {}^{2}D - {}^{2}P^{o} \\ {}^{2}P^{o} - {}^{2}S \\ {}^{2}P^{o} - {}^{2}S \\ {}^{2}S - {}^{2}P^{o} \\ {}^{2}S - {}^{2}P^{o} \\ {}^{2}S - {}^{2}P^{o} \end{array} $		Р	375 266 266 237 237
06 06	6 10 10	37.096 37.138 39.827 40.153 40.199	675.477 - 3371.19 678.421 - 3371.07 277.163 - 2788.02 298.145 - 2788.62 675.477 - 3163.10	2p°3d - 2p°7f 2p′3d - 2p′7f 2p′3p - 2p′5d 2p′3p - 2p′5d 2p′3p - 2p′5d 2p′3d - 2p′6f	${}^{2}D + {}^{2}F^{\circ}$ ${}^{2}D - {}^{2}F^{\circ}$ ${}^{2}P^{\circ} + {}^{2}D$ ${}^{2}P^{\circ} + {}^{2}D$ ${}^{2}D - {}^{2}F^{\circ}$	NACUNACUNACUNACU NACUNACUNACUNACU NACUNACUNACUNACUNACU		237 237 178 178 237
05	10	40.245 41.14 41.91 42.30 46.661	678.421 - 3163.19 678.421 - 3108.87 277.163 - 2663.3 298.145 - 2663.3 675.477 - 2818.54	20°3d - 20°6f 20°3d - 20°6p 20°3p - 20°5s 20°3p - 20°5s 20°3d - 20°5f	2 D - 2 F° 2 D - 2 P° 2 P° - 2 S 2 P° - 2 S 2 D - 2 F°		Р	237 266 266 266 178
05 04 04	23	46.718 48.95 48.98 50.350 50.555	678.421 - 2818.86 678.421 - 2721.16 675.477 - 2717.17 0 1985.75 0 1977.77	2p°3d - 2p°5f 2p°3d - 2p°5p 2p°3d - 2p°5p 2p°3d - 2p°5p 2p°3s - 2p°4p 2p°3s - 2p°4p	² D - ² F ⁶ ² D - ² P ⁶ ² D - ² P ⁶ g ² S - ² P ⁶ g ² S - ² P ⁶		P P	178 266 266 178,856 178
03 03 03 02 02 02	24 20 30	54.142 54.728 54.769 62.879 63.719	277.163 - 2124.37 298.145 - 2125.60 298.145 - 2124.37 277.163 - 1867.53 298.145 - 1867.53	2p°3p - 2p°4d 2p°3p - 2p°4d 2p°3p - 2p°4d 2p°3p - 2p°4s 2p°3p - 2p°4s 2p°3p - 2p°4s	$\begin{array}{c} {}^{2}P^{\circ}-{}^{2}D\\ {}^{2}P^{\circ}-{}^{2}D\\ {}^{2}P^{\circ}-{}^{2}D\\ {}^{2}P^{\circ}-{}^{2}S\\ {}^{2}P^{\circ}-{}^{2}S\\ {}^{2}P^{\circ}-{}^{2}S\end{array}$			178 178,856 178 178,93 178,93
01 01	20 30 30 10	66.263 66.368 76.502 76.796 144.06	675.477 - 2184.61 678.421 - 2185.17 678.421 - 1985.75 675.477 - 1977.77 2124.37 - 2818.54	2p°3d - 2p°4f 2p°3d - 2p°4f 2p°3d - 2p°4p 2p°3d - 2p°4p 2p°3d - 2p°4p 2p°4d - 2p°5f	² D - ² F ⁰ ² D - ² F ⁰ ² D - ² P ⁰ ² D - ² P ⁰ ² D - ² F ⁰	NEUNEUNEUNEUNEU NEUNE-NEUNEUNEU		178,93 178,93 241,93 241 1091
	10 10 50 300 40	144.25 156.80 156.88 171.66 251.058	2125.60 - 2818.86 2185.17 - 2822.93 2184.61 - 2822.04 2788.62 - 3371.07 277.163 - 675.477	2p ⁶ 4d - 2p ⁶ 5f 2p ⁶ 4f - 2p ⁶ 5g 2p ⁶ 4f - 2p ⁶ 5g 2p ⁶ 5d - 2p ⁶ 7f 2p ⁶ 3p - 2p ⁶ 3d	² D - ² F ¹⁰ ² F ¹⁰ - ² G ² F ¹⁰ - ² G ² D - ² F ¹⁰ ² P ¹⁰ - ² D		Q	1091 1091 1091 256 237,856
	40 3 60 60	262.967 265.007 335.407 360.798	298.145 - 678.421 298.145 - 675.477 0 298.145 0 277.163	2p°3p - 2p°3d 2p°3p - 2p°3d 2p°3s - 2p°3g 2p°3s - 2p°3p 2p°3s - 2p°3p	${}^{2}P^{o} \cdot {}^{2}D$ ${}^{2}P^{o} \cdot {}^{2}D$ $g^{2}S \cdot {}^{2}P^{o}$ $g^{2}S \cdot {}^{2}P^{o}$	NA-NA-NALUNCU NA-NALUNCUNALUN		237,856 237 237,856 237,856

IRON XVII (Fe⁺¹⁶), Z = 26

Ground State 1s²2s²2p⁶ (¹S₀) (10 electrons)

Ionization Potential [10 180 000] cm⁻¹; [1262] eV

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		9.324 9.468	0.0 - 10725. 0.0 - 10562	$2s^22p^6 - 2s^2p^68p$ $2s^22p^6 - 2s^2p^67p$	$g^{1}S \cdot {}^{3}P^{\circ}$	0 - 1	P	1144
		9.703	0.0 - 10306.	$2s^22p^6 - 2s^2p^66p$	g ¹ S - ³ P°	0.1	P	1144
		10.120	0.0 - 9881.4	$2s^22p^6 \cdot 2s^2p^65p$	g'S - 'P°	0 - 1	P	1144
	40	10.134	0.0 - 9874.6	$2s^22p^6 - 2s2p^65p$	g ¹ S - ³ P ^o	0 - 1		643,1067
	14	10.221	0.0 - 9783.8	$2s^22p^6 - 2s^22p^5(^2P^6)$ 8d	g'S - 1/2[3/2]°	0 - 1		1144
	31	10.252	0.0 - 9751.3	$2s^22p^6 - 2s^22p^5(^2P')8s$	$g^{1}S - (1/2,1/2)^{\circ}$	0 - 1	0	643,1144
	19	10.332	0.0 - 9678.7	$2s^22p^6 - 2s^22p^5(^2P^6)$ 8d	g1S - 3/2[3/2]	0 - 1	· ·	1144
		10.337	0.0 - 9674.0	$2s^22p^6 \cdot 2s^22p^5(^2P_{-}^{0})8d$	g ¹ S - 3/2[1/2] ²	0 - 1	P	1144
	18	10.367	0.0 - 9648.8	$2s^22p^6 - 2s^22p^5(^2P_{-})8s$	g S - (3/2.1/2)°	0 - 1	Ō	945.1144

1000

D~106

			configurations	i cimo	J · J	neierentes
1.4	10.386	0.0 96 28 .4	$2e^2 2m^6 = 2e^2 2m^5 (^2 B^0) 7d$	a's color?	0.1	643
17	10.436	0.0 - 9582.2	$2_{2}^{2}2_{1}^{6}$, $2_{2}^{2}2_{1}^{5}(^{2}P)7_{2}$	(S - (· 0.1	1144
	10.506	0.0 0519.4	$2.^{2}2n^{6} - 2.^{2}2n^{5}t^{2}P^{5}T^{2}$	ε Ο - (1/2,1/2) α ¹ S - α-[α, -] ^α	0 1	643
17	10.500	0.0 - 9316.4	$28 \ 2\mu = 28 \ 2\mu (1) \ 100$ $2 \ 20 \ \mu^{2} = 28 \ 2\mu (1) \ 100$	g o - 3/2[3/2]	0.1	1144
20	10.550	0.0 - 0202.4	28.2p + 28.2p + 1.8 $p_{2}^{2}p_{2}^{2}p_{2}^{2}p_{3}^{2}p_{3}^{3}c_{4}$	- g o - (3/2+1/2) - le T Te	0 1	1144
.30	10,655	0.0 - 9382.6	2s*2p* - 2s*2p*(*P ₁)od	g'5 - 1/2[3/2]	0 - 1	1144
	10.737	0.0 - 9313.6	$2s^22p^6 - 2s^22p^5(^2P^6)6e$	$g_{1S}^{1S} - (1/2 \cdot 1/2)^{\circ}$	0-1 P	1144
37	10.770	0.0 - 9285.1	$2s^{-}2p^{2} - 2s^{-}2p^{2}(^{-}P_{2})6d$	- 8 ≥ - 3/2[3/2]	0-1	945,1094
	10.782	0.0 - 9274.7	$2s^{2}2p^{\prime\prime} - 2s^{2}2p^{\prime}(P^{\prime})6d$	g(∑ = 3/2L1/2) [™]	0 · 1 P	[]44
12	10.851	0.0 - 9215.7	2s ² 2p ⁶ - 2s ² 2p ⁷ (² P ₉)6s	$g^{1}S - (3/2 \cdot 1/2)^{9}$	0 - 1	1144
4	11.025	0.0 - 9070.3	$2s^22p^6 + 2s^2p^64p^{-2}$	g'S - 'P'	0 - 1 P	447
2	11.041	0.0 - 9057.2	$2s^22p^6 - 2s2p^64p$	$g^{1}S - {}^{3}P^{0}$	0 - 1 P	447
32	11.132	0.0 - 8982.3	$2s^22p^6 - 2s^22p^6(^2P^6)5d$	g S - 1/2[3/2]"	0 - 1	643
44	11.253	0.0 - 8886.5	$2s^22p^6 - 2s^22p^5(^2P^6)5d$	2 S - 10 [10]	0 - 1	945,094
26	11 287	0.0 - 8859.8	$2s^22n^6 - 2s^22n^5(^2P^3)5s$	S · (usua)	0 - 1	945,1094
25	11 420	0.0.8756.6	$2s^22n^6 - 2s^22n^5l^2P^{1}5s$	alS - (mana)	0.1	1144
63	12.125	0.0 - 8248.8	$2s^22p^6 - 2s^22p^2(^2P^2)4d$	$g[S \cdot 1/2[3/2]]$	$0 \cdot 1$	643
64	12.264	0.0 - 8153.9	$2s^22p^6 - 2s^22p^3(^2P_5)4d$	$g^{1}S + 3/2[3/2]^{\circ}$	0.1	945
37	12.322	0.0 - 8115.6	2s ² 2p ⁶ - 2s ² 2p ³ (² P [*])4d	$g^{1}S - 3/2[1/2]^{o}$	0 - 1	945
31	12.526	0.0 - 7984.0	$2s^22p^6 - 2s^22p^5(^2P^*)4s$	$\tilde{g}^{1}S + (1/2,1/2)^{6}$	$0 \cdot 1 +$	945
75	12.678	0.0 - 7887.7	$2s^22p^6 - 2s^22p^5(^2P_2)4s$	g ⁴ S - (3/251/2) ⁹	0 - 1	643
91	13.834	0.0 - 7228.6	$2s^22p^6 + 2s2p^63u$	$g^1S - P^0$	0 - 1	643
48	13.892	0.0 - 7198.4	$2s^22p^6 - 2s2p^63n$	$\tilde{\rho}^{1}S + {}^{3}P^{n}$	0 - 1	643
112	15.013	0.0 - 6660.9	$2s^22n^6 + 2s^22n^5(^2P^2)3d$	a'S	0.1	643
96	15 260	0.0 - 6553 1	$2s^22n^6 = 2s^22n^5(^2P^4)3d$		0.1	643
59	15.449	0.0 - 6472.9	$2s^22p^6 - 2s^22p^5(^2P_s^2)3d$	$g^{1}S - \frac{3}{2}[\frac{3}{2}]^{0}$	0 - 1	643
20	16 775	0.0.5061.3	ລ <u>ະ</u> 2ງ _ກ 0 , ລະ²ງ _ກ 5/2 ⊡ານຊະ	alS (mark)	0.1	643
20	10.775	0.0 - 5964.7	$2s 20^{\circ} + 2s 2p (1) 3s$ $2s^2 2s^6 + 2s^2 2p (1) 3s$	$g_{12} = (1/251/2)$	0.1	642
20	17.031	0.0 - 5949.0	28.2p + 28.2p (1.58)	2 0 - (3/2+1/2)	0.7	1119 447
50	43.97	0.0 - 3040.0 ·	28 ZP + Z8 ZP (F J88 9.29.5/20094 - 9.29.5/20%Fr -	g 5 - (3/2,1/2) 3E0 f 10	- 0 - 2 F	1112,444
	91.57	$(1964.0 \pm 0.0001.2 \pm 0.000000000000000000000000000000000$	$25.2p$ (r) $30 \times 25.2p$ (r) 31	Г = <u>3/2[0/2]</u> Цр Цре	4	1033
	49.787	$6136.6 \pm C \cdot 8145.2 \pm C$	2s*2p*(*P*)3p + 2s*2p*(*P*)4a	'P - 'D'	1 - 2	395
	49.880	6113.3+C - 8118.1+C	$2s^2 2p^5 (^2P^0) 3p + 2s^2 2p^5 (^2P^0) 4d$	$^{3}D + ^{3}D^{\circ}$	2 - 3	395
	50.262	6127.9+C · 8117.5+C	$2s^22p^5(^2P^o)3p - 2s^22p^5(^2P^o)4d$	³ D - ³ F°	3 - 4	395
	50.33	6248.8+C - 8235.7+C	$2s^22p^5(^2P^0)3p + 2s^22p^5(^2P^0)4d$	$^{3}P - ^{3}F^{\circ}$	1 - 2 P	395
	50.397	6251.9 + C - 8236.2 + C	$2s^22p^5(^2f^{*})3p - 2s^22p^5(^2P^{*})4d$	$^{1}D - ^{1}F^{\circ}$	2 - 3	395
	50,60	6151.1+C - 8127.4+C	$2s^2 2p^5 (^2P^0) 3p - 2s^2 2p^5 (^2P^0) 4d$	$^{3}P \sim ^{3}F^{\circ}$	2 - 3 P	395
	52,815	$6251.9 \pm C \cdot 8145.2 \pm C$	$2s^22p^5(^2P'')3p = 2s^22p^5(^2P'')4d$	$^{1}D - ^{1}D^{\circ}$	2 - 2 = 0	900
	57.32	$6127.9 \pm C = 7872.5 \pm C$	$2s^22n^5(^2P')3n = 2s^22n^5(^2P')4s$	3 D $\sim 10^{10}$	3.2	1055
	58.62	$6461.9\pm0.8167.8\pm0.1$	$2e^22p^5(^2P')3d = 2e^22p^5(^2P')4f$	³ P ^o , and and ^o	2.3	1055
	58.76	$6461.0 \pm C = 8163.7 \pm C \pm 6461.0 \pm C \pm 8163.7 \pm C \pm 6461.0 \pm C \pm 8163.7 \pm C \pm 100000000000000000000000000000000$	$2s^2 2p (1) 3u = 2s^2 2p (1) 34f$ $2s^2 2p 3t^2 P^0 3d = 2s^2 2p 5t^2 P^0 Mf$	1 $^{3/2[5/2]}$ 3 3 3 1 10	2.9	1055
	59.01	$65461 \pm C = 9942.6 \pm C$	$2s^2 2p (1) 30 + 2s^2 2p (1) 34 = 2s^2$	3120 []0	2.2	1055
	56.91	$0.140.1 \pm 0.1245.0 \pm 0.0$	$25.2p(T)50 - 25.2p(T)^{41}$	r • 1/2[7/2]	2-0	1035
	58.98	6489.3 + C - 8184.8 + C	$2s^2_2 2p^5_1(^2P^0)3d - 2s^2_2 2p^5_2(^2P^0)4f$	${}^{3}F^{a} - {}_{3/2}[9/2]^{a}$	3 - 4	1055
	59.26	6611.6+C - 8299.1+C	2s ² 2p ² (² P'')3d - 2s ² 2p ² (² P'')4f	$[\mathbf{F}^{\circ} - 1/2[7/2]^{\circ}]$	3 - 4	1055
	59.59	6511.4+C · 8189.5+C	$2s^{2}2p^{5}(^{2}P^{2})3d = 2s^{2}2p^{5}(^{2}P^{2})4f$	${}^{4}\mathrm{D}^{\mathrm{o}} + {}_{3/2}[{}_{7/2}]^{\mathrm{o}}$	3 - 4	1055
60	67.21	6615.3+C · 8103.3+C	2s ² 2p ⁵ (² P ^o)3d - 2s ² 2p ⁵ (² P ^o)4p	$^{1}D^{\circ} + ^{1}D$	2 - 2 'Q	271
	91.96	5864.7 - 6952.3	$2s^22p^5(^2P^{\circ}_{< -2})3s\cdot 2s2p^63s$	$(_{3/2+1/2})^{\circ} \cdot {}^{1}S$	1 - 0	390
	97.04	6660.9 - 7691.4	2=29n5(2P)24.9-9n624	תי ₋ ۹۵]	1.2 0	390
	100.80	5061 3 . 6052 3	$2e^{2}2n^{5}(^{2}P^{n}) \rightarrow 3e^{2}2n^{6}2e^{2}$	$\frac{172[372]}{(100,10)} = \frac{10}{10}$	1.0	300
30	107.020	5964 7 6379 9	$p_{\alpha}^{2} 2 p_{\alpha} (1 < 100^{-65} 2 p_{\alpha})^{3} $	$\frac{(1/2)(1/2)}{(1/2)} = 0$	1 0	023.03
au	191,029	5061 2 6279 2		(3/2-1/2) · D		720,70 137
	乙生み コソ	0°801.5 • 067777	$-25.501117 \times 1008-23.5011171000 = 1$	11/0.1/01	$\mathbf{r} \cdot \mathbf{v} + \mathbf{v}$	

IRON XVIII (F e^{+17}), Z = 26

Ground State $1s^22s^22p^5$ (²P^o_{3/2}) (9 electrons) Ionization Potential [10 950 000] cm⁻¹; [1358] eV

Multiplet F	Rel. Int.	λ_{vac} (in Å)		Levels (in 10^3 cm ⁻¹)		Configurations	Terms	J . J	Notes References
1			•						l
	15	10.192		0.0 - 9813.3	1	$2s^22p^5 - 2s^22p^4(^4S)5d$	$g^2 P^{\alpha} - {}^2 D$	3.3	0 945
	10	10.298		102.579 - 9813.3		$2s^2 2p^5 - 2s^2 2p^4 (^1S) 5d$	$g^2 P^a - {}^2 D$	<u>1</u> - 3	945
	31	10.352		0.0 - 9660.0		$2s^22p^5 - 2s^22p^4(^1D)5d$	$g^2 P^0 - {}^2S$	<u>1</u> - 1	, 945
	26	10.437		0.0 - 9581.3		$2s^22p^5 - 2s^22p^4(^{3}P)5d$	$g^2 P^2 \cdot {}^2 D$	1 <u>1</u> - <u>2</u>	945
	23	10.460	1	102.579 - 9662.9		2s ² 2p ⁵ - 2s ² 2p ⁴ (¹ D)5d	$g^2 P^0 = {}^2 D$	$\frac{1}{2} - \frac{3}{2}$	945

Multiplet Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J 1	Notes	References
32 21 2 44 47	10.529 10.543 11.021 11.253 11.280	0.0 - 9497.6 102.579 - 9587.6 0.0 - 9073.6 102.579 - 8989.1 0.0 - 8865.2	$\begin{array}{l} 2s^22p^5-2s^22p^4(^2P)5d\\ 2s^22p^5-2s^22p^4(^2P)5d\\ 2s^22p^5-2s^22p^4(^2P)5d\\ 2s^22p^5-2s^22p^4(^3P)4d\\ 2s^22p^5-2s^22p^4(^3P)4d\\ 2s^22p^5-2s^22p^4(^3P)4d \end{array}$	$\begin{array}{c} g_{2}^{2}P^{*} - {}^{4}F \\ g_{2}^{2}P^{*} - {}^{2}D \\ g_{2}^{2}P^{*} - {}^{2}D \\ g_{2}^{2}P^{*} - {}^{2}D \\ g_{2}^{2}P^{*} - {}^{2}D \end{array}$			945 945 643 945 643
27 3 57 10 49	11.309 11.318 11.326 11.384 11.420	$\begin{array}{c} 0.0 & 8343.9 \\ 0.0 & 8835.5 \\ 0.0 & 8829.2 \\ 102.579 & 8886.5 \\ 0.0 & 8757.0 \end{array}$	$\begin{array}{l} 2s^22p^5 \cdot 2s^22p^4(^1D)4d\\ 2s^22p^5 \cdot 2s^22p^4(^1D)4d\\ 2s^22p^5 \cdot 2s^22p^4(^1D)4d\\ 2s^22p^5 \cdot 2s^22p^4(^1D)4d\\ 2s^22p^5 \cdot 2s^22p^4(^1D)4d\\ 2s^22p^5 \cdot 2s^22p^4(^1P)4d \end{array}$	$\begin{array}{c} g^2 p^{n-2} p \\ g^2 p^{n-2} S \\ g^2 p^{n-2} p \\ g^2 p^{n-2} p \\ g^2 p^{n-2} p \\ g^2 p^{n-2} F \end{array}$		Q Q	945 643 945 643 945
49 28 52 27 21	11.440 11.458 11.526 11.551 11.575	$\begin{array}{c} 0.0 & 8742.5 \\ 0.0 & 8727.5 \\ 0.0 & 8676.0 \\ 102.579 & 8739.9 \\ 102.579 & 8742.5 \end{array}$	$\begin{array}{l} 2s^22p^5 \cdot 2s^22p^4(^3P)4d\\ 2s^22p^5 \cdot 2s^22p^4(^3P)4d\\ 2s^32p^5 \cdot 2s^32p^4(^3P)4d\\ 2s^32p^5 \cdot 2s^32p^4(^3P)4d\\ 2s^32p^5 \cdot 2s^22p^4(^3P)4d\\ 2s^22p^5 \cdot 2s^22p^4(^3P)4d \end{array}$	$\begin{array}{c} g_{2}^{2}P^{a}-{}^{2}P\\ g_{2}^{2}P^{a}-{}^{4}F\\ g_{2}^{2}P^{a}-{}^{2}D\\ g_{2}^{3}P^{a}-{}^{2}D\\ g_{2}^{3}P^{a}-{}^{2}p\\ g_{1}^{3}P^{a}-{}^{2}p\end{array}$		Q	945 945 945 945 945 945
17 11 10 13 20	$11.640 \\ 11.741 \\ 11.762 \\ 11.778 \\ 11.865$	0.0 - 8591.1 0.0 - 8517.2 0.0 - 8502.0 102.579 - 8593.1 102.579 - 8530.7	$\begin{array}{l} 2s^{2}2p^{5} \cdot 2s^{2}2p^{4}(1))4s\\ 2s^{2}2p^{5} \cdot 2s^{2}2p^{4}(1))4s\\ 2s^{2}2p^{5} \cdot 2s^{2}2p^{4}(1)4s\\ 2s^{2}2p^{5} \cdot 2s^{2}2p^{4}(1)4s\\ 2s^{2}2p^{5} \cdot 2s^{2}2p^{4}(1)04s\\ 2s^{2}2p^{5} \cdot 2s^{2}2p^{4}(1)4s\end{array}$	$\begin{array}{c} g^2 P^n - {}^2 D \\ g^2 P^n - {}^2 P \\ g^2 P^n - {}^4 P \\ g^2 P^n - {}^2 D \\ g^2 P^n - {}^2 D \\ g^2 P^n - {}^2 P \end{array}$			945 945 945 945 945 945
23 48 38 47	$\begin{array}{c} 12.003 \\ 12.847 \\ 13.001 \\ 13.015 \\ 13.049 \end{array}$	$\begin{array}{c} 102.579 & 8433.8 \\ 0.0 & 7783.9 \\ 102.579 & 7794.4 \\ 102.579 & 7786.1 \\ 102.579 & 7766.1 \end{array}$	$\begin{array}{c} 2s^22p^5 \cdot 2s^22p^4(^3\mathrm{P})4s\\ 2s^22p^5 \cdot 2s^22p^5(^1\mathrm{P}^2)3p\\ 2s^32p^5 \cdot 2s^22p^5(^1\mathrm{P}^2)3p\\ 2s^52p^5 \cdot 2s^2p^5(^1\mathrm{P}^2)3p\\ 2s^22p^5 \cdot 2s^2p^5(^1\mathrm{P}^2)3p \end{array}$	$\begin{array}{c} g_{2}^{2}p_{0} - {}^{4}p \\ g_{2}^{2}p_{0} - {}^{2}D \\ g_{2}^{2}p_{0} - {}^{2}p \\ g_{3}^{2}p_{0} - {}^{2}p \\ g_{2}^{2}p_{0} - {}^{2}D \end{array}$			945 945 945 945 945 945
30 51 48 48 55	13.159 13.319 13.355 13.374 13.397	$\begin{array}{c} 0.0 & -7599.4 \\ 0.0 & -7508.1 \\ 0.0 & -7487.8 \\ 0.0 & -7487.2 \\ 102.579 & -7567.0 \end{array}$	$\begin{array}{l} 2s^22\rho^5 & 2s2p^5(^{1}P^{*})3p\\ 2s^22\rho^5 & 2s2p^5(^{3}P^{*})3p\\ 2s^32p^5 & 2s2p^5(^{3}P^{*})3p\\ 2s^22\rho^5 & 2s2p^5(^{2}P)3p\\ 2s^22\rho^5 & 2s2p^5(^{2}P^{*})3p\\ 2s^22\rho^5 & 2s2p^5(^{3}P^{*})3p \end{array}$	$\begin{array}{c} g^2 P^2 + ^2 S \\ g^2 P^2 + ^4 P \\ g^2 P^2 + ^2 P \\ g^2 P^2 + ^2 D \\ g^2 P^2 + ^2 D \end{array}$			945 945 945 945 945 945
59 20 30 50 40	13.464 13.91 13.954 14.121 14.150	$\begin{array}{c} 0.0 & -7427.2 \\ 0.0 & -7184.2 \\ 0.0 & -7166.4 \\ 102.579 & -7184.2 \\ 0.0 & -7067.0 \end{array}$	$\begin{array}{l} 2s^22p^5 & 2s^2p^5(^3P'')3p\\ 2s^22p^5 & 2s^22p^4('S)3d\\ 2s^22p^5 & 2s^22p^4('S)3d\\ 2s^22p^5 & 2s^22p^4('S)3d\\ 2s^22p^5 & 2s^22p^4('S)3d\\ 2s^22p^5 & 2s^22p^4('D)3d \end{array}$	$\begin{array}{c} g^2P^\circ - {}^4D \\ g^2P^\circ - {}^2D \\ g^2P^\circ - {}^2D \\ g^2P^\circ - {}^2D \\ g^2P^\circ - {}^2D \\ g^2P^\circ - {}^2D \end{array}$	Nicha-Nichalanda 1 1 1 1 1	Q	945 736 850 850 850
90 60 52 70 70	14.202 14.255 14.344 14.361 14.373	$\begin{array}{c} 0.0 & - & 7042.0 \\ 0.0 & - & 7015.1 \\ 102.579 & - & 7074.2 \\ 102.579 & - & 7067.0 \\ 0.0 & - & 6957.5 \end{array}$	$\begin{array}{l} 2s^22p^5 - 2s^22p^4(^1D)3d\\ 2s^22p^5 - 2s^22p^4(^1D)3d\\ 2s^22p^5 - 2s^22p^4(^1D)3d\\ 2s^22p^5 - 2s^22p^4(^1D)3d\\ 2s^22p^5 - 2s^22p^4(^1D)3d\\ 2s^22p^5 - 2s^22p^4(^3P)3d \end{array}$	$\begin{array}{c} g^2 P^n + {}^2 D \\ g^2 P^n + {}^2 S \\ g^2 P^n + {}^2 P \\ g^2 P^n + {}^2 D \\ g^2 P^n + {}^2 D \\ g^2 P^n + {}^2 D \end{array}$			850 850 945 850 850
$ \begin{array}{c} 60 \\ 34 \\ 30 \\ 28 \\ 61 \end{array} $	$14.419 \\ 14.453 \\ 14.467 \\ 14.485 \\ 14.536$	$\begin{array}{c} 0.0 & - \ 6935.3 \\ 0.0 & - \ 6919.0 \\ 102.579 & - \ 7015.1 \\ 0.0 & - \ 6903.7 \\ 0.0 & - \ 6879.5 \end{array}$	$\begin{array}{l} 2s^22p^5 \cdot 2s^22p^4(^3P)3d\\ 2s^22p^5 \cdot 2s^22p^4(^3P)3d\\ 2s^22p^5 \cdot 2s^22p^4(^3D)3d\\ 2s^22p^5 \cdot 2s^22p^4(^3P)3d\\ 2s^22p^5 \cdot 2s^22p^4(^3P)3d \end{array}$	$\begin{array}{c} g^2 P^* - {}^4 P \\ g^2 P^* - {}^4 D \\ g^2 P^* - {}^2 S \\ g^2 P^* - {}^4 F \\ g^2 P^* - {}^2 F \end{array}$			850 945 850 850 850
56 49 37 6 25	14.551 14.581 14.610 14.772 14.868	$\begin{array}{c} 0.0 & -6872.5 \\ 0.0 & -6858.2 \\ 102.579 & -6947.2 \\ 102.579 & -6872.5 \\ 102.579 & -6828.4 \end{array}$	$\begin{array}{l} 2s^22p^5 - 2s^32p^4(^3P)3d\\ 2s^22p^5 - 2s^22p^4(^3P)3d\\ 2s^22p^5 - 2s^22p^4(^3P)3d\\ 2s^22p^5 - 2s^22p^4(^3P)3d\\ 2s^22p^5 - 2s^22p^4(^3P)3d\\ 2s^22p^5 - 2s^22p^4(^3P)3d \end{array}$	$\begin{array}{c} g^2 P^{o} + {}^{\Phi} P \\ g^2 P^{o} + {}^{\Phi} P \\ g^2 P^{o} + {}^{2} P \\ g^2 P^{o} + {}^{2} P \\ g^2 P^{o} + {}^{\Phi} P \\ g^2 P^{o} + {}^{2} P \end{array}$		Q	850 850 945 850 945
50 78 90 16 46	15.491 15.611 15.623 15.764 15.826	$\begin{array}{c} 102.579 & .6557.9 \\ 0.0 & .6404.4 \\ 0.0 & .6400.8 \\ 0.0 & .6343.6 \\ 0.0 & .6318.7 \end{array}$	$\begin{array}{c} 2s^22p^5 - 2s^22p^4({}^{5}){}^{3}s\\ 2s^22p^5 - 2s^22p^4({}^{1}D){}^{3}s\\ 2s^22p^5 - 2s^22p^4({}^{1}D){}^{3}s\\ 2s^22p^5 - 2s^22p^4({}^{1}D){}^{3}s\\ 2s^22p^5 - 2s^22p^4({}^{3}P){}^{3}s\\ 2s^22p^5 - 2s^22p^4({}^{3}P){}^{3}s\end{array}$	$\begin{array}{c} g_{2}^{2}P^{*} - {}^{2}S \\ g_{2}^{2}P^{*} - {}^{2}D \\ g_{2}^{2}P^{*} - {}^{2}D \\ g_{2}^{2}P^{*} - {}^{2}P \\ g_{2}^{2}P^{*} - {}^{2}P \\ g_{2}^{2}P^{*} - {}^{4}P \end{array}$	Neutraturaturaturaturaturaturaturaturatura	Q	850 643 850,643 850 850
53 56 30 41 3	15.869 16.003 16.024 16.073 16.087	$\begin{array}{c} 102.579 & \cdot 6404.4 \\ 0.0 & \cdot 6248.8 \\ 102.579 & \cdot 6343.6 \\ 0.0 & \cdot 6221.6 \\ 102.579 & \cdot 6318.7 \end{array}$	$\begin{array}{l} 2s^22p^5 & 2s^22p^4(^1D)3s\\ 2s^22p^5 & 2s^22p^4(^3P)3s\\ 2s^22p^5 & 2s^22p^4(^3P)3s\\ 2s^22p^5 & 2s^22p^4(^3P)3s\\ 2s^22p^5 & 2s^22p^4(^3P)3s\\ 2s^22p^5 & 2s^22p^4(^3P)3s \end{array}$	$\begin{array}{c} g^2 P^{\mu} \cdot {}^2 D \\ g^2 P^{\mu} \cdot {}^2 P \\ g^2 P^{\mu} \cdot {}^2 P \\ g^2 P^{\mu} \cdot {}^4 P \\ g^2 P^{\mu} \cdot {}^4 P \end{array}$			850 850 850 850 850 850
18 14 3 16 400	16.109 16.166 16.270 16.306 93.923	$\begin{array}{c} 102.579 & 6310.3 \\ 1064.697 & 7250.4 \\ 102.579 & 6248.8 \\ 1064.697 & 7197.3 \\ 0.0 & 1064.697 \end{array}$	$\begin{array}{c} 2s^{2}2p^{5}-2s^{2}2p^{4}(^{3}P)3s\\ 2s2p^{6}-2s2p^{5}3s\\ 2s^{2}2p^{7}-2s^{2}2p^{4}(^{3}P)3s\\ 2s2p^{6}-2s2p^{2}3s\\ 2s^{2}2p^{7}-2s2p^{6}\end{array}$	$\begin{array}{c} g^2 P^{\circ} + {}^4 P \\ {}^2 S + {}^2 P^{\circ} \\ g^2 P^{\circ} + {}^2 P \\ {}^2 S + {}^2 P^{\circ} \\ g^2 P^{\circ} + {}^2 S \end{array}$		Р	850 945 850 945 1104,849

para.

Multiplet Rel. Int. λ_{v_0}	. (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
200 1	03.937 74.86	102.579 - 1064.697 0.0 - 102.579	$\frac{2s^22p^5 - 2s2p^6}{2s^22p^5 - 2s^22p^5}$	$g^{2}P^{n} - {}^{2}S g^{2}P^{n} - g^{2}P^{n}$	1 - 1 2 - 2 2 - 2	P F	1104,849 442

$\label{eq:IRON XIX (Fe^{+18}), Z = 26} \\ Ground \ State \ 1s^22s^22p^4 \ ({}^3P_2) \ (\ 8 \ electrons) \\ Ionization \ Potential \ [11 \ 740 \ 000] \ cm^{-1}; \ [1456] \ eV \\ \end{cases}$

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J Notes	References
		1.918	0.0 - 52138.	$1s^22s^22p^4 - 1s2s^22p^5$	$g^{3}P - {}^{3}P^{\circ}$	2 - 2	429
	1	1.931	325.143 - 52138.	$1s^{2}2s^{2}2p^{4} - 1s2s^{2}2p^{5}$	^C 'S - ³ P°	0 - 1	956
	28	9.547	0.0 - 10472.8	$2s^22p^4 - 2s^22v^3(^2P^2)5d$	$g^{3}P - {}^{1}F^{0}$	2 - 3 0	643
	35	9.599	0.0 - 10423.2	$2s^22p^4 - 2s^22p^3(^2P^0)5d$	$\tilde{g}^{3}P - {}^{3}F^{0}$	2-3 Ò	643
	13	9.688	$0.0 \cdot 10322.0$	$2s^22p^4 - 2s^22p^3(^2D^0)5d$	$\tilde{g}^{3}P - {}^{3}D''$	2 - 3	945
	27	9.696	168.870 - 10482.6	$2s^22p^4 \cdot 2s^22p^3(^2P^0)$ 5d	${}^{1}D + {}^{1}P^{o}$	2 - 1	643
	14	9.705	168.870 - 10472.8	$2s^22p^4 - 2s^22p^3(^2P^0)5d$	${}^{1}D - {}^{1}F^{0}$	2 - 3	945
	37	9.713	0.0 - 10294.6	$2s^22p^4 - 2s^22p^3(^2D')5d$	$g^{3}P + {}^{3}D^{\circ}$	2 - 2 0	643
	13	9.724	0.0 - 10283.8	$2s^22p^4 \cdot 2s^22p^3(^2D')5d$	$g^{3}P \cdot {}^{3}F^{\circ}$	2 - 3	945
	17	9.752	168.870 - 10423.2	$2s^22p^4 \cdot 2s^22p^3(^2P'')5d$	$^{1}D - {}^{3}F^{*}$	2 - 3 Q	643
	4	9.766	89.439 - 10327.4	$2s^22p^4 - 2s^22p^3(^2D^\circ)5d$	$g^{3}P + {}^{3}S^{\circ}$	1-1 Q	945
	10	9.799	89.439 - 10294.6	$2s^22p^4 - 2s^22p^3(^2D^0)5d$	$g^{3}P - {}^{3}D^{\circ}$	1 - 2	945
	20	9.842	0.0 - 10163.0	$2s^22p^4 \cdot 2s^22p^3(^4S^3)5d$	$\tilde{g}^{3}P + {}^{3}D^{\circ}$	2 - 3	945
	1	9.911	75.263 - 10165.0	$2s^22p^4 - 2s^22p^3(^4S^{\circ})5d$	$\tilde{g}^{3}P + {}^{3}D^{2}$	0 · 1 P	945
	1	9.926	89.439 - 10164.0	$2s^22p^4 - 2s^22p^3(^4S')5d$	$g^{3}P + {}^{3}D^{\circ}$	1 - 2 P	945
	33	10.564	89.439 - 9555.6	$2s^22p^4 - 2s^22p^3(^2P^{\circ})$ 4d	$g^{3}P - {}^{3}D^{\circ}$	1 · 2	945
	28	10.580	89.439 - 9541.2	$2s^22p^4 - 2s^22p^3(^2P^0)$ 4d	$g^{3}P - {}^{3}P''$	1 - 1	945
	25	10.617	75.263 - 9494.2	$2s^22p^4 - 2s^22p^3(^2P^3)4d$	$\tilde{g}^{3}P + {}^{3}D^{\circ}$	0.1	945
	38	10.635	0.0 - 9402.9	$2s^2 2p^4 \cdot 2s^2 2p^3 (^2D^9)4d$	$g^{3}P + {}^{3}S^{\circ}$	2 - 1	945
	34	10.644	0.0 - 9395.0	$2s^22p^4 - 2s^22p^3(^2D^o)4d$	g ³ P - ³ P°	2 - 2	945
	36	10.658	0.0 - 9382.6	$2s^22p^4 \cdot 2s^22p^3(^2D^o)4d$	$g^{3}P - {}^{3}D^{\circ}$	2 - 3	945
	25	10.685	0.0 - 9358.9	$2s^22p^4 - 2s^22p^3(^2D^{\circ})4d$	$\tilde{g}^{3}P - {}^{3}F^{\circ}$	2 - 3	945
	20	10.735	89.439 - 9402.9	$2s^22p^4 - 2s^22p^3(^2D^0)4d$	$g^{3}P - {}^{3}S^{\circ}$	1 - 1	945
	37 -	10.770	89.439 - 9374.5	$2s^22p^4 - 2s^22p^3(^2D^0)4d$	$g^{3}P - {}^{3}D^{n}$	1 · 2	945
	54	10.813	0.0 - 9248.1	$2s^22p^4 - 2s^22p^3(^4S^3)4d$	$g^{3}P - {}^{3}D^{\circ}$	2 · 3	945
	12	10.824	168.870 - 9407.6	2s ² 2p ⁴ - 2s ² 2p ³ (² D ^o)4d	$^{1}D + ^{1}D^{\circ}$	2 - 2	945
	20	10.851	325.143 - 9541.2	$2s^22p^4 - 2s^22p^3(^2P^e)4d$	${}^{1}S - {}^{3}P^{0}$	0-1 Q	945
l		10.907	75.263 - 9244.0	$2s^22p^4 - 2s^22p^3(^4S^{\circ})4d$	$g^{3}P - {}^{3}D^{n}$	0 - 1	1094
ļ	25	10.933	89.439 - 9236.1	$2s^22p^4 - 2s^22p^3(^4S^\circ)4d$	$\tilde{g}^{3}P + {}^{3}D^{\circ}$	1 - 2	945
	19	11.980	2134.121 - 10482.6	2p ⁶ - 2s ² 2p ³ (² P [°])5d	¹ S - ¹ P ^o	0 - 1 Q	945
	10	11.988	2134.121 - 10476.9	$2p^6 - 2s^2 2p^3 (^2P^o) 5d$	¹ S - ³ P ^o	0 - 1	1089
	38	12.990	168.870 - 7867.1	$2s^22p^4 - 2s2p^4(^2D)3p$	${}^{1}D - {}^{1}F^{0}$	2 - 3	945
	10	13.237	$0.0 \cdot 7553.8$	$2s^22p^4 - 2s^22p^3(^2P^0)3d$	$g^{3}P - {}^{3}D^{\circ}$	2 - 2 Q	643
	11	13.264	0.0 - 7539.2	$2s^22p^4 - 2s^22p^3(^2P^\circ)3d$	$g^{3}P - {}^{3}D^{\circ}$	2 - 3	945
	55	13.397	89.439 - 7553.8	$2s^22p^4 - 2s^22p^3(^2P^a)3d$	$g^{3}P - {}^{3}D^{o}$	1 - 2	945
	48	13.424	0.0 - 7449.4	2s ² 2p ⁴ - 2s ² 2p ³ (² D°)3d	$g^{3}P = {}^{1}F^{3}$	2 - 3	945
	43	13.440	89.439 - 7529.9	$2s^22p^4 \cdot 2s^22p^3(^2P^\circ)3d$	$g^{3}P - {}^{3}D^{\circ}$	1 - 1	945
	59	13.464	$0.0 \cdot 7427.2$	$2s^22p^4 - 2s^22p^3(^2D^\circ)3d$	$g^{3}P - {}^{3}S^{\alpha}$	2 - 1	945
	55	13.504	0.0 - 7405.2	$2s^22p^4 - 2s^22p^3(^2D^o)3d$	$g^{3}P + {}^{3}P^{\circ}$	2 - 2	945
	75	13.520	0.0 - 7396.4	$2s^22p^4 - 2s^22p^3(^2D^\circ)3d$	$g^{3}P - {}^{3}D^{\circ}$	2 - 3	945
	42	13.555	89.439 - 7467.0	2s ² 2p ⁴ - 2s ² 2p ³ (² P°)3d	$g^{3}P - {}^{3}P^{\circ}$	1 - 2	945
	25	13.607	922.908 - 8272.0	2s2p ⁵ - 2s2p ⁴ (² D)3d	${}^{3}P^{\circ} - {}^{3}D$	2-3 Q	945
ļ	10	13.631	89.439 - 7427.2	$2s^22p^4 - 2s^22p^3(^2D^0)3d$	g³P - ³ S"	1-1 Q	146
i	48	13.648	0.0 - 7327.6	$2s^22p^4 - 2s^22p^3(^2D^\circ)3d$	g ³ P - ³ F ^o	2-3 Q	945
	51	13.669	1267.586 - 8583.3	2s2p ⁵ - 2s2p ⁴ (² P)3d	'P° - 'D	1 - 2	945
ĺ	45	13.700	1267.586 - 8566.8	$2s2p_{2}^{5} - 2s2p^{4}(^{2}P)3d$	$^{1}P^{o} - ^{1}P$	1 - 1	945
	45	13.735	984.760 - 168.870	$2s2p^5 \cdot 2s^22p^4$	${}^{3}P^{o} - {}^{1}D$	1 - 2	945
	2D	13.735	$8265.4 \cdot 168.870$	$2s2p^{4}(^{2}D)3d \cdot 2s^{2}2p^{4}$	${}^{3}D - {}^{1}D$	1 • 2	3D,45
ļ	2P	13.750	0.0 - 7249.0	2s ² 2p ⁴ - 2s ² 2p ³ (⁴ S ⁹)3d	$g^{3}P - {}^{3}D^{\circ}$	2 - 3	3D,77
	(0	12 051	160 070 7900 6	9.20.4 9.20.420.921		0 0 0	649

Multiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	l · l	Notes	References
	48	13.936	922.908 - 8098.5	$2s2p^{5} \cdot 2s2p^{4}(^{4}P)3d$	${}^{3}P^{n} - {}^{3}D$	2 - 3		945
	43	14.021	984.760 - 8116.9	$2s2p^5 - 2s2p^4(^4P)3d$	${}^{3}P^{\circ} - {}^{3}P$	1 - 2		945
	12	14.293	325.143 - 7321.6	$2s^22p^4 - 2s^22p^3(^2D^2)3d$	'S - 'P°	0.1	Q	464
	53	14.668	0.0 - 6817.6	$2s^22p^4 - 2s^22p^3(^2D^9)3s$	$g^{3}P - {}^{3}D^{\circ}$	2 - 3		945
	49	14.706	168.870 - 6968.8	2s ² 2p ⁴ - 2s ² 2p ³ (² P ^o)3s	$^{-1}$ D - 3 P°	2 - 2	Q	945
	38	14.735	0.0 - 6787.8	$2s^22p^4 - 2s^22p^3(^2D^3)3s$	$g^{3}P - {}^{3}D^{\circ}$	2 - 2		945
	21	14.806	168.870 - 6922.9	$2s^22p^4 - 2s^22p^3(^2P^2)3s$	$^{-1}D - {}^{3}P^{\circ}$	2 - 1	Q	945
	20	14.90	75.263 - 6789.2	$2s^22p^4 - 2s^22p^3(^2D^2)3s$	g ³ P ⋅ ³ D°	0.1	Q	736
1	28	14.929	89.439 - 6787.8	$2s^22p^4 - 2s^22p^3(^2D^9)3s$	$g^{3}P + {}^{3}D^{\circ}$	1 - 2	-	945
	33	14.966	0.0 - 6681.2	$2s^22p^4 - 2s^22p^3(^4S^\circ)3s$	$g^{3}P - {}^{3}S^{9}$	2 - 1		945
	53	14.995	168.870 - 6837.7	$2s^22p^4 - 2s^22p^3(^2D')3s$	${}^{1}D - {}^{1}D^{\circ}$	2 - 2		945
	5	15.042	168.870 · 6817.6	$2s^22p^4 \cdot 2s^22p^3(^2D^9)3s$	${}^{1}D - {}^{3}D^{\circ}$	2 - 3	Q	643
	11	15.111	168.870 - 6787.8	$2s^22p^4 - 2s^22p^3(^2D^9)3s$	$^{1}D - ^{3}D^{\circ}$	2 - 2	Q	945
	5	15.138	75.263 - 6681.2	$2s^22p^4 - 2s^22p^3(^4S^{\circ})3s$	$g^{3}P - {}^{3}S^{\circ}$	$0 \cdot 1$	-	945
	26	15.172	89.439 - 6681.2	2s ² 2p ⁴ - 2s ² 2p ³ (⁴ S ^o)3s	$g^{3}P - {}^{3}S^{\circ}$	$1 \cdot 1$		945
	26	15.193	0.0 - 6580.0 + K	$2s^22p^4 - 2s^22p^3(^4S^{\circ})3s$	g ³ P - ⁵ S°	2 - 2	Q	945,680
	2	15.413	89.439 - 6580.0 + K	$2s^22p^4 - 2s^22p^3(^4S')3s$	$g^{3}P - {}^{5}S^{9}$	1 - 2	Ô.	643,680
	50	78.90	0.0 - 1267.586	$2s^22p^4 - 2s2p^5$	$\tilde{g}^{3}P - P^{0}$	2 - 1		1091
	4	83.89	75.263 • 1267.586	$2s^22p^4 - 2s2p^5$	$g^{3}P - P^{0}$	0 - 1		1091
	4	84.89	7405.2 - 8583.3	$2s^{2}2p^{3}(^{2}D^{o})3d - 2s^{2}p^{4}(^{2}P)3d$	${}^{3}P^{o} - {}^{1}D$	2 - 2		1091
	4	87.02	984.760 - 2134.121	$2s2p^{5} \cdot 2p^{6}$	${}^{3}P^{\circ} - {}^{1}S$	1 - 0		1091
	250	91.02	$168.870 \cdot 1267.586$	$2s^22p^4 - 2s^2p^5$	${}^{1}D - {}^{1}P^{0}$	2 - 1		1091
	200	101.55	0.0 - 984.760	$2s^2 2p^4 - 2s 2p^5$	g ³ P - ³ P°	2 - 1		1091
	50	106.12	325.143 - 1267.586	$2s^22p^4 \cdot 2s^2p^5$	$^{1}S - ^{1}P^{\circ}$	0 - 1		1091
	110	106.33	89.439 - 1030.019	$2s^22p^4 - 2s2p^5$	g ³ P - ³ P⁰	$1 \cdot 0$		1091
	300	108.37	0.0 - 922.908	$2s^{2}2p^{4} - 2s^{2}p^{5}$	g ³ P - ³ P°	2 - 2		1091
	110	109.97	75.263 - 984.760	$2s^22p^4 \cdot 2s2p^5$	$\tilde{g}^{3}P - {}^{3}P^{2}$	0 - 1		1091
1	80	111.70	89.439 - 984.760	$2s^22p^4 - 2s^2p^5$	$g^{3}P - {}^{3}P^{0}$	1.1	1	1091
	150	115.42	1267.586 - 2134.121	$2s2p^{5} - 2p^{6}$	$^{1}P^{2} - {}^{1}S$	1 - 0		1091
	200	120.00	89.439 - 922.908	$2s^22p^4 - 2s^2p^5$	$g^{3}P - {}^{3}P^{o}$	1 · 2		1091
	50	132.63	168.870 - 922.908	$2s^2 2p^4 - 2s 2p^5$	¹ D - ³ P°	2 - 2		1091
		307.56	0.0 - 325.143	$2s^22p^4 - 2s^22p^4$	g ³ P - ¹ S	2 - 0	F,P	375,1104
		424.26	89.439 - 325.143	$2s^22p^4 - 2s^22p^4$	$\tilde{g}^{3}P + {}^{1}S$	1 - 0	F,P	375,1104
	150	592.24	0.0 - 168.870	$2s^22p^4 - 2s^22p^4$	ğ³₽ - ¹D	2 - 2	F	437
		639.91	168.870 - 325.143	$2s^22p^4 - 2s^22p^4$	^o 'D - 'S	2 - 0	F,P	375,1104
		1068.3	75.263 - 168.870	$2s^22p^4 - 2s^22p^4$	$g^{3}P - {}^{1}D$	0 - 2	F,P	375,1104
İ		1118.07	0.0 · 89.439	$2s^22p^4 - 2s^22p^4$	ğ³P - g³P	2 · 1	F	442
		1259.0	89.439 - 168.870	$2s^22p^4 \cdot 2s^22p^4$	g ³ P - ^T D	$1 \cdot 2$	F,P	375,1104
		1328.7	0.0 - 75.263	$2s^22p^4 \cdot 2s^22p^4$	$\tilde{g}^{3}P - g^{3}P$	2 - 0	F,P	375,1104

IRON XX (Fe⁺¹⁹), Z = 26 Ground State $1s^22s^22p^3$ ($4S^{\circ}_{3/2}$) (7 electrons) Ionization Potential [12 760 000] cm⁻¹; [1582] eV

Multiplet Rel. Int	$\lambda_{\rm vac}$ (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	1.9051	323.18 - 175.80	$1s^22s^22p^3 - 1s^22s^22p^3$	² P° - ² D°	3-1		1059
4	1.9051	52667. • 0.0	$1s2s^{2}2p^{4} - 1s^{2}2s^{2}2p^{3}$	$^{2}P - g^{4}S^{\circ}$	3 - 3		59
3	1.9075	52425 52601.	$1s2s^{2}2p^{4} - 1s2s^{2}2p^{4}$	⁴ P - ² D	3.3		91
38	9.065	0.0 - 11031.	$2s^22p^3 - 2s^22p^2({}^{3}P)5d$	$g^4S^\circ - {}^4P$	3.3		945
21	9.073	138.29 - 11160.	$2s^22p^3 - 2s^22p^2(^1D)5d$	² D° - ² D	3 - 3		945
38	9.082	138.29 - 11152.	$2s^22p^3 - 2s^22p^2(^1D)5d$	$^{2}D^{\circ} \cdot ^{2}D$	3.5	0	643
41	9.110	0.0 - 10977.	$2s^22p^3 - 2s^22p^2(^{3}P)5d$	μ ⁴ S° - ⁴ F	3 . 5		945
28	9.163	0.0 - 10913.	$2s^22p^3 - 2s^22p^2(^3P)5d$	g ⁴ S° - ⁴ P			945
28	9.199	175.80 · 11046.	$2s^22p^3 - 2s^22p^2(^3P)5d$	$^{52}D^{\circ} - {}^{2}F$	\$ - Ť		945
26	9.208	175.80 - 11036.	$2s^22p^3 - 2s^22p^2(^3P)5d$	$^{2}D^{\circ} \cdot ^{2}D$	\$ - \$		945
28	9.220	323.18 - 11169.	$2s^22o^3 - 2s^22o^2(^1D)5d$	² P° • ² F	3.5		945
37	9.231	323.18 - 11152.	$2s^{2}2p^{3} - 2s^{2}2p^{2}(^{1}D)5d$	$^{2}P^{\circ} \cdot ^{2}D$	3.1	0	643
18	9.331	323.18 - 11036.	$2s^22p^3 - 2s^22p^2(^3P)5d$	${}^{2}P^{0} - {}^{2}D$	3.5	ð	643
18	9.344	323.18 - 11027.	$2s^22p^3 - 2s^22p^2(^3P)5d$	${}^{2}P^{\circ} - {}^{4}D$	3.5	Ò	643
33	9.364	323.18 - 11000.	$2s^22p^3 - 2s^22p^2(^3P)5d$	${}^{2}P^{0} - {}^{2}F$	3.5	Ò	643

Multiplet Rel. Int.	λ_{vac} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J Notes	References
41 37 5 11 21	9.389 9.440 9.871 9.953 9.981	$\begin{array}{c} 323.18 + 10977.\\ 323.18 + 10913.\\ 0.0 + 10130.\\ 0.0 + 10043.\\ 0.0 + 10020. \end{array}$	$\begin{array}{l} 2s^22p^3+2s^22p^2({}^3P)5d\\ 2s^22p^3+2s^22p^2({}^3P)5d\\ 2s^22p^3+2s^22p^2({}^3P)4d\\ 2s^22p^3+2s^22p^2({}^3P)4d\\ 2s^22p^3+2s^22p^2({}^3P)4d\\ \end{array}$	$\begin{array}{c} {}^{2}P^{n}-{}^{4}F\\ {}^{2}P^{n}-{}^{4}P\\ {}^{g}S^{n}-{}^{2}D\\ {}^{g}S^{n}-{}^{2}D\\ {}^{g}S^{n}-{}^{2}D\\ {}^{g}S^{n}-{}^{2}D\end{array}$		643 643 945 643 643
27 20 62 78 25	9.991 10.008 10.034 10.047 10.058	$\begin{array}{c} 0.0 + 10009, \\ 138.29 + 10130, \\ 175.80 + 10142, \\ 175.80 + 10130, \\ 0.0 + 9942.3 \end{array}$	$\begin{array}{l} 2s^22p^4 + 2s^22p^2({}^3P)4d\\ 2s^22p^4 + 2s^22p^2({}^3D)4d\\ 2s^22p^4 + 2s^22p^2({}^4D)4d\\ 2s^42p^4 + 2s^22p^2({}^4D)4d\\ 2s^42p^4 + 2s^22p^2({}^4D)4d\\ 2s^42p^3 + 2s^42p^2({}^4P)4d \end{array}$	$\begin{array}{c} g^4S'' = \frac{^4P}{^2D''} = \frac{^2D}{^2D''} = \frac{^2D}{^2D''} = \frac{^2D}{^2D''} = \frac{^2D}{^2G''} = \frac{^4F''}{^4F''} \end{array}$	1	945 945 945 643 945
25 42 25 52 22	$\begin{array}{c} 10.095 \\ 10.116 \\ 10.121 \\ 10.128 \\ 10.159 \end{array}$	$\begin{array}{c} 138.29 & -10043, \\ 138.29 & -10020, \\ 0.0 & -9880.5 \\ 138.29 & -10009, \\ 175.80 & -10020, \end{array}$	$\begin{array}{l} 2s^22p^3+2s^22p^2({}^3P)4d\\ 2s^32p^3+2s^22p^2({}^3P)4d\\ 2s^32p^3+2s^22p^2({}^3P)4d\\ 2s^32p^3+2s^22p^2({}^3P)4d\\ 2s^32p^3+2s^22p^2({}^3P)4d\\ 2s^22p^3+2s^22p^2({}^3P)4d \end{array}$	$\begin{array}{c} {}^{2}D^{n}-{}^{2}D\\ {}^{2}D^{n}-{}^{2}D\\ {}^{g}S^{n}-{}^{4}P\\ {}^{2}D^{n}-{}^{4}P\\ {}^{2}D^{n}-{}^{4}P\\ {}^{2}D^{n}-{}^{2}F\end{array}$		643 643 945 643 945
20 22 27 27 126	$10.177 \\10.222 \\10.322 \\10.344 \\12.393$	138.29 9964.5 260.09 10043. 323.18 10009. 323.18 9992.0 752.73 8821.3	$\begin{array}{l} 2s^22p^3-2s^22p^2({}^3P)4d\\ 2s^22p^3-2s^22p^2({}^3P)4d\\ 2s^22p^3-2s^22p^2({}^3P)4d\\ 2s^22p^3-2s^22p^2({}^3P)4d\\ 2s^22p^3-2s^22p^2({}^3P)4d\\ 2s2p^4-2s2p^3({}^3D')3d \end{array}$	$\begin{array}{c} {}^{2}D^{n}, {}^{2}F\\ {}^{2}p^{n}, {}^{2}D\\ {}^{2}p^{n}, {}^{4}P\\ {}^{2}p^{n}, {}^{4}D\\ {}^{2}p^{n}, {}^{4}D\\ {}^{4}P, {}^{4}P^{n}\end{array}$		945 945 643 643 643
$36 \\ 30 \\ 115 \\ 48 \\ 107$	12.494 12.763 12.812 12.818 12.834	820.68 - 8821.3 138.29 - 7973.4 752.73 - 8557.2 0.0 - 7801.5 175.80 - 7967.3	$\begin{array}{l} 2s2p^4-2s2p^3({}^4D'')3d\\ 2s^22p^3-2s^{*2}p^2({}^2D)3d\\ 2s2p^4-2s2p^3({}^3D'')3d\\ 2s^22p^4-2s^2p^2({}^3P')3d\\ 2s^{*2}2p^4-2s^{*2}p^2({}^3P')3d\\ 2s^{*2}p^4-2s^{*2}p^2({}^2D)3d \end{array}$	$\begin{array}{c} {}^{4}P - {}^{4}P'' \\ {}^{2}D'' - {}^{2}F' \\ {}^{4}P - {}^{2}F'' \\ g^{4}S'' - {}^{4}P \\ g^{4}S'' - {}^{4}P \\ {}^{2}D'' - {}^{2}P \end{array}$	Q 22-32-4 22-4 22-4 22-4 22-4 22-4 22-4 2	945 945 643 945 643
30 44 108 55 49	12.857 12.888 12.909 12.924 12.946	$\begin{array}{c} 138.29 & -7916.1 \\ 175.80 & -7935.0 \\ 752.73 & -8499.3 \\ 175.80 & -7913.3 \\ 323.18 & -8047.6 \end{array}$	$\begin{array}{l} 2s^32p^3-2s^42p^{2(1}D)3d\\ 2s^32p^3-2s^32p^2(1D)3d\\ 2s2p^4-2s2p^3(1D)3d\\ 2s2p^4-2s2p^3(^1D)3d\\ 2s^42p^3-2s^42p^2(^1D)3d\\ 2s^32p^3-2s^32p^2(^1S)3d \end{array}$	${}^{2}D^{n} - {}^{2}D \\ {}^{2}D^{n} - {}^{2}F \\ {}^{4}P - {}^{4}S^{n} \\ {}^{2}D^{n} - {}^{2}D \\ {}^{2}P^{n} - {}^{2}D \\ {}^{2}P^{n} - {}^{2}D$	salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar salar sa	945 945 643 945 945
60 80 72 60	12.958 12.970 12.983 12.995 13.07	$\begin{array}{c} 752.73 & 8470.0 \\ 175.80 & 7884.9 \\ 138.29 & 7843.6 \\ 752.73 & 8447.9 \\ 323.18 & 7974.6 \end{array}$	$\begin{array}{r} 2s2p^4 + 2s2p^3(^3D^*)3d\\ 2s^22p^3 + 2s^22p^3(^1D)3d\\ 2s^22p^3 + 2s^22p^2(^3P)3d\\ 2s2p^4 + 2s2p^3(^3D^*)3d\\ 2s^2p^4 + 2s2p^3(^3D^*)3d\\ 2s^2p^3 + 2s^22p^2(^1D)3d \end{array}$	${}^{4}P - {}^{4}D^{o}$ ${}^{2}D^{o} - {}^{2}G$ ${}^{2}D^{o} - {}^{2}D$ ${}^{4}P - {}^{4}D^{o}$ ${}^{2}P^{o} + {}^{2}S$	P 	945 643 643 643 736
53 37 30 2	13.082 13.111 13.138 13.159 13.183	$\begin{array}{c} 175.80 & -7819.9 \\ 1042.21 & -8669.6 \\ 1058.13 & -8669.6 \\ 1058.13 & -8657.5 \\ 138.29 & -7725.4 \end{array}$	$\begin{array}{r} 2s^32p^3+2s^22p^2(^3P)3d\\ 2s2p^4+2s2p^3(^3P'')3d\\ 2s2p^4+2s2p^3(^3P'')3d\\ 2s2p^5+2s2p^3(^3P'')3d\\ 2s2p^5+2s2p^3(^3P'')3d\\ 2s^32p^3+2s^32p^2(^3P)3d \end{array}$	${}^{2}D^{o} - {}^{2}F \\ {}^{2}D - {}^{2}D^{o} \\ {}^{2}U + {}^{2}D^{o} \\ {}^{2}D - {}^{2}F^{o} \\ {}^{2}D - {}^{2}F^{o} \\ {}^{2}D^{o} - {}^{2}P$	P	945 945 945 945 643
23 182 23	$\begin{array}{c} 13.194 \\ 13.232 \\ 13.247 \\ 13.279 \\ 13.292 \end{array}$	$\begin{array}{c} 1242.08 + 8821.3 \\ 1242.08 + 8801.4 \\ 175.80 + 7725.4 \\ 1194.85 + 8725.5 \\ 1339.68 + 8863.0 \end{array}$	$\begin{array}{r} 2s2p^4 + 2s2p^4(^3D^*)3d\\ 2s2p^4 + 2s2p^4(^1D^*)3d\\ 2s^22p^3 + 2s^22p^2(^4P)3d\\ 2s2p^4 + 2s2p^4(^5S^*)3d\\ 2s2p^4 + 2s2p^4(^5S^*)3d\\ 2s2p^4 + 2s2p^4(^1D^*)3d \end{array}$	$^{2}P + ^{4}P^{o}$ $^{2}P + ^{2}F^{o}$ $^{2}D^{o} + ^{2}P$ $^{2}S + ^{4}D^{o}$ $^{2}P + ^{2}S^{o}$	P	945 1067 945 945 945
49 50 3	13.298 13.329 13.335 13.361 13.387	$\begin{array}{c} 323.18 + 7843.6 \\ 1058.13 + 8560.6 \\ 1058.13 + 8557.2 \\ 752.73 + 8237.2 \\ 260.09 + 7731.4 \end{array}$	$\begin{array}{l} 2s^22p^4 \cdot 2s^22p^2({}^4P)3d\\ 2s2p^3 \cdot 2s2p^3({}^3D^*)3d\\ 2s2p^3 \cdot 2s2p^3({}^3D^*)3d\\ 2s2p^4 \cdot 2s2p^3({}^3D^*)3d\\ 2s2p^4 \cdot 2s2p^3({}^3S^*)3d\\ 2s^22p^3 \cdot 2s^22p^2({}^4P)3d \end{array}$	$\begin{array}{c} {}^{2}P^{o}+{}^{2}D\\ {}^{2}D+{}^{2}F^{o}\\ {}^{2}D+{}^{2}F^{o}\\ {}^{4}P-{}^{4}D^{o}\\ {}^{2}P^{o}+{}^{2}P\end{array}$	р Р Р Р Р Р Р 	643 945 945 943,736 643
$ \begin{array}{r} 59 \\ 45 \\ 51 \\ 0 \end{array} $	13.464 13.735 13.770 13.780 13.810	$\begin{array}{c} 1242.08 & 8669.6 \\ 0.0 & 7280.1 \\ 1242.08 & 8506.6 \\ 175.80 & 7433.5 \\ 175.80 & 7416.9 \end{array}$	$\begin{array}{l} 2s2p^4 & 2s2p^3(^3P^*)3d\\ 2s^22p^3 & 2s^22p^2(^3P)3s\\ 2s2p^4 & 2s2p^3(^3D^*)3d\\ 2s^22p^2 & 2s^22p^2(^4D)3s\\ 2s^22p^3 & 2s^22p^2(^4D)3s \end{array}$	$\begin{array}{c} {}^{2}P - {}^{2}D^{\alpha} \\ g^{4}S^{\alpha} - {}^{4}P \\ {}^{2}P - {}^{2}D^{\alpha} \\ {}^{2}D^{\alpha} - {}^{2}D \\ {}^{2}D^{\alpha} - {}^{2}D \\ {}^{2}D^{\alpha} - {}^{2}D \end{array}$	стания 	945 945 643 643 945
30	13.818 13.945 14.009 14.014 14.064	$\begin{array}{c} 0.0 - 7236.9 \\ 0.0 - 7171.0 \\ 175.80 - 7314.1 \\ 138.29 - 7274.0 \\ 323.18 - 7433.5 \end{array}$	$\begin{array}{l} 2s^22p^3 + 2s^22p^2(^3P)3s\\ 2s^22p^3 + 2s^22p^2(^3P)3s\\ 2s^22p^3 + 2s^22p^2(^3P)3s\\ 2s^22p^3 + 2s^22p^2(^3P)3s\\ 2s^22p^3 + 2s^22p^2(^3P)3s\\ 2s^22p^3 + 2s^22p^2(^3P)3s \end{array}$	$\begin{array}{c} g^4S^o - {}^4P \\ g^4S^o - {}^4P \\ {}^2D^e - {}^2P \\ {}^2D^o - {}^2P \\ {}^2P^o - {}^2D \end{array}$	* - * P * - * P	945 945 945 945 945
75 7 13 10 4	$ \begin{array}{c} 14.387\\ 16.935\\ 17.660\\ 80.51\\ 80.59 \end{array} $	$\begin{array}{c} 323.18 + 7274.0 \\ 1954.15 + 7859.5 \\ 2061.73 + 7725.4 \\ 0.0 + 1242.08 \\ 7416.9 + 8657.5 \end{array}$	$\begin{array}{c} 2s^{2}2p^{3} + 2s^{2}2p^{2}({}^{3}P)3s\\ 2p^{5} + 2s^{2}2p^{2}({}^{5}P)3d\\ 2p^{5} + 2s^{2}2p^{2}({}^{5}P)3d\\ 2s^{2}2p^{3} + 2s^{2}p^{2}({}^{3}P)3d\\ 2s^{2}2p^{3} + 2s^{2}p^{4}\\ 2s^{2}2p^{2}({}^{1}D)3s + 2s2p^{3}({}^{3}P')3d \end{array}$	$\begin{array}{c} {}^{2}P^{\circ}-{}^{2}P\\ {}^{2}P^{\circ}-{}^{2}D\\ {}^{2}P^{\circ}-{}^{2}P\\ {}^{g}{}^{4}S^{\circ}-{}^{2}P\\ {}^{g}{}^{4}S^{\circ}-{}^{2}P\\ {}^{2}D-{}^{2}F^{\circ} \end{array}$	Q - 222 - 223 - 223 - 223 Q Q - 223 - 223 Q Q - 223 -	643 979 979 1091 1091
Multiplet Rel. Int.	λ _{iae} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Term5	J - J Not	es References
------------------------------	---	---	--	--	--	--
50 4 4 50 4	83.24 83.69 88.24 90.60 92.63	$\begin{array}{c} 138.29 & \cdot 1339.68 \\ 0.0 & \cdot 1194.85 \\ 820.68 & \cdot 1954.15 \\ 138.29 & \cdot 1242.08 \\ 260.09 & \cdot 1339.63 \end{array}$	$\begin{array}{c} 2s^22p^3 - 2s2p^4 \\ 2s^22p^3 - 2s2p^4 \\ 2s2p^3 - 2s2p^4 \\ 2s2p^3 - 2p^5 \\ 2s^22p^3 - 2s2p^4 \\ 2s^22p^2 - 2s2p^4 \end{array}$	$\begin{array}{c} {}^{2}D^{0}+{}^{2}P\\ g^{4}S^{*}+{}^{2}S\\ {}^{4}P+{}^{2}P^{*}\\ {}^{2}D^{*}+{}^{2}P\\ {}^{2}D^{*}+{}^{2}P\\ {}^{2}P^{*}+{}^{2}P\end{array}$		1091 1091 1091 1091 1091 1091
200 80 10 50 250	93.78 94.64 95.95 98.09 98.38	$\begin{array}{c} 175.80 & \cdot 1242.98 \\ 138.29 & \cdot 1194.85 \\ 0.0 & \cdot 1042.21 \\ 1042.21 & \cdot 2061.73 \\ 323.18 & \cdot 1339.68 \end{array}$	$\begin{array}{c} 2s^22p^3 & 2s2p^4 \\ 2s^22p^3 & 2s2p^4 \\ 2s^22p^3 & 2s2p^4 \\ 2s^2p^3 & 2s2p^4 \\ 2s2p^4 & 2p^5 \\ 2s^22p^3 & 2s2p^4 \end{array}$	$\begin{array}{c} {}^{2}D^{0} - {}^{2}P \\ {}^{2}D^{0} - {}^{2}S \\ g^{4}S^{0} - {}^{2}D \\ {}^{2}D - {}^{2}P^{0} \\ {}^{2}P^{0} - {}^{2}P \end{array}$		1091 1091 1091 1091 1091 1091
30 80 50 50	101.83 106.173 106.98 108.83 109.66	$\begin{array}{c} 260.09 & 1242.08 \\ 7859.5 & 8801.4 \\ 260.09 & 1194.85 \\ 323.18 & 1242.08 \\ 1042.21 & 1954.15 \end{array}$	$\begin{array}{c} 2s^22p^3 - 2s2p^4 \\ 2s^22p^2(^3P)3d - 2s2p^3(^4D'')3d \\ 2s^22p^3 - 2s2p^4 \\ 2s^32p^3 - 2s2p^4 \\ 2s^32p^4 - 2s2p^4 \\ 2s^2p^4 - 2p^5 \end{array}$	$ \begin{array}{r} {}^{2}P^{o} - {}^{2}P \\ {}^{2}D - {}^{2}F^{o} \\ {}^{2}P^{o} - {}^{2}S \\ {}^{2}P^{o} - {}^{2}P \\ {}^{2}D - {}^{2}P^{o} \end{array} $		1091 900 1091 1091 1091
200 110 300 27 4	110.63 111.60 113.34 113.45 114.72	$\begin{array}{c} 138.29 &\cdot 1042.21 \\ 1058.13 &\cdot 1954.15 \\ 175.80 &\cdot 1058.13 \\ 8058.7 &\cdot 8940.3 \\ 323.18 &\cdot 1194.85 \end{array}$	$\begin{array}{c} 2s^{3}2p^{7}-2s2p^{4}\\ 2s2p^{4}-2p^{5}\\ 2s^{2}2p^{3}-2s2p^{4}\\ 2s^{2}2p^{2}(5)3d-2s2p^{3}(1^{p})3d\\ 2s^{2}2p^{2}(2^{p})^{3}d-2s2p^{3}(1^{p})3d\\ 2s^{2}2p^{3}-2s2p^{4}\end{array}$	${}^{2}D^{0} + {}^{2}D \\ {}^{2}D + {}^{2}P^{0} \\ {}^{2}D^{0} + {}^{2}D \\ {}^{2}D + {}^{2}D \\ {}^{2}D + {}^{2}F^{0} \\ {}^{2}P^{0} + {}^{2}S$		1091 1091 1091 390 1091
200 29 150 30 4	118.66 120.89 121.83 122.00 127.86	$\begin{array}{c} 0.0 & 842.74 \\ 7973.4 & 8800.5 \\ 0.0 & 820.68 \\ 1242.08 & 2061.73 \\ 260.09 & 1042.21 \end{array}$	$\begin{array}{c} 2s^22p^3-2s2p^4\\ 2s^22p^2(^1D)3d-2s2p^3(^1D')3d\\ 2s^22p^3-2s2p^4\\ 2s2p^4-2p^5\\ 2s^2p^4-2p^5\\ 2s^22p^3-2s2p^4\end{array}$	$\begin{array}{c} g^4S^{\circ}-{}^4P \\ {}^2F - {}^2F^{\circ} \\ g^4S^{\circ}-{}^4P \\ {}^2P - {}^2P^{\circ} \\ {}^2P^{\circ}-{}^2D \end{array}$	7 - 1 7 - 2 7	1091 390 1091 1091 1091
10 325 300 30 10	131.70 132.67 132.85 136.06 138.49	$\begin{array}{c} 1194.85 & 1954.15 \\ 8047.6 & 8801.4 \\ 0.0 & 752.73 \\ 323.18 & 1058.13 \\ 1339.68 & 2061.73 \end{array}$	$\begin{array}{c} 2s2p^4-2p^5\\ 2s^22p^3(^5)3d-2s2p^3(^1D'')3d\\ 2s^22p^3-2s2p^4\\ 2s^22p^3-2s2p^4\\ 2s^22p^3-2s2p^4\\ 2s2p^5-2s^2\end{array}$	$\begin{array}{c} {}^{2}S + {}^{2}P'' \\ {}^{2}D + {}^{2}F'' \\ g_{2}^{4}S'' + {}^{4}P \\ g_{2}^{4}P'' + {}^{2}D \\ {}^{2}P + {}^{2}D \\ {}^{2}P + {}^{2}P'' \end{array}$		1091 390 1091 1091 1091
43 50	139.47 140.44 309.4 384.5 540.9	$\begin{array}{c} 7843.6 & 8560.6 \\ 1242.08 & 1954.15 \\ 0.0 & 323.18 \\ 0.0 & 260.09 \\ 138.29 & 323.18 \end{array}$	$\begin{array}{c} 2s^22p^4({}^3P)3d + 2s2p^3({}^3D^{\circ})3d \\ 2s2p^4 + 2p^5 \\ 2s^22p^3 + 2s^22p^3 \\ 2s^22p^3 + 2s^22p^3 \\ 2s^22p^3 + 2s^22p^3 \\ 2s^22p^3 + 2s^22p^3 \end{array}$	$\begin{array}{c} {}^{2}D + {}^{2}F^{\mu} \\ {}^{2}P + {}^{2}P^{\mu} \\ g^{4}S^{\nu} + {}^{2}P^{\mu} \\ g^{4}S^{\nu} + {}^{2}P^{\nu} \\ {}^{2}D^{\nu} + {}^{2}P^{\nu} \end{array}$	3 2 Q 3 -3 F,F 3 -3 F,F 3 -3 F,F 3 -3 F,F 3 -3 F,F 3 -3 F,F	390 1091 375,1091 375,1091 375,1091
	569. 678.5 723.1 821.0 1186.	$\begin{array}{c} 0.0 - 175.80 \\ 175.80 - 323.18 \\ 0.0 - 138.29 \\ 138.29 - 260.09 \\ 175.80 - 260.09 \end{array}$	$\begin{array}{c} 2s^22p^3 & -2s^22p^3\\ 2s^22p^3 & -2s^22p^3\\ 2s^22p^3 & -2s^22p^3\\ 2s^22p^3 & -2s^22p^3\\ 2s^22p^3 & -2s^22p^3\\ 2s^22p^3 & -2s^22p^3\end{array}$	$\begin{array}{c} g^4S^{\alpha}\cdot ^2D^{\alpha}\\ ^2D^{\alpha}\cdot ^2P^{\alpha}\\ g^4S^{\alpha}\cdot ^2D^{\alpha}\\ ^2D^{\alpha}\cdot ^2P^{\alpha}\\ ^2D^{\alpha}\cdot ^2P^{\alpha}\\ ^2D^{\alpha}\cdot ^2P^{\alpha} \end{array}$	2 - 2 F,F 2 - 2 F,F 2 - 2 F,F 2 - 2 F,F 2 - 2 F,F 2 - 2 F,F	375,1091 375,1091 375,1091 375,1091 375,1091 375,1091
	1585.0	260.09 - 323.18	$2s^22p^3 - 2s^22p^3$	² P ⁿ - ² P ⁿ	1 - 3 F	1082

$\label{eq:IRON XXI (Fe^{+20}), Z = 26} $$ Ground State 1s^22s^22p^2 (^3P_0) (\ 6 \ electrons)$$ Ionization Potential [13 \ 620 \ 000] \ cm^{-1}; [1689] \ eV$$

Multiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
18 21	1.8916 1.8942 1.8966 8.472 8.521	$\begin{array}{c} 243.94 + 53100, \\ 73.851 + 52870, \\ 117.240 + 52840, \\ 0.0 + 11809.6 \\ 73.851 + 11809.6 \end{array}$	$\begin{array}{c} 1s^22s^22p^2+1s2s^22p^3\\ 1s^22s^22p^2+1s2s^22p^3\\ 1s^22s^22p^2+1s2s^22p^3\\ 1s^22s^22p^2+1s^22s^22p^3\\ 1s^22s^22p^2+1s^22s^22p5d\\ 1s^22s^22p^2+1s^22s^22p5d\\ 1s^22s^22p^2+1s^22s^22p5d\\ \end{array}$	${}^{1}D - {}^{1}P^{o}$ $g^{3}P - {}^{3}S^{o}$ $g^{3}P - {}^{3}D^{o}$ $g^{3}P - {}^{3}P^{o}$ $g^{3}P - {}^{3}P^{o}$	$ \begin{array}{c} 2 \cdot 1 \\ 1 \cdot 1 \\ 2 \cdot 3 \\ 0 \cdot 1 \\ 1 \cdot 1 \end{array} $	Q	1059 1059 1059 643 945
21 26 18 22	8.558 8.590 8.610 8.643 8.741	$\begin{array}{c} 73.851 - 11758.8 \\ 117.240 - 11758.8 \\ 73.851 - 11688.3 \\ 117.240 - 11687.3 \\ 371.52 - 11809.6 \end{array}$	$\begin{array}{l} 1s^22s^22p^2-1s^22s^22p5d\\ 1s^22s^22p^2-1s^22s^22p5d\\ 1s^22s^22p^2-1s^22s^22p5d\\ 1s^22s^22p^2-1s^22s^22p5d\\ 1s^22s^22p^2-1s^22s^22p5d\\ 1s^22s^22p^2-1s^22s^22p5d\\ \end{array}$	$\begin{array}{c} g^{3}P & - \ ^{3}D^{2} \\ g^{3}P & - \ ^{3}D^{2} \\ g^{3}P & - \ ^{3}P^{2} \\ g^{3}P & - \ ^{3}F^{2} \\ g^{3}P & - \ ^{3}F^{2} \\ g^{3}S & - \ ^{3}F^{2} \end{array}$	$ \begin{array}{r} 1 - 2 \\ 2 - 2 \\ 1 - 2 \\ 2 - 3 \\ 0 - 1 \end{array} $	Q P Q	945 643 945 946 643

.....

D-	1	12	
----	---	----	--

ltiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
33	9.355	0.0 - 10688.4	$1s^22s^22p^2 - 1s^22s^22p4d$	$g^{3}P + {}^{3}P^{\circ}$	0 - 1		643
19	9.421	73.851 - 10688.4	$1s^22s^22p^2 - 1s^22s^22p4d$	$g^{3}P + {}^{3}P^{\circ}$	1 • 1		945
26	9.433	73.851 - 10674.9	$1s^22s^22p^2 - 1s^22s^22p4d$	$g^{3}P + {}^{1}D^{\circ}$	1 - 2		945
34	9.451	73.851 - 10654.7	$1s^22s^22p^2 - 1s^22s^22p4d$	$g^{3}P - {}^{3}D^{\circ}$	1 . 2	1	945
50	9.460	117.240 - 10683.1	1s ² 2s ² 2p ² - 1s ² 2s ² 2p4d	$g^{3}P - {}^{3}D^{\circ}$	2 - 3		945
32	9.475	117.240 - 10674.9	$1s^22s^22p^2 - 1s^22s^22p4d$	$g_{3P}^{3P} - {}^{1}D^{\circ}$	2 - 2	Q	643
46	9.518	73.851 - 10580.3	ls ² 2s ² 2p ² - 1s ² 2s ² 2p4d	g ³ P · ³ P ⁶	1 - 2		945
21	9.559	117.240 - 10580.3	Is*2s*2p* - Is*2s*2p4d	$g^{\circ}P - {}^{\circ}P^{\circ}$	2 · 2	Q	643
36	9.581	243.94 - 10681.0 1740.42 - 10654.7	1s ² 2s ² 2p ⁴ - 1s ² 2s ² 2p4d 1 1s ² 2p ⁴ - 1s ² 2s ² 2p4d	³ P - ³ D ^o	$2 \cdot 3$ 1 - 2	0	945 643
5	19.099	042.97 0914.9	1.222.22.3 1.222.22.22/2D\2.d	300 ID			045
	12.145	0.0 - 8232.9	$1s^22s^22p^2 - 1s^22s^22p3d$	$g^{3}P - {}^{3}P^{\circ}$	0-1	ð	643
23	12.201	803.82 - 8999.7	$1s^22s2p^3 - 1s^22s2p^2(^2P)3d$	³ D° - ³ D	3 - 3	- Ŏ	945
40	12.248	73.851 - 8238.4	$1s^22s^22p^2 \cdot 1s^22s^22p3d$	$g^{3}P - {}^{3}P^{\circ}$	1 - 2	- Q	945
64	12.264	73.851 - 8227.8	$1s^22s^22p^2 \cdot 1s^22s^22p^3d$	g ³ P ⋅ ³ P°	1 - 0	.	945
37	12.291	486.94 - 8623.0	$1s^22s2p^3 - 1s^22s2p^2(^4P)3d$	${}^{5}S^{\circ} - {}^{5}P$	2 - 2		945
	12.312	486.94 - 8609.1+F	1s ² 2s2p ³ - 1s ² 2s2p ² (⁴ P)3d	°S° - °P	2 - 3	P	945
37	12.322	117.240 - 8232.9	$1s^{2}2s^{2}2p^{2} \cdot 1s^{2}2s^{2}2p^{3}d$	g ³ P · ³ P ^o	$2 \cdot 1$		945,1094
	12.346	777.30 - 8876.8	$1s^{2}2s2p^{3} \cdot 1s^{2}2s2p^{2}(^{2}D)3d$	$^{\circ}D^{\circ} \cdot ^{\circ}D$	2 - 3	P ·	945
27	12.355	777.30 - 8871.3	1s ² 2s2p ³ - 1s ² 2s2p ² (² D)3d	۵D، - 3D،	2 - 2		945
5	12.371	777.30 - 8861.2	$1s^{2}2s2p^{3} - 1s^{2}2s2p^{2}(^{2}D)3d$	${}^{3}D^{\circ} - {}^{3}F$	2 - 3	P	945,856
54	12.387	803.82 - 8876.8	$1s^{2}2s^{2}p^{2} - 1s^{2}2s^{2}p^{2}(^{*}D)^{3}d$	°D°-°D 3⊡∘ 3≖	3-3	- <u>X</u>	945 464
10	12.398	803.82 - 8869.0	$1s^{-2}s^{-2}p^{-3} - 1s^{-2}s^{-2}p^{-3}(D)^{-2}d$	"D" - "F 3 Da 3 E	3-4	Ŷ	404
38 41	12.411 12.429	803.82 - 8861.2 243.94 - 8289.6	1s ⁻ 2s ² 2p ² - 1s ⁻ 2s ² 2p ² (² D)3d 1s ² 2s ² 2p ² - 1s ² 2s ² 2p3d	¹ D - ¹ P ^o	3 - 3 2 - 1		945 945
84	12.436	243.94 - 8285 1	$1s^22s^22n^2 - 1s^22s^22n^3d$	¹ D. ¹ F°	2 - 3		643
0.4	12.451	1126.53 - 9158.4	$1s^22s2p^3 - 1s^22s2p^2(^2P)3d$		2.3	Р	945
37	12.463	942.27 - 8966.0	$1s^{2}2s2n^{3} - 1s^{2}2s2n^{2}(^{2}P)3d$	³ P° - ³ F	2 - 3	•	945
	12.519	73.851 - 8061.6 + B	$1s^22s^22p^2 - 1s^22s^22n3d$	$\sigma^{3}P - {}^{3}F^{\circ}$	1 - 2	Р	949
36	12.548	942.27 - 8911.6	$1s^22s2p^3 - 1s^22s2p^2(^2D)3d$	${}^{3}P^{\circ} - {}^{1}F$	2 - 3	Q	945
30	12.575	1260.65 - 9214.8	1s ² 2s2p ³ - 1s ² 2s2p ² (² P)3d	${}^{1}P^{\circ} - {}^{1}D$	1 - 2	Q	464
40	12.581	777.30 - 8725.9	$1s^22s2p^3 - 1s^22s2p^2(^4P)3d$	${}^{3}D^{\circ} - {}^{3}D$	2 - 3		945
107	12.586	924.85 - 8871.3	$1s^22s2p^3 - 1s^22s2p^2(^2D)3d$	${}^{3}P^{\circ} - {}^{3}D$	$1 \cdot 2$	Q 1	643
53	12.606	942.27 - 8876.8	$1s^{2}2s2p^{3} - 1s^{2}2s2p^{2}(^{2}D)3d$	${}^{3}P^{0} \cdot {}^{3}D$	$2 \cdot 3$		643
44	12.623	803.82 - 8725.9	1s ² 2s2p ³ - 1s ² 2s2p ² (*P)3d	°D° - °D	3 - 3	Q	643
18	12.681	803.82 - 8689.6	$1s^{2}2s2p^{3} - 1s^{2}2s2p^{2}({}^{4}P)3d$ $1s^{2}2s^{2} - 3 - 1s^{2}2s^{2} - 2s^{2}({}^{4}P)3d$	${}^{3}D^{\circ} - {}^{3}F$	3 - 4	р	945 045
22	12.099	243 94 - 9109 3	$15 \ 482p = 15 \ 452p \ (1)30$ $1e^{2}9e^{2}9p^{2} = 1e^{2}9e^{2}9p^{2}d$	יתי תי	2.3	T.	940 945
22	12.714	240.94 0109.0	18 48 4p - 18 48 2p30 $1s^29s^29s^2 - 1s^29s^29s^23$	10 3Do		0	740 612
32	12.743	776.78 - 8623.3	$1s^{2}s^{2}p^{3} - 1s^{2}s^{2}p^{2}(^{4}P)3d$	${}^{3}D^{\circ} - {}^{3}F$	1 - 2	Ŷ	945
1	12.756	1126.53 - 8966.0	$1s^22s2n^3 \cdot 1s^22s2n^2(^2P)3d$	¹ D° - ³ F	2 - 3	0	643
	12.777	1126.53 · 8953.1 + F	$1s^{2}2s2p^{3} - 1s^{2}2s2p^{2}(^{2}D)3d$	${}^{1}\widetilde{\mathbf{D}}^{\circ} \cdot {}^{1}\widetilde{\mathbf{D}}$	2.2	ě l	945
52	12.789	803.82 - 8623.3	$1s^{2}2s2p^{3} - 1s^{2}2s2p^{2}(^{4}P)3d$	${}^{3}D^{\circ} - {}^{3}F$	3 - 2	0	643
	12.796	243.94 - 8061.6 + B	$1s^22s^22p^2 \cdot 1s^22s^22p3d$	${}^{1}D + {}^{3}F^{\circ}$	$2 \cdot 2$) P	949
60	13.07	117.240 - 7768.4	$1s^22s^22p^2 \cdot 1s^22s2p^23p$	$g^{3}P \cdot {}^{3}P^{0}$	2 - 2		736
53	13.146	117.240 - 7724.9	1s ² 2s ² 2p ² - 1s ² 2s2p ² 3p	$g^{3}P - {}^{3}P^{n}$	2 - 1	Q	643
230	17.617	2047.76 - 7724.9	$1s^{2}2p^{4} \cdot 1s^{2}2s2p^{2}3p$	${}^{1}S - {}^{3}P^{n}$	0 - 1	Q	1067
4	84.26	73.851 - 1260.65	$1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}p^{2}$	g°P - 'P"	1 - 1	1	1091
30	86.26 91.28	$\frac{486.94}{0.0} \cdot \frac{1646.26}{1095.52}$	$1s^{2}2s^{2}p^{2} - 1s^{2}2p^{4}$ $1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}p^{3}$	³ S ⁶ - ³ P g ³ P - ³ S ⁶	$\begin{vmatrix} 2 - 2 \\ 0 - 1 \end{vmatrix}$		1091 1091
	06.19	776 78 1917 14	$1e^{2}9e^{2}n^{3}$ $1e^{2}9n^{4}$	3 ⊡ ∘ ⊓⊓	1 9	p	055
80	90.12	73.851 - 1005.59	$18 \times 82 \mu = 18 \times 2 \mu$ $1s^2 2s^2 2n^2 = 1s^2 2s^2 2n^3$	σ ³ Ρ. ³ S ^o	1.1	r,	900 1001
250	98.36	243.94 1260.65	$1s^2 2s^2 2p^2 - 1s^2 2s^2 p^3$	⁵ η. φ.	2.1	j	1091
30	98.69	803.82 - 1817.14	$1s^22s2p^3 \cdot 1s^22p^4$	$\mathbf{\hat{D}} = \mathbf{\hat{D}}$	3.2	1	1091
30	99.08	117.240 - 1126.53	$1s^22s^22p^2 - 1s^22s^2p^3$	$g^{\overline{3}}P \cdot {}^{1}\widetilde{D}^{\circ}$	$2 \cdot \overline{2}$		1091
150	102.22	117.240 - 1095.52	$1s^22s^22p^2 \cdot 1s^22s2p^3$	g ³ P - ³ S ^o	2 - 1	ł	1091
30	103.77	776.78 - 1740.42	$1s^22s2p^3 \cdot 1s^22p^4$	${}^{3}D^{\circ} \cdot {}^{3}P$	1 - 1		1091
50	103.83	777.30 - 1740.42	$1s^{2}2s2p^{3} - 1s^{2}2p^{4}$	$^{3}D^{\circ} - ^{3}P$	2 · 1		1091
30	$104.29\\105.01$	776.78 - 1735.67 1095.52 - 2047.76	$1s^{2}2s2p^{3} - 1s^{2}2p^{4}$ $1s^{2}2s2p^{3} - 1s^{2}2n^{4}$	³ D° - ³ P ³ S° - ¹ S	$1 \cdot 0$ 1 \cdot 0	Р	1091 955
	100.10	0.0 004.05	1 20 20 2 1 20 0 3	3D 3D-		•	1003
50	112.47	0.0 - 924.85 371.52 - 1260.65	$1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}p^{2}$ $1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}p^{3}$	$g^{*}P - {}^{*}P^{*}$ ${}^{1}S - {}^{1}P^{*}$	0 - 1		1091
300	113.30	243.94 - 1126.53	$1s^22s^22p^2 - 1s^22s^2p^3$	$^{1}D - ^{1}D^{\circ}$	2 - 2		$109\bar{1}$
	114.30	942.27 - 1817.14	$1s^22s2p^3 \cdot 1s^22p^4$	${}^{3}P^{o} - {}^{1}D$	2 - 2		1091
4	11,000			<u> </u>			

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	1 - J	Notes	References
	30	115.08	777.30 - 1646.26	$1s^22s2n^3 \cdot 1s^22n^4$	³ D° - ³ P	2.2		1091
	50	115.15	73.851 - 942.27	$1s^22s^22p^2 - 1s^22s2p^3$	$a^{3}P + {}^{3}P^{\circ}$	1.2		1091
	110	117.51	73.851 - 924.85	$1s^22s^22p^2 - 1s^22s2p^3$	$\tilde{g}^{3}P = {}^{3}P^{\circ}$	1 - 1		1091
	50	118.69	73.851 - 916.38	$1s^22s^22p^2 - 1s^22s^2p^3$	$g^{3}P - {}^{3}P^{\circ}$	1 - 0		1091
	150	118.71	803.82 - 1646.26	$1s^22s2p^3 - 1s^22p^4$	³ D° - ³ P	3 - 2		1091
	200	121.21	117.240 - 942.27	$1s^22s^22p^2 - 1s^22s2p^3$	$g^{3}P - {}^{3}P^{0}$	2 - 2		1091
	4	121.36	916.38 - 1740.42	$1s^22s2p^3 - 1s^22p^4$	³ P ^a - ³ P	0 - 1		1091
	10	123.33	924.85 - 1735.67	$1s^22s2p^3 \cdot 1s^22p^4$	³ P° - ³ P	1.0		1091
	4	123.83	117.240 - 924.85	$1s^22s^22p^2 - 1s^22s2p^3$	g ³ P - ³ P"	2 . 1		1091
	30	125.29	942.27 - 1740.42	$1s^22s2p^3 - 1s^22p^4$	³ P° - ³ P	$2 \cdot 1$		1091
	30	127.04	1260.65 - 2047.76	$1s^22s2p^3 - 1s^22p^4$	¹ P° - ¹ S	1.0		1091
	80	128.73	0.0 - 776.78	$1s^22s^22p^2$ · $1s^22s2p^3$	$g^{3}P - {}^{3}D^{2}$	0.1	1	1091
		138.57	1095.52 - 1817.14	$1s^22s2p^3 - 1s^22p^4$	$^{3}S^{\circ} - ^{1}D$	1 - 2	P	955
	4	138.61	924.85 - 1646.26	$1s^22s2p^3 - 1s^22p^4$	³ P° - ³ P	1 - 2		1091
	80	142.05	942.27 - 1646.26	1s ² 2s2p ³ · 1s ² 2p ⁴	°Р" - °Р	2 - 2		1091
	110	142.16	73.851 - 777.30	$1s^22s^22p^2 + 1s^22s2p^3$	g ³ P - ³ D°	1 - 2)	1091
	4	142.27	73.851 - 776.78	$1s^22s^22\rho^2 - 1s^22s^2p^3$	$g^{3}P - {}^{3}O^{\circ}$	1.1		1091
	110	144.79	1126.53 - 1817.14	1s ² 2s2p ³ - 1s ² 2p ⁴	$^{1}D^{\circ} - ^{1}D$	2 - 2		1091
	50	145.65	117.240 - 803.82	$1s^{2}2s^{2}2p^{2} \cdot 1s^{2}2s2p^{3}$	$g^{3}P - {}^{3}D^{4}$	2 - 3	ļ	1091
		151.50	117.240 - 777.30	1s²2s²2p² - 1s²2s2p³	g'P - 'D"	2 - 2		1091
	176	152.15	8211.8 - 8869.0	1s ² 2s ² 2p3d - 1s ² 2s2p ² (² D)3d	³ D° - ³ F	3 - 4	Q	390
	10	155.06	1095.52 - 1740.42	$1s^22s2p^3 + 1s^22p^4$	³ S° - ³ P	1 - 1		1091
	4	156.21	1095.52 - 1735.67	$1s^22s2p^3 - 1s^22p^4$	³ S ^o - ³ P	1.0		1091
	4	181.57	1095.52 - 1646.26	$1s^22s^2p^3 - 1s^22p^4$	³ S° - ³ P	1 · 2		1091
		192.40	1126.53 - 1646.26	1s²2s2p³ - 1s²2p*	10° • °P	2 - 2	Р	955
:	85	242.07	73.851 - 486.94	$1s^22s^22p^2 - 1s^22s2p^3$	g ³ P - ⁵ S°	1 - 2	Q	437
		259.33	1260.65 - 1646.26	$1s^22s2p^3$ · $1s^22p^4$	$^{1}P^{\circ} - ^{3}P$	1 - 2	P	955
		270.52	117.240 - 486.94	$1s^22s^32\rho^2 - 1s^22s^2p^3$	g°P - °S°	2 - 2	Q	437
		335.9	73.851 - 371.52	$1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}2p^{2}$	g'P - 'S	1-0	F,P	375,1091
		393.3	117.240 - 371.52	1s-2s-2p 1s-2s-2p-	g'P - 'S	2 - 0	F,P	375,1091
		409.9	0.0 - 243.94	$1s^22s^22p^2 - 1s^22s^22p^2$	$g_{3}^{3}P - {}^{1}D$	0 . 2	F,P	375,1091
		587.9	73.851 - 243.94	$1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}2p^{2}$	g°P - 'D	1 · 2	F,P	375,1091
		785.8	243.94 - 371.52	$1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}2p^{2}$	'D - 'S	2.0	F,P	375,1091
		189.3	117.240 - 243.94	$1s^{2}2s^{2}2p^{2} - 1s^{2}2s^{2}2p^{2}$ $1z^{2}2p^{2}2p^{2} - 1z^{2}2p^{2}2p^{2}$	g'P - 'D	2 2	F,P	375,1091
		855.0	0.0 - 117.240	ts-2s-2p 1s-2s-2p-	g°P - g°P	0 - 2	F,P	375,1091
		1354.08	0.0 - 73.851	$1s^22s^22p^2 + 1s^22s^22p^2$	g ³ P - g ³ P	0 - 1	F	442
	L	· · · · · · · · · · · · · · · · · · ·				L		

IRON XXII (F e^{+21}), Z = 26

Ground State $1s^22s^22p ({}^2P_{1/2}^{\circ})$ (5 electrons) Ionization Potential [14 510 000] cm⁻¹; [1799] eV

Multiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	ĺ	1.8754	0.0 - 53326.	$1s^22s^22n - 1s2s^22n^2$	$g^2 P^0 - {}^2S$	4-1	0	1059
		1.8779	0.0 - 53242.	$1s^22s^22p - 1s2s^22p^2$	$g^2 P^3 + {}^2 P$	Į - 3	ò	1059
		1.8794	118.26 - 53326.	$1s^22s^22p - 1s2s^22p^2$	$g^2 P^{\circ} - {}^2S$	3.1	L L	1059
		1.8824	118.26 - 53242.	$1s^22s^22p - 1s2s^22p^2$	$g^2 P^\circ - {}^2 P$	3 - 3		1059
1		1.8851	118.26 - 53166.	$1s^22s^22p - 1s2s^22p^2$	g²P° - ²D	<u>3</u> - 2		1059
		1.8867	118.26 - 53121.	$1s^22s^22p - 1s2s^22p^2$	g²P° • ²P	3-1	ļ	1059
		1.936	1627.71 · 53242.	$1s^22p^3 - 1s2s^22p^2$	$^{2}P^{\circ} - ^{2}P$	3.3	0	716
	28	8.736	460.19 - 11906.	$1s^22s2p^2 - 1s^22s2p(^1P^o)4d$	⁴ P · ² D°	3 - 3	ÒÌ	643
	13	8.786	512.90 - 11899.	$1s^22s2p^2 - 1s^22s2p(^3P')4d$	⁴ P - ² F°	5.3	Ò	643
	44	8.960	736.51 - 11897.	$1s^{2}2s^{2}p^{2} - 1s^{2}2s^{2}p^{(1}P')^{4}d$	² D - ² F°	3 - 2		946
	25	8.977	759.61 - 11899.	$1s^22s2p^2 - 1s^22s2p(^3P')$ 4d	${}^{2}O - {}^{2}F^{o}$	5.7		946
	37	8.992	404.55 - 11526.	$1s^22s2p^2 - 1s^22s2p(^3P^0)4d$	⁴ P • ⁴ D°	1.3		946
	50	9.006	512.90 - 11617.	$1s^{2}2s2p^{2} - 1s^{2}2s2p(^{3}P')4d$	4P - 4D	5 7		946
	26	9.013	460.19 - 11558.	$1s^22s2\rho^2 - 1s^22s2p(^{3}P')4d$	⁴ P - ² F ^o	3 - 5	0	643
	11	9.033	460.19 - 11526.	$1s^22s2p^2 - 1s^22s2p(^{3}P^{\circ})4d$	⁴P - ⁴D°	3 - 3	Ò	643

$\mathrm{D}-$	11	ι4
---------------	----	----

lultiplet Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
13 17 17 28 59	9.053 9.058 9.093 9.163 9.183	512.90 - 11558. 118.26 - 11161. 0.0 - 10999. 992.28 - 11906. 759.61 - 11649.	$\begin{array}{l} 1s^2 2s 2p^2 & -1s^2 2s 2p(^3 P^{\circ}) 4d \\ 1s^2 2s^2 2p & -1s^2 2s^2 4d \\ 1s^2 2s^2 2p & -1s^2 2s^2 4s \\ 1s^2 2s 2p^2 & -1s^2 2s 2p(^1 P^{\circ}) 4d \\ 1s^2 2s 2p^2 & -1s^2 2s 2p(^1 P^{\circ}) 4d \end{array}$	$\begin{array}{c} {}^{4}P = {}^{2}F^{o} \\ g^{2}P^{o} = {}^{2}D \\ g^{2}P^{o} = {}^{2}S \\ {}^{2}P = {}^{2}D^{o} \\ {}^{2}D = {}^{2}F^{o} \end{array}$		Q Q Q	643 643 643 946 946
31 36 45 37 27	9.190 9.215 9.241 9.262 9.299	118.26 - 10999. 759.61 - 11611. 736.51 - 11558. 759.61 - 11558. 736.51 - 11492.	$\begin{array}{l} ls^2 2s^2 2p - ls^2 2s^2 4s \\ ls^2 2s 2p^2 - ls^2 2s 2p ({}^3 P^{o}) 4d \\ ls^2 2s 2p^2 - ls^2 2s 2p ({}^3 P^{o}) 4d \\ ls^2 2s 2p^2 - ls^2 2s 2p ({}^3 P^{o}) 4d \\ ls^2 2s 2p^2 - ls^2 2s 2p ({}^3 P^{o}) 4d \\ ls^2 2s 2p^2 - ls^2 2s 2p ({}^3 P^{o}) 4d \end{array}$	$g^{2}P^{\circ} - {}^{2}S \\ {}^{2}D - {}^{2}D^{\circ} \\ {}^{2}D - {}^{2}F^{\circ} \\ {}^{2}D - {}^{2}F^{\circ} \\ {}^{2}D - {}^{2}F^{\circ} \\ {}^{2}D - {}^{4}F^{\circ} \end{cases}$	Neonach Neonach Neu 1 - 1 - 1 1 - 1 - 1 - 1	Q Q Q	643 946 946 643 643
15 27 17 19 11	9.320 9.412 9.663 9.675 9.785	759.61 - 11492. 992.28 - 11617. 736.51 - 11085. 736.51 - 11073. 853.48 - 11073.	$\begin{array}{l} 1s^22s2p^2 \cdot 1s^22s2p({}^3F')4d\\ 1s^22s2p^2 \cdot 1s^22s2p({}^3F')4d\\ 1s^22s2p^2 \cdot 1s^22s^24p\\ 1s^22s2p^2 \cdot 1s^22s^24p\\ 1s^22s2p^2 \cdot 1s^22s^24p\\ 1s^22s2p^2 \cdot 1s^22s^24p\end{array}$	${}^{2}D - {}^{4}F^{o}$ ${}^{2}P - {}^{4}D''$ ${}^{2}D - {}^{2}P^{o}$ ${}^{2}D - {}^{2}P^{o}$ ${}^{2}S - {}^{2}P^{o}$	100-100-100-100-100-100-100-100-100-100		643 643 643 643 643 643
5 49 28 29 59	9.894 11.440 11.458 11.650 11.669	978.22 - 11085. 0.0 - 8739.7 118.26 - 8845.0 0.0 - 8583.7 118.26 - 8687.9	$\begin{array}{l} 1s^22s2p^2 + 1s^22s^24p\\ 1s^22s^22p + 1s^22s2p3p\\ 1s^22s^22p + 1s^22s2p3p\\ 1s^22s^22p + 1s^22s2p3p\\ 1s^22s^22p + 1s^22s2p3p\\ 1s^22s^22p + 1s^22s2p3p\end{array}$	$\begin{array}{c} {}^{2}P - {}^{2}P^{o} \\ g^{2}P^{o} - {}^{2}D \\ g^{2}P^{o} - {}^{2}D \\ g^{2}P^{o} - {}^{2}P \\ g^{2}P^{o} - {}^{2}P \\ g^{2}P^{o} - {}^{2}P \end{array}$		Q	945 945,946 945,946 946 946
14 59 130 100 130	11.707 11.718 11.748 11.767 11.789	512.90 - 9054.9 759.61 - 9294.5 460.19 - 8972.3 0.0 - 8498.3 759.61 - 9242.0	$\begin{array}{l} 1s^22s2p^2 &- 1s^22s2p({}^3P'')3d\\ 1s^22s2p^2 &- 1s^22s2p({}^3P'')3d\\ 1s^22s2p^2 &- 1s^22s2p({}^3P'')3d\\ 1s^22s^22p &- 1s^22s^23d\\ 1s^22s2p^2 &- 1s^22s^23d\\ 1s^22s2p^2 &- 1s^22s2p({}^1P'')3d \end{array}$	$\begin{array}{c} {}^{4}P - {}^{2}P^{o} \\ {}^{2}D - {}^{2}P^{o} \\ {}^{4}P - {}^{4}D^{o} \\ g^{2}P^{o} - {}^{2}D \\ {}^{2}D - {}^{2}F^{o} \end{array}$		Q Q	945 643 946 946 946
128 82 92 135 82	11.797 11.815 11.823 11.837 11.846	404.55 - 8881.3 118.26 - 8583.7 512.90 - 8972.3 512.90 - 8961.0 853.48 - 9294.5	$\begin{array}{l} 1s^2 2s 2p^2 &- 1s^2 2s 2p ({}^3P^*) 3d \\ 1s^2 2s^2 2p &- 1s^2 2s 2p 3p \\ 1s^2 2s 2p^2 &- 1s^2 2s 2p ({}^3P^*) 3d \\ 1s^2 2s 2p^2 &- 1s^2 2s 2p ({}^3P^*) 3d \\ 1s^2 2s 2p^2 &- 1s^2 2s 2p ({}^1P^*) 3d \\ 1s^2 2s 2p^2 &- 1s^2 2s 2p ({}^1P^*) 3d \end{array}$	$\begin{array}{c} {}^{4}P + {}^{4}D^{a} \\ g^{2}P^{o} + {}^{2}P \\ {}^{4}P + {}^{4}D^{o} \\ {}^{4}P + {}^{4}D^{o} \\ {}^{2}S + {}^{2}P^{o} \end{array}$	N-HAURACHAR	Q Q	946 643 946 946 643
92 120 90 23 125	11.886 11.921 11.960 11.969 11.976	460.19 - 8873.4 118.26 - 8506.8 512.90 - 8873.4 0.0 - 8357.0 512.90 - 8862.9	$\begin{array}{l} 1s^2 2s 2p^2 + 1s^2 2s 2p({}^{3}P') 3d \\ 1s^2 2s^2 2p + 1s^2 2s^2 3d \\ 1s^2 2s 2p^2 + 1s^2 2s 2p({}^{3}P') 3d \\ 1s^2 2s^2 2p + 1s^2 2s^2 3s \\ 1s^2 2s 2p^2 + 1s^2 2s 2p({}^{3}P') 3d \end{array}$	$\begin{array}{c} {}^{4}P - {}^{4}P^{o} \\ g^{2}P^{o} - {}^{2}D \\ {}^{4}P - {}^{4}P^{o} \\ g^{2}P^{o} - {}^{2}S \\ {}^{4}P - {}^{4}F^{o} \end{array}$		Q	946 946 643 945 946
$\begin{array}{c} 72 \\ 150 \\ 60 \\ 97 \\ 91 \end{array}$	12.027 12.045 12.053 12.077 12.095	853.48 - 9168.1 759.61 - 9061.8 736.51 - 9033.2 992.28 - 9272.5 759.61 - 9033.2	$\begin{array}{l} ls^2 2s 2p^2 - ls^2 2s 2p(^1 P') 3d \\ ls^2 2s 2p^2 - ls^2 2s 2p(^3 P') 3d \\ ls^2 2s 2p^2 - ls^2 2s 2p(^3 P') 3d \\ ls^2 2s 2p^2 - ls^2 2s 2p(^1 P') 3d \\ ls^2 2s 2p^2 - ls^2 2s 2p(^3 P') 3d \\ ls^2 2s 2p^2 - ls^2 2s 2p(^3 P') 3d \end{array}$				643 946 946 946 946
70 40 5 37 135	12.193 12.231 12.259 12.322 12.380	853.48 - 9054.9 992.28 - 9168.1 978.22 - 9133.7 853.48 - 8969.0 978.22 - 9054.9	$\begin{array}{l} 1s^2 2s 2p^2 + 1s^2 2s 2p(^3 P'') 3d \\ 1s^2 2s 2p^2 + 1s^2 2s 2p(^1 P'') 3d \\ 1s^2 2s 2p^2 + 1s^2 2s 2p(^1 P'') 3d \\ 1s^2 2s 2p^2 + 1s^2 2s 2p(^3 P'') 3d \\ 1s^2 2s 2p^2 + 1s^2 2s 2p(^3 P'') 3d \\ 1s^2 2s 2p^2 + 1s^2 2s 2p(^3 P'') 3d \end{array}$	${}^{2}S - {}^{2}P^{\circ}$ ${}^{2}P - {}^{2}P^{\circ}$ ${}^{2}P - {}^{2}D^{\circ}$ ${}^{2}S - {}^{2}P^{\circ}$ ${}^{2}P - {}^{2}P^{\circ}$	1 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Q	946 945 643 945,946 643
$\begin{array}{c} 32\\1\\1\\48\end{array}$	12.653 13.095 13.547 13.578 14.082	978.22 - 8881.3 736.51 - 8371.6 992.28 - 8371.6 978.22 - 8341.2 1396.42 - 8498.3	$\begin{array}{l} 1s^22s2p^2\cdot 1s^22s2p(^{3}P')3d\\ 1s^22s2p^2\cdot 1s^22s^23p\\ 1s^22s2p^2\cdot 1s^22s^2p\\ 1s^22s2p^2\cdot 1s^22s^23p\\ 1s^22s2p^2\cdot 1s^22s^23p\\ 1s^22p^3\cdot 1s^22s^23d\end{array}$	$ \begin{array}{r} {}^{2}P - {}^{4}D^{3} \\ {}^{2}D - {}^{2}\rho^{0} \\ {}^{2}P - {}^{2}P^{0} \\ {}^{2}P - {}^{2}P^{0} \\ {}^{2}P - {}^{2}D^{0} \\ {}^{2}D^{0} - {}^{2}D \end{array} $		Q Q Q Q Q Q Q	643 643 146 945 1067
54 50 150 30 10	14.859 100.78 102.23 109.53 112.21	1627.71 - 8357.0 0.0 - 992.28 0.0 - 978.22 736.51 - 1627.71	$\frac{1s^22p^3 - 1s^22s^23s}{1s^22s^22p - 1s^22s2p^2} \\ \frac{1s^22s^22p - 1s^22s2p^2}{1s^22s^22p - 1s^22s2p^2} \\ \frac{1s^22s^22p^2 - 1s^22s^2p^2}{1s^22p^3} \\ \frac{1s^22s^2p^2 - 1s^22p^3}{1s^22p^3} \\ \frac{1s^22s^2p^2 - 1s^2p^3}{1s^2p^3} \\ \frac{1s^22s^2p^2 - 1s^2p^3}{1s^2p^3} \\ \frac{1s^2p^2}{1s^2p^2} \\ \frac{1s^2p^2}{1s^2p^3} \\ \frac{1s^2p^2}{1s^2p^2} \\ 1s$	$\frac{{}^{2}P^{o} + {}^{2}S}{g^{2}P^{o} - {}^{2}P}$ $g^{2}P^{o} + {}^{2}P$ ${}^{2}D - {}^{2}P^{o}$	$\frac{3}{2} - \frac{1}{2}$ $\frac{1}{2} - \frac{3}{2}$ $\frac{1}{2} - \frac{1}{2}$ $\frac{3}{2} - \frac{3}{2}$		643 1091 1091 1091 1091
200 50 110 150 110	114.41 115.19 116.28 117.17 117.52	118.26 - 992.28 759.61 - 1627.71 118.26 - 978.22 0.0 - 853.48 404.55 - 1255.57	$\begin{array}{c} 1s^22s^22p & -1s^22s2p^2\\ 1s^22s2p^2 & -1s^22p^3\\ 1s^22s^22p & -1s^22s2p^2\\ 1s^22s^22p & -1s^22s2p^2\\ 1s^22s2p^2 & -1s^22s2p^2\\ 1s^22s2p^2 & -1s^22p^3 \end{array}$	$\begin{array}{c} g^2 P^{\circ} - {}^2 P \\ {}^2 D - {}^2 P^{\circ} \\ g^2 P^{\circ} - {}^2 P \\ g^2 P^{\circ} - {}^2 S \\ {}^4 P - {}^4 S^{\circ} \end{array}$			1091 1091 1091 1091 1091
$200 \\ 110 \\ 4 \\ 110 \\ 110$	$120.03 \\ 125.71 \\ 129.17 \\ 134.65 \\ 135.78$	736.51 - 1569.63 460.19 - 1255.57 853.48 - 1627.71 512.90 - 1255.57 0.0 - 736.51	$\begin{array}{l} 1s^22s2p^2 - 1s^22p^3\\ 1s^22s2p^2 - 1s^22p^3\\ 1s^22s2p^2 - 1s^22p^3\\ 1s^22s2p^2 - 1s^22p^3\\ 1s^22s2p^2 - 1s^22p^3\\ 1s^22s^22p - 1s^22s2p^2\end{array}$	${}^{2}D - {}^{2}P^{o} \\ {}^{4}P - {}^{4}S^{o} \\ {}^{2}S - {}^{2}P^{o} \\ {}^{4}P - {}^{4}S^{o} \\ {}^{2}P^{o} - {}^{2}D$			1091 1091 1091 1091 1091

ltiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	30	136.01	118.26 - 853.48	$1s^22s^22v + 1s^22s2p^2$	g ² P° - ² S	3.1		1091
	4	139.64	853.48 - 1569.63	$1s^{2}2s2p^{2} \cdot 1s^{2}2p^{3}$	[°] ² S ⋅ ² P°	1 - 1		1091
		143.30	8357.0 - 9054.9	$1s^2 2s^2 \hat{3}s - 1s^2 2s^2 p(^{3}P^{\circ}) 3d$	² S - ² P ^o	1 - 2	Q	390
	110	144.85	736.51 - 1426.87	$1s^22s2p^2 - 1s^22p^3$	² D - ² D°	3 - 5	-	1091
	80	149.87	759.61 - 1426.87	$1s^22s2p^2 - 1s^22p^3$	${}^{2}D - {}^{2}D^{\circ}$	ž - ž		1091
	30	151.54	736.51 - 1396.42	$1s^22s2p^2 - 1s^22p^3$	² D • ² D ^o	3 - 3		1091
	4	153.96	978.22 - 1627.71	$1s^22s2p^2 \cdot 1s^22p^3$	² P - ² P°	<u>1</u> - <u>3</u>		1091
	50	155.92	118.26 - 759.61	$1s^22s^22p - 1s^22s^2p^2$	$g^2 P^{\circ} - {}^2 D$	3 - 2		1091
	50	157.03	759.61 - 1396.42	$1s^22s2p^2 - 1s^22p^3$	[°] ² D • ² D"	2 - 2		1091
	50	157.37	992.28 - 1627.71	$1s^22s2p^2 - 1s^22p^3$	$^{2}P \cdot ^{2}P^{\circ}$	$\frac{3}{2} - \frac{3}{2}$		1091
	4	161.74	118.26 - 736.51	$1s^22s^22p - 1s^22s2p^2$	$g^2 P^n - {}^2 D$	3 - 3		1091
	4	169.08	978.22 - 1569.63	$1s^22s2p^2 - 1s^22p^3$	[°] ² P • ² P°	<u>j</u> .j		1091
	4	173.21	992.28 - 1569.63	$1s^22s2p^2 - 1s^22p^3$	${}^{2}P - {}^{2}P^{\circ}$	$\frac{3}{2} - \frac{1}{2}$		1091
1	10	217.30	0.0 - 460.19	$1s^22s^22p - 1s^22s2p^2$	$g^2 P^\circ - {}^4 P$	<u>1</u> -3		730
	40	230.129	992.28 - 1426.87	$1s^22s2p^2 - 1s^22p^3$	[°] ² P · ² D ^o	3 - 2	Q	856
	120	247.19	0.0 - 404.55	$1s^22s^22p - 1s^22s^2p^2$	$g^2 P^4 - {}^4 P$	3-3		730
		253.38	118.26 - 512.90	$1s^22s^22p - 1s^22s2p^2$	ể²P° · ⁴P	3.5	P	375
	120	292.46	118.26 460.19	$1s^22s^22p - 1s^22s2p^2$	$g^2 P^0 = {}^4 P$	3 3		730
	150	349.3	118.26 - 404.55	$1s^22s^22p - 1s^22s2p^2$	g²₽°•4P	$ \frac{3}{2} - \frac{1}{2}$		730
		845.6	0.0 - 118.26	$1s^22s^22p - 1s^22s^22p$	$\tilde{g}^2 P^\circ - g^2 P^\circ$	<u>1</u> - 3	F	1137

IRON XXIII (Fe⁺²²), Z = 26

Ground State $1s^22s^2$ (1S_0) (4 electrons) Ionization Potential [15 730 000] cm⁻¹; [1950] eV

Acres .

lultiplet	Rel. Int.	λ _{vsc} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
	-	1 9704	0.0 52464	1,220,2 1,02,220	.lc lp∘	0.1		1050 956
	29	7 4 4 5	479 12 12002	15.25 - 1828.2p $1s^{2}9s^{2}n - 1s^{2}9n5n$	3po 3n	19 2		1039,030
	20	7 479	472.13 - 13902.	1.29.2 1.29.5	ເຊີຍ ແຮ່ຍ	2.3	1	940
	20	7.690	270 16 12400	$18 \ 28 \ \cdot \ 18 \ 250p$	300 30	1 2		940
	17	7.000	479 19 19404	$18 \ 282 \mu = 18 \ 285 \mu$	3 Do 3 D	2.2		940
	11	1.133	472.13 - 13404.	18 252p - 18 250u	1 • 0	2.0		940
	23	7.755	1027.37 - 13922.	$1s^22p^2 - 1s^22p5d$	${}^{3}P - {}^{1}D^{a}$	1 - 2		946
	28	7.778	1071.87 - 13929.	$1s^2 2p^2 \cdot 1s^2 2p 5d$	${}^{3}P - {}^{3}D^{\circ}$	2 - 3		946
	16	7.826	1027.37 - 13805.	$1s^22p^2 + 1s^22p5d$	³ P • ³ D°	1 - 2		946
	37	7.849	1204.57 - 13945.	$1s^22p^2 - 1s^22p5d$	$^{1}D - {}^{1}F^{0}$	2 - 3		946
	32	7.854	1071.87 - 13805.	$1s^{2}2p^{2} - 1s^{2}2p^{2}d$	${}^{3}P - {}^{3}D^{\circ}$	2 - 2		946
	32	7.883	752 76 - 13438	1s ² 2s2p - 1s ² 2s5d	1P° - 1D	1.2		946
	0.2	7 935	1204 57 . 13805	$1s^22s^2 - 1s^22s5d$	n 30°	2.2	0	830
	15	8159	1027 37 - 13291 - K	$1s^2 2p^2 = 1s^2 2s 5p$	3P 3P	1.1	ò	643
	10	8 180	1021.07 - 10291.04 K	$1s^2 2p^2 + 1s^2 2s0p^2$	3p 3p	2.1	à	643
	17	8 210	1204 57 - 13383	$1s^22p^2 = 1s^22s5p$	¹ P°	2.1	ŏ	643
		0.010	120 001 10000.	10 ap 10 200p	2 1		Y	010
	40	8.273	472.13 - 12560.	$1s^{2}2s2p - 1s^{2}2p4p$	³ P° - ³ D	2 - 3		946
		8.289	379.16 - 12440.	$1s^22s2p - 1s^22p4p$	${}^{3}P^{n} - {}^{3}D$	1 - 2		1057
	30	8.303	0.0 - 12044.	$1s^22s^2 - 1s^22s^4p$	$g^{1}S - {}^{1}P^{\circ}$	0 - 1		946
		8.316	0.0 - 12025.	$1s^{2}2s^{2} - 1s^{2}2s4p$	$g'S - ^{3}P'$	0 - 1		1057
	24	8.529	348.21 - 12073.	$1s^22s2p + 1s^22s4d$	³ P° - ³ D	0 - 1		946
	40	8.550	379.16 - 12075.	ls²2s2p - 1s²2s4d	³ P ⁶ - ³ D	1 - 2		946
	22	8.575	956.16 - 12615.	$1s^22p^2 \cdot 1s^22p4d$	³ p_3p ₀	0.1	0	643
	20	8.601	472.13 - 12099.	$1s^{2}2s2p - 1s^{2}2s4d$	$^{3}P^{0} - {}^{1}D$	2.2	ΙðΙ	643
	45	8.614	$472.13 \cdot 12081.$	$1s^22s2p - 1s^22s4d$	$^{3}P^{\circ} - ^{3}D$	2 - 3	×	946
	24	8.630	1027.37 - 12614.	$1s^22p^2 - 1s^22p4d$	³ P - ³ P''	$1 \cdot 2$		946
	18	8 643	1027 37 - 12597	$1s^22n^2 = 1s^22n4d$	³ P , ¹ D ^o	1.2		946
	34	8 664	1071 87 - 12614	$1s^22p^2$, $1s^22p^4d$	3p 3p	2.2		046
	61	8 672	1071 87 - 12603	$1s^29n^2$, $1s^29n^4d$	3p 3D0	2.2		946
	16	8 723	1027 37 . 12487	$1s^{2}2n^{2}$, $1s^{2}2n^{4}d$	3p 3nº	1.1	0	643
	35	8 731	1027 37 . 12481	$1s^{2}2n^{2} = 1s^{2}2n^{2}d$	³ P ³ D ⁹	1.2	Y	946
		0.101	1021.01 - 12701.	19 % 19 % 19 % 19	1 1.0	1.2		240

D-115

D-116	
-------	--

ltiplet	Rel. Int.	λ _{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	Reference
	42	8 752	1204 57 . 12631	$1e^22n^2 = 1e^22n44$	<u>n</u> 100	9 9		046
	92	0.102	1204.57 • 12051,	1 29 2 1 29 41	3D 3D	2.3		940
	04 .	0.705	1071.67 - 12465.	1s 2p ² - 1s ² 2p4d	r · r	2.3	~	940
	15	8.775	1204.57 - 12597.	1s ² 2p ² - 1s ² 2p4d	D - D"	2 - 2 -	Q	643
	34 .	8.814	752.76 - 12099.	ls²2s2p - 1s²2s4d	'P" - 'D	1 - 2		946
	16	8.862	1204.57 - 12481.	$1s^22p^2 - 1s^22p4d$	${}^{1}D - {}^{3}D^{n}$	2 - 2	Q	643
I	12	8.870	1204.57 - 12481.	$1s^22p^2 - 1s^22p4d$	1 D - 3 D°	2 - 2	0	643
	22	8 935	1422.91 . 12615	$1s^22v^2 - 1s^22n4d$	15 _ 3Po	$\overline{0},\overline{1}$	ð	643
	~	10.92	479.19 0705.7	1_{2}^{2}	3100 30	0 1	Y	1057
1	74	10.00	472.13 - 9703.7	18 282p · 18 2p3p	3 I - 5	2.1		1037
i		10.905	472.13 • 9043.9	1s ⁻ 2s2p - 1s ⁻ 2p3p	$\mathbf{r} - \mathbf{r}$	2 - 2		940
	94	10.927	472.13 - 9623.8	1s-2s2p - 1s-2p3p	"P" - "D	2 - 3		946
	25	10.933	379.16 - 9524.1	$1s^22s2p - 1s^22p3p$	${}^{3}P^{\circ} + {}^{3}D$	1 - 2		945,946
	53 .	10.980	0.0 - 9107.5	$1s^22s^2 - 1s^22s^3n$	$p^1S - P^0$	0 - 1		946
	88	11.018	0.0.9076.1	$1s^22s^2 - 1s^22s^3p$	als 3po	. ň. i l		946
	15	11.070	759.76 0796.9	$1_{2}^{2} 2_{2}^{2} - 1_{2}^{2} 2_{2}^{2} 2_{2}^{2}$		1 0	0	045
	10	11.070	752.70 - 9780.2	18 282p - 18 2858		1 0	V	940
	25	11.145	752.76 - 9725.5	1s ² 2s2p - 1s ² 2p3p		1 · 2		643
	45	11.298	348.21 - 9198.9	$1s^22s2p + 1s^22s3d$	${}^{3}P^{n} + {}^{3}D$	0 • 1	,	946
	57	11.326	379.16 - 9209.2	$1s^22s2p - 1s^22s3d$	³ P ^o · ³ D	1 - 2		945,946
		11.333	379 16 - 9198 9	$1s^22s2n - 1s^22s3d$	³ P ⁶ , ³ D	1.1		1057
	49	11.361	472 13 - 9272 9	1s ² 2s2p - 1s ² 2s3d	3P° 1D	2.2	0	643
	30	11.399	752.76 - 9527.9	$1s^22s2p + 1s^22p3p$	¹ P ^o - ¹ P	$1 \cdot 1$	Ŷ	643
		11 400	1071 07 0007 0	1 20 2 1 20 91	3 D 1 D 0			1057
		11.422	1071.87 - 9827.3	Is-2p Is-2p3d	"P · 'P"	2 - 1		1057
		11.440	472.13 - 9211.9	1s²2s2p + 1s²2s3d	°P° - °D	. 2 - 3 -		1057
	138	11.493	1027.37 - 9728.3	$1s^22p^2 - 1s^22p3d$	³ P - ³ D ^o	1 - 2		946
	135	11.519	1071.87 - 9753.1	$1s^22v^2 - 1s^22v^3d$	${}^{3}P + {}^{3}P^{\circ}$	2 - 2		643
	142	11.594	1204.57 - 9827.8	$1s^22p^2 - 1s^22p3d$	$^{1}D - ^{1}F^{\circ}$	2 - 3		946
	85	11.614	1027 37 9637 4	$1e^22n^2 = 1e^22n^2d$	3 P 3D ^o	1.1	i	046
	05	11.014	1021.07 - 2007.4	1 2 9 2 1 2 9 9 1	30 300	0 1	0	1057
	115	11.000	1071.87 - 9037.4	1s-2p 1s-2p-3d	1 1 F - D 3 D 3 D 3	2 - 1	- Y	1057
	115	11.692	1071.87 - 9624.7	Is*2p* - Is*2p3d	P - *F*	2-3		643,946
	145	11.737	752.76 - 9272.9	1s²2s2p - 1s²2s3d	'P'' - 'D	1 - 2		946
	130	11.748	1204.57 - 9716.7	1s²2p² - 1s²2p3d	'D • 'D°	2 - 2		946
	82	11.870	472.13 - 8896.7	1s ² 2s2p - 1s ² 2s3s	³ P ^o - ³ S	2 - 1		643
	78	11.898	1422 91 - 9827 3	$1s^22n^2 - 1s^22n3d$	1S. 1P°	0.1		946
1	20	12 174	1422 01 - 9637 4	$1e^22p^2 = 1e^22p^2d$	¹ S. ³ D ^o	0.1	0	643
	200	12.174	0.0 759.74	$1.29 \cdot 2 \cdot 1.29 \cdot 9$		0 - 1	Y i	1001 449
	500	102.00	0.0 • 752.70	18 28 - 18 282p	go. r	0.1	i	1091,440
	50	130.53	472.13 - 1204.57	Is*2s2p - Is*2p*	"P" - "D	2 - 2		1091
-	50	144.36	379.16 - 1071.87	$1s^22s2p - 1s^22p^2$	${}^{3}P^{e} - {}^{3}P$	1 - 2		1091
	30 :	147.24	$348.21 \cdot 1027.37$	$1s^22s2p - 1s^22p^2$	³ P° - ³ P	0 - 1		1091
	30	149.22	752.76 - 1422.91	$1s^{2}2s2p - 1s^{2}2p^{2}$	${}^{1}P^{o} - {}^{1}S$	1 - 0		1091
	10	154.27	$379.16 \cdot 1027.37$	$1s^2 2s^2 n = 1s^2 2n^2$	3p°_ 3p	ī.ĭ		1091
	50	166.74	472.13 - 1071.87	$1s^22s^2p - 1s^22p^2$	³ P ^o - ³ P	2 - 2		1091
1	10	172 21	270 16 056 16	1.29.9. 1.29.2	3 <u>po</u> 3p	1 0		1001
i i	10	110.01	379.10 - 930.10	15 252p - 15 2p	$\Gamma - \Gamma$ $3n_0 - 3n$	1 - 0		1091
	4	180.10	472.13 - 1027.37	1s ² 2s2p - 1s ² 2p ²	"P" - "P	Z - 1	1	1091
	80 -	221.33	752.76 - 1204.57	1s²2s2p - 1s²2p²	'P° - 'D	1 • 2		1091
	120	263 76	0.0 . 379.16	$1e^{2}2e^{7} - 1e^{2}2e^{7}$		0.1	1	437

IRON XXIV (F e^{+23}), Z = 26

Ground State $1s^22s$ ($^2S_{1/2}$) (3 electrons)

Ionization Potential 16 500 000 cm⁻¹; 2046 eV

Multiplet Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
19 21	$ \begin{array}{r} 1.588 \\ 1.5926 \\ 1.5960 \\ 1.8520 \\ 1.8560 \end{array} $	$\begin{array}{c} 0.00 & - 62972. \\ 0.00 & - 62790. \\ 392.02 & - 63050.11 \\ 392.02 & - 54394. \\ 520.79 & - 54394. \end{array}$	$\begin{array}{c} 1s^2 2s + 1s 2s ({}^{1} S_{\leq 0}) 3p ({}^{2} P^{\sigma}_{\geq}) \\ 1s^2 2s + 1s 2s ({}^{3} S_{1/2}) 3p ({}^{2} P^{\sigma/2}_{\geq}) \\ 1s^2 2p + 1s 2p ({}^{4} P^{\sigma}_{1/2}) 3p ({}^{2} P^{\sigma/2}_{1/2}) \\ 1s^2 2p + 1s 2p^2 \\ 1s^2 2p + 1s 2p^2 \end{array}$	$\begin{array}{cccc} g^2S & - & (0_{11/2})^{o} \\ g^2S & \cdot & (_{1/2,3/2})^{o} \\ ^2P^{o} & - & (_{1/2,3/2})^{o} \\ & ^2P^{o} & - & ^2S \\ & ^2P^{o} & - & ^2S \\ & ^2P^{o} & - & ^2S \end{array}$			741 741 741 643,305 643,305
13 22 19	1.8567 1.8579 1.8589 1.8609 1.8620	$\begin{array}{c} 0.00 + 53856,\\ 392.02 + 54230,\\ 0.00 + 53795,\\ 0.00 + 53735,\\ 520.79 + 54230, \end{array}$	$\begin{array}{l} 1s^22s+1s(^2S)(2s2p(^{1}P^{*}))\\ 1s^22p+1s2p^2\\ 1s^22s+1s(^2S)(2s2p(^{3}P^{*}))\\ 1s^22s+1s(^2S)(2s2p(^{3}P^{*}))\\ 1s^22p+1s(2p)^2\end{array}$	$\begin{array}{c} g^2S - {}^2P^{o} \\ {}^2P^{o} - {}^2P \\ g^2S - {}^2P^{o} \\ g^2S - {}^2P^{o} \\ g^2p^{o} - {}^2P \end{array}$	Neto Re- Re- Re- Re-		1106 643,305 643 643,305 643,305

D2	117	
----	-----	--

ultiplet	Rel. Int.	λ _{var} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J·J	Notes	References
	12	1.8631	392.02 - 54066.	$1s^22p - 1s2p^2$	² P ^o - ² D	1 - 3		643.305
	43	1.8655	520.79 - 54126.	$1s^22n - 1s^2n^2$	$^{2}P^{\circ}$, ^{2}D	3.5		643.305
		1.8729	520 79 - 53904	$1s^22n - 1s^2n^2$	$^{2}P^{\circ}$, ^{4}P	3 5		1059
		1.8735	520.79 - 53880	$1s^22n - 1s^2n^2$	2po 4p	3 3		1059
	5	6.365	0.00 - 15711.	$1s^{2}2s - 1s^{2}9p$	g ² S - ² P°	$\frac{1}{2} - \frac{3}{2}$	P	643,736
	40	6.451	0.00 - 15501.	1s ² 2s - 1s ² 8p	$g^2S \cdot {}^2P^{\circ}$	1 - 3	Р	643.736
	1	6.527	392.02 - 15715.	$1s^2 2p - 1s^2 9d$	$^{2}P^{\circ} - ^{2}D$	j - 3	P	643
	5	6.583	0.00 - 15191.	$1s^22s - 1s^27p$	$a^2S = ^2P^{\circ}$	1.1	_	643
		6.617	392.02 - 15508.	$1s^22p \cdot 1s^28d$	⁹ P ⁹ · ² D	1.1	P	643
		6.672	520.79 - 15510.	$1s^22p - 1s^28d$	² P" - ² D	3.5	P	643
		6.752	392.02 - 15202.	$1s^22p - 1s^27d$	${}^{2}P^{n} - {}^{2}D$	4.3	Р	643
	5	6.787	520.79 - 15255.	$1s^{2}2n - 1s^{2}7d$	$^{2}P^{9} + ^{2}D$	3.5	1 - 1	643
	5	6.808	0.00 - 14689.	$1s^22s \cdot 1s^26p$	$\sigma^2 S - {}^2 P^{\circ}$	1.3		643
	5	6.972	392.02 - 14735.	$1s^{2}2n - 1s^{2}6d$	⁹ P ⁵ , ² D	1.3		643
	5	7.000	392.02 - 14675.	$1s^22p + 1s^26s$	$^{2}P^{\circ} - ^{2}\widetilde{S}$	1 - 1	Q	643
	15	7,033	520.79 - 14740.	1s ² 2p - 1s ² 6d	${}^{2}P^{0} - {}^{2}D$	3.5		643
	18	7.066	520.79 - 14675.	$1s^22n - 1s^26s$	$^{2}P^{o}$, ^{2}S	3.1	0	643
	18	7.169	0.00 - 13949	$1s^{2}2s - 1s^{2}5n$	$\sigma^2 S \cdot {}^2 P^{\circ}$	1 3	x	643
	25	7 370	392.02 . 13961	$1s^22n - 1s^25d$	${}^{2}P^{\circ}$, ${}^{2}D$	1.3		643
	-0	7.391	392.02 - 13922.	$1s^{2}2p - 1s^{2}5s$	$^{2}P^{\circ} \cdot ^{2}S$	$\frac{1}{2} - \frac{1}{2}$	P	986
	36	7.438	520.79 - 13965.	$1s^22p - 1s^25d$	$^{2}P^{\circ} - ^{2}D$	3.5		643
		7.462	520.79 - 13922.	$1s^220 - 1s^25s$	2po 2S	3.Î	Р	986
	34	7.983	$0.00 \cdot 12527$	$1s^{2}2s - 1s^{2}4n$	a^2S , $^2P^{\circ}$	1.3		643
	25	7,993	0.00 - 12511	$1s^{2}2s \cdot 1s^{2}4n$	^{2}S ^{2}P	Í Í Í		643
	35	8.231	392.02 - 12541.	$1s^22p - 1s^24d$	⁹ P° - ² D	1 - ž	[]	643
	25	8.285	392.02 - 12465.	$1s^22n - 1s^24s$	² P° - ² S	4.4		643
	58	8.315	520.79 - 12547.	$1s^220 - 1s^24d$	$^{2}P^{n} - ^{2}D$	3.5		643
	19	8.371	520 79 - 12465	$1s^{2}2n + 1s^{2}4s$	$2\mathbf{p}_{0}$ $2\mathbf{c}$	3.1	0	643
	103	10.619	0.00.9417.1	$1s^{2}2s + 1s^{2}3n$	25.2P	1.3	Y	643
	80	10.663	0.00 - 9378.2	$1s^2 2s - 1s^2 3p$	g ² S - ² P°	$\frac{1}{2} \cdot \frac{1}{2}$		643
	120	11.030	392.02 - 9459.7	1s²2p - 1s²3d	² P ^o - ² D	4 - 3		643
	185	11.171	520.79 - 9472.5	$1s^22p - 1s^23d$	² P ^o - ² D	3 - 5		643
	42	11.187	520.79 9459.7	$1s^{2}2p - 1s^{2}3d$	$^{2}P^{\circ} - ^{2}D$	3 3	0	643
	61	11.261	392.02 - 9272.6	$1s^{2}2p - 1s^{2}3s$	$^{2}P^{\circ} - ^{2}\widetilde{S}$	1.1		643
	125	11.426	520.79 - 9272.6	$1s^{2}2p - 1s^{2}3s$	² P° - ² S	$\frac{1}{2} - \frac{1}{2}$		643
	300	192.017	0.00 - 520.79	$1s^22s \cdot 1s^22p$	g ² S - ² P°	1/2 - 3/3	Р	977,730
	300 '	255.090	0.00 - 392.02	$1s^{2}2s \cdot 1s^{2}2p$	$g^2S - {}^2P^3$	1 - i	P	977,730

IRON XXV (Fe⁺²⁴), Z = 26

Ground State $1s^2$ (${}^{1}S_0$) (2 electrons) Ionization Potential 71 208 000 cm⁻¹; 8828.8 eV

Multiplet	Rel. Int.	λ_{vac} (in Å)	Levels (in 10 ³ cm ⁻¹)	Configurations	Terms	J - J	Notes	References
		1.443	0 69300.	1s ² - 1s6p	g ¹ S - ¹ P ^o	0 - 1	Р	728
		1.401	0 68459.	$1s^{-} - 1s5p$ $1s^{2} - 1s4p$	$g^{*}S - P^{*}$	0.1	P	918,839
	Í	1.5731	0 63571.	$13^{2} \cdot 133p$	g'S P	0-1	P	918,956
		1.5750	0 63496.	$1s^2 \cdot 1s3p$	g ¹ S - ³ P ^o	0 - 1	Р	918,956
	ļ	1.7824	54047 110151.	$1s2v - 2v^2$	¹ P° - ¹ S	1 - 0	Р	626
		1.7866	53787 109759.	1s2s - 2s2p	¹ S - ¹ P°	0 - 1	P	626
		1.7875	53534 109478.	1s2s - 2s2p	³ S - ³ P ^o	1 · 2	P	626
		1.7913	54047 109872.	$1s2p - 2p^2$	¹ P° - ¹ D	1 - 2	P	626
		1.7919	53901 109708.	$1s2p - 2p^2$	³ P° - ³ P	2 - 2	P	626
	90	1.8503	0 54047.	$1s^2 - 1s2p$	$g^1S - {}^1P^o$	0 - 1	Р	918,305
	19	1.8553	0 53901.	$1s^2 \cdot 1s2p$	g ¹ S ³ P°	0.2	F,P	375,305,918
ļ	6	1.8594	0 53785.	$1s^2 - 1s^2p$	$g^1S \cdot {}^3P'$	0 . 1	P	918,305
	34	1.8680	0 53534.	$1s^2 - 1s2s$	g ¹ S - ³ S	$0 \cdot 1$	F,P	375,305,918
1		7.795	54047 66879.	1s2p - 1s4s	^Y P ^o - ¹ S	1 - 0	Q	956

ultiplet	Rel. Int.	λ _{vac} (in Å)	Lev	els (in 10 ³ cm ⁻¹)	Configurations	Terms	J . J	Notes	References
	180	10.003		53534 63531.	1s2s - 1s3p	³ S - ³ P"	1 • 2	Р	918,736
		10.038		53534 63496.	1s2s - 1s3p	³ S - ³ P	1 - 1	Р	918
		10.221	1	53787 63571.	$1s2s \cdot 1s3p$	¹ S - ¹ P ⁰	0 - 1	Р	918
		272.48	;	53534 53901.	1s2s - 1s2p	³ S - ³ P ^o	1 - 2	- P - :	918
		384.62		53787 54047.	1s2s - 1s2p	${}^{1}S - {}^{1}P^{0}$	0 - 1	Р	918
i.	i.	398.41		53534 53785.	ls2s - ls2p	${}^{3}S - {}^{3}P^{2}$	1-1	P	918
		961.5	é	53427 63531.	1s3s - 1s3p	${}^{3}S - {}^{3}P^{n}$	1 - 2	P	918
		1298.7	é	63494 63571.	1s3s - 1s3p	${}^{1}S - {}^{1}P^{n}$	0 - 1	Р	918
		1449.3	ć	53427 63496.	1s3s - 1s3p	${}^{3}S - {}^{3}P^{0}$	1 - 1	P	918

IRON XXVI (Fe⁺²⁵), Z = 26Ground State 1s (²S_{1/2}) (1 electrons)

Ionization Potential 74 828 700 cm⁻¹; 9277.65 eV

-

ultiplet Rel. Int.	λ _{vac} (in Å)	Levels (in 10^3 cm ⁻¹)	Configurations	Terms	J - J Notes	References
1			• • • • • • •			
	1.392	0.0 - 71853.9380	ls - 5p	$g^2S - {}^2P^n$	4.8 P	1042
	1.425	0.0 - 70179.2740	1s - 4p	$g^2S - ^2P^0$	- } - } − P	1042
	1.502	0.0 - 66561.5150	1s - 3p	$g^2S - 2P^2$	3-3 P	1042
	1.504	0.0 - 66510.7870	1s - 3p	$g^2S - {}^2P^{\circ}$	1 3 3 P	1042
	1.778	0.0 - 56241.5800	ľs - 2p	$g^2S + {}^2P^{o}$	$\overline{1}$ $\overline{2}$ $\overline{2}$ P	1042
			·	1 6		
	1.784	0.0 - 56070.5000	1s - 2p	$g^2S \cdot {}^2P^{\circ}$	P	1042
	6.338	56075.2200 - 71853.9380	$2s \cdot 5p$	$^{2}S - ^{2}P^{\circ}$		1042
1	6.404	56241.5800 - 71857.5115	2p - 5d	${}^{2}P^{0} - {}^{2}D$		1042
	7.090	56075.2200 - 70179.2740	2s - 4p	${}^{2}S - {}^{2}P^{\circ}$	- 1 - 3 − P	1042
	7.171	56241.5800 - 70186.2543	2p - 4d	$^{2}P^{\circ} \cdot ^{2}D$	ž - ž P	1042
	0.794	56075 2200 66561 5150	2 2	20 200	. 13 n	1049
	9.530	56075.2200 - 06501.5150	2s - 3p	-5 - P	3 · 2 P	1042
	9.674	56241.5800 - 66578.0490	2p - 3d	² P ⁰ - ² D	2 - 2 P	1042
	9.674	56241.5800 - 66578.0490	2p - 3d	²P" • *D	2 - 2 P	1042

E. Energy Levels of Iron, Fe I through Fe XXVI

E. Energy Levels of Iron, Fe I through Fe XXVI

Charles Corliss^{*} and Jack Sugar

National Measurement Laboratory, National Bureau of Standards, Washington, DC 20234

This is a revision of the compilation of energy levels of iron for all ionization stages make in 1975 by Reader and Sugar. New material has since been provided for all but two of these ions. The present compilation includes electron configurations, energy levels, term designations, calculated leading percentages for most ions, experimental g-values, and ionization energies.

[Source: C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 11(1), 135-241 (1982)]

CONTENTS

Page

Page

Introduction	. E2	Fe XIII	E75
Energy Level Tables	. E4	Fe XIV	E77
Fe I	. E4	Fe XV	E79
Fe II	. E17	Fe XVI	E81
Fe III	. E3 1	Fe XVII	E84
Fe IV	. E44	Fe XVIII	E86
Fe V	. E51	Fe XIX	E89
Fe VI	. E56	Fe XX	E92
Fe VII	. E59	Fe XXI	E95
Fe VIII	. E64	Fe XXII	E97
Fe IX	. E66	Fe XXIII	E100
Fe X	. E68	Fe XXIV	E103
Fe XI	. E71	Fe XXV	E105
Fe XII	E73	Fe XXVI	E107

*Present address: Forest Hills Laboratory, 2955 Albermarle St., N.W., Washington, DC, 20008.

1. Introduction

The NBS Atomic Energy Levels Data Center has undertaken to provide new compilations of atomic energy levels, the program at present being concentrated on the elements hydrogen through nickel. The data for each atom and its ions are being published as a separate paper. Already completed are the compilations for the following elements: calcium, chromium, cobalt, scandium, and vanadium by Sugar and Corliss (1979, 1977, 1981, 1980, 1978); manganese, nickel, titanium, and potassium by Corliss and Sugar (1977, 1981, 19791, 1979b); and aluminum, magnesium, and sodium by Martin and Zalubas (1979, 1980, 1981). The present work on iron is a revision of the compilation by Reader and Sugar (1975) and completes a new set of compilations for the iron period (K through Ni) which we plan to publish as a single volume. Since the publication by Reader and Sugar appeared, new data have been added for every spectrum except Fe III and Fe V.

Generally we have used only published papers as sources of data. Unpublished data are included when they constitute a substantial improvement over material in the literature. For many of the higher ions the original papers do not give energy level values, but only classifications of observed lines. In these cases we have derived the level values. All energy levels are given in units of cm⁻¹.

Ionization energies found in the literature are usually given in eV or in cm⁻¹. The conversion factor, $8065.479 \pm 0.021 \text{ cm}^{-1}/\text{eV}$, given by Cohen and Taylor (1973), is used here. In a few cases where adequate data were available but the ionization energy had not been derived, we carried out the calculation. For a number of the ions, no suitable series are known. In these cases we have quoted values obtained by Lotz (1967) by a method of successive differences along isoelectronic sequences. Although uncertainties are not provided with these extrapolated values, we find that they are accurate to 0.2% by comparing them with recently determined values.

Nearly all of the data result from observations of various types of laboratory light sources. However, the laboratory data are sometimes supplemented by data obtained from solar observations. This is particularly true where spin-forbidden lines are needed to establish the absolute energy of a system of excited levels and where parity-forbidden transitions between levels of a ground configuration are used to obtain accurate relative energies for the low levels. Whenever both solar data and equivalent laboratory data are available preference is generally given to the laboratory measurements.

When no observations are available to connect independent systems of levels, an estimate of the connecting energy is adopted. Those level values affected by the estimate are denoted by +x following the value. The value of x is the systematic error of the estimate.

For Fe XXV and Fe XXVI, which are isoelectronic with He I and H I, respectively, we give (in brackets) only calculated level values since they are at present more accurate than experimental x-ray wavelengths from which level values may be obtained.

For convenient general sources of wavelengths of iron lines we refer the reader to the compilation by Kelly and Palumbo (1973) for the range 1-2000 Å. An accurate set of measurements of Fe I and Fe II in the range of 1900-9000 Å was given by Crosswhite (1975).

We have included under the heading "Leading Percentages" the results of calculations that express the eigenvector percentage composition of levels in terms of the basis states of a single configuration, or more than one configuration where configuration interaction has been included.

In the "Leading percentages" column we give first the percentage of the basis state corresponding to the level's name; next the second largest percentage together with the related basis state. Sometimes the leading percentage in an alternative coupling scheme is given. Generally, when the leading percentage is less than 40%, no name is given; for an unnamed level, the term symbol follows the percentage.

The user should of course bear in mind that the percentages are model dependent, so that the results of different calculations can yield notably different percentages. In the present tables, the percentages are taken mostly from published parametric calculations. When only *ab initio* calculations are found in the literature, we have used them if the calculated levels can be identified with the observed levels.

For configurations of equivalent *d*-electrons, several terms of the same *LS* type may occur. These are theoretically distinguished by their seniority number. In the present compilations they are designated in the notation o Nielson and Koster (1963). For example, in the $3d^5$ configuration there are three ²D terms with seniorities of 1, 3, and 5. These terms are denoted as ²D1, ²D2, and ²D3, respectively, by Nielson and Koster. Martin, Zalubas, and Hagan (1978) give a complete summary of the coupling notations used here, tables of the allowed terms for equivalent electrons, etc. The prefixing of terms by lower case letters (for

example a, ⁵D, z, ⁵G, etc.) has been dropped except for Fe I and Fe II, where its use in connection with tables of classified lines is established in the literature.

The text for each ion does not include a complete review of the literature but is intended to credit the major contributions. In assembling the data for each spectrum, we referred to the following bibliographies:

i. Papers cited by Moore (1952)

ii. C. E. Moore (1969)

- iii. L. Hagen and W. C. Martin (1972)
- iv. J. Reader and J. Sugar (1975)
- v. L. Hagan (1977)
- vi. R. Zalubas and A. Albright (1980)
- vii. Card file of publications since June 1979 maintained by the NBS Atomic Energy Levels Data Center

This compilation includes all material available to us as of April, 1981.

Acknowledgments

Throughout this work we have made extensive use of the bibliographical files and reprint collection maintained in the Atomic Energy Levels Data Center by Romuald Zalubas and Arlene Albright. Out thanks are extended to them for generous cooperation. The compilation has also benefited greated from the preprints that were provided by many of our colleagues.

We thank W. C. Martin for his critical reading and G. A. Martin for her careful review of the manuscript.

This work was supported by the U.S. Department of Energy, Division of Magnetic Fusion Energy, the Office of Standard Reference Data of the National Bureau of Standards, and the National Aeronautics and Space Administration, Astrophysics Division.

References for Introduction

Cohen, E. R., and Taylor, B. N. (1973), J. Phys. Chem. Ref. Data 2, 663.

- Corliss, C., and Sugar, J. (1977), Energy Levels of Manganese, Mn I through Mn XXV, J. Phys. Chem. Ref. Data 6, 1253.
- Corliss, C., and Sugar, J. (1979a), Energy Levels of Titanium, Ti I through Ti XXII, J. Phys. Chem. Ref. Data 8, 1.

- Corliss, C., and Sugar, J. (1979b), Energy Levels of Potassium, K I through K XIX, J. Phys. Chem. Ref. Data 8, 1109.
- Corliss, C., and Sugar, J. (1981), Energy Levels of Nickel, Ni I through Ni XXVIII, J. Phys. Chem. Ref. Data 10, 197.
- CRC Handbook of Chemistry and Physics, 61st Ed. (1980), pp. E-219 to 348, Line Spectra of the Elements, Ed. by J. Reader and C. H. Corliss (CRC Press, Inc., Boca Raton, FL).
- Crosswhite, H. M. (1975), J. Res. Nat. Bur. Stand. 79A, 17.
- Hagan, L. (1977), Bibliography on Atomic Energy Levels and Spectra, July 1971 through June 1975, Nat. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 1 (U.S. Gov't Printing Office, Washington, DC).
- Hagan L., and Martin, W. C. (1972), Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971, Nat. Bur. Stand. (U.S.) Spec. Publ. 363 (U.S. Gov't Printing Office, Washington, DC).
- Kelly, R. L., and Palumbo, L. J. (1973), Atomic and Ionic Emission Lines Below 2000 Angstroms---Hydrogen through Krypton, NRL Report 7599 (U.S. Gov't Printing Office, Washington, DC).
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
- Martin, W. C., and Zalubas, R. (1979), Energy Levels of Aluminum, Al I through Al XIII, J. Phys. Chem. Ref. Data 8, 817.
- Martin, W. C., and Zalubas, R. (1980), Energy Levels of Magnesium, Mg I through Mg XII, J. Phys. Chem. Ref. Data 9, 1. Martin, W. C., and Zalubas, R. (1981), Energy Levels of Sodium, Na I through Na XI, J. Phys. Chem. Ref. Data 10, 153.
- Martin, W. C., Zalubas, R., and Hagan, L. (1978), Atomic Energy Levels...The Rare-Earth Elements, Nat. Stand. Ref. Data Ser., Nat Bur. Stand. (U.S.), 60.
- Meggers, W. F., Corliss, C. H., and Scribner, B. F. (1975), Nat. Bur. Stand. Monogr. 145.
- Moore, C. E. (1952), Atomic Energy Levels, Nat. Bur. Stand. (U.S.) Circ. 467, Vol. II (reissued in 1971 as Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35, Vol. II).
- Moore, C. E. (1969), Bibliography on the Analyses of Optical Atomic Spectra, Section 2, Nat. Bur. Stand. (U.S.), Spec. Publ. 306-2 (U.S. Gov't Printing Office, Washington, DC).
- Nielson, C. W., and Koster, G. F., Spectroscopic Coefficients for the p^a, d^a, and J^a Configurations, 275 pp. (M.I.T. Press, Cambridge, MA, 1963).
- Reader, J., and Sugar, J. (1975), Energy Levels of Iron, Fe I through Fe XXVI, J. Phys. Chem. Ref. Data 4,353.
- Sugar, J., and Corliss, C. (1977), Energy Levels of Chromium, Cr I through Cr XXIV, J. Phys. Chem. Ref. Data 6, 317.
- Sugar, J., and Corliss, C. (1978), Energy Levels of Vanadium, V I through V XXIII, J. Phys. Chem. Ref. Data 7, 1191.
- Sugar, J., and Corliss, C. (1979), Energy Levels of Calcium, Ca I through Ca XX, J. Phys. Chem. Ref. Data 8, 865.
- Sugar, J., and Corliss, C. (1980), Energy Levels of Scandium, Sc I through Sc XXI, J. Phys. Chem. Ref. Data 9, 473.
- Sugar, J., and Corliss, C. (1981), Energy Levels of Cobalt, Co I through Co XXVII, J. Phys. Chem. Ref. Data, 10.
- Zalubas, R., and Albright, A. (1980), Bibliography on Atomic Energy Levels and Spectra, July 1975 through June 1979, Nat. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 2 (U.S. Gov't Printing Office, Washington, DC).

Fe I

Z = 26

Ground state: 1s²2s²2p⁶3s²3p⁶3d⁶4s² ⁵D₄

lonization energy = 63 480 \pm 500 cm⁻¹ (7.870 \pm 0.06 eV)

The principal contributors to the analysis of Fe I are Walters, Laporte, Burns, and Catalán, who together provided 404 energy levels. Following their work and utilizing new Zeeman effect data from the Massachusetts Institute of Technology, Russell, Moore, and Weeks (1944) were able to extend the analysis by the addition of 60 levels and to confirm the older analysis. A few high levels were later found by Kiess, Rubin, and Moore (1961). The five-place g-values are from Childs and Goodman (1965), who give uncertainties of about ± 0.00005 with the values. The rest, from Russell et al., have an uncertainty of ± 0.001 to 0.009 depending on the determination.

Redetermined values for many of the levels have been provided by Crosswhite (1975). His revisions result from a new set of observations made with a low pressure hollow cathode discharge. The values given below to three decimal places are due to Crosswhite. He ascribes an accuracy of ± 0.002 cm⁻¹ to these levels. A comparison of his results with the earlier data, which were derived from arc sources at atmospheric pressure, shows that the earlier values of levels belonging to the $3d^8$, $3d^74s$, $3d^74p$, $3d^74d$, $3d^64s4p$, $3d^{6}4s4d$, and $3d^{5}4s^{2}4p/wf$ configuration should be reduced by 0.04 cm⁻¹ to obtain values consistent with observations from low pressure sources. This correction has been applied by us to all levels of these configurations whose values were not already revised by Crosswhite. These are given below to two decimal places. Insufficient information is available to establish corresponding corrections for levels of the 3d ⁶4s5s, 3d ⁶4s6s, 3d ⁶4s7s, 3d 64s5d, 3d 75s, and 3d 64s5p configurations. The uncorrected values rounded off to two decimal places are given below.

Litzen (1976) observed the spectrum from 13 350 to 24 924 Å and identified new terms in $3d^{6}4s5p$ and $3d^{7}5p$. He also determined revised level values for a few high even terms. His results are included here.

A calculation of the even configurations $3d^{6}4s^{2}$, $3d^{7}4s$, and $3d^{8}$ in intermediate coupling by Dembczynski (1980) provided leading percentages for these levels.

The leading percentages for the levels of odd parity are from Roth (1981). He has calculated the $3d^{7}4p$, $3d^{6}4s4p$, and $3d^{5}4s^{2}4p$ groups of levels with configuration interaction. Roth distinguished repeating terms of the $3d^{n}$ core by the letters a, b ... rather than by seniority. His percentage composition for a given level is the sum of the percentages of states that differ only in the seniority of the core term.

The alphabetic prefixing of final terms with lower case letters, which served to distinguish final terms of the same type, has been repeated here from the literature except for levels that have been redesignated as a result of a new theoretical interpretation. Similarly, the authors' numerical designations for uninterpreted levels have been retained.

The ionization energy was derived from the $3d^{7}ns$ series (n=4,5) by Catalán and Velasco (1952).

References

Burns, K., and Walters, Jr., F. M. (1929), Publ. Allegheny Observ. 6, 159. Catalán, M. A. (1930), Anales Soc. Espan. Fis. Quim. 28, 1239.

- Catalán, M. A., and Velasco, R. (1952), Anales Real Soc. Espan. Fis. Quim. (Madrid) 48A. 247.
- Childs, W. J., and Goodman, L. S. (1965), Phys. Rev. 140 A, 447.
- Crosswhite, H. M. (1975), J. Res. Nat. Bur. Stand. (U.S.) 79A, 17.
- Dembczynski, J. (1980), Physica 100 C, 105.
- Kiess, C. C., Rubin, V. C., and Moore, C. E. (1961), J. Res. Nat. Bur. Stand. (U.S.) 65A, 1.
- Laporte, O. (1924), Z. Physik 23, 135; 26, 1.
- Litzén, U. (1976), Phys. Scr. 14, 165.
- Roth, C. (1981), At. Data Nucl. Data Tables.
- Russell, H. N., Moore, C. E., and Weeks, D. W. (1944), Trans. Am. Phil. Soc. 34-II, 111.
- Walters, F. M. (1924), J. Opt. Soc. Am. 8, 245.
- Walters, F. M. (1923), J. Wash. Acad. Sci. 13, 243.

Configuration	Term	J	Level (cm ¹)	g	Leading percentages
$3d^6 4s^2$	a ⁵ D	4 3 2 1 0	0.000 415.932 704.004 888.129 978.072	$\begin{array}{c} 1.50020 \\ 1.50034 \\ 1.50041 \\ 1.50022 \end{array}$	100 100 100 100 100

Fe I

Fe I-Continued

Configuration	Term	J	Level	ß		eading perc	entages
	· · · · · · · · · · · · · · · · · · ·		(cm ⁻ ')				
$3d^{7}({}^{4}\mathrm{F})4\mathrm{s}$	a ⁵ F	5	6 928.266	1.40021	100		
		4	7 376.760	1.35004	100		
		3	7 728.056	1.24988	100		
		2	7 985,780	0.99953	100		
		1	8 154.710	-0.014	100		
$3d^{7}({}^{4}\mathrm{F})4s$	$a^{3}F$	4	11 976.234	1.254	98	1	3d ⁶ 4s ² ³ F2
(- /		3	12 560.930	1.086	98	1	
		2	12 968.549	0.670	98	1	
$3d^{7}(^{4}P)4s$	a ⁵ P	3	17 550,175	1.666	99		
04 (1)20	u x	2	17 726.981	1.820	99		
		1	17 927.376	2.499	99		
$3a^{6}4s^{2}$	$a^{3}P2$	2	18 378.181	1.506	55	32	³ P1
00 AD		1 1	19 552 473	1.500	55	32	
		ō	20 037.813		55	32	
$3d^{6}({}^{5}\mathrm{D})4s4n({}^{3}\mathrm{P}^{\circ})$	<i>τ</i> ⁷ D°	5	19 350.892	1.597	99		
ou (1) 30 10 (1)	~ ~ ~	4	19 562 440	1 642	98		
		3	19 757 033	1.746	99		
		2	19 912 494	2.008	99		
		1	20 019.635	2.999	100		
$3d^6 4s^2$	a ³ H	6	19 390.164	1.163	100		
		5	19 621.005	1.038	100		
		4	19 788.245	0.811	100		
$3d^6 4s^2$	6 ³ F2	4	20 641.109	1.235	71	21	³ F1
		3	20 874.484	1.073	71	21	
		2	21 038.985	0.663	71	21	
$3d^{7}(^{2}\mathrm{G})4s$	a ³ G	5	21 715.730	1.197	88	10	$3d^{6}4s^{2}$ ^{3}G
		4	21 999.127	1.051	88	10	
		3	22 249.428	0.756	88	10	
$3d^{6}(^{5}\text{D})4s4p(^{3}\text{P}^{\circ})$	$z^7 F^{\circ}$	6	22 650.421	1.498	100		
······································		5	22 845.868	1.498	99		
		4	22 996.676	1.493	99		
		3	23 110.937	1.513	99		
		2	23 192.497	1.504	99		
		Ī	23 244.834	1.549	100		
		0	23 270.374		100		
$3d^{7}(^{4}\mathrm{P})4s$	b ³ P	2	22 838.318	1.498	92	4	3d ⁶ 4s ² ³ P1
		1 1	22 946.808	1.489	79	10	$3d^{7}(^{2}\mathrm{P})4s$ $^{3}\mathrm{P}$
		0	23 051.742		79	12	$3d^{7}(^{2}P)4s$ ^{3}P
$3d^{6}(^{5}\text{D})4s4p(^{3}\text{P}^{\circ})$	$z^{7}P^{\circ}$	4	23 711.457	1.747	98		
		3	24 180.864	1.908	99		
		2	24 506.919	2.333	98		
$3d^6 4s^2$	<i>b</i> ³ G	5	23 783.614	1.200	88	10	3d ⁷ (² G)4s ³ G
	Į	4	24 118.814	1.048	88	10	
	[3	24 338.762	0.761	88	10	

forther.

 ρm_{c}

eren.

C. CORLISS AND J. SUGAR

Fe I---Continued

Configuration	Term	J	$\frac{\text{Level}}{(\text{cm}^{-1})}$	g	Le	ading perc	entages
$2d^{7}(^{2}\mathbf{P})/a$	a ³ P	o	94 995 750	1 494		·····	² (202)
5a (P) 4s	сг	2	24 333.139	1.484	90	4 7	$(D_{2})^{3}D$
		1	24 /12.011	1.400	81	10	$(\mathbf{r}) \mathbf{r}$ $(4\mathbf{p}) \mathbf{p}$
		0	25 091.591		79	12	())
$3d^7(^2\mathrm{G})4s$	a ¹ G	4	24 574.650	1.001	90	3	(^{2}H) ^{3}H
$3d^{6}(^{5}\text{D})4s4p(^{3}\text{P}^{\circ})$	z ⁵ D°	4	25 899.987	1.502	91	6	$3d^{7}({}^{4}\mathrm{F})4p \; {}^{5}\mathrm{D}^{2}$
-	ĺ	3	26 140.177	1.500	91	6	
		2	26 339.691	1.503	92	6	
		1	26 479.376	1.495	92	6	
		0	26 550.476		93	5	
$Bd^{7}(^{2}\mathrm{H})4s$	<i>b</i> ³ H	6	26 105.904	1.165	100		
		5	26 351.039	1.032	98	2	(^{2}H) ^{1}H
		4	26 627.604	0.811	98	2	$(^{2}G)^{-1}G$
$3d^7(^2\text{D2})4s$	a ³ D	3	26 224.966	1.335	74	3	$(^{2}D1)$ ^{3}D
		1	26 406.470	0.731	45	35	$(^{2}P)^{-1}P$
		2	26 623.730	1.178	67	18	$(^{2}D1)$ ^{3}D
$3d^{6}({}^{5}\mathrm{D})4s4p({}^{3}\mathrm{P}^{\circ})$	$z {}^{5}\mathbf{F}^{\circ}$	5	26 874.549	1.399	95	4	$3d^{7}({}^{4}\mathrm{F})4p \; {}^{5}\mathrm{F}^{*}$
		4	27 166.819	1.355	94	4	-
		3	27 394.688	1.250	94	4	
		2	27 559.581	1.004	95	4	
		1	27 666.346	-0.012	95	4	
$3d^7(^2\mathrm{P})4s$	a ¹ P	1	27 543.004	0.817	62	23	(² D2) ³ D
$3d^7(^2\text{D2})4s$	a ¹ D	2	28 604.606	1.028	64	16	(² D1) ¹ D
$3d^{7}(^{2}\mathrm{H})4s$	a $^{1}\mathrm{H}$	5	28 819.946	1.000	98		
$3d^{6}({}^{5}\mathrm{D})4s4p({}^{3}\mathrm{P}^{\circ})$	z ⁵P°	3	29 056.321	1.657	98		
-		2	29 469.020	1.835	97		
		1	29 732.733	2.487	97		
$3d^6 4s^2$	a 1 I	6	29 313.003	1.014	100		
$3d^{6}4s^{2}$	<i>b</i> ³ D	1	29 320.028		88	8	$3d^{7}(^{2}\text{D2})4s^{3}\text{I}$
		2	29 356.740	ļ	81	7	
		3	29 371.811	1.326	94	4	
$3d^{6} 4s^{2}$	<i>b</i> ¹ G2	4	29 798.933	0.979	62	35	¹ G1
$3d^{6}(^{5}\mathrm{D})4s4p(^{3}\mathrm{P}^{\circ})$	z ³ F°	4	31 307.243	1.250	94	5	$3d^{7}({}^{4}\mathrm{F})4p {}^{3}\mathrm{F}^{6}$
-		3	31 805.067	1.086	97		
		2	32 133.986	0.682	93	5	$3d'({}^{4}\mathrm{F})4p \; {}^{3}\mathrm{F}'$
$3d^{6}({}^{5}\mathrm{D})4s4p({}^{3}\mathrm{P}^{\circ})$	z ³ D°	3	31 322.611	1.321	90	8	$3d^{7}({}^{4}\mathrm{F})4p {}^{3}\mathrm{D}$
		2	31 686.346	1.168	90	8	
		1	31 937.316	0.513	91	8	
$3d^8$	c ³ F	4	32 873.619	1.264	92	3	$3d^{7}(^{2}\mathrm{F})4s$ $^{3}\mathrm{F}$
	ĺ	3	33 412.713	1.066	92	5	
		2	33 765.304	0.677	86	6	

-

Fe I-Continued

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Configuration	Term	J	Level (cm ¹)	g	Lea	ding pe	rcentages
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^{7}(^{4}\mathrm{F})4n$	v ⁵ T)°	Λ	22 095 937	1.496	61		$3d^{6}({}^{5}\mathrm{D})/4c4n({}^{1}\mathrm{P}^{\circ}) {}^{5}\mathrm{D}^{\circ}$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	ou (1) Ap	J D	3	33 507 120	1.492	60	34	$3d^{6}({}^{5}D)4s4n({}^{1}P^{\circ}){}^{5}D^{\circ}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	33 801.567	1.495	56	34	$3d^{6}({}^{5}\text{D})4s4n({}^{1}\text{P}^{\circ}){}^{5}\text{D}^{\circ}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	34 017.098	1.492	47	30	$3d^{6}({}^{5}\text{D})4s4p({}^{3}\text{P}^{\circ}){}^{3}\text{P}^{\circ}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0	34 121.58		42	28	$3d^{6}({}^{5}\mathrm{D})4s4p({}^{3}\mathrm{P}^{\circ}){}^{3}\mathrm{P}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9-11 (413) 4-	510%	-	99 605 901	1 410			ງ.ໜຶ່ງອີການ 4. 4. (ໄກາຈາ ອີກາຈ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	əa (r 14p	уг		33 030.034	1.417	84	11	3a (1)/484p(r) r
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4	21, 208 71.9	1.044	61	12	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			9 9	34 520.145	0.008	61	11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	34 692.144	-0.016	84	13	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a filmer a star	2						a data tan
$ \begin{vmatrix} 1 & 3^{3} 3^{2} 3^{2} 8^{2} 1 & 1.496 & 50 & 30 \\ 0 & 3^{3} 5^{2} 5^{2} 6^{0} & 10 \\ 3^{3} 5^{2} 5^{2} 6^{0} & 30 & 10 \\ 3^{4} 5^{5} 5^{6} 6^{0} & 3^{2} & 10 \\ 3^{4} 5^{5} 5^{6} & 3^{4} 6^{6} & 1218 & 58 & 35 & 3^{4} (^{1} P) 4p^{3} C^{*} \\ 5 & 3^{4} 84^{3} 3^{4} & 1332 & 34 & 4 & 3^{4} (^{1} P) 4p^{3} C^{*} \\ 4 & 3^{5} 2^{5} 7^{3} 19 & 1.103 & 75 & 16 & 3^{4} (^{1} P) 4p^{3} C^{*} \\ 2 & 3^{5} 85^{5} 4^{0} 0 & 0.335 & 92 & 5 & 3^{4} (^{1} P) 4p^{3} C^{*} \\ 2 & 3^{5} 85^{5} 4^{0} 0 & 0.335 & 92 & 5 & 3^{4} (^{1} P) 4s4p^{1} P^{*})^{1} G^{*} \\ 3 & 3^{5} 6^{7} 5^{5} 6^{1} & 1100 & 75 & 16 & 3^{4} (^{1} P) 4s4p^{1} P^{*})^{1} G^{*} \\ 3 & 3^{5} 6^{7} 5^{5} 6^{1} & 1100 & 75 & 16 & 3^{4} (^{1} P) 4s4p^{1} P^{*})^{1} G^{*} \\ 3 & 3^{5} 6^{7} 5^{5} 6^{1} & 1100 & 75 & 16 & 3^{4} (^{1} P) 4s4p^{1} P^{*})^{1} G^{*} \\ 3 & 3^{5} 6^{7} 5^{5} 6^{1} & 1100 & 75 & 16 & 3^{4} & 3^{4} (^{1} P) 4s4p^{1} P^{*})^{3} F^{*} \\ 3 & 3^{7} 16^{2} 740 & 1008 & 84 & 5 & 3^{4} (^{1} D) 4s4p^{1} P^{*})^{3} F^{*} \\ 3 & 3^{7} 16^{2} 740 & 1008 & 85 & 77 & 5 & 3^{4} & 3^{4} (^{5} S) 4s^{4} q^{5} P^{*} \\ 3 & 3^{7} 740^{5} 5^{5} 0 & 166 & 3 & 3^{4} (^{5} S) 4s^{4} q^{5} P^{*} \\ 3 & 3^{6} 975.50 & 94 & 5 & 3 & 3^{4} (^{5} S) 4s^{4} q^{5} P^{*} \\ 3 & 3^{6} 975.50 & 94 & 5 & 3 & 3^{4} (^{5} S) 4s^{4} q^{5} P^{*} \\ 3 & 3^{6} 985 730 & 0.498 & 85 & 7 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*})^{5} D^{*} \\ 3 & 3^{6} 985 730 & 0.498 & 85 & 7 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*})^{5} D^{*} \\ 3 & 3^{6} 985 730 & 0.498 & 85 & 7 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*})^{5} P^{*} \\ 3 & 3^{6} 96 75.60 & 94 & 5 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*})^{5} D^{*} \\ 3 & 3^{6} 985 730 & 0.498 & 85 & 7 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*})^{5} D^{*} \\ 3 & 3^{6} 985 730 & 0.498 & 85 & 7 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*} \\ 3 & 3^{6} 985 730 & 0.498 & 85 & 7 & 3 & 3^{4} (^{4} P) 4s4p^{1} P^{*})^{5} P^{*} \\ 3 & 4^{6} 90 4^{6} 98^{6} & 1.198 & 85 & 19 & 3 & 3^{6} (^{5} P) 4s4p^{1} P^{*})^{5} P^{*} \\ 3 & 4^{6} 985 32 & 1.501 & 58 & 19 & 3 & 3^{6} 96^{1} P^{*} \\ 3 & 3^{$	$3d^{\circ}(^{\circ}\mathrm{D})4s4p(^{\circ}\mathrm{P}^{\circ})$	z °P°	2	33 946.929	1.493	91	4	$3d^{\circ}(\mathbf{F})4p^{\circ}D^{\circ}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	34 362.871	1.496	50	30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	34 555.60		69	18	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^6 4s^2$	b ¹ D2	2	34 636.78		67	20	¹ D1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{7}({}^{4}\mathrm{F})4n$	$z^{5}G^{\circ}$	5	34 782.416	1.218	58	35	$3d^{7}({}^{4}\mathrm{F})4n {}^{3}\mathrm{G}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 (1) xp	~ ~	6	34 843.94	1.332	94	4	$3d^{6}(^{3}\text{H})4s4n(^{3}\text{P}^{\circ})^{5}\text{G}^{\circ}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	35 257.319	1.103	75	16	$3d^{7}({}^{4}\mathrm{F})4n{}^{3}\mathrm{G}^{9}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	35 611.619	0.887	86	6	$3d^{7}({}^{4}\mathrm{F})4n {}^{3}\mathrm{G}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	35 856.400	0.335	92	5	$3d^{6}(^{3}\text{H})4s4n(^{3}\text{P}^{\circ})^{5}\text{G}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_					÷	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{7}(^{4}\mathrm{F})4p$	z ³ G°	5	35 379.206	1.248	61	33	⁵ G°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	35 767.561	1.100	78	16	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	36 079.366	0.791	89	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{7}({}^{4}\mathrm{F})4p$	ν ³ F°	4	36 686.164	1.246	86	5	$3d^{6}(^{5}\text{D})4s4p(^{3}\text{P}^{\circ})$ ³ F°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5 -	3	37 162.740	1.086	84	5	<i>∞α</i> (<i>2</i>), <i>∞</i> , <i>p</i> (2), <i>−</i>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	37 521.157	0.688	87	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.16(5m) 4-4-(1D°)	510%	0	96 766 060	1.001			9.5/601.24-500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3a^{(1)}4s4p(1^{-})$	уР	3	30 700.902 an 157 557	1.001	60	34	3a (18)45 4p P
$3d^{7}({}^{2}\mathrm{F})4s \qquad \begin{vmatrix} 1 & 0 & 400.54x \\ 1 & 3 & 36 & 975.60 \\ 3 & 36 & 975.60 \\ 4 & 37 & 045.96 \\ \end{vmatrix} \qquad \begin{vmatrix} 92 & 6 & 3d^{8} ^{3}\mathrm{F} \\ 94 & 5 \\ 96 & 3 \\ \end{vmatrix}$ $3d^{7}({}^{4}\mathrm{F})4p \qquad \begin{vmatrix} y ^{3}\mathrm{D}^{\circ} \\ 2 \\ 38 & 678.032 \\ 1 \\ 38 & 995.730 \\ 1 \\ 38 & 995.730 \\ 0 \\ 4 \\ 39 & 969.844 \\ 1.504 \\ 5 \\ 1 \\ 2 \\ 40 & 231.332 \\ 1.151 \\ 85 \\ 7 \\ 86 \\ 7 \\ \end{vmatrix}$ $3d^{6}({}^{5}\mathrm{D})4s4p({}^{1}\mathrm{P}^{\circ}) \qquad x {}^{5}\mathrm{D}^{\circ} \qquad 4 \\ 39 & 625.800 \\ 1 \\ 4 \\ 2 \\ 40 & 231.332 \\ 1 \\ 40 & 404.506 \\ 1 \\ 4 \\ 40 & 257.307 \\ 1 \\ 40 & 405.206 \\ 1 \\ 408 \\ 53 \\ 20 \\ \end{vmatrix}$ $3d^{6}({}^{5}\mathrm{D})4s4p({}^{1}\mathrm{P}^{\circ}) \qquad x {}^{5}\mathrm{D}^{\circ} \qquad 4 \\ 39 & 625.800 \\ 1 \\ 4 \\ 40 & 21.332 \\ 1 \\ 40 & 404.506 \\ 1 \\ 98 \\ 53 \\ 20 \\ \end{vmatrix}$ $3d^{5}({}^{6}\mathrm{S})4s^{2}4p \qquad y {}^{7}\mathrm{P}^{\circ} \qquad 2 \\ 4 \\ 40 & 527.307 \\ 4 \\ 40 & 257.307 \\ 4 \\ 40 & 594.429 \\ 1 \\ 1 \\ 22 \\ 41 & 018.050 \\ 1 \\ 1 \\ 22 \\ 41 & 018.050 \\ 0 \\ 98 \\ 88 \\ 5 \\ \end{vmatrix}$ $3d^{6}({}^{5}\mathrm{D})4s4p({}^{1}\mathrm{P}^{\circ}) \qquad x {}^{5}\mathrm{F}^{\circ} \qquad 5 \\ 3d^{7}({}^{4}\mathrm{F})4p {}^{5}\mathrm{F}^{\circ} \qquad 3 \\ 4 \\ 40 & 594.429 \\ 1 \\ 1 \\ 41 & 130.627 \\ -0.006 \\ 88 \\ 5 \\ \end{vmatrix}$ $3 $			2	37 137.337	1.830	50	35	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	07 400.042	2.002	0.7	90	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$3d^{7}(^{2}\mathrm{F})4s$	$d^{3}F$	2	36 940.56		92	6	$3d^{8}$ ³ F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	36 975.60		94	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	37 045.96		96	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^7({}^4\mathrm{F})4n$	ν ³ D°	3	38 175 350	1 324	84	8	$3d^{6}({}^{5}\mathrm{D})4s4n({}^{3}\mathrm{P}^{\circ}){}^{3}\mathrm{D}^{\circ}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 (x) .p	5 -	$\tilde{2}$	38 678.032	1 151	85	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	38 995.730	0.493	86	, 7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.26(5D) 4-4-(1D°)	517.9		20 625 000	1 490			9.37 (4m) 4 5m°
$3d^{5}({}^{6}S)4s^{2}4p \qquad y^{7}P^{\circ} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	3a(D)4s4p(r)	хD	4	39 020.000	1.409	55	18	5a (r)4p D
$3d^{5}({}^{6}S)4s^{2}4p \qquad y^{7}P^{\circ} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			ง ว	10 991 999	1.504	54	19	
$3d^{5}({}^{6}S)4s^{2}4p \qquad y^{7}P^{\circ} \qquad 2 \qquad 40\ 052.030 \qquad 2.340 \qquad 97 \\ 3 \qquad 40\ 207.086 \qquad 1.908 \qquad 98 \\ 4 \qquad 40\ 207.086 \qquad 1.908 \qquad 98 \\ 4 \qquad 40\ 421.85 \qquad 1.757 \qquad 91 \qquad 7 \ 3d^{6}({}^{5}D)4s4p({}^{1}P^{\circ})\ {}^{5}F^{\circ} \\ 3d^{6}({}^{5}D)4s4p({}^{1}P^{\circ}) \qquad x \ {}^{5}F^{\circ} \qquad 5 \qquad 40\ 257.307 \qquad 1.390 \qquad 90 \qquad 5 \ 3d^{7}({}^{4}F)4p\ {}^{5}F^{\circ} \\ 4 \qquad 40\ 594.429 \qquad 1.328 \qquad 82 \qquad 5 \\ 3 \qquad 40\ 842.151 \qquad 1.254 \qquad 88 \qquad 5 \\ 2 \qquad 41\ 018.050 \qquad 0.998 \qquad 88 \qquad 5 \\ 1 \qquad 41\ 130.627 \qquad -0.006 \qquad 88 \qquad 5 \\ \end{array}$			ی۔ 1	40 201.502	1.001	50	19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	40 491.274	1.490	53	20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a 15 (fax (2)	7	~	10.070.005				
$3d^{6}({}^{5}\mathrm{D})4s4p({}^{1}\mathrm{P}^{\circ}) \qquad x {}^{5}\mathrm{F}^{\circ} \qquad \begin{array}{c} 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$	3d"("S)4s" 4p	y 'P°	2	40 052.030	2.340	97		
$3d^{6}({}^{5}\mathrm{D})4s4p({}^{1}\mathrm{P}^{\circ}) \qquad x {}^{5}\mathrm{F}^{\circ} \qquad 5 \qquad 40 \ 257.307 \qquad 1.390 \qquad 90 \qquad 5 \ 3d^{7}({}^{4}\mathrm{F})4p \ {}^{5}\mathrm{F}^{\circ} \\ 4 \qquad 40 \ 594.429 \qquad 1.328 \qquad 82 \qquad 5 \\ 3 \qquad 40 \ 842.151 \qquad 1.254 \qquad 88 \qquad 5 \\ 2 \qquad 41 \ 018.050 \qquad 0.998 \qquad 88 \qquad 5 \\ 1 \qquad 41 \ 130.627 \qquad -0.006 \qquad 88 \qquad 5 \\ \end{array}$			3	40 201.080	1.908	98	-	9-16/57334-4 (1704) 5774
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	40 421.80	1.75?	91	1	$\partial a^{-}(\mathbf{P})^{4s4p(\mathbf{P})}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3d^{6}({}^{5}\text{D})4s4p({}^{1}\text{P}^{\circ})$	$x {}^{5}F^{\circ}$	5	40 257.307	1.390	90	5	$3d^{7}({}^{4}\mathrm{F})4p \; {}^{5}\mathrm{F}^{\circ}$
$ \begin{vmatrix} 3 \\ 2 \\ 41 & 018.050 \\ 1 \end{vmatrix} \begin{vmatrix} 41 & 130.627 \\ -0.006 \end{vmatrix} \begin{vmatrix} 88 \\ 88 \\ 88 \\ 5 \end{vmatrix} $			4	40 594.429	1.328	82	5	
$ \begin{vmatrix} 2 \\ 1 \\ 41 \\ 130.627 \\ -0.006 \\ 88 \\ 5 \end{vmatrix} $			3	40 842.151	1.254	88	5	
			2	41 018.050	0.998	88	5	
		l l	1	41 130.627	-0.006	88	5	

1000

ertan.

Fe I-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading p	ercentages
3d ⁸	³ P	2	40 871.410		85	6	3d ⁶ 4s ² ³ P2
		1	41 178.406		85	8	
		0	41 234.498		83	8	
$3d^{6}(a^{3}P)4s4p(^{3}P^{\circ})$	<i>z</i> ⁵ S°	2	40 894.986	1.985	59	36	$3d^{7}(^{4}\mathrm{P})4p\ ^{5}\mathrm{S}^{*}$
$3d^{6}(a^{3}P)4s4p(^{3}P^{\circ})$	x ⁵ P°	3	42 532.736	1.650	86	5	$3d^{7}(^{4}\mathrm{P})4p$ ⁵ P°
		2	42 859.770	1.822	76	10	$3d'(*P)4p S^{\circ}$
		1	43 079.025	2.464	85	7	3d'(P)4p'P'
$3d^{6}(^{3}\mathrm{H})4s4p(^{3}\mathrm{P}^{\circ})$	y ⁵G°	6	42 784.35	1.342	60	30	$(a {}^{3}F)({}^{3}P^{\circ}) {}^{5}G^{\circ}$
		5	42 911.908	1.203	53	33	$(a {}^{\circ}\mathbf{F})({}^{\circ}\mathbf{P}^{\circ}) {}^{\circ}\mathbf{G}^{\circ}$
		4	43 022.975	1.024	44	37	$(a ^{\circ}F)(^{\circ}P^{\circ}) ^{\circ}G^{\circ}$
		3	43 137.479	0.905	38	39	(°H)(°P°) °H°
		2	43 210.021	0.331	46	45	(a ^o F $)($ ^o P ^o $) $ ^o G ^o
3d ⁶ (⁵ D)4s (⁶ D)5s	<i>e</i> ⁷ D	5	42 815.858	1.585			
		4	43 163.327	1.655			
		3	43 434.629	1.755			
		2	43 633.534	2.009			
			43 763.980	3.002			
$3d^{6}(^{3}\text{H})4s4p(^{3}\text{P})$	<i>z</i> ⁵ H°	5	42 991.62	1.054	65	27	⁵ I°
		4	43 108.90	0.871	67	17	⁵ I°
		6	<i>43 321.08?</i>		64	30	⁵ I°
		3	4 <i>3 325.9</i> 58	0.509	48	26	⁵ G°
$3d^{6}(a^{3}P)4s4p(^{3}P^{\circ})$	w ⁵ D°	4	43 499.496	1.492	51	28	$(a {}^{3}F)({}^{3}P^{\circ}) {}^{5}D^{\circ}$
		3	43 922.664	1.481	35	28	
		2	44 183.620	1.533	44	22	
		1	44 411.151	1.315	48	19	
		0	44 458.92		45	19	
$3d^{6}(a^{3}F)4s4p(^{3}P^{*})$	⁵ D°	4	44 022.535	1.444	42	23	$(a {}^{3}P)({}^{3}P^{\circ}) {}^{5}D^{\circ}$
		3	44 166.203	1.351	39	24	
		2	44 664.068	1.378	41	22	
		1	44 760.75	1.389	40	20	
		0	44 826.88		60	25	
$3d^{6}(a^{3}F)4s4p(^{3}P^{\circ})$	⁵ F°	5	44 243.673	1.382	84	4	(³ D)(³ P°) ⁵ F°
		2	44 285.443	1.117	59	10	$(a {}^{3}\mathrm{F})({}^{3}\mathrm{P}^{\circ}) {}^{5}\mathrm{D}^{\circ}$
		1	44 378.38?	0.283	81	6	$(^{3}\text{D})(^{3}\text{P}^{\circ}) {}^{5}\text{F}^{\circ}$
		4	44 415.070	1.401	62	18	$(a^{3}F)(^{3}P^{*})^{5}D^{*}$
		3	44 551.330	1.386	45	20	$(a {}^{3}\mathbf{F})({}^{3}\mathbf{P}^{\circ}) {}^{5}\mathbf{D}^{\circ}$
$3d^{7}(^{4}\mathrm{P})4p$	y ⁵ S°	2	44 511.806	1.888	38	32	$3d^{6}(a \ ^{3}P)4s4p(^{3}P^{\circ}) \ ^{5}S^{\circ}$
$3d^{6}(^{5}D)4s(^{6}D)5s$	<i>e</i> ⁵ D	4	44 677.004	1.502			
		3	45 061.327	1.508			
		2	45 333.874	1.503			
		1	45 509.150	1.518			
		0	45 595.08				
$3d^{6}(a^{3}P)4s4p(^{3}P^{*})$		3	45 220.676	1.352	29	³ D° 29	⁵ D°
$3d^{6}(a {}^{3}P)4s4p({}^{3}P^{\bullet})$		2	45 281.831	1.200	31	³ D° 33	⁵ D°

jerre.

f^{eren} e

Fe I---Continued

Configuration	Term	J	Level	g		Leading	percentages
6			(cm^{-1})	0		c	, F
$3d^{6}(^{3}\text{H})4s4p(^{3}\text{P}^{\circ})$	y ³ G°	5	45 294.846	1.207	57	21	$3d^7(^2\mathrm{G})4p\ ^3\mathrm{G}^\circ$
-		4	45 428.397	1.053	55	20	-
		3	45 562.970	0.765	54	19	
$3d^{6}(a \ ^{3}P)4s4p(^{3}P^{\circ})$		1	45 551.763	0.556	30 ³ D	° 32	⁵ D°
$3d^{6}(a {}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ})$	x ⁵ G°	6	45 608.31?	1.336	65	30	(³ H)(³ P°) ⁵ G°
-		5	45 726.117	1.269	60	32	
		4	45 833.20	1.158	55	36	
		3	45 913.488	0.928	53	40	
		2	45 964.959	0.323	52	45	
$3d^{6}(^{3}\mathrm{H})4s4p(^{3}\mathrm{P}^{\circ})$	<i>z</i> ³ I°	7	45 978.00?	1.149	93	3	$3d^{7}(^{2}\mathrm{H})4p^{3}\mathrm{I}^{\circ}$
		6	46 026.94	1.040	91	3	
		5	46 135.88	0.833	94	4	
$3d^{7}(^{4}\mathrm{P})4p$	w ⁵ P °	3	46 137.10	1.658	45	35	$3d^{5}(^{6}S)4s^{2}4p\ ^{5}P^{\circ}$
		2	46 313.57	1.822	41	31	
		1	46 410.40	2.436	38	20	
$3d^{6}(a \ ^{3}P)4s4p(^{3}P^{\circ})$	z ³ S°	1	46 600 .814	1.888	49	14	$3d^{7}(^{2}\mathrm{P})4p\ ^{3}\mathrm{S}^{\circ}$
0.16(3D) 4.4(3D°)	., ³ D°	0	16 670 507			0.4	$9 \sqrt{7} (4 \mathbf{p}) 4 = 3 \mathbf{p}^{\circ}$
$3a^{(a'P)}4s4p('P')$	уг	0	40 012.521	1 4 4 4	31	24	5a (P)4p P
		1	40 727.000	1.444	32	00 01	
		1	40 301.020	1,000	31	21	
$2d^{7}(4D) dn$	5D°	4	16 790 826	1 341	50	17	$3d^{6}(a^{3}F)dadn(^{3}P^{\circ})^{5}D^{\circ}$
oa (1)+p	5	3	46 744 988	1.397	50	14	$\partial u (u r) + s + p(r) b$
		2	47 136 079	1.001	53	14	
		õ	47 171 482	1.610	59	20	
		1	47 177.225	1.410	55	20	
9. // (4m) 4	3 D °	0	10 000 510	1.960			9.76(311) 4.4(310%) 310%
$3d^{\circ}(P)4p$.D.	Z	40 888.210	1.260	51	15	$3a^{\circ}(a^{\circ}\mathbf{F})4s4p(^{\circ}\mathbf{P}^{\circ})^{\circ}\mathbf{D}^{\circ}$
		3	47 017.188	1.340	54	18	
		1 I	47 272.016	0.407	47	20	
$3d^{6}(a^{3}F)4s4p(^{3}P^{\circ})$	³ F°	4	46 889.143	1.344	38	17	$3d^{7}(^{2}\text{G})4p \ ^{3}\text{F}^{\circ}$
		3	47 092.707	1.159	51	25	$3d^{7}(^{2}\text{G})4p^{-3}\text{G}^{\circ}$
		2	47 197.014	0.743	41	24	$3d^{6}(^{3}\text{G})4s4p(^{3}\text{P}^{\circ})$ ⁵ G°
$3d^{6}(^{3}\mathrm{H})4s4n(^{3}\mathrm{P}^{\circ})$	z ³ H°	6	46 982.34	1.200	36	37	$3d^{7}(^{2}\text{G})4p \ ^{3}\text{H}^{\circ}$
··· · · · · · · · · · · · · · · · · ·		5	47 008.366	1.060	34	36	
		4	47 106.477	0.880	31	18	
$3d^{7}({}^{4}\mathrm{F})5\mathrm{s}$	e ⁵ F	5	47 005 508	1.421			
000 (1)00	• -	4	47 377.962	1.331			
		3	47 755.539	1.236			
		2	48 036.666	0.991			
		1	48 221.314	0.007			
3d ⁶ (³ G)/c/n(³ D ^e)	w ⁵ C*	6	47 363 260	1 306	79	11	$3d^{7}(^{2}G)4n^{3}H^{\circ}$
on (() +9+h(I)	w u	5	47 420 229	1,305	73	7	$3d^{6}(^{3}\text{G})4s4n(^{3}\text{P}^{\circ})^{5}\text{F}^{\circ}$
		4	47 590.047	1.145	73	10	$3d^{6}(a^{3}F)4s4p(^{1}P^{\circ})^{3}G^{\circ}$
		3	47 693.227	0.931	42	18	$3d^{6}(a^{3}F)4s4p(^{1}P^{\circ})^{3}G^{\circ}$
		2	47 831.150	0.472	65	16	$3d^{7}(^{2}\text{G})4p \ ^{3}\text{F}^{\circ}$
$3d^{6}(a^{3}P)4s4p(^{3}P^{\circ})$	¹ D*	2	47 419.674	1.137	36	12	$3d^{7}(^{2}\mathrm{P})4p\ ^{1}\mathrm{D}^{\circ}$
$3d^7(^2\mathrm{G})4p$	<i>z</i> ¹ G°	4	47 452.716	1.025	31	23	$3d^{6}(^{3}\mathrm{H})4s4p(^{3}\mathrm{P}^{\circ})$ ¹ G°

Fe 1—Continued

Configuration	Term	J	Level (cm ¹)	g		Leading pe	rcentages
$3d^{7}({}^{4}\mathrm{P})4n$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		47 555 598	1 884	60		373°
	, <u>,</u>	1	47 000.000	1.001		5	
$3d^{6}({}^{3}\mathrm{G})4s4p({}^{3}\mathrm{P}^{\circ})$	$v {}^{5}\mathbf{F}^{\circ}$	5	47 606.094	1.317	61	11	$({}^{3}G)({}^{3}P^{\circ}){}^{5}H^{\circ}$
		4	47 929.999	1.264	55	20	$({}^{3}G)({}^{3}P^{*}){}^{5}H^{*}$
		3	48 122.928	1.230	70	7	$\binom{3}{3}\binom{3}{2}\binom{3}{2}\binom{3}{2}$
		1	48 350.601	0.230	74 70	7	$(^{3}D)(^{3}P^{\circ}) ^{5}F^{\circ}$
$3d^{6}(a^{3}F)4s4n(^{3}P')$	$x^{3}G^{\circ}$	4	47 812.118	1.061	51	22	$({}^{3}G)({}^{3}P^{\circ}){}^{5}H^{\circ}$
ou (o 1, 10 p (1)	~ ~	3	47 834.218	0.668	39	37	$({}^{3}G)({}^{3}P^{\circ}) {}^{5}G^{\circ}$
		5	47 834.542	1.203	49	18	$({}^{3}G)({}^{3}P^{\circ}) {}^{5}H^{\circ}$
$3d^7({}^4\mathrm{F})5s$	$e^{-3}\mathbf{F}$	4	47 960.941	1.288			
		3	$48\ 531.864$	1.107			
		2	48 928.389	0.622			
	v ⁵ P °	3	47 966.59	1.646			
		2	48 163.438	1.740			
			48 289.865	2.213			
$3d^{6}({}^{3}\mathrm{G})4s4p({}^{3}\mathrm{P}^{\circ})$	⁵ H°	5	48 231.270	1.27?	67	10	$(a \ {}^{3}\mathrm{F})({}^{3}\mathrm{P}^{\circ}) \ {}^{3}\mathrm{G}^{\circ}$
		4	48 361.878	0.934	44	18	
		3	48 475.668	0.584	54	31	
$3d^7(^4\mathrm{P})4p$	$x {}^{3}P^{\circ}$	2	48 304.638	1.263	36	21	(^{2}P) $^{3}P^{\circ}$
		0	48 460.098		42	23	
		1	48 516.135	1.547	39	18	
$3d^7(^2\mathrm{G})4p$	z ¹ H°	5	48 382.597	1.018	68	10	$3d^{6}(^{3}\text{H})4s4p(^{3}\text{P}^{\circ})$ ¹ H°
$3d^{6}(^{3}\mathrm{H})4s4p(^{3}\mathrm{P}^{\circ})$	y ¹ G°	4	48 702.526	1.063	36	20	$3d^7(^2\mathrm{G})4p\ ^1\mathrm{G}^{\circ}$
$3d^7(^2\mathrm{G})4p$	$w^{3}F^{\circ}$	4	49 108.890	1.181	39	26	$-3d^{6}(a \ {}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ}) \ {}^{3}\mathrm{F}^{\circ}$
-		3	49 242.881	1.165	37	25	$3d^{6}(a^{3}\mathrm{F})4s4p(^{3}\mathrm{P}^{\circ})^{3}\mathrm{F}^{\circ}$
		2	49 433.121	0.677	50	21	$3d^{6}(a \ {}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ}) \ {}^{3}\mathrm{F}^{\circ}$
$3d^{6}(a^{3}\mathrm{F})4s4p(^{3}\mathrm{P}^{\circ})$	v ³ D°	3	49 135.022	1.211	31	19	$3d^{7}({}^{2}\mathrm{G})4p {}^{3}\mathrm{F}^{\circ}$
		2	49 242.593	0.954	52	12	$3d'({}^{2}\mathbf{P})4p {}^{3}\mathbf{D}^{3}$
			49 297.620	0.562	47	13	$3d^{\circ}(^{\circ}P)4p^{\circ}D^{\circ}$
$3d^{6}(a \ {}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ})$	${}^{1}\overline{\mathbf{F}}^{\circ}$	3	49 227.12		40	39	$3d^{7}(^{2}{ m G})4p$ $^{1}{ m F}^{\circ}$
$3d^{6}({}^{5}\mathrm{D})4s~({}^{6}\mathrm{D})5p$	$^{7}D^{\circ}$	5	49 352.335				
		4	49 558.724				
		3	49 805.249				
		2	50 008.515		[
			50 152.609				
$3d^7(^2\mathrm{G})4p$	y ³ H°	6	49 434.156	1.17?	43	43	$3d^{6}(^{3}\text{H})4s4p(^{3}\text{P}^{\circ})$ ³ H°
			49 604.415	1.075	38	26	
		4	49 120.977	0.929	42	29	
$3d^7(^2\mathrm{G})4p$	v ³ G*	5	49 460.890	1.163	38	24	$3d^{6}(a^{3}F)4s4p(^{3}P^{\circ})^{3}G^{\circ}$
		4	49 627.877	0.914	41	18	$3d^{\circ}(^{\circ}H)4s4p(^{\circ}P^{\circ})^{\circ}G^{\circ}$
		3	49 800.581	0.763	43	25	$3a^{(a^{r})}4s4p(^{P})^{r}G^{r}$
	z ¹ D°	2	49 477.10	0.92?			

Fe I-Continued

Configuration	Term	J	Level	ß		Leading p	ercentages
			(0111)				
3d ⁶ (⁵ D)4s (⁶ D)5p	⁷ F° ⋅	6	49 758.133	1			
		5	50 052.184				
		4	50 303.216				
		5	50 433.015				
		1	50 627.429				
		Ō	50 659.672				
$3d^7(^2\mathrm{P})4p$	w ³ P°	0	49 951.341		52	24	$3d^{6}(a^{3}P)4s4p(^{1}P^{\circ})^{3}P^{\circ}$
		1	50 043.205	1.389	50	11	$3d^{\circ}(^{\circ}S)4s^{2}4p^{\circ}P^{\circ}$
		Z	20 186.830	1.469	46	10	3a' (*P)4p °P°
		2	50 045.9				
$3d^{6}({}^{5}\mathrm{D})4s~({}^{5}\mathrm{D})5p$	⁷ P°	4	50 185.730				
		2	50 928.380 50 901.157				
$3d^{6}(^{5}D)4s$ ($^{6}D)4d$	$e^{7}F$	6	50 342.14	1.490	·		
		5	50 833.428	1.505			
		3	51 148.859	1.499			
		4	51 192.270	1.617			
		1 2	51 207.991 51 331.044	Z.490			
$3d^{6}({}^{5}\mathrm{D})4s~({}^{6}\mathrm{D})4d$	f^7 D	5	50 377.913	1.510			
	,	4	50 807.991	1.574			
		3	50 861.816				
		2	50 998.641	1.844			
		1	51 048.113				
$3d^{6}(^{5}D)4s$ ($^{6}D)4d$	f⁵D	4	50 423.136	1.514			
		3	50 534.391	1.615			
			50 698.624				
		0	50 880.098 50 980.98	1.662			
$3d^{6}(^{5}D)4s(^{6}D)4d$	e ⁷ P	4	50 475.287	1.585			
		3	50 611.260	1.687			
		2	50 861.321	-			
$3d^{6}(^{5}\text{D})4s(^{6}\text{D})4d$	e ⁵ G	6	50 522.946	1.351			
		5	50 703.866	1.360			
		4	50 979.578	1.238			
		3 2	51 219.017	0.953			
$3d^{7}(^{2}\mathrm{G})4p$	z ¹ F [°]	3	50 586.874	1.018	36	23	$(a^{2}D)^{1}F^{\circ}$
$2d^6(a^3F)dedn(^3P^\circ)$	r ^l C°	4	50 613 979	0.978	64	0	2. ⁷ (² H)/n ¹ C°
$\frac{1}{2} \frac{1}{2} . 7~		50 0F1 700	0.010	04	9	ore (rr). the fr	
$3d^{\circ}(^{\circ}\mathrm{D})4s(^{\circ}\mathrm{D})4d$	e G	'l	50 067 994	1 /15			
		5	51 228.555	1.379			
		4	51 334.909	1.338			
		3	51 460.516	1.244			
		2	51 539.712				
		1	51 566.82	-0.374			

jerres.

Fe I-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages		
3d ⁶ (⁵ D)4s (⁶ D)5p	u ⁵ F°	5 4 3 2 1	51 016.660 51 381.460 51 619.078 51 827.413 51 945.819			*****	
$3d^{6}(^{3}\text{G})4s4p(^{3}\text{P}^{*})$	x ³ H°	6 5 4	51 023.152 51 068.710 51 409.117	1.161 1.038 0.953	80 74 67	15 13 15	(³ H)(³ P [°]) ³ H [°] (⁸ H)(³ P [°]) ³ H [°] (<i>a</i> ³ F)(³ P [°]) ¹ G [°]
3a ⁶ (⁵ D)4s (⁶ D)5p	t ⁵D°	4 3 2 1 0	51 076.622 51 361.390 51 629.998 51 827.854 51 941.531	1.486			
3a ⁶ (⁵ D)4s (⁶ D)4d	f⁵F	5 4 3 2 1	51 103.187 51 461.672 51 604.102 51 705.007 51 754.490	1.384 1.355? 0.967			
3d ⁶ (⁵ D)4s (⁶ D)4d	e ⁵ S	2	51 148.883	1.952			
$3d^7(a^2\mathrm{D})4p$	v ³ F°	2 4 3	51 201.284 51 304.603 51 365.308	0.803 1.122 1.096	31 34 36	23 30 26	$3a^{6}({}^{3}G)4s4p({}^{3}P^{\circ}) \; {}^{3}F^{\circ}$ $3a^{7}(a\;{}^{2}D)4p\; {}^{3}F^{\circ}$ $3a^{6}({}^{3}G)4s4p({}^{3}P^{\circ})\; {}^{3}F^{\circ}$
3d ⁶ (⁵ D)4s (⁴ D)5s	e ³ D	3 2 1	51 294.222 51 739.920 52 039.886	1.345 1.125 0.801			
3d ⁶ (⁵ D)4s (⁴ D)5s	g ⁵ D	4 3 2 1 0	51 350.491 51 770.554 52 049.814 52 214.336 52 257.33	1.487 1.492 1.57?			
$3d^{\prime\prime}(^{2}\mathrm{H})4p$	u ³ G°	5 4 3	51 373.909 51 668.189 51 825.773	1.140 1.067 0.801	30 35 35	17 32 32	$3d^{6}({}^{3}\text{G})4s4p({}^{3}\text{P}^{\circ}) \; {}^{3}\text{G}^{\circ}$ $3d^{6}({}^{3}\text{G})4s4p({}^{3}\text{P}^{\circ}) \; {}^{3}\text{G}^{\circ}$ $3d^{6}({}^{3}\text{G})4s4p({}^{3}\text{P}^{\circ}) \; {}^{3}\text{G}^{\circ}$
3d ⁶ (⁵ D)4s (⁶ D)4d	e ⁷ S	3	51 570.084	1.92?			
$3d^{6}(^{3}\text{H})4s4p(^{3}\text{P}^{*})$	¹ H°	5	51 630.172	1.061	39	10	$3d^{7}(^{2}G)4p^{-1}H^{\circ}$
3d ⁶ (⁵ D)4s (⁶ D)5p	u ⁵P°	3 2 1	51 692.007 51 944.784 52 110.607	2.633			
$3d^7(^2\mathrm{P})4p$	y ¹ D°	2	51 708.309	1.025	49	18	$(a {}^{2}D) {}^{1}D^{\circ}$
$3d^{6}(a \ {}^{3}\mathrm{F})4s4p({}^{3}\mathrm{P}^{\circ})$	x ¹ D°	2	51 762.067	0.883	56	15	$3d^7(a \ ^2\mathrm{D})4p \ ^1\mathrm{D}^\circ$
3d ⁶ (⁵ D)4s (⁶ D)4d	e ⁵ P	3 1 2	51 837.24 52 019.67 52 067.460	1.664 2.432			

E-13

Fe I-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	; percentages
$3d^{7}(^{2}\mathrm{P})4p$	u ³ D°	3 2 1	51 969.079 52 296.899 52 512.445	1.306 1.156 0.700	61 53 48	19 21 22	$3d^{6}(a \ {}^{3}F)4s4p({}^{1}P^{*}) \ {}^{3}D^{\circ}$ $3d^{6}(a \ {}^{3}F)4s4p({}^{1}P^{\circ}) \ {}^{3}D^{\circ}$ $3d^{6}(a \ {}^{3}P)4s4p({}^{1}P^{\circ}) \ {}^{3}D^{\circ}$
$3d^7(^2\mathrm{P})4p$	¹ P°	1	52 180.804	0.801	47	20	(a ² D) ³ D [•]
$3d^{7}(a^{2}\mathrm{D})4p$	3D.	3 2 1	52 213.226 52 682.915 52 857.790	1.317 1.145 1.246	75 60 45	19 11 10	$3d^{6}(a \ ^{3}F)4s4p(^{1}P^{\circ}) \ ^{3}D^{\circ}$ $3d^{7}(^{2}P)4p \ ^{3}D^{\circ}$ $3d^{7}(^{2}P)4p \ ^{3}D^{\circ}$
3d ⁷ (² H)4p	w ³ H°	6 5 4	52 431.418 52 613.084 52 768.721	1.177 1.033 0.810	63 60 61	17 14 18	3d ⁶ (³ H)4s4p(¹ P°) ³ H°
3d ⁷ (² H)4p	y ³ I°	6 7 5	52 513.549 52 655.00? 52 898.971	1.019 1.147 0.830	65 88 85	22 8 9	$3d^{7}(^{2}\mathrm{H})4p~^{1}\mathrm{I^{\circ}}$ $3d^{6}(^{1}\mathrm{I})4s4p(^{3}\mathrm{P^{\circ}})~^{3}\mathrm{I^{\circ}}$ $3d^{6}(^{1}\mathrm{I})4s4p(^{3}\mathrm{P^{\circ}})~^{3}\mathrm{I^{\circ}}$
$3d^7(a \ ^2\mathrm{D})4p$	³ P°	2 1	52 916.292 53 229.942	1.495 1.266	55 41	19 13	$3d^{6}(a {}^{3}P)4s4p({}^{1}P^{\circ}) {}^{3}P^{\circ}$ $3d^{7}({}^{2}P)4p {}^{1}P^{\circ}$
3d ⁷ (⁴ F)5p	⁵ F°	4 5 3 2	52 953.625 53 084.791 53 357.508 53 749.405				
3d'(4F)4d	g ⁵ F	5 4 3 2 1	53 061.24 53 393.68 53 830.973 54 257.505 54 386.189				
3d ⁷ (⁴ F)5p	⁵ G°	6 5 4 3	53 069.350 53 586.501 53 610.414 53 852.108				
$3d^7(^2\mathrm{H})4p$	z ¹ I°	6	53 093.521	1.010	65	21	3I.
3d ⁷ (⁴ F)4d	h ⁵D	4 3 2 1	53 155.09 53 545.847 53 966.68 54 132.550	1.435			
$3d^{7}({}^{4}\mathrm{F})4d$	f ⁵ P	3 2 1	53 160.49 53 568.68 53 925.22				
3d ⁷ (⁴ F)4d	f⁵G	6 5 4 3 2	53 169.17 53 281.70 53 768.969 54 161.132 54 375.68	1.323 1.221 1.142			

, arres

, and the second

Fe I-Continued

Configuration	Тегт	J	Level (cm ⁻¹)	g		Leading pe	ercentages
$3d^7({}^4\mathbf{F})4d$	e ⁵ H	7 6 5 4 3	53 275.16? 53 352.98? 53 874.26? 54 237.16 54 491.04	$1.30? \\ 1.191 \\ 1.102 \\ 0.90? \\ 0.484$			
$3d^{6}(^{3}\text{D})4s4p(^{3}\text{P}^{\circ})$	⁵ F°	2 3 5	53 275.23 53 661.09 54 013.747	1.21? 1.356	84 84 88	11 10 8	(³ G)(³ P [*]) ⁵ F [*]
$3d^{7}({}^{4}\mathrm{F})5p$	⁵ ₯ °	4 3 2 1	53 328.827 53 733.583 54 042.516 54 224.402				
$3d^{6}({}^{3}\mathrm{G})4s4p({}^{3}\mathrm{P}^{\circ})$	<i>y</i> ¹ H °	5	53 722.40	1.03?	77	15	(³ H)(³ P°) ¹ H°
$3d^7({}^4\mathrm{F})4d$	e ³ G	5 4 3	53 739.433 54 066.53 54 379.40	1.248 1.096 0.842			
$3d^7({}^4\mathrm{F})4d$	f ³ D	3 2 1	53 747.51 54 066.758 54 449.29	1.258			
$3a^{6}({}^{3}\mathrm{G})4s4p({}^{3}\mathrm{P}^{\circ})$	x ³ F"	3	53 763.272	1.079	34	30	$3d^7(a^2\mathrm{D})4p^3\mathrm{F}^{\circ}$
3d ⁶ (⁵ D)4s (⁶ D)6s	g ⁷ D	5 4 3 2 1	53 800.841 54 124.724 54 404.765 54 611.691 54 747.581	1.586 1.65?			
$3d^{6}(^{3}\text{D})4s4p(^{3}\text{P}^{\circ})$	⁵ D*	1 3 4	53 808.353 53 891.520 54 301.334	1.418 1.476	72 74 89	14 13 6	(³ D)(³ P°) ⁵ P° (³ D)(³ P°) ⁵ P° (b ³ F)(³ P°) ⁵ D°
$3d^7({}^4\mathrm{F})5p$	³ D°	3 2	53 837.847 54 342.762				
$3d^7({}^4\mathbf{F})4d$	e ³ H	6 5 4	53 840.64? 54 266.72? 54 555.41?	1.225 1.109 0.871			
3a ⁶ (³ G)4s4p(³ P°)	t ³ G°	5 4 3	53 983.284 54 237.415 54 600.346	1.234 1.183 0.922	39 34 32	35 36 31	$3d^7(^2\mathrm{H})4p\ ^3\mathrm{G}^2$
3d ⁶ (³ D)4s4p(³ P°)	⁵ P°	3 2 1	54 004.78 54 112.218 54 271.057	1.70?	58 47 57	13 31 9	⁵ D° ⁵ D° 3d ⁷ (² P)4p ³ S°
$3d^7({}^4\mathrm{F})5p$	³ G°	4 3	54 017.573 54 357.398				
		3	54 289.09	ĺ			

Fe I---Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Le	ading	g percentages
$3d^7({}^4\mathrm{F})4d$	f ³ F	4 3 2	54 683.35 55 124.93 55 378.80	1.141 1.071 0.676			
$3d^6({}^3\mathrm{G})4s4p({}^3\mathrm{P}^\circ)$	w ¹ G°	4	54 810.841	1.001	44	22	$3d^7(^2\mathrm{G})4p$ $^1\mathrm{G}^\circ$
3d ⁷ (⁴ F)4d	e ³ P	2 1 0	54 879,68 55 376,08 55 726,50?	1.459 1.459			
$3d^6(a \ {}^1\mathrm{G})4s4p({}^3\mathrm{P}^\circ)$	³ G°	5 3 4	55 429.815 55 790.673 55 905.538	1.057 0.908	46 53 61	23 21 17	$3d^7(^2\mathrm{H})4p\ ^1\mathrm{H^\circ}$ $3d^6(^3\mathrm{G})4s4p(^3\mathrm{P^\circ})\ ^1\mathrm{F^\circ}$ $3d^6(a\ ^1\mathrm{G})4s4p(^3\mathrm{P^\circ})\ ^3\mathrm{H^\circ}$
$3d^6(a \ {}^1\mathrm{G})4s4p({}^3\mathrm{P}^\circ)$	³ H°	4 6 5	55 446.000 55 489.77 55 525.54	0.804 1.169 1.018	59 48 47	11 33 23	$\begin{array}{l} 3d^6({}^1\mathrm{I})4s4p({}^3\mathrm{P}^\circ)\;{}^3\mathrm{H}^\circ \\ 3d^6({}^1\mathrm{I})4s4p({}^3\mathrm{P}^\circ)\;{}^3\mathrm{H}^\circ \\ 3d^7({}^2\mathrm{H})4p\;{}^1\mathrm{H}^\circ \end{array}$
$3d^7(a^2D)4p$	w ¹ D°	2	55 754.2 39	0.990	62	15	(² P) ¹ D°
$3d^7(^2\mathrm{H})4p$		5	55 907.171	1.145	33 ¹ H°	31	$3d^{6}(a \ {}^{1}\text{G})4s4p({}^{3}\text{P}^{\circ}) \ {}^{3}\text{G}^{\circ}$
$3d^{6}({}^{3}\mathrm{G})4s4p({}^{3}\mathrm{P}^{*})$	¹ F°	3	56 097.829	0.857	45	25	(a ¹ G)(³ P°) ³ G°
$3d^{6}({}^{1}\mathrm{I})4s4p({}^{3}\mathrm{P}^{\circ})$	u ³ H°	6 5 4	56 333.957 56 382.662 56 423.279	1.166 1.029 0.859	44 46 50	47 26 18	$(a {}^{1}G)({}^{3}P^{\circ}) {}^{3}H^{\circ}$ $(a {}^{1}G)({}^{3}P^{\circ}) {}^{3}H^{\circ}$ $({}^{3}H)({}^{1}P^{\circ}) {}^{3}H^{\circ}$
$3d^6 4s5d$	1	5	56 428.06				
$3d^64s5d$	2	4,5	56 452.04				
$3d^{6}(a \ {}^{1}\text{G})4s4p({}^{3}\text{P}^{\circ})$	u ³ F°	4 3 2	56 592.699 56 783.317 56 858.659	1.148 1.077 0.687	47 54 47	17 20 26	$3d^7(a$ ² D) $4p$ ³ F°
3d ⁶ 4s5d	3	4	56 842.70				
$3d^7(^2\mathrm{H})4p$	v ¹ G°	4	56 9 51.286	1.053	39	23	$3d^{6}(^{3}\text{G})4s4p(^{3}\text{P}^{\circ})$ ¹ G°
$3d^{6}(^{1}\mathrm{I})4s4p(^{3}\mathrm{P}^{\circ})$	x ³ I°	7 6 5	57 027.52? 57 070.21 57 104.22	1.145 1.028 0.832	86 85 84	6 7 .7	$3d^7(^2\mathrm{H})4p$ ³ I°
$3d^{6}(^{3}\text{D})4s4p(^{3}\text{P}^{\circ})$	t ³ F°	4 3 2	57 550.000 57 641.000 57 708.747	1.235 0.698	67 60 61	15 17 16	(a ³ F)(¹ P°) ³ F°
3d ⁶ (⁵ D)4s (⁴ D)4d	i ⁵ D	4 3 2	57 697.55 57 813.940 57 974.129	1.384 1.415			
3d ⁶ (⁵ D)4s (⁶ D)7s	h ⁷ D	5	57 897.17				
3d ⁶ (⁵ D)4s (⁴ D)4d	<i>g</i> ⁵G	6 5 4 3 2	58 001.84 58 271.46? 58 520.14? 58 710.05? 58 824.77	1.40? 0.343			

arres.

, and the second

f^{area}.

.

,

	~		
HA	1	ntin	ned
			uca

Configuration	Term	J	Level (cm ⁻¹)	ß	Leading percentages		
3d ⁶ 4s5d	4	2	58 213.121				
$3d^{6}(a \ {}^{3}\mathrm{F})4s4p({}^{1}\mathrm{P}^{\circ})$	r ³ G°	5 4 3	59 926.62? 60 172.06 60 364.76?	1.190 1.030 0.780	81 65 63	8 25 17	(³ H)(¹ P°) ³ H° (<i>a</i> ¹ D)(³ P°) ³ F° (<i>a</i> ¹ D)(³ P°) ³ F°
3d ⁶ (³ H)4s4p(¹ P°)	t ³ H°	6 5 4 3	60 365.70? 60 549.18 60 757.68 60 563.61	1.163 1.040 0.805	59 49 50	25 22 22	3d ⁷ (² H)4p ³ H°
$3d^{6}(a^{3}\mathrm{F})4s4p(^{1}\mathrm{P}^{\circ})$	³F°	4 3	60 754.71? 60 806.654		32 29	33 28	(a ¹ D)(³ P [•]) ³ F [•]
Fе II (⁶ D _{9/2})	Limit		63 480				

Fe II

Z=26

Mn 1 isoelectronic sequence

Ground state: 1s²2s²2p⁶3s²3p⁶3d⁶4s⁶D_{9/2}

Ionization energy = $130563 \pm 10 \text{ cm}^{-1}$ (16.1879 $\pm 0.0012 \text{ eV}$)

The earlier work on this spectrum was mainly by Dobbie (1938), Green (1939), and unpublished material of Edlén. Johansson and Litzén (1974) found the complete set of $3d \, {}^{6}(^{5}D)4f$ levels as well as many new $3d \, {}^{6}4d$ levels.

The spectrum has now been reobserved in the regions 900–2200 Å and 4800–11 200 Å by Johansson (1978) by using a pulsed hollow cathode discharge. With the new measurements and Dobbie's list in the region 2200–4800 Å, Johansson has contributed some 250 new levels to the presently known 576 levels. He has redetermined all the level values and discarded 23 earlier levels. The accuracy of levels given to three decimal places is about ± 0.01 cm⁻¹, those with two places are about 0.1 cm⁻¹, and with one place, ± 0.5 cm⁻¹.

The $3d^7$, $3d^64s$, and $3d^54s^2$ configurations have been treated theoretically by Shadmi, Oreg, and Stein (1968), whose results confirm the assignments given by Johansson. The configurations $3d^64p$, $3d^65p$, and $3d^54s4p$ were calculated by Sinzelle and Wyart (1978, unpublished) with

configuration interaction. Since $3d^{5}4s4p$ was not recoupled in the scheme which exhibits the highest percentages, we give only its admixture with the other two configurations. Experience has shown that $3d^{5}4s4p$ should be coupled $3d^{5}(S_{1},L_{1})4s4p$ (S_{2},L_{2}) S_{3},L_{3} . A discussion of their calculations is given by Johansson, Litzén, Sinzelle, and Wyart (1980). Johansson's designations for the $3d^{5}4s4p$ levels are quoted here.

The g-values were derived by Weeks in 1949 and are taken from Moore (1952). The observations were made at M.I.T. The uncertainty in the g-value determinations varies from ± 0.002 to ± 0.009 .

The ionization energy was determined by Johansson from the $3d^{6}(^{5}D)ns^{6}D_{9/2}$ series.

References

Dobbie, J. C. (1938), Ann. Solar Phys. Obs. Cambridge 5, 1.

Green, L. C. (1939), Phys. Rev. 55, 1211.

- Johansson, S. (1978), Phys. Scr. 18, 217.
- Johansson, S., and Litzén, U. (1974), Phys. Scr. 10, 121.
- Johansson, S., Litzén, U., Sinzelle, J., and Wyart, J.-F. (1980), Phys. Scr. 21, 40.
- Moore, C. E. (1952), Atomic Energy Levels, Vol. II, Nat. Bur. Stand. Circ. 467, (reissued as NSRDS-NBS35) U.S. Govt. Printing Office, Washington, DC.
- Shadmi, Y., Oreg, J., and Stein, J. (1968), J. Opt. Soc. Am. 58, 909.

ren							
Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages		
3d ⁶ (⁵ D)4s	a ⁶ D	9/2 7/2 5/2 3/2 1/2	0.000 384.790 667.683 862.613 977.053	$1.58 \\ 1.58 \\ 1.655 \\ 1.862 \\ 3.31$			
$3d^{\eta}$	a ⁴ F	9/2 7/2 5/2 3/2	1 872.567 2 430.097 2 837.950 3 117.461	1.33 1.223 1.02 9.385			
3d ⁶ (⁵ D)4s	a ⁴ D	7/2 5/2 3/2 1/2	7 955.299 8 391.938 8 680.454 8 846.768	1.419 1.365 1.200 -0.05			
$3d^7$	a ⁴ P	5/2 3/2 1/2	13 474.411 13 673.185 13 904.824	1.609 1.737 2.67			
$3d^7$	a ² G	9/2 7/2	15 844.65 16 369.36				
$3d^{\prime}$	a ² P	$\frac{3}{2}{\frac{1}{2}}$	18 360.646 18 886.780	1.28			

Fe II

Fe II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^7$	a ² H	11/ ₂ 9/ ₂	$\begin{array}{c} 20 \ 340.30 \\ 20 \ 805.77 \end{array}$	0.92	
$3d^7$	a ² D2	⁵ ∕₂ ³ ∕₂	$\begin{array}{c} 20 \ 516.960 \\ 21 \ 308.04 \end{array}$	1.22	
$3d^6(^3\text{P2})4s$	b ⁴ P	5/2 3/2 1/2	20 830.582 21 812.055 22 409.852	$ \begin{array}{r} 1.583 \\ 1.720 \\ 2.68 \end{array} $	
$3d^6(^3\mathrm{H})4s$	a ⁴ H	¹³ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	21 251.608 21 430.359 21 581.638 21 711.917	1.20 1.119 0.951 0.661	
$3a^6({}^3\mathrm{F2})4s$	b ⁴ F	9/2 7/2 5/2 3/2	22 637.205 22 810.357 22 939.358 23 031.300	$1.307 \\ 1.210 \\ 1.019 \\ 0.398$	
$3d^5 4s^2$	a ⁶ S	⁵ /2	23 317.633	1.996	
$3d^6({}^3\mathrm{G})4s$	a ⁴ G	¹¹ / ₂ 9/ ₂ 7/ ₂ 5/ ₂	$\begin{array}{c} 25 & 428.784 \\ 25 & 805.328 \\ 25 & 981.629 \\ 26 & 055.423 \end{array}$	$1.237 \\ 1.15 \\ 0.98 \\ 0.574$	
$3d^{6}(^{3}\text{P2})4s$	b ² P	³ / ₂ 1/ ₂	25 787.598 26 932.748	$\begin{array}{c} 1.33\\ 0.67\end{array}$	
$3d^6(^3\mathrm{H})4s$	b ² H	¹¹ / ₂ 9/ ₂	$\begin{array}{c} 26 \ 170.181 \\ 26 \ 352.766 \end{array}$	$1.09 \\ 0.927$	
$3d^6({}^3\mathrm{F2})4s$	a ² F	7/2 5/2	27 314.922 27 620.412	$1.129 \\ 0.851$	
$3d^6({}^3\mathrm{G})4s$	b ² G	9/2 7/2	30 388.542 30 764.485	$\begin{array}{c} 1.10\\ 0.898\end{array}$	
$3d^6(^3\mathrm{D})4s$	b ⁴ D	³ / ₂ ¹ / ₂ ⁵ / ₂ ⁷ / ₂	31 364.440 31 368.450 31 387.948 31 483.176	1.327 1.41	
$3d^7$	b ² F	5/2 7/2	31 811.822 31 999.048	$\begin{array}{c} 0.86\\ 1.124\end{array}$	
$3d^6({}^1\mathrm{I})4s$	a ² I	¹³ / ₂ ¹¹ / ₂	32 875.646 32 909.905	$\begin{array}{c} 1.062\\ 0.92\end{array}$	
$3d^6(^1\text{G2})4s$	c ² G	9/2 7/2	33 466.463 33 501.253	$\begin{array}{c} 1.099 \\ 0.88 \end{array}$	
$3d^6(^3\mathrm{D})4s$	b ² D	³ / ₂ ⁵ / ₂	36 126.387 36 252.918	$0.799 \\ 1.179$	
$3d^{6}(^{1}\mathrm{S2})4s$	a ² S	1/2	37 227.326	2.06	

Fe II-Continued

Configuration	Term	J	Level (cm ⁻¹)	ß		Leading percentages
3d ⁶ (¹ D2)4s	c ² D	5/2 3/2	38 164.194 38 214.507	1.176 0.79		
3d ⁶ (⁵ D)4p	z ⁶ D°	$\begin{array}{c} 9'_{/2} \\ 7'_{/2} \\ 5'_{/2} \\ 3'_{/2} \\ 1'_{/2} \end{array}$	38 458.981 38 660.043 38 858.958 39 013.206 39 109.307	$1.542 \\ 1.584 \\ 1.653 \\ 1.86 \\ 3.35$	99 98 98 99 99	
$3d^6({}^5\mathrm{D})4p$	z ⁶ F ⁴⁰	$\begin{array}{c} 11_{/_{2}} \\ 9_{/_{2}} \\ 7_{/_{2}} \\ 5_{/_{2}} \\ 5_{/_{2}} \\ 3_{/_{2}} \\ 1_{/_{2}} \end{array}$	41 968.046 42 114.818 42 237.033 42 334.822 42 401.302 42 439.822	1.43 1.399 1.304 1.04 -0.647	99 96 96 97 98 98	
3d ⁶ (⁵ D)4p	<i>z</i> ⁶ P°	7/2 5/2 8/2	42 658.224 43 238.586 43 620.957	1.702 1.869 2.398	93 95 96	$3 3d^54s4p \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $
$3d^6({}^5\mathrm{D})4p$	z ⁴ F°	9/2 7/2 5/2 3/2	44 232.512 44 753.799 45 079.879 45 289.801	$ 1.32 \\ 1.29 \\ 1.069 \\ 0.445 $	96 91 93 96	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$3d^6(^5\mathrm{D})4p$	z ⁴ D°	$\frac{7}{2}$ $\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	44 446.878 44 784.761 45 044.168 45 206.450	1.40 1.35 1.15 -0.021	90 91 93 95	5 ⁴ F° 4 ⁴ F° 2 ⁴ F°
$3d^6({}^1\mathrm{F})4s$	c $^{2}\mathrm{F}$	7/2 5/2	44 915.046 44 929.55			
$3d^6({}^5\mathrm{D})4p$	z ⁴ P°	5/2 3/2 1/2	46 967.444 47 389.779 47 626.076	1.592 1.717 2.70	96 96 96	2 3d ⁵ 4s4p 2 2
3d ⁷	d ² D1	³ /2 ⁵ /2	47 674.721 48 039.090			
$3d^{6}(^{3}\text{P1})4s$	c ⁴ P	1/2 8/2 5/2	49 100.976 49 506.934 50 212.826			
3d ⁶ (³ F1)4s	c ⁴ F	³ /2 5/2 9/2 7/2	50 075.910 50 142.786 50 157.452 50 187.813			
$3\dot{d}^{5}({}^{6}\mathrm{S})4s4p({}^{3}\mathrm{P}^{\circ})$	z ⁸ P°	5/2 7/2 9/2	52 299.39 52 582.51 52 965.82			
3d ⁶ (³ P1)4s	c ² P	1/2 3/2	54 063.459 54 902.315			
3a ⁵ 4s ²	<i>b</i> *G	¹¹ / ₂ ⁹ / ₂ ⁵ / ₂ ⁷ / ₂	54 232.195 54 273.641 54 275.637 54 283.220			

gerran.

1500

E~20

Fe II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	L	eading	percentages
3d ⁶ (³ F1)4s	d ² F	⁵ /2 7/2	54 870.528 54 904.222				
$3d^5 4s^2$	d ⁴ P	5/2 3/2 1/2	57 411.065 57 493.321 57 578.484				
3d ⁶ (¹ G1)4s	d ² G	9/2 7/2	58 631.531 58 666.258				
$3d^{6}(^{3}\text{P2})4p$	<i>z</i> ⁴ S°	³ /2	59 663.456	1.89	46	19	(³ P1) ⁴ S [•]
$3d^5 4s^2$	c ⁴ D	7/2 1/2 3/2 5/2	60 270.339 60 384.370 60 441.033 60 445.275				
3d ⁶ (³ P2)4p	y ⁴P°	5/2 1/2 3/2	60 402.342 61 035.287 61 332.764	1.58 2.613 1.74	46 52 28	36 42 22	(³ P1) ⁴ P°
3d ⁶ (³ H)4p	z ⁴ G°	¹¹ / ₂ 9/ ₂ 7/ ₂ 5/ ₂	60 625.449 60 807.230 60 956.781 61 041.748	1.24 1.155 0.969 0.799	66 53 50 48	24 29 33 35	(³ F2) ⁴ G°
3d ⁶ (³ H)4p	z ⁴H°	¹³ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	60 837.569 60 887.598 60 989.444 61 156.835	0.720	47 44 45 66	42 44 37 12	(³ H) ⁴ I° (³ H) ⁴ I° (³ H) ⁴ I° (³ H) ² G°
3d ⁶ (³ P2)4p	z ² D°	⁵ / ₂ ³ / ₂	61 093.413 62 125.600	1.01 1.019	42 35	27 23	(³ P1) ² D°
3d ⁶ (³ H)4p	z ⁴ I°	¹⁵ / ₂ 9/ ₂ 13/ ₂ 11/ ₂	61 347.614 61 512.634 61 527.616 61 587.214		100 56 49 51	26 43 42	(³ H) ⁴ H°
3d ⁶ (³ P2)4p	y ⁴D°	7/2 5/2 1/2 3/2	61 726.077 62 689.880 62 829.075 62 962.205	1.411 1.349 1.14	56 49 60 45	33 27 32 25	(³ P1) ⁴ D*
$3d^{5}(^{6}\mathrm{S})4s4p(^{3}\mathrm{P}^{\circ})$	y ⁶ P°	3/2 5/2 7/	61 974.933 62 049.025 62 171 615	1 69			
$3d^{6}(^{3}\text{F2})4p$		⁷ / ₂	62 065.521	1.198	31 ⁴ F°	13	(³ H) ² G°
$3d^6(^3\mathrm{H})4p$	z ² G°	9/2 7/2	62 083.108 62 322.431	1.097	61 38	15 23	(³ G) ² G° (³ F2) ⁴ F°
3d ⁶ (³ F2)4p	y ⁴ F°	⁵ /2 9/2 3/2	62 151.561 62 158.110 62 244.520	$1.025 \\ 1.33 \\ 0.43$	61 63 66	19 21 21	(³ F1) ⁴ F°
$3d^6(^3\mathrm{H})4p$	z ² I°	¹³ / ₂ ¹¹ / ₂	62 293.164 62 662.244	1.069 0.910	90 93	8 4	(³ H) ⁴ I°

Fe II---Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$3d^{6}({}^{3}\mathrm{F2})4p$	x ⁴ D°	7/0	62 945 038	1.385	60	14 (³ F1) ⁴ D°
		5/2	63 272 976	1 351	67	15
		3/2	63 465 109	1.001	71	16
		1/2	63 559.488	0.013	71	15
$3d^{6}({}^{3}\mathrm{F2})4n$	v ⁴ G°	11/2	63 876 317	1 94	50	22 (³ H) 4C.
	, , , ,	9/2	63 948 790	1 15	1	30
	1	1/2	64 040 886	0.975	20	25
		5/2	64 087.418	0.617	26	29
$3d^6({}^3\mathrm{F2})4n$	z ² H°	7/.	64 986 345	1 135	20	12 (³ 12)1)21200
00 (x 2) xp		5/2 5/2	64 425.408	0.82	30	13
$3d^{6}(^{3}P2)4n$	τ ² ₽°	1/2	64 806 487		45	31 (³ D1) ² D°
οω (x ω) x ρ	~ 1	3/2	64 834.073	1.329	45 54	31 (FI) F 34
2. a (8 F 2) 4 n	w ² C*	97	61 891 019	1 101		10 (3E1) 2C.
за (F2)4p	уG	7/2	65 109.679	0.896	62 67	16 (°F1) °G*
0.16/377.4	27.70	11.	05 000 505	1		9- 4-
$3d^{-}(^{-}\mathrm{H})4p$	z H	9/.	65 363.595 65 556 980	1.066	39	37 (°G) °G° 20 (³ G) ² H°
		/2	00 000.200	0.915	Ð1	20 (G) H
$3d^6(^3\mathrm{G})4p$	x ⁴G°	¹¹ / ₂	65 580.041		53	20 (³ G) ² H°
		%₂	65 696.038		48	27 (³ G) ⁴ F°
		7/2	65 931.334	1.00	76	10 $({}^{3}G) {}^{4}F^{\circ}$
		5√2	66 078.269	0.62	83	6 (³ F2) ⁴ G*
$3d^6(^3\mathrm{G})4p$	<i>x</i> ⁴ F°	3/2	66 012.750		53	33 (³ G) ⁴ G•
		1/2	66 377.283	1.21	71	11 (³ G) ⁴ G*
		5/2	66 522.304	1.02	67	9 (³ F2) ² D•
		³⁄₂	66 612.656		67	12 $({}^{3}F2) {}^{2}D^{\circ}$
$3d^6(^3\text{P2})4p$	$z {}^{2}S^{\circ}$	¹ / ₂	66 248.66		58	28 (³ P1) ² S°
$3d^6(^3\mathrm{G})4p$	y ⁴H°	13/2	66 411.686		89	9 (³ H) ⁴ H°
		11/2	66 463.528	1.13	79	8
		⁹ / ₂	66 589.008	0.959	83	9
		⁷ / ₂	66 672.334	0.69	85	11
$3d^{6}({}^{3}\mathrm{F2})4p$	y ² D°	5/2	67 000.517	1.16	64	10 (³ G) ⁴ F°
		3/2	67 273.826	0.719	59	14
$3d^{6}(^{3}\text{G})4p$	y ² H°	11/2	67 516.332	1.07	55	32 (³ H) ² H°
· · · •		9/2	68 000.788	0.907	59	31
$3d^{5}(^{6}S)4s4p(^{3}P^{\circ})$	x ⁴ P°	5/0	69 102 38			
		3/2	69 302.09			
		1/2	69 426.98			
9.26(30)4-	2170	7,	60 606 550	1 10		10 (3TR) 27%
3a"("G)4p	уг	5/2 5/2	69 650.484	1.13 0.857	62 63	$12 (^{3}F^{2})^{-}F^{-}$ $12 (^{3}D)^{2}F^{\circ}$
2. the (3 C) 1-	200	97	70 911 001	1 1 1		17 (811) 200
əa (G)4p	x G	7/2	70 514.004 70 523.706	1.11 0.87	78	17 (*H)*G* 14
o. 6/15) /	9	19,				
$3d^{\circ}(1)4p$	<i>z "</i> K°	1%2 15/	70 986.677	1.07	99	
		-72	71 432.680	1.05	100	

Fe II---Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	percentages	
$3d^6(^3\mathrm{D})4p$	⁴ P°	5/2 3/2 1/2	71 964.710 72 043.026 72 429.711	1.66	86 54 51	5 23 35	⁴ D° ⁴ F° ⁴ D°	
$3d^6({}^1\mathrm{G2})4p$	<i>x</i> ² H°	⁹ / ₂ ¹¹ / ₂	72 130.39 72 261.729	0.91 1.08	51 42	22 35	(¹ G1) ² H° (¹ I) ² H°	
$3a^{6}(^{3}\mathrm{D})4p$	w ⁴ F°	$3_{/2}$ $5_{/2}$ $7_{/2}$ $9_{/2}$	72 168.998 72 238.513 72 352.024 72 650.658		58 77 67 86	16 11 9 9	(³ D) ⁴ P [•] (³ G) ⁴ F [•] (³ G) ⁴ F [•] (³ G) ⁴ F [•]	
$3d^6(^3\mathrm{D})4p$		¹ / ₂	72 212.978		41 ⁴ F°	38	(³ D) ⁴ D°	
$3d^6(^3\mathrm{D})4p$	w ⁴ D°	3/2 5/2 7/2	72 524.566 72 619.490 72 651.876		63 79 49	20 5 16	⁴₽° ⁴₽° ⁴₽°	
$3d^6(^3\mathrm{D})4p$		7/2	73 016.147		31 ⁴ D°	20	(¹ G2) ² F°	
$3d^6(^3\mathrm{D})4p$		5/2	73 054.881		32 ² F°	30	(¹ G2) ² F°	
$3d^6(^1\text{G2})4p$	<i>w</i> ² G*	9/2 7/2	73 091.590 73 143.288	0.91	58 55	26 25	$(^{1}\text{G1})$ $^{2}\text{G}^{\circ}$	
$3d^{6}(^{3}\mathrm{D})4p$	y ² P°	$^{1/_{2}}_{^{3/_{2}}}$	73 187.280 73 189.11		66 70	15 10	(³ D) ⁴ D°	
$3d^5 4s^2$	4F	9/2 5/2 7/2 3/2	73 393.745 73 395.93 73 492.215 73 637.34					
$3d^6(^1I)4p$	w ² H°	¹¹ / ₂ 9/ ₂	73 603.50 73 751.282		44 68	21 8	(¹ G2) ² H°	
$3d^6(^1\mathrm{I})4p$	y ² I°	¹³ / ₂ ¹¹ / ₂	73 966.832 73 969.767		98 89	7	(¹ I) ² H°	
$3d^{6}(^{3}\mathrm{D})4p$	x ² D°	³ / ₂ ⁵ / ₂	74 498.057 74 606.841		91 91	3 2	(¹ F) ² D °	
$3d^6(^3\mathrm{D})4p$	w ² F°	7/2 5/2	75 600.931 75 915.215	$\begin{array}{c} 1.125\\ 0.844\end{array}$	57 50	16 22	$(^{1}G2)$ $^{2}F^{\circ}$	
$3d^6(^1\mathrm{S2})4p$	x ² P°	³ / ₂ ¹ / ₂	76 129.446 76 577.482	1.34	37 41	31 21	(¹ D2) ² P° (³ D) ² P ³	
$3d^5 4s^2$	2 H	%2	77 230.90					
$3d^6(^1\text{D2})4p$	v ² F°	5/2 7/2 1/2	77 742.730 78 137.364	1.13	60 65	16 18	(¹ D1) ² F°	
$3a^6({}^5\mathrm{D})5s$	e ⁶ D	9/2 7/2 5/2 3/2 1/2	77 861.625 78 237.685 78 525.407 78 725.790 78 843.992					

,

, eren

ENERGY LEVELS OF IRON

Fe II---Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages	
$3d^5 4s^2$	² G	7/2 9/2	78 185.03 78 577.28				
$3d^6(^1\text{D2})4p$	w ² D°	³ / ₂ ⁵ / ₂	78 487.153 78 690.846		68 64	15 (¹ D 1) ² D ° 15	
$3d^6(^1\text{D2})4p$	$w {}^{2}\mathbf{P}^{\circ}$	1/2 3/2	78 841.96 79 243.60		48 36	20 (¹ S2) ² P° 25	
$3d^{5}(^{6}S)4s4p(^{1}P^{\circ})$	x ⁶ P°	³ / ₂ ⁵ / ₂ 7/ ₂	79 246.17 79 285.11 79 331.50				
3d ⁶ (⁵ D)5s	e ⁴ D	7/2 5/2 3/2 1/2	79 439.467 79 885.493 80 177.975 80 346.016				
$3d^5 4s^2$	² F2	5/2 7/2	81 639.26 81 734.75				
3d ⁶ (⁵ D)4d	e ⁶ F	$11/_{2} \\ 9/_{2} \\ 7/_{2} \\ 5/_{2} \\ 3/_{2} \\ 1/_{2} \\ $	82 853.658 82 978.677 83 136.487 83 308.194 83 459.67 83 558.54				
$3d^6({}^1\mathrm{F})4p$	v ² G°	7/2 9/2	83 305.251 83 871.184		92 94		
3d ⁶ (⁵ D)4d	6D	7/2 9/2 5/2 3/2 1/2	83 713.536 83 726.364 83 812.316 83 990.063 84 131.563				
$3d^6({}^1\mathrm{F})4p$	v ² D°	5/2 3/2	83 868.45 84 359.80		80 85	6 (¹ D2) ² D° 4	
$3d^6({}^5\mathrm{D})4d$	e ⁶ G	13/211/29/27/25/23/2	84 035.14 84 296.83 84 527.778 84 710.685 84 844.834 84 938.18	1.33			
3d ⁶ (⁵ D)4d	⁶ P	7/2 5/2 3/2	84 266.556 84 326.912 84 424.37				
3d ⁶ (⁵ D)4d	f⁴D	7/2 5/2 3/2 1/2	84 685.198 84 870.863 85 048.602 85 172.809				
3d ⁶ (⁵ D)4d	e ⁴G	¹¹ / ₂ 9/ ₂ 7/ ₂ 5/ ₂	84 863.351 85 184.734 85 462.862 85 679.698	1.27			

Fe II-Continued

Configuration	Term	J	Level (cm^{-1})	g		Leading p	percentages	
$3d^6(^5\mathrm{D})4d$	⁶ S	⁵ /2	85 495.304					
$3d^{6}(^{5}\mathrm{D})4d$	⁴ S	3/2	85 728.806		i			
$3d^6(^5\mathrm{D})4d$	e ⁴ F	9/2 7/2 5/2 3/2	86 124.301 86 416.333 86 599.738 86 710.837	1.29				
3d ⁶ (³ P1)4p	v ⁴ D°	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	86 388.82 86 543.974 86 767.577 86 929.649		35 33 30 25	36 38 40 45	(³ F1) ⁴ D°	
$3d^6({}^1\mathrm{F})4p$	$u^{2}\mathbf{F}^{\circ}$	7/2 5/2	86 482.75 86 547.49		88 90	2 2	(¹ G2) ² F°	
3d ⁵ (⁴ G)4s4p(³ P°)	y ⁶ F°	$ \begin{array}{c} 11/2 \\ 9/2 \\ 7/2 \\ 5/2 \\ 3/2 \\ 1/2 \\ \end{array} $	87 340.983 87 471.765 87 537.652 87 572.431 87 602.25 87 898.12					
3 <i>d</i> ⁵ (⁴ P)4s4p(³ P°)	⁶ D∙	1/2 3/2 5/2 7/2 9/2	87 635.92 87 964.65 88 059.38 88 209.45 88 614.52					
$3d^{6}({}^{5}\mathrm{D})4d$	⁴P	5/2 3/2 1/2	87 985.628 88 157.116 88 189.030					
3d ⁶ (⁵ D)5p	⁶ D∘	9/2 7/2 5/2 3/2 1/2	88 723.400 88 853.533 89 119.457 89 331.195 89 471.365		90 53 71 84 97	8 19 12 6 2	$3d^54s4p$ (5D) $^6P^{\circ}$ (5D) $^6P^{\circ}$ (5D) $^6P^{\circ}$ $3d^54s4p$	
$3d^6(^3\mathrm{P1})4p$	$^{2}S^{\circ}$	¹ / ₂	89 003.46		61	32	$(^3P2)\ ^2S^{\bullet}$	
$3d^6(^5\mathrm{D})5p$		7/ ₂	89 128.561		40 ⁶ D°	22	6P.	
$3d^{5}(^{4}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$	⁶ P°	⁵ /2 ³ /2	89 444.458 89 625.940					
$3d^6({}^3\mathrm{F1})4p$	⁴G°	⁵ / ₂ 7/ ₂ 9/ ₂ ¹¹ / ₂	89 727.342 89 890.373 90 042.779 90 211.70		77 76 70 75	17 17 16 18	(³ F2) ⁴ G°	
3d ⁶ (⁵ D)5p	⁶ F°	$ \begin{array}{c} 11/2 \\ 9/2 \\ 7/2 \\ 5/2 \\ 3/2 \\ 1/2 \\ \end{array} $	89 924.175 90 067.347 90 300.625 90 487.810 90 593.497 90 648.217		87 39 59 77 82 83	12 45 26 9 13 15	$3d^{5}4s4p$ $({}^{5}D) {}^{4}F^{\circ}$ $({}^{5}D) {}^{4}F^{\circ}$ $({}^{5}D) {}^{4}F^{\circ}$ $3d^{5}4s4p$ $3d^{5}4s4p$	

Fe II---Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leadi	ng percentages
3d ⁶ (⁵ D)5p	⁴F°	9/2 7/2 5/2 8/2	90 386.528 90 780.621 91 070.547 91 208.887		48 6° 67 64	44 18 13 28	(⁵ D) ⁶ F° (⁵ D) ⁴ D° (⁵ D) ⁴ D° (⁵ D) ⁴ D°
$3d^6({}^5\mathrm{D})5p$	⁴ D°	7/2 5/2 8/2 1/2	90 397.868 90 638.822 91 048.256 91 199.746		77 69 65 97	12 19 30 1	⁶ ₽° ⁴₽°
$3d^{6}(^{3}\text{P1})4p$	⁴ S°	³/2	90 629.902		61	27	(³ P2) ⁴ S°
3d ⁶ (³ P1)4p	4p°	1/2 3/2 5/2	90 839.486 90 898.873 92 274.12		52 28 45	37 20 31	(³ P2) ⁴ P°
$3d^6({}^5\mathrm{D})5p$	4P°	5/2 3/2 1/2	90 901.124 92 225.538 92 314.758		79 91 95	16 5 1	⁴ D°
$3d^{6}({}^{5}\mathrm{D})5p$	w ⁶ P°	7/2 5/2	91 167.937 91 575.139		53 55	39 38	$3d^54s4p$
$3d^6(^3\text{P1})4p$		∛₂	91 843.470		28 ⁴ P	° 24	3d ⁶ (⁵ D)5p ⁶ P°
3d ⁵ (⁴ D)4s4p(³ P°)	°F°	1/2 3/2 5/2 7/2 9/2 11/2	91 850,722 91 915,95 92 018,729 92 154,165 92 300,277 92 432,136				
3d ⁵ (⁴ G)4s4p(³ P°)	x ⁴ H°	$\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$ $\frac{13}{2}$	92 089.26 92 116.78 92 166.60 92 250.21				
$3d^6(^3\text{F1})4p$	u ² G°	9/2 7/2	92 171.716 92 602.703		50 62	13 15	$({}^{3}F2) {}^{2}G^{*}$
$3d^6({}^3\mathrm{F1})4p$	u ² D°	³ / ₂ ⁵ / ₂	92 216.32 92 695.374		46 50	20 17	(³ P1) ² D°
3d ⁵ (⁴ G)4s4p(³ P°)	v ⁴ F°	7/2 5/2 3/2 9/2	92 282.46 92 329.89 92 358.61 92 426.98				
$3d^6(^3\mathrm{F1})4p$	⁴D°	1/2 3/2 5/2 7/2	92 453.46 92 647.51 92 899.20 93 129.90		42 36 26 18	25 25 23 22	(³ P1) ⁴ D°
$3d^6(^3\mathrm{F1})4p$	u ⁴ F°	³ / ₂ ⁵ / ₂ ⁹ / ₂ ⁷ / ₂	93 328.48 93 395.36 93 484.58 93 487.65		46 45 54 35	17 17 21 13	(³ F2) ⁴ F°

1 mar

<u>____</u>

and the second

C. CORLISS AND J. SUGAR

Fe II-Continued

.....

Configuration	Term	J	Level (cm ⁻¹)	g	I	Leading percentages	
$3d^5({}^4\mathrm{D})4s4p({}^3\mathrm{P^{\circ}})$	eД.	$5'_{2}$ $3'_{2}$ $7'_{2}$ $1'_{2}$ $9'_{2}$	93 830.979 93 840.34 93 987.457 94 031.378				
3d ⁵ (⁴ G)4s4p(³ P°)	w ⁴ G°	7_{2} 7_{2} 7_{2} 9_{2} 11_{2}	94 057.773 93 988.17 94 073.24 94 148.51 94 189.88				
$3d^{5}(^{4}P)4s4p(^{3}P^{\circ})$	4P°	5/2 3/2 1/2	94 211.739 94 739.17 94 880.74		37		
$3d^{5}(^{4}\mathrm{D})4s4p(^{3}\mathrm{F}^{*})$	6 P °	5/2 7/2	94 685.09 94 763.219		43 56		
$3d^{6}(^{3}\mathrm{P1})4p$	²D°	⁵ /2	94 700.66		54	27 (³ P2) ² D°	
$3d^{6}(^{3}\mathrm{P1})4p$	$^{2}P^{\circ}$	³ /2	95 039.2			26 (³ P2) ² P°	
$3d^6({}^3\mathrm{F1})4p$	² F°	⁵ /2 7/2	95 046.10 95 079.64			20 3d ⁵ 4s4p 20	
3d ⁵ (⁴ P)4s4p(³ P°)	⁴ D°	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	95 767.70 95 858.05 95 995.69 96 217.42				
$3d^5({}^4\mathrm{G})4s4p({}^3\mathrm{P}^\circ)$	v ² H°	¹¹ / ₂ 9/ ₂	96 062.06 96 239.20				
$3d^5({}^4\mathrm{G})4s4p({}^3\mathrm{P^{\circ}})$	t ² F°	5/2 7/2 7/2	96 279.49 96 356.96		62 63		
$3d^{5}(^{4}\mathrm{P})4s4p(^{3}\mathrm{P}^{\circ})$	${}^{2}\mathbf{P}^{\circ}$	³ / ₂	97 326.27				
$3d^6({}^1\mathrm{G1})4p$	² H°	⁹ / ₂ 11/ ₂	97 851.35 98 278.77			33 (¹ G2) ² H° 34	
3d ⁶ (³ H)5s	e ⁴ H	¹³ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	98 130.131 98 294.401 98 445.400 98 568.912				
$3d^5({}^4\mathrm{D})4s4p({}^3\mathrm{P^*})$	⁴ F°	3/2 5/2 7/2 9/2	98 196.00 98 354.66 98 535.85 98 596.65				
$3d^{5}({}^{4}\mathrm{P})4s4p({}^{3}\mathrm{F}^{\circ})$	⁴ S [°]	³ /2	98 338.28				
$3d^5({}^4\mathrm{D})4s4p({}^3\mathrm{P}^{\circ})$	⁴ D°	7/2 5/2 3/2 1/2	98 391.33 98 505.10 98 770.14 99 007.70		43		
$3d^6({}^1\mathrm{G1})4p$	² F*	⁷ / ₂	98 898.71			22 (¹ G2) ² F°	
Fe 11---Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^6(^3\mathrm{H})5s$	e ² H	11/2 9/2	99 093.452 99 332.102		
$3d^{6}({}^{3}\mathrm{F2})5s$	f ⁴ F	9/2 7/2 5/2 3/2	99 573.225 99 688.337 99 824.045 99 918.569		
$3d^{5}({}^{4}\mathrm{G})4s4p({}^{3}\mathrm{P}^{\circ})$	² G°	7/2 9/2	99 635.52 99 653.22		
$3d^6({}^1\mathrm{G1})4p$	²G°	9/2 7/2	99 757.12 99 808.40		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$3d^{5}(^{4}\text{P})4s4p(^{3}\text{P}^{*})$	²D.	⁵ /2	100 400.36		
$3d^{6}({}^{3}\mathrm{F2})5s$	e ² F	7/2 5/2	100 492.02 100 749.81		
$3d^{5}(^{4}\text{D})4s4p(^{3}\text{P}^{\circ})$	⁴ P°	1/2 3/2	101 402.38 101 573.90		
3d ⁶ (⁵ D)6s	۴D	9/2 7/2 5/2 8/2 1/2	$\begin{array}{c} 101\ 698.489\\ 102\ 030.912\\ 102\ 334.112\\ 102\ 543.648\\ 102\ 666.694 \end{array}$		
$3d^{5}(^{2}\mathrm{I})4s4p(^{3}\mathrm{P}^{\circ})$	4K°	11/2 13/2 15/2	102 340.3 102 489.9 102 851.2?		
3d ⁶ (⁵ D)6s	⁴ D	7/2 5/2 3/2 1/2	102 394.718 102 802.312 103 118.400 103 265.694		
$3d^{5}(^{4}\text{D})4s4p(^{3}\text{P}^{\circ})$	$^{2}D^{\circ}$	5/2 3/2	102 449.10 102 503.81		
$3d^6({}^3\mathrm{G})5s$	f⁴G	¹¹ / ₂ ⁹ / ₂	102 584.963 102 842.119		
$3d^6({}^5\mathrm{D}_4)4f$	² [5]°	¹¹ / ₂ ⁹ / ₂	102 831.32 102 851.36		
$3d^{6}({}^{5}\mathrm{D}_{4})4f$	²[6]°	¹³ / ₂ ¹¹ / ₂	102 840.25 102 893.38		
$3d^{6}({}^{5}\mathrm{D}_{4})4f$	² [4]°	9/2 7/2	102 882.37 102 887.12		
$3d^{6}({}^{5}\mathrm{D}_{4})4f$	²[3]°	7/2 5/2	102 942.20 102 952.12		
3d ⁵ (² I)4s4p(³ P°)	4 I °	9/2 11/2 13/2 15/2	102 951.5 102 980.3 103 120.9 103 232.1		

1 and

press.

C. CORLISS AND J. SUGAR

Fe II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^6({}^5\mathrm{D}_4)4f$	² [7]°	¹³ / ₂ 15/ ₂	103 019.67 103 040.32		
$3d^{6}({}^{5}\mathrm{D}_{4})4f$	²[2]°	5/2 3/2	103 024.29 103 034.76		1
3d ⁵ (⁶ S)4s (⁷ S)5s	⁸ S	7/ ₂	103 094.73		
$3d^{6}({}^{5}\mathrm{D}_{4})4f$	²[1]°	³ /2 1/2	103 110.79 103 125.65		
$3d^{5}(^{4}\mathrm{D})4s4p(^{3}\mathrm{P}^{\circ})$	²F°	7/2 5/2	103 183.7 103 334.1		
$3d^{6}({}^{5}\mathrm{D}_{3})4f$	²[5]°	¹¹ / ₂ 9/ ₂	103 325.95 103 352.68		
$3d^{6}(^{5}D_{3})4f$	² [4]°	9/2 7/2	103 326.41 103 340.64		
3d ⁶ (⁵ D ₃)4f	²[3]*	⁵ /2 7/2	103 364.84 103 385.73		
$3d^{6}(^{5}D_{3})4f$	²[2]°	³ /2 ⁵ /2	103 391.29 103 406.25		
3d ⁶ (⁵ D ₃)4f	²[1]°	³ / ₂ 1/ ₂	103 417. 91 103 437.28		
$3d^{6}({}^{5}\mathrm{D}_{3})4f$	²[0]°	¹ / ₂	103 418.08		
$3d^{6}({}^{5}\mathrm{D}_{3})4f$	²[6]°	¹¹ / ₂ 13/ ₂	103 420.16 103 421.18		
$3d^6(^3\mathrm{H})4d$	4H	¹³ / ₂ ¹¹ / ₂	103 600.44 103 751.66		
3d ⁶ (³ G)5s	²G	9/2 7/2	103 608.909 103 983.51		
$3d^{6}({}^{5}\mathrm{D}_{2})4f$	²[2]°	³ / ₂ ⁵ / ₂	103 645.22 103 660.98		
$3d^{6}({}^{5}\mathrm{D}_{2})4f$	²[1]°	³ / ₂ ¹ / ₂	103 668.69 103 676.22		
$3d^{6}(^{5}D_{2})4f$	²[3]°	7/2 5/2	103 676.78 103 698.44		
$3d^{6}({}^{5}\mathrm{D}_{2})4f$	²[4]°	9/2 7/2	103 680.64 103 711.57		
$3d^{6}({}^{5}\mathrm{D}_{2})4f$	²[5]°	¹¹ / ₂ 9/ ₂	103 691.05 103 701.72		
$3d^{6}({}^{5}\mathrm{D}_{1})4f$	²[2]°	⁵ /2 ³ /2	103 857.74 103 869.02		

e terres

1-

per la

Fe II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^6({}^5\mathrm{D}_1)4f$	² [4]•	9/2 7/2	103 873.99 103 882.68		
$3d^6(^3\mathrm{H})4d$	4 I	¹⁵ / ₂ 13/ ₂ 11/ ₂	103 878.34 104 064.67 104 174.27		
3d ⁶ (⁵ D)5d	۴F	¹¹ / ₂ ⁹ / ₂ ⁷ / ₂ ⁵ / ₂	103 936.60 103 950.59 104 380.94 104 426.46		
$3d^{5}({}^{4}\mathrm{P})4s4p({}^{3}\mathrm{P}^{\circ})$	$^{2}S^{\circ}$	۱ _{/2}	103 967.49		
$3d^6({}^5\mathrm{D}_1)4f$	² [3]*	7/2 5/2	103 969.76 103 987.93		
$3d^6({}^5\mathrm{D})5d$	6P	7/2 5/2 3/2	104 000.81 104 120.27 104 630.43		
$3d^6(^5D_0)4f$	²[3]°	7/2 5/2	104 022.89 104 046.35		
$3d^{6}(^{3}\mathrm{H})4d$	²K	¹⁵ / ₂ ¹³ / ₂	104 119.71 104 315.37		
$3d^{6}(^{3}\mathrm{H})4d$	⁴ F	³ /2	104 189.38		
$3d^6({}^5\mathrm{D})5d$	۴G	13/2 11/2 9/2 7/2 5/2 3/2	104 366.82 104 593.27 104 868.50 105 065.63 105 205.79 105 288.53		
3d ⁶ (⁵ D)5d	⁶ D	9/2 3/2 7/2 1/2 5/2	104 411.69 104 588.71 104 705.42 104 757.11 104 828.16		
		⁵ /2	104 569.23		
3d ⁵ (² I)4s4p(³ P°)	4H°	¹³ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	104 659.26 104 816.80 104 937.8 105 028.6		
		⁵ / ₂	104 761.10		
		³ / ₂	104 840.02		
$3d^6({}^5\mathrm{D})5d$	⁴G	$ \begin{array}{c} 11/2 \\ 9/2 \\ 7/2 \\ 7/2 \\ 5/2 \\ \end{array} $	$\begin{array}{c} 104\ 863.43\\ 105\ 211.14\\ 105\ 449.54\\ 105\ 630.75\end{array}$		

Fe II-Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$3d^6({}^5\mathrm{D})5d$	⁴ D	⁷ / ₂ ⁵ / ₂ ¹ / ₀	104 873.23 105 127.77 105 230 29		
$3d^{6}(^{3}\mathrm{F2})4d$	⁴G	¹¹ /2 ⁹ /2 ⁷ /2 ⁵ /2	$\begin{array}{c} 105 \ 063.55 \\ 105 \ 155.09 \\ 105 \ 291.01 \\ 105 \ 414.18 \end{array}$		
		⁵ /2	105 234.06		
		⁵ / ₂	105 238.77		
$3d^6(^3\mathrm{F2})4d$	4H	¹³ / ₂ ¹¹ / ₂ ⁹ / ₂ ⁷ / ₂	$\begin{array}{c} 105\ 288.847\\ 105\ 398.852\\ 105\ 524.461\\ 105\ 589.42\end{array}$		
$3d^6(^5\mathrm{D})5d$	⁶ S	⁵ /2	105 711.73		
$3d^6(^3\mathrm{F2})4d$	2 H	¹¹ / ₂ 9/ ₂	105 763.270 106 018.643		
$3d^5(^2\mathrm{I})4s4p(^3\mathrm{P^{\circ}})$	${}^{2}K^{\circ}$	13/2 15/2	106 183.1 106 524.4		
$3d^{5}(^{2}\mathrm{I})4s4p(^{3}\mathrm{P}^{\circ})$	${}^{2}\mathrm{H}^{\circ}$	¹¹ / ₂ 9/ ₂	106 690.17 107 006.35		
$3d^5({}^6\mathrm{S})4p^2({}^3\mathrm{P})$	${}^{8}\mathrm{P}$	7/2 9/2	106 836.0 107 219.5		
$3d^5({}^4\mathrm{G})4s4p({}^1\mathrm{P}^{\circ})$	⁴G°	$\frac{11}{2}$ $9/2$ $5/2$ $7/2$	108 483.87 108 570.56 108 629.25 108 631.09		
$3d^{6}(^{1}\mathrm{I})5s$	e ² I	¹¹ / ₂ ¹³ / ₂	108 630.429 108 648.695		
$3d^5({}^4{ m G})4s4p({}^1{ m P}^{\circ})$	4H.	13/2 11/2 9/2 7/2	108 729.16 108 809.31 108 868.98 108 906.64		
$3d^{6}(^{3}\mathrm{D})5s$	⁴D	7/ ₂	108 804.667		
$3d^{5}(^{2}\mathrm{I})4s4p(^{3}\mathrm{P}^{\circ})$	² I°	¹³ / ₂ ¹¹ / ₂	109 149.68 109 271.71		
3d ⁵ (⁶ S)4s (⁷ S)4d	⁸ D	3/2 5/2 7/2 9/2 11/2	109 449.53 109 455.25 109 463.22 109 473.65 109 486.15		
F'е III (⁵ D ₄)	Limit		130 563		

Fe III

Z = 26

Cr I isoelectronic sequence

Ground state: 1s²2s²2p⁶3s²3p⁶3d⁶ ⁵D₄

Ionization energy = $247 \ 220 \pm 100 \ \text{cm}^{-1} (30.652 \pm 0.01 \ \text{eV})$

The present list of energy levels for Fe III is a combination of the results of Edlén and Swings (1942), who observed the spectrum from 500 to 6500 Å, and those of Glad (1956), who reobserved the long wavelength portion from 2600 to 8600 Å. A correction of 0.8 cm^{-1} has been added to the published level values to place the ground state at zero. No discussion of the level accuracy was given.

The percentage compositions for levels of the $3d^{6}$ configuration were taken from the theoretical work of Pasternak and Goldschmidt (1972). For the $3d^{5}4s$ configuration, we have used the percentages given by Shadmi, Caspi, and Oreg (1969), who listed compositions only for highly mixed states. Although no statement was made concerning the percentage compositions of the

remaining levels, it appears that their purity is at least 90%. For the $3d^{5}4p$ configuration we have used the results of Roth (1968). Roth distinguished repeating terms of $3d^{n}$ by the letters a, b ... rather than by seniority. Each of his percentages is the sum of LS term contributions differing only in the seniority of the core term.

Transitions among levels of the $3d^{6}$ configuration observed in nebular spectra have been given by Bowen (1960).

The ionization energy was determined by Glad from the $3d^{5}(^{6}S)as^{7}S$ levels (n = 5, 6, 7).

References

Bowen, I. S., (1960), Astrophys. J. 132, 1.

Edlén, B., and Swings, P. (1942), Astrophys. J. 95, 532.

Glad, S. (1956), Arkiv Fysik 10, 21.

Pasterrak, A., and Goldschmidt, Z. B. (1972), Phys. Rev. A6, 55.

Roth, C. (1968), J. Res. Nat. Bur. Stand (U.S.) 72A, 505.

Shadmi, Y., Caspi, E., and Oreg, J. (1969), J. Res. Nat. Bur. Stand. (U.S.) 73A, 173.

Configuration	Term	J	Level (cm ⁻¹)		Leading p	ercentages
3d ⁶	⁵ D	4	0.0	100		
		3	436.2	100		
		2	738.9	100		
		1	932.4	100		
		0	1 027.3	100		
$3d^6$	³ P2	2	19 404.8	61	38	³ P1
		1	20 688.4	62	38	
		0	21 208.5	62	37	
$3d^6$	$^{3}\mathrm{H}$	6	20 051.1	100		
		5	20 300.8	99		
		4	20 481.9	97		
$3d^6$	³ F2	4	21 462.2	74	21	³ F1
04		3	21 699.9	77	21	
		2	21 857.2	79	20	
3.76	³ G	5	24 558 8	0.9		
500	ũ	Å	24 940 9	00 07		
		3	25 142.4	98		
$3d^5(^6\mathrm{S})4s$	⁷ S	3	30 088.84			
$3d^6$	II	6	30 356.2	100		
$3d^6$	³ D	2	30 716.2	99		
		1	30 725.8	100		
		3	30 857.8	100		

Fe III

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	L	eading percentages
3 <i>d</i> ⁶	¹ G2	4	30 886.4	65	34 ¹ G1
$3d^6$	¹ S2	0	34 812.4	76	23 $^{1}S1$
$3d^6$	¹ D2	2	35 803.7	77	22 ¹ D1
$3d^5(^6\mathrm{S})4s$	⁵S	2	40 999.87		
$3d^6$	¹ F	3	42 896.9	99	
$3d^6$	³ P1	0	49 148 49 576.9 50 412 3	62 62	38 ³ P2 38 29
$3a^6$	³ F1	2 4	50 112.0 50 184.9 50 276.1 50 205 2	80 78	20 ³ F2 22
- -	lar	3	50 295.2	78	21
3d	GI	4	57 221.7	65	35 ¹ G2
3d⁵(⁴G)4s	6°G	6 5 4 3 2	63 425.17 63 466.39 63 486.78 63 494.00 63 494.56		
$3d^5(^4\mathrm{P})4s$	⁵ P	3 2 1	66 464.64 66 522.95 66 591.68		
3d ⁵ (⁴ D)4s	5D	4 0 1 3 2	69 695.73 69 747.40 69 788.19 69 836.83 69 837.76		
3d ⁵ (⁴ G)4s	³ G	5 3 4	70 694.03 70 725.01 70 728.75		
$3d^5(^4\mathrm{P})4s$	³ P	2 1 0	73 727.64 73 849.10 73 935.96		
$3a^{5}(^{4}\mathrm{D})4s$	³ D	3 1 2	76 956.79 77 075.30 77 102.43		
$3d^5(^2\mathrm{I})4s$	31	7 6 5	79 840.12 79 844.74 79 860.42		
$3a^5({}^6\mathrm{S})4p$	⁷ P°	2 3 4	82 001.73 82 333.92 82 846.59	100 99 100	
3d ⁵ (² D3)4s	3D	3 2 1	82 382.87 82 410.94 82 494.88	76 69 66	$\begin{array}{rrrr} 16 & ({}^{2}\mathbf{F2}) & {}^{3}\mathbf{F} \\ 17 & ({}^{4}\mathbf{F}) & {}^{5}\mathbf{F} \\ 34 & ({}^{4}\mathbf{F}) & {}^{5}\mathbf{F} \end{array}$

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	I	leading percentages	
3d ⁵ (⁴ F)4e	5167	5	83 138 22	*****	······································	
ου (Γ)48	L L	i) A	83 161 48			
		4	83 237 86			
		2	83 358.88	77	$15 \left(\frac{2}{8}\right)^{3}$	
		1	83 646.98	66	$(^{2}D3)^{3}D$	
$3d^{5}(^{2}\mathrm{I})4s$	¹ I	6	83 429.61			
$3d^{5}(^{2}F2)4s$	³ F	4	84 159.55			
	-	2	84 369.92	60	17 (² D3) ³ D	
		3	84 671.87	77	$18 (^{2}D3)^{3}D$	
$3d^{5}(^{2}\text{D}3)4s$	¹ D	2	86 847.11			
$3d^{5}({}^{2}\mathrm{F2})4s$	¹ F	3	87 901.87			
5. 15 (² 11) 4	3~~		00 440 07			
3d°(*H)4s	H"H	4	88 663.87			
		5	88 694.67			
		6	88 923.07			
$3d^{5}({}^{6}S)4p$	${}^{5}P^{\circ}$	3	89 084.79	98		
		2	89 334.51	98		
		1	89 491.39	98		
$3d^{5}(^{2}\text{G2})4s$	³ G	3	89 697.52			
		4	89 783.59			
		5	89 907.85			
$3d^5({}^4\mathrm{F})4s$	${}^{3}\mathbf{F}$	2	90 423.68			
		4	90 472.53			
		3	90 483.94			
$3d^5(^2\mathrm{H})4s$	¹ H	5	92 523.91			
$3d^{5}({}^{2}\mathrm{F1})4s$	³ F	4	93 388.75	58	41 $(^{2}G)^{1}G$	
, _		3	93 392.45			
		2	93 412.93			
$3d^5(^2\text{G2})4s$	¹ G	4	93 512.64	55	40 $(^{2}F1)^{-3}F$	
$3d^{5}({}^{2}\mathrm{F1})4s$	¹ F	3	97 041.38			
$3d^5(^2\mathrm{S})4s$	^{3}S	1	98 662.68			
$3d^{5}(^{2}\text{D2})4s$	3D	1	105 895.35			
		2	105 906.23			
		3	105 929.16			
$3d^5(^2\text{D2})4s$	¹ D	2	109 570.84			
$3d^{5}({}^{4}\mathrm{G})4p$	⁵ G°	2	113 584.20	96		
-		3	113 605.37	91	5 (⁴ G) ⁵ H	
		4	113 635.34	89	8	
		5	113 677.01	88	9	
		6	113 739.62	90	7	
$3d^{5}(^{2}\text{G1})4s$	³ G	5	114 325.35			
		4	114 339.95			
		3	114 351.92			

1000

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading p	ercentages
$3d^{5}({}^{4}\mathrm{G})4p$	⁵ H°	3	114 948.55	94	5 (⁴ G) ⁵ G*
ou (u, .p		4	115 110.92	90	8
		5	115 289.91	90	9
	1	6	115 474.25	92	7
		7	115 642.23	100	
$3d^5({}^4\mathrm{G})4p$	⁵ F°	5	116 316.63	90	5 $({}^{4}D) {}^{5}F^{\circ}$
		4	116 467.41	81	7 (°D) ⁵ F*
		3	116 475.44	55	22 $({}^{4}P) {}^{5}D^{2}$
		1	116 937.57	76	$12 (P)^{*}D^{*}$
		2	116 975.05	57	28 (P) D
$3d^{5}(^{4}\mathrm{P})4p$	${}^{5}D^{\circ}$	0	116 364.76	80	$16 ({}^{4}D) {}^{5}D^{\circ}$
		1	116 380.07	67	$16 ({}^{4}D) {}^{5}D^{\circ}$
		2	116 419.39	46	29 $({}^{4}G) {}^{5}F^{\circ}$
		3	117 068.56	49	$32 ({}^{4}G) {}^{5}F^{\circ}$
		4	117 521.91	75	14 (⁴ D) ⁵ D ^o
$3d^5(^4\mathrm{P})4p$	⁵ S°	2	116 898.22	92	
$3d^{5}(^{2}\text{G1})4s$	1 G	4	117 950.32		
$3d^{5}(4G)/n$	³ 규°	9	118 163 56	90	
ua (G)+p	•	3	118 246.52	75	10 $({}^{4}P) {}^{5}P^{*}$
		4	118 350.24	89	
$3d^{5}({}^{4}\mathrm{G})4n$	³ H°	6	118 355.01	96	
00 (C) xp		5	118 557.25	97	
		4	118 686.25	95	
$3d^{5}({}^{4}\mathrm{P})4p$	⁵ P°	3	118 442.92	53	22 (4 D) ⁵ P ^o
		2	118 721.60	69	19
		1	118 867.87	78	14
$3d^{5}({}^{4}\mathrm{P})4p$	³ P°	2	119 697.64	66	18 (4 D) ³ P°
		1	119 982.26	71	18
		0	120 179.95	76	17
$3d^{5}({}^{4}\mathrm{D})4p$	⁵ F°	1	120 697.10	85	11 (⁴ G) ⁵ F°
-		2	120 826.17	84	10
		3	121 008.78	84	8
		4	121 241.67	87	7
		5	121 468.82	92	6
$3d^5({}^4\mathrm{G})4p$	³ G°	3	121 919.74	94	
		4	121 941.29	95	
		5	121 949.62	95	
$3d^5(^4\mathrm{P})4p$	³ D°	3	122 346.61	53	29 (⁴ D) ⁵ D°
		2	122 628.34	46	36
		1	122 843.03	46	35
$3d^5(^4\mathrm{D})4p$		3	122 829.55	36 ⁵ D°	31 (⁴ P) ³ D°
$3d^5(^4\mathrm{P})4p$		2	122 898.84	40 ³ D°	25 (⁴ D) ⁵ D*
$3d^5(^4\mathrm{P})4p$		1	122 921.37	41 ³ D°	22 (⁴ D) ⁵ P°

Fe 111-Continued

free.

1ª

f.

Configuration	Term	J	Level (cm ⁻¹)		Leading perc	entages
$3d^5({}^4\mathrm{D})4p$	⁵ D°	4 0	122 944.15 123 455.92	78 75	16 19	(⁴ P) ^f D° (⁴ P) ^f D°
$3d^5({}^4\mathrm{D})4p$	⁵ P°	1 2 3	123 552.95 123 697.18 123 750.39	56 55 45	20 18 23	(⁴ D) ⁵ D° (⁴ P) ⁵ P° (⁴ P) ⁵ P°
$3d^5(^4\mathrm{D})4p$	₃ D°	3 2 1	124 854.04 124 903.92 124 954.88	71 84 84	12 7 8	(⁴ D) ⁵ P° (⁴ F) ³ D° (⁴ F) ³ D°
$3d^5(^4\mathrm{D})4p$	³ F°	4 3 2	125 443.58 125 637.98 125 672.83	90 86 88	6 6 6	$(a^{2}G)^{3}F^{\circ}$
$3d^5(^4\mathrm{P})4p$	³ S°	1	126 390.57	95	0	
$3d^5({}^4\mathrm{D})4p$	βЪ,	0 1 2	128 371.53 128 605.65 128 917.51	77 74 72	18 19 21	(⁴ P) ³ P°
$3d^5(^2\mathrm{I})4p$	³ K°	6 7 8	129 854.80 130 040.56 130 852.25	83 76 100	15 17	(² I) ³ I°
$3d^5(^2\mathbf{I})4p$	₃ I.	5 6 7	130 256.27 130 756.84 131 035.07	82 78 71	9 16 21	(² I) ¹ H° (² I) ³ K° (² I) ³ K°
3d ⁵ (a ² D)4p		2	131 445.03	32	¹ D • 26	(a ² F) ³ F°
$3d^5(^2I)4p$	¹ H°	5	131 710.79	69	13	(² I) ³ I°
$3d^5(^2\mathrm{I})4p$	¹ K°	7	131 991.58	89	9	(² I) ³ I°
$3d^5(a^2\mathrm{D})4p$	³ F°	3 2 4	132 079.91 132 104.94 132 785.36	58 42 58	25 26 22	(a ² F) ³ F° (a ² D) ¹ D° (a ² F) ³ F°
$3d^5(^2\mathbf{I})4p$	3H.	6 5 4	132 262.66 132 564.71 132 659.17	90 86 84	6	(² I) ¹ H°
$3d^5(a\ ^2\mathbb{D})4p$	³ P°	2 1 0	134 265.42 134 549.38 135 088.60	67 59 90	25 20 6	(a ² F) ³ D° (a ² D) ³ D° (⁴ F) ⁵ D°
$3d^5(a\ ^2\mathrm{F})4p$	¹ G°	4	134 360.40	57	17	$(\alpha {}^{2}\mathbf{F}) {}^{3}\mathbf{G}^{\circ}$
$3d^5(a\ ^2\mathrm{F})4p$	³ G°	3 5 4	134 549.00 135 316.42 135 554.41	53 55 54	25 35 36	(a ² D) ¹ F° (⁴ F) ⁵ G° (a ² F) ³ F°
$3d^{5}({}^{4}\mathrm{F})4p$	⁵ G°	2 3 4 6 5	134 937.84 135 096.84 135 239.74 135 582.08 135 735.31	75 54 81 50 58	10 27 8 44 39	(a ² F) ³ F° (a ² D) ³ D° (a ² F) ¹ G° (² I) ¹ I° (a ² F) ³ G°

C. CORLISS AND J. SUGAR

Fe in-Continued

Configuration	Term	J	Level (cm ⁻¹)	L	eading percentages
2.51. 2r. 2.	3110	9	126 072 00	90	95 (- 2m) 3ms
on la Diap		0 1	194 010.23	56	20 (a r) 13
		1	133 217.17	60	$22 (a^{-}D)^{-}F$
		Z	135 279.04	62	12 (" F ") "G"
$3d^5(a\ ^2{ m F})4p$	³ D.	3	135 705.57	65	11 $(a^{2}D)^{3}D^{\circ}$
		1	136 464.9	66	19 $(a^2 D)^{-1} P^{\circ}$
		2	136 793.82	36	37 (*F) *F **
$3d^{5}(^{2}1)4p$	1 ₁₇ ×	6	135 739.47	50	46 (⁴ F) ⁵ G•
$3d^{5}({}^{4}\mathrm{F})4p$	⁵ F*	4	135 990.62	74	17 (⁴ F) ⁵ D°
• • •		3	136 008.74	65	13 $({}^{4}\mathbf{F}) {}^{5}\mathbf{D}^{\bullet}$
		2	136 117.94	38	$36 (a^2 F)^3 D^\circ$
	1	5	136 185.17	88	
		1	136 235.84	76	10 $(a^{2}D)^{3}D^{\circ}$
$3d^5(a^2\mathrm{D})4p$		3	136 200.13	31 ¹ F**	24 $(a^{2}F)^{3}G^{\circ}$
$3\sigma^5(\sigma^2 F) A \sim$	3 12:0	2	126 529 15	46	10 (~ ² Ti) ³ F*
our (14 T) MB	L L	с, Л	136 619 70	40	17 (U L/) F 99
		3	136 797.05	42 41	20 14
a she daa xa	5:00	4	100 000 00		473 5750
əa"("r")4p	10 ⁻ 10 ⁻	4	137 209.73	75	16 ("P") "F"
		3	137 423.00	74	14 ('P') "F"
		Z	137 544.60	77	9 (* F) ⁹ F ⁶
		1	137 561.1	85	6 $(a^{*}D)^{*}P^{*}$
		0	137 573.2	91	6 (a ² D) ³ P ²
$3a^{5}(^{2}\mathrm{Hi})4\mu$	³ H*	4	137 527.92	46	44 $(a^{2}G)^{3}H^{\circ}$
		5	137 763.70	43 -	42
		6	138 264.47	46	41
3ct ⁶ (² 11)4⊅	$^{3}G^{*}$	5	138 054.59	47	29 (⁴ F) ³ G°
		4	138 103.12	43	30
		3	138 187.93	41	28
8d ⁵ (a ⁻² D)4p	1 Pr	1	138 691.81	71	17 $(a^{2}F)^{3}D^{\circ}$
B_{12}^{-6} (4 F) $4n$	³ G°	5	139 463 36	43	25 $(\pi^{2}G)^{3}G^{2}$
ener (• / min		4	139 625 17	42	36
		3	139 680.47	42	41
9.55(2TT) 4	3r.	F	100 500 11	<i>71</i> 0	2 (2xx) 3xx0
ын (°11)4р	1 .	D	139 209.44	79	8 (~H)~H-
		ъ 7	139 345.18 140 196 33	87 96	5
o. ⊛ ⇔. 2mo. 4	1150	•	130 801 10	50	25. (25.) 15.0
əa (a "r)4p	U.	L	139 764.48	56	$38 (a^{\circ}D)^{\circ}D^{\circ}$
3a°(a ² G)4p	¹ G [*]	4	139 827.17	40	19 $(a^{2}\mathbf{F})^{1}\mathbf{G}^{\circ}$
$3a^6(a\ ^2{ m F})4p$	1 ₁₇₈₀ F	3	140 453.10	72	8 $(a^{2}D)^{1}F^{\circ}$
$3d^5(a\ ^2{ m G})4p$	³ F**	3	140 693.36	42	26 (⁴ F) ³ F°
		2	140 750.98	42	31
		4	141 002.99	45	26
$3a^{6}({}^{4}\mathbf{F})4n$	³ D.	2	141 399.04	68	8 $(a^{2}G)^{3}F^{\circ}$
···· · · · · · · · · · · · · · · · · ·		3	141 466.53	64	$7 (a^{2}G)^{3}F^{\circ}$
	1	-	ary a your tenters.		

Fe III-Continued

Ż

jam.

Configuration	Term J Level		Level (cm ⁻¹)	L£	Leading percentages		
$3d^5(^2\mathrm{H})4p$	¹ I°	6	141 539.55	88	5	(31) ³ H ⁻	
$3d^{5}({}^{4}\mathrm{F})4p$	370	4	142 047.0	50	25	$(a^2\mathbb{G})^{3\mathbb{F}^n}$	
···· (= / -2-	-	3	142 312.90	50	24	(v v) x	
		2	142 535.07	48	34		
$3d^{5}(a^{2}\mathrm{G})4\rho$	3 ^H .	4	142 855.59	45	47	(211) 277-	
		5	142 908.48	46	38	(
		6	143 320.8 5	50	40		
$3d^{5}(a \ {}^{2}\text{G})4p$	⁸ G*	5	143 883.74	40	20	$(a^2 \overline{F})^3 G^2$	
•		4	144 085.97	42	23		
		3	144 118.64	43	24		
$3d^5(b\ ^2\mathrm{F})4p$		4	144 332.21	35 ¹ G	30	$(a^{2}\overline{r})^{2}\widetilde{c}^{*}$	
$3d^{5}(b {}^{2}\mathrm{F})4p$	³ F**	2	144 501.74	66	19	$(a^{2}G)^{2}T^{2}$	
·		3	144 570.53	73	11	$(\sigma \stackrel{2}{\leftrightarrow}) \stackrel{2}{\to}$	
		4	144 968.50	48	20	(5 ³ ¥) ¹ G ²	
$3d^5(a \ ^2\mathrm{G})4p$	¹ H°	5	144 586.83	6 6	18	(² H) ¹ H [^]	
$3d^5(^2\mathrm{H})4p$	1H.	5	144 843 24	70	28	(a ² G) ¹ H°	
$3d^5(a \ ^2\mathrm{G})4p$	¹ F°	3	145 038.61	76	5	(\$ ² F) ¹ F [*]	
$3d^5(b\ ^2\mathrm{F})4p$	¹ D*	2	145 618.39	82	7	(P ₅ E) ₃ E .	
$3d^{5}(b^{2}\mathrm{F})4p$	³ G°	3	146 891.04	55	35	$(^{2}\mathrm{H})$ $^{2}\mathrm{G}^{2}$	
		4	147 161.36	59	32		
		5	147 406.14	66	28		
$3d^5(^6\mathrm{S})4d$	⁷ D	1	147 281.69				
		2	147 291.21				
		3	147 305.97				
		4 5	147 325.85				
2.45 (b 2F) An	• ⁹	1	117 556 15	0.0			
əa (0 r) ≰p		2	147 535.45	90			
		3	147 835.95	86	7	(⁴ F) ³ D [*]	
$3d^5(^2S)4n$	302	0	148 655	85	19	(A 212) 8000	
00 (D) p		ĩ	148 915.3	82	12	(0 0) 1	
		2	149 525.63	82	14		
$3d^{5}(b \ {}^{2}\mathrm{F})4p$	¹ G°	4	149 013.36	44	34	(² fl) ¹ G [*]	
$3d^5({}^6\mathrm{S})5s$	⁷ S	3	149 285.00				
$3d^5(b\ ^2{ m F})4p$	¹ F**	3	150 654.9	98			
$3d^5(^6S)4d$	⁵ D	3	151 534.13				
		2	151 534.90				
		1	151 536.68				
		4 0	151 537.80				
		ž	a dia sufficie a				

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	I	Leading perc	entages
$3d^{5}(^{2}\mathrm{S})4p$	¹ P°	1	151 637.3?	78	19	$(b^2\mathbf{D})^{-1}\mathbf{P}$
$3d^{5}({}^{6}S)5s$	⁵ S	2	151 757.67			
$3d^{5}(b^{2}D)4p$	³ F°	2	157 684.3	75	18	$(b^{2}D)^{3}D$
		3	157 982.0	61	27	
		4	158 562.7	94		
$3d^{5}(b^{2}D)4p$	³ D°	1	158 257.37	95		
		2	158 417.31	76	18	$(b^{2}D)^{3}F$
		3	158 729.89	67	29	
$3d^5(b\ ^2\mathrm{D})4p$	¹ F**	3	159 493.0	82	12	(b ² G) ¹ F
$3d^5(b\ ^2\mathrm{D})4p$	$^{3}P^{\circ}$	2	160 037.9	81	14	(² S) ³ P ³
$3d^5(b\ ^2\mathrm{D})4p$	$^{1}D^{\circ}$	2	162 084.8?	92	6	$(b^{2}F)^{1}D$
$3d^5(b^{-2}G)4p$	³ H°	4	165 719.20	93	5	$(b^{2}G)^{3}G$
		5	165 939.47	90	6	
		6	166 187.50	98		
$3d^{5}({}^{6}\mathrm{S})5p$	⁷ P°	2	166 144.63			
-		3	166 252.74			
		4	166 421.33			
$3d^{5}(b^{2}G)4p$	³ F10	4	166 222.2	81	11	$(b^{2}G)^{3}G$
		3	166 498	50	46	$(b^{2}G)^{3}G$
		2	167 002	93	5	$(c^{2}D)^{3}F$
$3d^{5}(b^{2}{ m G})4p$	³ G°	3	167 085.12	53	44	$(b^{2}G)^{3}F$
		4	167 207.30	85	11	$(b^{2}G)^{3}F$
		5	167 299.60	91	7	$(b^{2}\mathrm{G})^{3}\mathrm{H}$
$3d^5({}^6\mathrm{S})5p$	⁵ P°	3	168 329.67			
		2	168 420.99			
		1	168 477.36			
$3d^5(b \ ^2\mathrm{G})4p$	¹ H°	5	168 780.1	95		
$3d^5(b \ ^2\mathrm{G})4p$	¹ G°	4	169 277.6?	96		
$3d^5(b \ ^2\mathrm{G})4p$	${}^{1}\mathbf{F}^{2}$	3	170 310.6?	87	12	$(c^{2}D)^{1}F$
$3d^5({}^4\mathrm{G})4d$	⁵H	3	179 178.62			
		4	179 194.22			
		5	179 207.57			
		6	179 216.47			
		1	179 221.45			
$3d^5({}^4\mathrm{G})4d$	${}^{5}\mathbf{F}$	5	179 579.83			
		4	179 630.77			
		3	179 661.48			
		∠ 1	179 682 04			
		T	110 004.01			

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$3d^5({}^4\mathrm{G})4d$	⁵ G	6	179 725.31	
	ũ	5	179 748.17	
		4	179 757.98	
		2	179 759.49	
		3	179 760.72	
$3d^{5}({}^{4}G)4d$	51	4	179 876 71	
		8	179 889 03	
		5	179 893 56	
		7	179 904 56	
		6	179 904.56	
9-25(40)=-	50	c	101 779 50	
$\partial a (G) \partial s$.	5	101 000 70	
	(5	181 808.70	
		4	181 825.67	
	i l	2	181 828.66	
		3	181 830.02	
$3d^5(^4P)4d$	${}^{5}\mathbf{F}$	5	182 379.86	
		4	182 412.65	
		3	182 444.70	
		2	182 480.72	
		1	182 486.40	
$3d^{5}({}^{4}\mathrm{G})4d$	³ F	2	182 392.55	
• •		3	182 408.91	
í		4	182 418.70	
$3d^{5}({}^{4}\mathrm{G})4d$	3γ	5	182 810 66	
	•	6	182 830 76	
		7	182 852.05	
$3d^{5}({}^{4}G)5e$	³ C	5	183 /31 28	
04 (U /05	ŭ	2	193 456 60	
		4	183 457.15	
2.35(65) 4.5	7139	1	10/ 101 20	
5a(5)4f	r	1	184 181.39	
		z	184 247.16	
		3	184 316.58	
		4	184 374.59	
		0	184 417.27	
		Ð	184 447.38	
$3d^5(^6S)4f$	⁵ F°	1	184 777.3	
		2	184 777.6	
		3	184 778.5	
		4	184 779.5	
		5	184 780.8	
$3d^{5}(^{4}P)5s$	⁵ P	3	184 951.62	
:		2	185 003.35	
	3	1	185 061.35	
$3d^{5}(^{4}\mathrm{D})4d$	⁵G	2	186 268.69	
		3	186 303.44	
		4	186 378.94	
		5	186 454.09	
		6	186 597.30	
		-	**** *****	

fran.

1000

free.

C. CORLISS AND J. SUGAR

Fe III-Continued

Configuration	Term	J	Level (cm^{-1})	Leading percentages
$-3d^{5}(^{4}\mathrm{D})4d$	5n	1 1	186 712 02	
		2	186 791.78	
		3	186 882.98	
		4	186 998.60	
0.15.4	E			
$3d^{\circ}(^{\circ}\mathrm{D})5s$	de la	4	188 013.40	
		0	188 109.32	
		3	188 109.58	
		2	188 142.64	
$3d^5(^4\mathrm{P})4d$	³ G	3	188 955.56	
		4	189 011.84	
		5	189 024.53	
0.15(4m) C	3~		100 650 05	
$3d^{\circ}(D)5s$	u° I	3	189 679.07	
			189 784.52	
			189 795.03	
$3d^5(^6\mathrm{S})5d$	⁷ D	1	190 393.27	
		2	190 397.71	
		3	190 404.31	
		4	190 413.57	
		5	190 425.72	
$3d^5({}^6\mathrm{S})6s$	⁷ S	3	190 918.17	
345(65)60	50	0	102 006 04	
04 (15105		- C.	152 000.54	
$3d^5({}^6\mathrm{S})5d$	⁵ D	0	193 595.30	
		1	193 599.54	
		2	193 605.99	
		3	193 610.92	
		4	193 611.37	
$3d^{5}(^{2}1)5e$	31	7	196 881 47	
502 (1/58	1	6	196 886 01	
		5	196 901.27	
		Ŭ		
$3d^5({}^4\mathrm{G})5p$	5 G °	2	198 333.56	
		6	198 333.76	
		5	198 336.58	
		3	198 337.06	
		4	198 338.62	
$3d^{5}(^{6}S)6n$	⁷ P°	2	198 606 37	
con (is yop		3	198 655.66	
		4	198 737.05	
9 m/4~>×	5***		100 050 00	
3d~(~G)5p	"H"	3	198 658.80	
		4	198 717.00	
		5 c	198 773.93	
		7	198 848.38	
$3d^{5}({}^{4}\mathrm{G})5p$	⁵ F°	5	199 139.76	
		4	199 212.72	
		3	199 262.44	
		2	199 300.15	
	1	1	199 327.95	

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$3d^{5}({}^{4}G)5n$	3 1210	9	100 577 71	
aa (G)op	r	2	100 505 20	
		3	199 595.30	
		4	199 003.01	
$3d^{5}({}^{4}\mathrm{G})5p$	3Ho	6	199 634 92	
		5	199 660.84	
		4	199 700.83	
- ,				
$3d^{\circ}({}^{4}\mathrm{F})4d$	5 ⁵ H	3	199 701.82	
		4	199 804.81	
		5	199 884.39	
		6	199 906.03	
		7	200 003.70	
$3d^5({}^4\mathrm{F})Md$	50	4	200 295 56	
		2	200 325.30	
		5	200 304.28	
		2	200 335.55	
		6	200 656 02	
		, in the second se	400 000.02	
$3d^5({}^4\mathrm{G})5p$	³ G°	3	200 504.99	
		4	200 514.46	
		5	200 524.12	
$3d^{s}(^{4}P)5p$	°D°	2	201 164.21	
		3	201 166.35	
		0	201 170.10	
			201 178.01	
		4	201 207.29	
$3d^5(^4\mathrm{P})5p$	⁵ S°	2	201 293.75	
2.5 ⁵ (41)5.5	5171	-	001 000 44	
$\partial a (\mathbf{r}) \partial s$	r		201 892.44	
		3	201 919.00	
		2	202 050.58	
		1	202 100.15	
		} -	202 120.01	
$3d^{5}({}^{4}\mathrm{P})5p$	${}^{5}P^{\circ}$	3	202 200.51	
		2	202 282.65	
		1	202 334.39	
9.15(41))r	5170		201 005 10	
$3d^{*}(\mathbf{D})5p$	"F"	1	204 907.13	
		2	204 943.26	
	[3	205 002.47	
		4	200 092.03 005 105 15	
		"	200 190.10	
$3d^5({}^4\mathrm{D})5p$	⁵ D °	4	205 672.01	
			205 694.09	
		3	205 732.37	
		2	205 737.51	
0.15/4m	3			
$3d^{\circ}(D)5p$	[°] D°	3	206 180.41	
	l I	2	206 233.31	
		T	206 295.81	
	1	1 1		

far.

ſ.

C. CORLISS AND J. SUGAR

Fe III-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
2 <i>3</i> ⁵ (41)\=	31.30		200 201 22	
5a (D) p	F	4	205 261.33	
			200 324.89	
		3	200 328.22	
$3d^{5}({}^{6}S)5f$	⁷ F°	6	207 118.1	
	-	5	207 118.6	
		4	207 119.1	
		3	207 119.6	
		2	207 120.1	
$3d^{5}({}^{6}\mathrm{S})5f$	⁵ F°	1	207 252.5	
		2	207 257.8	
		3	207 263.0	
		4	207 268.2	
		5	207 273.23	
$3d^5({}^6\mathrm{S})5g$	⁷ G	7	207 640.8	
		6	207 640.8	
		5	207 640.9	
		4	207 640.9	
		3	207 641.1	
		Z	207 641.3	
$3d^{5}({}^{6}\mathrm{S})5g$	⁵ G	6	207 642.9	
		5	207 643.1	
		4	207 643.3	
		3	207 643.3	
		2	207 643.5	
$3d^5(^6\mathrm{S})6d$	⁷ D	1	210 393.67	
		2	210 396.00	
		3	210 399.57	
		4	210 404.61	
		5	210 411.32	
$3d^{5}(^{6}\mathrm{S})7s$	^{7}S	3	210 615.21	
$3d^5(^2\mathbf{I})5p$	³ I°	7	213 457.82	
	-	6	213 505.73	
		5	213 563.08	
$3d^{5}(^{2}\mathrm{I})5p$	³ H•	6	213 974.42	
•		5	214 010.32	
		4	214 047.38	
$3d^{5}({}^{4}\mathrm{F})5p$	⁵ G°	2	218 860.43	
-		3	218 923.08	
		4	219 004.53	
		5	219 092.86	
		6	219 162.42	
$3d^5({}^4\mathrm{F})5p$	⁵ F°	5	219 415.61	
		4	219 471.97	
		3	219 566.08	
		2	219 655.55	
		T	219 143.04	
$3d^5(^6S)6g$	⁷ G	1-7	219 740	

Fe III-Continued

Configuration	Term	J	Level (cm ¹)	Leading percentages
$3d^5({}^6\mathrm{S})6g$	⁵ G	6 5 4 3	219 741.9 219 741.9 219 742.0 219 742.1	
$3d^5(^6\mathrm{S})6h$	⁷ H°	2 2-8	219 742.1 219 780.2	
$3d^5(^6\mathrm{S})6h$	5H.	3-7	219 780.6	
$3d^5({}^4\mathrm{G})5d$	⁵ H	7 6 3 4 5	$\begin{array}{c} 222\ 590.86\\ 222\ 602.50\\ 222\ 605.24\\ 222\ 605.82\\ 222\ 605.82\\ 222\ 611.16\end{array}$	
$3d^5({}^4\mathrm{G})5d$	⁵ F	5 4 3 2 1	222 699.09 222 734.33 222 750.23 222 774.22 222 776.89	
3d ⁵ (⁴ G)5d	⁵ G	6 5 2 4 3	$\begin{array}{c} 222\ 714.30\\ 222\ 744.69\\ 222\ 758.28\\ 222\ 765.97\\ 222\ 766.04\end{array}$	
3d ⁵ (⁴ G)5d	⁵ I	8 4 7 5 6	$\begin{array}{c} 222\ 797.97\\ 222\ 823.33\\ 222\ 824.71\\ 222\ 832.48\\ 222\ 834.77\end{array}$	
3d⁵(⁴G)6s	⁵G	6 5 4 2 3	$\begin{array}{c} 223 \ 272.06 \\ 223 \ 309.37 \\ 223 \ 326.76 \\ 223 \ 327.87 \\ 223 \ 330.71 \end{array}$	
$3d^5({}^4\mathrm{G})6s$	³ G	5 3 4	$\begin{array}{c} 224 \ 038.73 \\ 224 \ 051.63 \\ 224 \ 058.70 \end{array}$	
$3d^5(^4\mathrm{P})6s$	5P	3 2 1	226 381.91 226 447.88 226 506.54	
$3d^{5}(^{4}\mathrm{D})6s$	⁵D	4 3 1 2	229 421.73 229 509.56 229 530.67 229 570.36	
$3d^{5}(^{4}\mathrm{D})6s$	³ D	3 1 2	230 192.86 230 248.26 230 257.15	
Fe IV (${}^{6}S_{5/2}$)	Limit		247 220	

farmer.

f and

C. CORLISS AND J. SUGAR

Fe IV

Z = 26

V I isoelectronic sequence

Ground state: 1s²2s²2p⁶3s²3p⁶3d⁵ ⁶S_{5/2}

Ionization energy = $442\ 000\pm1000\ {\rm cm}^{-1}\ (54.8\pm0.1\ {\rm eV})$

The early work of Kruger and Gilroy (1935) and Edlén (1969) has now been superseded by that of Ekberg and Edlén (1978), who have made a nearly complete analysis of the three lowest configurations. They have classified 706 lines from the transition array $3d^5-3d^44p$ in the region 446-789 Å and 560 lines of the $3d^44s-3d^44p$ array in the region 1247-2028 Å. Only four of the 280 possible levels are undiscovered. The uncertainty of the $3d^5$ level values is ± 0.4 cm⁻¹ and of the $3d^44s$ and $3d^44p$ levels is ± 0.2 cm⁻¹.

The leading percentages for $3d^5$ were provided to Ekberg and Edlén by R. Poppe, A. J. J. Raassen, and Th. A. M. van Kleef. The rest were calculated by the authors. Transitions among levels of the $3d^5$ configuration observed in nebular spectra have been identified by Bowen (1960).

The ionization energy is taken from an isoelectronic extrapolation by Lotz (1967).

References

Bowen, I. S. (1960), Astrophys. J. **132**, 1. Edlén, B. (1969), Mon. Not. R. Astron. Soc. **144**, 391. Ekberg, J. O., and Edlén, B. (1978), Phys. Scr. **18**, 107. Kruger, P. G., and Gilroy, H. T. (1935), Phys. Rev. **48**, 720. Lotz, W. (1967), J. Opt. Soc. Am. **57**, 873.

Configuration	Term	J	Level (cm ⁻¹)	Leading p	percentages	
	⁶ S	⁵ /2	0.0	100		
$3d^5$	4G	¹¹ / ₂ 9/ ₉	$32\ 245.5$ $32\ 292.8$	100 100		
		5/2 7/2	32 301.2 32 305.7	100 100		
$3d^5$	⁴ P	5/2 3/2	35 253.8 35 333.3	95 97		
		1/2	35 406.6	99		
3d ⁶	4D	7/2 1/2 5/2 3/2	38 779.4 38 896.7 38 935.1 38 938.2	100 99 96 97		
$3d^5$	² I	¹¹ / ₂ 13/ ₂	47 078.6 47 090.5	99 100		
$3d^5$	² D3	⁵ / ₂ ³ / ₂	49 541.5 50 051.4	57 73	24 23	² F2 ² D1
$3d^5$	² F2	7/2 5/2	51 394.2 52 166.7	97 70	15	² D3
$3d^5$	⁴ F	9/2 7/2 3/2 5/2	52 620.7 52 695.4 52 837.1 52 838.0	98 98 96 89	5	² F2
$3d^5$	² H	⁹ / ₂ ¹¹ / ₂	56 058.3 56 368.8	86 99	14	² G2
$3d^5$	² G2	7/2 9/2	57 408.0 57 721.2	99 84	14	² H

Fe IV

Fe tv-Continued

Configuration	figuration Term J Leve		Level (cm ⁻¹)	Leading percentages
$3d^5$	² F1	5/2 7/2	61 156.5 61 254.4	99 98
$3d^5$	^{2}S	1/ ₂	66 720.1	100
$3d^5$	²D2	³ /2 ⁵ /2	74 096.6 74 133.1	100 100
$3d^5$	²G1	9/2 7/2	82 894.9 82 897.3	100 100
$3d^5$	² P	³ /2 1/2	100 118.0 100 126.0	100 100
$3d^5$	² D1	⁵ /2 ³ /2	108 242.1 108 258.3	76 24 ² D3 76 24
3d ⁴ (⁵ D)4s	d9	1/2 3/2 5/2 7/2 9/2	127 766.15 127 929.12 128 191.54 128 541.85 128 967.67	100 100 100 100 100
3d ⁴ (⁵ D)4s	4D	¹ / ₂ ³ / ₂ ⁵ / ₂ ⁷ / ₂	137 700.81 137 949.29 138 338.83 138 844.03	100 100 100 100
3d ⁴ (³ P2)4s	⁴ P	1/2 3/2 5/2	153 651.74 154 474.85 155 744.87	60 39 (³ P1) ⁴ P 60 39 61 39
3d ⁴ (³ H)4s	⁴ H	7/2 9/2 11/2 13/2	154 185.85 154 325.96 154 512.67 154 731.29	98 98 99 100
$3d^4(^3\mathrm{F2})4s$	4 F e	³ /2 ⁵ /2 7/2 9/2	156 012.29 156 049.32 156 123.77 156 224.88	78 21 (³ F1) ⁴ F 77 21 76 20 76 19
$3d^4(^3\mathrm{G})4s$	⁴G	5/2 7/2 9/2 11/2	158 738.69 159 010.39 159 227.90 159 342.88	96 95 93 92 7 (³ H) ² H
$3d^4(^3\mathrm{P2})4s$	² P	1/2 3/2	160 015.88 161 571.59	59 39 (³ P1) ² P 60 38
$3d^4(^3\mathrm{H})4s$	² H	9/2 11/2	160 311.64 160 778.60	96 93 7 (³ G) ⁴ G
$3d^4(^3\mathrm{F2})4s$	2 F	5/2 7/2	$\frac{162\ 074.42}{162\ 087.81}$	77 21 (³ F1) ² F 74 19
3d ⁴ (³ G)4s	² G	7/2 9/2	164 950.50 165 392.58	94 98

ferres,

E--46

Fe IV-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leadi	ing percentage	S
3d ⁴ (³ D)4s	4D	$\frac{7}{2}$ $\frac{5}{2}$ $\frac{3}{2}$	$165\ 493.10\\165\ 600.96\\165\ 720.94\\165\ 804.47$	100 99 99 99		
3d ⁴ (¹ C2)4s	²G	9/2 7/2	167 712.50 167 795.92	65 64	32 32	(¹ G1) ² G
$3d^4(^1I)4s$	² I	13/ 11/2	$\frac{168\ 526.37}{168\ 566.43}$	100 99		
$3d^4(^1S2)4s$	^{2}S	1/2	170 729.49	78	20	(¹ S1) ² S
$3d^4(^3D)4s$	² D	5/2 3/2	171 345.33 171 476.39	99 09		
3d ⁴ (¹ D2)4s	² D	5/2 3/2	177 005.97 177 066.72	78 78	21 21	(¹ D1) ² D
$3d^4({}^1\mathrm{F})4s$	² F	5/2 7/2	183 159.61 183 164.49	90 99		
$3d^4({}^5\mathrm{D})4p$	°F⁺°	1/2 3/2 5/2 7/2 9/2 11/2	187 878.81 188 086.05 188 428.78 188 904.55 189 515.88 190 276.85	99 99 99 99 99 100		
$3d^4(^5\mathrm{D})4p$	⁶ P°	$3_{/2}$ $5_{/2}$ $7_{/2}$	189 885.11 190 008.28 190 226.87	96 97 99		
3d ⁴ (³ P1)4s	⁴ P		189 975.01 190 811.79 191 337.82	61 60 60	30 (39 39	³ P2) ⁴ P
3d ⁴ (³ F1)4s	⁴ F	9/2 3/2 7/2 5/2 5/2	190 318.34 190 406.45 190 424.14 190 435.47	80 78 79 78	20 (22 20 21	³ F2) ⁴ F
$3d^4(^5\mathrm{D})4p$	⁴ P°	1/2 3/2 5/2	191 021.18 191 694.11 193 549.25	70 61 54	28 (33 44	⁵ D) ⁶ D°
3 <i>d</i> ⁴ (⁵ D)4 <i>p</i>	۴D.	5/2 1/2 3/2 7/2 9/2	192 595.28 193 120.34 193 271.27 193 386.17 193 789.19	55 72 66 97 94	41 (27 (33 (5 (⁵ D) ⁴ P° ⁵ D) ⁴ P° ⁵ D) ⁴ P° ⁵ D) ⁴ P°
$3d^4(^3\text{P1})4s$	$^{2}\mathrm{P}$	³ / ₂ 1/2	195 864.15 196 875.62	61 60	39 (39	³ P2) ² P
$3d^4({}^3\mathrm{F1})4s$	$^{2}\mathbf{F}$	7/2	196 131.19	80	20 (³ F2) ² F

ENERGY LEVELS OF IRON

Fe IV-Continued

Configuration	Term	$I \qquad J \qquad \text{Level } (\text{cm}^{-1})$	Level (cm ⁻¹)	Leading percentages			
$3d^4(^5\mathrm{D})4p$	4F°	3/2 5/2 7/2 9/	196 186.88 196 334.63 196 549.59	96 95 94 91		(⁵ D) ⁶ D°	
$3d^{4}(^{1}\text{G1})4s$	² G	⁷ 2 ⁹ /2	201 178.05	66	33	$(^{1}G2)^{2}G$	
		7/2	201 212.22	66	33		
$3d^4(^5\mathrm{D})4p$	⁴ D°	1/2 3/2	201 919.38 202 085.22	98 98			
		^{5/2} 7/2	202 328.53 202 608.33	97 97			
$3d^4(^3\mathrm{H})4p$	⁴H°	7/2	212 135.79	17	20	(³ G) ⁴ H ⁵	
		⁹ / ₂	212 374.04	75	19		
			212 714.37 213 162.59	76 80	17 15		
$2d^{4}(^{3}\mathbf{P}^{2})4\mathbf{p}$	4D°	1/2	212 819 66	48	33	$(^{3}P1) ^{4}D^{\circ}$	
0a(12)4p		3/.	213 445.05	47	32	$({}^{3}P1) {}^{4}D^{\circ}$	
		5/2	214 317.21	44	30	$({}^{3}P1) {}^{4}D^{\circ}$	
		⁷ / ₂	215 220.67	26	19	$({}^{3}F2) {}^{4}D^{\circ}$	
$3d^4({}^{3}\mathrm{F2})4n$	⁴ G°	5/	214 821 74	47	91	(³ F1) ⁴ G°	
04 (12/4)		7/2	215 033.81	27	13	$({}^{3}G){}^{4}G^{\circ}$	
		9/2	215 385.23	24	14	(^{3}G) $^{4}G^{\circ}$	
			216 002.72	26	31	(³ H) ⁴ G°	
$3d^4(^3\mathrm{H})4p$	⁴ I°	⁹ / ₂	215 155.69	87		.9~~. 4	
		11/2	215 808.91	92	6	("H) "H"	
		15/2	216 367.80 216 877.83	94 100	5	(°H) *H°	
$3d^4({}^{3}\mathrm{P2})4n$	⁴ P°	1/2	215 860.50	32	19	(³ P1) ⁴ P°	
000 (1 =) , , p	-	3/2	217 031.89	56	33	(³ P1) ⁴ P°	
		5/2	218 023.81	26	15	(³ P1) ⁴ P°	
$3d^4(^3\mathrm{H})4p$	² G ²	7/2	216 111.69	46	22	(³ F2) ² G°	
		⁹ / ₂	216 428.44	36	22		
$3d^{4}(^{3}\text{F2})4p$	⁴ F°	³ /2	217 466.19	42	23	(³ F2) ² D°	
		7/2	218 478.36	71	13	$({}^{3}F1) {}^{4}F^{\circ}$	
		⁹ / ₂	218 601.03	70	12	$({}^{3}F1) {}^{4}F^{\circ}$	
$3d^4(^3\text{P2})4p$		¹ / ₂	217 607.71	26 ⁴ P	° 21	(³ P1) ² S°	
$3d^4(^3\mathrm{H})4p$	⁴ G°	⁵ / ₂	217 845.29	31	20	$({}^{3}F2) {}^{4}G^{\circ}$	
		⁷ / ₂	218 159.77	51	28		
		"/2 11	218 238.51	50	33		
		×9 ₂	218 375.12	31	26		
$3d^4(^3\text{F2})4p$		⁵ /2	218 195.66	$30 \ {}^{4}F^{3}$	28	(³ P2) ⁴ P°	
$3d^4(^3\text{P2})4p$		³ / ₂	218 613.88	$25 {}^{2}P^{2}$	• 15	$(^{3}P2)$ $^{4}S^{\circ}$	
$3d^4({}^3\text{F2})4p$	$^{2}D^{\circ}$	⁵ /2	218 871.21	37	13	(³ D) ² D°	
$3d^4(^3\mathrm{F2})4p$		3/2	219 091.67	21 ² D	° 19	$({}^{3}F2) {}^{4}F^{\circ}$	

ومعجرين

Fe iv-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading	, percenta	ges
$3d^4(^3\text{P2})4p$	$^{2}\mathbf{P}^{\circ}$	1/2 3/2	219 333.90 220 360.44	33 27	15 11	(³ P1) ² P° (³ P1) ² P°
$3d^4(^3\mathrm{H})4p$	² I°	$^{11}_{13/_2}$	219 564.46 219 640.76	89 89	6	(³ G) ⁴ H°
$3d^4({}^3\mathrm{F2})4p$	⁴ D°	5/2 7/2 3/2 1/2 1/2	219 590.84 219 700.53 219 826.61 220 059.33	30 23 39 43	10 18 13 14	(³ P2) ⁴ D° (³ P2) ⁴ D° (³ F1) ⁴ D° (³ F1) ⁴ D°
$3d^4(^3\mathrm{G})4p$	² F°	5/2 7/2	220 197.25 220 649.22	26 21	14 20	$({}^{3}F2) {}^{2}F^{\circ} \ ({}^{3}F2) {}^{2}F^{\circ}$
$3d^4(^3\mathrm{H})4p$	² H°	⁹ / ₂ ¹¹ / ₂	220 461.33 221 161.02	51 40	16 33	(³ G) ⁴ H°
$3d^4(^3\mathrm{G})4p$	⁴ H°	7/2 9/2 ¹¹ /2 ¹³ /2	220 658.04 221 104.17 221 647.49 222 154.99	77 56 46 79	19 16 35 15	(³ H) ⁴ H° (³ H) ² H° (³ H) ² H° (³ H) ⁴ H°
$3d^4({}^3\mathrm{G})4p$	4F°	3/2 9/2 5/2 7/2	221 219.29 221 239.21 221 320.54 221 346.06	44 60 58 56	13 12 16 14	(³ D) ⁴ F°
$3d^4({}^3\mathrm{P2})4p$	² D°	³ / ₂ 5/ ₂	222 020.09 222 880.23	34 47	23 32	(³ P1) ² D°
3d ⁴ (¹ D1)4s	² D	5/2 3/2	$\frac{222\ 840.58}{222\ 851.68}$	79 79	21 21	(¹ D2) ² D
$3d^4({}^3\mathrm{F2})4p$	² G°	"/ ₂	223 398.62	32	19	(^{3}H) $^{2}G^{*}$
$3d^4(^3\text{F2})4p$	² F°	⁵ /2 7/2	223 478.96 224 046.02	48 44	35 42	$(^3G)^2F^{\scriptscriptstyle \bullet}$
$3d^4(^3\mathrm{G})4p$	$^{2}\mathrm{H}^{\circ}$	11/2 9/2	223 550.14 223 745.82	50 41	19 15	${(}^{3}G) {}^{4}G^{\circ} \ {(}^{3}H) {}^{2}G^{\circ}$
$3d^4(^3\mathrm{G})4p$		⁹ / ₂	223 629.59	18 ⁴ G°	15	$(^{3}F2)$ $^{2}G^{\circ}$
$3d^4(^3\mathrm{G})4p$	⁴ G°	5/2 7/2 9/2 11/2	224 045.96 224 230.60 224 576.43 224 870.85	55 55 42 47	29 25 17 24	${(}^{3}H) {}^{4}G^{\circ}$ ${(}^{3}H) {}^{4}G^{\circ}$ ${(}^{3}H) {}^{4}G^{\circ}$ ${(}^{3}G) {}^{2}H^{\circ}$
$3d^4(^3\mathrm{D})4p$	4D.	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$ $\frac{7}{2}$	226 851.93 226 892.10 226 983.58 227 258.80	86 81 60 81	7 29	(³ D) ⁴ P° (³ D) ⁴ P°
$3d^4({}^3\mathrm{G})4p$	² G°	7/2 9/2	227 604.73 227 660.25	64 60	14 20	(^{3}H) $^{2}G^{\circ}$
$3d^4(^3\mathrm{D})4p$	⁴ P°	$\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	227 919.05 228 589.67 229 037.02	63 82 90	25 5 5	(³ D) ⁴ D° (³ D) ⁴ D° (³ P2) ⁴ P°

Fe IV-Continued

/****.

1000

Configuration	uration Term J L		Level (cm ⁻¹)	Leading percentages			
3d ⁴ (¹ G2)4p	² F°	7/2 5/2	228 193.67 229 138.90	53 53	24 25	(¹ G1) ² F°	
$3d^4({}^1\mathbf{I})4p$	²₁°	¹³ / ₂ ¹¹ / ₂	228 204.33 228 315.03	69 89	27	(¹ I) ² K°	
$3d^4({}^1\mathrm{G2})4p$	² H°	9/2 11/2	228 793.86 229 306.61	51 52	25 22	$({}^{1}G1) {}^{2}H^{\circ}$	
$3d^4(^3\mathrm{D})4p$	4F°	3_{12} 5_{12} 7_{12} 9_{11}	228 862.61 229 062.58 229 288.02 299 494 74	69 63 71	20 18 19	(³ G) ⁴ F°	
$3d^4(^1S2)4p$	² P°	1/2 3/2	228 946.59 233 786.72	39 33	37 27	(³ D) ² P°	
$3d^4(^3\mathrm{D})4p$	² p°	3/2 1/2	229 428.91 233 927.12	52 48	32 29	(¹ S2) ² P [*]	
$3d^{4(1)}4p$	² K°	13/ 2 15/2	229 472.83 230 195.02	72 100	27	(¹ I) ² ΰ	
$3d^4(^1\text{G2})4p$	² G°	7/2 9/2	231 473.32 231 804.00	47 44	30 31	(¹ G1) ² G°	
$3d^4({}^1\mathbf{I})4p$	² ff°	11/2 9/2	233 272.84 233 802.12	80 86	9 9	(³ G) ² H°	
$3d^4(^3\mathrm{D})4p$	² F°	7/2 5/2	233 780.86 234 106.72	70 70	11 12	(³ G) ² F°	
$3d^4(^3\mathrm{D})4p$	² D°	$\frac{5}{2}$	234 472.00 234 984.35	60 68	19 9	(¹ D2) ² D° (³ F2) ² D°	
$3d^4(^1\text{D2})4p$	² D°	³ / ₂ 5/ ₂	236 918.79 237 283.09	54 44	18 18	(¹ D1) ² D° (³ D) ² D°	
$3d^4(^1\text{D2})4p$	² F°	5/2 7/2	238 512.84 239 071.40	59 59	14 20	$({}^{1}D1) {}^{2}F^{\circ}$ $({}^{1}F) {}^{2}F^{\circ}$	
$3d^4(^1\text{D2})4p$	$^{2}P^{\circ}$	3/2	242 25 9 .25	68	14	$(^{1}D1)$ $^{2}P^{\circ}$	
$3d^4({}^1\mathrm{F})4p$	²F.°	⁵ / ₂ 7/ ₂	242 614.60 242 965.62	74 66	10 16	$(^{1}\text{D2})$ $^{2}\text{F}^{\circ}$	
$3d^4(^1\mathrm{F})4p$	² G°	7/2 9/2	244 759.25 245 742.29	91 94			
$3d^4({}^1\mathrm{F})4p$	$^{2}D^{\circ}$	5/2 3/2	246 990.80 248 077.97	61 64	15 13	(³ P1) ² D°	
$3d^4(^3\mathrm{F1})4p$	4°F*	5/2 3/2 7/2 9/2	250 195.07 250 249.39 250 279.06 250 502.29	73 78 74 84	11 13 11 12	(³ F2) ⁴ F°	

Fe IV-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leadin	g percent	tages
$3d^4(^{3}\text{P1})4p$	⁴ P°	3/2	250 891.05	38	19	(³ P2) ⁴ P°
		1/2 5.	251 156.94	43	23	
		⁹ / ₂	251 958.94	39	20	
$3d^4(^3\mathrm{P1})4p$		⁵ /2	251 014.02	22 ⁴ D°	22	(³ P1) ⁴ P°
$3d^4(^{3}\text{P1})4p$	⁴ D°	7/2	251 658.34	37	21	$(^{3}P2) ^{4}D^{\circ}$
-		1/2	251 984.20	30	18	
$3d^4(^3\text{P1})4p$		3/2	251 944.03	25 ⁴ D°	21	(³ P1) ⁴ P°
$3d^4({}^3\mathrm{F1})4p$	⁴G°	5/2	252 884.48	54	18	$({}^{3}F2) {}^{4}G^{\circ}$
		1/2 2	253 254.37	52	20	$({}^{3}F1) {}^{2}F^{\circ}$
		⁹ / ₂	253 827.43	73	22	(°F2) *G°
		11/2	254 164.84	76	22	(*F2) *G*
$3d^{4}(^{3}\text{P1})4p$	$^{2}\mathbf{D}^{\circ}$	5/2	253 575.65	23	25	$({}^{1}\mathbf{F}) {}^{2}\mathbf{D}^{\circ}$
-		3/2	253 868.43	25	26	
$3d^4({}^3\mathrm{F1})4p$	² F°	7/2	253 923 59	52	21	(³ F1) ⁴ G°
(- -) -p		5/2	254 169.13	55	16	(11) 0
$3d^4(^3\mathrm{P1})4p$	${}^{4}S^{\circ}$	3/2	257 503.26	50	45	(³ P2) ⁴ S°
$3d^{4}(^{3}\mathbf{F}^{1})/n$	² C°	9/	959 586 0 9	75	91	$({}^{3}F2) {}^{2}C^{2}$
ou (11)4p	ŭ	1/2 1/2	259 039.72	75	22	(12) 0
$3d^{4}({}^{3}\mathrm{F1})4p$	⁴ D°	7/2	258 591.92	50	17	$({}^{3}F2) {}^{4}D^{\circ}$
		5/2	258 986.64	50	18	
		3/2	259 183.82	49	18	
		¹ / ₂	259 254.34	52	20	
$3d^4(^{3}\text{P1})4p$	$^{2}P^{\circ}$	3/2	259 011.48	61	29	$(^{3}P2)$ $^{2}P^{\circ}$
× / 1		1/2	259 581.64	61	29	
$3d^4(^3\mathbb{P}2)4p$	${}^{2}S^{*}$	¹ / ₂	262 348.36	55	43	(³ P1) ² S°
$3d^4({}^1G1)4p$	² H°	9/	969 557 77	42	21	$({}^{1}G2) {}^{2}H^{\circ}$
ou (01) 1 p		$\frac{12}{11}$	264 011.54	65	32	((()))]]
$3d^4(^1G1)An$	² C°	7/.	969 005 01	57	35	$({}^{1}G2) {}^{2}G^{*}$
5a (G1/1p	ŭ	9/2 9/2	263 876.91	39	23	(42) 4
9-4(101)4-	200	7,	ARE ARI 77	58	91	(1(19) 2p.
3u (GI)4p	ľ	5/2 5/2	265 369.48	49	18	$(\mathbf{G}_{\boldsymbol{z}})$ r
o. 14/3mi). 4	200	5,	244 101 04	41		(350) 2 5 %
$3d^{-}(^{\circ}\mathbf{F}^{1})4p$	-U,	$\frac{7_2}{3_1}$	266 181.09 266 225 21	41	15	(-F 2) - D
		²	200 555.24	Ŧ	10	
$3d^{4}(^{1}\text{D1})4p$	$^{2}P^{\circ}$	³ / ₂	280 758.37	76	16	(¹ D2) ² P°
		1/2	281 446.30	76	17	
$3d^4(^1D1)4p$	² F°	5%	285 052 77	72	19	$(^{1}\text{D2})^{2}\text{F}^{\circ}$
		$\frac{1}{2}$	286 084.72	74	19	(= = / =
$2d^{4}(1)(1) d_{7}$	2 _{D°}	3,	000 100 M0	73	96	(¹ D2) ² D ⁹
ou (DI)4p		$\frac{2}{5_{2}}$	289 818.77	73	20 25	(D_2) D
	1 I					

Fe V

Ti I isoelectronic sequence

Z = 26

Ground state: 1s²2s²2p⁶3s²3p⁶3d⁴ ⁵D₀

Ionization energy = $605\ 000\pm1200\ \text{cm}^{-1}\ (75.0\pm0.2\ \text{eV})$

Bowen's contribution in 1937 established terms of $3d^4$, $3d^{3}4s$, and $3d^{3}4p$, greatly expanding the start made by White (1929). Additions to all three configurations have been made by Fawcett and Henrichs (1974). The analysis of these configurations has been greatly extended by Ekberg (1975), who reobserved the spectrum from 302-1715 Å. He improved the level uncertainty to ± 0.4 cm⁻¹. The leading

percentages given below are also due to Ekberg.

Bowen (1960) has observed lines in nebular spectra due to transitions among levels of the $3d^4$ configuration.

The ionization energy is from the isoelectronic extrapolation of Lotz (1967).

References

Bowen, I. S. (1937), Phys. Rev. 52, 1153.
Bowen, I. S. (1960), Astrophys. J. 132, 1.
Ekberg, J. O. (1975), Phys. Scr. 12, 42.
Fawcett, B. C., and Henrichs, H. F. (1974), Astron. Astrophys. 18, 157.
Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
White, H. E. (1929), Phys. Rev. 33, 914.

	1	1	1	1		
Configuration	Term	J	Level (cm ⁻¹)	Leading	g percentages	5
	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
$3d^4$	⁵ D	0	0.0	100		
	1	1	142.1	100		
		2	417.3	100		
		3	803.1	100		
		4	1 282.8	100		
9.14	800	0	84.0FF 4			3151
3a -	PZ	0	24 055.4	59	40	°P1
	-	1	24 972.9	60	40	
		2	20 408.3	60	39	
$3d^4$	³ H	4	24 932.5	97		
		5	25 225.9	99		
		6	25 528.5	100		
$3d^4$	³ F2	2	26 760.7	78	22	³ F1
		3	26 842.3	75	20	
		4	26 974.0	75	19	
4	9_					
$3d^4$	°G	3	29 817.1	96		
		4	30 147.0	94		
		5	30 430.1	99		
2.24	10.9	1	26 596 9	05	00	VC1
Ju	02	, T	30 300.5	69	99	Ŭ1
$3d^4$	³ D	3	36 630.1	100		
	-	2	36 758.5	99		
		1	36 925.4	100		
$3d^4$	¹ I	6	37 511.7	100		
t	1					1
$3d^{*}$	¹ S2	0	39 633.4	78	21	`S 1
9,74	109	9	46 201 2	70	14	101
90	102	<u>د</u>	40 ZULZ	18	21	DI
$3d^4$	¹ F	3	52 732 7	99		
<u>.</u>		ļ	0.0 10.00			

Fe v

Fe v-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leadi	ng percentages
1	9				2
$3d^*$	°P1	2	61 854.4	61	39 °P2
		1	62 914.2	60	40
		0	63 420.0	60	40
$3d^4$	³ F1	4	62 238.1	80	20 ³ F2
		2	62 321 1	78	22
		3	62 364.4	78	21
$3d^4$	¹ G1	4	71 280.3	66	34 ¹ G2
$3d^4$	¹ D1	2	93 832.3	78	$22 {}^{1}D2$
$3d^4$	¹ S1	0	121 130.2	79	21 $^{1}S2$
2-23(417) 4-	55	1	196 499 6	100	
ou (r /48		1 0	100 400.0	100	
				100	
		3	187 157.5	100	
		4	187 719.0	100	
		5	188 395.3	100	
$3d^{3}({}^{4}\mathrm{F})4s$	³ F	2	195 196.3	100	
		3	195 933.0	100	
		4	196 838.6	100	
$3d^{3}(^{4}\mathrm{P})4s$	5p	1	204 729.9	99	
		2	204 975 4	99	
		3	205 536.4	100	
3d ³ (² C) 4~	30	9	208 828 2	100	
JUL (UT/48	⁰	U A	200 000.2	00	
		4 5	209 523.9	98	
0.13(40)	3-	0	010 5 40 1	0F	27. 3~
$3d^{\circ}(\mathbf{P})4s$	°P	U	212 542.1	85	15 (*P) *P
		1	212 818.1	88	6
		2	213 649.2	91	8
$3d^3(^2\mathrm{G})4s$	¹ G	4	213 534.1	94	5 (² H) ³ H
$3d^{3}(^{2}\mathrm{P})4s$	³ P	2	214 525.8	61	23 (² D2) ³ I
,	-	1	214 611.4	72	14
$3d^{3}(^{2}\text{D2})4s$	3 _D	1	215 782.6	56	$20 (^{2}P) (^{3}P)$
		3	216 538.1	80	$20 (^{2}D1)^{3}$
		2	216 592.7	55	$(^{2}P)^{3}P$
$3d^{3}(^{2}\mathrm{H})4s$	³ Fi	4	216 779.1	94	5 (^{2}G) ¹ G
	11	5	216 860 4	99	. (. , u
		6	217 122.5	100	
$3d^3(^2P)4s$	¹ P	1	219 486.9	90	$5 (^{2}\text{D2})^{-3}\text{D}$
$3d^{3}(^{2}\text{D2})4s$	¹ D	2	220 621.0	77	20 $(^{2}D1)^{-1}D$
$3d^{3}(^{2}\mathrm{H})4s$	¹ H	5	221 305.2	9 9	
9_32(273) 4	311	,	999 can c	100	
oa (−r)4s	T I	4	233 033.0	100	
		ಕ	233 848.9	100	
		2	234 027.4	100	

Fe v-Continued

Configuration	Term	J	Level (cm ⁻¹)	Lead	ling percentages
$3d^{3}({}^{2}\mathrm{F})4s$	¹ F	3	237 729.6	100	
$3d^{3}(^{4}\mathrm{F})An$	5	2	254 803 3	99	
ou (1)4p		3	255 399 2	99	
		ă A	256 177 9	99	
		5	257 138 0	99	
		6	258 297.4	100	
$3d^{3}({}^{4}\mathrm{F})4p$	⁵ F°	1	257 742.3	38	$({}^{4}\mathrm{F}) {}^{3}\mathrm{D}^{\circ}$
		2	259 376.1	51	42 $({}^{4}\mathbf{F}) {}^{5}\mathbf{D}^{\circ}$
		3	259 954.7	78	19 $({}^{4}\mathbf{F}) {}^{5}\mathbf{D}^{\circ}$
		4	260 521.0	90	$6 ({}^{4}F) {}^{5}D^{\circ}$
		5	261 051.9	94	
$3d^{3}({}^{4}\mathrm{F})4p$	⁵ D°	2	258 128.5	48	25 (⁴ F) ⁵ F ⁶
•		0	258 619.5	96	
		3	258 680.0	71	$15 ~({}^{4}\mathrm{F}) {}^{5}\mathrm{F}^{\circ}$
		1	258 891.5	72	20 $({}^{4}\mathbf{F}) {}^{5}\mathbf{F}^{*}$
		4	259 344.8	89	7 $({}^{4}\mathbf{F}) {}^{5}\mathbf{F}^{\circ}$
$3d^{3}(^{2}\text{D1})4s$	³ D	3	258 434.1	80	$20 (^{2}D2)^{3}D$
		2	258 628.5	79	21
		1	258 769.5	78	22
$3d^{3}({}^{4}\mathrm{F})4\rho$	$^{3}D^{\circ}$	1	259 995.2	49	42 $({}^{4}\mathbf{F}) {}^{5}\mathbf{F}^{\circ}$
	~	2	260 411 4	62	23 (⁴ F) ⁵ F°
		3	261 179.6	76	8 (⁴ P) ³ D°
$3d^{3}(^{2}\text{D1})4s$	¹ D	2	262 509.3	79	21 $(^{2}D2)^{-1}D$
$3d^{3}({}^{4}\mathbf{F})4p$	³ G°	3	263 898.6	92	5 $(^{2}G)^{3}G^{\circ}$
-		4	264 434.2	91	
		5	265 112.6	88	6 (⁴ F) ⁵ F°
$3d^3({}^4\mathrm{F})4p$	³ F°	2	266 612.8	94	
-		3	267 240.1	94	
		4	267 928.6	94	
$3d^{3}(^{4}P)4p$	⁵ P°	1	273 643.1	98	
•		2	274 136.1	96	
		3	274 930.3	98	
$3d^{3}(^{4}\mathrm{P})4p$	⁵ D°	0	274 753.3	54	36 (⁴ P) ³ P°
· · · •		1	275 146.6	59	34
		2	276 759 2	58	32
		3	277 068.5	94	
		4	278 075.8	96	
$3d^3(^4P)4p$	$^{3}P^{\circ}$	2	275 374.3	52	36 (⁴ P) ⁵ D°
		0	276 434.9	43	40
		1	276 765.9	54	35
$3d^3(^2\mathrm{G})4p$	³ H°	4	276 429.7	'79	16 $(^{2}H)^{3}H^{\circ}$
		5	277 292.7	73	18
		6	278 650.7	78	21
$3d^3(^2\mathrm{G})4p$	³ G°	3	278 7 9 4.2	77	7 $({}^{2}G) {}^{1}F^{\circ}$
		4	279 502.6	78	9 (² G) ³ F [•]
		5	280 039.6	79	7 $(^{2}G)^{3}H^{3}$

C.

1^{ee}

1000 c

Fe v--Continued

Configuration	Term	<i>J</i>	Level (cm ⁻¹)	Leadin	g percenta	iges
9-1 ³ / ² C \ A.	379	,	200 207 2	10		(20) los
5a (G)4p	·F.	4	280 307.2	46	35	(G) G (² D9) ³ E
		ي ع	280 339.7	60	17	$(D_2)^{-1}r$
		0	200 002.2	0.3	11	() 0
$3d^{3}(^{2}\mathrm{P})4p$	³ P°	1	281 944.9	52	22	$(^{2}\text{D2})^{-3}\text{P}^{2}$
· · · · · · · · · · · · · · · · · · ·	-	0	282 234.5	50	17	$(^{2}\text{D2})^{3}\text{P}$
$3d^3(^2\mathrm{G})4p$	¹ G°	4	282 038.1	50	30	(^{2}G) ³ F°
$3d^3(^4\mathrm{P})4p$		2	282 423.5	27 ⁵ S°	12	$(^{2}P)^{-1}D^{*}$
$3d^3(^2\mathrm{G})4p$	¹ F°	3	282 571.6	67	13	$(^{2}\text{D2})^{-1}\text{F}^{3}$
$3d^3(^4\mathrm{P})4p$	⁵ S°	2	282 604.8	49	21	(^{2}P) $^{1}D^{\circ}$
$3d^{3}(^{2}G)4p$	¹ H°	5	282 871.9	72	18	$(^{2}H)^{-1}H^{\circ}$
$3d^{3}(^{2}\mathrm{P})4n$		2	283 686.3	27 ^{°3} P°	22	(⁴ P) ⁵ S°
· - · - ·		_		-		< - / - ··
$3d^3(^2\mathbf{P})4p$	³ D°	1	283 754.0	81	8	$({}^{4}P) {}^{3}D^{\circ}$
		2	284 911.2	66	9	$(^{2}\mathbf{P})^{-1}\mathbf{D}^{\circ}$
		3	285 474.0	54	15	$(^{2}\text{D2})^{-3}\text{F}$
$3d^{3}(^{2}\mathrm{H})4p$	³ H°	4	284 690.3	69	15	(² G) ³ H°
-		5	284 790.8	78	19	
		6	285 196.1	77	21	
$3d^3(^2\text{D2})4p$	¹ P°	1	285 961 .7	40	21	(^{2}P) $^{1}P^{\circ}$
$3d^{3}(^{2}\text{D2})4p$	³ F°	2	286 154.9	45	15	$({}^{2}G) {}^{3}F^{\circ}$
		4	287 620.2	70	16	$(^{2}\text{D1})^{3}\text{F}^{\circ}$
$3d^3(^2\mathrm{P})4p$	³ S°	1	286 187.7	83	6	(^{2}P) $^{3}P^{\circ}$
$3d^{3}(^{4}\mathrm{P})4p$	³ D°	3	286 431.3	41	24	$(^{2}\text{D2})^{-3}\text{F}^{\circ}$
		1	286 855.3	48	15	$(^{2}D2)^{3}D^{3}$
		2	286 862.7	52	20	(^{2}P) $^{3}D^{\circ}$
$3d^3(^2\mathrm{P})4p$		3	287 109.6	33 ³ D°	23	(² D2) ³ F°
$3d^{3}(^{2}\mathrm{H})4n$	³ I°	5	287 440 5	93	5	(² G) ¹ H [•]
· ···		6	288 167.2	98	0	(/ **
		7	289 171.9	100		
$3d^{3}(^{2}\text{D2})4p$	³ D°	1	288 669.8	58	20	(⁴ P) ³ D°
		2	289 389.7	65	15	
		3	289 913.0	57	10	
$3d^3(^2\mathrm{H})4p$	¹ G°	4	289 545.9	75	17	(^{2}F) $^{1}G^{\circ}$
$3d^3(^2\mathrm{H})4p$	¹ H°	5	290 099.1	75	17	(^{2}G) $^{1}H^{\circ}$
$3d^{3}(^{2}\text{D2})4p$	³ P°	2	290 407.7	38	42	(² P) ³ P°
-		1	290 583.7	43	33	
		0	290 903.4	45	35	
9-13/2700) 4-	1000	9	001 001 1	59	10	$(2D1)^{1}E^{2}$

E~55

Fe v-Continued

Configuration	Term	J	Level (cm ⁻¹)	Lead	ding percent	ages
2 J ⁸ (² 11) / ~	80.	5	909 987 G	09	6	(² F) ³ C°
<i>за</i> (п)4р	G	3	232 287.0	53 89	87	(1) U
		3	292 513 2	82	7	
			202 010.0	05		
$3d^3(^2\mathrm{H})4p$	¹ I°	6	292 365.9	98		
$3d^3(^4P)4p$	³ S°	1	294 644.0	83	8	(² P) ¹ P°
$3d^3(^2\text{D2})4p$	¹ D°	2	295 716.4	46	41	(² P) ¹ D°
$3d^3(^2\mathrm{P})4p$	¹ P°	1	295 973.2	62	18	(² D2) ¹ P°
$3d^{3}(^{2}\mathrm{F})4p$	³ F°	2	302 292.7	92		
-		3	302 377.1	90		
		4	302 602.5	90		
$3d^{3}(^{2}F)4n$	³ G*	3	306 193.9	86	8	$(^{2}H)^{3}G^{\circ}$
500 (1) sp		4	306 622.8	86	8	(,
		5	307 064.4	93	7	
$3d^{3}(^{2}\mathrm{F})4p$	³ D ²	3	307 288.7	85	8	(² D1) ³ D [•]
		2	308 165.0	75	12	$({}^{2}F) {}^{1}D^{\circ}$
		1	308 671.5	90	8	$(^{2}D1)^{-3}D^{\circ}$
$3d^3(^2\mathbf{F})4p$	¹ D°	2	307 644.4	62	18	(² D1) ¹ D°
$3d^3(^2\mathbf{F})4p$	¹ G°	4	311 180.9	80	18	(² H) ¹ G°
$3d^3(^2\mathbf{F})4p$	¹ F°	3	311 538.7	92		
$3d^{3}(^{2}\mathrm{D1})4p$	$^{3}D^{\circ}$	1	327 533.8	76	18	(² D2) ³ D°
		2	327 605.4	75	16	
		3	327 9 24.4	76	15	
$3d^3(^2\text{D1})4p$	$^{1}\mathbf{D}^{\circ}$	2	329 848.6	47	18	(² D2) ¹ D°
$3d^{3}(^{2}\text{D1})4p$	³ F°	2	331 333.8	57	18	(² D2) ³ F [*]
		3	331 367.0	70	21	
		4	332 017.3	76	22	
$3d^3(^2\text{D1})4p$	³ P°	2	334 509.1	75	22	(² D2) ³ P°
			335 267.8	75	24	
		0	335 642.7	75	24	
$3d^{3}(^{2}\text{D1})4p$	¹ F°	3	335 947.4	75	19	$(^{2}\text{D2})$ $^{1}\text{F}^{\circ}$
$3d^3(^2\text{D1})4p$	¹ P°	1	342 462.2	76	23	(² D2) ¹ P*
Fe VI (⁴ F _{3/2})	Limit		605 000			

for the second

fan.

Fe VI

Z = 26

Se Eisoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^{-3-4}F_{3/2}$

lonization energy = $799\ 000\pm 2000\ \mathrm{cm}^{-1}\ (99.1\pm 0.2\ \mathrm{eV})$

The original analysis was by Bowen (1935), whose observations yielded levels of the $3d^3$ and $3d^24p$ configurations. Several levels due to Bowen were published later in a paper by Pasternak (1940). Fawcett and Cowan (1973) observed the $3p^63d^3-3p^53d^4$ transition array between 162 and 180 Å. Fawcett and Henrichs (1974) have classified a number of lines of the $3d^24s-3d^24p$ array. Ekberg (1975) has observed the spectrum from 250 to 1580 Å. He has found all the terms of $3d^3$, $3d^24s$ and $3d^24p$ except $3d^2(1S)4s^2S$.

The present list of levels and leading percentages is compiled from Ekberg, except the configuration $3p^53d^4$, the

levels of which are from Fawcett and Cowan. Ekberg's levels are stated to be uncertain by ± 0.4 cm⁻¹ and those of Fawcett and Cowan by ± 100 cm⁻¹.

Bowen (1960) has observed lines in nebular spectra due to transitions within the $3d^3$ configuration.

The ionization energy is from an isoelectronic extrapolation by Lotz (1967).

References

Bowen, I. S. (1960), Astrophys. J. 132, 1.

Bowen, I. S. (1935), Phys. Rev. 47, 924.

Ekberg, J. O. (1975), Phys. Scr. 11, 23.

Fawcett, B. C., and Cowan, R. D. (1973), Solar Physics 31, 339.

Fawcett, B. C., and Henrichs, H. F. (1974), Astron. Astrophys. 18, 157.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Pasternak, S. (1940), Astrophys. J. 92, 140.

Configuration	Term	J	Level (cm ⁻¹)	Leadin	g percentages	
$3d^3$	4 F	3/5	0.0	100		
	-	2.	511.3	100		
		7/.,	1 188.3	100		
		9/2 9/2	2 000.6	100		
$3d^3$	⁴ P	⅓,	18 738.3	99		
		3/2	18 942.0	98		
		$\frac{5}{2}$	19 610.8	100		
$3d^3$	^{2}G	7/2	20 616.4	100		
		$^{9}\!/_{2}$	21 315.0	98		
$3d^3$	$^{2}\mathbf{P}$	3/2	26 214.9	58	31 $^{2}\text{D2}$	
		1/2	26 495.5	99		
$3d^3$	$^{2}D2$	5/2	28 484.3	80	20 ² D1	
		3/2	28 627.9	46	$40 {}^{2}\mathbf{P}$	
$3d^3$	2 H	⁹ / ₂	28 724.3	98		
		11/2	29 202.9	100		
$3d^3$	$^{2}\mathbf{F}$	7/2	46 217.3	100		
		$\frac{3}{2}$	46 603.7	100		
$3d^3$	2 D1	3/2	71 707.6	80	$20 - {}^{2}D2$	
		3/2	72048.9	78	22	
$3d^2({}^3\mathrm{F})4s$	${}^{4}F$	³ / ₂	$261\ 841.4$	100		
		⁷ / ₂	$262 \ 368.4$	99		
		γ_2	$263\ 135.9$	99		
		9/2	264 118.3	100		

Fe vi

Fe vi-Continued

Configuration	Term	J	Level (cm^{-1})	Lea	ding percent	ages	
$3d^2(^3\mathrm{F})4s$	²F	5/2 7/	269 140.2 270 672 6	99			
		72	210 012.0	99			
$3d^2(^1\mathrm{D})4s$	² D	⁵ / ₂ 3/ ₂	280 901.5 281 217.8	61 51	38 49	(³ P) ⁴ P	
$3d^2(^{3}P)4e$	4p	1/	281 477 0	100			
000 (1),50		3/2	282 035.0	51	47	(¹ D) ² D	
		5√2	282 951.9	62	38	$(^{1}\text{D})^{2}\text{D}$	
$3d^{2}(^{3}\mathrm{P})4s$	^{2}P	¹ / ₂	287 919.2	100			
		³ /2	288 638.3	98			
$3d^{2}({}^{1}\mathrm{G})4s$	² G	9/2	292 313.0	100			
		7/2	292 330.1	100			
$3d^{2}(^{3}\mathbf{F})4p$	⁴G°	5/2	338 256.4	91	6	$({}^{3}F){}^{2}F^{\circ}$	
-		7/2	339 477.0	92	5	$({}^{3}F) {}^{4}F^{\circ}$	
		$\frac{9'_{2}}{11}$	340 935.0	93	7	(³ F) ⁴ F°	
		~~⁄ ₂	342 730.6	100			
$3d^2(^3\mathrm{F})4p$	⁴ F°	³ / ₂	339 539.8	94			
		5/2	340 344.0	94			
		1/2 9/	341 365.3	94	5	(°F) *G°	
		⁷ 2	342 434.4	91	7	(° r ') "G"	
$3d^2({}^3\mathrm{F})4p$	² F°	⁵ /2	342 571.5	58	16	(³ F) ⁴ D°	
		1/2	343 608.2	54	40		
$3d^2({}^3\mathrm{F})4p$	⁴ D°	³ /2	343 210.9	55	30	$({}^{3}\mathbf{F}) {}^{2}\mathbf{D}^{*}$	
		1/2	343 619.3	92	7	$\binom{^{3}P}{^{3}D^{\circ}}$	
		$\frac{\gamma_2}{\tau_1}$	344 273.3	63	23	("F) "F" (³ F) ² F"	
		⁷ 2	343 422.0	θθ.	31	(Г) Г	
$3d^2(^3\mathrm{F})4p$	² D°	³ / ₂	344 652.6	47	36	$\binom{3}{P} \frac{4}{D}$	
		″ ₂	3.45 907.1	62	15	(°P) 2D°	
$3d^2(^3\mathrm{F})4p$	² G°	7/2	348 962.1	94	4	$(^{1}\mathbf{G})^{-2}\mathbf{G}^{\circ}$	
		9/2	350 017.8	94	4		
$3d^2(^3\mathrm{P})4p$	${}^{2}S^{\circ}$	¹ /2	351 805.8	98			
$3d^2(^3\mathrm{P})4p$	⁴ S°	³/2	355 657.1	90	9	(¹ D) ² P*	
$3d^{2}(^{1}\mathrm{D})4n$	² p•	3/2	357 755 2	80	0	(³ P) ⁴ S°	
5a (2) p	-	1/2 1/2	359 099.3	51	40	$({}^{3}P) {}^{4}D^{\circ}$	
$3d^{2}(^{1}\mathrm{D})4n$	200	5/0	358 334 6	83	6	(³ F) ² F°	
00 (2 7 4	-	η_2'	359 884.0	77	12	(^{3}P) $^{4}D^{\circ}$	
$3d^2(^{3}\mathcal{P})4\pi$	4D°	1/2	359 895 9	59		(¹ D) ² D ^o	
ou (1)+p	~	3/2	359 781.3	90	**	$(^{3}F)^{4}D^{\circ}$	
		5/2	360 707.1	85	6	$(^{3}\mathbf{F})$ $^{4}\mathbf{D}^{\circ}$	
		¹ / ₂	362 270.0	82	12	$(^{1}\mathrm{D})$ $^{2}\mathrm{F}^{\circ}$	
$3d^{2}(^{1}\mathrm{D})4p$	² D°	3/2	361 858.2	80	6	(³ F) ² D°	
- /		5.				o ' 4	

1.500

, and the second

free.

			Fe VI-Continued		
Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percentages
$3d^2(^3\mathrm{P})4p$	⁴ P°	1/2 3/2 5/2	363 945.7 364 392.9 365 494.0	98 97 87	13 (¹ D) ² D'
$3d^2({}^1\mathrm{G})4p$	2 G°	7/2 9/2	365 077.0 365 266.6	93 94	$5 ({}^{3}F) {}^{2}G^{\circ}$
$3d^2(^3\mathrm{P})4p$	$^{2}\mathrm{D}^{\circ}$	³ / ₂ ⁵ / ₂	370 538.1 370 579.6	78 80	$12 ({}^{3}F) {}^{2}D^{\circ}$
$3d^2({}^1\mathrm{G})4p$	² H°	⁹ / ₂ ¹¹ / ₂	372 095.6 373 706.1	98 100	
$3d^2(^3\mathrm{P})4p$	$^{2}\mathrm{P}^{\circ}$	$\frac{1}{2}$	374 088.3 374 425.6	98 95	
$3d^2({}^1\mathrm{G})4p$	${}^{2}\mathrm{F}^{\circ}$	7/2 5/2	377 951.8 379 077.6	95 97	4 $(^{1}\mathbf{D})$ $^{2}\mathbf{F}^{\circ}$
$3d^2(^1\mathrm{S})4p$	$^{2}\mathrm{P}^{\circ}$	$\frac{1}{2}$ $\frac{3}{2}$	408 207.4 410 389.5	97 98	
$3p^{5}({}^{2}\mathrm{P}^{\circ})3d^{4}({}^{1}\mathrm{G})$	² G°	7/2 9/2	575 930 576 990		
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{4}(^{5}\mathrm{D})$	⁴ D°	1/2 3/2 5/2 7/2	603 210 604 230 605 420 606 230		
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{4}(^{3}\mathrm{H})$	² H°	⁹ / ₂ ¹¹ / ₂	603 340 605 740		
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{4}(^{3}\mathrm{F})$	² D°	⁵ / ₂ ³ / ₂	617 520 618 290		
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{4}(^{3}\mathrm{H})$	²G°	9/2 7/2	630 240 631 240		
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{4}(^{3}\mathrm{G})$	² F°	7/2 5/2	634 170 635 430		
Fe VII $({}^{3}F_{2})$	Limit		799 000		

Fe VII

Z = 26

Ca I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^{2}{}^{3}F_2$

Ionization energy = $1.008\ 000\pm100\ \mathrm{cm}^{-1}\ (124.98\pm0.01\ \mathrm{eV})$

The initial work by Cady (1933) on this spectrum was gradually extended by numerous contributions. Ekberg (1981) has completely reobserved the spectrum and greatly extended the analysis. His paper gives more than 400 lines in the region 104-270 Å classified as transitions to the lowest configuration, $3p^63d^2$, and 20 lines between 1010 and 1362 Å in the 3d4s-3d4p transition array. He states that the uncertainty of the levels of $3d^2$ is ± 1 cm⁻¹, while for the excited configurations the uncertainty increases from ± 4 to ± 20 cm⁻¹ as the level value rises. He has made parametric calculations for $3d^2$, 3d4s, 3dnf, n=4-6, and $3p^53d^24s$. In the calculations for 3d4f configuration interaction with $3p^53d^3$ was included. The repeating ²D terms of $3d^3$ were distinguished by the letters A and B by Ekberg. No indication of seniority contributions was given.

The 3d4p configuration has been calculated by Warner and Kirkpatrick (1969). Their percentage compositions as communicated privately to us are given here.

A number of forbidden transitions among levels of the $3d^2$ configuration have been listed by Bowen (1960). Their wavelengths are improved by Ekberg.

The ionization energy was determined by Ekberg from five different 3duf series.

References

Bowen, I. S. (1960), Astrophys. J. 132, 1.

Cady, W. M. (1933), Phys. Rev. 43, 324.

Ekberg, J. O. (1981), Physica Scripta 23, 7.

Warner, B., and Kirkpatrick, R. C. (1969), Mon. Not. R. Astron. Soc. 144, 397.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Configuration	Term	J	Level (cm ⁻¹)	Leading	percentages	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^6 3d^2$	³ F	2	0.0	100		
$3p^6 3d^2$ 1D217 475.5936 3P $3p^6 3d^2$ 3P 020 040.3100 $3p^6 3d^2$ 3P 020 040.3100 $3p^6 3d^2$ 1G 428 927.3100 $3p^6 3d^2$ 1G 428 927.3100 $2p^6 3d^2$ 1S 067 078.3100 $3p^6 3d 4s$ 3D 1 $344 463.3$ 100 $3p^6 3d 4s$ 3D 1 $344 463.3$ 100 $3p^6 3d 4s$ 1D 2 $350 332.6$ 97 $3p^6 3d 4p$ $^3D^{\circ}$ 1 $425 128.6$ 97 $3p^6 3d 4p$ $^3D^{\circ}$ 1 $425 784.7$ 83 $3p^6 3d 4p$ 1D 2 $350 332.6$ 97 $3p^6 3d 4p$ $^3D^{\circ}$ 1 $425 784.7$ 83 $3p^6 3d 4p$ $^1D^{\circ}$ 2 $425 386.1$ 76 $3p^6 3d 4p$ $^1D^{\circ}$ 2 $425 386.1$ 76			3	1 051.5	100		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	2 331.5	100		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3p^6 3d^2$	¹ D	2	17 475.5	93	6	³ P
1 1 $20 430.1$ 100 $3p^6 3d^2$ 1 G4 $28 927.3$ 100 $2p^6 3d^2$ 1 S0 $67 078.3$ 100 $3p^6 3d 4s$ 3 D 1 $344 463.3$ 100 $3p^6 3d 4s$ 3 D 1 $344 463.3$ 100 $3p^6 3d 4s$ 1 D 2 $350 332.6$ 97 $3p^6 3d 4p$ 1 D 2 $350 332.6$ 97 $3p^6 3d 4p$ 1 D 2 $425 128.6$ 97 $3p^6 3d 4p$ 1 D 2 $430 948.6$ 75 $3p^6 3d 4p$ 1 D* 2 $425 386.1$ 76 $21 ^{3}$ F*	$3p^6 3d^2$	³ P	0	20 040.3	100		
$3p^6 3d^2$ 1 G 2 $21\ 278.6$ 94 $6^{-1}D$ $3p^6 3d^2$ 1 G 4 $28\ 927.3$ 100 $ 2p^6 3d^2$ 1 S 0 $67\ 078.3$ 100 $ 3p^6 3d\ 4s$ 3 D 1 $344\ 463.3$ 100 $ 3p^6\ 3d\ 4s$ 3 D 1 $344\ 463.3$ 100 $ 3p^6\ 3d\ 4s$ 1 D 2 $350\ 332.6$ 97 $ 3p^6\ 3d\ 4p$ 3 D° 1 $425\ 128.6$ 97 $2\ ^{-1}P^{\circ}$ $3p^6\ 3d\ 4p$ 3 D° 1 $425\ 128.6$ 97 $2\ ^{-1}P^{\circ}$ $3p^6\ 3d\ 4p$ 3 D° 1 $425\ 128.6$ 97 $2\ ^{-1}P^{\circ}$ $3p^6\ 3d\ 4p$ 3 D° 1 $425\ 128.6$ 97 $2\ ^{-1}P^{\circ}$ $3p^6\ 3d\ 4p$ 3 D° 1 $425\ 128.6$ 97 $2\ ^{-1}P^{\circ}$ $3p^6\ 3d\ 4p$ 1 D° 2 $425\ 386.1$ $76\ 21\ ^{3}F^{\circ}$	-	_	1	20 430.1	100		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	21 278.6	94	6	^{1}D
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^6 3d^2$	¹ G	4	28 927.3	100		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2p^6 3d^2$	¹ S	0	67 078.3	100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^6 3d 4s$	³ D	1	344 463.3	100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	345 028.7	97		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	346 262.2	100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^6 3d 4s$	¹ D	2	350 332.6	97		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3p^6 3d 4p$	³ D°	1	425 128.6	97	2	¹ P°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	427 784.7	83	7	¹ D°
$3p^6 3d 4p$ $^1D^\circ$ 2 $425 386.1$ 76 $21 {}^3F^\circ$			3	430 948.6	75	23	⁸ F°
	$3p^6 3d 4p$	$^{1}D^{\circ}$	2	425 386.1	76	21	⁸ F°
$3p^6 3d 4p$ $^3F^{\circ}$ 2 430 213.4 72 15 $^1D^{\circ}$	3 p⁶ 3d 4p	³ F°	2	430 213.4	72	15	¹ D*
3 431609.5 77 23 $^{3}D^{\circ}$			3	431 609.5	77	23	⁸ D°
4 433 871.2 100			4	433 871.2	100		
$3n^6 3d 4n$ $3n^6$ 1 $d 26 059 9$ 92 $e^{-1}n^6$	3n ⁶ 3d 4n	3100	1	136 959 9	02	c	10.
	op ou sp		Ô	400 002.2	100	U	1
2 437 558 0 96			2	437 558.0	96		

Fe vu

C. CORLISS AND J. SUGAR

Fe v11–Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading per	rcentages	
$3p^6 3d 4p$	¹ F°	3	439 811.6	93		
$3p^6 3d 4p$	$^{1}\mathbf{P}^{2}$	1	443 447.0	92	6	³ F°
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{G})$	$^{1}\mathrm{H}^{\circ}$	5	464 034			
$3p^{5}(^{2}\mathbb{P}^{*})3d^{3}(^{2}\mathbb{F})$	³ G°	5	472 559			
		4 3	472 903 481 435			
$3p^5(^2\mathrm{P^{\circ}})3d^3(^2\mathrm{F})$	¹ G°	4	496 454			
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{H})$	³G°	3	510 086			
-		4	510 158 514 133			
$3n^{5}(^{2}\mathbf{P}^{\circ})3d^{3}(a^{2}\mathbf{D})$	¹ D°	2	538 290			
	3704	2	510.000			
$3p^{o}(2P^{o})3d^{o}(2P)$	°D'	2 3	548 274 551 568			
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{F})$	¹ D°	2	553 220			
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{G})$	${}^{1}\mathbf{\tilde{F}}^{\circ}$	3	556 422			
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{4}\mathrm{P})$	₃₽∘	1 2	561 303 565 275			
$3p^{5}(^{2}\mathbb{P}^{\circ})3d^{3}(^{4}\mathbb{P})$	³ F°	2 3 4	564 425 566 256 568 118			
$3p^{5}(^{2}\mathbf{P}^{*})3d^{3}(^{2}\mathbf{P})$	${}^{1}\mathbf{P}^{2}$	1	598 638			
$3p^{5}(^{2}\mathrm{P}^{*})3d^{3}(^{4}\mathrm{F})$	³ D°	3	603 419			
		2 1	603 757 604 270			
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{H})$	${}^{1}\mathbf{G}^{\bullet}$	4	605 489			
$3p^5(^2{ m P}^\circ)3d^3(^4{ m P})$	${}^{3}S^{2}$	1	623 699			
$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(b^{2}\mathrm{D})$	¹ P°	1	630 283			
$3p^6 3d4f$	¹ G°	4	659 917	56	25	³ F°
$3p^6 3d4f$	³ F°	2	660 015	94		
		3 4	660 358 661 169	94 70	26	${}^{1}G^{\circ}$
$3p^6 3d4f$	³ G°	3	663 097	87	9	${}^{1}\overline{\mathbf{F}}^{\circ}$
• •		4	663 950	94 97		
0_60.140	1700		004 402	00		
3p° 3d4f	יע- י	z	603 871	90		9
$3p^{\circ} 3d4f$	¹ F°	3	665 417	58	30	°D

ENERGY LEVELS OF IRON

Fe vII-Continued

pur.

بالاستعادين

for the second

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Configuration	Term	J	Level (cm ¹)	Lea	ding percen	tages
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3p^6 3d4f$	³ D°	1	665 832	92	5	3 b °
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1		2	665 923	85	10	³ P°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	666 651	66	31	¹ F°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3p^{6} 3d4f$	³ P°	2	667 899	85	11	³ D°
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	668 253	92	6	³ D.
$gp^6 3d4f$ $^1H^2$ 5 $669 978$ 96 $gp^6 3d4f$ $^1P^2$ 1 $672 820$ 908 $3p^4(^2P) 3d^4(^1D) ^1P$ $gp^6(^2P) 3d^4(^2P) 4g^{(^2P)}$ $^1D^2$ $12 745 556$ $78 73$ $20 (^2P') (^2P) ^3D^2$ $gp^6(^2P') 3d^4(^2P) 4g^{(^2P)}$ $^3G^2$ $55 766 991$ $94 78 813$ $56 (^2P') (^4P) ^5P^2$ $3p^5(^2P') 3d^2(^2P) 4g^{(^2P)}$ $^3G^2$ $55 766 991 78 813$ $95 77 76 8931$ $50 776 8931$ $3p^5(^2P') 3d^2(^2P) 4g^{(^2P)}$ $^3P^2$ $776 8435$ $36 77 77 77 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 77 777 612 78 65 78 77 777 612 78 65 78 77 777 612 78 65 78 77 777 612 78 65 78 78 77 777 612 78 65 78 78 77 777 612 78 65 78 77 777 612 78 65 78 78 78 78 78 78 78 78 78 78 78 78 78 $			0	668 489	99		
$3p^8 3d4f$ $^1P^*$ 1 $672 829$ 908 $3p^{b}({}^{2}P^{*})3d^{b}(b^{D}){}^{1}P$ $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ $^1D^*$ 1 $245 556$ 78 29 $({}^{2}P^{*})({}^{3}P){}^{1}D^{*}$ $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ $3G^*$ 5 $766 991$ 94 5 $({}^{2}P^{*})({}^{4}P){}^{5}P^{*}$ $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ $3G^*$ 5 $766 991$ 94 5 $({}^{2}P^{*})({}^{4}P){}^{5}P^{*}$ $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ $3G^*$ 2 $768 485$ 95 16 $3p^{b}({}^{2}P^{*})3d^{c}({}^{1}Q) 4s^{c}({}^{2}Q)$ $3P^{*}$ 3 $778 429$ 45 35 25 $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ $3P^{*}$ 4 $779 575$ 35 32 9 $({}^{2}P^{*})({}^{2}P){}^{3}P^{*}$ $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ 9^{*} 4 $788 209$ 72 9 $({}^{2}P^{*})({}^{2}P){}^{3}P^{*}$ $3p^{b}({}^{2}P^{*})3d^{c}({}^{2}P) 4s^{c}({}^{2}P)$ $3P^{*}$ 4 $788 209$ 72 9 $({}^{2}P^{*})({}^{2}P){}^{3}P^{*}$ $3p^{b}({}^{3}d5f)$ ${}^{1}G^{*}$ 4 $788 209$ 72 9 $({}^{2}P^{*})({}^{2}P){}^{3}P^{*}$ $3p^{b}({}^{3}d5f)$ ${}^{1}G^{*}$ 4 $788 209$ 72 9 $({}^{2}P^{*})({}^{2}P){}^{3}P^{*}$ $3p^{b}({}^{3}d5f)$ ${}^{1}G^{*}$ $786 732$ $78 737$ 91 5 $3P^{*}$ $3p^{b}({}^{$	$3p^6 3d4f$	¹ H°	5	669 978	98		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3p ⁶ 3d4f	¹ P°	1	672 820	90	8	$3p^{5}(^{2}P^{*})3d^{3}(b^{2}D)$ ¹ P
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^{5}(^{2}\mathrm{P}^{*}) 3d^{2}(^{3}\mathrm{F}) 4s(^{2}\mathrm{F})$	$^{3}D^{\circ}$	1	745 556	78	20	(² P°)(² P) ³ D°
$3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(3}p)$ $3G^{*}$ $3G^{*}$ $3G^{*}$ 766991 944 67 29 $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{3}P^{*}$ 2 7688991 964 7 7 $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{3}P^{*}$ 2 7688425 955 771612 955 $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{3}P^{*}$ 3 7723488 772575 355 326 $(^{2}p^{+})(^{4}p)^{5}P^{*}$ $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{1}D^{*}$ 2 779009 45 21 $(^{2}p^{+})(^{4}p)^{5}P^{*}$ $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{1}D^{*}$ 2 779009 45 21 $(^{2}p^{+})(^{4}p)^{5}P^{*}$ $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{1}D^{*}$ 3 782009 52 96 21 $(^{2}p^{+})(^{2}p)^{5}P^{*}$ $3p^5(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{3}P^{*}$ 3 789119 52 18 $(^{2}p^{+})(^{2}p)^{5}P^{*}$ $3p^{5}(^{2}p^{+}) 3d^{2}(^{3}p) 4a^{(2}p)$ $^{3}P^{*}$ 788119 56 12 10^{*} $3p^{5}3d5f$ $^{1}G^{*}$ 4 784174 48 46 $^{3}H^{*}$ $3p^{6}3d5f$ $^{3}P^{*}$ 2 788009 76 21 10^{*} $3p^{6}3d5f$ $^{3}P^{*}$ 2 7887737 91 57 18 $^{3}P^{*}$ $3p^{6}3d5f$ $^{1}D^{*}$ 2 7888309 61 22 $^{2}P^{*}$ $3p^{6}3d5f$ <td></td> <td></td> <td>2</td> <td>746 965</td> <td>73</td> <td>24</td> <td></td>			2	746 965	73	24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	749 166	67	29	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^{5}(^{2}P^{\circ}) 3d^{2}(^{3}F)4s(^{2}F)$	$^{3}\mathrm{G}^{\circ}$	5	766 991	94	5	$(^{2}P^{\circ})(^{4}F)$ $^{5}F^{\circ}$
$3p^{6}(^{2}P^{+}) 3d^{2}(^{3}P) 4e^{(^{2}P)}$ $3p^{9}$ 2 1 $768 425$ $777 6128$ 95 95 $3p^{5}(^{2}P^{+}) 3d^{2}(^{1}G) 4e^{(^{2}G)}$ $^{3}P^{*}$ 3 4 $778 420$ $779 575$ 45 36 32 92 $(^{2}P^{+})(^{4}P)^{3}P^{*}$ 32 $3p^{5}(^{2}P^{+}) 3d^{2}(^{1}D) 4e^{(^{2}D)}$ $^{1}D^{*}$ 2 $779 069$ 45 21 $(^{2}P^{+})(^{2}P)^{3}P^{*}$ 32 $3p^{5}(^{2}P^{+}) 3d^{2}(^{3}P) 4e^{(^{2}P)}$ $^{3}P^{*}$ 4 3 $782 2000$ $728 719$ 72 9 9 $(^{2}P^{+})(^{2}P)^{3}P^{*}$ 32 $3p^{5}(^{2}P^{+}) 3d^{2}(^{3}P) 4e^{(^{2}P)}$ $^{3}P^{*}$ 4 3 $782 2000$ $789 119$ 72 92 9 $(^{2}P^{+})(^{2}P)^{3}P^{*}$ $3p^{5}(^{2}P^{+}) 3d^{2}(^{3}P) 4e^{(^{2}P)}$ $^{3}P^{*}$ 4 3 $782 2000$ $789 119$ 72 92 9 $(^{2}P^{+})(^{2}P)^{3}P^{*}$ $3p^{5}3d5f$ $^{3}P^{*}$ 4 3 $782 2000$ $789 119$ 72 92 9 $(^{2}P^{+})(^{2}P)^{3}P^{*}$ $3p^{5}3d5f$ $^{3}P^{*}$ 4 3 $784 174$ $785 012$ 90 46 21 $2P^{*}$ 10^{*} $3p^{5}3d5f$ $^{3}P^{*}$ 2 $3P^{5}8009$ 74 12 10^{*} 10^{*} $3p^{5}3d5f$ $^{3}D^{*}$ 1 2 $788 030$ $788 119$ 75 18 $18^{-3}P^{*}$ $3p^{5}3d5f$ $^{3}D^{*}$ 1 2 $788 030$ $788 363$ 74 $12^{-3}P^{*}$ $3p^{6}3d5f$ $^{3}P^{*}$ 1 2 $788 930$ $788 363$ <			4	768 813	83	7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	769 991	50	16	
11771 612 778 48895 97 $3p^5(^2P^*) 3d^2(^1G) 4s(^2G)$ $^3P^*$ 3 778 488 97 $3p^5(^3P^*) 3d^2(^1D) 4s(^2D)$ $^1D^*$ 2 779 009 45 $21 (^2P^*)(^3P) ^3F^*$ $3p^5(^3P^*) 3d^2(^1D) 4s(^2P)$ $^3P^*$ 4 $782 090$ 72 $9 (^2P^*)(^2G) ^3F^*$ $3p^5(^3P^*) 3d^2(^3P) 4s(^2P)$ $^3P^*$ 4 $782 090$ 72 $9 (^2P^*)(^2G) ^3F^*$ $3p^5(^3D^*) 3d^2(^3P) 4s(^2P)$ $^3P^*$ 4 $782 090$ 72 $9 (^2P^*)(^2G) ^3F^*$ $3p^5(^3D^5) 3d^2f$ $^1G^*$ 4 $784 174$ 48 $46 ^{-3}H^*$ $3p^5(^3d5f)$ $^3H^*$ 4 $784 477$ 50 $29 ^{-1}G^*$ $3p^6(^3d5f)$ $^3P^*$ 2 $784 737$ 866 $12 ^{-1}D^*$ $3p^6(^3d5f)$ $^3P^*$ 2 $786 012$ 90 $21 ^{-1}G^*$ $3p^6(^3d5f)$ $^3G^*$ 3 $786 732$ 78 $16 ^{-1}P^*$ $3p^6(^3d5f)$ $^1D^*$ 2 $786 8300$ 74 $12 ^{-3}P^*$ $3p^6(^3d5f)$ $^1D^*$ 2 $786 830$ 74 $12 ^{-3}P^*$ $3p^6(^3d5f)$ $^3P^*$ 2 $788 9455$ 56 $41 ^{-3}D^*$ $3p^6(^3d5f)$ $^3P^*$ 2 $788 9955$ 56 $41 ^{-3}D^*$ $3p^6(^3d5f)$ $^1P^*$ 3 $789 215$ 64 $31 ^{-3}D^*$ $3p^6(^3d5f)$ $^1P^*$ 1 $790 708$ 93 32 $3p^6(^3d5f)$ $^1P^*$ 3 $789 21$	$3p^{5}(^{2}P^{\circ}) 3d^{2}(^{3}P)4s(^{2}P)$	³ P°	2	768 425	95		
$gp^6(^2P^*) 3d^6(^1Q) 4s (^6Q)$ $^9P^*$ 3 $^{778} 420$ 45 36 $^{2}P^*(^4P)^3P^*$ $3p^5(^2P^*) 3d^2(^1Q) 4s (^6Q)$ $^1D^*$ 2 $^{779} 009$ 45 $^{21} (^2P^*)(^2P)^3P^*$ $3p^5(^2P^*) 3d^2(^3P) 4s (^2P)$ $^8P^*$ 4 $^{782} 2090$ 72 $^9 (^2P^*)(^2Q)^3P^*$ $3p^5(^3D^*) 3d^2(^3P) 4s (^2P)$ $^8P^*$ 4 $^{784} 174$ 48 46 $^{8}H^*$ $3p^5(^3d5f)$ $^1G^*$ 4 $^{784} 174$ 48 46 $^{8}H^*$ $3p^6(^3d5f)$ $^3H^*$ 4 $^{784} 174$ 86 $^{12} ^{10}$ $3p^6(^3d5f)$ $^3F^*$ 2 $^{786} 1737$ 86 $^{12} ^{10}$ $3p^6(^3d5f)$ $^3F^*$ 2 $^{786} 737$ 91 $^{1}G^*$ $3p^6(^3d5f)$ $^1D^*$ 2 $^{787} 9455$ 78 16 $^{12} ^{10}$ $3p^6(^3d5f)$ $^1D^*$ 2 $^{786} 8300$ 74 $^{12} ^{3}P^*$ $3p^6(^3d5f)$ $^3D^*$ 1 $^{787} 9455$ 75 $^{18} ^{3}P^*$ $3p^6(^3d5f)$ $^3P^*$ 2 $^{788} 9955$ 56 $41 ^{3}P^*$ $3p^6(^3d5f)$ $^1P^*$ 3 $^{789} 215$ 64 $31 ^{-8}P^*$ $3p^6(^3d5f)$ $^1P^*$ 3 $^{789} 215$ 64 $31 ^{-8}P^*$ $3p^6(^3d5f)$ $^1P^*$ 3 $^{789} 215$ 64 $31 ^{-8}P^*$ $3p^6(^3d5f)$ $^1P^*$ 1 $^{790} 708$ 93 $^{10}^*$ <	-		1	771 612	95		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0	773 488	97		
4 $779 575$ 36 32 $3p^5(^2P^*) 3d^2(^1D) 4s(^2D)$ $^1D^*$ 2 $779 069$ 45 $21 (^2P^*)(^2F) ^3F^*$ $3p^5(^2P^*) 3d^2(^3P) 4s(^2P)$ $^3F^*$ 4 $782 690$ 72 $9 (^2P^*)(^2G) ^3F^*$ $3p^5 3d5f$ $^1G^*$ 4 $784 174$ 48 $46 ^{-3}H^*$ $3p^5 3d5f$ $^3H^*$ 4 $784 477$ 50 $29 ^{-1}G^*$ $3p^5 3d5f$ $^3H^*$ 4 $784 477$ 50 $29 ^{-1}G^*$ $3p^6 3d5f$ $^3F^*$ 2 $786 732$ 90 $21 ^{-1}D^*$ $3p^6 3d5f$ $^3F^*$ 2 $786 732$ 78 $16 ^{-1}P^*$ $3p^6 3d5f$ $^3G^*$ 3 $786 732$ 78 $16 ^{-1}P^*$ $3p^6 3d5f$ $^1D^*$ 2 $786 830$ 74 $12 ^{-3}P^*$ $3p^6 3d5f$ $^3D^*$ 1 $787 945$ 75 $18 ^{-3}P^*$ $3p^6 3d5f$ $^3D^*$ 1 $787 945$ 75 $18 ^{-3}P^*$ $3p^6 3d5f$ $^3D^*$ 1 $788 995$ 56 $41 ^{-3}D^*$ $3p^6 3d5f$ $^3P^*$ 3 $788 303$ 60 $20 ^{-1}F^*$ $3p^6 3d5f$ $^1P^*$ 3 $789 215$ 64 $31 ^{-3}D^*$ $3p^6 3d5f$ $^1P^*$ 3 $789 215$ 64 $31 ^{-3}D^*$ $3p^6 3d5f$ $^1P^*$ 1 $790 708$ 98 98 $3p^6 3d5f$ $^1H^*$ 5 $791 168$ 98 98	$3p^{5}(^{2}P^{\circ}) 3d^{2}(^{1}G)4s(^{2}G)$	³ F*°	3	778 420	45	36	$(^{2}P^{\circ})(^{4}F)$ $^{3}F^{\circ}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		4	779 575	36	32	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^{5}(^{2}\mathrm{P}^{\circ}) \ 3d^{2}(^{1}\mathrm{D}) 4s \ (^{2}\mathrm{D})$	$^{1}D^{\circ}$	2	779 009	45	21	$(^{2}P^{\circ})(^{2}F)$ $^{3}F^{\circ}$
q_{p} (1) q_{p} (1) q_{p} (q_{p}) q_{p} (q_{p}) q_{p} (q_{p}) q_{p}) q_{p} (q_{p}) q_{p}) q_{p}) q_{p} (q_{p}) q_{p}) q_{p}) q_{p}) q_{p} (q_{p}) q_{p}) q_{p}) q_{p}) q_{p} q_{p}^{6} 3 $d5f$ q_{p} (q_{p}) q_{p}) q_{p} q_{p} (q_{p}) q_{p}) q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 $d5f$ q_{p} q_{p} q_{p} q_{p} q_{p} q_{p}^{6} 3 q_{p}^{6} 3 q_{p}^{6} q_{p}^{6} q_{p}^{6} q_{p}^{6} q_{p}^{6} q_{p}^{6} 3 q_{p}^{6} q_{p}^{6} q_{p}^{6} q_{p}^{6} q_{p}^{6} q_{p}^{6} q	$3n^5(^2P^\circ) 3d^2(^3F)4s(^2F)$	3510	4	782 690	72	9	$(^{2}P^{\circ})(^{2}G)^{3}F^{\circ}$
$3p^6 3d5f$ $^1G^\circ$ 4 $784 174$ 48 $46^{-5}H^\circ$ $3p^6 3d5f$ $^3H^\circ$ 4 $784 477$ 50 $29^{-1}G^\circ$ $3p^6 3d5f$ $^3F^\circ$ 2 $785 012$ 90 $12^{-1}D^\circ$ $3p^6 3d5f$ $^3G^\circ$ 3 $786 732$ $785 012$ 90 $3p^6 3d5f$ $^3G^\circ$ 3 $786 732$ 78 $16^{-1}P^\circ$ $3p^6 3d5f$ $^1D^\circ$ 2 $786 830$ 74 $12^{-3}P^\circ$ $3p^6 3d5f$ $^1D^\circ$ 2 $786 830$ 74 $12^{-3}P^\circ$ $3p^6 3d5f$ $^3D^\circ$ $\frac{1}{2}$ $787 945$ 75 $18^{-3}P^\circ$ $3p^6 3d5f$ $^3D^\circ$ $\frac{1}{2}$ $788 930$ 60 $20^{-1}P^\circ$ $3p^6 3d5f$ $^3D^\circ$ $\frac{1}{2}$ $788 995$ 56 $41^{-3}D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 2 $788 995$ 56 $41^{-3}D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 3 $789 215$ 64 $31^{-3}D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 3 $789 215$ 64 $31^{-3}D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 1 $790 708$ 98 98		•	3	783 119	52	13	$(^{2}P^{\circ})(^{2}F)$ $^{3}G^{\circ}$
$3p^6 3d5f$ $^3H^*$ 4 $784 477$ 50 $29^{-1}G^*$ $3p^6 3d5f$ $^3F^*$ 2 $784 733$ 86 $12^{-1}D^*$ $3p^6 3d5f$ $^3G^*$ 3 $786 732$ 78 $16^{-1}F^*$ $3p^6 3d5f$ $^3G^*$ 3 $786 732$ 78 $16^{-1}F^*$ $3p^6 3d5f$ $^1D^*$ 2 $786 830$ 74 $12^{-3}P^*$ $3p^6 3d5f$ $^3D^*$ $\frac{1}{2}$ $788 945$ 75 $18^{-3}P^*$ $3p^6 3d5f$ $^3P^*$ 2 $788 995$ 56 $41^{-3}D^*$ $3p^6 3d5f$ $^3P^*$ 2 $788 995$ 56 $41^{-3}D^*$ $3p^6 3d5f$ $^1F^*$ 3 $789 215$ 64 $31^{-3}D^*$ $3p^6 3d5f$ $^1P^*$ 1 $790 708$ 93 $12^{-1}P^*$ $3p^6 3d5f$ $^1P^*$ 5 $791 168$ 93 $11^{-1}P^*$	3p ⁶ 3d5f	¹ G°	4	784 174	48	46	³ H°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3p^6 3d5f$	³ H°	4	784 477	50	29	¹ G°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	-				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3p° 3d5f	° F °	2	784 733	86	12	¹ D°
$3p^6 3d5f$ $^3G^\circ$ 3 $786 732$ 4 5 $788 737$ $787 737$ 91 78 97 16 $^1F^\circ$ 5 $3p^6 3d5f$ $^1D^\circ$ 2 $786 830$ 74 12 $3P^\circ$ $3p^6 3d5f$ $^1D^\circ$ 2 $786 830$ 74 12 $3P^\circ$ $3p^6 3d5f$ $^3D^\circ$ 1 2 $3P^\circ$ $787 945$ 2 $3P^\circ$ 75 18 $3P^\circ$ $3p^6 3d5f$ $^3D^\circ$ 1 2 $3P^\circ$ $787 945$ 2 $3P^\circ$ 75 18 $3P^\circ$ $3p^6 3d5f$ $^3P^\circ$ 2 1 0 $787 945$ 2 $2P^\circ$ $788 030$ $3P^\circ$ 60 20 $1F^\circ$ $3p^6 3d5f$ $^3P^\circ$ 2 1 0 $789 995$ $789 3855$ 56 100 41 $^3D^\circ$ $3p^6 3d5f$ $^1F^\circ$ 3 $799 708$ $789 215$ 98 64 31 $^3D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 1 $799 708$ 98 -1 98			3	785 012	90	01	1,-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	785 809	10	21	G
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3p ⁶ 3d5f	³ G°	3	786 732	78	16	1 pro 9
$3p^6 3d5f$ $^1D^\circ$ 2 $786 830$ 74 $12^{-3}P^\circ$ $3p^6 3d5f$ $^3D^\circ$ 1 $787 945$ 75 $18^{-3}P^\circ$ $3p^6 3d5f$ $^3D^\circ$ 1 $788 930$ 51 $32^{-3}P^\circ$ $3p^6 3d5f$ $^3P^\circ$ 2 $788 933$ 60 $20^{-1}F^\circ$ $3p^6 3d5f$ $^3P^\circ$ 2 $788 995$ 56 $41^{-3}D^\circ$ $3p^6 3d5f$ $^1F^\circ$ 3 $789 215$ 64 $31^{-3}D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 1 $790 708$ 93 93 $3p^6 3d5f$ $^1H^\circ$ 5 $791 168$ 93			4	787 737	91	5	° F *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5	788 146	97		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3p^6 3d5f$	¹ D°	2	786 830	74	12	${}_{3}\mathrm{P}_{\circ}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3p^6 3d5f$	${}^{3}\mathbf{D}^{\bullet}$	1	787 945	75	18	$^{3}\mathrm{P}^{2}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	788 030	51	32	^{3}P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	788 303	60	20	'F'°
1 78 9 172 78 21 3 D° 3p ⁶ 3d5f 1 F° 3 789 215 64 31 3 D° 3p ⁶ 3d5f 1 P° 1 790 708 93 93 3p ⁶ 3d5f 1 H° 5 791 168 93 93	$3p^6 3d5f$	³ P°	2	788 995	56	41	³ D°
0 789 365 100 $3p^6 3d5f$ $^1F^\circ$ 3 789 215 64 $31^{-3}D^\circ$ $3p^6 3d5f$ $^1P^\circ$ 1 790 708 93 $3p^6 3d5f$ $^1H^\circ$ 5 791 168 93			1	789 172	78	21	³ D°
$3p^6 3d5f$ ${}^1F^\circ$ 3 789 215 64 31 ${}^3D^\circ$ $3p^6 3d5f$ ${}^1P^\circ$ 1 790 708 93 $3p^6 3d5f$ ${}^1H^\circ$ 5 791 168 93			0	789 365	100		
3p ⁶ 3d5f ¹ P° 1 790 708 93 3p ⁶ 3d5f ¹ H° 5 791 168 93	$3p^6 3d5f$	¹ F °	3	789 215	64	31	³ D°
$3p^{6} 3d5f$ ¹ H° 5 791 168 98	$3p^6 3d5f$	¹ P°	1	790 708	93		
	$3p^6 3d5f$	1H.	5	791 168	98		

C. CORLISS AND J. SUGAR

Fe vii--Continued

Configuration	Term	J	Level (cm ⁻¹)	Leadin	g percents	iges
$3p^{5(^{2}P^{\circ})} 3d^{2(^{3}F)}4s(^{4}F)$	³ G°	3	794 149	45	30	$(^{2}P^{\circ})(^{2}D)^{3}F^{\circ}$
		4	797 712	65	9	$(^{2}P^{\circ})(^{2}F)$ $^{1}G^{\circ}$
		5	800 633	69	12	$(^{2}P^{\circ})(^{2}G)^{-1}H^{\circ}$
$3p^{5}(^{2}\mathrm{P}^{\circ}) \ 3d^{2}(^{3}\mathrm{F}) 4s \ (^{4}\mathrm{F})$		3	797 257	38 ³ G°	33	$(^{2}P^{\circ})(^{2}D)$ $^{3}F^{\circ}$
$3p^{5}(^{2}\mathrm{P}^{\circ}) \ 3d^{2}(^{3}\mathrm{F}) 4s \ (^{2}\mathrm{F})$	${}^{1}\mathbf{G}^{\circ}$	4	802 462	67	13	$(^{2}P^{\circ})(^{4}F)$ $^{3}G^{\circ}$
$3p^5(^2\mathbb{P}^*) \ 3d^2(^1\mathbb{G}) 4s \ (^2\mathbb{G})$	¹ H°	5	806 033	61	21	(² P°)(² G) ³ H ⁴
$3p^{5}(^{2}\mathrm{P}^{\circ}) \ 3d^{2}(^{1}\mathrm{D}) 4s \ (^{2}\mathrm{D})$	¹ F °	3	807 627	64	30	$(^{2}P^{*})(^{2}D)$ $^{3}F^{*}$
$3p^{5}(^{2}\mathrm{P}^{\circ}) 3d^{2}(^{3}\mathrm{P}) 4s(^{2}\mathrm{P})$	³ D°	3	812 086	63	30	$(^{2}P^{\circ})(^{2}F)^{3}D^{\circ}$
-		2	813 877	65	23	
		1	817 195	71	19	
$3p^{5}(^{2}P^{\circ}) 3d^{2}(^{3}P) 4s (^{4}P)$	³ D°	1	822 689	79	8	$(^{2}P^{*})(^{2}P)^{-3}D^{*}$
		2	824 184	75	7	$\binom{^{2}P^{\circ}}{^{2}}\binom{^{2}P}{^{2}}$
		3	827 533	81	7	$(^{2}P^{\circ})(^{4}F) ^{3}D^{\circ}$
$3p^{5}(^{2}\mathrm{P}^{\circ}) \ 3d^{2}(^{3}\mathrm{P})4s(^{4}\mathrm{P})$	³ S°	1	826 106	97		
$3p^{5}(^{2}\mathrm{P}^{\circ}) \ 3d^{2}(^{3}\mathrm{P}) 4s \ (^{2}\mathrm{P})$	¹ D°	2	829 626	72	8	$(^{2}P^{\circ})(^{4}P) \ ^{3}D^{\circ}$
$3p^{5}(^{2}\mathrm{P}^{\circ}) 3d^{2}(^{1}\mathrm{G})4s(^{2}\mathrm{G})$	³ G°	5	832 889	88	8	$(^{2}P^{\circ})(^{4}F)$ $^{3}G^{\circ}$
		4	832 893	91	6	
		3	833 128	93	5	
$3p^{5}(^{2}\mathrm{P^{\circ}}) \ 3d^{2}(^{3}\mathrm{P})4s(^{2}\mathrm{P})$	³ S°	1	837 472	97		
3p ⁶ 3d6f	³ H°	4	852 601	61	34	¹ G°
$3p^6 3d6f$		4	853 307	33 ³ H°	30	¹ G*
$3p^6 3d6f$	³ F°	2	853 433	77	19	¹ D°
· · · · · · ·		3	853 697	79	11	³ G'
		4	854 767	63	31	$^{1}G^{\circ}$
$3p^{6} 3d6f$	${}^{3}G^{\circ}$	3	854 760	65	24	¹ F°
		4	855 969	82	11	⁸ F°
		5	856 260	93	6	³ H.
$3p^6 3d6f$	${}^{1}\mathbf{D}^{\circ}$	2	854 838	40	34	³ P°
$3n^6 3d6f$	³ D°	1	855 346	64	22	³ P'
op oan		3	856 109	49	19	³ F [*]
$3p^6 3d6f$		2	855 903	38 ¹ D °	29	³ D,
3p ⁶ 3d6f	${}^{1}\mathbf{F}^{\circ}$	3	856 797	61	32	³ D°
3n ⁶ 3d6f	${}^{3}P^{\circ}$	2	856 811	48	48	³ D°
op oa op		1	856 975	71	28	³ D*
		0	857 082	100		
$3p^6 3d6f$	${}^{1}\mathbf{H}^{\bullet}$	5	857 881	94		
$3p^6 3d7f$	³ F°	2	894 718			
,		3	894 944			
		4	896 382			
Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percentages	
---	-----------------	----------	---------------------------	------	---	
$3p^6 3d7f$	³ G°	3	895 744			
		4	897 077			
		5	897 254			
$3p^{6} 3d7f$	1H.	5	898 243			
$3p^6 3d8f$	³ F°	3	921 694			
		4	923 282			
$3n^6 3d8f$	³G°	4	923 716			
-p such		5	923 838			
3p ⁶ 3d8f	1 H °	5	924 479			
$3p^{5}(^{2}\mathrm{P}^{\circ}) 3d^{2}(^{3}\mathrm{P}) 4s (^{4}\mathrm{P})$	³ P°	2	928 684	75	$16 (^{2}P^{\circ})(^{2}D) ^{3}P^{\circ}$	
$3p^6 3d9f$	³ G°	4	941 918			
<i>op</i> ,		5	942 022			
$3p^6 3d9f$	1H°	5	942 477			
$3p^{6} 3d 10f$	³ G°	4	954 904			
op 22 - 17		5	954 966			
$3p^6 3d 10f$	¹ H°	5	955 307			
Fe viii $(^{2}D_{3/2})$	Limit		1 008 000			

Fe vII-Continued

free.

1ª

paren.

 \sim

Fe Vill

Z = 26

5

K 1 isoelectronic sequence

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 D_{3/2}$

Ionization energy = $1.218.380 \pm 100 \text{ cm}^{-1} (151.061 \pm 0.012 \text{ eV})$

The ground-term splitting was determined by Cowan and Peacock (1965) by means of four pairs of lines arising from the $3p^53d^2$ configuration. This upper configuration was interpreted by the same authors. Earlier, Krager and Weissberg (1937) reported the one-electron terms $3p^6({}^{1}S)$ 5s, 6s, 4p, 4f, 5f, 6f, and 7f. With light sources allowing differentiation among highly ionized species Alexander, Feldman, and Fraenkel (1965) determined that the lines used by Kruger et al. to establish 5s, 6s, and 4p were erroneously assigned to Fe VIII. This finding has been confirmed privately by Ekberg.

The levels of $3p^53d4s$ were deduced by Cowan (1967) from lines reported by Feldman and Fraenkel (1966).

The spectrum has now been remeasured between 93 and 233 Å with an uncertainty of ± 0.003 Å by Ramonas and Ryabtsev (1980). They have redetermined all the known level values and extended the analysis. Their results are given below. The leading percentages were supplied privately by Cowan.

We have determined the ionization energy from the new measurements of the nf series. The 7f term is predicted to be 590 cm⁻¹ below the observed value.

References

- Alexander, E., Feldman, U., and Fraenkel, B. S. (1965), J. Opt. Soc. Am. 55, 650.
- Cowan, R. D., and Peacock, N. J. (1965), Astrophys. J. 142, 390.

Cowan, R. W. (1967), Astrophys. J. 147, 377.

Feldman, U., and Fraenkel, B. S. (1966), Astrophys. J. 145, 959.

Kruger, P. G., and Weissberg, S. G. (1937), Phys. Rev. 52, 314.

Ramonas, A. A., and Ryabtsev, A. N. (1980), Opt. Spectrosc. 48, 631.

Configuration	Term	J	Level (cm ⁻¹)	I	eading perc	entages
$3p^6({}^1\mathrm{S})3d$	² D	³ / ₂ ⁵ / ₂	0 1 836			
$3p^{5}(^{2}P^{\circ})3d^{2}(^{1}G)$	² F°	5/2 7/2	431 250 434 555	44 45	37 41	$(^{2}P^{\circ})(^{3}F)$ $^{2}F^{\circ}$
$3p^{5}(^{2}P^{2})3d^{2}(^{1}D)$	² F'°	7/2 5/2	447 656 459 367	72 91	23 4	${(^{2}P^{\circ})(^{3}F)}^{2}G^{\circ}$ ${(^{2}P^{\circ})(^{3}P)}^{4}D^{\circ}$
$3p^{5}(^{2}P^{\circ})3d^{2}(^{1}S)$	$^{2}P^{\circ}$	³ / ₂ 1/ ₂	508 518 520 822?	61 77	23 14	3p ⁶ 4p ⁻² P° 3p ⁵ (² P°)3d ² (¹ D) ⁻² P°
$3p^6(^1\mathrm{S})4p$	$^{2}\mathbf{P}^{\circ}$	1/2 3/2	510 277 515 550	94 74	4 18	$3p^{5}(^{2}\mathrm{P}^{*})3d^{2}(^{1}\mathrm{S})^{-2}\mathrm{P}^{*}$
$3p^{5}(^{2}\mathbf{P}^{*})3d^{2}(^{3}\mathbf{F})$	² F°	5/2 7/2	535 909 541 755	53 50	45 48	$(^{2}P^{\circ})(^{1}G)^{-2}F^{\circ}$
$3p^5(^2\mathrm{P^*})3d^2(^3\mathrm{P})$	² P°	¹ / ₂ ³ / ₂	591 964 595 152	72 73	14 16	$(^{2}P^{\circ})(^{1}D)$ $^{2}P^{\circ}$
$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}F)$	² D°	5/2 3/2	596 463 597 065	71 71	17 17	$(^{2}\mathbf{P}^{\circ})(^{1}\mathbf{D})$ $^{2}\mathbf{D}^{\circ}$
$3p^6(^1\mathrm{S})4f$	² F **	5/2 7/2	763 703 763 799	98 98		
$3p^5 3d(^3\mathrm{P}^\circ)4s$	² P°		837 661 842 829	98 95		

Fe viii

Configuration	Term	J	Level (cm ⁻¹)	Lea	iding percen	itages
$3p^5 3d({}^3F^{\circ})4s$	4F12	7/2 5/2 3/2	847 145 849 899 852 849?	95 92 96		
$3p^5 3d({}^3{ m F}^{ m o}) 4s$	² F°	7/2 5/2	855 100 860 615	94 89	4	(¹ D [*]) ² D [*]
$3p^5 3d(^3\mathrm{D^o})4s$	⁴ D°	7/2 5/2 3/2 1/2	874 711 876 765 877 476 878 264?	81 74 76 98	18 10 19	$\begin{array}{c} ({}^{1}F^{*}) \;\; {}^{2}F^{*} \\ ({}^{1}D^{*}) \;\; {}^{2}D^{*} \\ ({}^{1}D^{*}) \;\; {}^{2}D^{*} \end{array}$
$3p^5 3d(^1D^\circ)4s$	$^{2}\mathrm{D}^{\circ}$	⁵ /2 ³ /2	879 021 881 345	48 77	25 20	(³ D°) ² D° (³ D°) ⁴ D°
$3p^5 3d({}^1\mathrm{F}^\circ)4s$	°F°	5/2 7/2	884 331 887 325	46 78	27 16	(¹ D °) ² D ° (³ D °) ⁴ D °
$3p^5 3d(^3{ m D}^{\circ}) 4s$	² D°	³ /2 ⁵ /2	889 113 890 845	98 68	20	$\left(\frac{1}{\mathbf{F}}^{\circ} ight)^{2}\overline{\mathbf{F}}^{\circ}$
$3p^6(^1S)5f$	² F°	5/2 7/2	927 059 927 102			
$3p^6(^1\mathrm{S})6f$	²F°	5/2 7/2	1 016 560 1 016 570			
$3p^6({}^1\mathbf{S})7f$	² F°	5/2 7/2	1 069 873 1 070 029			
Fe IX $(^{1}S_{0})$	Limit		1 218 380			

Fe viii-Continued

//***

Alter.

э

Fe IX

Z = 26

Ar I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^{6-1}S_0$

lonization energy = $1.884.000 \pm 3000 \text{ cm}^{-1} (233.6 \pm 0.4 \text{ eV})$

This spectrum was first investigated by Kruger, Weissberg, and Phillips (1937), who identified the resonance lines arising from the two J=1 levels of the $3p^54s$ configuration. The present values of these levels are taken from the paper of Fawcett, Cowan, Kononov, and Hayes (1972).

All levels of the $3s^23p^53d$ configuration were determined from combinations with $3s3p^63d$ by Svensson, Ekberg and Edlén (1974). Using these levels to predict forbidden transitions within $3s^23p^53d$, Edlén and Smitt (1978) identified a number of well-measured solar lines obtained with Skylab and redetermined most of the level values. Their results are quoted here. The $3s3p^63d$ levels are from Smitt and Svensson (1978). The uncertainty of the connection of these two configurations to the ground state is ± 5 cm⁻¹.

The $3p^54d$ and $3p^55s$ levels were found by Alexander, Feldman, and Fraenkel (1965). The present values for the two $3p^54d$ levels are obtained from the measurements of Fawcett et al. The uncertainty is less than 100 cm⁻¹. The $3p^54f$ level values given here were derived by combining the $3p^53d-3p^54f$ line identifications of Wagner and House (1971) and of Fawcett et al. with the level values of $3p^53d$ of Edlén and Smitt. The $3p^54f$ levels clearly follow a J_1l coupling scheme, the designations having been assigned by comparison with isoelectronic spectra.

The $3s3p^64p$ term is from Kastner, Crooker, Behring, and Cohen (1977).

We have derived the ionization energy from the $3p^54s$ and $3p^55s$ configurations under the assumption of a change in effective quantum number $\Delta n^* = n^*(5s) - n^*(4s) = 1.024$, as observed in similar spectra. The stated uncertainty in the ionization energy is based on an estimated uncertainty of ± 0.005 in the value of Δn^* .

References

Alexander, E., Feldman, U., and Fraenkel, B. S. (1965), J. Opt. Soc. Am. 55, 650.

Edlén, B., and Smitt, R. (1978), Sol. Phys. 57, 329.

- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. B5, 1255.
- Kastner, S. O., Crooker, A. M., Behring, W. E., and Cohen, L. (1977), Phys. Rev. A16, 577.
- Kruger, P. G., Weissberg, S. G., and Phillips, L. W. (1937), Phys. Rev. 51, 1090.
- Smitt, R., and Svensson, L. A. (1978), Atomic Spectroscopy, Univ. of Lund, Annual Report.

Svensson, L. Å., Ekberg, J. O., and Edlén, B., (1974), Sol. Phys. 34, 173. Wagner, W. J., and House, L. L. (1971), Astrophys. J. 166, 683.

Configuration	Term	J	Level (cm ⁻¹)
$3p^6$	^{1}S	0	0
$3p^5 3d$	³ P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	405 772 408 315.1 413 669.2
$3p^5 3d$	3È.	4 3 2	425 809.8 429 310.9 433 818.8
$3p^5 3d$	³ D°	3 1 2	455 612.2 460 616 462 616.6
$3p^5 3d$	¹ D°	2	456 752.7
$3p^5 3d$	¹ F°	3	465 828.4
$3p^5 3d$	¹ P°	1	584 546

Fe 1x

f^{an,}

faren.

per ca

	Fe IX-Continued								
Configuration	Term	J	Level (cm ⁻¹)						
$3s3p^63d$	³ D	1 2 3	726 734 727 560 728 935						
$3s3p^6 3d$	$^{1}\mathbf{D}$	2	749 871						
$3p^5(^2\mathrm{P}^*_{3/2})4s$	(³ / ₂ , ¹ / ₂)°	1	950 500						
$3p^5(^2\mathrm{P}^\circ_{1/2})4s$	(¹ / ₂ , ¹ / ₂)°	1	965 570						
$3p^54d$	⁹ P°	1	1 198 220						
$3p^54d$	¹ P°	1	1 213 150						
$3p^5(^2\mathrm{P}^\circ_{3/2})4f$	² [³ ⁄ ₂]	1 2	1 300 920 1 302 840						
$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f$	² [%2]	5 4	1 304 600 1 306 320						
$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f$	² [⁵ / ₂]	3	1 305 760						
$3p^5(^2\mathrm{P}^\circ_{3/2})4f$	² [⁷ / ₂]	3 4	1 310 160 1 311 750						
$3p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f$	² [⁵ / ₂]	3	1 323 660						
$3p^5(^2\mathbf{P}^{\circ}_{1/2})4f$	² [⁷ / ₂]	3 4	1 324 720 1 324 800						
$3p^5(^2\mathrm{P}^{\circ}_{3/2})5s$	(³ / ₂ , ¹ / ₂) °	1	1 358 140						
$3s3p^6 4p$	$^{1}P^{\circ}$	1	1 371 910						
$3p^5(^2\mathrm{P}^{\circ}_{1/2})5s$	$(\frac{1}{2},\frac{1}{2})^{\circ}$	1	1 372 670						
Fe x $({}^{2}P_{3/2}^{*})$	Limit		1 884 000						

Fe X

Z=26

Cl I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^{5-2} P_{3/2}^{\circ}$

Ionization energy = 2 114 000 \pm 1000 cm⁻¹ (262.1 \pm 0.1 eV)

The $3s^23p^44s$ levels and the $3s^23p^{5} {}^{2}P^{\circ}$ term interval were established with an uncertainty of $\pm 50 \text{ cm}^{-1}$ by the identification of a group of eight lines at 94–98 Å by Edlén in 1937. The value of the $3s^23p^5 {}^{2}P^{\circ}$ interval was later more precisely determined by Grotrian (1939) to $\pm 0.1 \text{ cm}^{-1}$ through his identification of the solar coronal line at 6374.51 Å as the $3s^23p^5$ magnetic dipole transition ${}^{2}P_{3/2}^{\circ}-{}^{2}P_{1/2}^{\circ}$ in Fe X, which was confirmed by Edlén (1942). The $3s3p^53d {}^{4}F^{\circ}$ term is from Smitt (1977). The $3s3p^{6} {}^{2}S$ term was first located by Fawcett (1971). We use the improved measurements of Smitt, Svensson, and Outred (1976), which provide a level uncertainty of $\pm 5 \text{ cm}^{-1}$.

Edlén and Smitt (1978) derived levels of the $3s^23p^43d$ configuration relative to its lowest level (${}^{4}D_{7/2}$) using forbidden transitions within this configuration observed in the solar corona. The ${}^{4}D_{7/2}$ and ${}^{4}D_{5/2}$ levels are unresolved.

Bromage, Cowan, and Fawcett (1977) give the connection of ${}^{4}D_{5/2}$ to the $3s^{2}3p^{5} {}^{2}P_{3/2}$ ground state with an uncertainty of $\pm 10 \text{ cm}^{-1}$ and report additional levels of $3s^{2}3p^{4}3d$. They have also provided the leading percentages for the levels. The $3s^{2}3p^{4}4p$, 4d, and 4f level values are derived from the identifications of Fawcett, Cowan, Kononov, and Hayes (1972), who also give the percentage composition of the levels. Their levels are uncertain by less than 100 cm⁻¹.

Edlén (1937) derived the ionization energy by isoelectronic extrapolation.

References

Bromage, G. E., Cowan, R. D., and Fawcett, B. C. (1977), Phys. Scr. 15, 177.

Edlén, B. (1937), Z. Phys. 104, 407.

- Edlén, B. (1942), Z. Astrophys. 22, 30.
- Edlén, B., and Smitt, R. (1978), Sol. Phys. 57, 329.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. B5, 1255.
- Grotrian, W. (1939), Naturwiss. 27, 214.
- Smitt, R. (1977), Sol. Phys. 51, 113.
- Smitt R., Svensson, L. A., and Outred, M. (1976), Phys. Scr. 13, 293.

Configuration	Configuration Term		iguration Term J Level (cm ⁻¹)		Level (cm^{-1})	Leading percentages		
$3s^2 3p^5$	² P°	3/2 1/2	0.0 15 683.1					
$3s3p^6$	^{2}S	1/2	289 249					
$3s^2 3p^4(^3P) 3d$	⁴ D	7/2 5/2 3/2 1/2	388 709 388 709 390 050 391 555	97 95 94 96				
$3s^2 3p^4(^{3}P) 3d$	⁴F	9/2 7/2 5/2 3/2	417 653 422 795 426 763 428 298	94 89 94 90				
$3s^2 3p^4({}^1\mathrm{D}) 3d$	² P	³ / ₂	431 928	45	33 (³ P) ² P			
$3s^2 3p^4(^1\text{D})3d$	² D	3/2	434 614	43	27 (³ P) ² D			
$3s^2 3p^4(^{3}\mathrm{P})3d$	4P	1/2 5/2	434 800 441 853	96 45	23 (¹ D) ² Ŭ			
$3s^2 3p^4(^3\mathbf{P})3d$	$^{2}\mathbf{F}$	7/2 5/2	440 840 452 730?	55 78	$\begin{array}{ccc} 28 & ({}^{1}\mathbf{D}) \; {}^{2}\mathbf{G} \\ 15 & ({}^{1}\mathbf{D}) \; {}^{2}\mathbf{F} \end{array}$			
$3s^2 3p^4$ ^(1D) $3d$	² G	9/2 7/2	450 751 451 084	94 67	25 (³ P) ² F			

Fe x

Fe x-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages		

$3s^2 3p^4({}^1D)3d$	²F'	7/2	485 983	84		
$3s^2 3p^4({}^1S)3d$	² D	3/2	511 800	69	$26 (^{1}D) ^{2}D$	
$3s^2 3p^4({}^1\mathrm{D})3d$	^{2}S	¹ /2	541 879	73	23 3 <i>s</i> 3 <i>p</i> ^{6 2} S	
$3s^2 3p^4(^3F) 3d$	2P	⁸ / ₂ 1/ ₂	564 198 569 985	52 54	40 (¹ D) ² P 45	
$3s^2 3p^4(^3\mathrm{P}) 3d$	²D	5/2 3/2	572 954 586 244	66 61	21 (¹ D) ² D 17	
$3s3p^5({}^3\mathrm{P}^{\circ})3d$	4¥5°	9/2 7/2 5/2 8/2 8/2	696 661 699 492 702 585 705 430			
$3s^2 3p^4 (^3P) 4s$	⁴ P	⁵ /2 3/2	1 022 100 1 029 630			
3s ² 3p ⁴ (³ P)4s	² P	³ / ₂ 1/ ₂	1 040 350 1 048 890			
$3s^2 3p^4({}^1\mathrm{D}) 4s$	² D	⁵ / ₂ ³ / ₂	1 063 690 1 064 190			
$3s^2 3p^4(^3P) 4p$	⁴ P°	⁵ /2	1 118 490?	84	14 (^{3}P) 4d	
$3s^2 3p^4 (^3 P) 4p$	4D.	"∕₂	1 130 430			
$3s^2 3p^4(^1\mathrm{D})4p$	² F'°	5/2 7/2	1 161 930 1 165 710			
$3s^2 3p^4({}^1\mathrm{D}) 4p$	$^{2}D^{\circ}$	⁵ /2	1 178 850?			
$3s^2 3p^4(^3\mathbf{P})4d$	²D	⁵ /2 ³ /2	1 284 270 1 285 180	65 58	$\begin{array}{ccc} 14 & {}^{2}\mathbf{F} \\ 20 & {}^{4}\mathbf{P} \end{array}$	
$3s^2 3p^4(^3P) 4d$	⁴ F	⁵ /2	1 286 540	77	14 (³ P) ² D	
$3s^2 3p^4(^3P)4d$	${}^{2}\mathbf{F}$	5/2	1 288 210			
$3s^2 3p^4(^{3}P)4d$	² P	³ /2	1 295 260	82	$10 ({}^{3}\mathbb{P}) {}^{2}\mathbb{D}$	
$3s^2 3p^4(^1\mathbf{D})4d$	²P	³ / ₂ 1/ ₂	1 315 690 1 317 390	79	18 (³ P) ² P	
$3s^2 3p^4(^1\mathrm{D})4d$	² D	5/2 3/2	1 321 270 1 322 960			
$3s^2 3p^4(^{3}P)4f$	4F°	⁹ /2	1 388 450			
$3s^2 3p^4(^{3}P)4f$	4G°	$^{11/2}_{9/2}_{7/2}$	1 397 130 1 399 850 1 409 730	47 61	40 (³ P) ² G° 14 (³ P) ² F°	
$3s^2 3p^4(^3{ m P})4f$	² G°	⁹ / ₂	1 408 650	49	42 (${}^{3}P$) ${}^{4}G^{\circ}$	

ļam.

/m.

	Fe x-Continued								
Configuration	Term	J	Level (cm ⁻¹)	Leading percentages					
$3s^2 3p^4({}^1\mathrm{D}) 4f$	² H°	¹¹ / ₂	1 429 300						
$3s^2 3p^4({}^1\mathrm{D})4f$	² G°	%	1 441 660						
$3s^2 3p^4({}^1S) 4f$	${}^{2}\mathbf{F}^{\circ}$	⁵ /2	1 484 290						
Fe x1 $({}^{3}P_{2})$	Limit		2 114 000						

Fe XI

Z = 26

S I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^{4-3}P_2$

Ionization energy = 2 341 000 \pm 5000 cm⁻¹ (290.3 \pm 0.6 eV)

This spectrum was first investigated by Edlén (1937), who observed and identified the group of $3s^23p^4-3s^23p^34s$ transitions occurring at about 90 Å. He established most of the levels of these two configurations. Grotrian (1939) identified a solar coronal line at 7891 Å as the transition between the $3s^23p^4$ ³P₂ and ³P₁ levels. This was subsequently confirmed by Edlén (1942), who also identified a coronal line at 3986.9 Å as the $3s^23p^4$ transition ³P₁-¹D₂.

The separations of these levels quoted here are derived from wavelengths from the coronal observations of Jefferies (1969). He assigns an estimated accuracy of ± 0.4 Å, which corresponds to about ± 1 cm⁻¹ in the levels. The $3s^23p^{4+1}S_0$ level is derived from the solar line at 1467.08 Å observed by Doschek et al. (1976), which was identified by both Svensson (1971) and Jordan (1971) as the $3s^23p^4$ transition ${}^{3}P_{1}{}^{-1}S_{0}$.

The $3s^23p^4-3s^3p^5$ array was analyzed by Fawcett (1971). The more accurate measurements of Smitt, Svensson, and Outred (1976) are used here to obtain the levels of $3s^3p^5$ and the ${}^{3}P_0$ level of $3s^23p^4$ with an uncertainty of ± 5 cm⁻¹.

The $3s^23p^34s$ levels are derived from the 1937 observations of Edlén, with the dropping of the identification of the original singlet-triplet intercombination lines at 86.149 and 89.771 Å, as noted by Edlén in 1942. The level uncertainty for this configuration is $\pm 50 \text{ cm}^{-1}$. The line at 89.771 Å has been given by Fawcett, Cowan, Kononov, and Hayes (1972) as the $3s^23p^4$ ${}^{1}S_0-3s^23p^34s$ ${}^{1}P_1^{\circ}$ transition in Fe XI. However, this identification is inconsistent with Edlén's identification of the line at 86.513 Å as the $3s^23p^4$ ${}^{1}D_2-3s^23p^34s$ ${}^{1}P_1^{\circ}$ transition, which fixes the position of the $3s^23p^34s^{-1}P_1^{\circ}$ level. The $3s^23p^34s^{-5}S^{\circ}$ and ${}^{3}P^{\circ}$ terms have not yet been located.

The classifications for the $3p^4-3p^33d$ array are from Bromage, Cowan, and Fawcett (1977) and Fawcett (1971). The leading percentages for the $3p^33d$ were calculated including configuration interaction with $3s3p^5$, $3p^53d$ and $3s3p^33d^2$ by Bromage et al., but only the results for $3p^33d$ were published. Levels are derived with an uncertainty of $\pm 20 \text{ cm}^{-1}$ from the more accurate solar wavelengths $(\pm 0.008 \text{ \AA})$ of Behring, Cohen, and Feldman (1972).

The $3s^23p^34d$ levels are taken from the work of Fawcett, Cowan, Kononov, and Hayes and are reliable to ± 100 cm⁻¹. These authors have also observed a number of lines identified as $3s^23p^33d-3s^23p^34f$ and $3s^23p^33d-3s^23p^34p$ transitions of Fe XI. However, it is not possible to derive level values from these identifications inasmuch as none of the levels involved is part of the system of levels given here. The leading percentages for the $3s^23p^34d$ ¹D₂ level are from Fawcett et al.

The ionization energy is from an isoelectronic extrapolation by Lotz (1967).

References

- Behring, W. E., Cohen, L., and Feldman, U. (1972), Astrophys. J. 175, 493.
- Bromage, G. E., Cowan, R. D., and Fawcett, B. C. (1977), Phys. Scr. 15, 177.
- Doschek, G. A., Feldman, U., Van Hoosier, M. E., and Bartoe, J.-D. F. (1976), Astrophys. J. Suppl. Ser. **31**, 417.
- Edlén, B. (1937), Z. Phys. 104, 188.
- Edlén, B. (1942), Z. Astrophys. 22, 30.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. B5, 1255.
- Grotrian, W. (1939), Naturwiss. 27, 214.
- Jefferies, J. T. (1969), Mem. Soc. Roy. Sci. Liege, Collect. 8, 17, 213.
- Jordan, C. (1971), Solar Phys. **21**, 381.
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
- Smitt, R., Svensson, L. A., and Outred, M. (1976), Phys. Scr. 13, 293.
- Svensson, L. Å. (1971), Solar Phys. 18, 232.

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
3s ² 3p ⁴	³Р	2 1 0	0.0 12 667.9 14 312	
$3s^2 3p^4$	¹ D	2	37 743.6	
$3s^2 3p^4$	¹ S	0	80 814.7	
3s3p ⁵	₃ b.	2 1 0	283 558 293 158 299 163	

Fe XI

E-72

C. CORLISS AND J. SUGAR

Fe xi-Continued

Configuration	Term	J	Level (cm ⁻¹)	Lead	Leading percentages		
3s3p ⁵	¹ P°	1	361 842				
$3s^2 3p^3(^2\mathbf{P}^\circ) 3d$	³ P°	2	496 090	80			
$3s^2 3p^3(^2D^{\circ}) 3d$	ļ	1	526 480	38 ³ S°	23	³ P°	
$3s^2 3p^3(^2\mathrm{D}^\circ) 3d$	3Þ.	2 1 0	531 290 541 390 541 720	74 42 62	15 16 19	$3s3p^5$ ³ P° $3s^23p^3(^2P^\circ)3d$ ³ P° $3s^23p^3(^2P^\circ)3d$ ³ P°	
$3s^2 3p^3(^2D^\circ) 3d$	³ S°	1	533 450	53	28	(² D°) ¹ P°	
$3s^2 3p^3({}^4\mathrm{S}^\circ) 3d$	³ D°	3 2 1	554 300 561 610 566 380	46 41 42	31 31 36	(² P°) ³ D°	
$3s^2 3p^3 (^2 \mathrm{D}^\circ) 3d$	¹ D°	2	578 860	70	20	$(^{2}P^{\circ})$ $^{1}D^{\circ}$	
$3s^2 3p^3(^2D^{\circ}) 3d$	¹ F°	3	594 030	62	33	$(^{2}P^{\circ})$ $^{1}S^{\circ}$	
$3s^2 3p^3 (^2P^\circ) 3d$	¹ P°	1	623 080	90			
$3s^2 3p^3 ({}^4S^\circ) 4s$	³ S°	1	1 121 230				
$3s^2 3p^3 (^2 \mathrm{D}^\circ) 4s$	³ D°	1 2 3	1 148 590 1 149 100 1 152 450				
$3s^2 3p^3 (^2 \mathrm{D}^{\circ}) 4s$	¹ D°	2	1 160 030				
$3s^2 3p^3 ({}^2\mathbf{P}^{\circ}) 4s$	¹ P°	1	1 193 640				
$3s^2 3p^3 ({}^4\mathrm{S}^\circ) 4d$	³ D°	3	1 376 750				
$3s^2 3p^3(^2\mathrm{D^\circ})4d$	$^{1}D^{\circ}$	2	1 420 680	72	10	(² D°) ³ D°	
$3s^2 3p^3(^2\mathbf{D}^\circ)4d$	¹ F°	3	1 423 440				
Fe XII $({}^4S^{\circ}_{3/2})$	Limit		2 341 000				

Fe XII

Z = 26

P I isoelectronic sequence

Configuration

 $3s3p^4$

 $3s3p^4$

 $3s3p^4$

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S^{\circ}_{3/2}$

Ionization energy = $2.668.000 \pm 5000 \text{ cm}^{-1} (330.8 \pm 0.6 \text{ eV})$

The level values of the $3s^23p^3$ ground configuration are determined from four solar coronal lines. The lines at 1242 and 1349 Å were identified by Burton, Ridgeley, and Wilson (1967) as $3p^3 {}^{4}S^{\circ}_{3/2} - 3p^3 {}^{2}P^{\circ}_{3/2,1/2}$ New measurements for these lines by Doschek et al. (1976) with an uncertainty of ±0.05 Å are used here. The line at 2169.7 Å measured by Gabriel et al. (1971) was identified as $3p^{3/4}S^{\circ}_{3/2}-3p^{3/2}D^{\circ}_{5/2}$. The transition $3p^{3/2}D_{3/2} - 3P^{3/2}p_{1/2}$ was assigned by Svensson (1971) to the coronal line reported at 3072.0 Å by Jefferies (1969). The level uncertainty in the ground configuration is $\pm 5 \text{ cm}^{-1}$.

The classifications of the $3s^23p^3-3s3p^4$ and $3s^23p^3-3s^23p^23d$ transition arrays are due to Fawcett (1971), who points out that they are strong in the solar spectrum between 180 and 390 Å, and to Bromage, Cowan, and Fawcett (1978), who also provided the leading percentages for $3s3p^4$ and $3s^23p^23d$. Configuration interaction between them was included in the calculation. Improved measurements of these wavelengths by Behring, Cohen, Feldman, and Doschek (1976) with an uncertainty of ± 0.004 Å made from solar observations are used to obtain the levels with an uncertainty of ± 10 cm⁻¹.

Term

 $^{2}\mathbf{P}$

 ${}^{2}S$

J

³/₂

1/2

3/2

Lines classified as transitions between the $3s^23p^3$ configuration and the $3s^23p^24s$ and 4d configurations in the range of 66 Å-81 Å are given by Fawcett, Cowan, Kononov, and Hayes (1972) with an uncertainty of 0.01 Å. The upper levels are derived with these data with an uncertainty of ± 200 cm⁻¹. Classified lines from $3s^2 3p^2 4p$ and 4f are also given but are not connected with known lower levels. The percentage compositions for $3p^24s$ and $3p^24d$ are given in the same paper.

The ionization energy is an extrapolated value by Lotz (1967).

References

- Behring, W.E., Cohen, L. Feldman, U., and Doschek, C.A. (1976), Astrophys. J. 203, 521.
- Bromage, G. E., Cowan, R. D., and Fawcett, B. C. (1978), Mon. Not. R. Astron. Soc. 183, 19.
- Burton, W. M., Bidgeley, A., and Wilson, R. (1967), Mon. Not. R. Astron Soc. 135, 207.
- Doschek, G. A., Feldman, U., Van Hoosier, M. E., and Bartoe, J.-D. F. (1976), Astrophys. J. Suppl. Ser. 31, 417.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. 85, 1255.
- Gabriel, A. H., Garton, W. R. S., Goldberg, L., Jones, T. J. L., Jordan, C., Morgan, F. J., Nicholls, R. W., Parkinson, W. J., Paxton, H. J. B., Reeves, E. M., Shenton, C. B., Speer, R. J., and Wilson, R. (1971), Astrophys. J. 169, 595.

Leading percentages

44

27

26

 ^{2}P

 $3p^{2}(^{3}P)3d^{2}P$

 $3p^{2}({}^{1}\text{D})3d {}^{2}\text{P}$

.....

- Jefferies, J. T. (1969), Mem. Soc. Roy. Sci. Liege 17, 213.
- Lotz, W., (1967), J. Opt. Soc. Am. 57, 873.
- Svensson, L. Å. (1971), Solar Phys. 18, 232.

48

41

41

 ^{2}P

					- •	-
$3s^2 3p^3$	⁴ S°	³ /2	0			
$3s^2 3p^3$	² D ³	³ / ₂ ⁵ / ₂	41 566 46 075			
$3s^2 3p^3$	$^{2}P^{*}$	1/2 3/2	74 109 80 515			
3s3p ⁴	⁴ P	⁵ /2 ³ /2 ¹ /2	274 373 284 005 288 307	89 89 88	9 9 9	$3p^2(^3P)3d$ ⁴ P
$3s3p^4$	² D	³ / ₂ 5/ ₂	340 020 341 703	78 79	16 16	$3p^{2}(^{1}\text{D})3d^{2}\text{D}$

389 706

394 120

501 800

Level (cm^{-1})

Fe xu

E~74

Fe xII-Continued

Configuration	Term	J	Level (cm ¹)	Leading percentages		
$3s^2 3p^2(^3\mathrm{P})3d$	4P	5/2 3/2 1/2	512 510 516 740 519 770	86 82 80	8 8 8	3s3p ⁴ ⁴ P
$3s3p^4$		1/2	513 850	$35 \ ^{2}\mathbf{P}$	32	$3s^23p^2({}^1\mathrm{D})3d {}^2\mathrm{P}$
$3s^2 3p^2({}^1S) 3d$	$^{2}\mathrm{D}$	³ /2 ⁵ /2	$\frac{526}{538} \frac{120}{040}$	46 41	40 43	(³ P) ² D
$3s^2 3p^2({}^1\mathrm{D}) 3d$	² D	³ / ₂ ⁵ / ₂	554 030 554 610	78 71	14 17	$3s3p^4 {\ }^2{ m D} 3p^2 {(}^1{ m S})3d {\ }^2{ m D}$
$3s^2 3p^2(^1\mathrm{D}) 3d$	² P	1/2 3/2	568 940 577 740	58 61	24 26	(³ P) ² P
$3s^2 3p^2(^3\mathbf{P})3d$	${}^{2}\mathbf{F}$	5/2 7/2	576 740 581 180	49 61	35 37	(¹ D) ² F
$3s^2 3p^2({}^1\mathrm{D}) 3d$	^{2}S	¹ / ₂	579 630	72	14	$3s3p^4$ ² S
$3s^2 3p^2(^3\mathrm{P}) 3d$	$^{2}\mathrm{D}$	⁵ /2 ³ /2	603 930 605 480	47 55	31 41	(¹ S) ² D
$3s^2 3p^2({}^3\mathrm{P}) 4s$	⁴ P	1/2 3/2 5/2	$\begin{array}{c}1 \ 242 \ 000\\1 \ 249 \ 660\\1 \ 258 \ 050\end{array}$			
$3s^2 3p^2(^3P) 4s$	² P	1/2 3/2	1 257 730 1 266 360	81	17	(¹ D) ² D
$3s^2 3p^2({}^1\mathrm{D}) 4s$	2 D	5/2 3/2	1 287 700 1 289 060	82	16	(³ P) ² P
$3s^2 3p^2({}^3\mathrm{P})4d$	⁴P	5/2 3/2	$\begin{array}{c} 1 \ 508 \ 360 \\ 1 \ 517 \ 340 \end{array}$	35 65	35 19	(³ P) ⁴ F (³ P) ² P
$3s^2 3p^2(^3\mathbf{P})4d$	⁴ F	⁵ /2	1 514 070	49	48	(³ P) ⁴ P
$3s^2 3p^2(^3\mathrm{P})4d$	${}^{2}\mathbf{F}$	5/2 7/2	1 516 030 1 523 140	77 39	9 12	(³ P) ⁴ F (¹ D) ² F
$3s^2 3p^2(^3\mathrm{P})4d$	⁴ D	"/ ₂	1 532 160	48	48	(^{3}P) ^{2}F
$3s^2 3p^2(^3P) 4d$	2 D	5/2 3/2	1 534 990 1 536 480	67	26	(¹ D) ² F
$3s^2 3p^2({}^1\mathrm{D})4d$	${}^{2}\mathbf{F}$	7/2 5/2	1 549 250 1 551 400?	81 40	14 39	(³ P) ⁴ D (¹ D) ² D
$3s^2 3p^2(^1\mathrm{D})4d$	2 D	5/2	1 551 640	40	24	(³ P) ² D
$3s^2 3p^2({}^1\mathrm{D})4d$	^{2}P	³ /2	1 565 720			
$3s^2 3p^2({}^1\mathrm{D})4d$	^{2}S	¹ / ₂	1 569 410			
Fe XIII $({}^{3}P_{0})$	Limit		2 668 000			

Fe XIII

Z = 26

Si I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^{2-3} P_0$

Ionization energy = $2.912\ 000\pm 6000\ \mathrm{cm}^{-1}\ (361.0\pm 0.7\ \mathrm{eV})$

The ³P and ¹D terms of the $3s^23p^2$ configuration are from solar coronal line identifications by Edlén (1942). We used the improved wavelength measurements given by Jefferies (1969). The level uncertainty is ± 0.4 cm⁻¹. The ¹S term is due to Doschek et al. (1976). From laboratory observations, Fawcett (1971), interpreted the $3s^23p^2-3s3p^3$ array except for the ³P₀-³D₁^{*} transition, which was established through a solar identification by Widing, Sandlin, and Cowan (1971). Fawcett also identified the $3s^23p^2d$ configuration.

Behring, Cohen, Feldman, and Doschek (1976) observed the $3s^23p^2-3s3p^3$ and $3s^23p3d$ transition arrays with improved accuracy (± 0.004 cm⁻¹) in the spectrum of the quiet sun in the region from 200 to 360 Å by using a rocketborne spectrograph. The level values are mostly from their observations and have an uncertainty of ± 10 cm⁻¹. They also identified the $3s3p^3$ $^3P_1^{\circ}$ level. The leading percentages for $3s3p^3$ and $3s^23p3d$ are taken from the calculations of Bromage, Cowan, and Fawcett (1978), who also identified the 3p3d $^3P_0^{\circ}$ level. Configuration interaction between them was included.

The level values for 3p4d and the level values and leading percentages for 3p4f are from Kastner, Swartz, Bhatia, and

Lapides (1978). The uncertainty of the level values is $\pm 100 \text{ cm}^{-1}$.

The configurations $3s^23p4s$, 4p, 4d, and 4f were found also by Fawcett, Cowan, Kononov, and Hayes (1972) from observations in the region 60-100 Å. Some of the lines they identified involve transitions to the unknown ${}^{3}F^{\circ}$ term of $3s^23p3d$ from $3s^23p4f$ levels, and therefore cannot be used to establish connected levels of the latter configuration. In the same paper percentage compositions are given for levels whose first component is not "high," generally less than 90%. The uncertainty of the level values is ± 200 cm⁻¹.

The ionization energy was taken from Lotz (1967).

References

- Behring, W. E., Cohen, L., Feldman, U., and Doschek, G. A. (1976), Astrophys. J. 203, 521.
- Bromage, G. E., Cowan, R. D., and Fawcett, B. C. (1978), Mon. Not. R. Astron. Soc. 183, 19.
- Doschek, G. A., Feldman, U., Van Hoosier, M. E., and Bartoe, J.-D. F. (1976), Astrophys. J. Suppl. Ser. 31, 417.
- Edlén, B. (1942), Z. Astrophys. 22, 30.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. B5, 1255.
- Jefferies, J.T. (1969), Mem. Soc. Roy. Sci. Liege, Collect. 17, 213.
- Kastner, S.O., Swartz, M., Bahatia, A.K., and Lapides, J. (1978), J. Opt. Soc. Am. 68, 1558.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Widing, K. G., Sandlin, G. D., and Cowan, R. D. (1971), Astrophys. J. 169, 405.

Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percenta	ges
$3s^2 3p^2$	³ P	0	0.0			
-		1	9 302.5			
		2	18 561.0			
$3s^2 3p^2$	¹ D	2	48 068			
$3s^2 3p^2$	¹ S	0	91 508			
$3s3p^3$	³ D°	1	287 205	85	10	3p3d ³ D°
<i>P</i>		2	287 360	83	10	
		3	290 210	89	10	
$3s3n^3$	³ P°	1	329 647	86	9	$3p3d$ $^{3}P^{\circ}$
r	_	2	330 279	78	9	
$3s3p^3$	¹ D °	2	362 330	54	39	3p3d ¹ D°
$3s3p^3$	³ S°	1	415 462	78	17	$^{1}P^{\circ}$
3.3.3	¹ p°	1	438 050	69	19	³ S°

Fe xiii

...

E-76

Fe xIII-Continued

Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percent	ages
$2a^2 2a d$	310,4	ŋ	106 950	49	20	9_9_ 7 hav
os opou	1	2	400 330	6.0 DA	23	ംpsa_D നെട∉3നം
		0	503 340	89	90 9	$3s3p^3$ ³ P°
$3s^2 3p3d$	¹ D*	2	498 870	32	21	3s3p ^{3 1} D'
$3s^2 3p3d$	³ D°	1	506 502	48	39	$3p3d$ $^{3}P^{\circ}$
		3	509 176	86	10	3s3p ³ 3D°
		2	509 250	61	24	3p3d °P'
$3s^2 3p3d$	${}^{1}\mathbf{F}^{\circ}$	3	556 870	97		
3s² 3p3d	lP°	1	570 6 90	86	10	$3s3p^{3}$ ¹ P [*]
$3s^2 3p 4s$	³ Do	1	1 336 220	84	15	${}^{1}F^{\circ}$
		2	1 354 680			
$3s^2 3p4s$	¹ P°	1	1 361 830	84	16	³ P ²
$3s^2 3p 4p$		2	1 488 110	86	13	$^{3}\mathrm{P}$
3s² 3p4p	¹ P	1	1 515 260?	39	35	³ D
3s ² 3p4p	³ D	1	1 603 770	59	39	$^{1}\mathbf{P}$
$3s^2 3p4d$	³ D°	2	1 604 220	61	17	³ F°
		3	1 606 800	45	41	³ F°
$3s^2 3p4d$	³ F°	3	1 619 600			
$3s^2 3p4d$	${}^{1}\mathbf{F}^{\circ}$	3	1 630 650	84	12	³ F°
$3s^2 3p4d$	¹ F°	1	1 650 620			
$3s^2 3p4f$	¹ D	2	1 740 800			
3s ² 3p4f	³ F	4	1 741 290	56	44	³ G
$3s^2 3p4f$	³ G	4	1 743 460			
Fe xiv $({}^{2}\mathbf{F}_{1/2}^{*})$	Limit		2 912 000			

Fe XIV

Z**≈**26

Al I isoelectronic sequence

Ground state: 1s²2s²2p⁶3s²3p ²P^o_{1/2}

Ionization energy = $3\,163\,000\pm6000\,\mathrm{cm}^{-1}\,(392.2\pm0.8\,\mathrm{eV})$

The early laboratory work on this one-electron spectrum consisted of Edlén's (1936) identification of the 3p-4d resonance lines at about 59 Å. Later Edlén (1942) identified the strong solar coronal line at 5302.86 Å as the transition between the $3s^23p$ $^2P_{1/2}^{\circ}$ and $^2P_{3/2}^{\circ}$ levels. This identification serves as the basis for the ground term splitting in this ion. The uncertainty is ± 2 cm⁻¹.

The first excited configuration in Fe XIV, $3s3p^2$, was identified from the laboratory observations of Fawcett and Peacock (1967) and by Fawcett (1970). The $3s^23d$ levels were found by Peacock, Cowan, and Sawyer (1967). The level values for these two configurations are derived from the more accurate solar observations of Behring, Cohen, Feldman, and Doschek (1976) in the region 210–290 Å, which give an uncertainty of $\pm 20 \text{ cm}^{-1}$. The $3s^24s$, $3s^24p$, and $3s^24f$ levels are derived from the work of Fawcett, Cowan, Kononov, and Hayes (1972) with a level uncertainty of $\pm 200 \text{ cm}^{-1}$. The $3s^24d$ levels are obtained from Edlén (1936).

Fawcett (1970) has classified the $3s3p^2 \, {}^{4}P - 3p^3 \, {}^{4}S^{\circ}$ group and Fawcett et al. (1972) reported the observation of $3s3p^2 \, {}^{4}P - 3s3p4s \, {}^{4}P^{\circ}$. The quartet levels depend on these data and the calculated position of $3s3p^2 \, {}^{4}P_{1/2}$ by Fischer (1978).

The ionization energy is the value given by Lotz (1967) from his isoelectronic extrapolation.

References

Behring, W. E., Cohen, L., Feldman, U., and Daschek, G. A. (1976), Astrophys. J. 203, 521.

Edlén, B. (1936), Z. Phys. 103, 536.

Edlén B. (1942), Z. Astrophys. 22, 30.

- Fawcett, B. C., and Peacock, N. J. (1967), Proc. Phys. Soc. (London) 91, 973.
- Fawcett, B. C. (1970), J. Phys. B3, 1732.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. 85, 1255.
- Fischer, C. F. (1978), Penn. State Univ. Dept. Computer Sci., CS-78-24.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Peacock, N. J., Cowan, R. D., and Sawyer, G. A., Proc. 7th Int. Conf. on Ionization Phenomena in Gazes, Belgrade, 1967 (Belgrade: Gradevinska Knjiga).

Configuration	Term	J	Level (cm ⁻¹)
3s² 3p	² P°	1/2 3/2	0.0 18 852.5
3s3p ²	⁴ P	1/2 3/2 5/2	221 700 + x 222 986 + x 239 450 + x
$3s3p^2$	² D	³ / ₂ ⁵ / ₂	299 248 301 472
$3s3p^2$	² S	Ч ₂	364 693
$3s3p^2$	$^{2}\mathrm{P}$	1/2 3/2	388 510 396 515
$3s^2 3d$	$^{2}\mathrm{D}$	3/2 5/2	473 227 475 217
$3p^3$	4S°	3/2	586 130+x
$3s^2 4s$	^{2}S	¹ / ₂	1 435 020
$3s^2 4p$	$^{2}\mathrm{P}^{\circ}$	1/2 3/2	1 568 840 1 574 010

Fe xiv

E-78

C. CORLISS AND J. SUGAR

Fe xiv-Continued

Configuration	Term	J	Level (cm ⁻¹)		
$2s3p(^{3}\mathrm{P}^{\circ})4s$	4P°	³ / ₂ ⁵ / ₂	1 662 920+3 1 675 450+3		
$3s^2 4d$	² D	3/2 5/2	1 695 980 1 697 290		
3s² 4f	² F**	7/2 5/2	1 788 380 1 788 640		
Fe xv $({}^{1}S_{0})$	Limit		3 163 000		

Fe XV

Z==26

Mg 1 isoelectronic sequence

Ground state: $1s^2 2s^2 2p^6 3s^{2-1}S_0$

lonization energy = $3.686.000 \pm 20.000 \text{ cm}^{-1} (457.0 \pm 2.5 \text{ eV})$

Edlén's (1936) work on this spectrum consisted of the observation of the multiplets $3s^1S - 3s4p^1P^\circ$, $3s3p^3P^\circ - 3s4d^3D$, $3s3d^3D - 3s4f^3F^\circ$ and $3s3d^3D - 3s5f^3F^\circ$. These groups were unconnected and the relative positions of the terms were estimated by isoelectronic extrapolation.

The absolute energy of the system of excited triplet levels is based on the measurement of $3s^2 \, {}^{1}S_0 - 3s 3p \, {}^{3}P_1^{\circ}$ at 417.258 Å in the solar spectrum by Bebring, Cohen, Feldman, and Doschek (1976). The error in this wavelength is stated to be <0.01 Å, giving an error in the intersystem connection of 5 cm⁻¹. The error in the levels due to Edlén is about 100 cm⁻¹.

Peacock, Cowan, and Sawyer (1967) gave the classification of the 3s3p-3s3d array and the $3s^2 \, {}^{1}S_0-3s3p \, {}^{1}P_1^{\circ}$ resonance line measured in the range of 224-284 Å with an accuracy of ± 0.05 Å. Several of these lines are found in the list of solar lines of Behring et al. (1976) with improved accuracy and are used here. The resulting level values have an uncertainty of 20 cm⁻¹. They are $3s^2 \, {}^{1}S_0-3s3p \, {}^{1}P_1^{\circ}$ and $3s3p-3s3d \, {}^{1}P_1^{\circ}-{}^{1}D_2$, ${}^{3}P_1^{\circ}-{}^{3}D_2$, and ${}^{3}P_2^{\circ}-{}^{3}D_3$

at 284.160 Å, 243.790 Å, 227.208 Å, and 233.857 Å, respectively.

The values of the levels of the $3p^2$ configuration are derived with an uncertainty of 20 cm⁻¹ from the classifications of Fawcett (1971) and Fawcett, Cowan, and Hayes (1972). The $3p^2$ ${}^{1}S_0$ level has been tentatively located by Cowan and Widing (1973). The observations by Fawcett (1970) provide values for the three levels of the 3p3d ${}^{3}F^{\circ}$ term.

The measurements of Edlén were used to obtain the values of the $3s4f {}^{3}F^{\circ}$, $3s4d {}^{3}D$, and $3s5f {}^{3}F^{\circ}$ levels.

The levels of 3s4s ${}^{3}S$ and $3s5d {}^{3}D$ given here are derived from the work of Feldman, Katz, Behring, and Cohen (1971). The $3s4d {}^{1}D$ and $3s4f {}^{1}F^{\circ}$ levels are taken from the paper of Fawcett, Cowan, Kononov, and Hayes (1972). The $3s5s {}^{3}S$, $3s5p {}^{1}P^{\circ}$, $3s5f {}^{1}F^{\circ}$ and $3s6f {}^{1.3}F^{\circ}$ levels are from Fawcett, Gabriel, Irons, Peacock, and Saunders (1966). Ekberg (1971) has noted that the $3s5f {}^{1}F^{\circ}$ and $3s6f {}^{1}F^{\circ}$ levels are questionable. We have not included them here.

The transitions 3p3d-3p4f are classified by Kastner, Swartz, Bhatia, and Lapides (1978), who gave percentages for 3p4f.

With observations of L-series satellite spectra, Burkhalter, Cohen, Cowan, and Feldman (1979) have made some tentative assignments to $2\rho^6 3s 3p - 2p^5 3s^2 3p$ transitions. They are not quoted here.

The ionization energy has been derived here from the $3snf^3F_4^{\circ}$ (n=4-6) levels. Comparison with lower members of the isoelectronic sequence indicates that the ionization energy has an uncertainty of about $\pm 20\ 000\ \text{cm}^{-1}$ (2.5 eV).

References

- Behriag, W. E., Cohen, L., Feldman, U., and Doschek, G. A. (1976), Astrophys. J. 203, 521.
- Burkhalter, P. G., Cohen, L., Cowan, R. D., and Feldman, U. (1979), J. Opt. Soc. Am. 69, 1133.
- Cowan, R. D., and Widing, K. C. (1973), Astrophys. J. 180, 285.

Edlén, , B. (1936), Z. Phys. 103, 536.

- Ekberg, J. O. (1971), Phys. Scr. 4, 101.
- Fawcett, B. C. (1970), J. Phys. B3, 1732.
- Fawcett, B. C. (1971), J. Phys. B4, 1577.
- Fawcett, B. C., Cowan, R. D., and Hayes (1972), J. Phys. B5, 2143.
- Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W. (1972), J. Phys. B5, 1255.
- Fawcett, B. C., Gabriel, A. H., Irons, F. E., Peacock, N. J., and Saunders, P. A. H. (1966), Proc. Phys. Soc. (London) 88, 1051.
- Feldman, U., Katz, L., Behring, W., and Cohen L. (1971), J. Opt. Soc. Am. 61, 91.
- Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J. (1978), J. Opt. Soc. Am. 68, 1558.
- Peacock, N. J., Cowan, R. D., and Sawyer, G. A., Proc. 7th Int. Conf. on Ionization Phenomena in Gases, Belgrade, 1967 (Belgrade: Gradevinska Knjiga).

Fe xv

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
3s ²	¹ S	0	0	
3s3p	³P°	0 1 2	233 910 239 660 253 820	
3s3p	¹ P°	1	351 914	

E-80

Fe xv-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percenta	ges
	³ P	0	554 500		· · · · · · · · · · · · · · · · · · ·
$_{p}$	1	1	564 570		
		$\frac{1}{2}$	581 690		
$3p^2$	$^{1}\mathrm{D}$	2	559 590		
$3p^2$	^{1}S	0	660 970?		
3s3d	3 D	1	678 830		
		2	679 785		
		3	681 410		
3s3d	$^{1}\mathbf{D}$	2	762 103		
3p3d	³ F**	2	928 420		
		3	938 180		
		4	949 660		
3s4s	³ S	1	1 763 700		
3s4p	$^{1}\mathrm{P}^{\circ}$	1	1 889 970		
3s4d	^{3}D	1	2 031 310		
0014	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2 032 020		
		3	2 033 180		
3s4d	'D	2	2 035 280		
3s4f	³ F°	2	2 108 520		
,		3	2 108 620		
		4	2 108 880		
3s4f	¹ F°	3	2 123 150		
3p4f	${}^{3}G$	3	2 380 160	46 51	$1\overline{F}$
		4	2 386 700	ō7 39	³ F
		5	2 402 100		
3s5s	^{3}S	1	2 544 800		
3s5p	'P°	1	2 567 000		
3s5d	³ D	2	2 639 900		
	_	1	2 640 100		
		3	2 640 300		
3s5f	³ F.º	2	2 676 400		
,	-	3	2 676 400		
		4	2 676 600		
3s5f	^I F°	3	2 782 700?		
3s6f	³ F°	4	2 986 100		
3s6f	۱F°	3	3 091 500?		
Fe XVI $({}^{2}\mathbf{S}_{1/2})$	Limit		3 686 000		

Fe XVI

Z = 26

Na I isoelectronic sequence

Ground state: $1s^22s^22p^63s^{-2}S_{1/2}$

Ionization energy = $3.946.280 \pm 200 \text{ cm}^{-1}$ ($489.264 \pm 0.025 \text{ eV}$)

The original work on this spectrum by Edlén (1936) in the region 40–66 Å gave the position of only the $4p^{2}P^{\circ}$ term relative to the ground state, but included transitions from 4s, 4d, and 5d to the $3p^{2}P^{\circ}$ term, and transitions from 4f and 5f to $3d^{2}D$. Peacock, Cowan, and Sawyer (1967) brought these unconnected systems together by identifying the 3s-3p and 3p-3d transitions in the region 250-360 Å. We have used improved wavelengths of Edlén (1978) for the 3s-3p and 3p-3d transitions together with his earlier measurements for the level values. The uncertainty of the n=3 levels is probably 5 cm⁻¹ and the higher ones ± 200 cm⁻¹.

Higher series members of ns, np, nd, and nf were identified by Fawcett, Gabriel, Irons, Peacock, and Saunders (1966) between 27 and 64 A°. The values of the 5p, 6p, 6d, 7d, and 8d terms given below were derived by using the wavelengths of Feldman et al. (1971). Their uncertainty is 800 cm^{-1} . The 5g term is from Kononov, Kovalev, Ryabtsev, and Churilov (1977). The $2p^53s$ nl configurations are from classifications of *L*-series satellite spectra by Burkhalter, Cohen, Cowan, and Feldman (1979). The leading percentages, in two alternate coupling schemes, are taken from this paper. Other inner shell transitions have been tentatively identified by Connerade, Peacock, and Speer (1970).

The ionization energy was determined from a polarization formula applied to the *nf* series by Edlén (1978). The uncertainty is $\pm 200 \text{ cm}^{-1}$ (0.025 eV).

References

- Burkhalter, P. G., Cohen, L., Cowan, R. D., and Feldman, U. (1979), J. Opt. Soc. Am. 69, 1133.
- Connerade, J. P., Peacock, N. J., and Speer, R. J. (1970), Solar Phys. 14, 159.
- Edlén, B. (1936), Z. Phys. 100, 621.
- Edlén, B. (1978), Phys. Scr. 17, 565.
- Fawcett, B. C., Gabriel, A. H., Irons, F. E., Peacock, N. J., and Saunders, P. A. H. (1966), Proc. Phys. Soc. 88, 1051.
- Feldman, U., Katz, L., Behring, W., and Cohen, L. (1971), J. Opt. Soc. Am. 61, 91.
- Kononov, E. Y., Kovalev, V. I., Ryabtsev, A. N., and Churilov, S. S. (1977), Sov. J. Quan. Elec. 7, 111.
- Peacock, N. J., Cowan, R. D., and Sawyer, G. A., Proc. 7th Int. Conf. on Ionization Phenomena in Gases, Belgrade, 1967 (Belgrade: Gradevinska Knjiga).

Configuration	Term	J	Level (cm $^{-1}$)	Leading percentages
$2p^{6}({}^{1}S)3s$	² S	1/ ₂	0	
$2p^6(^1\mathrm{S})3p$	² P°	$^{1\!/_{2}}_{3\!/_{2}}$	277 206 298 155	
$2p^6(^1S)3d$	² D	³ / ₂ ⁵ / ₂	675 503 678 412	
$2p^6(^1S)4s$	^{2}S	¹ / ₂	1 867 550	
$2p^6(^1\mathrm{S})4p$	² P°	$^{1/_{2}}_{3/_{2}}$	1 978 040 1 986 100	
$2p^6({}^1\mathrm{S})4d$	² D	³ /2 5/2	2 124 200 2 125 370	
$2p^6({}^1\mathrm{S})4f$	² F°	5/2 7/2	2 184 640 2 185 160	
$2p^{6}({}^{1}S)5s$	^{2}S	¹ / ₂	2 662 000	
$2p^6(^1\mathrm{S})5p$	² P°	1/2 3/2	2 717 170 2 721 160	
$2p^6(^1\mathrm{S})5d$	² D	³ /2 5/2	2 788 060 2 788 630	

Fe xvi

E-82

Fe xvi-Continued

Configuration	Term J		Level (cm $^{-1}$)	Leading percentages
$2p^6({}^1\mathrm{S})5f$	² F°	⁵ /2 ⁷ /2	2 818 620 2 818 910	
$2p^6({}^1\mathrm{S})5g$	2 G	⁷ / ₂ , ⁹ / ₂	2 822 100	
$2p^6({}^1\mathrm{S})6s$	^{2}S	¹ / ₂	3 076 000	
$2p^6({}^1\mathbf{S})6p$	² P°	1/2 3/2	3 106 400 3 108 900	
$2p^6(^1\mathrm{S})6d$	² D	³ /2 ⁵ /2	$3 \ 146 \ 070 \\ 3 \ 146 \ 670$	
$2p^{6}({}^{1}\mathrm{S})6f$	² F°	5/2 7/2	3 163 130 3 163 190	
$2p^6({}^1\mathrm{S})7s$	2 S	1/2	3 323 000	
$2p^6({}^1\mathrm{S})7p$	$^{2}P^{\circ}$	³ / ₂	3 341 000	
$2p^6(^1\mathrm{S})7d$	² D	³ /2 5/2	3 360 500 3 360 800	
$2p^6({}^1\mathrm{S})7f$	² F°	7/2 5/2	3 371 070 3 371 210	
$2p^6({}^1\mathbf{S})8p$	$^{2}P^{\circ}$	³ / ₂	3 488 000	
$2p^6(^1\mathrm{S})8d$	² D	³ /2 ⁵ /2	3 498 800 3 499 000	
$2p^6(^1\mathbf{S})8f$	${}^{2}\mathbf{F}^{\circ}$	5/2 7/2	3 505 700 3 505 800	
$2p^6({}^1\mathrm{S})9p$	$^{2}P^{\circ}$	³ / ₂	3 587 000	
$2p^6(^1S)9d$	² D	⁵ /2 ³ /2	3 595 000 3 599 000	
$2p^6({}^1\mathrm{S})9f$	² F°	⁵ / ₂ , ⁷ / ₂	3 600 000	
Fe XVII $({}^{1}S_{0})$	Limit		3 946 280	
$2p^5({}^2{ m P}^{\circ})3s^2$	² P°	³ / ₂ ¹ / ₂	5 773 000 5 873 000	
$2p^{5}(^{2}\mathbf{P}_{3/2})3s3p(^{3}\mathbf{P}_{1})$	$(\frac{3}{2},1)$	5/2 1/2	5 982 000 6 001 000	98 or 83 $2p^53s({}^3P^\circ)3p$ 4D 92 or 35 $2p^53s({}^1P^\circ)3p$ 2P
$2p^5({}^2\mathrm{P}^{\mathrm{s}}_{\mathrm{3/2}})3s3p({}^3\mathrm{P}_2)$	$(\frac{3}{2}, 2)$	$\frac{3}{2}$	6 013 000 6 013 000 6 042 000	69 or 30 $2p^53s({}^{1}P^{\circ})3p$ ^{2}D 99 or 65 $2p^53s({}^{3}P^{\circ})3p$ ^{4}P 71 or 40 $2p^53s({}^{1}P^{\circ})3p$ ^{2}S
$2p^5(^2\mathbf{P}^*_{1/2})3s3p(^3\mathbf{P}_0)$	(¹ / ₂ ,0)	$^{1}\!/_{2}$	$6\ 075\ 000$	68 or 65 $2p^5 3s({}^3P^\circ) 3p {}^4D$
$2p^{5}(^{2}P_{1/2}^{\circ})3s3p(^{3}P_{1})$	(¹ / ₂ ,1)	3/2	6 089 000	88 or $50 - 2p^5 3s({}^3P^{\circ}) 3p {}^4D$

per-

pres.

, eres

Fe xvi-Continued

Configuration	Term	J	Level (cm ⁻¹)		Le	ading pe	rcentages
$2p^5(^2P^{\circ}_{3/2})3s3p(^1P_1)$	(3/4,1)	1/2	6 089 000	44	or	39	2p ⁵ 3s(³ P°)3p ⁴ P
1 . 0/2/ . 1 . 1/		5/2	6 110 000	57	or	69	$2p^{5}3s(^{1}P^{\circ})3p^{2}D$
		3/2	6 129 000	94	or	40	$2p^{5}3s(^{3}P^{\circ})3p$ ² P
$2p^5(^2\mathbf{P}^{\circ}_{1/2})3s3p(^3\mathbf{P}_2)$	(¹ / ₂ ,2)	³ /2	6 096 000	86	or	45	$2p^{5}3s(^{3}P^{*})3p$ ⁴ P
$2p^5(^2P_{1/2}^s)3s3p(^1P_1)$	(¹ / ₂ ,1)	۱ _{/2}	6 197 000	47	or	55	2p ⁵ 3s(³ P°)3p ² P
$2p^{5}(^{2}P_{1/2}^{*})3s3p(^{1}P_{1})$	(¹ / ₂ ,1)	3/2	6 217 000	98	or	59	2p ⁵ 3s(³ P*)3p ² D
		⅓	6 267 000	50	or	80	$2p^{5}3s(^{3}P^{\circ})3p$ ² S
$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3s3d(^{3}\mathrm{D}_{3})$	(³ / ₂ ,3)°	5/2	6 393 000	50	or	67	$2p^53s(^3P^\circ)3d$ 4P
		1/2	6 422 000	100	or	66	$-2p^{5}3s(^{3}P^{*})3d^{4}D$
		⁸ / ₂	6 436 000	45	or	57	$2p^{5}3s(^{1}P^{*})3d^{2}P$
$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3s3d(^{3}\mathrm{D}_{1})$	(%),1)*	⁵ /2	6 406 000	83	or	54	$2p^{5}3s(^{3}P^{\circ})3d^{4}F$
		/2	6 419 000	60	or	40	$2p^{\circ}3s(^{\circ}P^{\circ})3d^{}F$
$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3s3d(^{3}\mathrm{D}_{2})$	(%2,2)*	1/2	6 423 000	45	or	61	$2p^{5}3s({}^{1}P^{\circ})3d {}^{2}P$
		%	6 425 000	64	or	39	$2p^{3}3s({}^{1}\mathrm{F}^{*})3d {}^{2}\mathrm{F}^{*}$
$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3s3d(^{1}\mathrm{D}_{2})$	(³ / ₂ ,2)°	7/2	6 445 000	100	or	72	$2p^{5}3s(^{3}P^{\circ})3d^{2}F$
		[%] 2	6 464 000	95	or	50	$2p^{\circ}3s(^{\circ}P^{\circ})3d^{2}D$
		η_2	5 473 000	44	or	35	$2p^{\circ}3s(^{\circ}P^{\circ})3d^{\circ}D$
$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s3d(^{3}\mathrm{D}_{3})$	(¹ / ₂ ,3)*	5/2 7/2	6 502 000	54	or	41	$2p^{5}3s(^{3}P^{*})3d^{4}D$
		γ_2	6 517 000	98	or	41	2p°3s(*P°)3d *F
$2p^{5}(^{2}\mathrm{P}^{\circ}_{1/2})3s3d(^{3}\mathrm{D}_{1})$	(¹ / ₂ ,1)*	³ /2	6 502 000	88	or	54	$2p^{5}3s(^{3}P^{\circ})3d^{4}F$
		γ_2	0 974 000	74	or	52	2p~3s(~P*)3d *P
$2p^{5}(^{2}P_{1/2}^{*})3s3d(^{3}D_{2})$	(¹ / ₂ ,2)*	5/2 3/	6 516 000	51	or	45	$2p^{5}3s(^{1}P^{\circ})3d^{2}D$
		γ_2	6 530 000	46	or	38	$2p^{\circ}3s(\mathbf{P}^{\circ})3d^{\circ}\mathbf{P}$
$2p^{5}(^{2}\mathrm{P}^{\circ}_{1/2})3s3d(^{1}\mathrm{D}_{2})$	(¹ / ₂ ,2)*	5/2 8	6 556 000	97	or	51	$2p^{5}3s(^{3}P^{\circ})3d^{2}F$
		%	6 595 000	61	or	68	$2p^{\circ}3s(^{\circ}P^{\circ})3d^{2}P$

Fe XVII

Z = 26

Ne I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^{6-1}S_0$

Tyrén (1938) identified resonance lines in the region of 12-17 Å arising from the $2p^{5}3s$, $2p^{5}3d$, $2p^{5}4d$, and $2s2p^{6}3p$ configurations. The magnetic quadrupole transition from the $2p^53s$ $^{3}P_{2}^{\circ}$ level to the ground state was first observed by Parkinson (1973). New laboratory observations in the region 10-17 Å were reported by Gordon, Hobby, and Peacock (1980), who identified resonance transitions from $2p^54s$, $2p^54d$, $2p^55d$, $2p^56d$, and $2s2p^64p$. Their results, with a reported wavelength accuracy of ± 0.005 Å are used to obtain the present levels (all J=1) with an uncertainty of ± 3000 cm⁻¹. From solar coronal observations Hutcheon, Pye, and Evans (1976) identified resonance lines from $2p^55s$, 6s, 7s, 5p, and 8d and obtained the value for the ionization

energy quoted here. Their measurement uncertainty is given as ± 0.003 Å, giving a level uncertainty of ± 2000 cm⁻¹. We use their wavelength for the magnetic quadrupole transition from $2p^53s$.

Parametric calculations made by us for Sc XII and Ni XIX Ionization energy = 10 180 000 ± 8000 cm⁻¹ (1262.2 ± 1.0 eV) show that the $2p^{5}3s$ configuration is best described in J_{V} coupling and the $2p^53d$ in LS-coupling.

> Classifications in the $2p^{5}3d-2p^{5}4f$ array at 59 Å by Fawcett, Bromage, and Hayes (1979) could not be used to derive additional levels because they are not connected with the known system.

References

Fawcett, B. C., Bromage, G. E., and Hayes, R. W. (1979), Mon. Not. R. Astron. Soc. 186, 113.

Gordon, H. Hobby, M. G., and Peacock, N. J. (1980), J. Phys. B13, 1985,

Hutcheon, R. J., Pye, J. P., and Evans, K. D. (1976), Astron. Astrophys. 51, 451.

Parkinson, J. H. (1973), Astron. Astrophys. 24, 213.

Tyrén, F. (1938), Z. Phys. 111, 314.

Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^6$	¹ S	0	0
$2s^2 2p^5({}^2\mathrm{P}^{\circ}_{3/2}) 3s$	(³ / ₂ , ¹ / ₂)°	2 1	5 849 000 5 863 700
$2s^2 2p^5(^2\mathbf{P}^{\circ}_{1/2})3s$	$(\frac{1}{2},\frac{1}{2})^{\circ}$	1	5 960 500
$2s^2 2p^5(^2\mathrm{P^{\circ}}) 3d$	³ P°	1	6 472 500
$2s^2 2p^5(^2\mathbf{P}^{\circ}) 3d$	³ D°	1	6 552 200
$2s^2 2p^5({}^2\mathbf{P}^{\circ}) 3d$	¹ P°	1	6 660 000
$2s2p^6$ $3p$	${}^{3}\mathrm{P}^{\circ}$	1	7 198 900
$2s2p^6 3p$	$^{1}P^{\circ}$	1	7 234 300
$2s^2 2p^5(^2\mathbb{P}^s_{3/2})4s$	(³ / ₂ , ¹ / ₂)°	1	7 885 800
$2s^2 2p^5(^2 \mathbb{P}^{\circ}_{1/2}) 4s$	$(\frac{1}{2},\frac{1}{2})^{\circ}$	1	7 983 000
$2s^2 2p^5({}^2\mathrm{P}^{\mathfrak{s}}_{3/2})4d$	² [¹ / ₂]°	1	8 116 000
$2s^2 2p^5({}^2\mathrm{P}^{\circ}_{3/2})4d$	² [³ / ₂]°	1	8 154 000
$2s^2 2p^5(^2\mathbb{P}^{\circ}_{1/2})4d$	² [³ / ₂]°	1	8 249 000
$2s^2 2p^5(^2 \mathbb{P}^{\mathfrak{s}}_{3/2})5s$	(³ / ₂ , ¹ / ₂)°	1	8 757 000
]

Fe xvii

E-85

82

f

1

m

ENERGY LEVELS OF IRON

Fe xvn-Continued

Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^5(^2\mathrm{P}^{\circ}_{1/2})5s$	$(\frac{1}{2},\frac{1}{2})^{\circ}$	1	8 860 000
$2s^2 2p^5(^2\mathrm{P}^{\circ}_{3/2})5d$	² [¹ / ₂]°	1	8 860 000
$2s^2 2p^5(^2\mathrm{P}^{\circ}_{3/2})5d$	²[³ / ₂]°	1	8 887 000
$2s^2 2p^5(^2\mathrm{P}^\circ_{1/2})5d$	²[¾]°	1	8 982 000
$2s2p^6 4p$	³ P°	1	9 056 000
$2s2p^{6}4p$	${}^{1}\mathbf{P}^{\circ}$	1	9 072 000
$2s^2 2p^5(^2\mathrm{P}^{\circ}_{3/2})6s$	$(\frac{3}{2},\frac{1}{2})^{\circ}$	1	9 216 000
$2s^2 2p^5(^2\mathrm{P}^\circ_{3/2})6d$	² [³ / ₂]°	1	9 285 000
$2s^2 2p^5 ({}^2\mathrm{P}^{\circ}_{1/2}) 6d$	²[³ ⁄ ₂]°	1	9 383 000
$2s^2 2p^5(^2\mathbf{P}^{\circ}_{3/2})7s$	$({}^{3}\!/_{2}, {}^{1}\!/_{2})^{\circ}$	1	9 479 000
$2s^2 2p^5(^2\mathbf{P}^{\circ}_{3/2})7d$	²[³ / ₂]°	1	9 524 000
$2s^2 2p^5(^2\mathrm{P}^\circ_{1/2})7d$	²[³ / ₂]°	1	9 628 000
$2s^2 2p^5({}^2\mathrm{P}^{\circ}_{3/2})8d$	²[³/2]°	1	9 690 000
$2s^2 2p^5({}^2\mathrm{P}^{\circ}_{1/2}) 8d$	²[³ / ₂]*	1	9 784 000
$2s2p^65p$	3P.	1	9 878 000
$2s2p^{6}5p$	¹ P°	1	9 878 000
Fe xviii $(^2P^{\circ}_{3/2})$	Limit		10 180 000

Fe XVIII

Z = 26

F 1 isoelectronic sequence

Ground state: $1s^2 2s^2 2p^{5-2} P_{3/2}^{\bullet}$

Ionization energy = $10.985\ 000\pm 30\ 000\ \mathrm{cm}^{-1}\ (1362\pm 4\ \mathrm{eV})$

The $2s^22p^{5/2}P^*-2s2p^{6/2}S$ doublet at 93.931 and 103.954 Å was measured in a laser-produced plasma by Feldman, Doschek, Nagel, Behring, and Cohen (1973) with a precision of ± 0.003 Å (± 30 cm⁻¹) and an estimated absolute (systematic) error of ± 0.01 Å (± 100 cm⁻¹).

The $2p^43s$ and $2p^43d$ levels were derived by Feldman, Doschek, Cowan, and Cohen (1973) from measurements at 14-16 Å. The range of observation was extended to 10 Å by Gordon, Hobby, and Peacock (1980), who also obtained the $2p^44s$, $2p^44d$, and $2s2p^53p$ levels. Their measurements, with a reported accuracy of ± 0.005 Å, are used to determine these configurations. The uncertainty in the level values is about ± 3000 cm⁻¹.

All of the leading percentages are taken from Gordon et al.

The $2p^45d$ and 6d levels are from observations of exploding wires at 10 Å by Burkhalter, Dozier, Stallings, and Cowan (1978) with a wavenumber uncertainty of $\pm 5000 \text{ cm}^{-1}$. These levels are designated by the authors in LS coupling, although J_{ij} coupling is probably more appropriate. We include designations from both coupling schemes.

The $1s2s^22p^{6/2}$ S level was obtained from the x-ray observations of Fraenkel and Schwob (1972). An uncertainty of $\pm 30\ 000\ \text{cm}^{-1}$ is estimated for this level.

We derived the value for the ionization energy from the $2p^{4}(^{1}D)nd^{-2}D_{3/2}$ series for n=3-5.

References

- Burkhalter, P. G., Dozier, C. M., Stallings, E., and Cowan, R. D. (1978), J. Appl. Phys. 49, 1092.
- Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L. (1973), J. Opt. Soc. Am. 63, 1445.
- Feldman, U., Doschek, G. A., Nagel, D. J., Behring, W. E., and Cohen, L. (1973), Astrophys. J. 183, L43.

Fraenkel, B. S., and Schwob, J. L. (1972), Phys. Lett. 40A, 83.

Gordon,	Н.,	Hobby,	Μ.	G.,	and	Peacock,	N.	J.	(1980),	J.	Phys.	B1 3,	1985.
---------	-----	--------	----	-----	-----	----------	----	----	---------	----	-------	--------------	-------

Configuration	Term	J	Level (cm ¹)	Leading	percentages
$2s^2 2p^5$	$^{2}P^{2}$	³ / ₂ ¹ / ₂	0 102 650		
$2s2p^6$	^{2}S	1/2	1 064 600		
$2s^2 2p^4({}^3\mathrm{P})3s$	⁴ P	5/2 1/2 3/2	$\begin{array}{c} 6 & 222 & 000 \\ 6 & 301 & 200 \\ 6 & 317 & 900 \end{array}$	90 84 68	$\begin{array}{rrrr} 9 & ({}^{1}\mathbf{D}) \; {}^{2}\mathbf{D} \\ 15 & ({}^{1}\mathbf{S}) \; {}^{2}\mathbf{S} \\ 30 & ({}^{3}\mathbf{P}) \; {}^{2}\mathbf{P} \end{array}$
$2s^2 2p^4({}^3\mathrm{P})3s$	² P	³ / ₂ ¹ / ₂	6 248 100 6 342 600	57 90	${}^{31}_{5}$ $({}^{3}\mathbf{P}) {}^{4}\mathbf{P}_{5}$ ${}^{5}_{5}$ $({}^{1}\mathbf{S}) {}^{2}\mathbf{S}_{5}$
$2s^2 2p^4({}^1\mathrm{D})3\mathrm{s}$	² D	5/2 3/2	6 400 000 6 403 800	90 85	$\begin{array}{ccc} 9 & ({}^{3}\mathrm{P}) & {}^{4}\mathrm{P} \\ 13 & ({}^{3}\mathrm{P}) & {}^{2}\mathrm{P} \end{array}$
$2s^2 2p^4({}^1S)3s$	² S	1/2	6 575 100	80	11 $(^{3}\mathbf{P})^{4}\mathbf{P}$
$2s^2 2p^4({}^3\mathrm{P})3d$	⁴ P	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$	6 858 200 6 872 400 6 903 700	61 48 42	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$2s^2 2p^4({}^3\mathrm{P})3d$		⁵ /2	6 880 400	26 ² F	23 $(^{3}\mathbf{P})^{4}\mathbf{P}$
$2s^2 2p^4({}^3\mathrm{P}) 3d$	⁴ D	1/2	6 903 200	53	26 (³ P) ² P
$2s^2 2p^4(^{3}P) 3d$		3/2	6 919 000	29 ⁴ D	19 $(^{3}P)^{2}P$
$2s^2 2p^4({}^3\mathrm{P})3d$	$^{2}\mathbf{P}$	3/2	6 947 300	49	21 $(^{1}\mathbf{D})^{2}\mathbf{P}$

Fe xviii

Fe xvui-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages		ges
$2s^2 2p^4(^{3}\text{P})3d$	² D	⁵ /2	6 963 800	42	29	(³ P) ² F
$2s^2 2p^4({}^1\mathrm{D})3d$	^{2}S	¹ / ₂	7 014 300	83	10	(³ P) ⁴ P
$2s^2 2p^4({}^1\mathrm{D})3d$	$^{2}\mathrm{P}$	³ / ₂ 1/ ₂	7 038 400 7 074 200	66 61	20 34	(³ P) ² P
$2s^2 2p^4({}^1\mathrm{D})3d$	² D	⁵ /2 3/2	7 040 800 7 066 100	44 65	26 28	(³ P) ² D
$2s^2 2p^4({}^1S)3d$	² D	5/2 3/2	7 166 400 7 184 300	72 72	13 13	(³ P) ² D
$2s2p^5(^3\mathrm{P}^\circ)3p$		³ /2	7 464 400	38 ⁴ D	29	(³ P°) ² P
$2s2p^5(^{3}P^{\circ})3p$	²D	5/2 3/2	7 477 200 7 567 000	50 45	49 22	(³ P [*]) ⁴ D
$2s2p^5(^3P^\circ)3p$	² P	³ /2 1/2	7 487 800 7 508 100	5 9 58	37 16	(³ P [*]) ⁴ D
$2s2p^5(^3\mathbf{P}^\circ)3p$	⁴ P	5/2 3/2	7 508 100 7 529 900	44	41	(³ P°) ² D
$2s2p^{5}(^{3}\mathrm{P}^{\circ})3p$	^{2}S	¹ / ₂	7 599 400	62	21	(³ P°) ² P
$2s2p^5(^1P^s)3p$	² D	³ /2 ⁵ /2	7 763 400 7 783 900	88 96	7 2	(¹ P°) ² P (³ P°) ⁴ D
$2s2p^5(^1\mathrm{P^{\circ}})3p$	²P	۲ ₂ ³ /2	7 786 000 7 794 400	93 89	2 7	(³ P°) ² S (¹ P°) ² D
$2s^2 2p^4({}^3P_2)4s$	(2,1/2)	³ /2	8 428 200	88 or	70	(³ P) ² P
$2s^2 2p^4(^{3}P_1)4s$	(1,1/2)	8/2	8 517 200	99 or	80	(³ P) ⁴ P
$2s^2 2p^4({}^1D_2)4s$	(2,1/2)	⁵ /2 ³ /2	8 591 100 8 593 000	90 or 88 or	90 88	(¹ D) ² D
$2s^2 2p^4({}^3P_2)4d$	(2,5%)	5/2 3/2	8 676 000 8 676 000	73 or 86 or	40 32	(³ P) ² D
$2s^2 2p^4(^{3}P_0)4d$	(0,3/2)	³ /2	8 727 500	73 or	55	(³ P) ⁴ F
$2s^2 2p^4({}^3P_0)4d$	(0,5/2)	⁵ /2	8 727 500	66 or	44	(³ P) ⁴ F
$2s^2 2p^4({}^3P_1)4d$	(1,5/2)	5/2 3/2	8 756 600 8 759 900	94 or 68 or	44 51	(³ P) ⁴ P (³ P) ² P
$2s^2 2p^4({}^1D_2)4d$	(2,3/2)	5/2 1/2 3/2	8 829 200 8 829 200 8 843 900	82 or 68 or 49 or	50 78 81	(¹ D) ² F (¹ D) ² S (¹ D) ² D
$2s^2 2p^4({}^1\mathrm{D}_2)4d$	(2,5/2)	5/2 3/2 1/2	8 829 200 8 829 200 8 843 900	86 or 52 or 61 or	54 87 71	(¹ D) ² D (¹ D) ² P (¹ D) ² P
$2s^2 2p^4({}^1S_0)4d$	(0,3/2)	³ /2	8 989 200	79 or	79	(¹ S) ² D

deres.

Fexviii - Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$2s^2 2p^4(^{3}\mathrm{P})5d$	² D	⁵ / ₂	9 510 000	
$2s^2 2p^4({}^3P)\bar{5}d$	$^{2}\mathrm{F}$	⁵ /2	9 610 000	
$2s^2 2p^4({}^3\mathrm{P})5d$	^{2}P	³ /2	9 640 000	
$2s^2 2p^4({}^1\mathrm{D})5d$	^{2}P	¹ / ₂ , ³ / ₂	9 680 000	
$2s^2 2p^4({}^1\mathrm{D})5d$	2 D	³ / ₂	9 680 000	
$2s^2 2p^4({}^1\mathrm{D})5d$	$^{2}\mathbf{F}$	⁵ /2	9 680 000	
$2s^2 2p^4({}^3\mathrm{P})6d$	$^{2}\mathrm{D}$	5/2	9 970 000	
$2s^2 2p^4({}^1\mathrm{D})6d$	$^{2}\mathrm{P}$	1/2	10 120 000	
$2s^2 2p^4({}^1\mathrm{D})6d$	2 D	³ / ₂	10 120 000	
Fe xix $({}^{3}P_{2})$	Limit		10 985 000	
$1s2s^2 2p^6$	^{2}S	¹ /2	51 902 000	

Fe XIX

Z==26

0 1 isoelectronic sequence

Ground state: $1s^2 2s^2 2p^{4/3}P_2$

lonization energy = $11\ 850\ 000\pm 30\ 000\ \mathrm{cm}^{-1}\ (1469\pm 4\ \mathrm{eV})$

All levels of the ground configuration except ${}^{3}P_{0}$ are determined from forbidden lines observed in solar flares. These transitions within the $2p^{4}$ configuration permit the determination of the levels with an uncertainty of 10 cm⁻¹. The transition ${}^{3}P_{2}{}^{-3}P_{1}$ at 1118.1±0.1 Å was reported by Doschek et al. (1975). The lines at 592.16 Å and 424.26 Å are classified as ${}^{3}P_{2}{}^{-1}D_{2}$ and ${}^{3}P_{1}{}^{-1}S_{0}$, respectively, by Widing (1978).

The value for the level ${}^{3}P_{0}$ of the ground configuration and those of the first excited configuration $2s2p^{5}$ were derived from the spectral observations of iron plasmas produced by high power laser pulses by Feldman, Doschek, Nagel, Behring, and Cohen (1973). They report a wavelength uncertainty of 0.003 Å. Fawcett, Galanti, and Peacock (1974) identified the transition from $2p^{6} {}^{1}S_{0}$ to $2s2p^{5} {}^{1}P_{1}^{\circ}$ at 115.42 Å.

Wavelengths in the range of 10-14 Å observed in a laserproduced plasma by Gordon, Hobby, and Peacock (1980a) were classified in the transition arrays $2p^4-2p^33s$, $2p^33d$, and $2p^34d$. A wavelength accuracy of 0.005 Å is reported, permitting an energy level accuracy of $\pm 3000 \text{ cm}^{-1}$. Their calculated leading percentages in J_{ij} and LS coupling appear in a Culham Laboratory Report (1980b).

The $2p^35d$ and 6d levels are from observations of exploding wires between 9 and 10 Å by Burkhalter et al. (1978). The uncertainty in their level values is $\pm 30\ 000\ \mathrm{cm}^{-1}$. Designations for these configurations are available only in LS coupling.

A position for the $1s2s^22p^5$ configuration of 52 138 000 cm⁻¹ was obtained from the observation of Fe XIX by Lie and Elton (1971).

We derived the value for the ionization energy from the $2p^{3}({}^{4}S)nd {}^{3}D_{3}$ series for n = 3 to 5.

References

- Burkhalter, P. G., Dozier, C. M., Stallings, E., and Cowan, R. D. (1978), J. Appl. Phys. 49, 1092
- Doschek, G. A., Feldman, U. Dere, K. P., Sandlin, G. D., Van Hoosier, M. E. Brueckner, G. E., Purcell, J. D., and Tousey, R. (1975), Astrophys. J. 196, L83.
- Fawcett, B. C., Galanti, M., and Peacock, N. J. (1974), J. Phys. B7, 1149.
- Feldman, U., Doschek, G. A., Nagel, D. J., Behring, W. E., and Cohen, L. (1973), Astrophys. J. 183, L43.
- Gordon, H., Hobby, M. G., and Peacock, N. J. (1980a), J. Phys. B13, 1985. Gordon, H., Hobby, M. G., and Peacock, N. J. (1980b), Culham Laboratory
- Report No. CLM-P592, Abingdon, England.
- Lie, T. N., and Elton, R. C. (1971), Phys. Rev. A3, 865.
- Widing, K. G. (1978), Astrophys. J. 222, 735.

Configuration	Term	J	Level (cm ⁻¹)	Lea	Leading percentages		
$2s^2 2p^4$	³ P	2	0	*********			
		0	75 296				
		1	89 413				
$2s^2 2p^4$	¹ D	2	168 873				
$2s^2 2p^4$	^{1}S	0	325 118				
$2s2p^5$	³ P°	2	922 766				
*		1	984 651				
		0	1 029 837				
$2s2p^5$	$^{1}\mathbf{P}^{\circ}$	1	1 267 450				
$2p^6$	$^{1}\mathbf{S}$	0	2 133 900				
$2s^2 2p^3 ({}^4\text{S}^\circ) 3s$	³ S ²	1	6 680 000	81	8	$(^{2}P^{\circ})$ $^{1}P^{\circ}$	
$2s^2 2p^3(^2D^*) 3s$	³ D°	2	6 787 000	64	17	$(^{2}P^{\circ})^{-3}P^{\circ}$	
-		1	6 788 000	76	13	(⁴ S°) ³ S°	
		3	6 818 000	99			
$2s^2 2p^3(^2D^*) 3s$	$^{1}D^{\circ}$	2	6 834 000	75	22	(² D°) ³ D°	

Fe xix

Fe xix-Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading perce	ntages
$2s^2 2p^3({}^2\mathrm{P}^\circ) 3s$	³ P°	0 1 2	6 907 000 6 923 000 6 970 000	99 76 72	22	(² P [°]) ¹ P [°] (² D [°]) ³ D [°]
$2s^2 2p^3 ({}^2\mathbf{P}^{\circ}) 3s$	$^{1}\mathbf{P}^{\bullet}$	1	6 985 000	63	17	(² D°) ³ D°
$2s^2 2p^3({}^4 ext{S}^{\circ}_{3/2}) 3d$	(³ / ₂ , ⁵ / ₂)°	3	7 249 000	52	or 69	(⁴ S°) ³ D°
$2s^2 2p^3(^2\mathrm{D}^{\circ}_{3/2}) 3d$	(³ / ₂ , ⁵ / ₂)°	2	7 370 000	55	or 27	(² D*) ³ P"
$2s^2 2p^3(^2\mathrm{D}^{\circ}_{5/2}) 3d$	(⁵ / ₂ , ⁵ / ₂)°	3	7 396 000	44	or 74	$(^{2}D^{\circ})$ $^{3}D^{\circ}$
$2s^2 2p^3(^2\mathrm{D}^{\circ}_{5/2}) 3d$	(⁵ / ₂ , ³ / ₂)*	2	7 405 000	73	or 43	$(^{2}D^{\circ})$ $^{3}D^{\circ}$
$2s^2 2p^3(^2\mathrm{D}^{\circ}_{5/2})3d$	(⁵ / ₂ , ⁵ / ₂)°	3	7 449 000	37	or 59	$(^{2}D^{\circ})$ $^{1}F^{\circ}$
$2s^2 2p^3(^2\mathbf{P}^{\bullet}_{1/2}) 3d$	(¹ / ₂ , ⁵ / ₂)°	3 2	7 450 000 7 468 000	69 62	or 68 or 31	(² P°) ³ F° (² P°) ³ P°
$2s^2 2p^3({}^2\mathbf{P}^{\circ}_{3/2})3d$	(³ / ₂ , ³ / ₂)°	2 3 1	7 554 000 7 565 000 7 567 000	57 51 48	or 32 or 44 or 33	(² P°) ³ D° (² P°) ¹ F° (² P°) ³ P°
$2s^2 2p^3(^2\mathrm{P}^*_{3/2}) 3d$	(³ / ₂ , ⁵ / ₂)°	1	7 606 000	55	or 68	$(^{2}P^{\circ})$ $^{1}P^{\circ}$
$2s^2 2p^3({}^4\mathbf{S}^*_{3/2})4d$	(³ / ₂ , ⁵ / ₂)°	2 1 3	9 242 000 9 244 000 9 248 000	68 81 53	or 76 or 87 or 82	(⁴ S ³) ³ D [•]
$2s^2 2p^3(^2D^{\circ}_{3/2})4d$	(³ / ₂ , ³ / ₂)°	3	9 359 000	37	or 36	$(^{2}D^{\circ})$ $^{3}F^{\circ}$
$2s^2 2p^3 (^2\mathrm{D}^{ullet}_{3/2}) 4d$	(³ / ₂ , ⁵ / ₂)°	2	9 374 000	70	or 41	$(^{2}D^{\circ})$ $^{3}D^{\circ}$
$2s^2 2p^3 ({}^2\mathrm{D}^{\circ}_{5/2}) 4d$	(⁵ / ₂ , ³ / ₂)°	3 2 1	9 383 000 9 395 000 9 403 000	62 93 57	or 71 or 44 or 62	(² D°) ³ D° (² D°) ³ D° (² D°) ³ S°
$2s^2 2p^3({}^2\mathrm{D}^*_{5/2})4d$	(⁵ / ₂ , ⁵ / ₂)°	$\frac{3}{2}$	9 417 000 9 417 000	64 93	or 77 or 65	$(^{2}D^{\circ})$ $^{1}F^{\circ}$ $(^{2}D^{\circ})$ $^{1}D^{\circ}$
$2s^2 2p^3({}^2\mathrm{P}^{\circ}_{1/2})4d$	(¹ / ₂ , ⁵ / ₂)°	3 2	9 483 000 9 492 000	97 99	or 55 or 45	${(^{2}P^{\circ})}^{3}F^{\circ}$ ${(^{2}P^{\circ})}^{3}P^{\circ}$
$2s^2 2p^3 ({}^2\mathrm{P}^{\circ}_{1/2}) 4d$	(¹ / ₂ , ³ / ₂)°	1	9 494 000	97	or 56	$(^{2}P^{*})$ $^{3}D^{*}$
$2s^2 2p^3(^2\mathrm{P}^{\circ}_{3/2})4d$	(³ / ₂ , ³ / ₂)°	3 1	9 552 000 9 556 000	72 56	or 39 or 57	$({}^{2}P^{\circ}) {}^{1}F^{\circ}$ $({}^{2}P^{\circ}) {}^{3}P^{\circ}$
$2s^2 2p^3({}^2\mathrm{P}^{\circ}_{3/2})4d$	(³ / ₂ , ⁵ / ₂)°	1	9 573 000	57	or 59	$(^{2}P^{\circ})^{-1}P^{\circ}$
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 5d$	³ D°	3	10 190 000			
$2s^2 2p^3 (^2\mathrm{D}^\circ) 5d$	${}^{3}\mathrm{D}^{*}$	2 3	10 330 000 10 330 000			
$2s^2 2p^3 (^2 \mathbb{D}^{\circ}) 5d$	$^{1}\mathbf{D}^{\bullet}$	2	10 360 000			
$2s^2 2p^3(^2\mathbf{D}^\circ) 5d$	${}^{1}\mathbf{F}^{\bullet}$	3	10 390 000			

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$2s^2 2p^3(^2D^\circ) 5d$	³ F°	3	10 420 000	
$2s^2 2p^3({}^2\mathrm{P}^*) 5d$	₃ D.	1 3	10 450 000 10 500 000	
$2s^2 2p^3(^2\mathrm{P^*}) 5d$	³ F°	3	10 500 000	
$2s^2 2p^3 (^2\mathrm{P^*}) 5d$	³ P°	1	10 500 000	
$2s^2 2p^3 (^2\mathbf{P}^\circ) 5d$	'F"	3	10 500 000	
$2s^2 2p^3(^2P^\circ)5d$	¹ P°	1	10 510 000	
$2s^2 2p^3 ({}^4S^\circ) 6d$	⁵ D°	2	10 680 000	
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 6d$	⁸ D°	3	10 710 000	
$2s^2 2p^3(^2\mathbf{P}^{\circ})6d$	³ D°	1	10 760 000	
$2s^2 2p^3(^2\mathrm{D^{\circ}}) 6d$	¹ F°	3	11 030 000	
Fe xx $({}^{4}S^{\circ}_{3/2})$	Limit		11 850 000	

Fe xix-Continued

Fe XX

Z = 26

N I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^3 {}^4S^{\circ}_{3/2}$

lonization energy = 12 708 000 \pm 4000 cm⁻¹ (1582.0 \pm 0.5 eV)

The array $2s^22p^3-2s2p^4$ was identified in the range of 90-132 Å from spectra of a laser-produced plasma by Doschek, Feldman, Cowan, and Cohen (1974) and by Feldman, Doschek, Cowan, and Cohen (1975). Further classifications in the same wavelength region by Doschek, Feldman, Davis, and Cowan (1975) provided the $2p^{5-2}P^{\circ}$ term. These arrays were reobserved by Lawson and Peacock (1980) with improved accuracy of ± 0.01 Å. They also identified intersystem transitions connecting the quartet and doublet levels. Their results are used here to obtain level values with an uncertainty of ± 100 cm⁻¹ for the $2s^22p^3$, $2s2p^4$ and $2p^5$ configurations.

A measurement of the $2s^22p^3 {}^2D^{\circ}_{3/2} {}^{-2}D^{\circ}_{5/2}$ transition at 2665 Å was obtained by Suckewer and Hinnov (1979) from a tokamak discharge.

Transition arrays between the ground configuration and $2p^23d$, 4d, and 5d are analyzed in the report of Bromage et al. (1977) who used laser-produced plasma spectra observed in the range of 8–18 Å. The estimated wavelength accuracy is about 0.005 Å. The levels derived from their measurements have an uncertainty of ± 3000 cm⁻¹. Bromage

and Fawcett (1977) have given the leading percentages for the $2p^23d$ levels. Bogdanovich et al. calculated the leading percentages of the levels of the ground configuration, $2s^22p^3$, by the Hartree-Fock method.

The identification of the inner shell transitions giving the position of the $1s2s^22p^4$ configuration at 52 470 000 cm⁻¹ was made by Lie and Elton (1971).

We derived the value for the ionization energy from the $2p^2(^1D)nd$ ²F series.

References

- Bogdenovich, P. O., Bogdenovichene, M. I., Grudzinskas, I. I., Rudzikas, Z. B., Tutlis, V. I., and Shadsjuvene, S. D. On the theory of energy spectra of multielectron atoms and ions, Chapter 2 in Spectroscopy of Multiply Charged Ions, Moscow, Academy of Sciences USSR, 1980, (in Russian).
- Bromage, G. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. G., Peacock, N. J., and Ridgley, A. (1977), UKAEA Report CLMR 170, Culham Lab.
- Bromage, G. E., and Fawcett, B.C. (1977), Mon. Not. R. Astr. Soc. 179, 683.
- Doschek, G. A., Feldman, U., Cowan, R. D., and Coben, L. (1974), Astrophys. J. 188, 417.
- Doschek, G. A., Feldman, U., Davis, J., and Cowan, R.D. (1975), Phys. Rev. A12, 980.
- Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L. (1975), Astrophys. J. 195, 613.

Lawson, K. D., and Peacock, N. J. (1980), J. Phys. B13, 3313.

- Lie, T. N., and Elton, R. C. (1971) Phys. Rev. A3, 865.
- Suckewer, S., and Hinnov, E. (1979), Phys. Rev. A20, 578.

Configuration	Term	J Level (cm ⁻¹)		Leading percentages		
$2s^2 2p^3$	⁴ S ⁻	3/2	0	90	8	$^{2}P^{\circ}$
$2s^2 2p^3$	$^{2}\mathrm{D}^{\circ}$	³ / ₂ ⁵ / ₂	138 270 175 810	79 100	15	²p°
$2s^2 2p^3$	² P°	1/2 3/2	260 090 323 180	100 79	19	² D°
$2s 2p^4$	⁴ P	5/2 3/2 1/2	752 730 820 820 842 740			
2s 2p ⁴	$^{2}\mathrm{D}$	³ / ₂ ⁵ / ₂	1 042 210 1 058 130			
$2s 2p^4$	^{2}S	1/2	1 194 850			
$2s 2p^4$	$^{2}\mathbf{p}$	³ / ₂ ¹ / ₂	1 242 080 1 339 680			
$2p^5$	² P°	$\frac{3}{2}$	1 954 150 2 061 730			

Fe xx

Fe xx-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leadin	g percentages
$2s^2 2p^2({}^{8}\mathrm{P})3d$	⁴ P	⁵ /2 3/2	7 802 000 7 802 000	54 77	29 ⁴ D
$2s^2 2p^2(^{3}\mathrm{P})3d$	² F	7/2	7 820 000	40	28 ⁴ D
$2s^2 2p^2(^3\mathrm{P})3d$	² D	⁵ / ₂ ³ / ₂	7 843 000 7 859 000	65 72	14 (¹ D) ² D
$2s^2 2p^2({}^1\mathbf{D})3d$	² D	5/2 3/2	7 913 000 7 919 000	54 80	22 ² F
$2s^2 2p^2({}^1\mathrm{D})3d$	² F	7/2 5/2	7 935 000 7 983 000	41 31	$\begin{array}{rrrr} 41 & ({}^{3}P) {}^{2}F \\ 30 & ({}^{3}P) {}^{2}D \end{array}$
$2s^2 2p^2({}^1\mathrm{D})3d$	$^{2}\mathrm{P}$	³/2	7 967 000	73	11 $(^{3}P)^{2}P$
$2s^2 2p^2({}^1S)3d$	² D	⁵ /2	8 047 000	86	
$2s^2 2p^2(^3P) 4d$	⁴ P	5/2 3/2 1/2	9 880 000 10 009 000 10 009 000		
$2s^2 2p^2({}^{3}\mathrm{P})4d$	⁴ F	⁵ /2	9 942 000		
$2s^2 2p^2(^3\mathrm{P})4d$	${}^{2}\mathbf{F}$	5/2 7/2	9 964 000 10 019 000		
$2s^2 2p^2({}^{3}\mathrm{P})4d$	⁴ D	⁵ / ₂	9 992 000		
$2s^2 2p^2(^{3}\mathrm{P})4d$	²D	5/2 3/2	10 019 000 10 043 000		
$2s^2 2p^2({}^1\mathrm{D})4d$	² D	³ / ₂ ⁵ / ₂	10 130 000 10 142 000		
$2s^2 2p^2(^1\mathrm{D})4d$	²G	"/ ₂	10 142 000		
$2s^2 2p^2({}^1\mathrm{D})4d$	² F	⁵ /2	10 149 000		
$2s^2 2p^2({}^1\mathrm{D})4d$	² P	3/2	10 149 000		
$2s^2 2p^2({}^1\mathrm{S})4d$	² D	³ / ₂ ⁵ / ₂	10 269 000 10 289 000		
$2s^2 2p^2({}^3\mathrm{P})5d$	⁴P	5/2 3/2 1/2	10 930 000 11 048 000 11 048 000		
$2s^2 2p^2({}^3\mathrm{P})5d$	4F	⁵ /2	10 994 000		
$2s^2 2p^2(^3\mathrm{P})5d$	² F	⁵ / ₂ 7/ ₂	10 998 000 11 047 000		
$2s^2 2p^2(^{3}\mathrm{P})5d$	² D	⁵ /2	11 036 000		
$2s^2 2p^2({}^3\mathrm{P})5d$	4D	⁵ /2	11 048 000		
$2s^2 2p^2({}^1\mathrm{D})5d$	² G	7/ ₂	11 153 000		

and the second

e de la compañía de

E-94

T1		\sim	. •	1
H P	YY-	inn	<u>î i ni</u>	10.0
10	n <i>n</i> .	0011		W1/14

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$2s^2 2p^2({}^1\mathrm{D})5d$	² D	5/2 3/2	11 153 000 11 160 000	
$2s^2 2p^2({}^1\mathrm{D})5d$	$^{2}\mathbf{F}$	⁵ /2	11 169 000	
$2s^2 2p^2({}^1\mathrm{D})5d$	² P	³ / ₂	11 169 000	
Fe XXI $(^{3}P_{0})$	Limit		12 708 000	

Fe XXI

Z = 26

C I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^2 {}^3P_0$

Ionization energy = $13\ 620\ 000\pm 30\ 000\ \mathrm{cm}^{-1}\ (1689\pm 4\ \mathrm{eV})$

Identifications of transitions in the $2s^22p^2-2s2p^3$ array were reported by Feldman et al. (1975) in the region 91-121 Å. Kononov et al. (1976) extended the analysis and found transitions from $2p^4$, but reported no intersystem lines. Lawson and Peacock (1980) remeasured this spectrum and found the connection among all the terms. Their results, accurate to about ± 50 cm⁻¹, are used here. The wavelengths of these groups fall in the range of 84 Å-182 Å.

The $2s^22p^2$ ³P splittings are obtained from forbidden transitions within the ³P term. The ³P₀-³P₁ interval is derived from a solar line at 1354.1±0.1 Å observed by Doschek et al. (1975) from Skylab. Hinnov and Suckewer reported privately the observations of the ³P₁-³P₂ transition at 2298.0±0.3 Å (in air) using the PLT tokamak. Thus the level values of the ground term have an uncertainty of ±6 cm⁻¹.

Boiko, Faenov, and Pikuz (1978), using their measurements and the predictions of Fawcett and Hayes (1975), give the levels ${}^{3}D_{3}^{\circ}$ and ${}^{1}F_{3}^{\circ}$ of the 2p3d configuration. Bromage and Fawcett (1977) add the rest of the levels given here. The ${}^{3}F_{4}$ level of $2s2p^{2}3d$ is from Boiko et al.

The transitions $2p^2 - 2p4d$, 2p5d in the range of 8.5 Å-9.5 Å were observed by Bromage et al. (1977). Their classifications provide the levels of 2p4d and 2p5d included here with an uncertainty of ± 6000 cm⁻¹.

The resonance line reported by Lie and Elton (1971) at 1.896 Å arising from the $1s2s^22p^3$ configuration was resolved into three components by Feldman, Doschek, and Kreplin (1980), each classified as a blend of three lines. A center of gravity value for the configuration is about 52 910 000 cm⁻¹.

The ionization energy is from Lotz (1967).

References

- Boiko, V. A., Faenov, A. Y., and Pikuz, S. A., (1978), J. Quant. Spect. Radiat. Transfer 19, 11.
- Bromage, G. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. G., Peacuck, N. J., and Ridgeley, A. (1977), UKAEA Report CLMR170, Culham Lab.
- Bromage, G. E., and Fawcett, B. C. (1977), Mon. Not. R. Astron. Soc. 178, 605.
- Doschek, G. A., Feldman, U., Dere, K. P., Sandlin, G. D., Van Hoosier, M. E., Braeckner, G. E., Furcell, J. D., and Tousey, R. (1975), Astrophys. J. 196, 183.
- Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astron. Soc. 175, 185.
- Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L. (1975), Astrophys. J. 196, 613.
- Feldman, U., Doschek, G. A., and Kreplin, R. W. (1980), Astrophys. J. 238, 365.
- Kononov, E. Y., Koshelev, K. N., Podobedova, L. I., Chekalin, S. V., and Churilov, S. S. (1976), J. Phys. B9, 565.
- Lawson, K. D., and Peacock, N. J. (1980), J. Phys. B13, 3313.
- Lie, F. N., and Elton, R. C. (1971), Phys. Rev. 3, 865.
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^2$	³P	0 1 2	0 73 850 117 350
$2s^2 2p^2$	'nD	2	244 030
$2s^2 2p^2$	۱S	0	371 520
$2s2p^3$	⁵ S*	2	487 000
$2s2p^3$	³ D°	1 2 3	776 780 777 280 803 930
$2s2p^3$	³ P°	0 1 2	916 330 924 900 942 320
$2s2p^3$	³ S°	1	1 095 520

Fe xxi

Fe xxi-Continued

Configuration	Term	J	Level (cm ⁻¹)
$2s2p^3$	¹ D°	2	1 126 640
$2s2p^3$	¹ P°	1	1 260 650
$2p^4$	³ P	2 0 1	$\begin{array}{c}1 \ 646 \ 290 \\1 \ 735 \ 690 \\1 \ 740 \ 420\end{array}$
$2p^4$	1 D	2	1 817 240
$2p^4$	¹ S	0	2 047 800
$2s^2 2p3d$	¹ D°	2	8 098 000
$2s^2 2p3d$	³ D°	$\frac{2}{3}$	8 187 400 8 211 800
$2s^2 2p3d$	$^{3}\mathbf{P}^{\circ}$	2	8 230 800
$2s^2 2p3d$	$^{1}\mathbf{P}^{\circ}$	1	8 293 600
$2s^2 2p3d$	${}^{1}\mathbf{F}^{\circ}$	3	8 300 700
$2s2p^2(^4P)3d$	${}^{3}F$	4	8 669 100
$2s^2 2p4d$	³ F°	3	10 554 000
$2s^2 2p4d$	35%	$2 \\ 1$	10 580 000 10 688 000
$2s^2 2p4d$	3D.	$1 \\ 2 \\ 3$	10 581 000 10 655 000 10 688 000
$2s^2 2p4d$	$^{1}\mathbf{D}^{\circ}$	2	10 675 000
$2s^2 2p4d$	${}^{1}\mathbf{F}^{\circ}$	3	10 681 000
$2s^2 2p5d$	${}^{3}D$	3	11 802 000
$2s^2 2p5d$	${}^{3}\mathbf{P}^{\circ}$	1	11 810 000
$2s^2 2p5d$	${}^{1}\mathbf{D}^{2}$	2	11 810 000
$2s^2 2p5d$	${}^{1}F^{**}$	3	11 814 000
Fe xxII $({}^{2}P_{1/2}^{\circ})$	Limit		13 620 000

Fe XXII

Z = 26

B t isoelectronic sequence

Ground state: $1s^2 2s^2 2p^2 P_{1/2}^{\circ}$

Ionization energy = $14510000 \pm 30000 \text{ cm}^{-1}$ (1799 ± 4 eV)

Spectra in the range of 100–160 Å arising from transitions among configurations $2s^22p$, $2s2p^2$ and $2p^3$ were analyzed by Kononov et al. (1976). New measurements and some corrections to $2p^3$ were made by Lawson and Peacock (1980), whose wavelengths appear to be uncertain by ± 0.01 Å, corresponding to a level uncertainty of ± 50 cm⁻¹. The results of Lawson and Peacock are used below. They have identified the intersystem line $2s2p^2 \, {}^{4}P_{5/2}-2p^3 \, {}^{2}D_{5/2}^{\circ}$ at 109.53 Å. Sandlin, Brueckner, Scherrer, and Tousey (1976) identified the intersystem multiplet $2s^22p \, {}^{2}P^{\circ}-2s2p^2 \, {}^{4}P$ from solar flare data which predicts the value 109.45±0.03 Å for the line of Lawson and Peacock. We adopt the Lawson and Peacock value.

Bromage, Cowan, Fawcett, and Ridgeley (1978) using the wavelength measurements of Boiko, Faenov, and Pikuz (1978) in the region of 9-12 Å and Hartree-Fock calculations, classified spectra arising from the transition arrays $2s^22p-2s^23d$, $2s^22p-2s2p3p$, $2s2p^2-2s2p3d$, and $2s2p^2 - 2s2p4d$. The uncertainty in the level values derived from these data is ± 2000 cm⁻¹.

Exploding wire spectra were analyzed by Burkhalter et al. (1978), who reported the observation of the $2s^22p$ ²P°- $2s^24d$ ²D and $2s^22p$ ²P°- $2s^24s$ ²S lines at 9 Å measured with an uncertainty of ± 0.03 Å.

The transition array $1s^22s^22p - 1s2s^22p^2$ was measured in solar flare spectra at ~1.8 Å by Feldman, Doschek, and Kreplin (1980) and an uncertainty of ± 0.0005 Å was given. The level accuracy is $\pm 14\ 000\ \text{cm}^{-1}$.

The ionization energy is from the isoelectronic extrapolation by Lotz (1967).

References

- Boiko, V. A., Facnov, A. Y., and Pikuz, S. A. (1978), J. Quant. Spectrosc. Radiat. Transfer 19, 11.
- Bromage, G. E., Cowan, R. D., Fawcett, B. C., and Ridgeley, A. (1978), J. Opt. Soc. Am. 68, 48.
- Burkhalter, P. G., Dozier, C. M., Stallings, C., and Cowan, R. D. (1978), J. Appl. Phys. 49, 1092.
- Feldman, U., Doschek, G. A., and Kreplin, R. W. (1980), Astrophys. J. 238, 365.
- Kononov, E. Y., Koshelev, K. N., Podobedova, L. I., Chekalin, S. V., and Churilov, S. S. (1976), J. Phys. B9, 565.
- Lawson, K. D., and Peacock, N. J. (1980), J. Phys. B13, 3313.
- Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.
- Sandlin, G. D., Brueckner, G. E., Scherrer, V. E., and Tousey, R. (1976), Astrophys. J. 205, L 47.

Configuration	Term	J	Level (cm ⁻¹)
$1s^2 2s^2 2p$	² P°	1/2 3/2	0 118 260
$1s^2 2s 2p^2$	⁴ P	1/2 3/2 5/2	405 590 461 030 513 840
$1s^2 2s 2p^2$	² D	³ / ₂ ⁵ / ₂	736 490 759 560
$1s^2 2s 2p^2$	^{2}S	1/2	853 460
$1s^2 2s 2p^2$	² P	1/2 3/2	978 200 992 260
$1s^2 2p^3$	⁴ S°	³ /2	1 256 510
$1s^2 2p^3$	² D°	³ / ₂ ⁵ / ₂	1 396 380 1 426 830
$1s^2 2p^3$	$^{2}P^{\circ}$	¹ / ₂ ³ / ₂	1 569 610 1 627 680
$1s^2 2s^2 3d$	² D	³ /2 5/2	8 498 000 8 507 000

Fe xxII

Fe xx11-Continued

Configuration	Term	J	Level (cm ⁻¹)
1s² 2s2p3p	² P	1/2	8 584 000
		3/2 3/2	8 688 000
$1s^2 2s 2p 3p$	² D	3/2	8 740 000
		5/2	8 845 000
$1s^2 2s 2p(^3\mathbf{P}^\circ) 3d$	⁴ F°	7/2	8 864 000
$1s^2 2s2p(^3\mathrm{P}^\circ) 3d$	⁴ P°	5/2	8 874 000
			8 972 000 8 973 000
$1s^2 2s 2p({}^3\mathrm{P}^\circ) 3d$	400	3.	
	⁻ U	1/2 1/2	8 882 000 8 888 000
		7/2	8 962 000
		5/2	8 973 000
$s^2 2s 2p(^3\mathbf{P}^\circ) 3d$	² D°	⁵ /2	8 938 000
$s^2 2s 2p({}^3\mathrm{P}^\circ) 3d$	$^{2}P^{\circ}$	¹ / ₂	8 967 000
		³ / ₂	9 180 000
$s^2 2s 2p(^3\mathbf{P}^\circ) 3d$	${}^{2}\mathbf{F}^{\bullet}$	5/2	9 030 000
		⁷ / ₂	9 062 000
$s^2 2s 2p({}^1\mathrm{P}^\circ) 3d$	$^{2}D^{\circ}$	3/2	9 134 000
		⁵ / ₂	9 272 000
$s^2 2s 2p(^1P^\circ) 3d$	$^{2}\mathrm{P}^{\circ}$	³ /2	9 168 000
$s^2 2s 2p(^1\mathrm{P}^\circ) 3d$	${}^{2}\mathbf{F}^{\circ}$	7/2	9 242 000
		⁵ / ₂	9 249 000
$1s^2 2s^2 4s$	2 S	¹ / ₂	11 050 000
$1s^2 2s^2 4d$	² D	5/2	11 149 000
		³ / ₂	11 161 000
$s^2 2s 2p(^3\mathbf{P}^\circ) 4d$	⁴ F°	⁵ /2	11 492 000
$s^2 2s 2p(^3\mathbf{P}^{\circ}) 4d$	⁴ D°	3/2	11 526 000
		$\frac{3}{7}_{2}^{2}$	11 618 000
		1/2	11 618 000
$s^2 2s 2p(^3 \mathbb{P}^\circ) 4d$	² F°	5/2 7	11 558 000
		¹ / ₂	11 900 000
$s^2 2s 2p(^3\mathrm{P}^\circ) 4d$	$^{2}D^{\circ}$	5/2	11 611 000
$s^2 2s 2p({}^1\mathrm{P}^\circ) 4d$	$^{2}\mathbf{F}^{\circ}$	7/2	11 649 000
		⁵ / ₂	11 897 000
$s^2 2s 2p({}^1\mathrm{P}^\circ) 4d$	² D°	5/2	11 906 000
1000

jer.

f^{arre}s.

Configuration	Term	J	Level (cm ⁻¹)
Fe XXIII $({}^{1}S_{0})$	Limit		14 510 000
$1s2s^2 2p^2$	²P	$\frac{1}{2}$ $\frac{3}{2}$	53 122 000 53 242 000
$1s2s^2 2p^2$	$^{2}\mathrm{D}$	³ /2 5/2	53 124 000 53 166 000
$1s2s^2 2p^2$	² S	¹ / ₂	53 327 000

Fe xxII-Continued

C. CORLISS AND J. SUGAR

Fe XXIII

Z = 26

Be 1 isoelectronic sequence

Ground state: $1s^22s^2$ ¹S₀

The $2s^2-2s2p$ and $2s2p-2p^2$ arrays in the range of 132-180 Å classified by Lawson and Peacock (1980) establish all the levels of these configurations with an uncertainty of 50 cm⁻¹. The percentage compositions of the $2s^2$, 2s2p, and $2p^2$ configurations with mixing of $2s^2$ and $2p^2$ were calculated by Scott and Burke (1980). We give the two leading percentages.

Laser produced spectra of iron in the range of 6-17 Å arising from L-shell excitations were reported by Boiko, Faenov, and Pikuz (1978) with an accuracy of 0.001-0.003 Å. Their classification of a group of these lines with levels of Fe XXIII was revised and extended by Bromage, Cowan, Fawcett, and Ridgeley (1978), who obtained the spectra with improved ionization discrimination. They made new calculations of the energy level structure and used the wavelengths of Boiko, Pikuz, and Faenov (distributed in 1976 in report form). The classifications by Bromage et al. are used to determine the levels of the 2snp, 2snd, 2pnp, and 2pnd configurations (n=3-5) with an uncertainty of ± 5000 cm⁻¹. They also gave percentage

compositions for only the highly mixed levels of this group. The 2s3s and 2p3s levels were given only by Boiko et al.

Spectral lines at ~1.8 Å were identified in the 1s²2s2p-1s2s2p² array by Kononov, Koshelev, and Sidelnikov (1977). The complete designations are given by Ionization energy = 15 797 000 ± 30 000 cm⁻¹ (1958.6 ± 3.7 eV) Safronova and Lisina (1979). The line at 1.8704 Å was assigned to $1s^22s^2 {}^{1}S_0 - 1s2s^22p {}^{1}P_1^{\circ}$ by Feldman, Doschek, and Kreplin (1980). The uncertainty of these level values is about $\pm 10\ 000\ {\rm cm}^{-1}$.

We obtained an average value of

15 797 $000 \pm 30\ 000\ \mathrm{cm}^{-1}$ for the ionization energy from the 2snp ¹P₁° and the 2snd ¹D₂ series.

References

- Boiko, V. A., Faenov, A. Y., and Pikuz, S. A. (1978), J. Quant. Spectrosc. Radiat. Transfer 19, 11.
- Bromage, G. E., Cowan, R. D., Fawcett, B. C., and Ridgeley, A. (1978), J. Opt. Soc. Am. 68, 48.
- Feldman, U., Doschek, G. A., and Kreplin, R. W. (1980), Astrophys. J. 238 365.
- Kononov, E. Y., Koshelev, K. N., and Sidelnikov, Y. V. (1977), Sov. J. Plasma Phys. 3, 375.
- Lawson, K. D., and Peacock, N. J. (1980), J. Phys. B13, 3313.
- Safronova, U. I., and Lisina, T. G. (1979), At. Data Nucl. Data Tables 24, 49.

Scott, N. S., and Burke, P. G. (1980), J. Phys. B13, 4299.

Configuration	Term	J	Level (cm ⁻¹)	Leading	percentages	
$1s^2 2s^2$	¹ S	0	0	96	4	$2p^2$ ¹ S
$1s^2 2s 2p$	³ P°	0	348 230	100		
-		1	379 180	96	2	¹ P *
		2	472 150	100		
$1s^2 2s 2p$	¹ P°	1	752 780	96	2	³ P°
$1s^2 2p^2$	³ P	0	956 180	94	6	^{1}S
-		1	1 027 390	100		
		2	1 071 890	76	24	¹ D
$1s^2 2p^2$	¹ D	2	1 204 590	76	24	$^{3}\mathrm{P}$
$1s^2 2p^2$	¹ S	0	1 422 900	90	6	${}^{3}\mathbf{P}$
$1s^2 2s 3s$	³ S	1	8 894 000			
$1s^2 2s 3p$	$^{3}P^{\circ}$	1	9 076 000	70	29	¹ P°
$1s^2 2s 3p$	¹ P°	1	9 107 000	64	30	³ P°

Fe xxiii

E-101

ENERGY LEVELS OF IRON

Fe xxIII-Continued

Configuration	Term	J	Level (cm^{-1})	Leading p	ercentages
1s ² 2s3d	³ D	1 2 3	9 199 000 9 209 000 9 212 000		
$1s^2 2p3s$	³ P°	0	9 295 000		
$1s^2 2s 3d$	¹ D	2	9 273 000		
$1s^2 2p 3p$	³ D	1 2 3	9 455 000 9 524 000 9 624 000		
$1s^2 2p3s$	¹ P°	1	9 470 000		
$1s^2 2p3d$	³ F°	3	9 625 000		
$1s^2 2p3d$	³ D°	1 3	9 637 000 9 749 000		
$1s^2 2p3d$		2	9 728 000	35 ³ P°	29 ³ I
$1s^2 2p3d$	¹ D°	2	9 638 000	46	29 ³ I
$1s^2 2p 3p$	³ P	2	9 644 000		
1s² 2p3p	¹ D	2	9 709 000		
$1s^2 2p3d$	³ P°	2	9 753 000	54	40 ³ I
$1s^2 2s 3s$	¹ S	0	9 783 000		
$1s^2 2p3d$	$^{1}P^{\circ}$	1	9 828 000		
$1s^2 2p3d$	¹ F°	3	9 830 000		
$1s^2 2s4p$	$^{1}\mathbf{P}^{\circ}$	1	12 044 000		
$1s^2 2s4d$	³ D	1 2 3	12 073 000 12 075 000 12 081 000		
$1s^2 2s4d$	¹ D	2	12 098 000		
$1s^2 2p4d$		2	12 481 000	44 ³ P°	35 ³ 1
$1s^2 2p4d$	³ D°	1 3	12 488 000 12 603 000		
$1s^2 2p4d$	³ F°	3	12 484 000		
$1s^2 2p4p$	³ D	3	12 560 000		
$1s^2 2p4d$	¹ D°	2	12 597 000	56	21 3
$1s^2 2p4d$	³ P°	2 1	12 614 000 12 615 000	50	42 3
$1s^2 2p4d$	¹ F°	3	12 631 000		

e entre a

jan.

E-102

C. CORLISS AND J. SUGAR

Fe xxIII-Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
1s² 2s5d	³ D	1 2 3	13 369 000 13 400 000 13 404 000	
$1s^2 2s5p$	$^{1}\mathbf{P}^{\circ}$	1	13 383 000	
$1s^2 2s5d$	$^{1}\mathbf{D}$	2	13 438 000	
$1s^2 2p5d$	³ ₽°	3	13 804 000	
$1s^2 2p5d$	³ D°	2 3	13 805 000 13 929 000	
$1s^2 2p5p$	³ D	3	13 904 000	
$1s^2 2p5d$	$^{1}\mathrm{D}^{*}$	2	13 922 000	
$1s^2 2p5d$	${}^{1}\overline{F}^{\circ}$	3	13 945 000	
Fe XXIV $({}^{2}S_{1/2})$	Limit		15 797 000	
$1s2s^2 2p$	¹ P°	1	53 464 000	
$1s(^{2}S)2s2p^{2}(^{4}P)$	³ P	0	53 707 000	
$1s(^{2}S)2s2p^{2}(^{2}D)$	$^{3}\mathrm{D}$	1	53 800 000	
$1s(^{2}S)2s2p^{2}(^{2}S)$	³ S	1	53 925 000	
$1s(^{2}S)2s2p^{2}(^{2}D)$	$^{1}\mathbf{D}$	2	54 045 000	
$1s(^{2}S)2s2p^{2}(^{2}P)$	¹ P	1	54 182 000	
$1s(^{2}S)2s2p^{2}(^{2}S)$	¹S	0	54 252 000	

ENERGY LEVELS OF IRON

Fe XXIV

Z==26

Li I isoelectronic sequence

Ground state: 1s²2s²S_{1/2}

Ionization energy = $16500000 \pm 4000 \text{ cm}^{-1} (2045.8 \pm 0.5 \text{ eV})$

The 2s-2p transitions have been observed with an uncertainty of ± 0.02 Å at 192.04 and 255.10 Å in solar flares from Skylab as reported by Widing and Purcell (1976).

The transitions to n=2 from n=3 and 4 were observed by Fawcett, Ridgeley, and Hughes (1979) between 8 and 11 Å by means of a laser-produced plasma. We used their results but substituted for their blended lines the more accurate predicted wavelengths of Edlén (1979) for 2p-3sand 2p-4s transitions. Fawcett et al. report a wavelength accuracy of better than 0.001 Å.

The $1s^2np$ and $1s^2nd$ levels with n > 4 are from the observations of Boiko, Faenov, and Pikuz (1978) at ~ 7 Å with a laser-produced plasma. They report a measurement uncertainty of ± 0.003 Å.

The levels above the ionization energy are from the analysis by Kononov, Koshelev, and Sidelnikov (1977). They obtained the spectrum at ~ 1.8 Å from the x-ray emitting hot spot in a low inductance spark discharge with a

measurement uncertainty of ± 0.0003 Å. The designations are obtained from Vainstein and Safronova (1978). Klapisch et al. (1977) reported two resonance lines from the 1s2s3pconfiguration.

The ionization energy was calculated by Edlén (1979).

References

- Boiko, V. A., Faenov, A. Y., and Pikuz, S. A. (1978), J. Quant. Spectrosc, Radiat. Transfer 19, 11.
- Edlén, B. (1979), Phys. Scr. 19, 255.
- Fawcett, B. C., Ridgeley, A., and Hughes, T. P. (1979), Mon. Not. R. Astron. Soc. 188, 365.
- Klapisch, M., Schwob, J. L., Fraenkel, B. S., and Oreg. J. (1977), J. Opt. Soc. Am. 67, 148.
- Kononov, E. Y., Koshelev, K. N., and Sidelnikov, Y. V. (1977), Sov. J. Plasma Phys. 3, 375
- Vainstein, L. A., and Safronva, U. I. (1978), At. Data Nucl. Data Tables 21,
- Widing, K. G., and Purcell, J. D. (1976), Astrophys. J. 204, L151.

Configuration	Term	J	Level (cm ⁻¹)
1s² 2s	² S	¹ /2	0
$1s^2 2p$	² P°	1/2 3/2	392 000 520 720
1s ² 3s	² S	¹ /2	9 271 700
$1s^2 3p$	²P°	1/2 3/2	9 379 000 9 416 000
$1s^2 3d$	² D	3/2 5/2	9 460 000 9 470 000
$1s^2 4s$	² S	¹ / ₂	12 464 000
$1s^2 4p$	² P°	1/2 3/2	12 513 000 12 525 000
$1s^2 4d$	² D	³ /2 ⁵ /2	12 541 000 12 546 000
$1s^2 5p$	² P [.]	¹ / ₂ , ³ / ₂	13 949 000
$1s^2 5d$	² D	³ / ₂ ⁵ / ₂	13 961 000 13 965 000
$1s^2 6p$	$^{2}\mathbf{P}^{*}$	1/2, ³ /2	14 734 000

Fe xxiv

C. CORLISS AND J. SUGAR

Fe xxiv-Continued

Configuration	Term	J	Level (cm ⁻¹)
$1s^2 6d$	² D	³ / ₂ ⁵ / ₂	<i>14 735 000</i> 14 739 000
$1s^2 7p$	²P°	¹ / ₂ , ³ / ₂	15 188 000
$1s^2 7d$	² D	3/2,5/2	15 209 000
Fe xxv $({}^{1}S_{0})$	Limit		16 500 000
$1s(^2\mathbf{S})2s2p(^3\mathbf{P}^\circ)$	⁴ P°	³ /2	53 390 000
$1s(^{2}S)2s2p(^{1}P^{\circ})$	² P°		53 657 000 53 752 000
$1s2p^2$	4P	¹ / ₂ ³ / ₂ ⁵ / ₂	53 806 000 53 877 000 53 937 000
$1s(^{2}S)2s2p(^{3}P^{\circ})$	² P°	1/2 3/2	53 844 000 53 903 000
$1s2p^2$	² D	³ / ₂ ⁵ / ₂	54 070 000 54 126 000
$1s2p^2$	² P	1/2 3/2	54 077 000 54 244 000
$1s2p^2$	² S	1/2	54 385 000
$1s2s(3s_1)3p$	(1,½)°	¹ /2	62 790 000
$1s2s(1s_0)3p$	(0,½)°	¹ / ₂	62 970 000
1s2p3s	$^{2}\mathrm{P}^{\circ}$	³ /2	63 209 000
$1s2p(^{3}\mathrm{P}^{\circ})3d$	⁴D°	³ /2	63 281 000
1s2p3p	$^{2}\mathrm{D}$	⁵ /2	63 543 000
1s2p3p	$^{2}\mathrm{S}$	¹ /2	63 572 000
1s2p3d	² F°	7/2	63 618 000

ENERGY LEVELS OF IRON

Fe XXV

Z = 26

He I isoelectronic sequence

Ground state: $1s^{2} S_0$

Ionization energy = 71 203 $200 \pm 2000 \text{ cm}^{-1}$ (8828.14 $\pm 0.25 \text{ eV}$)

Safronova (1981) has calculated the term values for the levels of this ion for n=1 and 2, taking into account the leading relativistic and radiative corrections. We have used her results, with an exception noted below, since they are at present probably more accurate than the measurements of the resonance lines occuring at ~ 1 Å. No estimate of uncertainty is made by Safronova. Her level uncertainty is probably about ± 2000 cm⁻¹. Kononov, Koshelev, and Sidelnikov (1977) have measured the wavelengths of the $1s^2 - 1s2p$ $^1P_1^{\circ}$ and $^3P_1^{\circ}$ transitions with an estimated uncertainty of $\pm 3 \times 10^{-4}$ Å. Their values are 1.8510 Å and 1.8592 Å respectively, compared with calculated values of 1.85048 Å and 1.85945 Å. A beam foil observation of the 1s2s ${}^{3}S_{1}-1s2p$ ${}^{3}P_{2}^{\circ}$ line by Buchet et al. (1981) gave a wavelength of 271.02 ± 0.09 Å. The calculated value by Safronova is 270.929 Å. A new calculation of $1s2s {}^{3}S_{1}-1s2\rho {}^{3}P_{0,2}^{\circ}$ by DeSerio (1981) gives the values 428.594 Å and 271.350 Å for these transitions. We use the experimental value for the ${}^{3}S_{1} - {}^{3}P_{2}^{\circ}$ transition by Buchet et al. to set the value of $1s2p {}^{3}P_{2}^{\circ}$ relative to $1s2s {}^{3}S_{1}$.

For n = 3 to 5 we give the calculated levels by Ermolaev and Jones (1974). These are obtained by subtracting their binding energies for the excited states from the binding energy of the ground state obtained by Safronova. The radiative corrections are reduced considerably with increasing *n*, which should bring the two calculations into closer agreement for n>2. Resonance transitions from $1s3p^{1.3}P_1^\circ$ were observed by Klapisch et al. (1977) at 1.5738 Å and 1.5755 Å. Values from the present calculated levels are 1.5732 Å and 1.5750 Å.

The mixing coefficients for the $1snp^{-1.3}P$ levels were obtained from Ermolaev and Jones.

References

- Buchet, J. P., Buchet-Poulizac, M. C., Denis, A., Desesquelles, J., and Druetta, M. (1981), Phys. Rev. A23, 3354.
- DeSerio, R. (1981), Ph.D. Dissertation "The 2s-2p transitions in helium-like silicon, sulphur, and chlorine," Dept. of Physics, University of Chicago, Chicago, H.
- Ermolaev, A. M., and Jones, M. (1974), J. Phys. B7, 199.

Kononov, E. Y., Koshelev, K. N., and Sidelnikov, Y. V. (1977), Sov. J. Plasma Phys. 3, 375.

Klapisch, M., Schwoh, J. L., Fraenkel, B. S., and Oreg, J. (1977), J. Opt. Soc. Am. 67, 148.

Safronova, U. I. (1981), Phys. Scr. 23, 241.

re xxv

Configuration	Term	J	Level (cm ⁻¹)	Leading po	ercentages
$1s^2$	¹ S	0	0		
1s2s	³ S	1	[53 527 100]		
1 <i>s</i> 2 <i>p</i>	₃ b.	0 1 2	[<i>53 760 300</i>] [<i>53 779 200</i>] [<i>53 896 100</i>]	91	9 ¹ P°
1s2s	¹ S	0	[53 781 300]		
1s2p	¹ P°	1	[54 040 000]	91	9 ³ P°
1s3s	^{3}S	1	[63 421 600]		
1 <i>s</i> 3p	3 P °	0 1 2	[63 486 300] [63 490 700] [63 525 700]	89	11 ¹ \mathbf{P}°
1 <i>s</i> 3s	^{1}S	0	[63 488 400]		
1s3p	¹ P°	1	[63 565 500]	89	$11 {}^{3}\mathbf{P}^{\circ}$
1s4s	³ S	1	[66 847 000]		
	1				

C. CORLISS AND J. SUGAR

			mi continueu			
Configuration	Term	J	Level (cm ⁻¹)	Leading	percentages	
1s4p	³ P°	0 1 2	[66 874 000] [66 875 800] [66 890 600]	89	11 ¹ P°	~~~~
1s4s	$^{1}\mathbf{S}$	0	[66 874 100]			
1s4p	¹ P°	1	[66 906 800]	89	11 ³ P°	
1s5s	^{3}S	1	[68 423 700]			
1 <i>s</i> 5s	¹ S	0	[68 437 200]			
1s5p	³ P°	0 1 2	[68 437 300] [68 438 200] [68 445 800]	89	$11 {}^1\mathrm{P}^{o}$	
1s5p	¹ P°	1	[68 454 000]	89	11 ³ P°	
Fe xxv1 (² S _{1/2})	Limit		71 203 200			

Fe xxv-Continued

ENERGY LEVELS OF IRON

Fe XXVI

Z = 26

H I isoelectronic sequence

Ground state: 1s ²S_{1/2}

Ionization energy = 74 828 700 \pm 300 cm⁻¹(9277.65 \pm 0.04 eV)

The theoretical values calculated by Erikson for terms of this hydrogen-like ion are given below through n=5. The binding energy of the 1s electron is reported with an uncertainty of ± 300 cm⁻¹; the levels measured from the ground state taken as zero will also have this uncertainty, although relative values should be better.

Lie and Elton (1971) observed the 1s - 2p transition at 56 210 000 \pm 160 000 cm $^{-1}$ by using a spark discharge.

References

Erikson, G. W. (1977), J. Phys. Chem. Ref. Data 6, 831. Lie, T. N., and Elton, R. C. (1971), Phys. Rev. A3, 865.

Fe	XXVI
----	------

Configuration	Term	J	Level (cm ⁻¹)
1 <i>s</i>	² S	¹ / ₂	0
2p	²p°	1/2 3/2	[<i>56 070 500</i>] [<i>56 241 580</i>]
2 <i>s</i>	^{2}S	¹ /2	[56 075 220]
3p	² P°	1/2 3/2	[<i>66 510 790</i>] [<i>66 561 520</i>]
3 <i>s</i>	^{2}S	¹ /2	[66 512 210]
3d	² D	⁸ /2 5/2	[66 561 420] [66 578 050]
4p	²₽°	1/2 8/2	[<i>70 157 890</i>] [<i>70 179 270</i>]
4 s	^{2}S	¹ / ₂	[70 158 490]
4 <i>d</i>	² D	⁸ /2 ⁵ /2	[70 179 240] [70 186 250]
4 <i>f</i>	² F°	5/2 7/2	[<i>70 186 240</i>] [<i>70 189 740</i>]
5 <i>p</i>	²₽°	1/2 3/2	[<i>71 843 000</i>] [<i>71 853 940</i>]
5 <i>s</i>	^{2}S	1/2	[71 843 310]
5 <i>d</i>	² D	8/2 5/2	[71 853 920] [71 857 510]
5f	² F*	5/2 7/2	[<i>71 857 500</i>] [<i>71 859 300</i>]
5g	² G	7/2 9/2	[71 859 290] [71 860 360]
	Limit		74 828 700

F. Atomic Transition Probabilities for Iron (A Critical Data Compilation of Allowed Lines) • • • •

F. Atomic Transition Probabilities for Iron (A Critical Data Compilation of Allowed Lines)

J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger

Center for Radiation Research. National Bureau of Standards, Washington, D.C. 20234

Atomic transition probabilities for the element iron in all stages of ionization have been critically evaluated and compiled. All available literature sources have been considered. Systematic trends along isoelectronic sequences have been exploited to predict oscillator strengths (*f*-values) whenever no data were available in the literature. The data are presented in separate tables for each element and stage of ionization and are arranged according to multiplets and, where appropriate, also according to transition arrays and increasing quantum numbers. For each line the transition probability for spontaneous emission, the absorption oscillator strength, and the line strength are given, along with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels (when available) of the upper and lower atomic states. In addition, the estimated accuracy and the literature reference are indicated. In short introductions which precede the tables for each spectrum, the main justifications for the choice of the adopted data and for the accuracy ratings are discussed. A general introduction contains additional details on the evaluation procedure.

[Source: J. R. Fuhr, G. A. Martin, W. L. Wiese and S. M. Younger, J. Phys. Chem. Ref. Data 10, 305 (1981)]

Note: The following tables of atomic transition probabilities for iron are excerpted from the recent critical compilation of atomic transition probabilities for iron, cobalt and nickel by Fuhr *et al.* cited above. In the interest of economy the general introduction to these tables is reprinted for this compilation in toto, without making any changes for the fact that only the iron tables are presented here. Since 80 to 90% of the introductory comments pertain to iron, the few remarks which address cases in nickel or cobalt should be disregarded.

Contents

Iron

				Page		
1.	Intro	ductory	Remarks	. F3		
2.	Method of Évaluation					
	2.1.	Review	of Data Sources	. F4		
		2.1.1.	Experimental Data Sources	. F4		
		212	Theoretical Data Sources and			
			Systematic Trends	F6		
	22	Spectro	sconic Designations and Electron	• • •		
	<i>L</i>	Countir		F7		
3	Cone	ral Arra	ngement of the Tables	. F9		
э. л	Kov	to Abbre	vistions and Sumbols Used in	•••		
4.	- Key	to Abbre	viations and Symbols Used in	F11		
-	the .	ables .	••••••••••••••••••••••••••••••••••••	. 111		
5.	Kete	rences		. F12		
6.	Tabl	es of Spe	ectra	. F14		
	Spec	trum				
	Iron		Fe 1	, F14		
			Fe II	. F85		
			Fe tit	. F91		
			Fe vii	. F94		
			Fe viii	. F97		

	D
Fe IX	F99
Fe X	.F100
Fe XI	.F103
Fe XII	.F106
Fe XIII	F109
Fe xiv	F113
Fe xv	F119
Fe xvi	F122
Fe XVII	F125
Fe xviii	F135
Fe XIX	F138
Fe xx	F141
Fe XXI	F144
Fe xx11	F150
Fe xxIII	F155
Fe xxiv	F160
Fe xxv	F164
Fe XXVI	F168

FUHR ET AL.

1. Introductory Remarks

This work represents the most recent installment in the NBS series of critical data compilations of atomic transition probabilities ¹ for iron group elements. Earlier publications in this series covered forbidden transitions for these elements [1],² as well as allowed transitions for scandium and titanium [2] and for vanadium, chromium, and manganese [3]. As this publication goes to press, the earlier compilations are being updated and revised, and it is planned to assemble all this material into a comprehensive compilation of transition probabilities for the iron group elements. This is to be published in book form as Volume III of Atomic Transition Probabilities, in the same (NSRDS-NBS) series as the NBS data compilations for the first twenty elements [4,5].

The literature sources were taken from the bibliographies on atomic transition probabilities which have been published by this NBS data center [6]. In addition, the more recent literature has been taken from a master reference list which is maintained and continually updated in the data center. This material includes some as yet unpublished results which have been communicated to us by researchers in the field.

Inasmuch as iron and nickel (and, to a lesser extent, cobalt) are very important elements both astrophysically and as components in magnetic fusion devices, a large number of data sources are available. The literature on the first spectrum of iron is by far the most abundant of all species covered here. Fairly reliable experimental data are also available for neutral cobalt and nickel, as well as for the singly ionized species of iron and nickel. Beyond the second spectra, few or no reliable experimental data exist, although some results based on theoretical calculations have been published. For several intermediate stages of ionization no results have been tabulated here---either because of the lack of data or because we estimate the results to be of questionable reliability. A fair number of data are available for the higher stages of ionization, and it was possible to predict the oscillator strengths of additional transitions by means of interpolation procedures.

2. Method of Evaluation

In evaluating a source of data, one first considers the general accuracy and reliability of results produced by the theoretical or experimental method used. The next step is to ascertain whether and to what extent certain factors critical to that method have been accounted for in the particular work considered.

A detailed discussion of the critical factors relevant to each technique can be found in one of the earlier NBS data compilations [5]. Some examples of critical factors are the degree of selfabsorption present in emission experiments, the presence of line blending and/or cascading in experimental determinations of radiative lifetimes of atomic states, and the mixing of quantum mechanical states in theoretical calculations due to configuration interaction and/or intermediate coupling. In experimental work these critical factors can, for example, be checked and corrected for by means of special tests, modeling, or modifications to the experimental apparatus which serve to minimize sources of systematic error, or they can at least be approximately accounted for in the uncertainty estimates. Improvements to theoretical calculations may entail the inclusion of additional terms in the atomic Hamiltonian and/or the augmentation of the basis set used in calculating wave functions and transition matrix elements.

In addition to evaluating the overall merits of the method applied, as well as allowances made for the pertinent critical factors, one can make judgments regarding the relative significance of those critical factors to the types of transitions treated. For example, certain experimental techniques are better suited to the determination of oscillator strengths for strong lines as opposed to weak ones, or vice versa; others may favor resonance lines over transitions between excited states. In theoretical calculations one expects relativistic effects to be more drastic for certain transitions than for others; likewise, correlation effects are highly dependent upon the complexity of the structure being studied. Thus even in cases where some critical factors have been neglected by an author (or have not been mentioned in the published work) we have nevertheless included the data in this compilation if the method used is considered to be fairly reliable for the types of transitions treated. In the more doubtful cases, however, we are necessarily more conservative with our error estimates.

The comparison of results obtained by different investigators has served as still another helpful technique in the evaluation process. This is particularly true whenever intercomparisons can be made among several sources of data for the transition(s) in common in order to pinpoint serious discrepancies more readily. Another instance is the comparison of sums of transition probabilities out of a common upper level to the reciprocal of the lifetime of that level as measured by an independent technique; in this manner it is possible, for example, to determine whether renormalization of an absolute scale is advisable. Another valuable analytical tool which has been exploited in the critical evaluation procedure is the degree of fit of

¹ Transition probabilities, oscillator strengths (f-values), and line strengths are equivalent quantities. The numerical relationships among these quantities are given in the conversion table (table 5) at the end of this introduction.

² Numbers in brackets indicate the literature references.

published results into established systematic trends along isoelectronic sequences of the lighter elements. Applied mainly to the higher ions, this technique becomes in essence an additional critical factor on which the accuracy of the data can be judged.

2.1. Review of Data Sources

Some general remarks on the selected sources of data are given below. A more detailed discussion can be found in the short introductions which accompany the tables for individual spectra.

2.1.1. Experimental Data Sources

The experimental data for iron, cobalt, and nickel are essentially limited to neutral and singly ionized species, as has been the case for other elements of the iron group. For these species the experimental material is the dominant source of information and is far superior to the existing theoretical data. Some additional experimental data are available for more highly ionized species, mainly in the form of lifetime measurements from beam-foil spectroscopy experiments. These data have contributed in an indirect way to this compilation, either by providing checks on theoretical data or by providing material for establishing systematic trends along isoelectronic sequences, which often yield interpolated *f*-values for highly ionized species.

Relative transition probability data have been supplied by emission experiments and, to a lesser extent, by absorption and anomalous dispersion ("hook") measurements. Absolute scales for these data have frequently been determined by experiments of a quite different kind, typically by determinations of atomic mean lives of a few important excited levels, such as lifetimes of the upper levels of resonance lines. It is thus convenient to discuss the experimental data sources for relative and absolute scales separately.

(a) Relative transition probabilities. The quantity that is directly measured in the emission, absorption, or hook techniques is proportional to the product of the transition probability and the population of the initial atomic state (i.e., the upper state in emission experiments and the lower state in absorption or hook experiments). Measurements are sometimes restricted to transitions originating from a single atomic state, as in the branching ratio technique. In such a case the population of the initial state is constant and does not enter into relative transition probability measurements. In other experiments, however, the determination of the relative populations of the various atomic states is one of the most critical problems. For the discharges or hot vapors involved, the existence of partial local thermodynamic equilibrium (PLTE), i.e., a Boltzmann distribution of excited atomic levels, may be assumed. Equilibrium criteria have indeed established that PLTE conditions for the excited atomic states hold for the typical experimental situation. But to relate the various level populations quantitatively, knowledge of the temperature is required—and these temperature measurements are often a source of considerable systematic uncertainty.

For the first spectrum of iron there are by far many more data available than for any other species compiled here. For this reason, and also because many of these data are the results of rather advanced experimental work, we feel that Fe I deserves a relatively detailed discussion.

The majority of the compiled data originate from two comprehensive emission experiments, both performed with stabilized arcs: May et al. [7] and Bridges and Kornblith [8] have measured a total of about 1500 fairly accurate *f*-values (with uncertainties in the 25-

50% range), which represent nearly a third of the data tabulated in this compilation. The data overlap for about 170 transitions, and, with the exception of a few lines, the agreement between these two experiments is very good, as is clearly seen from figures 3, 4, and 5 of the Fe I introduction; for example, 84% of the data compared agree to within 25%. These figures also show that no systematic differences between the two sets of data are apparent when f-value ratios are plotted against wavelength (except for four ultraviolet lines, see fig. 3 of that introduction), log gf (intensity) (fig. 4), or upper energy level (fig. 5). (For a more detailed discussion, see the Fe1 introduction.) While the two experiments are quite similar in conception, the technical approach used by Bridges and Kornblith is more advanced. In contrast to the photographic recording method used by May et al., the data acquisition technique of Bridges and Kornblith is based on photoelectric detection and digital data processing. Furthermore, the arc source used by the latter authors is equipped with a self-regulating system. Guided by signal monitors, the gas flows in the arc chamber are closely controlled by feedback circuits. When variations in the signals occur, valves are activated to self-stabilize the source. Furthermore, Bridges and Kornblith used a temperature measurement technique which minimized systematic uncertainties associated with the PLTE model. For their determination of the arc temperature, they utilized available lifetime data for about 40 different Fe1 energy levels which span a wide range of excitation energies. May et al., in turn, normalized their relative data to the scale established by Bridges and Kornblith.

A third experiment of key importance for the Fe I spectrum is the absorption work of Blackwell et al. [9-11] with a precisely stabilized electric furnace. Their measurements represent a new level of sophistication in experimental *f*-value determinations of complex atoms. Precisions of about 0.5% have been obtained on a common relative scale for many of the measured lines. Their spectrometric detection system is fully computer-controlled and the data are processed online. Two spectrometers are employed to measure various line pairs, which are then linked together in loops through overlapping lines and are checked and adjusted for internal consistency. Their measurements are, however, limited to groups of lines originating either from low-lying levels or from levels of the ground term itself, so that only about 100 transitions could be treated.

Another important source of data are the "hook" measurements performed by Huber and co-workers [12-14]. In these experiments, an absorbing column of hot Fe atoms has been generated either in an electric furnace or in a shock tube. The shock heating technique could be used to study transitions from highly excited levels, while the electric furnace allowed the measurement of lines originating only from lower excited levels or from levels of the ground term. With shock heating, however, spectroscopic temperature measurements which again involve the assumption of PLTE-sensitively affect the transition probability data. A comparison with the data of Bridges and Kornblith, illustrated in figure 1, shows an energy dependent trend (plotted here versus lower energy level), indicating a likely temperature error. It appears that the source of error lies with the Huber and Parkinson data, since Bridges and Komblith have minimized their temperature measurement uncertainties by fitting their data to numerous independently determined lifetimes, as discussed earlier. On the other hand, the electric furnace work by Banfield and Huber covers a very limited range of energy levels, and the temperature measurements should be more precise. Thus one would not expect any energy dependent systematic errors, which is indeed borne out by the excellent agreement between their data and those of Bridges and Kornblith, shown in figure 2.

FIGURE 1. Plot of log gf (Huber and Parkinson [14])—log gf (Bridges and Ko-[8]) vs lower energy level.

FIGURE 2. Plot of log gf (Banfield and Huber [12])=log gf (Bridges and Kornblith [8]) vs lower energy level.

Next to Fe I, the largest sets of experimental data exist for Ni I and Co I, consisting of approximately 280 and 220 lines, respectively. The selected sources of relative data for Ni I are the anomalous dispersion (hook) work (supplemented by a few weak lines measured by the absorption technique) by Huber and Sandeman [15] and branching ratio measurements by Lennard et al. [16] with a hollow cathode discharge. The two data sets are quite consistent, with three-fourths of the overlapping lines adhering to a common scale to within 25% or better. The data for Co I are from a similar group of experiments; the relative values are results of the hook measurements by Cardon and Smith [17] and the branching ratio technique of Whaling [18] with a hollow cathode discharge. As in the case of Ni I, the two sources of data are fully consistent.

Relative data for the singly ionized species are even less plentiful. Fairly reliable results exist for only about 130 lines of Fe II and are from the following sources: the emission experiments with wallstabilized arcs by Bridges [19] and Baschek et al. [20]; the shock tube-emission work by Wolnik et al. [21]; the branching ratio measurements by Smith and Whaling [22] with a hollow cathode discharge; the hook experiment by Huber [13]; and the analysis of solar spectra by Blackwell et al. [23] and Phillips [24]. For Ni II, the principal source for the about 50 tabulated lines is the wall-stabilized arc experiment by Bell et al. [25]. For Co II, however, the scatter among the few available (and very limited) sets of experimental data is very large----up to factors of 10----and cannot be definitely traced to any particular source, so that no attempt to tabulate numerical material was made.

(b) Absolute transition probabilities. As noted earlier, in emission as well as absorption or hook experiments the quantity that is directly measured is proportional to the product of the transition probability and the initial atomic state population. To obtain absolute data the populations have to be determined on an absolute basis, which is far more complex and involves more-stringent assumptions (e.g., complete LTE) than do relative transition probability measurements, as discussed above. Consequently, the determination of absolute data by any of these approaches is subject to considerable additional uncertainties.

If, however, a *common* relative scale for the transition probabilities of a species is established, the conversion to an absolute basis can be accomplished by an independent absolute measurement for only one transition. Precision measurements for one or a few key lines of a spectrum—primarily resonance transitions—are indeed readily accomplished via atomic lifetime techniques. Thus in recent years the combination of lifetime measurements with one of the methods discussed earlier has emerged as a very useful approach for determining large numbers of absolute transition probabilities in a reliable manner. We have therefore converted relative transition probability data to an absolute scale via the results of lifetime measurements whenever possible.

Before reviewing the sources of lifetime data, we wish to point out that the lifetime method, while representing a conceptually straightforward time-decay measurement, is not without problems of its own. For example, some lifetime techniques are based on the nonselective excitation of atomic states, which leads to cascading effects due to the simultaneous excitation of higher feeder states and the associated lengthening of observed lifetimes. Another limitation is that lifetimes are inverse sums of transition probabilities, comprising all possible downward transitions from a given excited atomic state. For complex spectra such as those encountered here, these sums often involve many lines, and the relative transition probability data may be quite incomplete, thus precluding the utilization of lifetime measurements. For the first and second spectra of Fe, Co, and Ni, however, many of the available lifetime data could be utilized, since either the transition probability sums are complete or the missing terms are estimated to be small. Furthermore, a number of the data were obtained with selective excitation techniques, which are very accurate.

Especially for the upper level ($z \, {}^{5}F_{s}^{2}$) of the Fe I resonance line 3720 Å, some very accurate lifetime data have been obtained, as seen in table 1. A large variety of techniques has been employed: the Hanle effect by Hilborn and de Zafra [26]; the delayed coincidence method by Klose [27]; the optical double resonance technique by Wagner and Otten [28]; and the high frequency deflection technique by Brzozowski et al. [29]. By including the contributions of

weak lines originating from the z ⁵ F_5^{o} level, we have converted these lifetimes to oscillator strengths, which are further supplemented by the precise atomic beam result of Bell and Tubbs [30]. Several other recent lifetime experiments have yielded data for highly excited levels of Fe I, but have not been directly utilized in this compilation since relative transition probability sums were incomplete. These data were, however, used as "upper-limit" checks on the compiled material and were found to be fully consistent with it.

The situation is similar for the other spectra: For Co I, the lifetime measurements by Figger et al. [31], who applied a laser to achieve selective level excitations, provide accurate absolute data which have been utilized to place the earlier cited relative transition probability data on an absolute scale. For Ni I, both the delayed coincidence method incorporating selective laser excitation and the Hanle-effect technique were used by Becker and co-workers [32,33] to determine the absolute scale, and in the case of Fe II, phase-shift lifetime measurements by Assousa and Smith [34] served the same purpose.

TABLE 1. Selected lifetime oscillator strength data for the Fe I resonance level.

$ au(\mathrm{ns})$ of the z ${}^5\mathrm{FS}^{\circ}$ level	Oscillator strength, of the 3719.93 Å line
59.5 ± 1.6	0.0425
61.5 ± 0.4	0.0413
63.2 ± 3.6	0.0400
60.5 ± 1.5	0.0418
	0.041 ± 0.003
	r(ns) of the z ⁵ F ² ₂ level 59.5 ± 1.6 61.5 ± 0.4 63.2 ± 3.6 60.5 ± 1.5

2.1.2. Theoretical Data Sources and Systematic Trends

As mentioned earlier, theoretically determined data for ions of iron are fairly abundant in the literature-at least in comparison with the corresponding ions of other iron group elements. Several sources include data for nickel ions as well, but references on cobalt are rather scarce. Thus while our earlier data compilations on scandium through manganese [2,3] relied very heavily on the interpolation or extrapolation of data from graphs of systematic trends of oscillator strengths along isoelectronic sequences, this approach did not constitute the principal means of providing tabulated data in the present work. Systematic trends were nevertheless utilized, both as an analytical tool in evaluating data and as a method of predicting f-values which were nonexistent in the literature. In cases where wavelengths of individual spectral lines were available but only multiplet oscillator strengths were reported in the literature or were derived by interpolation, we have derived f-values for the lines by decomposing the multiplet strength according to LS coupling-but only where we felt that this was a good approximation to the actual physical situation.

One phenomenon that manifests itself in the study of systematic trends along isoelectronic sequences is the change in the quantum character of eigenstates with increasing nuclear charge Z. This can, for example, lead to drastic variations in oscillator strengths, particularly for the member(s) of the sequence at (or nearest) which a designation interchange occurs. It may also result in increasingly greater values of the oscillator strength, as Z increases, for an intercombination line; such transitions are generally too weak to be observed in neutral and weakly ionized species of the light elements, but they may compete with transitions allowed in LS coupling in heavier species isoelectronic with those elements. In addition, it poses the problem of establishing a standard system of nomenclature for "mixed" eigenstates and raises the companion question of how a meaningful comparison of oscillator strength data along the sequence should be made. Because of the growing importance of this phenomenon with increasing nuclear charge, and in view of the magnitude of its effects as indicated in published theoretical work for iron group elements and beyond, this topic is discussed in more detail in section 2.2 below and thus will not be further elaborated on at this point.

We shall now turn to a brief review of the principal sources of theoretical data that have been selected for inclusion in this tabulation, or that have been major determining factors in arriving at our own predicted *f*-values.

Advanced techniques that have been used in calculating transition probabilities are the relativistic random phase approximation (RRPA), the multiconfiguration Dirac-Fock (MCDF) method, and the diverse variational approaches which allow for extensive configuration interaction and at least some relativistic effects.

Of the RRPA calculations reported for ions of iron group elements, the most advanced is that of Shorer [35] for resonance transitions in Ne-like ions, in which significant configuration interaction in the upper state was accounted for. Other sources using this same technique, but with a more limited configuration hasis, include the work of Lin and co-workers [36-39] for Be-like and He-like ions, and that of Shorer et al. [40] for Mg-like species.

The (relativistic) MCDF technique has been applied by Cheng et al. [41] to the determination of f-values for all transitions of the type $2s^{a}2p^{b}-2s^{a-1}2p^{b+1}$ in isoelectronic sequences of Li through F. It has also been used by Cheng and Johnson [42,43] for Be-like and Mg-like species; Armstrong and co-workers [44,45] for Li, Be, and Ar sequences; Cheng and Kim [46] for Ne-like ions; and Kim and Desclaux [47] for Be-like ions. In addition, Kim and co-workers [47-49] have applied the single-configuration Dirac-Fock method to calculate f-values for the Li and Na sequences.

Comprehensive variational calculations incorporating a large number of configurations as well as relativistic effects have been reported by Glass [50-53] for Be-like ions and B-like Fe. Also, superposition of-configurations (SOC) calculations have been carried out in intermediate coupling by Weiss [54,55] for ions of the Be, Mg, and Ar sequences; he has also determined multiplet f-values via the nonrelativistic SOC approach for the Al sequence [54,55]. The nonrelativistic multiconfiguration Hartree-Fock (MCHF) method has been used by Froese Fischer [56-59] to calculate multiplet oscillator strengths for the isoelectronic sequences of Na, Mg, and Al. The (nonrelativistic) non-closed shell many-electron theory (NCMET) was used by Sinanoglu and Beck [60] to predict one multiplet oscillator strength for Si-like ions. Also, the sophisticated nonrelativistic variational calculations of Weiss [61] for low ions of the He sequence enabled us to extrapolate oscillator strengths for a few multiplets in He-like Fe through Ni.

The scaled Thomas-Fermi (STF) approximation has been exploited in several transition probability calculations on iron-group elements. Of these, the most advanced are the multiconfiguration approaches, including relativistic effects, of Bely-Dubau et al. [62] for Li-like (Fe XXIV) satellite lines of He-like resonance lines and of Nussbaumer and Storey [63] for numerous transitions in Be-like

FUHR ET AL.

species. Additional, somewhat less-sophisticated sources of data based on the STF method are the calculations of Nussbaumer and co-workers [64-67] for CI- and Ne-like Fe and Ni, as well as Fe XIII and XXIII; Mason and co-workers [68,69] for Fe XI, XIV, and XXI; Kastner and co-workers [70-72] in Fe XIII, XV, and XIX, as well as Co XVI; Hayes [73] for Fe XXIV; both Biemont [74] and Kurucz and Peytremann [75] for Fe III and Ni III; and Waruer and Kirkpatrick [76] for Fe VII and Co VIII.

In addition to the MCDF and MCHF calculations mentioned earlier, the results of several somewhat less-sophisticated Hartree-Fock (HF) approximations have been used. These include the intermediate coupling approaches, with limited allowance for configuration interaction, of Chapman and Shadmi [77] for F-like ions, of Shamey [78] for Be-like ions, and of Dankwort and Trefftz [79] for B-like ions; the Hartree-Fock-Pauli (HFP) approximations of Weiss [80] for the Li sequence, and of Bogdanovicius et al. [81] for Fe XIX; the single-configuration HF calculations of Biemont [82] and Tull et al. [83] for Na-like ions, and of Chapman [84] for Fe XXII and XXIII.

A number of Hartree-Fock calculations have incorporated empirical adjustments to radial integrals. This technique has been used in conjunction with Cowan's HX (Hartree-Fock with statistical exchange) and Hartree-XR (HX with relativistic effects) programs, with explicit allowance for configuration interaction in some cases, to calculate gf-values for many ions of Fe as well as a few of Ni: Fe VIII [85]; Fe IX-XV [86]; Fe X,XI [87]; Fe XI, Ni XIII, XIV [88]; Fe XII, XIII [89]; Fe XV [90]; Fe XVII [91]; Fe XVIII, XIV [88]; Fe XII, SIII [89]; Fe XX [94]; Fe XXII, XXII [95]; Fe XXIII, XXIV [96]; Fe XXIV [97]; and Ni XXV, XXVI [98]. The calculations of Blaha [99] for Fe XIV also utilized a semi-empirical Hartree-Fock approach.

A relativistic multiconfiguration parametric-potential method has been applied by Aymar and Luc-Koenig [100] to the calculation of f-values for the Mg sequence. A single-configuration parametricpotential calculation has been performed in intermediate coupling by Crance [101] for Ne-like ions.

The nuclear-charge (Z-)expansion approach has been applied by several authors to the determination of oscillator strengths for Helike ions: the "unified relativistic" calculations of Drake [102]; the method of Brown and Cortez [103] based on variational wave functions for low-Z ions; and the less sophisticated approach of Laughlin [104]. A nonrelativistic multiconfiguration Z-expansion calculation has been reported by Fox and Dalgarno [105] for a few multiplets involving doubly excited states in Li-like species. Zexpansion perturbation theory has been applied by Vainshtein and Safronova [106] to the determination of transition probabilities for He- and Li-like satellites to resonance lines in H- and He-like species, respectively. Froese Fischer [107] has used a "simulated Zexpansion technique" to parametrize transition integrals for numerous multiplets in the Na sequence.

A number of f-values for Li-like ions are the results of studies by Smith and Wiese [108] and Martin and Wiese [109] of systematic trends of oscillator strengths along the isoelectronic sequence.

Quite a few sources of theoretically derived data have been rejected by us in the course of our critical evaluation process. One source in particular contains f-value data for numerous transitions: the scaled Thomas-Fermi (STF) approximation of Kurucz and Peytremann [75] for the neutral atoms, as well as the singly to quadruply ionized species, of Fe-group elements. Their work has already been critically reviewed in a previous compilation [3], which included several graphical comparisons of the data of ref. [75] with

the more reliable experimentally determined values. In view of the outcome of those comparisons, as well as the rather crude nature of the theoretical method used by Kurucz and Peytremann to calculate oscillator strengths for lines of the complex transition arrays found in Fe-group elements, we quote their results for only two of the spectra (Fe III and Ni III) covered in the present compilation.

2.2. Spectroscopic Designations and Electron Coupling

One of the recurring problems encountered in evaluating and compiling data for these tables was the assignment of spectroscopic designations to the upper and lower states of transitions. Spectroscopists have somewhat divided opinions on the subject. One possibility is to label a state according to the largest component of its (calculated) eigenvector, although this approach does not yield unique designations if there exist two or more states with a common leading component. Alternatively, the systematic behavior of wavelengths and intensities of a "given transition" along an isoelectronic sequence suggests that a common name be applied to the upper or lower state of all ions, regardless of changes in the quantum mechanical character of that state along the sequence.

There are problems which arise in both of these approaches. Certainly calculated eigenvectors provide a quantitative, and therefore supposedly more objective, framework on which to base decisions concerning nomenclature. The accuracy and reliability of results of such calculations, however, depends quite heavily on the theoretical or semi-empirical method used to produce them. (Even quite sophisticated theoretical approaches can yield erroneous results if applied to atomic or ionic systems in which two or more eigenstates are very nearly degenerate energetically.) The alternative approach of applying the same notation to a given state of all ions in an isoelectronic sequence, based on systematic trends in wavelengths and intensities of observed spectral lines, fails to recognize the true quantum character of the state in question. Changes in the eigenvector along the sequence may lead to a reversal of the dominant component in ions of nuclear charge Z beyond some minimum value Z_{\min} . In some cases, moreover, a change in the coupling notation at some point in the sequence may be desirable.

In the process of evaluating and compiling transition probability data several problem areas related to the designation of energy levels and to changes in electron coupling come to light. It is particularly perplexing, for example, to find that calculated oscillator strengths, energy levels, and eigenvectors available from one source of data cannot be unequivocally matched with experimentally determined energy levels from another because of differences in nomenclature. Further difficulties arise whenever interpolation techniques are used to predict f-values for an ion which lies within an interval in the pertinent isoelectronic sequence where a change in the coupling scheme takes place. In such cases the uncertainties in calculated eigenvector components would probably be of such a magnitude as to preclude a definitive assignment. Certainly the interpolated fvalues would have to be considered to be quite unreliable, and the pairing of such predicted oscillator strengths with particular spectroscopic designations could be misleading.

For the present compilation we have designated the eigenstates according to the dominant eigenvector component whenever such information was available and sufficiently unambiguous. For certain states of several species we have adopted notations such as J_{ij}

and/or J_1l coupling if this constituted an improvement over the Russell-Saunders (LS) designation. This was particularly true for the Ne-like ions of Fe through Ni, for example, where the LS-coupling designations given by Loulergue and Nussbaumer [65] for the two J = 1 levels of the $2p^5 3s$ configuration in Fe XVII and Ni XIX were indicated by them to be representative of the corresponding levels in lower-Z ions. Their calculated eigenvectors for these levels in suggest that the names should be interchanged, but that the purity in LS coupling is rather low. A transformation to the J_1j -coupling scheme clearly demonstrates a significant improvement, as seen in table 2 below. The validity of such a transformation is borne out by

TABLE 2: Eigenvector components and percentage compositions from ref. [65] for J = 1 states of the $2\rho^{5}3s$ configuration in Fe XVII.

	LS e	coupling	J_{ij} coupling			
	³ Po	'Po	(½, ½)°	(K, %)°		
Lower state	0.679	0.733	0.991	0.131		
	(46%)	(54%)	(98%)	(2%)		
Upper state	0.733	-0.678	-0.130	0.990		
	(54%)	(46%)	(2%)	(98%)		

the calculations of Crance [101], who labeled the $2p^5ns$ $(n \ge 3)$ states of these ions in J_1j -coupling notation (although he did not publish his calculated eigenvectors). Crance's calculated f-value data support this action as well, since in pure LS coupling the oscillator strength for a ${}^{1}S_{0}-{}^{3}P_{+}$ (i.e., intercombination) transition is zero, while Crance's results predict virtual equality of the f-values for transito to the two J = 1 levels in Ne-like chromium.

One of the more striking examples in which the reported existence of state mixing influenced us in the preparation of this compilation was the evaluation of f-value data for resonance transitions to states of the $2p^{4}3s$ and $2p^{4}3d$ configurations of F-like ions. Oscillator strengths and eigenvectors were calculated by Chapman and Shadmi [77] for F-like Sc, Fe, and Cu. According to their results the purity of some states is less than 50%. In certain of those cases the same basis state constitutes the dominant component of two different eigenvectors, so that the corresponding levels cannot be labeled uniquely. In other cases a single basis state is distributed among so many eigenstates that no one level could be labeled as such. The mixing becomes more severe along the isoelectronic sequence, so that the interpolation of f-value data for F-like Co and Ni was a difficult undertaking.

An example of Chapman and Shadmi's published results is presented in table 3 below. Energy levels for $J = \frac{1}{2}$ states of the $2p^{4}3d$ configuration are tabulated in ascending order for each of the

Energy		Pe	\int values				
levet	$({}^{3}\mathbf{P})^{*}\mathbf{D}$	(³ P) ² P	(³ P) ⁴ P	(¹ D) ² P	(1D)2S	1 <u>/2</u> ° – 1 <u>/2</u>	½ ^b - ½
				Se XIII			
3900900 3935200 3947200 4031700 4083200	86	58 33	91	28 61	92	0.0019 3.5(-6) 0.021 2.4(-5) 0.031	9.0(-5)' 2.6(-4) 0.0016 0.088 0.43
				Fe XVIII			
6775800 6817300 6856300 6967100 7040100	52 42	15 17 30 34	17 64	18	81	0.0089 0.0032 0.013 1.7(-4) 0.031	$2.7(-4) \\ 3.4(-4) \\ 9.1(-4) \\ 0.068 \\ 0.53$
	da			Cu XXI			L
8768000 8817500 8900000 9031700 9123100	38 57	19 23 21 32	22 55 14	15	75	0.012 0.0043 0.0099 1.9(-4) 0.020	2.2(-4) 4.6(-4) 7.1(-4) 0.056 0.52

TABLE 3. Calculated energy levels and percentage compositions from ref. [77] for $J = \frac{1}{2}$ states of the $2p^{4}3d$ configuration in F-like Sc, Fe, and Cu; also, f-values from the same source for resonance transitions to those states.

 $^{\circ}2p^{5/2}\mathbf{P}_{3/2}^{o}$ $^{\circ}2p^{5/2}\mathbf{P}_{1/2}^{o}$

'The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

LS coupling and f-values for transitions from the ground-term levels $(2p^{5/2}P_{1/2,3/2}^{o})$. (Chapman and Shadmi tabulated only the dominant eigenvector components for each state by terminating the process when at least 75% of the eigenstate was accounted for. Thus the sum of percentage compositions for any given eigenstate (row) or basis state (column) is in general less than 100%.) The only level that seems to be unambiguously identifiable for all three ions presented is the $({}^{1}D)^{2}S$, although the *f*-value for the $\frac{1}{2}-\frac{1}{2}$ transition undergoes a rather drastic increase in the interval between Sc and Fe. Designation of the remaining states in Sc is rather straightforward, but in the case of Fe and Cu the average purity (i.e., the percentage of the largest component averaged over all levels) reduces to 59% and 55%, respectively. Intermixing is so severe that it is virtually impossible to predict oscillator strength data for Co and Ni by interpolating along the sequence. Predicted f-values have been tabulated in this compilation for a few of these transitions, but they must be considered rather uncertain. Even the published data for transitions to the $({}^{3}P){}^{4}D_{1/2}$ and $({}^{3}P){}^{2}P_{1/2}$ levels in F-like iron have been excluded—in the former case because of the relatively small difference (52% vs 42%) in (³P)¹D character between two of the eigenvectors, and in the latter because of the lack of any one eigenvector containing a significant percentage of (³P)²P character. A similar but somewhat more intricate situation is found for the levels of the $2p^43d$ configuration having $J = \frac{1}{2}$ and $J = \frac{1}{2}$, since each eigenvector contains eight basis states and (in some cases significant) mixing with states of the $2s2p^{5}3p$ configuration is indicated. Transformation of Chapman and Shadmi's calculated eigenvectors to another basis set resulted in significant improvements in the purities of only a few levels, while others became more diluted, so that the overall advantage was questionable at best. Additional difficulties arose in attempting to match observed wavelengths for these transitions with the calculated ones, since the energy levels are fairly closely spaced and the relative positions determined by theory may be in error. A result of the totality of problems and uncertainties involved in the study of high ions in the fluorine isoelectronic sequence is the possibility of considerable error in our tabulated results, which is reflected in the accuracy ratings, and the essentially inevitable exclusion of possible oscillator strength data for many transitions at this time.

This rather extensive discussion of the Ne-like and F-like ions is not intended as a criticism of the work of the authors referenced herein, but rather as an exposition of some of the peripheral factors that enter into the evaluation and compilation of transition probability data----particularly for heavier species, where relativistic (such as spin-orbit) effects begin to play an important role. It is hoped that, in the future, producers of theoretical *f*-value data will accompany their published results with as much information as possible (especially eigenvector components!) so that evaluators can make better and informed judgments as to the suitability of including such *f*-value data in compilations of this type.

Probably the most outstanding presentation of eigenvector data relevant to this compilation is the work of Shorer [35] on the Ne sequence. He provides graphs of percentage compositions in LS, and J_1l coupling for the J = 1 levels of the configurations $2p^{5}3s$ $2p^{5}3d$. (For the sake of convenience, he also supplies matrices of transformation coefficients indicating the relationships among these three pure coupling schemes.) Thus the reader can see at a glance how the electronic coupling varies along the isoelectronic sequence, and particularly how it is affected in regions of significant level-crossing-induced configuration interaction. This mode of presentation, together with the relatively high level of sophistication of the f-value calculations and the detailed comparison of results according to the size of the various configuration bases used, could be considered as a model.

3. General Arrangement of the Tables

The same general format has been maintained throughout the series of NBS compilations [1-5]. For the more complex spectra, we have omitted the transition array column, and the multiplet designation scheme introduced by Moore [110-112], which labels the terms with lower case letters (a,b,c,\ldots,x,y,z) , has been used to identify the upper and lower states of a transition. In some special cases, we have designated the transition, where appropriate, in a coupling scheme other than Russell-Saunders (LS), such as the $J_1 j$ coupling encountered in Ne-like ions and $J_1 j$ or $J_1 l$ coupling for Ar-like species.

The major sources of wavelength and energy level data are the tables of Moore [110-112], Kelly and Palumbo [113], and Reader and Sugar [114]. For some spectra, particularly for the highly ionized species, few or no data were available from these sources. We thus had to search through the literature on these species to obtain the appropriate data. To this end, the bibliographies on atomic energy levels and spectra [115] were quite helpful. In addition, we made use of the facilities of the NBS Data Center on Atomic Energy Levels in locating the most recent sources of original data. All sources of wavelengths and energy levels other than refs. [110] through [114] which have been used in this compilation are given in table 4.

In the main tables, calculated or extrapolated energy levels are enclosed in square brackets, as are experimentally derived energy levels which are uncertain with respect to the ground state. The same is true of wavelengths that have been calculated from energy level differences rather than obtained from experiment.

TABLE 4. Special source material for wavelength and energy level data. Complete citations are given below.

Spectrum	Reference	Spectrum	Reference	Spectrum	Reference
Fe 1	1	Fe XIII	5,11,12,13,14	Fe xxiii	37,36,37,38,39,40,41
Fe II	2	Fe XV	5,12,15	Fe XXIV	39,42,43,44,45,46
Fe VII	3	Fe xvn	16,17,18,19,20	Fe xxv	47,48
Fe VIII	4	Fe xviii	21,22,23,26	Co VIII	49
Fe IX	5,6,7	Fe xix	24,25,26,27,28	Co x	50
Fe x	5,8,9	Fe xx	24,27,29,30	Co xiv	12,51,52
Fe XI	5,9,10	Fe XXI	27,29,31,32,33,34	Co' XVI	12,53,54
Fe XII	5,11	Fe XXII	27,29,35,36,37	Co XVII	53,55

TABLE 4. Special source material for wavelength and energy level data. Complete citations are given below.---Continued

Spectrum	Reference	Spectrum	Reference	Spectrum	Reference
9 XIX 9 XX 9 XXI 9 XXI 9 XXI 9 XXI 9 XXI 9 XXI 9 XXX 9 XXX 9 XXX 9 XXX	21,56 24,27,57 27,56,57 27,58 27,59 27,38 27,47,60 47,48	Ni II Ni XX Ni XVI Ni XVII Ni XVII Ni XX Ni XX	61 12,51,52 53 12,53 53,55 17,18,19,62,63 56	Ni XXI Ni XXII Ni XXIII Ni XXIV Ni XXV Ni XXVI Ni XXVI	24,27,57 27,56 27,58 27,59 27,38,39 39,47,64 47,48

^[1] Crosswhite, H. M., J. Res. Nat. Bur. Stand., Sect. A 79, 17 (1975).

- [2] Johansson, S., Phys. Scr. 18, 217 (1978).
- [3] Cady, W. M., Phys. Rev. 43, 322 (1933).
- [4] Feldman, U., and Fraenkel, B. S., Astrophys. J. 145, 959 (1966).
- [5] Faween, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972). [6] Jordan, C., Space Sci. Rev. 13, 595 (1972).
- [7] Svensson, L. A., Ekberg, J. O., and Edlen, B., Sol. Phys. 34, 173 (1974). [8] Snutt, R., Sol. Phys. 51, 113 (1977).
- [9] Bromage, G. E., Cowan, R. D., and Fawcett, B. C., Phys Scr. 15, 177 (1977). [10] Fawcett, B. C., Peacock, N. J., and Cowan, R. D., J. Phys. B 1, 295 (1968).
- [11] Bromage, G. E., Cowan, R. D., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 183, 19 (1978).
- [12] Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J., J. Opt. Soc. Am. 68, 1558 (1978). [13] Bebring, W. E., Cohen, L., Feldman, U., and Doschek, G. A., Astrophys. J. 203, 521 (1976).
- [14] Fawcett, B. C., J. Phys. B 4, 1577 (1971).
- [15] Cowan, R. D., and Widing, K. C., Astrophys. J. 180, 285 (1973).
- [16] Fawcett, B. C., Bromage, G. E., and Hayes, R. W., Mon. Not. R. Astron. Soc. 186, 113 (1979). [17] Parkinson, J. H., Sol. Phys. 42, 183 (1975).
- [18] Loulergue, M., and Nusshaumer, H., Astron. Astrophys. 45, 125 (1975).
- [19] Kastner, S. O., Behring, W. E., and Cohen, L., Astrophys. J. 199, 777 (1975).
- [20] Hutcheon, R. J., Pye, J. P., and Evans, K. D., Mon. Not. R. Astron. Soc. 175, 489 (1976). [21] Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L., J. Opt. Soc. Am. 63, 1445 (1973).
- [22] Feldman, U., Doschek, G. A., Nagel, D. J., Behring, W. E., and Cohen, L., Astrophys. J. 183, L43 (1973). [23] Chapman, R. D., and Shadmi, Y., J. Opt. Soc. Am. 63, 1440 (1973).
- [24] Fawcett, B. C., At. Data Nucl. Data Tables 16, 135 (1975).
- [25] Bromage, C. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 178, 591 (1977).
- [26] Bromage, G. E., Fawcett, B. C., and Cowan. R. D., Mon. Not. R. Astron. Soc. 178, 599 (1977).
- [27] Cheng, K. T., Kim. Y.-K., and Desclaux, J. P., At Data Nucl. Data Tables 24, 111 (1979). [28] Kastner, S. O., Bhatia, A. K., and Cohen, L., Phys. Scr. 15, 259 (1977).
- [29] Kononov, E. Ya., Koshelev, K. N., Podobedova, L. I., Chekalin, S. V., and Churilov, S. S., J. Phys. B 9, 565 (1976). [30] Bromage, G. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 179, 683 (1977).
- [31] Doschek, G. A., Feldman, U., Dere, K. P., Sandlin, G. D., Van Housier, M. E., Brueckner, C. E., Purcell, J. D., and Tousey, R., Astrophys. J. 196, L83 (1975).
- [33] Bromage, G. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 178, 605 (1977).
- [34] Mason, H. E., Doschek, G. A., Feldman, U., and Bhatia, A. K., Astron. Astrophys. 73, 74 (1979). [35] Shamey, L. J., J. Opt. Soc. Am. 61, 942 (1971).
- [36] Chapman, R. D., Astrophys. J. 156, 87 (1969).
- [37] Bromage, G. E., Cowan, R. D., Fawcett, B. C., and Ridgeley, A., J. Opt. Soc. Am. 68, 48 (1978).
- [38] Boiko, V. A., Pikuz, S. A., Safronova, U. L. and Faenov, A. Ya., J. Phys. B 10, 1253 (1977).
- [39] Fawcett, B. C., Ridgeley, A., and Hughes, T. P., Mon. Not. R. Astron. Soc. 188, 365 (1979). [40] Widing, K. C., Astrophys. J. 197, L33 (1975).
- [41] Kastner, S. O., Neupert, W. M., and Swartz, W., Astrophys. J. 191, 261 (1974).
- [42] Widing, K. G., and Purcell, J. D., Astrophys. J. 204, L151 (1976).
- [43] Aglitskii, E. V., Boiko, V. A., Pikuz, S. A., and Faenov, A. Ya., Lebedev Phys. Inst., Preprint No. 56, Moscow (1974) as referenced in: Boiko, V. A., Faenov, A. [44] Kononov, E. Ya., Koshelev, K. N., and Sidel'nikov, Yu. V., Sov. J. Plasma Phys. 3, 375 (1977).
- [45] Grineva, Yu. L., Karev, V. L., Korneev, V. V., Krutov, V. V., Mandel'shtam, S. L., Vainshtein, L. A., Vasilyev, B. N., and Zhitnik, I. A., Sol. Phys. 29, 441 (1973). [46] Bely-Dubau, F., Cabriel, A. H., and Volonte, S., Mon. Not. R. Astron. Soc. 186, 405 (1979).
- [47] Vainshtein, L. A., and Safronova, U. L. At. Data Nucl. Data Tables 21, 49 (1978).
- [48] Ermolaev, A. M., and Jones, M., J. Phys. B 7, 199 (1974) and supplement.
- [49] Alexander, E., Feldman, U., Fraenkel, B. S., and Hoory, S., J. Opt. Soc. Am. 56, 651 (1966). [50] Coldsmith, S., J. Opt. Soc. Am. 59, 1678 (1969).
- [51] Fawcett, B. C., and Hayes, R. W., J. Phys. B 5, 366 (1972). [52] Svensson, L. A., Sol. Phys. 18, 232 (1971).
- [53] Fawcett, B. C., Cowan, R. D., and Hayes, R. W., J. Phys. B 5, 2143 (1972). [54] Kastner, S. O., and Bhatia, A. K., J. Opt. Soc. Am. 69, 1391 (1979).
- [55] Toll, C. F., McEachran, R. P., and Cohen, M., At. Data 3, 169 (1971).

FUHR ET AL.

[56] Doschek, G. A., Feldman, U., Cowan, R. D., and Cehen, L., Astrophys. J. 188, 417 (1974).

[57] Doschek, G. A., Feldman, U., Davis, J., and Cowan, R. D., Phys. Rev. A 12, 980 (1975).

[58] Feldman, U., Doschek, C. A. Cowan, R. D., and Cohen, L., Astrophys. J. 196, 613 (1975).

[59] Doschek, G. A., Feldman, U., and Cohen, L., J. Opt. Soc. Am. 65, 463 (1975).

- [60] Safronova, U. L. I. Quant. Spectrosc. Radiat. Transfer 14, 251 (1974).
- [61] Shenstone, A. G., J. Res. Nat. Bur. Stand., Sect. A 74, 801 (1970).
- [62] Swartz, M., Kastner, S., Rothe, E., and Neupert, W., J. Phys. B 4, 1747 (1971).
- [63] Feldman, U., and Cohen, L., Astrophys. J. 149, 265 (1967).

[64] Sandlin, G. D., Brueckner, G. E., Scherrer, V. E., and Tousey, R., Astrophys. J. 205, 147 (1976).

We have again classified the uncertainties in the atomic transition probability data with the same notation used in our earlier compilations, i.e.,

A for uncertainties within 3 percent,³

B for uncertainties within 10 percent,

C for uncertainties within 25 percent,

D for uncertainties within 50 percent,

E for uncertainties greater than 50 percent.

The word *uncertainty* is used here with the connotation "estimated extent of the deviation from the true value." The estimation procedure is based on our evaluation of random errors as well as our estimates of the maximum effect of possible systematic errors (see sec. 2). We have often made a further differentiation in the classification scheme by assigning plus or minus signs to some transitions to indicate that these lines are estimated to be somewhat better or worse than similar lines. These should therefore be the first or last choice among similar transitions.

A summary of the abbreviations and special symbols used in the tables is given in section 4. Also, for convenience, we have included the relations between line and multiplet values in the case of LS coupling. In table 5, we provide a table of conversion factors which we have used throughout this compilation to convert from transition probabilities to oscillator strengths and line strengths, and vice versa.

TABLE 5. Conversion factors

The factor in each box converts by multiplication the quantity above it into the one at its left.

		f _{ik}	5
$A_{\mathbf{k}}$	1	$\frac{6.670_2 \times 10^{15}}{\lambda^2} \frac{g_i}{g_k}$	$\frac{2.026_1 \times 10^{18}}{g_k \lambda^3}$
f _a	$1.4992 \times 10^{-16} \frac{\lambda^2 g_k}{g_l}$	l	$\frac{303.7_{\circ}}{g_{*}\lambda}$
s	$4.935_5 \times 10^{-19} g_k \lambda^3$	$3.292_1 \times 10^{-3} g_i \lambda$	1

The line strength is given in atomic units, which are $a_{\mu}^{2}c^{2} = 7.188_{+} \times 10^{-59} \text{ m}^{2}\text{C}^{2}$ for electric dipole transitions. The transition probability is in units s⁻¹, and the *f*-value is dimensionless. The wavelength λ is given in angström units, and g_{μ} and g_{μ} are the statistical weights of the lower and upper state, respectively. For the atomic constants entering into the relations, we have used the recommendations of the CODATA Task Group on Fundamental Constants (J. Phys. Chem. Ref. Data **2**, 663 (1973)).

4. Key to Abbreviations and Symbols Used in the Tables ¹

1. Symbols for indication of accuracy:

A uncertainties within 3 percent,³

B uncertainties within 10 percent,

C uncertainties within 25 percent,

D uncertainties within 50 percent,

E uncertainties greater than 50 percent.

Abbreviations appearing in the source column of allowed transitions:

ls = LS-coupling rules applied

n = normalized to a scale different than that of the author (as explained in the introductory remarks to the pertinent spectrum)

interp. = derived by an interpolation technique, rather than taken directly from the literature

3. Special symbols used in the wavelength and energy level columns:

The number in parentheses under the multiplet designation refers to the running number of ref. [110] (Revised Multiplet Table). If letters "uv" are added, we refer to the running number of ref. [111] (Ultraviolet Multiplet Table).

Numbers in italics indicate multiplet values, i.e., weighted aver ages of *line* values.

Numbers in square brackets indicate approximate calculated or extrapolated values.

Useful Relations

(A) Statistical Weights:

The statistical weights are related to the inner quantum number J_L (for one-electron spectra: j_L) of a level (i.e., initial or final state of a *line*) by

$$g_L=2J_L+1,$$

and to the quantum numbers of a term (initial or final state of a *multiplet*) by

$$g_M = (2L + 1)(2S + 1).$$

(The "multiplet" values g_{ii} may also be obtained by summing over all possible "line" values g_{ii} . S is the resultant spin.)

(B) Relations between the strengths of lines and the total multiplet strength:

1. Line strength S:

or

$$S(i,k) = \sum_{J_i,J_k} S(J_i,J_k)$$

$$S(Multiplet) = \sum S(line)$$

(k denotes the upper and i the lower term).

 $^{^3}$ No transition probabilities of "A" accuracy are reported in this compilation. 4 In keeping with the tradition in this field, we have tabulated the spectroscopic

quantities in customary units rather than in SI units; e.g., energy levels are expressed in their equivalence in cm^{-1} .

L

TRANSITION PROBABILITIES FOR IRON

2. Absorption oscillator strength f_{ik} :

$$f_{i_k}^{\mathrm{nubliqdet}} = rac{1}{\lambda_{i_k}\sum\limits_{J_i} (2J_i + 1)} \sum\limits_{J_i, J_k} (2J_i + 1)
onumber \ imes \lambda(J_i, J_k) \times f(J_i, J_k).$$

The mean wavelength for the multiplet, λ_{ik} , may be obtained the *weighted* energy levels. Often the wavelength differences for the lines within a multiplet are small, so that the wavelength factors may be neglected.

3. Transition probability A_{ki} :

$$\begin{split} A_{h_{\ell}}^{\text{numpler}} &= \frac{1}{(\tilde{\lambda}_{ik})^3} \sum_{J_k} (2J_k + 1)} \sum_{J_j,J_k} (2J_k + 1) \\ &\times \lambda (J_j,J_k)^3 \times A(J_j,J_k). \end{split}$$

Relative strengths $S(J_i,J_t)$ of the components of a multiplet are listed for the case of LS coupling in Allen, C. W., Astrophysical Quantities, 3rd Ed. (The Athlone Press, London, 1973); White, H. E., and Eliason, A. Y., Phys. Rev. 44, 753 (1933); Shore, B. W., and Menzel, D. H., Principles of Atomic Structure, p. 447 (John Wilcy & Sons, Inc., New York, 1968); Goldberg, L., Astrophys. J. 82, 1 (1935) and 84, 11 (1936).

Acknowledgments

We would like to express our appreciation to Dr. A. W. Weiss for making the results of his calculations on the Be, Mg, Al, and Ar isoelectronic sequences available to us in advance of publication, as well as for many helpful discussions and suggestions. We would also like to thank the following persons for communicating their results prior to publication: Dr. D. E. Blackwell, for data on Fe I; Drs. B. L. Cardon and W. Whaling, for their respective preliminary results on Co I; Drs. M. C. E. Huber and U. Becker, for their respective data on Ni 1; Dr. Y.-K. Kim, for results on the isoelectronic sequences of Li through Ne; and Dr. R. Glass, for data on Be-like ions and B-like Fe. We wish to recognize the value of correspondence with Dr. W. R. Fielder on Fe VIII, Drs. C. D. Lin and W. R. Johnson on He-like species, Dr. D. L. Lin on Ar-like ions, and Dr. Y.-K. Kim on the B and Ne sequences, all of whom have helped to clarify certain matters concerning their calculated results. We would also like to thank Dr. R. Zalubas and Ms. A. F. Albright of the Atomic Energy Levels Data Center of NBS for having made their facilities available for our extensive use. Finally, we acknowledge the very competent assistance of Ms. B. J. Miller in the typing of the text and of Ms. M. L. Thompson in the typing of the data tables.

This work was partially supported by the Office of Basic Energy Sciences of the Department of Energy.

5. References

- [1] Smith, M. W., and Wiese, W. L., J. Phys. Chem. Ref. Data 2, 85 (1973).
- [2] Wiese, W. L., and Fuhr, J. R., J. Phys. Chem. Ref. Data 4, 263 (1975).
 [3] Younger, S. M., Fuhr, J. R., Martin, G. A., and Wiese, W. L., J. Phys. Chem.
- Ref. Data 7, 495 (1978).

- [4] Wiese, W. L., Smith, M. W., and Glennon, B. M., Atomic Transition Probabilities- Hydrogen through Neon (A Critical Data Compilation), Vol. 1, 157 pp., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 4 (May 1966).
- [5] Wiese, W. L., Smith, M. W., and Miles, B. M., Atomic Transition Prohabilities—Sodium through Calcium (A Critical Data Compilation), Vol. II, 306 pp., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 22 (Oct. 1969).
- Fuhr, J. R., Miller, B. J., and Martin, G. A., Bibliography on Atomic Transition Prebabilities (1914 through October 1977), 283 pp., Nat. Bur. Stand. (U.S.), Spec. Publ. 505 (April 1978); Miller, B. J., Fuhr, J. R., and Martin, G. A., Bibliography on Atomic Transition Probabilities (November 1977 through March 1980), Nat. Bur. Stand. (U.S.), Spec. Publ. 505, Suppl. 1 (Aug. 1980).
 - [7] May, M., Richter, J., and Wichelmann, J., Astron. Astrophys. Suppl. Ser. 18, 405 (1974).
 - Bridges, J. M., and Kornblith, R. L., Astrophys. J. **192**, 793 (1974).
 Blackwell, D. E., Ibbetson, P. A., Petford, A. D., and Shallis, M. J., Mon. Not.
 - R. Astron. Soc. **186**, 633 (1979).
- [10] Blackwell, D. E., Ibbetson, P. A., Petford, A. D., and Willis, R. B., Mon. Not. R. Astron. Soc. **177**, 219 (1976).
- [11] Blackwell, D. E., Petford, A. D., and Shallis, M. J., Mon. Not. R. Astron. Soc. 186, 657 (1979).
- [12] Banfield, F. P., and Huber, M. C. E., Astrophys. J. 186, 335 (1973).
- [13] Huber, M. C. E., Astrophys. J 190, 237 (1974).
- 14] Huber, M. C. E., and Parkinson, W. H., Astrophys. J. 172, 229 (1972).
- [15] Huber, M. C. E., and Sandeman, R. J., Astron. Astrophys. 86, 95 (1980).
- [16] Lennard, W. N., Whaling, W., Scalo, J. M., and Testerman, L., Astrophys.
- J. 197, 517 (1965). [17] Cardon, B. L., and Smith, P. L., private communication with preliminary data (1978) (to be published jointly with ref. [18]).
- [18] Whaling, W., private communication with preliminary data (1978) (to be published jointly with ref. [17]).
- [19] Bridges, J. M., Contributed Papers—International Conference on Phenomena in Ionized Cases, 11th, 418, Ed. Stoll, I., Czech, Acad. Sci., Inst. Phys., Prague, Czech. (1973).
- [20] Baschek, B., Garz, T., Holweger, H., and Richter, J., Astron. Astrophys. 4, 229 (1970).
- [21] Wolnik, S. J., Berthel, R. O., and Wares, G. W., Astrophys. J. 166, L31 (1971).
- [22] Smith, P. L., and Whaling, W., Astrophys. J. 183, 313 (1973).
- [23] Blackwell, D. E., Shallis, M. J., and Simmons, G. J. Astron. Astrophys. 81, 340 (1980).
- [24] Phillips, M. M., Astrophys. J. Suppl. Ser. 39, 377 (1979).
- [25] Bell, G. D., Paquette, D. R., and Wiese, W. L., Astrophys. J. 143, 559 (1966).
- [26] Hilborn, R. C., and de Zafra, R., Astrophys. J. 183, 347 (1973).
- [27] Klose, J. Z., Astrophys. J. 165, 637 (1971).
- [28] Wagner, R., and Otten, E. W., Z. Phys. 220, 349 (1969).
- [29] Brzozowski, J., Erman, P., Lyyra, M., and Smith, W. H., Phys. Scr. 14, 48 (1976).
- [30] Bell, G. D., and Tubbs, E. F., Astrophys. J. 159, 1093 (1970).
- [31] Figger, H., Heldt, J., Siomos, K., and Walther, H., Astron. Astrophys. 43, 389 (1975).
- [32] Becker, U., Kerkhoff, H., Schmidt, M., and Zimmermann, P., private communication (1980).
- [33] Becker, U., Göbel, L. H., and Klotz, W.-D., Astron. Astrophys. 33, 241 (1974).
- [34] Assousa, G. E., and Smith, W. H., Astrophys. J. 176, 259 (1972).
- [35] Shorer, P., Phys. Rev. A 20, 642 (1979).
- [36] Lin, C. D., and Johnson, W. R., Phys. Rev. A 15, 1046 (1977).
- [37] Johnson, W. R., and Lin, C. D., Phys. Rev. A 14, 565 (1976).
- [38] Lin, C. D., Johnson, W. R., and Dalgarno, A., Phys. Rev. A 15, 154 (1977).
- [39] Lin, C. D., Johnson, W. R., and Dalgarno, A., Astrophys. J. 217, 1011 (1977).
- [40] Shorer, P., Lin, C. D., and Johnson, W. R., Phys. Rev. A 16, 1109 (1977).
- [41] Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [42] Cheng, K. T., and Johnson, W. R., Phys. Rev. A 15, 1326 (1977).
- [43] Cheng, K. T., and Johnson, W. R., Phys. Rev. A 16, 263 (1977).

- [44] Armstrong, L., Jr., Fielder, W. R., and Lin, D. L., Phys. Rev. A 14, 1114 (1976).
- [45] Lin, D. L., Fielder, W. Jr., and Armstrong, L., Jr., Phys. Rev. A 16, 589 (1977).
- [46] Cheng, K. T., and Kim, Y. K., Argonne National Laboratory Report ANL-78-65, 168 (1978).
- [47] Kim, Y.-K., and Desclaux, J. P., Phys. Rev. Lett. 36, 139 (1976).
- [48] Kim., Y.-K., and Cheng, K.-T., J. Opt. Soc. Am. 68, 836 (1978).
- [49] Kim., Y.-K., private communication.
- [50] Class, R., J. Phys. B 12, 689 (1979).
- [51] Class, R., J. Phys. B 12, 697 (1979).
- [52] Glass, R., J. Phys. B 13, 15 (1980).
- [53] Glass, R., J. Phys. B 13, 899 (1980).
- [54] Weiss, A. W., Beam-Foil Spectroscopy, Vol. 1, 51-68 (Eds. Sellin, I. A., Pegg, D. J., Plenum Press, New York, 1976).
- [55] Weiss, A. W., private communication.
- [56] Froese Fischer, C., Beam-Foil Spectroscopy, Vol. 1, 69–76 (Eds. Sellin, I. A., and Pegg, D. J., Plenum Press, New York, 1976).
- [57] Froese Fischer, C., J. Opt. Soc. Am. 69, 118 (1979).
- [58] Froese Fischer, C., Can. J. Phys. 54, 740 (1976).
- [59] Froese Fischer, C., Can. J. Phys. 56, 983 (1978).
- [60] Sinanoglu, O., and Beck, D. R., Chem. Phys. Lett. 24, 20 (1974).
- [61] Weiss, A. W., J. Res. Nat. Bur. Stand., Sect. A 71, 163 (1967).
- [62] Bely-Dubau, F., Cabriel, A. H., and Volonte, S., Mon. Not. R. Astron. Soc. 186, 405 (1979).
- [63] Nusshaumer, H., and Storey, P. J., J. Phys. B 12, 1647 (1979).
- [64] Nussbaumer, H., Astron. Astrophys. 48, 93 (1976)
- [65] Loulergue, M., and Nussbaumer, H., Astron. Astrophys. 45, 125 (1975).
- [66] Flower, D. R., and Nussbaumer, H., Astron. Astrophys. 31, 353 (1974).
- [67] Nussbaumer, H., Astron. Astrophys. 16, 77 (1972).
- [68] Mason, H. E., Mon. Not. R. Astron. Soc. 170, 651 (1975).
- [69] Mason, H. E., Doschek, G. A., Feldman, U., and Bhatia, A. K., Astron. Astrophys. 73, 74 (1979).
- [70] Kasiner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J., J. Opt. Soc. Am. 68, 1558 (1978).
- [71] Kastner, S. O., Bhatia, A. K., and Cohen, L., Phys. Scr. 15, 259 (1977).
- [72] Kastner, S. O., and Bhatia, A. K., J. Opt. Soc. Am. 69, 1391 (1979).
- [73] Hayes, M. A., Mon. Not. R. Astron. Soc. 189, 55P (1979).
- [74] Biemont, E., J. Quant. Spectrosc. Radiat. Transfer 16, 137 (1976).
- [75] Kurucz, R. L., and Peytremann, E., Smithsonian Astrophysical Observatory Special Report 362 (1975).
- [76] Warner, B., and Kirkpatrick, R., Mon. Not. R. Astron. Soc. 144, 397 (1969) and Publications of the Department of Astronomy, University of Texas at Austin, Vol. 3, No. 2 (1969).
- [77] Chapman, R. D., and Shadmi, Y., J. Opt. Soc. Am. 63, 1440 (1973).
- [78] Shamey, L. J., J. Opt. Soc. Am. 61, 942 (1971).
- [79] Dankwort, W., and Trefftz, E., Astron. Astrophys. 65, 93 (1978).
- [80] Weiss, A. W., J. Quant. Spectrosc. Radiat. Transfer 18, 481 (1977).
- [81] Bogdanovicius, P. O., Kyckinas, I. S., Merkelis, G. V., Rudzikas, Z. B., Sivtsev, V. I., and Sadziuviene, S. D., Bull. Acad. Sci. USSR, Phys. Ser. 41, 121 (1977).
- [82] Biemont, E., J. Quant. Spectrose. Radiat. Transfer 15, 531 (1975); 16, 627 (1976).
- [83] Tull, C. E., McEachran, R. P., and Cohen, M., At. Data 3, 169 (1971).
- [84] Chapman, R. D., Astrophys. J. 156, 87 (1969).
- [85] Cowan, R. D., Astrophys. J. 147, 377 (1967).

- [86] Faweett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).
- [87] Bromage, G. E., Cowan, R. D., and Fawcett, B. C., Phys. Ser. 15, 177 (1977).
- [88] Fawcett, B. C., Peacock, N. J., and Cowan, R. D., J. Phys. B 1, 295 (1968).
 [89] Bromage, G. E., Cowan, R. D., and Fawcett, B. C., Mon. Not. R. Astron. Soc.
- **183**, 19 (1978).
- [90] Cowan, R. D., and Widing, K. G., Astrophys. J. 180, 285 (1973).
- [91] Fawcett, B. C., Bromage, G. E., and Hayes, R. W., Mon. Not. R. Astron. Soc. 186, 113 (1979).
- [92] Bromage, C. E., Fawcett, B. C., and Cowan, R. D., Mon. Not. R. Astron. Soc. 178, 599 (1977).
- [93] Bromage, C. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 178, 591 (1977).
- [94] Bromage, G. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 179, 683 (1977).
- [95] Bromage, C. E., Cowan, R. D., Fawcett, B. C., and Ridgeley, A., J. Opt. Soc. Am. 68, 48 (1978).
- [96] Doschek, G. A., Meekins, J. F., and Cowan, R. D., Astrophys. J. 177, 261 (1972).
- [97] Burkhalter, P. G., Dozier, C. M., Stallings, C., and Cowan, R. D., J. Appl. Phys. 49, 1092 (1978).
- [98] Fawcett, B. C., Ridgeley, A., and Hughes, T. P., Mon. Not. R. Astron. Soc. 188, 365 (1979).
- [99] Blaha, M., Sol. Phys. 17, 99 (1971).
- [100] Aymar, M., and Luc-Koenig, E., Phys. Rev. A 15, 821 (1977).
- [101] Crance, M., At. Data 5, 185 (1973).
- [102] Drake, C. W. F., Phys. Rev. A 19, 1387 (1979).
- [103] Brown, R. T., and Cortez, J.-L., Astrophys. J. 176, 267 (1972).
- [104] Laughlin, C., J. Phys. B 6, 1942 (1973).
- [105] Fox, J. L., and Dalgarno, A., Phys. Rev. A 16, 283 (1977).
- [106] Vainshtein, L. Á., and Safronova, U. I., At. Data Nucl. Data Tables 21, 49 (1978).
- [107] Froese Fischer, C., Phys. Scr. 14, 269 (1976).
- [108] Smith, M. W., and Wiese, W. L., Astrophys. J. Suppl. Ser. 23, No. 196, 103 (1971).
- [109] Martin, G. A., and Wiese, W. L., J. Phys. Chem. Ref. Data 5, 537 (1976).
- [110] Moore, C. E., A Multiplet Table of Astrophysical Interest, Revised Edition, 253 pp., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 40 (Feb. 1972).
- [111] Moore, C. E., An Ultraviolet Multiplet Table, Sect. 2, 115 pp., Nat. Bur Stand. (U.S.), Circ. 488 (Aug. 1952).
- [112] Moore, C. E., Atomic Energy Levels (As Derived from the Analyses of Optical Spectra), Vol. II, 259 pp., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35 (Dec. 1971), as reprinted from Nat. Bur. Stand. (U.S.), Circ. 467.
- [113] Kelly, R. L., and Palumbo, L. J., Atomic and Ionic Emission Lines Below 2000 Angstroms---Hydrogen through Krypton, 1004 pp., Naval Research Laboratory Report 7599 (June 1973).
- [114] Reader, J., and Sugar, J., J. Phys. Chem. Ref. Data 4, 353 (1975).
- [115] Moore, C. E., Bibliography on the Analyses of Optical Atomic Spectra, Sect. 2, 57 pp., Nat. Bur. Stand. (U.S.), Spec. Publ. 306 (Feb. 1969); Hagan, L., and Martin, W. C., Bibliography on Atomic Energy Levels and Spectra (July 1968 through June 1971), 103 pp., Nat. Bur. Stand. (U.S.), Spec. Publ. 363 (June 1972); Hagan, L., Bibliography on Atomic Energy Levels and Spectra (July 1971) through June 1975), 186 pp., Nat. Bur. Stand. (U.S.), Spec. Publ. 363, Suppl. 1 (Jan. 1977).

6. Tables of Spectra

Iron

Fe I

Ground State

Ionization Potential

$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^{2/5} D_4$

 $7.870 \text{ eV} = 63480 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	<u>No.</u>	Wavelength (Å)	No.
1934 54	30	2510.83	14	2980-53	191	3168.85	1 121
1937-27	20	2512.36	15	2981.45	10	3175.45	116
1940-66	30	2518.10	14	2983.57	8	3176.36	166
2084.12	28	2522.85	14	2986.46	10	3193.23	7
2102.35	28	2524.29	14	2986.65	139	3196.93	116
2112.97		2527.43	14	2987.29	45	3199.53	117
2132.02	26	2529.13	14	2990.39	190	3205.40	116
2138.59	27	2535.61	14	2994.43	8	3207.07	120
2145.19	26	2540.97	14	2994.50	10	3215.94	117
2153.01	26	2545.98	14	2996.39	113	3217.38	118
2161.58	26	25 19 61	14	2999.51	45	3219.58	117
2166.77	23	2584.54	49	3000.95	8	3222.07	117
2171.30	27	2606.83	49	3005.31	138	3225.79	116
2173.21	27	2618.02	49	3007.28	10	3227.80	118
2176.84	25	2623.53	49	3008.14	8	3228.25	118
2191.20	24	2632.59	13	3009.09	137	3229.99	296
2191.84	23	2656.15	140	3009.57	45	3230.21	119
2196.04	23	2669.49	140	3011.48	190	3230.96	118
2200.72	23	2679.06	48	3015.92	137	3233.05	340
2228.17	22	2719.03	12	3016.18	45	3233.97	119
2250.79	19	2720.90	12	3017.63	8	3246.96	92
2259.28	20	2723.58	12	3018.14	138	3248.20	118
2259.51	19	2733.58	47	3018.98	45	3253.60	370
2265.05	20	2735.48	i 47	3021.07	8	3254.36	340
2267.08	21	2737.31	12	3024.03	10	3257.59	90
2272.07	19	27.42.41	12	3025.84	8	3265.62	91
2276.03	18	2744.07	12	3026.46	45	3268.23	92
2277.11	50	2750.14	12	3031.63	45	3271.00	91
2287.25	18	2756.33	12	3037.39	8	3280.26	340
2292.52	20	2788.10	46	3039,32	138	3282.89	369
2294.41	18	2835.46	1	3040,43	45	3284.59	91
2300.14	19	2869.31	11	3042.02	45	3290.99	92
2301.68	18	2874.17	1 11	3042.66	45	3292.02	369
2303.42	19	2894.50	113	3047.60	. 8	3292.59	91
2303.58	19	2899.42	113	3053.07	: 111	3298.13	90
2309.00	18	2912.16	9	3057.45	4.4	3305.97	91
2313.10	18	2920.69	66	3059.09	8	3306.36	91
2320.36	18	2923.29	341	3067.24	-14	3307.23	339
2371.43	17	2925.36	192	3068.17	65	3314.74	369
2373.62	17	2929.01	9	3075.72	-1-1	3317.12	110
2374.52	17	2936.90	9	3083.74	-44	3319.25	259
2381.83	17	2941.34	9	3091.58	-1-1	3322.47	236
2389.97	17	2947.88	9	3098.19	189	3323.74	224
2462.18	16	2953.94	9	3100.67	4.1	3325.46	135
2462.65	16	2954.65	112	3119.49	136	3328.87	339
2479.78	16	2957.36	9	3120.43	136	. 3337.66	188
2483.27	16	2965.25	9	3134.11	4.4	3347.93	109
2488.14	16	2966.90	9	3156.27	318	3354.06	224
2490.64	16	2969.36	10	3160.66	116	3355.23	339
2491.15	16	2973.13	9	3161.95	121	3369.55	188
2501-13	1.4	2973.24	9	3166.44	167	3370.78	188

FUHR ET AL.

freed.

List of tabulated lines---Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
3372.07	86	3531 44	132	3605 68	184	3677 31	415
3380.11	188	3534.53	435	3608.86	41	3677.63	182
3382.40	89	3536.56	200	3610.16	195	3678.86	105
3383.98	86	3537.73	165	3610.70	197	3679.91	5
3392.65	87	3537.90	201	3612.07	199	3681.64	232
3394.58	87	3538.78	435	3613.15	198	3682.24	414
3396.98	43	3540.12	202	3613.45	365	3683.05	5
3399.33	87	3540.71	41	3614.77	235	3684.11	183
3402.26	338	3541.08	200	3615.19	313	3686.00	227
3406.44	368	3542.08	200	3615.66	63	3686.26	105
3407.46	87	3543.39	133	3616.15	313	3687.10	80
3410.17	398	3543.67	397	3616.32	106	3687.46	39
3411.35	187	3544.63	165	3617.79	277	3688.48	364
3413.13	87	3548.02	277	3618.77	41	3688.88	129
3417.27	43	3549.86	64	3620.24	198	3689.02	128
3417.84	87	3551.11	195	3621.46	184	3689.90	294
3418.51	87	3552.11	278	3622.00	185	3690.73	431
3424.28	88	3552.83	195	3623.19	130	3693.01	254
3425.01	295	3553.74	434	3624.06	314	3694.01	234
3427.12	86	3556.88	201	3624.31	107	3697.43	231
3428.19	88	3559.50	278	3627.05	432	3698.60	274
3428.75	447	3560.07	195	3628.09	82	3699.15	273
3440.99	6	3560.70	365	3628.82	256	3701.09	227
3443.88	6	3564.11	64	3630.35	197	3702.03	223
3445.15	88	3565.38	42	3631.46	41	3703.69	231
3447.28	85	3566.31	104	3632.04	277	3703.82	223
3450.33	85	3567.03	199	3632.55	255	3704.01	276
3462.35	84	3567.37	133	3633.84	257	3704.46	181
3463.30	64	3568.42	195	3635.19	273	3705.57	5
3476.70	6	3568.82	366	3636.99	160	3707.82	5
3477.85	85	3568.98	184	3637.25	130	3709.25	39
3483.01	12	3570.10	42	3637.86	227	3711.22	158
3485.34	83	3571.22	63	3638.30	184	3711.41	275
3493.28	64	3572.00	195	3640.39	185	3715.91	103
3493.69	186	3572.59	199	3641.45	197	3718.41	183
3495.29	164	3573.39	366	3644.58	161	3719.93	5
3496.19	134	3576.76	337	3644.80	314	3722.56	5
3497.10	83	3578.38	195	3645.82	277	3724.38	103
3497.84	6	3578.67	104	3647.84	41	3725.49	293
3500.57	164	3581.19	41	3649.51	182	3726.93	227
3504.86	105	3582.20	336	3650.03	234	3727.09	229
3505.07	278	3583.33	317	3651.47	185	3727.62	39
3506.50	108	3585.32	41	3653.76	130	3728.67	156
3508.49	258	3585.71	41	3654.66	82	3730.39	294
3509.12	200	3586.98	41	3655.46	223	3730.95	158
3509.87	83	3589.11	41	3657.14	108	3731.37	154
3510.44	110	3590.08	257	3657.89	235	3732.40	81
3511.74	164	3591.00	316	3658.55	159	3733.32	5
3512.22	200	3591.35	195	3659.52	130	3734.86	39
3513.05	64	3591.48	312	3661.36	128	3735.32	230
3513.82	42	3592.47	163	3663.25	254	3737.13	5
3514.63	133	3592.67	313	3663.95	254	3738.31	335
3516.41	258	3592.89	82	3664.54	233	3739.12	80
3516.56	200	3593.32	315	3664.69	232	3739.32	79
3518.68	201	3594.63	196	3666.94	63	3740.24	362
3518.82	83	3595,30	196	3667.25	314	3742.62	229
3520.85	164	3595.86	131	3668.21	312	3743.36	39
3521.84	83	3596.20	131	3668.89	157	3744.10	227
3922.27	200	3597.02	313	3009.15	255	3735.50	5
3342.90 9509 21	203	3598.72	307	3669.52	182	3745.90	5
0040.01 3594.00	16%	3379.0Z 2609.09	4.5.5	3070.09	204	3740.49	61
0024.00 2597.94	100	3002.08	196	3070.81	108	3740.93	228
0024.24 3597 70	200	3603.20	165	3872.09	130	3748.20	3
3520.82	200	3603.93	977	3676 21	159	0199,40 9751.06	26.2
3530.20	200	3605.45	194	2676.99	100	3731.00	170
0000.07	, 200 1	0000.40	104	1 0010.00	1 601 H	0101.02	1 1/7

TRANSITION PROBABILITIES FOR IRON

List of tabulated lines---Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
3753 15	127	3813.63	177	3902 95	62	3983.96	172
3753.61	78	3813.88	454	3903.90	251	3985 30	358
3754 51	228	3814.52	40	3906.48	1	3080.86	411
2756.07	70	3915.94	40	3006.75	360	2000.37	200
3750.07	19	2013.04	02	3900.73	179	3990.37	290
3730.94	430	3810.34	/8 201	3907.47	178	3994.11	269
3757.45	.300	3817.04	384	3907.93	175	3995.20	331
3758.23	39	3819.50	386	3909.66	309	3995.98	173
3760.05	127	3820.43	38	3909.83	221	3996.97	489
3760.53	81	3821.18	334	3910.84	178	3997.39	174
3761.41	156	3821.83	150	3911.00	307	3998.05	172
3762.21	388	3824.44	4	3913.63	101	4000.27	301
3763.79	39	3825.88	38	3914.27	311	4000.46	250
3765.54	334	3826.84	177	3916.73	332	4001.66	77
3766.09	155	3827.82	62	3917.18	38	4003.76	393
3766.67	228	3829.13	490	3919.07	252	4005.24	60
3767.19	39	3829.77	152	3920.26	4	4006.31	330
3768.03	78	3833.31	150	3920.84	311	4007.27	172
3770.30	179	3834.22	38	3922.91	4	4009.71	77
3771.50	333	3836 33	360	3925 20	311	4010.18	475
3773 36	203	3837 13	150	3027.02	4	4011.42	148
3773 70	278	3830.26	202	3030.30	4	4011.42	115
3773.70	70	2020.61	511	2021 19	200	4011.71	428
3774.02	10	3039.01	311	3931.12	509	4014.55	420
5775.00	179	2040.44	30	2022.31	174	4017.15	290
3770.45	80	3841.05	62	3937.33	174	4018.28	305
3777.06	253	3843.26	291	3940.88	38	4019.05	149
3777.45	153	3845.17	103	3941.28	307	4020.49	476
3778.32	222	3845.69	413	3942.44	221	4021.87	174
3778.51	360	3846.00	386	3943.34	77	4024.11	172
3778.70	78	3846.41	429	3944.75	220	4024.72	305
3781.19	79	3846.80	360	3944.89	252	4030.18	77
3781.94	478	3848.29	151	3945.12	175	4031.96	357
3782.45	230	3849.96	38	3946.99	306	4032.63	61
3782.61	274	3850.82	40	3948.77	331	4036.37	173
3785.71	334	3852.57	78	3949.14	395	4040.64	357
3785.95	127	3853.46	251	3949.95	77	4044.61	218
3786.19	222	3856.37	4	3951-16	358	4045.81	60
3786.68	40	3850.21	126	3952.60	174	4049 34	148
3787 16	477	3850.01	120	3953.15	959	4051.92	383
3787.88	30	3863.74	175	3053.86	202	4054.18	302
3787.00	190	2045 52	20	2055 24	219	4054.10	202
0709.10	100	2047.02	30	0900.04 2055.04	307	4055.02	302
3789.82	365	3007.22	271	3933.90	271	4053.05	140
3790.09	40	3867.93	150	3956.45	331	4057.34	173
3791.50	153	3871.75	251	3957.02	307	4058.22	303
3791.73	386	3872.50	38	3960.28	476	4058.75	101
3792.15	179	3872.92	178	3961.15	220	4059.73	410
3792.83	79	3873.76	126	3962.35	310	4062.44	218
3793.87	222	3876.04	40	3963.10	307	4063.59	60
3794.34	127	3878.02	38	3964.52	220	4065.40	382
3795.00	39	3878.57	4	3966.06	62	4066.59	249
3797.95	150	3883.28	359	3967.42	331	4067.27	147
3798.51	39	3884.36	176	3967.96	306	4067.98	304
3799.55	39	3885.15	252	3969,26	60	4069.08	302
3801.68	222	3885.51	103	3969.63	356	4070.77	303
3802.00	387	3886.28	4	3970.39	271	4071.74	60
3802.28	361	3887.05	38	3971.32	173	4073.76	303
3804.01	385	3888 51	62	3973.65	412	4074 79	288
3805 35	334	3888 82	271	3974 40	308	4076.23	270
3806.22	306	3890 39	311	3974 77	77	4076.63	303
3806.22	220	3800.84	175	3075 91	115	4078.25	147
2907 54	333	2901.01	304	3075.95	502	4070.33	383
2007.34 2000 00	10	2002 10	074	2076 41	302	4079.10	910
3606.29	2(2	3693.39	252	3970.01	394	4079.04	210
3808.73	151	3895.66	4	3977.74		4080.21	303
3809.04	222	3897.45	251	3979.65	306	4080.89	302
3810.76	361	3899.03	126	3980.65	115	4082.13	382
3811.89	179	3899.71	4	3981.11	102	4082.44	474
3812.96	40	3900.52	309	W 3981.77	174	ii 4084.49	1 382

•

FUHR ET AL.

1000 m

List of tabulated lines----Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
4085.00	217	4170.90	269	4258 31	3	4377.80	352
4085.30	304	4171.69	488	4258.62	211	4382 77	425
4085.98	550	4171.90	355	4258.95	246	4383 54	58
4087.09	379	4172.12	354	4260.47	114	4384.68	265
4088.57	474	4172.74	37	4264.20	377	4387 89	266
4089.22	247	4173.32	213	4264.74	509	4388.41	446
4090.09	383	4173.92	37	4266.96	170	4389.24	2
4090.98	380	4174.91	37	4267.83	269	4390.46	241
4091.55	216	4175.64	216	4268.75	354	4390.95	242
4092.46	36	4177.59	36	4271.15	114	4391.87	508
4095.27	551	4181.75	216	4271.76	59	4392.58	498
4095.97	147	4182.38	267	4275.72	146	4395 29	444
4097.10	303	4182.79	379	4276.68	501	4401 29	444
4098.18	303	4183.03	381	4277.41	145	4401 44	210
4100.74	36	4184.89	213	4278.23	376	4404 75	58
4101.27	382	4187.04	114	4279.48	509	4407.71	73
4101.68	101	4187.79	114	4279.86	211	4408.41	73
4104.97	379	4189.56	487	4280.53	328	4409.12	352
4106.27	147	4191.68	213	4282.40	76	4413.40	537
4106.44	381	4196.21	378	4284.42	244	4415.12	58
4107.49	215	4196.53	245	4285.44	327	4422.57	210
4108.13	304	4198.30	114	4285.83	471	4423.14	240
4109.07	303	4198.64	378	4286.44	242	4423.84	446
4109.80	216	4199.09	287	4288.15	170	4427.31	2
4112.35	380	4200.09	509	4288.96	145	4430 19	263
4112.96	567	4200.92	375	4290.38	243	4430.61	73
4114.45	215	4202.03	59	4290.87	211	4432.57	424
4114.96	380	4203.67	620	4292.13	75	4433.22	446
4118.54	427	4203.94	453	4292.29	75	4433.78	442
4118.90	304	4205.54	375	4294.12	58	4435.15	2
4120.21	248	4206.70	3	4298.04	285	4436.92	282
4121.80	214	4207.13	212	4300.21	500	4438.34	444
4122.51	214	4210.34	114	4300.83	501	4439.63	281
4125.88	215	4213.65	213	4302.18	285	4439.88	99
4126.18	380	4216.18	3	4304.54	242	4440.48	445
4126.88	215	4217.55	378	4305.20	406	4440.82	508
4127.61	216	4219.36	426	4305.45	266	4442.34	73
4129.22	382	4220.05	510	4307.90	59	4442.83	74
4129.46	380	4220.34	269	4309.03	452	4443.19	210
4132.06	60	4222.21	114	4309.37	242	4445.47	2
4132.90	215	4224.17	375	4310.37	510	4446.83	444
4133.86	382	4224.51	375	4315.08	76	4447.13	74
4134.68	215	4225.45	378	4317.04	408	4447.72	73
4136.51	379	4225.96	286	4325.76	59	4450.32	266
4137.00	392	4226.42	212	4326.75	241	4450.77	497
4137.42	567	4229.75	58	4327.09	407	4452.62	495
4139.93	36	4230.58	268	4327.92	327	4454.38	210
4141.86	247	4232.73	3	4337.05	58	4455.03	499
4142.63	567	4233.60	114	4338.26	75	4456.33	282
4143.87	60	4235.94	114	4343.28	352	4456.63	498
4145.21	171	4237.07	37	4343.70	283	4459.12	73
4146.06	247	4237.67	245	4346.55	328	4461.65	2
4147.67	59	4238.81	378	4347.24	2	4464.77	263
4149.37	379	4239.36	473	4347.85	444	4466.55	210
4150.25	380	4240.37	409	4348.94	242	4466.94	508
4152.17	36	4241.11	211	4351.54	240	4469.37	446
4153.90	380	4242.73	354	4352.73	76	4471.68	2
4154.80	379	4243.79	510	4358.50	240	4478.04	74
4156.80	216	4245.26	212	4360.81	470	4481.61	443
4158.79	380	4246.08	472	4365.90	241	4482.17	2
4161.08	375	4247.43	378	4367.58	242	4482.74	444
4161.48	247	4248.22	269	4367.90	58	4483.78	469
4167.86	329	4249.32	100	4369.77	284	4484.22	444
4168.63	375	4250.12	114	4372.99	264	4485.67	446
4168.94	379	4250.79	59	4374.50	353	4485.97	442
4169.78	I 378	4253.55	620	lj 4375.93	1 2	4487.74	326

TRANSITION PROBABILITIES FOR IRON

List of tabulated lines---Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
4488.13	437	4638.01	440	4813.11	347	5012.07	35
4489.74	2	4643.46	438	4817.77	72	5012.68	562
4490.08	262	4647.43	238	4834,51	98	5014.94	492
4492.68	495	4649.82	323	4835.87	547	5021.89	344
4494.05	498	4657.59	206	4838.51	373	5022.24	492
4494.56	73	4658.29	324	4839.55	321	5023.23	564
4495.57	443	4661.53	616	4840.32	547	5023.50	588
4495.95	442	4661.97	238	4841.78	549	5027.76	572
4502.59	423	4663.18	404	4842.79	548	5029.62	389
4504.83	300	4669.17	439	4843.14	373	5030.77	320
4514.18	281	4673.16	438	4844.01	400	5031.90	588
4515.16	194	4673.28	440	4848.90	97	5048.43	505
4517.53	263	4674.65	57	4849.67	421	5049.82	97
4518.43	325	4678.85	439	4854.89	536	5051.63	35
4518.58	74	4679.22	374	4859.13	547	5054.64	465
4523.40	445	4680.29	56	4859.74	193	5056.00	587
4525.88	194	4682.56	226	4860.98	374	5056.86	573
4527.78	351	4683.57	206	4869.45	401	5058.00	494
4528.61	73	4685.03	207	4870.05	506	5058.50	465
4531.15	56	4687.39	207	4871.32	193	5060.08	1
4533.13	351	4690.14	438	4872.14	193	5067.15	561
4537.67	326	4691.41	238	4873.74	347	5068.77	225
4541.94	325	4700.19	486	4875.87	373	5074.75	563
4542.41	468	4701.05	438	4876.19	345	5079.74	35
4547.02	50	4704.95	439	4877.01	226	5080.95	320
4047.00	405	4705.40	402	4878.21	193	5083.34	35
4001.00	104	4707.27	299	4090.70	193	5088.10	540
4004.47	350	4712.10	201	4091.49	193	5090.78	559
4550.95		4714.07	394	4092.01	549	5104.04	492
4565.31	351	472614	224	4070.34	103	5104.21	561
4565.66	299	4729.02	532	4905.13	507	5104.21	550
4566.51	351	4729.68	374	4907.73	373	5107.45	35
4566.99	391	4733.59	55	4911.52	566	5109.65	558
4571.44	194	4734.10	580	4911.78	505	5110.41	1
4572.86	437	4735.84	535	4917.23	546	5115.78	419
4574.21	299	4736.77	299	4918.01	549	5121.64	564
4574.72	98	4737.63	322	4918.99	193	5123.72	35
4579.82	262	4740.34	238	4920.50	193	5125.11	559
4580.58	443	4741.53	206	4924.77	97	5126.19	558
4581.51	300	4745.13	72	4927.42	420	5127.36	35
4587.13	422	4749.95	615	4930.31	506	5127.68	1
4587.72	496	4765.48	57	4939.69	35	5129.63	492
4592.65	56	4766.87	374	4945.64	575	5133.69	561
4593.53	496	4771.70	72	4946.38	373	5136.09	530
4595.36	326	4776.07	349	4950.10	373	5137.38	559
4596.00	438	4779.44	390	4961.91	451	5143.73	70
4596.41	441	4780.81	347	4962.56	565	5145.09	71
4000.95	324	4785.90	534	4966.09	373	5146.30	588
4002.00	- 06.	4700.01	201	4908.09	400	5150.84	30
4002,94	208	4707.00	220	4909.92	340	5150.06	66
4603.04	200	4780.65	402	4970.30	505	5169.00	500
4613.20	2.09	4790.56	547	4973.10	493	5164.55	596
4614.21	350	4790.75	i 346	4986.22	549	5166.28	1 1
4618.76	238	4791.25	348	4988.95	546	5167.49	54
4619.29	439	4793.96	279	4991.27	545	5168.90	i
4625.04	299	4794.36	98	4991.86	563	5171.60	53
4630.12	98	4798.26	535	4992.80	572	5177.23	485
4631.48	589	4798.73	55	4993.68	573	5178.80	596
4632.91	56	4799.41	467	4994.13	35	5180.07	596
4633.76	239	4800.13	226	4995.41	575	5184.26	558
4635.62	194	4800.65	535	4999.11	533	5187.91	530
4635.85	209	4807.71	374	5001.86	492	5197.93	560
4636.66	280	4808.15	347	5002.79	373	5198.71	71
4637.50	299	4809.94	421	5004.04	574	5202.34	1 71

FUHR ET AL.

List of tabulated lines—Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
E204 59	1	5203.17	208	5559.64 628		5778 47	144
5204.00	1 162	5204.69	529 5560.23 594		5780.62	907	
5207.95	200	5295.95	581 5563.60 543		5784.59	379	
5206.39	463	5307.13	34	5567.40	144	5791.04	297
5223.19	70.5	5208.20	5.83	5568.81	458	5703.03	555
5229.30	1 1	5400.50	583 5500.51 458 5195. 583 5560.69 379 5708		5798.19	504	
5225.53	560	5401.27	584	583 5309.62 372 579 cp4 5579.94 272 590		5804.06	491
5220.41	225	5405.77	34	5576.09	372	5804.48	556
5236 19	531	5466.77	586	5584.77	416	5805.76	629
5241.90	588	5409.13	585	5586.76	372	5806.73	604
5949 49	450	5410.91	595	5587.58	525	5809.25	504
5242.49	558	5415.20	595	5594.66	606	5811.93	522
5247.05	1	5417.03	586	5598.30	607	5814.80	555
5249 10	596	5421.85	607	5615.64	372	5815.16	540
5250 21	1	5424.07	584	5617.22	342	5816.36	603
5253.03	96	5429 70	34	5618.65	569	5827.89	297
5253.46	298	5432.95	581	5619.60	592	5833.93	144
5254 96	1	5434.52	34	5620.53	542	5835.10	554
5262.89	343	5436.30	592	5624.06	591	5837.71	577
5263 30	298	5436.59	96	5624.54	372	5838.42	491
5263.87	418	5441.32	582	5633.97	630	5849.67	479
5266.55	225	5445.04	593	5635.85	557	5852.19	602
5269.54	34	5446.92	34	5636.71	456	5853.18	52
5270.36	54	5461 54	583	5638.27	556	5855.13	603
5279.65	319	5463.27	593	5640.46	614	5856.08	576
5280.36	463	5464.29	528	5641.46	556	5858.77	554
5281.79	225	5466.39	582	5642.75	608	5873.21	556
5283.62	298	5470.17	582	5643.94	521	5877.77	553
5284.42	449	5472.72	570	5649.66	448	5879.49	613
5284.62	530	5473.18	544	5650.01	630	5880.00	613
5285.12	596	5473.90	543	5650.71	630	5881.28	602
5288.53	484	5478.48	543	5651.47	592	5883.84	504
5293.03	595	5480.87	543	5652.32	570	5892.80	68
5293.97	529	5481.25	541	5653.89	590	5898.21	625
5294.56	461	5481.45	542	5655.18	630	5902.52	618
5295.32	584	5483.11	542	5658.82	372	5905.67	605
5298.79	461	5487.16	581	5660-79	457	5909.99	297
5300.41	619	5487.74	524	5661.36	570	5916.25	125
5302.30	298	5489.85	586	5662.94	480	5927.80	599
5307.36	53	5491.84	529	5667.67	144	5929.70	600
5315.07	585	5493.51	542	5679.02	607	5930.17	604
5319.22	526	5494.46	523	5680.25	525	5934.66	504
5320.05	462	5497.52	34	5686.53	606	5940.97	553
5321.11	595	5501.46	34	5691.51	556	5952.75	491
5322 04	95	5506.78	34	5696.10	603	5956.70	33
5324.18	298	5512.28	581	5698.05	455	6003.03	491
5328.04	34	5517.08	571	5698.37	578	6012.21	69
5329.99	527	5522.46	570	5702.43	458	6016.66	399
5332.67	529	5525.55	543	5705.48	556	6020.17	602
5339.93	298	5528.89	592	5705.99	607	6024.07	602
5341.02	54	5529.15	460	5707.07	457	6027.06	519
5349.74	593	5531.95	627	5708.11	592	6055.99	625
5353.39	543	5532.75	417	5709.38	372	6062.89	- 68
5361.64	581	5536.59	205	5711.87	556	6065.48	143
5364.87	584	5539.28	459	5712.15	372	6079.02	600
5367.47	584	5539.83	579	5717.85	569	6082.72	69
5369.96	584	5543.15	481	5731.77	556	6085.27	169
5371.49	34	5543.94	543	5732.29	629	6089.57	631
5373.71	596	5546.51	583	5741.86	555	6093.66	601
5376.85	579	5547.00	542	5742.95	554	6094.42	601
5379.57	483	5549.66	630	5747.95	606	6096.69	491
5383.37	584	5549.94	481	5753.12	569	6137.69	143
5385.58	482	5552.70	627	5754.41	458	6141.73	436
5386.34	544	5553.59	592	5760.35	455	6147.85	518
5387.51	529	5554.89	607	5762.43	456	6151.62	67
5389.4 8	583	11 5557.95	I 593	11 5762.99	L 569	6157.73	517

perer.

List of tabulated lines-Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	
6163.56 69 6344		6344.15	124	6581.22	51	6843.67	597	
6165.37	519	6355.04	204	6592.91	168	6857.25	515	
6170.49	626	6358.69	32	6593.88 123		6858.16	597	
6173.34	67	6362.89	520	6597.61	621	6862.48	610	
6180.22	169	6364.38	621	6608.03	93	6885.77	597	
6188.04	491	6380.75	517	6609.12	142	6916.70	539	
6191.56	124	6393.60	123	6627.56	6627.56 598		122	
6200.32	143	6400.00	436	6633.44 624		6999.90	538	
6215.15	519	6411.65	436	6633.76	612	7000.63	514	
6226.77	503	6419.98	624	6634.10	624	7008.01	552	
6229.23	204	6421.35	94	6677.99	168	7016.08	93	
6230.73	143	6430.85	67	6703.57	168	7016.44	538	
6240.66	69	6462.73	123	67,13.76	623	7022.98	538	
6246.32	436	6469.21	624	6715.41	598	7024.08	513	
6252.55	124	6475.63	142	6733.16	611	7024.65	609	
6254.26	94	6481.88	93	6750.15	94	7038.25	538	
6256.37	124	6494.98	123	6752.72	611	7038.82	552	
6270.24	204	6495.78	621	6786.88	539	7068.42	512	
6271.29	371	6496.46	624	6806.85	168	7090.40	538	
6280.63	32	6498.95	32	6810.28	612	7095.43	568	
6297.80	67	6518.38	204	6820.43	612	7107.46	514	
6311.51	204	6533.97	612	6828.61	611	7112.18	237	
6315.81	516	6546.24	168	6837.00	617	7130.94	538	
6330.86	622	6569.23	621	6839.83	141	7132.99	512	
6336.84	436	6574.24	32	6841.35	611	7912.87	31	
6338.90	624	6575.02	142	6842.67	612	8075.13	31	

From the large number of articles containing f-value data on Fe 1, we have selected most of the recent experiments (refs. [1-20]) for this tabulation. Most of the material is taken from two very comprehensive sources, the stabilized-arc emission experiments by May et al. [5] and by Bridges and Kornblith [4].

We established the absolute scale by utilizing accurate data for the principal resonance line at 3719.93 Å. The atomic beam work by Bell and Tubbs [20] yields the f-value of this transition directly, and lifetime measurements of its upper level, $z {}^{5}F_{5}^{0}$, may also be converted into f-values, since the other downward transitions contribute-at most-a few additional percent to the total lifetime and can be approximately corrected for. Very accurate lifetime measurements of this upper level have been performed by Wagner and Otten [16], who used the method of optical double resonance; Klose [17], who used the delayed coincidence technique; Hilborn and de Zafra [18], who employed the Hanle effect; and Brzozowski et al. [19], who used the high frequency deflection technique. The average f-value resulting from these four lifetime measurements and the atomic beam experiment is f = 0.0413, with a standard deviation of the mean of only $\pm 1\%$ (these lifetime data are given in table 1 of the general introduction). This f-value (obtained by including the effects of the other weak transitions involved) is estimated to have an overall uncertainty not to exceed five percent and forms the basis of the absolute scale for this spectrum, to which all other measurements discussed below were normalized. (For most references, changes (usually small) in the absolute scale had to be made, and we have indicated this by an "n" in the reference column.)

The spectrum of Fe I is very rich in lines of moderate strength in the visible and near uv. Recently, two large-scale measurements of relative f-values were carried out by May et al. [5] and by Bridges and Kornblith [4] for this spectral range. Both experiments were

performed in emission with stabilized, steady state arc sources. The most comprehensive set of data on this spectrum is the one measured by May et al. [5], who determined relative oscillator strengths for over 1000 lines with a convection stabilized arc and employed photographic detection. Bridges and Kornblith determined data for 534 lines with a more sophisticated photoelectric data acquisition technique; this included a self-regulating system for the arc discharge in which fluctuations in the spectral line signals were monitored and controlled in order to maintain stability in the arc chamber. Since the data of May et al. and of Bridges and Kornblith overlap for 168 lines, we were able to make several graphical comparisons (figs. 3-5), plotting log gf (May et al.) - log gf (Bridges and Kornblith) (in the graphs denoted by $\Delta \log$) vs wavelength, vs log gf (of ref. [4]), and vs upper energy level. These studies show that the mutual scatter is only about \pm 0.1 dex and essentially random, i.e., there are no intensity or energy level dependent trends. However, there is some marked disagreement between the f-values of refs. [4] and [5] for the lines of shortest wavelength, especially $\lambda =$ 3495.29, 3699.15, 3540.12, and 3521.84 Å. This may be due to scattered light problems for the radiometric standards at short wavelengths. Since Bridges and Kornblith took this problem into account by application of appropriate filters, we used their data exclusively in these cases

The data of Bridges and Kornblith could be subjected to another important check: they overlap for 69 lines with the data of Blackwell et al. [1,3] (to be discussed later) which are of outstanding accuracy. The comparison, illustrated in figure 6, shows quite good agreement; for example, 78% of the data are within 25% of each other. Nevertheless, there are a few differences outside the mutually estimated uncertainties. The graphical comparison also indicates: (a) a systematic trend in the data with line intensity (or log gf), (b) a small

FUHR ET AL.

FIGURE 3. Plot of $\Delta \log \approx \log gf$ (May et al. [5]) $\sim \log gf$ (Bridges and Kornblith [4]) vs wavelength (Å).

difference in absolute scales, and (c) a serious disagreement for the 4427.31 Å line. (a) The trend is probably due to two unrelated facts. First, the weak lines measured by Bridges and Kornblith, which have lower accuracy ratings, appear to be systematically too strong, a tendency which has also been observed for some other emission measurements of iron group elements. Secondly, the log gf-values for the strongest lines measured by Bridges and Kornblith may be slightly too small because of undetected minor amounts of selfabsorption present (Bridges and Kornblith note that their selfabsorption check is good to only a few percent). (b) The small difference in absolute scales is not unexpected, on account of the different normalization procedures employed. Bridges and Kornblith used an average based on various lifetime data involving numerous lines, while Blackwell et al. utilized only the very accurate data for the resonance line at 3719.9 Å. Since the high precision measurements of Blackwell et al. combined with these resonance line data determine the absolute scale very accurately, we have used that scale to renormalize the data of Bridges and Kornblith. Considering only the most accurate data of ref. [4], i.e., those designated by a 10% ("a") accuracy (see fig. 6), we found the log gf-values of these lines to be, on the average, about 0.03 dex or 7% greater than those measured by Blackwell et al. We have thus lowered all log gf-values of Bridges and Kornblith by this amount. Since May et al. normalized their scale to that of Bridges and Kornblith, we have accordingly lowered all their log gf-values by 0.03 as well. (c) A serious disagreement between Blackwell et al. and Bridges and Kornblith is seen in the case of the 4427.31 Å line. Here, the f-value of ref. [4]

FIGURE 4. Plot of $\Delta \log = \log gf$ (May et al. [5]) $-\log gf$ (Bridges and Kornblith [4]) vs log gf (Bridges and Kornblith).

is greater than that of ref. [1] by a factor of 3.5. A likely reason for this discrepancy may be the blending of the 4427.31 Å line, the $a {}^{5}D_{3} - z {}^{7}F_{4}^{\circ}$ transition, with another line at 4427.30 Å, the $z {}^{5}P_{2}^{\circ} - g {}^{5}D_{2}$ transition. The arc of Bridges and Kornblith is capable of exciting both the $z {}^{7}F_{4}^{\circ}$ and $g {}^{5}D_{2}$ levels, hence producing the blended feature, whereas Blackwell's furnace, operating at a much lower temperature, excites preferentially the $z {}^{7}F_{4}^{\circ}$ level. Therefore, we have tabulated only the data of Blackwell et al. for this line.

After the few apparently unreliable f-values from ref [4] were eliminated, data for over five hundred lines remained. We have utilized these as the principal reference source of accurate f-values for Fe I and have normalized and/or compared the other, much less comprehensive data sources (to be discussed later) to it. Our error estimates for the very weak and very strong lines were adjusted to reflect the possible deficiencies detected by the comparison with the data of Blackwell et al. [1,3], as discussed above. Blackwell et al. [3] also suggest a temperature error in the data of Bridges and Kornblith. However, we have found no indication of this from our detailed graphical comparisons. We should also note that temperature errors in the experiment of Bridges and Kornblith are minimized, since their absolute scale is based on numerous lifetime data for levels spanning a large range of excitation energies.

The most accurate relative oscillator strengths for Fe I are provided by the absorption experiments of Blackwell et al. [1-3]. Their work centers on lines originating from the ground state or states of very low excitation potential. An extremely stable and well diagnosed King-type furnace was used as the absorption tube, and intensity ratios were determined photoelectrically for various line pairs, which by appropriate overlaps were built up to a network that could be cross-checked and optimized for internal consistency. The relative data thus obtained—which span a large range of gf-values—were estimated to be accurate to within 0.5 percent.

The fourth important data source is the experimental work by Huber and co-workers [6,7,11,12,13] which makes use of the anomalous dispersion and absorption techniques. Additional, smaller sources of data, which were utilized to supplement our material, are the branching ratio emission experiment of Martinez-Carcia et al. [8] with a hollow cathode source, the shock tube emission work of Wolnik et al. [9,14,], and the emission experiments with stabilized arcs by Garz and Kock [10] and Richter and Wulff [15].

All these data were extensively intercompared in a series of graphic plots to establish their mutual consistency and, if necessary, to find appropriate renormalization factors. Normally, $\Delta \log$ was plotted versus upper energy level for emission work and versus lower energy level for the anomalous dispersion and absorption experiments. Furthermore, $\Delta \log$ was also plotted versus wavelength and

versus log gf. The material by Bridges and Kornblith or by May et al. served as reference material since their work covered so many lines. The graphs, of which figs. 3–6 plus figs. 1 and 2 of the general introduction are samples, are instructive indicators of systematic trends which are dependent on upper or lower energy level, the magnitude of log gf, or the wavelength. Several disagreements in absolute scales were readily detected, and in three cases an energy level dependent trend was noticed and a least squares fit was then performed for a renormalization. In other cases no renormalization was required at all. The resulting renormalization factors are shown in the following table.

References	Normalization: quantities to be added to the original log gf -value, as it appeared in the literature							
4	-0.03							
5	-0.03							
6	+0.02							
10	$-0.35 + (0.00000789) E_{\rm h}^{*}$							
11	+0.27							
12	0.23							
13	$-0.06 - (0.00000727) E_i$							
14	-0.13							
15	$-0.61 + (0.0000128) E_{\rm A}$							

* The units of E_k (upper energy level) or E_i (lower energy level) are cm⁻¹.

FIGURE 6. Plot of \(\Delta\)log = log gf (Bridges and Kornblith [4]) - log gf (Blackwell et al. [1,3]) vs log gf (Blackwell et al.). Open circles are used to represent lines for which the f-values of Bridges and Kornblith are denoted by them to be accurate to within 10% ("a" accuracy in their notation), while solid triangles are used for lines with uncertainties greater than 10%.

The graphs are also a very good indicator of the scatter in the various sets of data. By intercomparing all overlapping data, one can readily isolate the principal sources of scatter. Our error estimates take this into account, in addition to an evaluation of the critical factors involved in each method and the error statements provided by the authors. When overlaps in the data occur we have selected the very precise data of refs. [1-3] as our first choice. Next, we have given equal weight to the data of refs. [4-8], averaging them when they overlap. Data from refs. [9-15] were tabulated with equal weight too, but only in those cases where no material from the earlier cited authors was available. In toto, we have compiled f-value data for 1630 lines.

In this compilation, we have generally omitted blended lines. Wavelengths have been taken from the work of Crosswhite [21]. Energy level values and term designations as listed in our multiplet column have been taken from the compilation of Reader and Sugar [22]. Particular attention was paid to the fact that the designations of some energy levels and multiplets have changed from the original classifications by Moore [23,24]. Also, some multiplet designations appear to be identical as we have listed them, for example, Nos. 20 and 26 in our tables, since the present setup does not completely identify the multiplets by their respective transition arrays. For further details on multiplet and term designations the reader is referred to ref. [22].

References

- Blackwell, D. E., Ibbetson, P. A., Petford, A. D., and Shailis, M. J., Mon. Not. R. Astron. Soc. 186, 633 (1979).
- [2] Blackweil, D. E., Ibbetson, P. A., Petford, A. D., and Willis, R. B., Mon. Not. *R. Astron. Soc.* 177, 219 (1976).
- [3] Blackwell, D. E., Petford, A. D., and Shallis, M. J., Mon. Not. R. Astron. Soc. 186, 657 (1979).
- [4] Bridges, J. M., and Kornblith, R. L., Astrophys. J. 192, 793 (1974).
- [5] May, M., Richter, J., and Wichelmann, J., Astron. Astrophys. Suppl. Ser. 18, 405 (1974).
- [6] Banfield, F. P., and Huber, M. C. E., Astrophys. J. 186, 335 (1973).
- [7] Huber, M. C. E., Astrophys. J. 190, 237 (1974).
- [8] Martinez-Garcia, M., Whaling, W., Mickey, D. L., and Lawrence, G. M., Astrophys. J. 165, 213 (1971).
- [9] Wolnik, S. J., Berthel, R. O., and Wares, G. W., Astrophys. J. 162, 1037 (1970).
- [10] Garz, T., and Kock, M., Astron. Astrophys. 2, 274 (1969).
- [11] Grasdalen, G. L., Huber, M., and Parkinson, W. H., Astrophys. J. 156, 1153 (1969).
- [12] Huber, M., and Tobey, F. L., Jr., Astrophys. J. 152, 609 (1968).
- [13] Huber, M. C. E., and Parkinson, W. H., Astrophys. J. 172, 229 (1972).
- [14] Wolnik, S. J., Berthel, R. O., and Wares, G. W., Astrophys. J. 166, L31 (1971).
- [15] Richter, J., and Wulff, P., Astron. Astrophys. 9, 37 (1970).
- [16] Wagner, R., and Otteu, E. W., Z. Phys. 220, 349 (1969).
- [17] Klose, J. Z., Astrophys. J. 165, 637 (1971).
- [18] Hilborn, R. C., and de Zafra, R., Astrophys. J. 183, 347 (1973).
- [19] Brzozowski, J., Erman, P., Lyyra, M., and Smith, W. H., Phys. Ser. 14, 48 (1976).
- [20] Bell, G. D., and Tubbs. E. F., Astrophys. J. 159, 1093 (1970).
- [21] Crosswhite, H. M., J. Res. Nat. Bur. Stand., Sect. A 79, 17 (1975).
- [22] Reader, J., and Sugar, J., J. Phys. Chem. Ref. Data 4, 353 (1975).
- [23] Moore, C. É., "Atomic Energy Levels (As Derived from the Analyses of Optical Spectra)," Vol. II, Nat. Bur. Stand. (U.S.), Circ. 467, (Aug. 1952).
- [24] Moore, C. E., "A Multiplet Table of Astrophysical Interest, Revised Edition," 253 pp, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 40 (Feb. 1972).
- [25] Blackwell, D. E., private communication (1980).

Note Added in Proof

Dr. Blackwell has informed us (private communication, 1980) that errors due to possible blends may be present in his log gf-values for four lines. He has recommended that the following lines be withdrawn from consideration: 4427.31Å, 3812.96Å, 4602.94Å, and 4733.59Å. We comply with Dr. Blackwell's analysis and therefore request that the readers of this compilation view the f-values for these lines as being unreliable.

Fe I: Allowed transitions

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g,	$A_{k_{\ell}}(10^8 \ { m s}^{-1})$	f _{ik}	S (at. u.)	log gf	Ассигасу	Source
1.	$a^{-5}\mathbf{D} = z^{-7}\mathbf{D}^{\circ}$ (1)											
		5166.99	0.0	10251	0		145(5)*	7.00(4)	0.00100	4.105	D 1	
		5247.05	704.0	19331	5		1.43(-5) 3.02(-6)	7.09(-0) 2.26(-6)	1.06(4)	-4.195	D+ D+	
		5254.96	888.1	19912	3	5	8.32(6)	5.20(-0)	2.98(-4)	-4.940	B-+	
		5250.21	978 1	20020	1	3	9.30(-6)	115(-5)	2.90(-4)	-4.104	B+	1
		5110.41	0.0	19562	9	q	4.93(-5)	1.13(-5)	0.00292	-3 760	B+	1
		5168.90	415.9	19757	7	7	3.83(5)	1.53(-5)	0.00183	-3 969	B-t-	
		5204.58	704.0	19912	5	5	2.29(-5)	9.31(6)	7.98(-4)	-4.332	B+	1
		5225.53	888.1	20020	3	3	1.32(-5)	5.42(-6)	2.80(4)	-4.789	B+	1
		5060.08	0.0	19757	9	7	1.3(-6)	3.9(-7)	5.8(-5)	-5.46	B+	2
		5127.68	415.9	19912	7	5	3.80(7)	1.07(-7)	1.27(-5)	-6.125	B+	1
2.	$a^{-5}D - z^{-5}F^{\circ}$ (2)											
		4375 93	0.0	22846	9	111	2 95(4)	1.03(-4)	0.0134	-3.033	R≁	1
		4427.31	415.9	22997	7	0	3.42(-4)	1.29(-4)	0.0139	-3 044	B+	
		4461.65	704.0	23111	5	7	2.95(-4)	1.23(-4)	0.0192	-3 210	B+	1
		4482.17	888.1	23192	3	5	2.10(4)	1.25(-4)	0.00466	-3.501	B+	1
		4489.74	978.1	23245	1	3	1.19(-4)	1.08(-4)	0.00160	-3.966	B+	1
		4347.24	0.0	22997	9	9	1.23(-6)	3.49(-7)	4.49(5)	5.503	B+	1
		4445.47	704.0	23192	5	5	2.45(-6)	7.24(-7)	5.30(-5)	-5.441	B+	1
		4471.68	888.1	23245	3	3	1.12(~6)	3.37(-7)	1.49(5)	-5.995	B+	1
		4389.24	415.9	23192	7	5	1.81(-5)	3.73(-6)	3.77(-4)	-4.583	B+	1
		4435.15	704.0	23245	5	3	4.72(5)	8.36(-6)	6.10(-4)	-4.379	B+	1
3.	$a^{-5}\mathbf{D} = z^{-7}\mathbf{P}^{\circ}$ (3)											
		4216.18	0.0	92711	0	0	194(4)	100/ 51	0.00611	2 254	D :	1
		4210.18	415.0	20/11	7	7	1.04(-4) 8.7(5)	4.90(-5)	0.00011	- 3.350	B+ C	1 5
		4200.70	704.0	24101	5	7	9.7(-5) 2.54(-5)	2.5(-5)	0.0022	-4.216	E E	4 <i>n</i> ,5 <i>n</i>
		4232.73	888.1	24101	3	5	8.79(-6)	3.03(-6)	1.64(-4)	-4.028	10 ⁺ R+	1
			00011	21001	Ū	Ŭ	0.1 5(0)	3.20(0)	1.04(-1)	4.720		•
4.	$a^{-5}D - z^{-5}D^{\circ}$ (4)	3882.7	402.9	26151	25	25	0.103	0.0232	7.41	-0.237	C +	1,4n,13n
		3859.91	0.0	25900	0	0	0.0970	0.0217	9 48	-0.710	R∔	1
		3886.28	415.9	26140	7	7	0.0530	0.0211	1.07	-1.076	R+	1
		3899.71	704.0	26340	5	5	0.0258	0.00589	0.378	-1.531	B+	1
		3906.48	888.1	26479	3	3	0.00833	0.00190	0.0735	-2.243	B+	1
		3824.44	0.0	26140	9	7	0.0283	0.00483	0.547	-1.362	B+	1
		3856.37	415.9	26340	7	5	0.0464	0.00739	0.657	-1.286	B +	1 I
		3878.57	704.0	26479	5	3	0.072	0.0098	0.63	-1.31	D-	13 <i>n</i>
		3895.66	888.1	26550	3	1	0.0940	0.00713	0.274	-1.670	B+	1
		3922.91	415.9	25900	7	9	0.0108	0.00319	0.288	-1.651	B+	1
		3930.30	704.0	26140	5	7	0.019	0.0060	0.39	-1.52	C	4 <i>n</i>
		3927.92	888.1	26340	3	5	0.026	0.010	0.39			4 <i>n</i>
5.	a ⁵ D - z ⁵ F° (5)	3920.20	970.1	20479	1	Э	0.0200	0.0179	0.232	-1.740	D'T-	I
		3719.93	0.0	268 75	9	11	0.163	0.0413	4.55	-0.430	₿≁	16,17,18,
		3737.13	415.9	27167	7	Q.	0.142	0.0381	3.28	-0 574	B+	19,40
		3745.56	704.0	27395	5	7	0.115	0.0339	2.09	-0.771	B+	1
		3748.26	888.1	27560	3	5	0.0915	0.0321	1.19	-1.016	B+	1
		3745.90	978.1	27666	1	3	0.0733	0.0462	0.570	-1.335	B-+	1
		3679.91	0.0	27167	9	9	0.0138	0.00280	0.305	1.599	B +	1
		3705.57	415.9	27395	7	7	0.0322	0.00662	0.565	-1.334	B-+-	1
		3722.56	704.0	27560	5	5	0.0497	0.0103	0.633	-1.287	B+	1
		3733.32	888.1	27666	3	3	0.065	0.014	0.50	-1.39	C	4n ,6n
		3683.05	415.9	27560	7	5	0.0030	4.4(4)	0.037	-2.51	C	4n,6n
		1 3707.82	704.0	27000	5	3	0.0072	∣ 8.9(— 4) [0.055	- 2.35	L L	0/1
Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$E_i(\operatorname{cun}^{-1})$	$E_k (\mathrm{cm}^{-1})$	g,	g.	$A_{ki}(10^{8} \text{ s}^{-1})$	f _{it}	S (at. u.)	log gf	Accuracy	Source
6	$a^{5}D = 7^{5}P^{6}$											
0.	(6)											
		3440.99	415.9	29469	7	5	0.098	0.012	0.99	-1.06	С	4 <i>n</i>
		3443.88	704.0	29733	5	3	0.073	0.0078	0.44	-1.41	С	4 <i>n</i>
		3497.84	888.1	29469	3	5	0.031	0.0094	0.32	-1.55	С	4 <i>n</i>
		3476.70	978.1	2 9 733	1	3	0.064	0.035	0.40	-1.46	С	4n
7.	a ⁵ D − z ³ F° (7)											
		3193.23	0.0	31307	9	9	0.0053	8.0(~4)	0.076	-2.14	С	6n
8.	a ⁵ D - y ⁵ D ^o (9)										1	
		3021.07	415.9	33507	7	7	0.456	0.0624	4.34	-0.360	B+	1
		3017.63	888.1	34017	3	3	0.0682	0.00931	0.277	1.554	B+	1
		2983.57	0.0	33507	9	7	0.280	0.0290	2.57	-0.583	B+	1
		2994.43	415.9	33802	7	5	0.44	0.042	2.9	-0.53	C .	6n
		3000.95	(04.0 000.)	34017	2	3	0.642	0.0520	2.57	-0.585	B+ B+	
		2050.00	415.0	34122	3		0.18	0.0465	1.44	-0.837	0+ C+	1
		3039.09	704.0	33507	5	7	0.18	0.052	2.3	-0.558	8+	44,04
		3037.39	888.1	33802	3	5	0.32	0.075	2.2	-0.65	C+	4n.6n
		3025.84	978.1	34017	1	3	0.348	0.143	1.43	-0.844	B+	1
9.	a ⁵ D - y ⁵ F ^o (uv 1)	2965.2	402.9	34118	25	35	0.324	0.0598	14.6	0.175	B	1,4n,6n
		2966.90	0.0	33695	9	11	0.272	0.0438	3.85	-0 404	B+	1
		2973.24	415.9	34040	7	9	0.183	0.0313	2.14	0.660	B+	l i
		2973.13	704.0	34329	5	7	0.135	0.0251	1.23	-0.901	B+	1
		2965.25	978.1	34692	1	3	0.116	0.0460	0.449	-1.337	B+	ì
	,	2936.90	0.0	34040	9	9	0.14	0.018	1.6	-0.79	C+	4n ,6n
		2947.88	415.9	34329	7	7	0.20	0.027	1.8	-0.73	C	6 <i>n</i>
		2953.94	704.0	34547	5	5	0.189	0.0247	1.20	0.908	B+	1
		2957.36	888.1	34692	3	3	0.177	0.0232	0.678	-1.157	B+	1
		2912.16	0.0	34329	9	7	0.035	0.0035	0.30	-1.50	C	4n,6n
		2929.01	415.9	34547	-	5	0.073	0.0067	0.45	-1.33	ι C	0n
		2941.34	704.0	34092	э	3	0.000	0.0031	0.25	-1.59	L	41
10.	a ⁵ D - z ³ P° (11)											
		2021 45	415.0	22047	7	د د	0.0654	0.00622	0 497	-1261	D1	.
		2901.40	413.9 888.1	33941	2	1	0.0034	0.00022	0.427	-1.301	DT R.	
		3007.28	704.0	33947	5	5	0.0273	0.00371	0.184	-1 739	8+	
		2986.46	888.1	34363	3	3	0.00219	2.92(-4)	0.00862	-3.057	B+	i
		3024.03	888.1	33947	3	5	0.0488	0.0111	0.333	-1.476	B+	1
	:	2994.50	978.1	34363	1	3	0.0149	0.00601	0.0593	-2.221	B+	L L
11.	a ⁵ D - z ⁵ G° (uv 2)											
		007437		24700	~	<u>.</u> .	0.015	0.0000	0.15	J	_	
		2874.17	415.0	34782	9	11	0.013	0.0020	0.17	-1:74	C C	0 <i>n</i>
		2835.46	0.0	35257	9	9	0.0090	0.0011	0.091	-2.01	c	6 <i>n</i>

8

1 m

gara.

fattere f

Fe I: Allowed transitions -Continued

No.	Multiplet	λ(Ă)	$E_{c}(cm^{-1})$	E_{i} (cm ⁻¹)	g,	g,	$A_{kr}(10^8 \text{ s}^{-1})$	f _a	S (at. u.)	log gf	Ассыгасу	Sour
19			1			ĺ						
14.	(ny, 5)					1						
	(44.5)										ł	
-		2719.03	0.0	36767	a	7	14	0.12	9.6	0.03	6	6.1
		2720.90	415.9	37158	7	5	11	0.084	53		č	60
1		2723 58	704.0	37410	5	3	0.64	0.0043	1.9	-0.67	Ċ	60
		2750.14	415.9	36767	7	7	0.39	0.040	28	-0.51	C C	60
		2742 41	704.0	37158	5	5	0.63	0.071	3.2	-0.45	C C	60
	ĺ	2737 31	888.1	37410	3	3	0.85	0.095	26	~0.55	i c	60.7
		2756.33	888.1	37158	3	5	0.20	0.038	1.0	-0.94	č	6 <i>n</i>
		2744.07	978.1	37410	ĩ	3	0.35	0.12	1.1	-0.92	č	6 <i>n</i>
	-											
13.	a ⁵D ~ y ³D°			1								
	(uv 6)		[(i		ļ						
		2632.59	704.0	38678	5	5	0.015	0.0016	0.067	-2.11	с	61
	}					i İ						
14.	$a^{-5}\mathbf{D} = x^{-5}\mathbf{D}^{\circ}$								1			
	(uv 7)											
	,	2522.85	0.0	39626	9	9	2.9	0.28	21	0.40	C	61
		2527.43	415.9	39970	7	7	1.9	0.18	10	0.10	c	6 <i>a</i>
	ļ.	2529.13	704.0	40231	5	5	0.98	0.094	3.9	-0.33	Ċ	6 <i>n</i>
		2501.13	0.0	39970	9	7	0.68	0.050	3.7	~0.35	c	6 <i>n</i>
		2510.83	415.9	40231	7	5	1.3	0.088	5.1	-0.21	C	61
		2518.10	704.0	40405	5	3	1.9	0.11	4.5	-0.27	C	6л
		2524.29	888.1	40491	3	1	3.4	0.11	2.7	-0.49	с	6n
i	l.	2549.61	415.9	39626	7	9	0.36	0.045	2.7	-0.50	С	6 <i>n</i>
		2545.98	704.0	39970	5	7	0.67	0.091	3.8	0.34	С	6 <i>n</i>
		2540.97	888.1	40231	3	5	0.92	0.15	3.7	-0.35	C C	6 <i>n</i>
		2535.61	978.1	40405	I	3	0.97	0.28	2.4	-0.55	С	61
15	(⁵ D −) ⁵ P ⁰											
1.9.	(ux 8)	ļ		ļ								
	(0.0)								1			
		2512.36	415.9	40207	7	7	0.027	0.0025	0.15	-1.75	С	6 <i>n</i>
1Ż	an aro	}									ł i	
10.	$a D - x r^2$											
	(0, 9)		ĺ					Ì				
		2483.27	0.0	40257	9		49	0.56	41	0.70	c	60
		2488.14	415.9	40594	7	9	47	0.56	32	0.59	Ċ	60
		2490.64	704.0	40842	5	7	3.8	0.49	20	0.39	i c	60
]		2491.15	888.1	41018	3	5	3.0	0.47	12	0.15	i č	60
		2462.65	0.0	40594	9	9	0.58	0.053	3.9	-0.32	C	6 <i>n</i>
		2479.78	704.0	41018	5	5	1.8	0.17	6.9	0.07	C	6 <i>n</i>
		2462.18	415.9	41018	7	5	0.15	0.0099	0.56	-1.16	č	6 <i>n</i>
,-	<u>)n (no</u>											
17.	$a = 39 - x^{\circ} P^{\circ}$											
	(uv 11)	{				2						
		2373.62	415.9	42533	7	7	0.067	0.0057	0.31	1.40	С	6 <i>n</i>
Í	1	2371.43	704.0	42860	5	5	0.052	0.0044	0.17	1.6ó	C	6 <i>n</i>
		2389.97	704.0	42533	5	7	0.050	0.0060	0.24	1.52	C	6n
		2381.83	888.1	42860	3	5	0.054	0.0076	0.18	-1.64	C	6n
		2374.52	978.1	43079	1	3	0.29	0.074	0.58	-1.13	L C	60

e de la composition de la comp

f^{atter}e.

pares.

Fe 1: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	Ĕ.	g,	$A_{ki}(10^8 \text{ s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
18	$a^{5}D - w^{5}D^{\circ}$											
•••	(av 14)	1										
			i									
		2276.03	0.0	43923	9	7	0.17	0.010	0.68	-1.04	C	6n
		2287.25	704.0 988.1	44411	3	3	0.34	0.016	0.60	-1.10 -1.32	C C	ON fra
		2320.36	415.9	43499	7	9	0.12	0.013	0.68		C	6n
		2313.10	704.0	43923	5	7	0.14	0.016	0.59	1.11	C	6 <i>n</i>
		2309.00	888.1	44184	3	5	0.15	0.020	0.46	-1.22	С	6 <i>n</i>
		2301.68	978.1	44411	1	3	0.13	0.030	0.23	-1.52	С	6 <i>n</i>
10	515 5120											
19.	a 12 - 17											
		2259.51	0.0	44244	9	11	0.070	0.0065	0.44		С	6 <i>n</i>
		2272.07	415.9	44415	7	9	0.038	0.0038	0.20	1.58	С	6 <i>n</i>
		2300.14	704.0	44166	5	7	0.080	0.0089	0.34	-1.35	C	6 <i>n</i>
		2303.58	888.1	44285	3	5	0.076	0.010	0.23	-1.52	С	6 <i>n</i>
		2303.42	978.1	44378?	1	3	0.094	0.022	0.17	1.65	C	6 <i>n</i>
		2250.79	0.0	44415	9	9	0.019	0.0014	0.095	-1.89	C	6n
20	a ⁵ D = ⁵ D ⁹											
20.												
		2265.05	415.9	44551	7	7	0.020	0.0015	0.080	-1.97	С	6n
		2259.28	415.9	44664	7	5	0.013	7.0(4)	0.036	-2.31	С	6a
		2292.52	415.9	44023	7	9	0.043	0.0043	0.23	-1.52	C	6n
	50 100											
21.	$a^{*}D - y^{*}S^{*}$									}		
	(11/1/)											
		2267.08	415.9	44512	7	5	0.071	0.0039	0.21	1.56	с	6 <i>n</i>
22.	$a^{-5}D - x^{-3}D^{\circ}$			ļ	ļ				ļ	ļ]
	(uv 18)											
		2009.17	415.0	45.000	-		0.021	0.0011	0.057	_9.11	C	<u>.</u>
		2228.17	415.9	45282	í í	6	0.021	0.0011	0.037	-2.11	L.	0/1
23.	$a^{5}D - w^{5}P^{9}$											
-	(uv 21)											
		2166.77	0.0	46137	9	7	2.7	0.15	9.6	0.13	C	6 <i>n</i>
		2191.84	704.0	46314	5	5	1.2	0.083	3.0	0.38	C	6 <i>n</i>
		2196.04	888.1	46410	3	3	1.2	0.086	1.9	0.59	C	61
		2200.72	888.1	45314	3	5	0.28	0.034	0.74	-0.99		on
24.	$a^{5}D - z^{1}S^{9}$								1			
	(uv 22)				1	1						
		2191.20	978.1	46601	1	3	0.073	0.016	0.11	1.80	C	6n
	510 300											
25.	$a^{\circ}D = y^{\circ}P^{\circ}$	1										
	(uv 2-5)											
		2176.84	978.1	46902	1	3	0.10	0.022	0.16	-1.66	с	6 <i>n</i>
26.	a ⁵D ∽ ⁵D°											
		0100.05					0.071	0.0070	0.65	1.00		
		2132.02	0.0	46889	2	9	0.076	0.0052	0.33	1.33	C C	6 <i>n</i>
		2145.19	415.9	47017	7 c	7 e	0.057	0.0039	0.19	1.50	L C	6 <i>n</i>
		2103.01	888.1	47136	3	5	0.009	0.0048	0.12	-1.76	c	6n
				1100			0.000	0.0000		1		
27.	$a^{-5}D = {}^{3}D^{0}$		Į	1							1	
										1	_	
		2138.59	0.0	46745	9	7	0.028	0.0015	0.095	-1.87	C	6 <i>n</i>
	ĺ	2171.30	704.0	46745		7	0.051	0.0050	0.18	-1.60		6.
	I	+ Z175.21	1.888.1	40889	i 3	: 5	0.083	0.0098	0.21	1.53	1 U	1 0/1

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_t (\mathrm{cm}^{-1})$	g,	g.	$A_{k_i}(10^8 \text{ s}^{-1})$	fu	S (at. u.)	log gf	Accuracy	Source
	in ino					1						
28.	(uv 33)											
		2084.12	0.0	47967	9	7	0.37	0.019	1.2	0.77	с	6.0
		2102.35	415.9	47967	7	7	880.0	0.0058	0.28	-1.39	C	6 <i>n</i>
		2112.97	978.1	48290		3	0.19	0.038	0.26	-1.42	C	Ga
29.	$a^{-5}D - u^{-5}F^{\circ}$											
	(av 3.3)	{				ļ					ļ	
		1937.27	0.0	51619?	9	7	0.22	0.0095	0.54	-1.07	С	6л
30.	a ⁵ D – u ⁵ P°					ļ						
	(uv 37)	-										i.
		1934.54	0.0	51692?	9	7	0.25	0.011	0.64	-1.00	C	6n
		1940.00	415.9	51945?	(3	0.20	0.010	0.40	-1.14	L	On
31.	$a^{5}\mathbf{F} = z^{-7}\mathbf{D}^{\circ}$				1							
	(12)											
		7912.87 8075.13	6928 7377	19562	11	9	1.68(-6) 1.27(-6)	1.29(-6) 9.63(-7)	3.70(-4) 2.30(4)	-4.848	B+ B+	3
20	5E											
32.	(13)									ļ		
		6358.60	6928	22650	13	13	4 32(-6)	3 09(6)	7 13(-4)	-1 168	R+	2
		6280.63	6928	22846	11	11	6.31(6)	3.73(6)	8.48(4)	-4.387	B+	3
		6498.95	7728	23111	7	7	4.51(-6)	2.86(-6)	4.28(4)	-4.699	B+ C	3
		05/4.24	1900	23192	э	5	3.3(-0)	2.1(~0)	2.3(-4)	-4.97	ե	5n
33.	$a^{5}\mathbf{F} = z^{-7}\mathbf{P}^{\circ}$											
		5956.70	6928	23711	11	9	5.19(6)	2.26(-6)	4.87(-4)	-4.605	B+	3
34.	$a^{5}\mathbf{F} = z^{5}\mathbf{D}^{\circ}$											
	(15)	1										
		5269.54	6928	25900	11	9	0.0127	0.00434	0.828	-1.321	B+	3
	1	5328.04	7728	26140 26340	7	5	0.0115	0.00380	0.600	-1.400 -1.645	B++	3
		5405.77	7986	26479	5	3	0.0109	0.00286	0.255	1.844	B+	3
		5434.52	8155	26550	3	1	0.0171	0.00252	0.135	-2.122	B+	3
		5397.13	7377	25900	9	9	0.00259	0.00113	0.181	-1.993	B+	3
		5429.70	7086	20140	(5	5	0.00427	0.00189	0.236	-1.879	B+ C	3 4 n
		5501.46	7728	25900	7	9	3.2(-4)	1.9(-4)	0.024	-2.88	c	4n
		5506.78	7986	26140	5	7	5.01(-4)	3.19(-4)	0.0289	-2.797	B+	3
		5497.52	8155	26340	3	5	6.25(4)	4.72(-4)	0.0256	-2.849	B+	3
35.	$a^{5}\mathbf{F} = z^{5}\mathbf{F}^{o}$											
	(16)											
		5012.07	6928	26875	11	11	5.50(-4)	2.07(-4)	0.0376	-2.642	B+	3
		5051.63	7377	27167	9	9	4.66(-4)	1.78(4)	0.0267	-2.795	B+	3
		5083.34	7728	27395	7	7	4.06(4)	1.57(4)	0.0184	-2.958	B+	3
		5107.45	7986	27560	5	5	4.19(~4) 7.24(-4)	1.04(4)	0.0138	3.087	B+ B+	3
		2123.72 4930.60	6028	27000	3	3 0	(.24(-4)) (.24(-4))	2.00(-4)	0.0144 0.00742	-3.008	B.t.	э 3
		4994.13	7377	27395	9	7	3.18(-4)	9.24(-5)	0.0137	-3.080	B+	3
		5079.74	7986	27666	5	3	5.19(-4)	1.21(-4)	0.0101	-3.220	B+	3
		5127.36	7377	26875	9	11	1.14(4)	5.48(-5)	0.00832	-3.307	B+	3
		5150.84	7986	27395	5	7	3.6(4)	2.0(-4)	0.017	-3.00	С	4 <i>n</i>
ł		5151.91	8155	27560	3	5	2.39(4)	1.59(4)	80800.0	-3.322	B+	3

F~29

FUHR ET AL.

1 miles

sec.

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	<i>B</i> *	$A_{ki}(10^{8} \mathrm{s}^{-1})$	f ik	S (at. u.)	log gf	Accuracy	Source
36.	$a^{5}\mathbf{F} - z^{3}\mathbf{F}^{0}$ (18)											
		4100.74	6928	31307	11	9	2.92(-4)	6.02(-5)	0.00894	-3.179	B+	3
		4092.46	7377	31805	9	7	3.1(5)	6.1(-6)	7,4(4)	-4.26	c	5n
		4177.59	7377	31307	9	9	3.72(-4)	9.72(-5)	0.0120	~3.058	B+	3
		4152.17	7728	31805	7	7	3.24(-4)	8.37(-5)	0.00801	-3.232	B+	3
		4139.93	7986	32134	5	5	1.83(4)	4.70(-5)	0.00320	-3.629	B+	3
37.	$\begin{array}{c} a \ {}^{5}\mathrm{F} = z \ {}^{3}\mathrm{D}^{\circ} \\ (19) \end{array}$											
		4174.91	7377	31323	9	7	5.87(-4)	1.19(-4)	0.0148	-2.969	B+	3
	1	4172.74	7728	31686	7	5	6.46(4)	1.20(-4)	0.0116	-3.074	B+	3
		4173.92	7986	31937	5	3	6.3(4)	9.8(5)	0.0067	-3.31	c	5 <i>n</i>
		4237.07	7728	31323	7	7	2.22(-5)	5.97(-6)	5.83(4)	4.379	B+	3
38.	$a {}^{5}\mathbf{F} - y {}^{5}\mathbf{D}^{0}$ (20)											
		3820.43	6928	33096	11	9	0.668	0.120	16.5	0.119	B+	3
		3825.88	7377	33507	9	7	0.598	0.102	11.6	0.037	B+	3
		3834.22	7728	33802	7	5	0.453	0.0713	6.30	~0.302	B+	3
		3840.44	7986	34017	5	3	0.470	0.0624	3.94	-0.506	B+	3
		3849.96	8155	34122	3	1	0.606	0.0449	1.71	-0.871	B+	3
		3887.05	7377	33096	9	9	0.0352	0.00798	0.919	1.144	B+	3
		3878.02	7728	33507	7	7	0.0772	0.0174	1.56	-0.914	B+	3
		3872.50	7986	33802	5	5	0.105	0.0236	1.50	-0.928	B+	3
		3865.52	8155	34017	3	3	0.155	0.0347	1.33	~0.982	B+	3
		3940.88	7728	33096	7	9	0.00120	3.59(-4)	0.0326	~2.600	B+	3
		3917.18	7986	33507	5	7	0.00435	0.00140	0.0902	-2.155	B+	3
39.	$a^{5}F - y^{5}F^{0}$ (21)	3750.2	7.160	34118	35	35	0.914	0.193	83.3	0.829	B+	3
		3734.86	6928	33695	11	11	0.902	0.189	25.5	0.317	8+	3
	1	3749.48	7377	34040	9	9	0.764	0.161	17.9	0.161	B+	3
		3758.23	7728	34329	7	7	0.634	0.134	11.6	-0.027	B+	3
		3763.79	7986	34547	5	5	0.544	0.116	7.16	-0.238	8+	3
		3767.19	8155	34692	3	3	0.640	0.136	5.06	-0.389	8+	3
		3687.46	6928	34040	11	9	0.0801	0.0134	1.78	-0.833	B+	3
		3709.25	7377	34329	9		0.156	0.0251	2.76	-0.646	8+	3
		3/2/.62	2086	34547		5	0.225	0.0334	2.87	-0.531	B+	2
		3743.30	1980	34092	3	1	0.200	0.0328	2.02	-0.785		3
		3790.31	7798	34040	7		0.0323	0.00000	1.78	-0.846		3
		3795.00	7086	34040	5	7	0.115	0.0204	217	-0.761	B+	3
		3787.88	8155	34547	3	5	0.129	0.0461	1.73	-0.859	B+	3
40.	$\begin{vmatrix} a {}^{5}\mathbf{F} - z {}^{3}\mathbf{P}^{\circ} \\ (22) \end{vmatrix}$											
		3812.96	7728	33947	7	5	0.0792	0.0123	1.08	-1.064	B+	3
		3790.09	7986	34363	5	3	0.0268	0.00347	0.216	-1.761	B+	3
		3786.68	8155	34556	3	1	0.0277	0.00199	0.0743	2.225	B+	3
		3850.82	7986	33947	5	5	0.0166	0.00369	0.234	1.734	B+	3
		3814.52	8155	34363	3	3	0.00624	0.00136	0.0513	-2.389	B+	25
	l	3876.04	8155	33947	3	5	0.0017	6.3(~4)	0.024	-2.72	I C	4n .5n

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g,	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
41.	$a {}^{5}\mathbf{F} - z {}^{5}\mathbf{C}^{\mathbf{D}}$ (23)											
		3581.19	6928	34844	11	13	1.02	0.232	30.0	0.406	B+	3
		3647.84	7377	34782	9		0.292	0.0711	7.68	-0.194	B+	3
		3631.46	7728	35257	7	9	0.517	0.131	11.0	~0.036	B+	3
		3618.77	7986	35612	5	7	0.73	0.20	12	0.00	C+	4n,6n
		3608.86	8155	35856	3	5	0.814	0.265	9.44	-0.100	B+-	3
		3589.11	6928	34782	11	11	0.00361	6.98(-4)	0.0907	~2.115	B+	3
		3585.71	7377	35257	9	9	0.0375	0.00722	0.767	-1.187	B+-	3
		3585.32	7728	35612	7	7	0.13	0.025	2.1	-0.76	C	6n
		3586.98	7986	35856	5	5	0.17	0.032	1.9	-0.80	C+	4n,6n
		3540.71	7377	35612	9	7	0.0017	2.4(4)	0.026	-2.66	С	5n
42.	$\frac{a^{5}\mathbf{F}-z^{3}\mathbf{G}^{\circ}}{(24)}$											
		3513.82	6928	35379	11	11	0.0341	0.00630	0.802	-1.159	B-I-	3
		3483.01	7377	36079	9	7	9.4(-4)	1.3(~ 4)	0.014	-2.92	D	12n
		3570.10	7377	35379	9	11	0.677	0.158	16.7	0.153	B+	3
		3565.38	7728	35768	7	9	0.39	0.094	7.8	-0.18	C+	4 <i>n</i>
43.	$\begin{array}{c} a \ {}^{5}\mathbf{F} - \mathbf{\dot{y}} \ {}^{5}\mathbf{P}^{5} \\ (26) \end{array}$											
		3396.98	7728	37158	7	5	0.0024	2.9(-4)	0.023	-2.69	D	12n
		3417.27	8155	37410	3	3	7.2(-4)	1.3(-4)	0.0043	~3.42	D	12n
44.	$\begin{bmatrix} a \ ^{5}\mathbf{F} - x \ ^{5}\mathbf{D}^{9} \\ (28) \end{bmatrix}$							3				
		3057.45	6928	39626	11	9	0.45	0.051	5.7	-0.25	C+	4n
		3067.24	7377	39970	9	7	0.35	0.039	3.5	-0.46	C+	4 <i>n</i>
		3075.72	7728	40231	7	5	0.30	0.031	2.2	0.67	C+	4 <i>n</i>
		3083.74	7986	40405	5	3	0.35	0.030	1.5	-0.82	C+	4 <i>n</i>
		3091.58	8155	40491	3	1	0.64	0.030	0.93	-1.04	С	4 <i>n</i>
		3100.67	7728	39970	7	7	0.16	0.023	1.7	-0.79		4 <i>n</i>
		3134.11	7728	39626	7	9	0.014	0.0027	0.20	-1.72	C	4n
45.	$\begin{vmatrix} a^{-5}\mathbf{F} - x^{-5}\mathbf{F}^{\circ} \\ (30) \end{vmatrix}$											
		2999.51	6928	40257	11	11	0.23	0.032	3.4	-0.46	C+	4 <i>n</i>
		3009.57	7377	40594	9	9	0.18	0.024	2-2	-0.66	C+	4 <i>n</i>
		3018.98	7728	40842	7	7	0.15	0.020	1.4	-0.85	C+	4 <i>n</i>
	}	3026.46	7986	41018	5	5	0.13	0.018	0.91	1.04	C	4 <i>n</i>
	-	3031.63	8155	41131	3	3	0.18	0.025	0.74	-1.13		4n
		2987.29	7377	40842	9	7	0.077	0.0080	0.71	-1.14	C C	4 <i>n</i>
		3010.18	7980	41131	5	3	0.10	0.0081	0.40	-1.39	L C	4n 4r
		3040.43	7026	40237	5		0.035	0.0000	0.54			40
		3042.02	8155	41018	3	5	0.057	0.013	0.40	-1.40	č	4n
46.	$a^{5}F = y^{5}C^{0}$ (uv 44)											
		5700.10	(020	4020 .		10	0.62	0.002	0.0	0.00	6	6
	1	1 - 2788.10	6928	+ 42784	+ 11	+ 13	L 0.63	+ 0.087 I	8.8	1 - 0.02	I C	i Dn

f.

farme.

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	<i>5</i> .	$A_{ki}(10^8 \text{ s}^{-1})$	fa	S (at. u.)	log gf	Accuracy	Source
47.	a ⁵ F - w ⁵ D°											
	(uv 46)											
		2733.58	6928	43499	11	9	0.86	0.079	7.8	-0.06	с	7
		2735.48	7377	43923	9	7	0.62	0.054	4.4	0.31	C	7
48.	a ⁵ F - ⁵ F°		2									
		2670.06	6010	44944	<u>,</u> ,		0.10	0.001	2.0	0.64	C	_
		2079.00	0920	44244		11	0.19	0.021	2.0	-0.04		· ·
49.	$a^{5}\mathbf{F} - x^{5}\mathbf{C}^{\circ}$											
	(ut 52)											
		2584.54	6928 7377	45608?	11	13	0.46	0.054	5.1	-0.23	C	6n,7
		2623.53	7728	45833	7	9	0.33	0.044	2.7	-0.51	c	7
		2618.02	7728	45913	7	7	0.40	0.041	2.5	-0 54	с	7
50.	a ⁵ F - t ⁵ D ^o											
	(uv 71)											
		2277.11	7728	51630?	7	5	37	2.1	110	1.16	с	6n
51.	$a^{-3}F = z^{-5}F^{\circ}$											
	(34)											
		6581.22	11976	27167	9	9	2.8(~6)	1.8(~6)	3.5(-4)	4.79	с	5 <i>n</i>
52	a ³ ¥ = - ⁵ po											
	(35)											
		5853.18	11976	29056	9	7	1.7(~6)	6.9(7)	1.2(4)	-5.21	c	5.
- 0	30 300				-							
53.	a "F - z "F* (36)											
		5171.60	11076	21207	0	0	0.0015	0.0019	0.29	-1.70	G	
		5307.36	12969	31805	5	7	1.2(-4)	7.1(-5)	0.28	-3.45	D	4n 15n
54	″ ³ F - ~ ³ D ^o											
	(37)											
		5167.49	11976	31323	9	7	0.023	0.0072	1.1	1.19	с	4 <i>n</i>
		5270.36	12969	31937	5	3	0.029	0.0073	0.63	-1.44	c	4 <i>n</i>
		5341.02	12969	31686	5	5	0.0047	0.0020	0.18	2.00	D	9
55.	$\alpha^{-3}\mathbf{F} = y^{-5}\mathbf{D}^{\circ}$											
	(38)											
		4733.59	11976	33096	9	9	6.4(-4)	2.2(4)	0.030	-2.71	C	4 <i>n</i>
		4/96.73	12909	33802	э	3	3.8(~~5)	1.5(-5)	0.0010	4.18	G	54
56.	$a^{-3}\mathbf{F} = y^{-5}\mathbf{F}^{0}$											
	(35)											
		4602.94	11976	33695 34320	9 5	11	0.0032	0.0012	0.17	1.95	C C	4n 5
		4531.15	11976	34040	3 9	9	0.0030	9.2(4)	0.0026	-2.08	c c	ən 4n
		4592.65	12561	34329	7	7	0.0017	5.4(-4)	0.057	-2.42		14n
		4632.91	12969	34547	5	5	9.2(4)	3.0(-4)	0.023	2.83	C	5 <i>n</i>
		4547.02	12561	34547	7	5	1.4(4)	3.1(~5)	0.0033	3.66	C	5 <i>n</i>
		4602.00	12969	34692	5	3	6.8(…4)	1.3(4)	0.0098	3.19	С	5n
57.	$a^{3}\mathbf{F} = z^{3}\mathbf{P}^{\circ}$											
	(40)											
		4674.65	12561	33947	7	5	1.2(-5)	2.7(-6)	2.9(-4)	-4.72	с	5n
1		4765.48	12969	33947	5	5	6.7(-5)	2.3(-5)	0.0018	1 3.94	IC I	5n

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_{i} (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g.	g.	$A_{ki}(10^{8} \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Ассцгасу	Source
58	″ ³ F - + ⁵ C ⁹											
50.	(41)											
		4383.54	11976	34782	9	11	0.46	0.16	21	0.16	C+	4 <i>a</i>
		4404.75	12561	35257	7	9	0.25	0.094	9.6	0.18	C+	4 <i>n</i>
		4415.12	12969	35612	5	7	0.13	0.053	3.8	-0.58	C+	4 <i>n</i>
		4294.12	11976	35257	9	9	0.037	0.010	1.3	-1.04	C	4 <i>n</i>
		4337.05	12561	35612	7	7	0.012	0.0035	0.35	-1.61	С	4 <i>n</i>
		4367.90	12969	35856	5	5	0.0018	5.3(-4)	0.038	-2.58	C	5 <i>n</i>
		4229.75	11976	35612	9	7	2.9(4)	6.1(5)	0.0077	-3.26	С	5 <i>n</i>
59.	a ³ F - z ³ G°	4293.8	12407	35690	21	27	0.41	0.14	43	0.48	D	4n,9,13n
	(42)	1										
		4271.76	11976	35379	9	11	0.25	0.082	10	-0.13	D	13n
		4307.90	12561	35768	7	9	0.35	0.12	12	-0.06	C+	4n
		4325.76	12969	36079	5	7	0.51	0.20	14	0.00	C+	4n
		4202.03	11976	35768	9	9	0.11	0.030	3.7	-0.57	D	9
		4250.79	12561	36079	7	7	0.11	0.029	2.9	-0.69	D	13 <i>n</i>
		4147.67	11976	36079	9	7	0.0059	0.0012	0.15	-1.97	С	4 n
60.	$a^{3}F - y^{3}F^{\circ}$	4057.8	12407	37044	21	21	0.98	0.24	68	0.71	C+	4n,13n
ĺ	(40)											
		4045.81	11976	36686	9	9	0.75	0.18	22	0.22	C+	4n
		4063.59	12561	37163	7		0.69	0.17	16	0.08	C+	4 <i>n</i>
		4071.74	12969	37521	5	5	0.80	0.20	13	0.00	C+	4n
		3969.26	11976	37163	9		0.24	0.043	5.1	-0.41	C+	4n
		4005.24	12561	37521		5	0.22	0.038	3.5	-0.57	C+	4n
		4140.07	12301	30080		9	0.16	0.052	5.0	-0.44	L+	41
		4152.00	12909	3/103	5		0.13	0.047	3.2	0.63	D	13n
61.	$a^{-3}F = y^{-5}P^{\circ}$ (44)											
		4032.63	11976	36767	0	7	0.0025	4.7(4)	0.057	-937	C	5
		4002.00	11710	00101	Í		0.0025	T . (T)	0.031	2.01	Č	54
62.	$\begin{array}{c} a \ {}^{3}\mathbf{F} = y \ {}^{3}\mathbf{D}^{\mathbf{o}} \\ (45) \end{array}$	3830.3	12407	38507	21	15	1.5	0.23	62	0.69	C+	4n,5n,6n
		3815.84	11976	38175	9	7	13	0.22	25	0.30	C+	4
		3827.82	12561	38678	7	5	1.5	0.18	16	0.00	C+	410,000
	,	3841.05	12969	38996	5	3	1.4	0.18	12	-0.04	C+	4n
		3902.95	12561	38175	7	7	0.24	0.054	4.9	-0.42	C+	4 <i>n</i>
		3888.51	12969	38678	5	5	0.27	0.060	3.9	-0.52	C+	4 <i>n</i>
		3966.06	12969	38175	5	7	0.017	0.0055	0.36	-1.56	С	4n,5n
63.	$a^{-3}\mathbf{F} = x^{-5}\mathbf{D}^{\mathbf{o}}$ (46)		-					- - -				
					_						-	_
		3615.66	11976	39626	9	9	7.5(-4)	1.5(-4)	0.016	-2.88	C	5n
		3666.94	12969	40231	5	5	6.7(…4)	1.4(-4)	0.0082	-3.17	С	5n
I		3571.22	11976	39970	9	7	0.0022	3.3(-4)	0.035	-2.53	C	5 <i>n</i>
64.	$a^{-3}\mathbf{F} = x^{-5}\mathbf{F}^{0}$ (48)											
		l]		
		3493.28	11976	40594	9	9	9.2(4)	1.7(4)	0.017	-2.82	C	5 <i>n</i>
		3564.11	12969	41018	5	5	0.0016	3.0(~4)	0.018	-2.82	C	5 <i>n</i>
ļ		3463.30	11976	40842	9	7	0.0011	1.5(-4)	0.015	-2.87	D	12n
		3513.05	12561	41018	7	5	0.0037	5.0(-4)	0.040	-2.46	C	5 <i>n</i>
		3549.86	12969	41131	5	3	0.0060	6.8(4)	0.040	-2.47	С	5n
65.	a ³ F - x ³ D° (55)											
		3068.17	12060	45559	5	2	0.12	0.0008	0.40	-131	C	4.1
		- a000.tr	12707	40004			0.14	0.0090	0.49	1.51	. u	

jin a

<u>_____</u>

Fe I: Allowed transitions----Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	gı	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
66.	a ³ F - ³ F°											
		2920.69	12969	47197	5	5	0.061	0.0078	0.37	-1.41	с	4n
67.	a ⁵ P ~ y ⁵ D° (62)											
	4	6430.85	17550	33096	7	9	0.0017	0.0014	0.20	-2.02	D	14n
		6297.80	17927	33802 33802	3 7	5	5.6(-4)	5.5(-4) 6 4(-5)	0.034	-2.78 -3.35	C	5n 5n
		6173.34	17927	34122	3	1	0.0018	3.4(~4)	0.021	2.99	c	5n
68.	a ⁵ P - y ⁵ F° (63)											
		6062.89 5892.80	17550 17727	34040 34692	7 5	9 3	1.7(-5) 7.0(-5)	1.2(-5) 2.2(-5)	0.0017 0.0021		C C	5n 5n
69.	$a^{-5}\mathbf{P} - z^{-3}\mathbf{P}^{\circ}$ (64)											
		6012.21	17927	34556	3	1	1.5(-4)	2.7(-5)	0.0016	-4.09	C	5 <i>n</i>
		6163.56	17727 17927	33947 34363	3	5	6.0(-5) 1.5(-4)	3.4(5) 8.4(5)	0.0034 0.0050	-3.77	C C	5n 5n
		6240.66	17927	33947	3	5	1.5(-4)	1.5(~4)	0.0090	-3.36	С	5n
70.	$a^{5}P - y^{3}F^{0}$ (65)											
		5224.30	17550	36686	7	9	2.7(-5)	1.4(-5)	0.0017	~4.01	C	5n 5n
	-	5145.15	11121	5/100	J		0.9(-3)	3.0(- 3)	0.0032	5.72		511
71.	a ⁵ P - y ⁵ P° (66)											
		5202.34 5145.09	17550	36767 37158	7 5	7	0.0097	0.0039 1.4(\sim .4)	0.47 0.012	-1.56	C C	4a 5n
		5198.71	17927	37158	3	5	0.0039	0.0026	0.14	-2.10	c	4n
72.	a ⁵ P - y ³ D° (67)											
		4771.70	17727	38678	5	5	1.1(-4)	3.6(~5)	0.0029	3.74	с	5 <i>n</i>
		4745.13 4817.77	17927 17927	38996 38678	3 3	35	7.8(-5) 2.0(-4)	2.6(-5) 1.2(-4)	0.0012 0.0055	-4.10 -3.46	C C	5n 5n
73.	$a^{-5}\mathbf{P} = x^{-5}\mathbf{D}^{0}$ (68)											
		4528.61	17550	39626	7	9	0.063	0.025	2.6	-0.76	C+	4 <i>n</i>
		4494.56	17727	39970 30070	5	7	0.035	0.015	1.1	1.12	C	4n,5n
		4439.12	17330	40231	5	5	0.028	0.0084	1.0	-1.25	c	4n 4n
		4447.72	17927	40405	3	3	0.063	0.019	0.82	1.25	C	4 <i>n</i>
		4407.71	17550	40231 40405	7 5	3	0.0097 0.026	0.0020	0.20 0.33	-1.85	c c	4n 4n
		4430.61	17927	40491	3	1	0.11	0.010	0.45	1.51	D	9
74.	« ⁵ Р – у ⁻ Р° (69)											
		4447.13	17727	40207	5	7	0.0015	6.0(4)	0.044	-2.52	c	5n
		4518.58	17927	40052 40052	3 5	5	8.8(~-5) 1.6(~-4)	4.5(5)	0.0020	-3.87	c	5n 5n
		4442.83	17550	40052	7	5	0.0019	4.0(4)	. 0.041	2.55	с	5 <i>n</i>

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$E_{c} ({\rm em}^{-1})$	E_{i} (cm ⁻¹)	ц,	gı	$A_{k_{\ell}}(10^8 \text{ s}^{-1})$	fa	S (at. u.)	log gf	Accuracy	Source
75.	$a^{-5}\mathbf{P} - x^{-5}\mathbf{F}^{\circ}$ (70)			:		ļ						
		4220.94	17550	10504	-	0	77(4)	2.94 1)	0.000	0.71		r
		4338.26	17550	40594	7	7	5.7(-4)	2.8(-4)	0.028	-2.71 -2.97		5n 5n
		4292.29	17727	41018	5	5	0.0014	3.9(-4)	0.028	-2.71	c	5n
76.	$a^{-5}P = z^{-5}S^{\circ}$ (71)	4307.1	17684	40895	15	5	0.26	0.024	5.2	-0.44	C+	4n,5n
		4282.40	17550	40895	7	5	0.13	0.025	2.5	-0.76	C+	4n,5n
		4315.08	17727	40895	5	5	0.090	0.025	1.8	-0.90	C+	4n
		4332.13	17927	40095	3	5	0.045	0.022	0.93	-1.19	L.	4n
77.	$\frac{a^{-5}P - x^{-5}P^{\circ}}{(72)}$	3988.2	17684	42751	15	15	0.081	0.019	3.8	0.54	с	4n,5n
		4001.66	17550	42533	7	7	0.0092	0.0022	0.20	-1.81	с	4n.5n
		3977.74	17727	42860	5	5	0.082	0.020	1.3	1.01	č	4 <i>n</i>
		3974.77	17927	43079	3	3	0.0042	9.8(4)	0.039	- 2.53	С	5 <i>n</i>
		3949.95	17550	42860	7	5	0.070	0.012	1.1	-1.09	C	5 <i>n</i>
		3943.34	17727	43079	5	3	0.0092	0.0013	0.084	-2.19	С	5n
		4030.18	17727	42533	5	7	0.0034	0.0012	0.076	-2.24	C	5 <i>n</i>
		4009.71	17927	42860	3	5	0.062	0.025	0.98	-1.13	С	4 <i>n</i>
78.	a ^{−5} P = a ^{−5} D° (73)											
		0050 55	17550	10.000	-		0.004	0.0007				
		3852.57	17550	43499	(5	7	0.034	0.0097	0.80	-1.17		4n 5
	1	3807.54	17027	43923	2	5	0.027	0.0001	0.51	-1.39		3n A 5
		3778.70	17727	44184	5	5	0.091	0.035	0.14	-1.96	C C	50
		3774.82	17927	44411	3	3	0.061	0.0022	0.48	-1.41	c	4n 5n
		3753.61	17550	44184	7	5	0.11	0.017	1.5	0.92	C+	4n.5n
		3746.49	17727	44411	5	3	0.013	0.0017	0.10	-2.08	c	51
		3768.03	17927	44459	3	1	0.098	0.0070	0.26	-1.68	С	5 <i>n</i>
70	מיזי מי											
79.	<i>a</i> r - r -											
		3781.19	17727	44166	5	7	0.0094	0.0028	0.18	-1.85	с	5 <i>n</i>
		3792.83	17927	44285	3	5	0.0040	0.0015	0.055	-2.36	С	5 <i>n</i>
		3756.07	17550	44166	7	7	0.0065	0.0014	0.12	-2.02	С	5л
		3739.32	17550	44285	7	5	0.0054	8.0(-4)	0.069	-2.25	C	5n
80.	$a^{-5}\mathbf{P} \sim {}^{5}\mathbf{D}^{\circ}$											
		3776.45	17550	44023	7	9	0.017	0.0048	0.42	-1.47	c	4n.5n
		3739.12	17927	44664	3	5	0.0071	0.0025	0.091	-2.13	c	5n
]		3687.10	17550	44664	7	5	0.028	0.0040	0.34	-1.55	C	5 <i>n</i>
81.	$\frac{a^{-3}\mathbf{P} - y^{-3}\mathbf{S}^{\bullet}}{(76)}$											
		3732.40	17727	44512	5	5	0.28	0.059	3.6	0.53	C+	4 <i>n</i>
		3760.53	17927	44512	3	5	0.057	0.020	0.75	1.22	с	4n ,5n
82.	a ⁵ ₽ - x ³ D° (77)											
		36.90.00	17792	45909	c	F	0.0061	0.0019	0.079	_1.22		5
		3592 89	17727	45552	5 5	3 2	0.0001	4.3(-4)	0.072	-2.22 -2.67		5n
		3654.66	17927	45282	3	5	0.0017	5.5(4)	0.020	-2.78	č	5n

et an

perer.

_

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	$E_i ({ m cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g,	g,	$A_{ki}(10^8 \ { m s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
83.	a ⁵ P - w ⁵ P ^o (78)											
		3497.10	17550	46137	7	7	0.15	0.027	2.1	-0.73	C+	4 <i>n</i>
		3509.87	17927	46410	3	3	0.018	0.0033	0.12	2.00	С	5 <i>n</i>
		3485.34	17727	46410	5	3	0.16	0.017	1.0	-1.06	С	4 <i>n</i>
		3518.82	17727	46137	5	7	0.0073	0.0019	0.11	-2.02	С	5 <i>n</i>
		3521.84	17927	46314	3	5	0.11	0.035	1.2	-0.98	C+	4 <i>n</i>
84.	a ⁵ P - z ³ S° (79)											
		3462.35	17727	46601	5	3	0.013	0.0014	0.083	2.14	D	12n
85.	$\begin{array}{c} a \ {}^{5}\mathbf{P} - y \ {}^{3}\mathbf{P}^{\mathbf{o}} \\ (82) \end{array}$											
		3477.85	17927	46673	3	1	0.039	0.0024	0.081	2.15	Ð	12n
		3447.28	17727	46727	5	5	0.11	0.019	1.1	-1.02	С	4 <i>n</i>
		3450.33	17927	46902	3	3	0.24	0.043	1.5	-0.89	C+	4 <i>n</i>
86.	a ³ P - ³ F°											1
		3427.12	17550	46721	7	9	0.56	0.13	10	0.05	C+	4 <i>n</i>
		3383.98	17550	47093	7	7	0.11	0.019	1.5	0.88	C+	4 <i>n</i>
		3372.07	17550	47197	7	5	0.0093	0.0011	0.088	-2.10	D	12 <i>n</i>
87.	a ⁵ P ~ ⁵ D°											
		3407.46	17550	46889	7	9	0.60	0.13	10	-0.03	C+	4 <i>n</i>
		3413.13	17727	47017	5	7	0.37	0.089	5.0	-0.35	C+	4 <i>n</i>
		3392.65	17550	47017	7	7	0.26	0.045	3.5	0.50	C+	4n
		3399.33	17727	47136	5	5	0.39	0.068	3.8	-0.47	C+	4n
		3417.84	17927	47177	3	3	0.52	0.092	3.1	-0.56	C+	4 <i>n</i>
		3394.58	17727	47177	5	3	0.12	0.012	0.67		С С+	4 <i>n</i>
		3416.31	17927	4/1/13	3	¹	1.0	0.070	2.0	0.5%		40
88.	$a^{-5}\mathbf{P} = {}^{3}\mathbf{D}^{\circ}$											
		3424.28	17550	46745	7	7	0.21	0.037	2.9	-0.59	C+	4 <i>n</i>
		3428.19	17727	46889	5	5	0.22	0.038	2.2	~0.72	C+ C+	4n 4n
		3445.15	11121	40740	3	1 1	0.26	0.071	4.0	- 0.40		
89.	$\begin{vmatrix} a {}^{5}P - z {}^{3}H^{\circ} \\ (84) \end{vmatrix}$	1										
		3382.40	17550	47106	7	9	0.0085	0.0019	0.15	-1.88	D	12n
90.	$\begin{array}{c} a {}^{5}\mathbf{P} - v {}^{5}\mathbf{F}^{0} \\ (90) \end{array}$											
		3298.13 3257.59	17927	48239 48239	3	5	0.095	0.026 0.017	0.84 1.3		C D-	4n 11n
01	(1 ⁵ D = 1) ⁵ D0		11000									
91.	(91)											
		3284.59	17727	48163	5	5	0.063	0.010	0.55	-1.29	С	4n
		3292.59	17927	48290	3	3	0.31	0.050	1.6	-0.82	C+	4 <i>n</i>
		3265.62	17550	48163	7	5	0.39	0.044	3.3	0.51	$\begin{bmatrix} c+\\ c+\end{bmatrix}$	4n
		3271.00	17727	48290	5		0.07	0.065	3.5	-0.49		An
		3306.36	17927	48163	3	5	0.46	0.18	5.8	-0.27	D~	11n

TRANSITION PROBABILITIES FOR IRON

Fe 1: Allowed transitions -- Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{i} (cm ⁻¹)	g,	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ck}	S (at. u.)	log gf	Accuracy	Source
92.	$a^{-5}\mathbf{P} - x^{-3}\mathbf{P}^{0}$ (95)											
93.	$a^{-3}P - y^{-5}D^{\circ}$ (109)	3246.96- 3268.23 3290.99	17727 17927 17927	48516 48516 48305	5 3 3	3 3 5	0.11 0.055 0.071	0.010 0.0088 0.019	0.54 0.28 0.62	1.30 1.58 1.24	E D C	11n 12n 4n
		6608.03 7016.08 6481.88	18378 19552 18378	33507 33802 33802	5 3 5	7 5 5	2.4(-5) 2.0(-4) 3.2(-4)	2.2(-5) 2.4(-4) 2.0(-4)	0.0024 0.017 0.022	-3.96 -3.14 -2.99	C C C	5n 5n 5n
94.	$a^{-3}P = z^{-3}P^{\circ}$ (111)											
		6421.35 6750.15 6254.26	18378 19552 18378	33947 34363 34363	5 3 5	5 3 3	0.0036 0.0013 0.0019	0.0022 9.2(4) 6.8(-4)	0.24 0.061 0.070	-1.95 -2.56 2.47	D C C	14n 5n 5n
95.	$u^{-3}P - y^{-3}F^{o}$ (112)											
96.	$\begin{bmatrix} a & {}^{3}P - y & {}^{5}P^{9} \\ (113) \end{bmatrix}$	5322.04	18378	37163	5	7	3.7(-4)	2.2(-4)	0.019	-2.96	С	5n
97.	$a^{3}P - y^{3}D^{\circ}$	5436.59 5253.03	18378 18378	36767 37410	5 5	7 3	1.5(-4) 1.1(-4)	9.6(-5) 2.7(-5)	0.0086 0.0023	-3.32 -3.87	C C	5n 5n
	(114)	5049.82 4924.77 4848.90	18378 18378 18378	38175 38678 38996	5 5 5	7 5 3	0.017 0.0039 4.4(4)	0.0089 0.0014 9.4(5)	0.74 0.11 0.0075	1.35 2.15 3.33	C D C	4n 10n 5n
98.	<i>a</i> ³ P − x ⁵ D° (115)											
		4630.12 4834.51 4574.72 4794.36	18378 19552 18378 19552	39970 40231 40231 40405	5 3 5 3	7 5 5 3	0.0013 2.6(4) 8.0(-4) 1.0(-4)	5.9(-4)1.5(-4)2.5(-4) $3.5(-5)$	0.045 0.0073 0.019 0.0017	2.53 -3.34 -2.90 3.98	C C C C	5n 5n 5n 5n
99.	$a^{-3}P - z^{-5}S^{\circ}$ (116)											
100.	a ⁻³ P - x ⁻⁵ P ^o (117)	4439.88	18378	40895	5	5	9.1(-4)	2.7(4)	0.020	- 2.87	с	511
101.	a ³ P - w ⁵ D° (120)	4249.32	19552	43079	3	3.	0.0010	2.8(-4)	0.012	-3.07	с	5 <i>n</i>
		3913.63 4058.75 4101.68	18378 19552 20038	43923 44184 44411	5 3 1	7 5 3	0.017 0.0083 0.0040	0.0055 0.0034 0.0030	0.35 0.14 0.041	-1.56 -1.99 -2.52	C C C	4n ,5 <i>n</i> 4n 4n
102.	a ³ P - ⁵ D⁰	3981.11	19552	44664	3	5	0.0011	4.4(-4)	0.017	-2.88	c	54

Fe 1: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g,	g,	$A_{ki}(10^{"} \text{ s}^{-1})$	<i>f</i> ,,,	S (at. u.)	log gf	Accuracy	Source
103.	$a^{-3}P - x^{-3}D^{\circ}$ (124)											
		3724.38	18378	45221	5	7	0.13	0.037	2.3	-0.73	C+	4 <i>n</i>
		3885.51	19552	45282	3	5	0.069	0.026	0.99	-1.11	C	4n.5n
		3715.91	18378	45282	5	5	0.037	0.0076	0.47	-1.42	C C	4n ,5n
		3845.17	19552	45552	3	3	0.085	0.019	0.71	-1.25	C	4n,5n
104.	$\frac{a^{-3}\mathbf{P}-w^{-5}\mathbf{P}^{\mathbf{o}}}{(127)}$											
		3578.67	18378	46314	5	5	0.019	0.0036	0.21	-1.74	с	5 <i>n</i>
		3566.31	18378	46410	5	3	0.034	0.0039	0.23	-1.71	C	5 <i>n</i>
105.	a ³ P - y ³ P° (131)											
		3504.86	18378	46902	5	3	0.020	0.0022	0.13	-1.95	C	50
		3686.26	19552	46673	3	1	0.14	0.0094	0.34	-1.55	Č	50
		3678.86	19552	46727	3	5	0.047	0.016	0.58	-1.32	c	4n ,5n
106.	$a^{-3}\mathbf{P} = {}^{-3}\mathbf{F}^{\mathbf{o}}$											
		3616.32	19552	47197	3	5	0.0085	0.0028	0.099	2.08	с	50
									010777	2.00	Ŭ	
107.	a ³ P − ⁵ D°											
		3624 31	10552	47136	3	5	0.012	0.0040	0.14		C	5
		3024.31	19002	41130	5	J	0.012	0.0040	0.14	-1.92		ən
108.	$a^{-3}\mathbf{P} - ^{-3}\mathbf{D}^{\diamond}$											
		2504.04	10370	167.15	-		0.051	0.010	0 77			
		3524.24	18378	40/40	2		0.051	0.013	0.77	1.18	L C	4n,5n
		2670.91	19552	40889	3	2	0.013	0.0045	0.16	-1.87		511
		3506 50	18378	4/2/2	1	5	0.026	0.010	0.19	-1.80		5n 4 5 5 1
		0.000.30	10.516	40009	5	5	0.000	0.010	0.92	-1.10		4 <i>n</i> , 3 <i>n</i>
109.	<i>a</i> ³ P −v ⁵ F° (138)											
		3347.93	18378	48239	5	5	0.047	0.0080	0.44	-1.40	с	4 <i>n</i>
110.	a ³ P - x ³ P ^o (139)											
		3317.12	18378	48516	5	3	0.033	0.0032	018	-179	D	19.
		3510.44	20038	48516	ĩ	3	0.052	0.029	0.33	-1.54	c	5n
111.	$a^{-3}\mathbf{P} - a^{-3}\mathbf{D}^{\circ}$ (146)											
		3053.07	19552	52297	3	5	0.18	0.042	1.3	0.90	C+	4 <i>n</i>
112.	a ³ P − ³ D°											
		2954.65	18378	52213	5	7	0.12	0.021	1.0	-0.97	C+	An
					ÿ	`						
113.	a ³ P - ³ P ^o	}				ļ						
		2804 50	19370	52016	E	-	0.62	0.080	20			4.4
		2094.00	10070	52910	5 5	2	0.03	0.000	. J.O . J.O	-0.40		4n 4-
		2079.44	10010	04000	3	3	0.01	0.040	A.4	-0.04	1 ^L T	4971

farm.

يعتقبهم

F-37

TRANSITION PROBABILITIES FOR IRON

Fe 1: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$E_{\rm c} (\rm cm^{-1})$	E_{t} (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	fa	S (at. u.)	log gf	Ассигасу	Source
114.	z [†] D° – e [†] D (152)											
		4260.47	19351	42816	п		0.37	0.10	15	0.04	D	9
	}	4235.94	19562	43163	9	9	0.23	0.062	7.8	-0.25	D	9
		4222.21	19757	43435	7	7	0.063	0.017	1.6	-0.93	C+	4 <i>n</i>
		4210.34	20020	43764	3	3	0.20	0.053	2.2	-0.80	C+	4 a
		4198.30	19351	43163	11	9	0.13	0.027	4.2	-0.52	D-	13n
		4187.79	19562	43435	9	7	0.16	0.034	4.2	-0.52	C+	4 <i>n</i>
		4187.04	19757	43634	7	5	0.23	0.043	4.2	0.52		4 <i>n</i>
		4271.13	19131	43103	5	7	0.19	0.007	6.0	-0.37	C+	13n 4n
		4233.60	20020	43634	3	5	0.20	0.092	3.8	-0.56	C+	4n
115.	$z^{-7}D^{\circ} = e^{-5}D$ (153)											
		3980.65	19562	44677	9	9	2.6(-4)	6.2(-5)	0.0074	-3.25	с	5n
		4011.71	19757	44677	7	9	0.0011	3.4(4)	0.032	-2.62	c	5 <i>n</i>
		3975.21	19912	45061	5	7	0.0012	4.1(-4)	0.027	-2.69	С	5 <i>n</i>
116.	z ⁷ D° – e ⁷ F (155)											
		3225.79	19351	50342	ш	13	1.0	0.19	22	0.32	C+	4 <i>n</i>
		3196.93	19562	50833	9	11	0.96	0.18	17	0.21	D	11n
		3175.45	19351	50833	11	11	0.13	0.020	2.3	-0.66	C+	4n
		3160.66	19562	51192	9	9	0.19	0.029	2.7	-0.59	C+	4 <i>n</i>
		3205.40	20020	51208	3	3	1.2	0.18	5.8	-0.26	C+	4 <i>n</i>
117.	$z^{-7}D^{\circ} = f^{-7}D$ (156)											
		3222.07	19351	50378	11	11	0.35	0.055	6.4	-0.22	D~-	11n
		3199.53	19562	50808	9	9	0.27	0.041	3.9	-0.43	C+	4 <i>n</i>
		3215.94	19912	50999	5	5	0.81	0.13	6.7	-0.20	C+	4n
		3219.58	19757	50808	7	9	0.67	0.13	9.9	-0.03	D-	lln
118.	$ \begin{array}{c} z^{-7} \mathbf{D}^{\mathbf{o}} = \int f^{-5} \mathbf{D} \\ (157) \end{array} $											
		3217.38	19351	50423	11	9	0.23	0.029	3.3	-0.50	C·+	4 <i>n</i>
		3227.80	19562	50534	9	7	1.7	0.21	20	0.28	D	11 <i>n</i>
		3230.96	19757	50699	7	5	0.39	0.044	3.3	-0.51	C+	4 <i>n</i>
		3228.25	19912	50880 50534	5		0.48	0.045 0.035	2.4 2.6	-0.65 -0.61	D- C+	11n 4n
119.	z ⁷ D° − e ⁷ P (158)											
		0000.07	105(0	50455			0.00	0.020	2.1	0.54		
		3233.97	19562	50475	9 5	5	0.20	0.032	3.1	-0.54	D:-	4n
		32.00.21	19912	30001	5	5	0.21	0.052	1.4	-0.19	0	11//
120.	z ⁵ D° - e ⁵ C (159)											
		3207.07	19351	50523	11	13	0.012	0.0021	0.25	-1.63	D	12n
121.	$z^{-7}D^{\circ} = e^{-7}G$ (160)											
		3161.95	19351	50968	11	13	0.12	0.021	2.4	-0.63	C+	4n
	ļ	3168.85	19912	51461	5	7	0.053	0.011	0.59	-1.25	D	12n

F--39

Fe I: Allowed transitions -- Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g,	<i>g</i> ,	$A_{ki}(10^{8} \text{ s}^{-1})$	f _{it}	S (at. u.)	log gf	Accuracy	Source
122.	a ⁻³ H - y ⁻⁵ F ^o (167)											
		6988 .53	19390	33695	13	11	3.2(5)	2.0(-5)	0.0059	-3.59	С	5n
123.	$\frac{a^{-3}H - z^{-5}G^{\circ}}{(168)}$											
N	-	6593.88 6462.73	19621	34782 35257	11 9	11	4.8(4) 5.2(4)	3.2(-4) 3.3(-4)	0.075 0.063	-2.46 -2.53	C C	5n 5n
		6494.98 6393.60	19390 19621	34782 35257	13 11	11 9	0.0067 0.0046	0.0036 0.0023	1.0 0.53	1.33 1.60	D D	14n 14n
124.	a ³ H - z ³ G° (169)											
		6252.55	19390	35379 35768	13	11	0.0031	0.0015	0.41	-1.70	D- D	14n
		6344.15 6256.37	19621 19621 19788	35379 35768	11 9	11 9	1.8(-4) 5.3(-4)	$\begin{array}{c} 0.0024\\ 1.1(-4)\\ 3.1(-4) \end{array}$	0.025 0.058	-2.92 -2.55	C C	5n 5n
125.	а ⁻³ Н — у ⁻³ F ^o (170)				-							
		5916.25	19788	36686	9	9	2.5(-4)	1.3(4)	0.023	-2.93	с	5n
126.	a ⁻³ H - y ⁻³ G° (175)											
		3859.21 3873.76	19390 19621	45295 45428	13 11	11 9	0.087	0.016	2.7 2.1	0.67 0.78	C+ C+	4n 4n
		3899.03	19788	45428	9	9	0.0097	0.0022	0.26	-1.70	С	4n ,5n
127.	a ³ H - z ³ I° (177)											
		3760.05 3785.95	19390 19621	45978? 46027	13 11	15 13	0.057 0.049	0.014 0.013	2.3 1.7	0.74 0.86	C+ C	4n ,5n 5n
		3794.34 3753.15	19788 19390	46136 46027	9 13	11 13	0.046 0.0012	0.012 2.5(4)	1.4 0.041	0.96 2.48	C+ C	4n ,5n 5n
128.	<i>a</i> ³ H - ³ F ^o											
		3689.02 3661.36	19621 19788	46721 47093	11 9	9 7	0.0047 0.0030	7.9(-4) 4.6(4)	0.11 0.050	-2.06 2.38	C C	5n 5n
129.	a "H - "D°											
		3688.88	19788	46889	9	9	0.0046	9.5(-4)	0.10	-2.07	с	5n
130.	$a^{-3}H - z^{-3}H^{\circ}$ (180)											
		3623.19 3659.52	19390 19788	46982 47106	13 9	13 9	0.076 0.068	0.015 0.014	2.3 1.5	-0.71	C+ C+	4n 4n
		3637.25 3653.76	19621 19621	47106 46982	11 11	9 13	0.0083 0.0053	0.0013 0.0013	0.18 0.17	-1.83 -1.86	C C	5n 5n
		3672.69	19788	47008	9	11	0.0037	9.0(-4)	0.098	-2.09	С	5 <i>n</i>
131.	a ³ H - w ⁵ G° (181)											
		3596.20 3595.86	19621 19788	47420 47590	11 9	11 9	0.0055 0.0023	0.0011 4.5(…4)	0.14 0.048	-1.93 -2.39	с с	5n 5n

anen.

1000

g anne

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g,	g,	$A_{k}(10^8 \text{ s}^{-1})$	fik.	S (at. u.)	log gf	Accuracy	Source
132.	$a^{-3}H = v^{-5}F^{\circ}$ (182)											
		3531.44	19621	47930	11	9	0.0028	4.4(-4)	0.056	2.32	с	5 <i>n</i>
133.	$a^{-3}H - {}^{5}H^{\circ}$											
		3514.63 3543 39	19390	47835 47835	13	11	0.0044	6.9(4) 6.2(4)	0.10	-2.05	c	5n 5n
		3567.37	19788	47812	9	9	0.0041	7.9(-4)	0.083	-2.15	c	5n
134.	a ⁻¹ H - z ⁻¹ H° (186)											
		3496.19	19788	48383	0	11	2.9(-4)	6.5(-5)	0.0068	-3.23	С	8
135.	$a^{-3}H = v^{-3}G^{\circ}$ (191)											
		3325.46	19788	49851	9	7	0.020	0.0025	0.25	-1.64	D	12n
136.	$a^{-3}H - u^{-3}C^{\circ}$ (194)											
		3119.49 3120.43	19621 19788	51668 51826	11 9	9 7	0.096 0.10	0.011 0.012	1.3 1.1	-0.90 -0.97	C+ C+	4n 4n
137.	a ³ H - w ³ H° (198)											
		3009.09 3015.92	19390 19621	52613 52769	13 11	11 9	0.079 0.069	0.0090 0.0077	1.2 0.85	-0.93 -1.07	C+ C	4n 4n
138.	$a^{-3}H = y^{-3}I^{\circ}$ (199)											
		3005.31 3039.32	19390 19621	52655? 52514	13 11	15 13	0.024 0.016	0.0038 0.0026	0.48 0.29	-1.31 -1.54	C C	8 8
		3018.14	19390	52514	13	13	0.012	0.0016	0.21	-1.67	С	8
139.	a ³ H - z ¹ l° (200)											
:		2986.65	19621	53094	11	13	0.0085	0.0013	0.15	-1.83	С	8
140.	a ³ H - x ³ J° (uv 156)											
		2656.15 2669.49	19390 19621	57028? 57070	13 11	15 13	0.28 0.17	0.034 0.021	3.9 2.1	-0.35 -0.63	с с	8 8
141.	b ³ F - z ⁵ G° (205)											
		6839.83	20641	35257	9	9	6.6(5)	4.6(-5)	0.0094	-3.38	С	5n
142.	b "F - z "C° (206)											
		6609.12 6575.02	20641 20874	35768 36079	9 7	9 7	3.1(-4) 3.9(-4)	2.0(4) 2.5(4)	0.040 0.038	-2.74 -2.75	C C	5n 5n
		6475.63	20641	36079	9	7	3.1(-4)	1.5(4)	0.029	-2.87	с	5 <i>n</i>

1000

in.

Fe I: Allowed transitions-Continued

-

·····

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{bi}(10^8 {\rm s}^{-1})$	fia.	S (at. u.)	log gf	Accuracy	Source
143.	b ³ F - y ³ F ^o (207)					-						
		[°] 6230.73	20641	36686	9	9	0.0087	0.0051	0.94	-134	D	14.0
		6137.69	20874	37163	7	7	0.0078	0.0044	0.62	-1.51	D~	14n
		6065.48	21039	37521	5	5	0.010	0.0058	0.58	-1.54	D-	14 <i>n</i>
		6200.32	21039	37163	5	7	9.4(4)	7.6(-4)	0.078	-2.42	С	5n
144.	b ³ F - y ¹ D° (209)											
		5567 40	21030	38006	5		0.0012	3 7/ _ 41	0.024		C	E
		5778.47	20874	38175	7	7	8.6(~5)	A 3(~5)	0.034	-3.52	C C	38 5a
		5667.67	21039	38678	5	5	4.6(-4)	2.2(-4)	0.020	-2.96	č	5n
		5833.93	21039	38175	5	7	7.2(-5)	5.1(-5)	0.0049	-3.59	c	5 <i>n</i>
145.	b ³ F - x ⁵ D° (214)											
		4288.96	20874	44184	7	5	0.0025	5.0(-4)	0.049	-2.46	C	5n
		4277.41	21039	44411	5	3	0.0014	2.2(4)	0.016	-2.95	C	5 <i>n</i>
146.	6 ³ F - ³ D°											
		4275.72	20641	44023	9	9	6.9(~4)	1.9(4)	0.024	-2.77	C	5n
147.	b ⁻³ F - x ⁻³ D ^o (217)											
		4067 27	20641	45993	0	4	0.025	0.0040	0.59	1.94	c	
		4095.97	20041	45221	7	5	0.025	0.0049	0.56	-1.30	C C	411
		4078.35	21039	45552	5	3	0.050	0.0074	0.50	-1.43	c	4n,5n 4n 5n
		4106.27	20874	45221	7	7	0.0033	8.4(-4)	0.080	-2.23	Č	5n
148.	6 ³ F - y ³ G° (218)											
		1055 00	00(4)		•		0.00/0					_
		4055.03	20041	45295	9 7	7	0.0069	0.0021	0.25	-1.73	C	5n
		4049.34	20674	45563	9	7	0.0029	1.2(~~4) 5.2(~~4)	0.067	-2.30	L C	4n,5n 5n
149.	// ³ F− x ⁵ C° (219)				-		0.0020	5.4(5)	0.002	2.00	U	
					-	<u> </u>					_	
		4019.05	21039	45913	5	7	0.0012	3.9(-4)	0.026	-2.71	С	5n
150.	6 ³ F - ³ F°											
		3833.31	20641	46721	9	9	0.059	0.013	1.5	-0.93	C+	4n ,5n
		3821.83	21039	47197	5	5	0.089	0.020	1.2	-1.01	C+	4n,5n
		3491.95	20874	4/19/	7	5	0.021	0,0032	0.28	-1.65	C	5n
		3837.13	21039	40121	5	7	0.0072	0.0021	0.18	-1.84	C	4n,ən An 5n
					•			0.0071	0.00	1.00	Ŭ	11,00
151.	6 ³ F - ⁵ D°											
		3808.73	20641	46889	9	9	0.048	0.010	1.2	1.03	C+	4n,5n
		3848.29	21039	47017	5	7	0,0050	0.0016	0.098	-2.11	С	4n
152.	h ³F - ³D°											
		3829.77	20641	46745	9	7	0.0078	0.0013	0.15	-1.92	C	5 <i>n</i>
153.	b ³ F - z ³ H° (223)											
ł		2701 50	807.43	17000		, I	0.0000	0.0010	0.10			_
		3/91.50	20641	47008	9	11	0.0039	0.0010	0.12	~2.03	C	5 <i>a</i>
•	1	0111140	40041	-1100			0.019 1	0.0099	0.37	-1.33 I	<u>เ</u>	4 A , 3N

F-41

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions--Continued

No.	Multiplet	λ(Å)	<i>E</i> , (cm ⁻¹)	$E_{\rm k}({\rm cm}^{-1})$	g,	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
154.	b ⁻³ F - w ⁻⁵ G°											
	(225)											
		3731.37	21039	47831	5	5	0.049	0.010	0.63	_1 20	C	4 n 5
					0		0.017	0.010	0.00	1.29		40,01
155.	^b ' F − 'D°									1		
		3766.09	20874	47420	7	5	0.0080	0.0012	0.11	-2.07	c	50
157	1.10 100										Ĭ	
156.	b 'F - z 'G° (227)											
	(221)											
		3728.67	20641	47453	9	9	0.013	0.0028	0.31	-1.60	с	5 <i>n</i>
		3761.41	20874	47453	7	9	0.0077	0.0021	0.18	-1.83	C	5 <i>n</i>
157.	$b^{-3}\mathbf{F} = v^{-5}\mathbf{F}^{\circ}$											
	(229)	}										
		3668.89	20874	48123	7	7	0.0028	5.7(4)	0.048	- 2 40	C	5.0
					•			5.1(3)	0.070	2.40		34
158.	/ / F - "H°											
		3676.31	20641	47835	9	n	0.061	0.015	1.6	-0.87	C+	4n.5n
		3711.22	20874	47812	7	9	0.039	0.010	0.89	-1.14	C	5n
		3730.95	21039	47834	5	7	0.045	0.013	0.81	-1.18	C	4n ,5n
159.	<i>b</i> ³ F − в ⁵ Р°											
	(231)											
		3658 55	20641	47967	0	7	0.0026	4 (-4)	0.045	- 9.42	C	F.,
			POUTI	11701	7	"	0.0020	4.I(=4)	0.045	2.45	ι.	ən
160.	$b^{-3}\mathbf{F} = ie^{-3}\mathbf{G}^{\circ}$											
	(233)											
		3636.99	20874	48362	7	9	0.017	0.0044	0.37	-1.51	С	5 <i>n</i>
161	$b^{3}\mathbf{F} = r^{3}\mathbf{P}^{0}$											
101.	(235)											
		3644.58	20874	48305	7	5	0.0042	6.0(-4)	0.050	2.38	С	5 <i>n</i>
162.	$b^{-3}\mathbf{F} = z^{-1}\mathbf{H}^{\circ}$											
		2602 47	20641	40200			0.0020					
		3003.67	20641	48383	9	11	0.0023	5.4(…4)	0.058	-2.31	С	8
163.	$b^{-3}\mathbf{F} = \mathbf{y}^{-1}\mathbf{G}^{\circ}$											
	(237)											
		3592.47	20874	48703	7	9	0.0023	5.7(-4)	0.047	-2.40	с	5 <i>n</i>
164	4 ³ F ³ F ⁰			[
109.	(238)					ŀ						
		0.5.5.5				[Í				
		3511.74 3520.85	20641	49109	9	9	0.0026	4.9(4)	0.050	-2.36	C	5n
		3495.29	21039	49433	0 0	7	0.015	0.0028	0.16 2.0	-1.85 -0.77	C C±	5n 4n
		3500.57	20874	49433	7	5	0.034	0.0044	0.36	-1.51	C I	4n 5n
165	$h^{3}\mathbf{F} = n^{3}\mathbf{D}^{0}$		ļ									
100	(239)					ĺ						
	- *		2005								-	
		3524.08	20874	49243	7	5	0.091	0.012	0.99	-1.07	C C	4n ,5n
		3544.63	21039	49243	5	з 5	0.13	0.014	0.82	-1.15 1.79	C C	ən 5n
166	1. ³ E . ³ D0				ĺ							
100.	0 r - u D* (258)											
I		3176.36	21039	52512	5	3	0.086	0.0078	0.41	1.41	D	12n

FUHR ET AL.

Fe 1: Allowed transitions----Continued

No.	Multiplet	λ(Å)	$E_i (\mathrm{cm}^{-1})$	$E_k (\mathrm{cm}^{-1})$	<i>B</i> i	g.	$A_{ki}(10^{"} \text{ s}^{-1})$	fu	S (at. v.)	log gf	Ассигасу	Source
167.	6 ³ F - ³ D°											
		3166,44	20641	52213	9	7	0.14	0.016	1.5	-0.84	C+	4 n
168.	$\begin{array}{c} a \ ^{3}\mathbf{C} - y \ ^{3}\mathbf{F}^{0} \\ (268) \end{array}$											
		6677.99	21716	36686	11	9	0.0060	0.0033	0.80	-1.44	D	14 <i>n</i>
		6592.91	21999	37163	9	7	0.0059	0.0030	0.58	1.57	D-	14n
		6546.24	22249	37521	7	5	0.0075	0.0034	0.52	-1.62	D-	14n
		6703.57	22249	37163	7	7	1.7(-4)	1.2(-4)	0.018	-2.10	c	5n 5n
169.	$\frac{a^{-3}G - y^{-3}D^{\circ}}{(269)}$											
		6180.22	21999	38175	9	7	4.9(4)	2.2(-4)	0.040	-2.71	с	5 <i>n</i>
		6085.27	22249	38678	7	5	2.6(-4)	1.0(4)	0.015	3.14	С	5 <i>n</i>
170.	a ³ G - y ³ G ^o (273)											
	1	4266.96	21999	45428	9	9	0.010	0.0027	0.34	-1.61	с	5 <i>n</i>
		4288.15	22249	45563	7	7	0.0072	0.0020	0.19	-1.86	С	4n,5n
171.	a ³ G - x ⁵ C° (274)											
		4145.21	21716	45833	11	9	8.0(-4)	1.7(4)	0.025	2.73	С	5 <i>n</i>
172.	a ³ G - ³ F°											
		3998.05	21716	46721	n	9	0.075	0.015	21	0.79	C+	4n 5n
		3983.96	21999	47093	9	7	0.089	0.016	1.9	~0.83	C+	4n,5n
		4007.27	22249	47197	7	5	0.049	0.0084	0.78	-1.23	С	4 <i>n</i>
		4024.11	22249	47093	7	7	0.0035	8.4(4)	0.078	~2.23	C	5n
173.	a ³ G - ⁵ D°											
		3971.32	21716	46889	11	9	0.068	0.013	1.9	0.84	С	4n,5n
		3995.98	21999	47017	9	7	0.024	0.0045	0.54	-1.39	С	4n ,5n
		4036.37 4057.34	22249 22249	47017 46889	7 7	7 9	9.9(4) 0.0053	2.4(-4) 0.0017	0.023 0.16	-2.77	C C	5n 4n,5n
74	30 300										_	
1 (4.	a "G – z "H ⁵ (278)											
		3997.39	21999	47008	9	11	0.16	0.046	5.5	-0.38	C+	4n
		3952.60	21716	47008	ní l	11	0.052	0.032	3.0 1.8	-0.85	C+ C	4n 4n,5n
		3981.77	21999	47106	9	9	0.046	0.011	1.3	-1.01	C+	4n,5n
		3937.33	21716	47106	11	9	0.020	0.0038	0.54	-1.38	С	4n,5n
75.	a ³ G - w ⁵ G° (280)											
		3945.12	22249	47590	7	9	0.018	0.0054	0.49	-1.42	С	5 <i>n</i>
		3863.74 3890 R4	21716	47590 47693	11	9 7	0.025	0.0047	0.65	-1.29	C C	4n,5n An 5n
		3907.93	22249	47831	7	5	0.080	0.0001	1.2	-1.04	c	4 <i>n</i> ,5n
76.	$a^{-3}G = z^{-1}G^{0}$											
	(282)											
		3884,36	21716	47453	- 11	9	0.042	0.0077	1.1	-1.07	с	4n.5n

1000

fare.

en and

Fe 1: Allowed transitions--Continued

		· · · · · · · · · · · · · · · · · · ·		·····				4 55666766666666				
No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{4} (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
177.	a ⁻³ G - v ⁻⁵ F° (283)											
		3813.63 3826.84	21716 21999	47930 48123	11 9	9 7	0.017 0.018	0.0030 0.0030	0.42 0.34	-1.48 -1.57	C C	4n,5n 5n
178.	я ³ G – ⁵ Н°							1				
		3872.92	21999	47812	9	9	0.010	0.0023	0.27	-1.68	с	5 <i>n</i>
		3907.47 3910.84	22249 22249	47834 47812	7	9	0.0094 0.015	0.0022 0.0043	0.19 0.39	-1.82	C C	5n 5n
179.	$a^{-3}G = ae^{-3}G^{\circ}$ (287)		1									1
		3770.30	21716	48231	11		0.020	0.0044	0.59	-1.32	C	Sn
		3792.15	21999	48362	9	9	0.023	0.0050	0.56	-1.35	č	4n,5n
		3811.89	22249 21716	48476 48362	7	9	0.040 0.0050	0.0086	0.76	-1.22	C C	4n ,5n 5n
		3775.86	21999	48476	9	7	0.0026	4.3(-4)	0.048	-2.41	С	5 <i>n</i>
180.	$a^{-3}C - z^{-1}H^{\circ}$ (289)											
		3789.18	21999	48383	9	п	0.025	0.0067	0.75	-1.22	с	4n,5n,8
181.	$a^{-3}G = y^{-1}G^{\circ}$ (290)											
		3704.46	21716	48703	11	9	0.14	0.023	3.1	-0.60	C+	4n
182.	a ³ C − w ³ F° (291)											
		3649.51	21716	49109	11	9	0.43	0.071	9.3	~0.11	C+	4 <i>n</i>
		3669.52 3677.63	21999	49243 49433	9 7	7 5	0.30 0.82	0.047 0.12	5.2 10	-0.37	C+ C+	4n 4л
183.	a ⁻³ G - p ⁻³ D ^o (292)											
		3684.11	21999	49135	9	7	0.34	0.054	5.9	-0.31	C+	4 <i>n</i>
		3718.41	22249	49135	7	7	0.063	0.013	1.1	-1.04	C	4n,5n
184.	a ³ G - y ³ H° (294)											
		3606.68	21716	49434	11	13	0.84	0.19	25	0.33	C+	4 <i>n</i>
		3638.30	21999	49004 49727	7	9	0.52	0.12 0.068	13 5.7	-0.32	C+ C+	4n 4n
		3605.45 3568.98	21999 21716	49727 49727	9 11	9	0.65 0.035	0.13 0.0055	14 0.71	0.06	C+ C	4n 5n
185.	a ³ C ~ v ³ C° (295)				-							
		3603.20	21716	49461	11	11	0.27	0.052	6.8	-0.24	C+	4 n
		3622.00	22249	49851	7	7	0.53	0.10	8.6	-0.14	C+	4n
		3651.47	21999	49628	9 7	9	0.64	0.095	10	0.06	C+	4n 4n
186.	$a^{-3}C - x^{-1}G^{\circ}$ (297)									1		
		3493.69	21999	50614	9	9	0.0054	9.9(4)	0.10	-2.05	с	5 <i>n</i>

form.

1000

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_{i} (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g_i	g,	$A_{ki}(10^* \text{ s}^{-1})$	fik	S(at. u.)	log gf	Accuracy	Source
187.	a ³ G - 1 ^{, 3} F° (301)											
		3411.35	21999	51305	9	9	0.065	0.011	1.1	-0.99	C+	4 <i>n</i>
188.	a ³ G - u ³ G° (304)											
		3370.78	21716	51374	11	11	0.34	0.057	7.0	-0.20	C+	4 <i>n</i>
		3369.55	21999	51668	9	9	0.25	0.042	4.2	0.42	C+	4n
		3380.11	22249	51826	7	7	0.24	0.041	3.2	~0.54	C+	4 <i>n</i>
		3337.66	21716	51668	11	9	0.067	0.0091	1.1	-1.00	C+	4 <i>n</i>
189.	a ³ G - t ³ G° (313)											
		3098.19	21716	53983	11	11	0.11	0.016	1.8	-0.76	C+	4 <i>n</i>
190.	a ³ C - v ³ H° (316)											
		2990.39	21999	55430	0	11	0.40	0.065	5.8	0.23	C+	An
		3011.48	22249	55446	7	9	0.48	0.084	5.8	~0.23	C+	4n
191.	a ³ G - w ¹ F° (317)											
		2980.53	22249	55791	7	7	0.22	0.030	2.1	~0.68	C+	4 <i>n</i>
192.	a ³ G - u ³ H° (uv 167)											
		2925.36	22249	56423	7	9	0.19	0.031	2.1	-0.67	C+	4 n
193.	z [†] F° – e [†] D (318)											
		4920.50	22846	43163	11	Q	0.36	0.11	19	0.07	C+	4.0
		4891.49	22997	43435	9	7	0.30	0.082	12	-0.13	C+	4n
		4871.32	23111	43634	7	5	0.22	0.057	6.4	~0.40	C+	4 <i>n</i>
		4859.74	23192	43764	5	3	0.15	0.031	2.5	0.81	СÌ	4n,5n
		4918.99	23111	43435	7	7	0.17	0.062	7.1	-0.36	C+	4 <i>n</i>
		4890.75	23192	43634	5	5	0.21	0.076	6.1	-0.42	C+	4 <i>n</i>
		4903.31	23245	43634	3	5	0.24	0.080	4.1	-0.59		4n An 5n
		4878.21	23270	43764	1	3	0.11	-0.11	1.8	0.94	C+	4 <i>n</i> ,5 <i>n</i> 4 <i>n</i>
194.	z [™] F° [™] − e ^S D (319)											
		4554.47	23111	45061	7	-	4 8(~~4)	15(4)	0.016	-2.08	с	5n
		4515.16	23192	45334	5	5	4.5(4)	1.5(-4)	0.010	-3.16	c	5n
		4635.62	23111	44677	7	9	1.0(-4)	4.3(-5)	0.0046	-3.52	C	5 <i>n</i>
		4571.44	23192	45061	5	7	2.9(4)	1.3(4)	0.0095	3.20	С	5n
		4525.88	23245	45334	3	5	4.8(4)	2.5(-4)	0.011	-3.13	С	5 <i>n</i>
195.	z ⁷ F° - c ⁷ F (321)											
		3610.16	22650	50342	13	13	0.50	0.097	15	0.10	C+	4n
		3572.00	22846	50833	11	п	0.25	0.048	6.2	0.28	C+	4 <i>n</i>
		3552.83	23192	51331	5	5	0.17	0.032	1.9	~0.80	C	4n ,5n
		3551.11	22997	51149	9	7	0.0035	5.2(~4)	0.055	-2.33	C	5n
		3508.42	22007	51208	5 0	3	0.002	0.0071	0.42	-1.45		5n 5r
		3560.07	23111	51192	7	, 1 J	0.0044	9.7(4)	0.079	-2.17	C C	5n
		3578.38	23270	51208	1	3	0.074	0.043	0.50	-1.37	c	5 <i>n</i>

Fe I: Allowed transitions --- Continued

No.	Multiplet	$\lambda(\mathbf{\mathring{A}})$	E_{i} (cm ⁻¹)	$E_{k} (\mathrm{cm}^{-1})$	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	fu	S (at. u.)	log gf	Accuracy	Source
196.	z [−] F° - ƒ [−] D (322)											
		3594.63 3595.30 3602.08	22997 23192 23245	50808 50999 50999	9 5 3	9	0.28 0.064 0.035	0.054	5.8 0.73 0.40	-0.31 -1.21	C+ C	4 <i>n</i> 5 <i>n</i>
197.	$\frac{z^{-7}\mathbf{F^{\circ}} - f^{-5}\mathbf{D}}{(323)}$		20210		0		0.033	0.011	0.40	1.4.	L.	.31
		3630.35 3610.70 3641.45	22997 23192 23245	50534 50880 50699	9 5 3	7 3 5	0.089 0.084 0.0061	0.014 0.0098 0.0020	1.5 0.58 0.072	-0.91 -1.31 -2.22	C C C	5n 5n 5n
198.	$\frac{z^{-7}F^{\circ} - e^{-7}P}{(324)}$									2.22		.,,,
		3620.24 3613.15	22997 23192	50611 50861	9 5	7 5	0.014 0.023	0.0022	0.23 0.27	-1.71 1.65	C C	5n 5n
199.	= ⁷ F° = e ⁵ G (325)											
		3572.59 3612.07 3567.03	22997 22846 23192	50980 50523 51219	9 11 5	9 13 7	0.022 0.077 0.077	0.0041 0.018 0.020	0.44 2.3 1.2	-1.43 -0.71 -0.99	C C+ C	5n 4n 5n
200.	$z^{\top}\mathbf{F}^{\circ} = \epsilon - \mathbf{G}$ (326)											
		3541.08 3542.08 3536.56 3530.39 3522.27 3527.79	22997 23111 23192 22650 22846 22997	51229 51335 51461 50968 51229 51335	9 7 5 13 11 9	11 9 7 13 11 9	0.64 0.76 0.80 0.038 0.038 0.20	0.15 0.18 0.21 0.0070 0.0071 0.038	15 15 12 1.1 0.90 3.9	$ \begin{array}{c c} 0.12 \\ 0.11 \\ 0.02 \\ -1.04 \\ -1.11 \\ -0.47 \\ 0.21 \\ \end{array} $	C+ C+ C+ C C C	4n 4n 5n 5n 4n,5n
		3529.82 3509.12 3512.22 3516.56 3523.31	23243 22846 22997 23111 23192	51307 51335 51461 51540 51567	3 11 9 7 5	3 9 7 5 3	0.78 0.0054 0.024 0.044 0.090	0.13 8.1(-4) 0.0035 0.0058 0.010	5.1 0.10 0.37 0.47 0.58	-0.36 -2.05 -1.50 -1.39 -1.30	C+ C C C C	4n 5n 5n 5n 5n
201.	z ⁷ F° − ƒ ⁶ F (327)											
		3537.90 3556.88 3518.68	22846 22997 23192	51103 51103 51604	11 9 5	11 11 7	0.086 0.45 0.018	0.016 0.10 0.0048	2.1 11 0.28	-0.75 -0.03 -1.62	C C+ C	5n 4n 5n
202.	z [°] F° g [°] D (329)											
203.	τ ⁵ Έ° − e ⁻³ S	3540.12	23111	51350	7	9	0.12	0.029	2.4	-0.69	C+	4 <i>n</i>
	(330)	3522.00	23102	51520	5	7	0.025	0.0065	0.30		C	F
204.	$b^{-1}\mathbf{P} + y^{-1}\mathbf{D}^{\circ}$ (3.42)		20172	51510	5		0.023	0,0000	9.50	-1.49	U.	ən
		6518.38 6355.04 6270.24 6311.51 6229.23	22838 22947 23052 22838 22947	38175 38678 38996 38678 38996	5 3 1 5 3	7 5 3 5 3	$\begin{array}{c} 4.7(-4) \\ 0.0015 \\ 0.0013 \\ 2.3(-4) \\ 7.2(-4) \end{array}$	$\begin{array}{c} 4.2(-4) \\ 0.0015 \\ 0.0023 \\ 1.4(-4) \\ 4.2(-4) \end{array}$	$\begin{array}{c} 0.045 \\ 0.093 \\ 0.047 \\ 0.014 \\ 0.026 \end{array}$	-2.68 -2.35 -2.64 -3.16 -2.90	C C C C C	5n 5n 5n 5n 5n

FUHR ET AL.

1000

pares.

Fe 1: Allowed transitions-Continued

No. Mahylet X/A \mathcal{E} (ar.) ¹ μ_{c} \mathcal{L} \mathcal{S} (at. a) $he g, df$ Accrease Same 205. $h^{-1} - s^{-1}_{c}$ $h^{-1} $													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Multiplet	λ(Å)	E_{r} (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	205.	b "P - z "S"											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(345)											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5536.59	22838	40895	5	5	79(-5)	36(-5)	0.0033	-374	C	5.0
266. $h^{P} - w^{-} h^{O}$			0000.07	LLGOO	10000	ľ			0.0(0)	0.0000	0.14		01
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	206.	$b^{3}\mathbf{P} - w^{5}\mathbf{D}^{\circ}$											
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		(346)					ł						
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$			4741.53	22838	43923	5	7	0.0049	0.0023	0.18	1.94	D	10n
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4683.57	22838	44184	5	5	0.0021	6.9(-4)	0.053	-2.46	C	5n
207. $b^{-} p \cdot s^{-} p$ 1000000000000000000000000000000000000			4657.59	22947	44411	3	3	0.0015	4.9(~4)	0.023	-2.83	C	5n
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	207.	δ ³ P - ⁵ F ^o			-								
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		i i											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4687.39	22838	44166	5	7	7.9(~4) 3.3(~4)	3.6(-4)	0.028	-2.74	C	5n 5n
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4005.05	26741	44200		5	9.01 47	1.0(4)	0.0005	3.21		311
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	208.	b ³ Р − ⁵ D°											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4603.24	22047	11661	, .	-	5 4(4)	28(-1)	0.012	- 2 07	C	F_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	4003.34	22941	44004			3.4(-4)	2.0(-4)	0.015	-3.07	Ľ	3n
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	209.	$b^{-1}\mathbf{P} - y^{-5}\mathbf{S}^{\circ}$					1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(349)					Į						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4635.85	22947	44512	3	5	0.0028	0.0015	0.068	-2.35	с	5n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	210.	$b^{3}P - x^{3}D^{\circ}$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(350)											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4466.55	22838	45221	5	7	0.13	0.053	3.9	~0.58	C+	4 <i>n</i>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4443.19	23052	45552	1	3	0.13	0.11	1.6	-0.95	C+	4 <i>n</i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4454.38	22838	45282	3	5	0.044	0.013	0.97	-1.18		4n 4 n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4401.44	22838	45552	5	3	0.030	0.0053	0.38	-1.58	c	5 <i>n</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	211.	$b^{n}P - w^{n}P^{0}$ (351)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(5.51)											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4290.87	22838	46137	5	7	0.0052	0.0020	0.14	~2.00	C	5n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4279.86	23052	46410	1 5	3	0.0067	0.0055	0.077	-2.26	C	5n 5-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4238.02	22838	46410	5	3	0.0045	7.3(~4)	0.051	2.44	c	5n 5n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	212.	$b^{*}P - z^{*}S^{\circ}$	4217.7	22898	46601	9	3	0.20	0.018	2.2	-0.80	C	4n,5n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(002)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4207.13	22838	46601	5	3	0.051	0.0081	0.56	-1.39	С	4n ,5n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4226.42	22947	46601	3	3	0.044	0.012	0.49	1.45	C	4n ,5n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4245.20	23032	40001	1	3	0.090	0.078	1.1	-1.11	L C	4n ,5n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	213.	$b^{-3}\mathbf{P} = y^{-3}\mathbf{P}^{\circ}$											-
$ 214. b {}^{3}P - {}^{3}F^{\circ} $ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(355)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4184.89	22838	46727	5	5	0.12	0.032	2.2	-0.79	c+	4 <i>n</i>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4173.32	22947	46902	3	3	0.024	0.0064	0.26	-1.72	C	5n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4213.65	22947	46673	3	1	0.23	0.021	0.86	-1.21	C	4n ,5n
214. $b^{-3}P^{-3}F^{0}$ 4121.80 22838 47093 5 7 0.034 0.012 0.82 1.22 C 4a,5n 4122.51 22947 47197 3 5 0.034 0.015 0.59 1.36 C 5n			4191.08	23052	40902	1	3	0.057	0.045	0.62	-1.35	Ľ	51
4121.80 22838 47093 5 7 0.034 0.012 0.82 -1.22 C 4a,5n 4122.51 22947 47197 3 5 0.034 0.015 0.59 -1.36 C 5n	214.	6 ³ P - ³ F ^o											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4191.00	99820	47002	Ę	-	0.024	0.013	0.82			4-5-
			4122.51	22030	47197	3	5	0.034	0.012	0.52	-1.22	c	чн, эп 5п

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{i} (cm ⁻¹)	g,	g,	$A_{ki}(10^8 { m s}^{-1})$	fa	S (at. u.)	log gf	Accuracy	Source
215.	6 ³ P ~ ⁵ D°											
		4134.68	22838	47017	5	7	0.18	0.066	4.5	-0.48	C+	4n
		4132.90	22947	47136	3	5	0.11	0.047	1.9	-0.85	C+	4 <i>n</i>
		4114.45	22838	47136	5	5	0.056	0.014	0.96	-1.15	C	4n,5n
		4125.88	22947	47177	3	3	0.018	0.0045	0.18	-1.87	C	5n
		4107.49	22947	47171?	3	1	0.23	0.0011	0.046	-0.72 -2.47	C	5n
216.	b ³ P - ³ D ^o	4165.5	22898	46898	9	15	0.36	0.15	19	0.14	с	4n,5n,13n
		4181.75	22838	46745	5	7	0.35	0.13	8.9	-0.19	D-	13n
		4175.64	22947	46889	3	5	0.17	0.073	3.0	-0.66	C+	4 <i>n</i>
		4127.61	23052	47272	1	3	0.16	0.12	1.6	0.92	C+	4n
		4156.80	22838	46889	5	5	0.19	0.049	3.4	-0.61	C+	4 <i>n</i>
		4109.80	22947	47272	3	3	0.19	0.048	2.0	-0.84		4n 4n 5n
		4091.33	22030	41212	5	5	0.012	0.0018	0.12	2.03	, C	40,50
217.	b ³ P - ¹ D°											
		4085.00	22947	47420	3	5	0.049	0.021	0.83	1.21	с	5n
218.	6 ³ Р - у ³ S° (359)	4054.3	22898	47556	9	3	0.44	0.036	4.3	-0.49	С	4n,5n
		4044.61	22838	47556	5	3	0.13	0.020	1.3	-1.01	С	5 <i>n</i>
		4062.44	22947	47556	3	3	0.23	0.057	2.3	-0.77	C+	4 <i>n</i>
		4079.84	23052	47556	1	3	0.073	0.055	0.74	-1.26	С	4n,5n
219.	b ⁻³ P - v ⁻⁵ F° (362)						-	-				
		2052.0/	00000	403.00	-	-	0.00/7	0.0000		1.04	6	-
		3953.86 3935.31	22838 22947	48123	5 3	3	0.0067 0.023	0.0022	0.14 0.21	-1.96	C C	5n 5n
000	1 30 500											
220.	6 "P - v "P ⁰ (361)							1 1				
		2064 52	22047	49162	2	6	0.020	0.011	0.14	-147	C	4 5
		3961 15	23052	40103	1	3	0.029	0.011	0.44	-1.41	c	50
		3944.75	22947	48290	3	3	0.014	0.0032	0.12	-2.02	c	5 <i>n</i>
221.	b ³ Р − х ³ Р ^о (364)											
		1000.92	99047	40514	2		0.076	0.017	0.69	1.00	6	F
		3909.83 3942.44	22947 22947	48305	3	5	0.078	0.017	1.6	-0.90	c	5n 4n,5n
222.	b ⁻³ P - ν ⁻³ D° (367)											
		0001 (0	20020	10125	_	-	0.077	0.000		0.00		
		3801.08	22838	49135	5 1	1 2	0.077	0.023	0.15	-1.93	c c	5n
		3786 19	22838	49243	5	5	0.14	0.030	1.8	-0.83	c	5n
		3793.87	22947	49298	3	3	0.087	0.019	0.70	-1.25	c	5n
		3778.32	22838	49298	5	3	0.028	0.0036	0.22	-1.75	с	5 <i>n</i>
223.	b ³ P - w ³ P° (369)											
		3655.46	22838	50187	5	5	0.12	0.023	1.4	-0.93	с	4n.5n
		3674.77	22838	50043	5	3	0.079	0.0096	0.58	1.32	с	5 <i>n</i>
		3702.03	22947	49951	3	1	0.40	0.028	1.0	-1.08	C	4n,5n
		3703.82	23052	50043	1	3	0.14	0.085	1.0	-1.07	l C	5n

je star

100

Fe 1: Allowed transitions--Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g,	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
224.	δ ⁻³ P' - ³ P°											
		3323.74	22838	52916	5	5	0.31	0.051	2.8	~0.59	C+	.4n
0.05	350 Tu	3354.00	23052	52858	1	3	0.11	0.058	0.64	-1.24	C	5n
225.	$\frac{z \cdot \mathbf{P}^2 - e \cdot \mathbf{D}}{(383)}$											
		5232.94	23711	42816	9	11	0.15	0.073	11	~0.18	С	4n,5n
		5206.55	24181	43103	5	7	0.088	0.047	2.0	-0.48	C+	4n 4n
994	7 DO (40)	3008.17	23711	43435	9	1	0.026	0.0077	1.2	-1.16	L L	4n,5n
220.	(384)											
		4787.83	24181	45061	7	7	8.3(4)	2.9(-4)	0.031	-2.70	C	5n 5n
		4682.56	23711	45061	9	7	3.8(-4)	9.7(5)	0.013	-3.06	c	5n 5n
		4726.14 4877.61	24181	45334 44677	7	5 9	3.9(-4) 2.6(-4)	9.4(-5) 1.2(-4)	0.010	-3.18	C C	5n 5n
227.	z [°] P° - e [°] F (385)											
		3686.00	23711	50833	9	11	0.26	0.065	7.1	-0.23	C+	4n
		3637.86	23711	51192	9	9	0.49	0.013	1.4	-0.94	C C	4n 5n
		3726.93 3744.10	24507 24507	51331 51208	5 5	5 3	0.47 0.38	0.098 0.048	6.0 3.0	0.31 0.62	C C+	5n 4n,5n
228.	z [°] P° – ƒ [°] D (386)											
		3754.51	24181	50808	7	9	0.028	0.0077	0.66	-1.27	с	5 <i>n</i>
	i	3746.93 3773.70	24181 24507	50862 50999	7 5	7	0.23	0.048	4.2 0.52	0.47	C C	5n 5n
		3766.67	24507	51048	5	3	0.11	0.014	0.90	-1.14	C	5n
229.	z [™] P° - ∫ ⁵ D (387)											
		3742.62 3727.09	23711 23711	50423 50534	9 9	9 7	0.11 0.20	0.023 0.033	2.6 3.6	-0.68	C+ C	4n ,5 <i>n</i> 5n
230.	$z^{-7}\mathbf{P}^{\circ} = e^{-7}\mathbf{P}$ (388)											
		3735.32	23711	50475	9	9	0.24	0.051	5.6	-0.34	с	5n
	ino ic	3782.45	24181	20011	1	í í	0.015	0.0031	0.27		C	51
201.	2 P ² - e C (389)											
		3703.69	23711	50704	9	11	0.062	0.016	1.7	-0.85	С	5 <i>n</i>
		3697.43 3676.88	24181 24181	51219 51370	7 7	7 5	0.21 0.027	0.043 0.0038	3.7 0.33	-0.52 -1.57	C+ C	4n 5n
232.	z ⁻⁷ P° - r ⁻² G (390)											
		3681.64 3664.69	24181 24181	51335 51461	7 7	9 7	0.015 0.025	0.0040 0.0051	0.34 0.43	-1.55	C C	5n 5n

Fe 1: Allowed transitions-Continued

* * * * * ****************************												
No.	Multiplet	λ(Å)	$E_{\rm c}({\rm cm}^{-1})$	E_k (cm ⁻¹)	g.	g,	$A_{kr}(10^{8} \mathrm{s}^{-1})$	fa	S (at. u.)	log gf	Accuracy	Source
233.	$z^{-2}\mathbf{P}^{0} = f^{-5}\mathbf{F}$											
2	(391)		1									
		3664.54	24181	51462	7	9	0.040	0.010	0.87	-1.14	с	5n
0.2.4	100 Ic	1										
2.34.	2 P ² - e S (394)					l			ļ			
		3650.03	24181	51570	7	7	0.12	0.023	10	0.79	C	50
		3694.01	24101	51570	5	7	0.70	0.20	12	0.00	c+	4n
235.	: ^с Р° - с ⁵ Р							1		1		
	(395)											
		3614.77	24181	51837	7	7	0.040	0.0079	0.65	1.26	с	5 <i>n</i>
		3657.89	24507	51837	5	7	0.039	0.011	0.66	-1.26	С	5n
236.	$z^{-2}P^{o} = g^{-2}D$											
	(396)											
		3322.47	23711	53801	9	11	0.058	0.012	1.1	-0.98	D	12n
237.	6 ³ G - y ³ D°									! !		
	(404)	1		į l								
		7112.18	24119	38175	9	7	1.8(-4)	1.1(-4)	0.022	-3.02	С	5n
238	$b^{-3}G = x^{-3}G^{\circ}$	1								l .		
	(409)		1	1								
		4647.43	23784	45295	11	11	0.015	0.0048	0.80	-1.28	D-	14n
		4691.41	24119	45428	9	9	0.013	0.0042	0.59	1.42	D-	14n
	1	4618.76	23784	45428	11	9	0.0019	4.9(-4)	0.082	-2.27	С	5 <i>n</i>
		4661.97	24119	45563	9	7	0.0018	4.5(-4)	0.063	-2.39	c	5 <i>n</i>
		4740.34	24339	45428	7	9	8.1(-4)	3.5(-4)	0.038	-2.61		51
239.	$b^{-3}C = x^{-5}C^{\circ}$							-				
	(410)											
		4603.95	24119 24339	45833 45913	9	9 7	5.9(-4) 4.9(4)	$\begin{vmatrix} 1.9(-4) \\ 1.6(-4) \end{vmatrix}$	0.026	-2.77 -2.96	C C	5n 5n
3.00	Lic Iro										})
240.	6 °C - 'F°	1									ļ	
		4358.50	23784	46721	11	9	0.011	0.0025	0.40	-1.56	C	4n,5n
		4351.54	24119	47093	9	7	0.017	0.0037	0.47	-1.48		5 <i>n</i>
		4425.14	24119	40721	9	9	0.0014	4.0(-4)	0.055	-2.44		311
241.	b 3G - 3D°			i								
		4326.75	23784	46889	11	9	0.0057	0.0013	0.21	1.84	с	5 <i>n</i>
		4365.90	24119	47017	9	7	0.0036	8.0(4)	0.10	-2.14	C C	4n,5n
		4390.46	24119	40889	9	9	0.0014	4.1(-4)	0.054	-2.43		57
242.	$b^{-3}G = z^{-3}H^{\circ}$ (414)	4319.6	24040	47024	27	33	0.022	0.0075	2.9	-0.69	С	4n,5n
		4309.37	23784	46982	11	13	0.021	0.0071	1.1	-1.11	с	4 <i>n</i>
		4367.58	24119	47008	9	11	0.020	0.0070	0.91	-1.20	C C	5n
	1	4390.95	24339	47106	7	9	0.016	0.0058	0.59	-1.39		5n 5n
	1	4304.54	23784	47108	11	0	0.0038	9.7(-4)	0.10	-1.94	c c	5n
		4286.44	23784	47106	n	9	0.0017	3.9(-4)	0.060	~2.37	С	5 <i>n</i>

FUHR ET AL.

Fe I: Allowed transitions----Continued

23. $h^{+} G_{-m}^{+} G^{+}$ (400) 4290.8 24119 $h^{2} 4^{2} 4^{2} 0$ h^{+} h^{-}	No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g i	g,	$A_{ki}(10^8 \text{ s}^{-1})$	fu	S (at. u.)	log gf	Accuracy	Source
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	243.	b ³ C - w ⁵ C° (416)											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4290.38	24119	47420	9	11	0.0064	0.0022	0.28	1.71	С	4n,5n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	244.	b ³ C - z ¹ C° (417)											
245. $b^{+} C_{-+} \cdot p^{+} P_{+}$			4284.42	24119	47453	9	9	0.0012	3.3(4)	0.042	-2.53	С	5 <i>n</i>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	245.	b ³ G - v ⁵ F° (418)											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4196.53 4237.67	23784 24339	47606 47930	11 7	11 9	0.0031 0.0021	8.3(4) 7.2(4)	0.13 0.070	-2.04 2.30	C C	5n 5n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 46.	b "G - ⁵ H°											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4258.95	24339	47812	7	9	0.0047	0.0016	0.16	-1.94	с	5 <i>n</i>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	247.	b ³ C - w ³ C° (422)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4089.22	23784	48231	11	11	0.0049	0.0012	0.18		c	4n.5n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4146.06	24339	48231	9 7	11	0.0060	0.0019	0.20	-1.83	C C	$\frac{5n}{4n}, 5n$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	248.	<i>b</i> ³ G - <i>z</i> ¹ H ^o	4101.40	243.39	40302		9	0.0032	0.0011	0.10	-2.13	C.	ən
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(423)						0.007					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.30 100	4120.21	24119	48383	9	11	0.026	0.0082	1.0	1.13	С	4n,5n,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	249.	(424)											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	4066.59	24119	48703	9	9	0.013	0.0032	0.39	1.54	С	4n,5n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250.	b ³ G - <i>w</i> ³ F° (426)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4000.46	24119	49109	9	9	0.013	0.0031	0.36	-1.56	С	5 <i>n</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	251.	b ³ G - y ³ H° (429)											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3897.45 3871.75	23784	49434 49604	11	13	0.022	0.0060	0.85	··· 1.18	C C+	4n,5n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3903.90 3853.46	24119	49727	9	9	0.097	0.022	2.6	0.70	C+	4n,5n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	252.	$b^{-3}\mathbf{G} = v^{-3}\mathbf{C}^{\mathbf{O}}$	J033.4V	23704	49121	11	,	0.0001	0.0012	0.17	-1.67	ι.	4n ,3n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Crony	3893 30	23784	49461	11	11	0.14	0.031	43	-0.47	C+	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3919.07	24119	49628	9	9	0.045	0.010	1.2	-1.03	C+	4n, 5n
253. $b^{-1}G - z^{-1}F^{\circ}$ (432) 24359 49020 7 9 0.043 0.013 1.2 -1.04 C+ 4n,5n	ſ		3944.89 3052.15	24119 24119 24220	49461 406.29	9 7	11	0.016	0.0028	0.53	-1.00	C C	4n,5n 5n
	253.	$b^{-3}\mathbf{G} = z^{-1}\mathbf{F}^{\mathbf{o}}$	9499.19	24339	49028	1	у	0.043	0.01.3	1.2	1.04	U+	4n ,5n
		(****/	3777 06	24119	50587	Q	7	0.016	0.00.27	0.31	1 61	C	40 5-

para.

jana. E

perce.

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$E_i ({\rm cm}^{-1})$	$E_4 (\mathrm{cm}^{-1})$	g i	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f.k	S (at. u.)	log gf	Accuracy	Source
254.	6 ³ C - x ³ H ^o (435)											
		3670.09	23784	51023	11	13	0.078	0.019	2.5	-0.69	C+	4 <i>n</i>
		3693.01	24339	51409	7	9	0.022	0.0058	0.50	-1.39	C C	5n 5n
		3663.25	24119	51409	9	9	0.012	0.0024	0.26	1.66	č	5n 5n
255.	b ³ G ~ v ³ F° (437)					-		-				
		3632.55 3669.15	23784 24119	51305 51365	11 9	9 7	0.062 0.087	0.010 0.014	1.3 1.5	-0.96 -0.91	с с	5 <i>n</i> 5n
256.	$b^{-3}\mathbf{G} = u^{-3}\mathbf{C}^{\mathbf{o}}$ (438)											
		3628.82	24119	51668	9	9	0.0035	6.9(4)	0.074	-2.21	с	5n
257.	δ ³ C − ¹ H°											
		3590.08	23784	51630	11	n	0.012	0.0023	0.30	-1.60	с	5 <i>n</i>
		3633.84	24119	51630	9	11	0.021	0.0050	0.53	1.35	с	5n
258.	b ⁻³ G - w ⁻³ H ^ο (442)											
		3508.49	24119	52613 52769	9	11	0.066	0.015	1.6	-0.87	C	5n 5 -
		3310.41	24009	52109			0.040	0.0094	0.70	- 1.10		- 3 1
259.	6 °C - t °C° (449)											
		3319.25	24119	54237	9	9	0.031	0.0052	0.51	-1.33	D	12 <i>n</i>
260.	$\frac{c^{-3}\mathbf{P}-w^{-5}\mathbf{D}^{\mathbf{o}}}{(465)}$											
		5104.04	24336	43923	5	7	5.8(-4)	3.2(-4)	0.027	2.80	С	5 <i>n</i>
261.	$\frac{c^{-3}\mathbf{P} - x^{-3}\mathbf{D}^{\mathbf{o}}}{(467)}$:		
		4786.81 4712.10	24336 24336	45221 45552	5 5	7 3	0.013 8.7(4)	0.0060 1.7(-4)	0.48 0.014	-1.52 3.06	D- C	14n 5n
26 2.	$c^{-3}P - z^{-3}S^{o}$ (469)											
		4490.08 4579.82	24336 24772	46601 46601	5 3	3 3	0.034 0.0018	0.0062 5.8(-4)	0.46 0.026	-1.51 -2.76	с с	5n 5n
263.	$\begin{array}{c} c^{-3}P - y^{-3}P^{\circ} \\ (472) \end{array}$											
		4464.77 4517.53 4430.19	24336 24772 24336	46727 46902 46902	5 3 5	5 3 3	0.013 0.019 0.014	0.0039 0.0057 0.0025	0.29 0.25 0.18	$ \begin{array}{c c} -1.71 \\ -1.77 \\ -1.90 \end{array} $	C C C	4n ,5n 4n ,5n 5n
264.	c ³ P - ³ F ^o											
		4372.99	24336	47197	5	5	0.0019	5.5(-4)	0.040	-2.56	с	5 <i>n</i>
265	e ⁻³ P = ⁵ D⁰											
2001		1381 60	24226	47126	E	5	0.0056	0.0016	0.12		C	50
	1	4004.00	+ ∡+∋∋0	1 41130	. 3	ı ə	0.0030	0.0010	0.12	- 2.09		- <i>5</i> a

FUHR ET AL.

f^{ann}.

farra.

gerren.

Fe 1: Allowed transitions-Continued

No.	Multiplet	$\lambda(\mathbf{\hat{A}})$	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	g.	$A_{ki}(10^8 \text{ s}^{-1})$	fii	S (at. u.)	log gf	Accuracy	Source
266.	e ³ P - y ³ S° (476)	4348.3	24565	47556	9	3	0.13	0.012	1.6	-0.95	с	4n ,5n
		4305.45 4387.89 4450.32	24336 24772 25092	47556 47556 47556	5 3 1	3	0.072 0.046 0.012	0.012 0.013 0.010	0.85 0.58 0.15	-1.22 -1.40 -1.98	C C C	4n,5n 5n 5n
267.	v ⁻³ P - v ⁻⁵ F° (476a)											0.1
		4182.38	24336	48239	5	5	0.058	0.015	1.0	-1.12	с	5 <i>n</i>
268.	$\frac{e^{-3}\mathbf{P}-v^{-5}\mathbf{P}^{0}}{(478)}$											
		4230.58	24336	47967	5	7	0.0016	5.9(-4)	0.041	-2.53	с	5n
269.	$c^{-3}P - x^{-3}P^{o}$ (482)											
		4170.90	24336	48305	5	5	0.072	0.019	1.3	-1.03	C+	4n,5n
		4220.34	24772	48305	3	5	0.23	0.021	0.80	-1.25	c	4n, 3n 5n
		4267.83	25092	48516	1	3	0.11	0.089	1.3	-1.05	С	4n,5n
270.	e ³ P - e ³ D° (486)											
		4076.23	24772	49298	3	3	0.015	0.0037	0.15	-1.96	с	5 <i>n</i>
271.	$e^{-3}P - w^{-3}P^{o}$ (488)											
		3867.22	24336	50187	5	5	0.35	0.078	5.0	0.41	C+	4 <i>n</i>
		3955.96	24772	50043	3	3	0.066	0.016	0.61	-1.33	C	5n
		3000.82 3970.39	24336	49951	3	1	0.27	0.037	2.4	-1.01	C C	5n 5n
272.	$e^{-3}P = z^{-1}F^{\circ}$ (489)											
		3808.29	24336	50587	5	7	0.014	0.0042	0.26	-1.68	с	5 <i>n</i>
273.	$c^{-3}P = t^{-5}D^{\circ}$ (490)											
		3699.15	24336	51 361	5	7	0.053	0.015	0.92	~1.12	с	4 <i>n</i>
		3635.19	24336	51837?	5	3	0.16	0.019	1.1	-1.02	C	5n
274.	с ³ Р – р ³ F° (491)											
		3698.60	24336	51365	5	7	0.042	0.012	0.73	-1.22	С	4n,5n
		3782.61	24772	51201	3	5	0.015	0.0054	0.20	-1.79	C	5n
275.	r ³ P - y ¹ D° (494)											
	ļ	3711.41	24772	51708	3	5	0.086	0.030	1.1	-1.05	С	5 <i>n</i>
276.	$c^{-3}\mathbf{P} - x^{-1}\mathbf{D}^{\circ}$ (495)											
		3704.01	24 772	51762	3	5	0.018	0.0062	0.23	-1.73	с	5 <i>n</i>

F~54

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions -- Continued

No.	Multiplet	λ(Å)	<i>E</i> ; (cm ⁻¹)	E_k (cm ⁻¹)	g;	g,	$A_{ki}(10^8 \text{ s}^{-1})$	fa	S (21. u.)	log gf	Accuracy	Source
277.	$c^{-3}P - u^{-3}D^{\circ}$ (496)											
		3617.79	24336	51969	5	7	0.66	0.18	11	0.04	C+	4 <i>n</i>
		3632.04	24772	52297	3	5	0.50	0.16	5.9	-0.31	C+	4n
		3603.82	25092	52512	1	3	0.58	0.35	4.2	-0.46		4n,5n
		3548.02	24336	52512	5	3	0.091	0.010	0.60	-1.29	D	12n
278.	c ³ P - ³ P ^o											
		2550 50	94779	50050		, .	0.99	0.040		0.00		
		3505.07	24712	52858	5	3	0.22	0.042	1.5	-0.90		4n,3n 5e
	ļ	3552.11	24772	52916	3	5	0.053	0.017	0.59	-1.30	c	5 <i>n</i>
279.	$a^{1}C - y^{3}C^{\circ}$											
	(512)										- 	
		4793.96	24575	45428	9	9	1.1(-4)	3.9(-5)	0.0055	-3.46	с	5 <i>n</i>
280.	$a^{-1}G = z^{-3}I^{\circ}$ (513)	r										
		4636.66	24575	46136	9	l 11	5.8(-5)	2.3(5)	0.0031	-3.69	D	15л
281.	a ¹G - ³F°											
		4514.18	94575	46791	0	0	0.0040	0.0012	0.16	_106	C	A. 5.
		4439.63	24575	47093	9	7	8.2(-4)	1.9(4)	0.025	-2.77	c	4n,ən 5n
282.	a 'G - z 'H° (516)											
		4456.33	24575	47008 47106	9 0	11	0.0024	8.8(-4)	0.12	-2.10	C C	5n
		4100.72	24010	4/100	,	,	0.0034	0.0010	0.15	- 2.04	L.	38
283.	$\begin{bmatrix} a^{-1}\mathbf{G} - w^{-5}\mathbf{C}^{\mathbf{O}} \\ (517) \end{bmatrix}$											
		4343.70	24575	47590	9	9	0.0061	0.0017	0.22	-1.81	С	5n
284.	$\frac{a^{-1}C - z^{-1}C^{\circ}}{(518)}$	4369.77	24575	47453	9	9	0.074	0.021	2.7	-0.72	C+	4 <i>n</i>
285.	a 'G - ⁵H°											
		4298.04	24575	47835	0	111	0.016	0.0056	0.71	-130	C	4n 5n
		4302.18	24575	47812	9	9	0.0084	0.0023	0.30	-1.68	c	4n,5n
286.	a ¹ G - w ³ G° (521)											
		4225.96	24575	48231	9	l n	0.016	0.0053	0.67	-1.32	C	4.0
				,			VIULU	010000	0.01	1,04		
287.	$a^{-1}G = z^{-1}H^{\circ}$ (522)	4199.09	24575	48383	9	11	0.61	0.20	25	0.25	С	8
288.	a ¹ G - w ³ F ^o (524)											
		4074.79	24575	49109	9	9	0.056	0.014	1.7	-0.90	C+	4n ,5n
280	<i>a</i> ¹ C − <i>n</i> ³ U ⁰											
209.	(526)											i
		3994.11	24575	49604	9	$ \mathbf{n} $	0.015	0.0044	0.52	-1.40	с	4n.5n

p

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_i (cm ⁻¹)	gi	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
29 0.	a ¹ G - v ³ G° (527)											
		4017.15 3990.37	24575 24575	49461 49628	9 9	11 9	0.053 0.019	0.016 0.0046	1.9 0.55	0.85 -1.38	C+ C	4n 4n ,5n
291.	a ¹ G – z ¹ F° (528)	3843.26	24575	50587	9	7	0.48	0.082	9.4	-0.13	5+	4n
29 2.	$a^{-1}G - x^{-1}G^{\circ}$ (529)	3839.26	24575	50614	9	9	0.29	0 064	7.3	-0.24	C+	4 <i>n</i>
293.	a ¹ G - x ³ H ^o (531)											
		3773.36 3725.49	24575 24575	51069 51409	9 9	11 9	0.0034 0.018	8.8(4) 0.0038	0.099 0.42	-2.10 -1.47	C C	5n 4n,5n
29 4.	a ¹ C - u ³ C° (533)											
		3730.39 3689.90	24575 24575	51374 51668	9 9	11 9	0.13 0.020	0.033 0.0041	3.6 0.45	0.53 -1.43	C+ C	4n,5n 5n
295.	$a^{-1}\mathbf{G} = x^{-3}\mathbf{F}^{\mathbf{o}}$											
		3 425.01	24575	53763	9	7	0.29	0.039	4.0	-0.45	C+	4n
296.	a 'C - x 'H° (546)	3229.99	24575	55526	9	11	0.48	0.092	8.8	-0.08	D	11 <i>n</i>
297.	z ⁵ D° – e ⁵ D (552)											
		5909.99	25900	42816	9	11	3.4(4)	2.2(4)	0.038	-2.71	С	5 <i>n</i>
		5827.89 5791.04	26479 25900	43034 43163	3 9	5 9	1.8(4) 9.0(4)	1.5(-4) 4.5(-4)	0.0088	-3.34	C	5n 5n
	<i>i</i> - <i>i</i>	5780.62	26141	43435	7	7	7.7(-4)	3 8(4)	0.051	2 57	С	5n
298.	z "D" - e "D (553)											
		5324.18 5283.62	25900 26141	44677 45061	9 7	9 7	0.15 0.092	0.065 0.038	10 4.7	-0.23	C+ D	4n,5n 9
		5263.30	26340	45334	5	5	0.061	0.025	2.2	-0.90	C+	4 <i>n</i>
		5253.46 5208.59	26479 26141	45509 45334	3 7	5	0.020	0.0084	2.1	-0.91	С С+	4n 4n,5n
		5393.17 5339.93	26141 26340	44677 45061	7	9 7	0.037 0.071	0.021	2.6 3.8	-0.84 0.67	C+ C+	4n 4n
		5302.30	26479	45334	3	5	0.073	0.052	2.7	0.81	C+	4n
299.	z ⁵ D° – e ⁵ F (554)											
		4736.77	25900	47006	9	11	0.050	0.021	2.9	-0.73	C·+	4n,5n
		4707.27 4637.50	26141 26479	47378 48037	7	9 5	0.030 0.030	0.013	1.4 0.73	-1.05	0- C	14n 5n
		4613.20	26550	48221	1	3	0.026	0.025	0.38	1.60	c	5n 5n
		4625.04 4574.21	26141 25900	47756 47756	7 9	7	0.022 0.0017	0.0070	0.75 0.056	1.31	D- C	14n 5n
		4565.66	26141	48037	7	5	0.0042	9.4(4)	0.099	-2.18	с	5 <i>n</i>
300.	$z^{-5}D^{\circ} - e^{-3}F$ (555)											
		4581.51 4504.83	26141 26340	47961 48532	7 5	9 7	0.0061 0.0030	0.0025 0.0013	0.26 0.094		C C	5n 5n

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions---Continued

			····				· · · · · · · · · · · · · · · · · · ·			·		
No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g,	g,	$A_{ki}(10^8 \ { m s}^{-1})$	fik –	S (at. u.)	log gf	Accuracy	Source
301	$z^{5}D^{\circ} - e^{-T}F$											
	(330)											
302.	z ⁵ D° − ƒ ⁷ D (557)	4000.27	26340	51331	5	5	0.023	0.0056	0.37	-1.55	С	5 <i>n</i>
		4080.89	26550	51048	1 5	3	0.025	0.019	0.25	-1.73	C C	5n 5n
		4069.08	26479	51048	3	3	0.020	0.0020	0.14	-1.82	c	5n 5n
303.	$z^{-5}D^{\circ} = \int {}^{5}D$ (558)											
		4074 49	95000	50402	0		0.00	0.050	6.0	0.05		
		4070.03	25900	50423	7	9	0.20 0.082	0.050	6.0 2.0	-0.35	C+ C+	4n 4n 5n
		4097.10	26479	50880	3	3	0.032	0.0080	0.32	-1.62	C	5n
		4058.22	25900	50534	9	7	0.058	0.011	1.3	-1.00	С	4n,5n
		4070.77	26141	50699	7	5	0.14	0.024	2.3	-0.77	C	4n,5n
		4073.76	26340	50880	5	3	0.19	0.030	1.9	~0.84 ~1.15	C+ C	4n,5n 4n,5n
		4109.07	26550	50880	1	3	0.054	0.024	0.55	-1.39	c	4n,5n 4n,5n
304.	$z^{-5}D^{\circ} - e^{-7}P$ (559)							-				
		4067.08	25000	50475	0	0	0.17	0.049	6 1	0.49	C I	A
		4085.30	26141	50473 50611	7	7	0.17	0.042	2.7	-0.42	C+ C+	4n 4n.5n
		4108.13	26141	50475	7	9	0.0037	0.0012	0.12	-2.07	С	5 <i>n</i>
		4118.90	26340	50611	5	7	0.020	0.0073	0.49	-1.44	С	5 <i>n</i>
305.	z ⁵ D° - e ⁵ G (560)											
		4024.72 4018.28	26141 26340	50980 51219	7 5	9 7	0.091 0.030	0.029 0.010	2.6 0.68	-0.70 -1.29	C C	5n 5n
306.	z ⁵ D° - e ² G (561)											
		3946.99	25900	51229	9	n	0.051	0.015	17	-0.88	C	50
		3967.96	26141	51335	7	9	0.075	0.023	2.1	~0.80	c	5n
		3979.65	26340	51461	5	7	0.0076	0.0025	0.16	-1.90	С	5 <i>n</i>
307.	z ⁵ D° − ƒ ⁵ F (562)											
		3957.02	26340	51604	5	7	0.16	0.053	3.4	-0.58	с	5n
		3963.10	26479	51705	3	5	0.17	0.068	2.7	-0.69	C+	4n,5n
		3911.00	25900	51462	9	9	0.012	0.0027	0.32	-1.61	С	5 <i>n</i>
1		3941.28	26340	51705	5	5	0.099	0.023	1.5	-0.94	C	5n
		3933.34	20479	51754	3	3	0.16	0.038	1.5	-0.94	C	5 <i>n</i>
308.	$z^{-5}D^{\circ} - e^{-3}D$ (564)											
		3974.40	26141	51294	7	7	0.0089	0.0021	0.19	-1.83	с	5 <i>n</i>
309.	z ⁵ D ^o - g ⁵ D (565)											
		3900.52	26141	51771	7	7	0.086	0.020	1.8	-0.86	C+	4n, 5n
		3931.12	26340	51771	5	7	0.052	0.017	1.1	-1.07	С	5 <i>n</i>
		3909.66	26479	52050	3	5	0.062	0.024	0.91	-1.15	С	5 <i>n</i>

f^{ann}.

janne,

dan.

Fe I: Allowed transitions---Continued

							· · · · · · · · · · · · · · · · · · ·					
No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	B;	g,	$A_{ki}(10^{*} \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
310.	≈ ⁵ D° - e ⁻ S (566)											
		3962.35	26340	51570	5	7	0.013	0.0044	0.29	-1.66	с	5 <i>n</i>
311.	z ⁵ D° – r ⁵ P (567)											
		3890.39	26141	51837	7	7	0.017	0.0039	0.35		с	5 <i>n</i>
		3914.27	26479	52020 51837	3	3	0.063	0.015	0.56	1.36	C C	5n 5n
		3925.20	26550	52020	1	3	0.067	0.047	0.60	-1.33	č	5 <i>n</i>
312.	z ⁵ D° – g ⁵ F (568)											
		3668.21 3591.48	26141 26550	53394 54386	7 1	9 3	0.036 0.070	0.0092 0.041	0.78 0.48	-1.19 -1.39	C C	5n 5n
313.	z⁵D° − k⁵D (569)											
		3615.19	2647 9	54133	3	3	0.068	0.013	0.47	1.40	с	5n
		3616.15	25900	53546 52067	9		0.036	0.0054	0.58	-1.31	C	5n 5
		3597.02	26340	54133	5	3	0.20	0.023	1.4	0.93	C	5n
314.	= ⁵D° → ƒ ⁵₽ (570)											
		3667.25	25900	53160	9	7	0.14	0.022	2.4	-0.70	с	5 <i>n</i>
		3644.80 3624.06	26141 26340	53569 53925	7 5	5 3	0.092 0.063	0.013 0.0074	1.1 0.44	1.04 1.43	C C	5n 5n
315.	z ⁵D° -∫ ³G (571)											
		3593.32	26340	54161	5	7	0.034	0.0091	0.54	1.34	С	5n
316.	= ⁵ D° - e ⁻³ C (573)											
		3591.00	25900	53739	9	11	0.0088	0.0021	0.22	-1.73	с	5 <i>n</i>
317.	= ⁵D° ƒ ³D (574)											
		3583.33	26550	54449	1	3	0.27	0.15	1.8	-0.81	с	5 <i>n</i>
318.	≈ ⁵ D° - <i>i</i> ⁵ D (578)											
		3156.27	26141	57,814	7	7	0.50	0.075	5,5	0.28	D	12 <i>n</i>
319	δ ³ H - y ³ G° (584)											
		5279.65	26628	45563	9	7	1.5(-4)	4.7(-5)	0.0074	-3.37	с	5 <i>n</i>
320.	b ³ H - z ³ l ^o (585)											
		5030.77	26106	45978?	13	15	2.3(-4)	1.0(-4)	0.022	-2.88	C C	5n 5n
1			20001	10061		. 10	· · · · · · · · · · · · · · · · · · ·		0.010	. 0.04		. 011

Fe I: Allowed transitions - Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{i_i}(10^{*} \mathrm{s}^{-1})$	f.,	S (at. u.)	log gf	Accuracy	Source
321.	$b^{-3}H = z^{-3}H^{\circ}$ (588)											
		4788.76 4839.55	26106 26351	46982 47008	13 11	13 11	0.0041 0.0046	0.0014 0.0016	0.29 0.28	-1.74 -1.75	C C	5n 5n
322.	b ^{−3} H − z ^{−1} G° (590)											
		4737.63	26351	47453	11	9	0.0011	3.1(-4)	0.053	-2.47	с	5 <i>n</i>
323.	$b^{-3}H = r^{-5}F^{\circ}$ (592)											
		4649.82	26106	47606	13	11	6.7(-4)	1.8(…4)	0.037	-2.62	С	5n
324.	6 ³ H ~ ⁵ H°											
		4600.93	26106	47835	13	11	9.1(-4)	2.4(-4)	0.048	-2.50	C	5 <i>n</i>
		4658.29	26351	47812	11	9	3.7(4)	9.7(-5)	0.016	-2.97	C C	ริส
		4714.19	26628	47834	9	7	0.0011	2.8(4)	0.039	2.60	c	5 <i>л</i>
325.	b ³ Н - w ³ G° (593)											
		4518.43 4541.94	26106 26351	48231 48362	13 11	11 9	2.2(4) 3.1(4)	5.7(-5) 7.9(-5)	0.011 0.013	-3.13 3.06	C C	5n 5n
326.	$b^{-3}H - z^{-1}H^{\circ}$ (594)											
		4487.74	26106	48383	13	n	4.7(-4)	12(-4)	0.023	-2.81	c	5n.8
		4537.67	26351	48383	11	П	4.3(4)	1.3(-4)	0.022	-2.84	с	5n.8
		4595.36	26628	48383	9	п	0.0060	0.0023	0.32	1.68	С	5 <i>n</i> ,8
327.	$b^{-3}H = y^{-3}H^{\circ}$ (597)											
	ĺ	4285.44	26106	49434	13	13	0.021	0.0058	11	-1.12	c	4n.5n
		4327.92	26628	49727	9	9	0.0093	0.0026	0.33	-1.63	c	5n
328.	δ ⁻³ H - r ⁻³ C° (598)	2			9							
		4280.53	26106	49461	13	11	0.0033	7.7(4)	0.14	- 2.00	с	5n
		4346.55	26628	49628	9	9	0.013	0.0038	0.48	~1.47	с	5n
329.	$b^{-3}H = x^{-1}G^{\circ}$ (599)											:
		4167.86	26628	50614	9	9	0.0062	0.0016	0.20	-1.84	с	5 <i>n</i>
330.	$b^{-3}H - v^{-3}F^{\circ}$ (603)											
		4006.31	26351	51305	11	9	0.056	0.011	1.6	-0.92	с	5n
331.	$b^{-3}H = u^{-3}G^{\circ}$ (604)											
		3956.45	26106	51374	13	11	0.22	0.043	7.3	-0.25	c	5 <i>n</i>
	2	3948.77	26351	51668	11	9	0.22	0.043	6.1	-0.33	C	5 <i>n</i>
		3967.42	26628	51826	9	7	0.24	0.044	5.2	-0.40	$\begin{array}{c} C + \\ C \end{array}$	4n,5n
	r	1 3993.20	20351	⊨ 01374	1 1 1	- 11 -	0.0098	1 0.0023	0.54	1 -1.9A	L L	511

Fe 1: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g,	$A_{ki}(10^{8} \text{ s}^{-1})$	fa	S (at. u.)	log gf	Accuracy	Source
332.	6 ³ H - 'H°											
		3916.73	26106	51630	13	11	0.12	0.023	3.9	-0.52	C+	4n,5n
333.	b ³ H - w ³ H ^o (607)											
		3806.70 3771.50	26351 26106	52613 52613	11 13	11	0.55 0.0071	0.12 0.0013	17 0.21	0.12 -1.78	C+ C	4n 5n
334.	b ³ H - y ³ I° (688)	2										
		3765.54 3821.18 3805.35 3785.71	26106 26351 26628 26106	52655? 52514 52899 52514	13 11 9 13	15 13 11 13	0.99 0.70 1.0 0.014	0.24 0.18 0.27 0.0030	39 25 30 0.48	0.50 0.30 0.38 -1.41	C+ C+ C+ C	4n,8 4n,8 4n 8
335.	b ³ H - z ¹ I° (609)											
		3738.31	26351	53094	11	13	0.38	0.093	13	0.01	C+	4n ,8
336.	b ³ H - ⁵ F ^o							r				
		3582.20	26106	54014	13	11	0.25	0.041	6.3	-0.27	C+	4n
337.	$b^{-3}H - {}^{5}D^{\circ}$											
		3576.76	26351	54301	11	9	0.098	0.015	2.0	-0.77	C	5n
338.	6 ³ H - v ³ H ^o (614)											:
		3402.26	26106	55490	13	13	0.29	0.050	7.2	-0.19	C+	4 <i>n</i>
339.	$b^{-3}H - u^{-3}H^{\circ}$ (617)							-				
		3307.23 3328.87	26106 26351	56334 56383	13 11	13	0.20 0.27	0.034 0.046	4.8 5.5	-0.36 -0.30	C+ C+	4n 4n
		3355.23	26628	56423	9	9	0.33	0.056	5.5	-0.30	C+	4 <i>n</i>
340.	b ³ H - x ³ I° (620)											
		3233.05 3254.36	26106 26351 26629	57028? 57070 57104	13 11	15 13	0.55 0.51 0.55	0.099 0.095 0.11	14	0.11 0.02 ~0.01	C+ C+ C+	4n,8 4n,8 4n
341.	$b^{3}H - t^{3}H^{\circ}$	3200.20	20020	31104								
	(,	2923.29	26351	60549	11	11	1.7	0.21	23	0.37	C+	4 <i>n</i>
342.	a ³ D ~ ⁵ D°											
		5617.22	26225	44023	7	9	3.6(4)	2.2(4)	0.029	-2.81	c	5n
343.	$\begin{array}{c} a \ ^{3}\mathrm{D} - x \ ^{3}\mathrm{D}^{\mathrm{o}} \\ (628) \end{array}$											
		5262.89	26225	45221	7	7	8.8(4)	3.7(4)	0.045	-2.59	с	5n
344.	$a^{-3}D - w^{-5}P^{0}$ (629)											
		5021.89	26406	46314	3	5	0.0046	0.0029	0.14	-2.06	с	58

1 march

por .

jan.

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions----Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g,	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f.ik	S (at. 11.)	log gf	Accuracy	Source
345.	a ³ D - y ³ P° (631)											
		4876.19	26225	46727	7	5	2.7(-4)	7.0(-5)	0.0079	3.31	С	5n
346.	$a^{-3}D = {}^{3}F^{\circ}$											
		4790.75	26225	47093	7	7	2.8(-4)	9.7(-5)	0.011	-3.17	C	5 <i>n</i>
347.	a ³ D - ⁵ D°											
		4808.15 4873.74	26225 26624	47017 47136	7 5	7	7.9(4) 5.7(4)	2.7(-4) 2.0(-4)	0.030 0.016	-2.72 -2.99	C C	5n 5n
		4813.11	26406	47177	3	3	0.0015 3.0(4)	5.0(-4)	0.024		C	5n
	30 300	4100.01	20220	41130	·	5	0.0(4)	1.3(-3)	0.0001	- 3.27	D	150
348.	a "D - "D"											
		4791.25	26406	47272	3	3	0.0035	0.0012	0.057	-2.44	С	5n
349.	$a^{-3}D - y^{-3}S^{\circ}$ (635)											
		4776.07	26624	47556	5	3	0.0023	4.7(-4)	0.037	2.63	С	5 <i>n</i>
350.	a ⁻³ D ~ v ⁻⁵ P° (638)											
		4556.93	26225	48163	7	5	0.0015	3.3(-4)	0.034	-2.64	C	5n
351.	$a^{-3}\mathbf{D} = x^{-3}\mathbf{P}^{0}$	4014.21	20024	40290	J	3	0.0029	J.U(~~4)	0.043		t	Sn
	(0+1)	4597.70	04005	18205	~		0.0014	21/ 0	0.020	9.67	C	F.,
		4527.78 4566.51	26225 26624	48305 48516	7 5	3	0.0014 0.0070	3.1(-4) 0.0013	0.032 0.099	2.67	C	5n 5n
		4533.13 4565.31	26406 26406	48460 48305	3	1 5	0.044 0.0023	0.0045 0.0012	0.20 0.055	1.87 2.44	C C	5n 5n
352.	$a^{-3}D = v^{-3}D^{\circ}$ (645)											
		4343.28	26225	49243	7	5	0.017	0.0033	0.34	1.63	С	5 <i>n</i>
		4409.12 4377.80	26624 26406	49298 49243	5 3	3 5	0.0079 0.0040	0.0014 0.0019	0.10 0.083	-2.16 -2.24	C C	5n 5n
353.	$a^{-3}D - z^{-1}D^{\circ}$ (648)											
		4374.50	26624	49477	5	5	0.0059	0.0017	0.12	-2.07	С	4n ,5n
354.	a ⁻³ D ~ w ⁻³ P° (649)											
		4172.12	26225	50187	7	5	0.12	0.022	2.1	-0.82	C+	4n,5n
		4268.75 4242.73	26624 26624	50043 50187	5 5	3 5	0.050 0.021	0.0081 0.0056	0.57 0.39	1.39 1.55	C C	4n,5n 5n
355.	$a^{-3}D = z^{-1}F^{\circ}$ (650)											
		4171.90	26624	50587	5	7	0.015	0.0054	0.37	1.57	С	5 <i>n</i>
356.	$a^{-3}D = x^{-3}H^{\circ}$										l	
		3969.63	26225	51409	7	9	0.031	0.0094	0.86	-1.18	С	5 <i>n</i>
Fe I: Allowed transitions----Continued

No.	Multiplet	λ(Å)	<i>E</i> ; (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g i	g,	$A_{ki}(10^8 \ { m s}^{-1})$	ſa	S (at. u.)	log gf	Accuracy	Source
357.	a ³ D - v ³ F ^o (655)											
		4040.64 4031.96	26624 26406	51365 51201	5 3	7 5	0.054 0.086	0.019 0.035	1.2 1.4	1.03 0.98	C C+	4n,5n 4n,5n
358.	a ³ D - y ¹ D° (661)											
		3985.39 3951.16	26624 26406	51708 51708	5 3	5 5	0.082 0.36	0.020 0.14	1.3 5.4	-1.01 -0.38	C C+	4n,5n 4n,5n
359.	a ⁻³ D - u ⁻³ D° (663)										L.	
360.	a ³ D - ³ D°	3883.2 8	26225	51969	7	7	0.17	0.038	3.4	-0.58	C+	4n,5n
000.		3846.80	26225	52213	7	7	0.67	9.15	13	0.02	C+	4 <i>n</i>
		3836.33	26624	52683	5	5	0.39	0.085	5.4	-0.37	C	4n,5n
		3778.51 3757.45	26225	52683 53230	5	3	0.14	0.022	1.9	-0.81	C C	5n 5n
		3906.75	26624	52213	5	7	0.079	0.025	1.6	0.90	С	5n
361.	a ³ D - ³ P°											
		3810.76 3802.28	26624 26624	52858 52916	5 5	3 5	0.24 0.05 8	0.031 0.013	1.9 0.79	-0.81 -1.20	C+ C	4n.,5n 5n
362.	a ³ D - s ³ D°											
		3740.24	26225	52954?	7	7	0.19	0.039	3.4	0.56	C+	4n ,5n
363.	a ³ D - ⁵ F°											
		3751.06	26624	53275	5	5	0.014	0.0030	0.18	-1.83	С	5 <i>n</i>
364.	u ³ D ~ 9° (669)											
		3688.48	26225	53329	7	9	0.081	0.021	1.8	-0.83	с	5 <i>n</i>
365.	$a^{3}D = {}^{5}D^{\circ}$											
		3613.45 3560.70	26225 26225	53892 54301	7 7	7 9	0.078 0.077	0.015 0.019	1.3 1.5	0.97 -0.88	с с+	5n 4n ,5n
366.	a ⁻¹ D - t ⁻³ G° (673)											
		3568.82	26225	54237 54600	7	9	0.065	0.016	1.3	0.95	C	5 <i>n</i>
367.	a ³ D − ⁵ P°	9919-94	20024	54000	J	4	v. 00 0	0.023	1.4	~0.93	L.	ุอก
·	-	3598.72	26225	54005	7	7	0.034	0.0067	0.55	1.33	С	5n
368.	$a^{-3}D - w^{-1}D^{\circ}$ (676)											
		3406.44	26406	55754	3	5	0.30	0.088	2.9	0.58	C+	4 <i>n</i>

em.

ومعتجن

F-61

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$E_{\rm c} ({\rm cm}^{-1})$	$E_k (\mathrm{cm}^{-1})$	g,	g,	$A_{kr}(10^8 \text{ s}^{-1})$	fa	S (at. u.)	log gf	Accuracy	Source
369.	a ³ D − u ³ F° (680)											
		3292.02 3314.74 3282.89	26225 26624 26406	56593 56783 56859	7 5 3	9 7 5	0.62 0.70 0.31	0.13 0.16 0.084	9.9 8.9 2.7	-0.04 -0.09 -0.60	C+ C+ C+	4n 4n 4n
370.	a ⁻¹ D - r ⁻¹ G° (681)											
		3253.60	26225	56951	7	9	0.18	0.038	2.8	-0.58	C+	4n
371.	z ⁵ F° − e ⁻⁷ D (685)											
		6271.29	26875	42816	п	н	2.0(-4)	1.2(4)	0.027	-2.88	С	5 <i>n</i>
372.	z ⁵ F° - e ⁵ D (686)											
		5615.64	26875	44677	11	9	0.17	0.067	14	-0.13	C+	4n
		5586.76 5572.84	27167 27395	45061 45334	7	5	0.19	0.070	9.2	-0.20 -0.30	C+ C+	4n,5n 4n
		5569.62	27560	45509	5	3	0.21	0.059	5.4	-0.53	C+	4 <i>n</i>
		5576.09	27666	45595	3	1	0.25	0.039	2.2	-0.93	C	5n
		5709.38	27167	44077	7	9	0.015	0.0075	1.3	-0.85		4n 4n
		5624.54	27560	45334	5	5	0.042	0.020	2.7	-0.83	C+	4n 4n
		5784.69	27395	44677	7	9	5.6(4)	3.6(4)	0.048	- 2.60	С	5 <i>n</i>
		5712.15	27560	45061	5	7	0.0030	0.0020	0.19	-1.99	С	5 <i>n</i>
373.	$z^{-5}F^{\circ} = e^{-5}F$ (687)											
		1011.00										
		4966.09	26875	47006		11	0.037	0.014	2.5	-0.82		4 <i>n</i>
		4940.38	26875	47378	11	9	0.0022	0.0010	0.18	-1.95	C C	5n
		4843.14	27395	48037	7	5	0.0097	0.0024	0.27	+1.77	c	5 <i>n</i>
		4838.51	27560	48221	5	3 -	0.013	0.0026	0.21	1.88	С	5 <i>n</i>
		5002.79	27395	47378	7	9	0.0092	0.0044	0.51	-1.51	C	5n
		4950.10 4907.73	27666	47750	3	5	0.0084	0.0043	0.33	-1.82	D	10n 10n
374.	z ⁵ F° − e ³ F (688)											
		4679.22	27167	48532	9	7	0.0037	9.5(4)	0.13	-2.07	с	5 <i>n</i>
l		4807.71	27167	47961	9	9	0.0024	8.2(-4)	0.12	-2.13	С	5 <i>n</i>
		4729.68	27395	48532	7	7	0.0017	5.7(-4)	0.062	-2.40	C	5n
		4860.98	27395	47961	7	9	0.0014	6.2(-4)	0.070	-2.36 -2.24		5n 5n
		4100.01	21000	40.02		'	0.0024	0.0012	0.070	6.47		
375.	z ⁵ F° e ² F (689)											
		4224.17	27167	50833	9	11	0.14	0.044	5.5	~0.40	C+	4 <i>n</i>
		4200.92	27395	51192	7	9	0.049	0.017	1.6	0.93	С	5 <i>n</i>
		4224.51	27666	51331	3	5	0.084	0.037	1.6	-0.95	C	5n
		4161.08	27167	51192	9	9	0.010	0.0027	0.33	-1.62	C	5n
		4168.63	27560	51331	9	: 5 7	0.042	0.0011	0.78	$\begin{vmatrix} -1.25 \\ -1.87 \end{vmatrix}$	C C	5n 5n

18

,eee.

Fe 1: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g;	g,	$A_{ki}(10^8 \text{ s}^{-1})$	f _{it}	S (at. u.)	log gf	Accuracy	Source
376.	$z^{-3}F^{\circ} - \int {}^{5}D$ (691)											
		4278.23	27167	50534	9	7	0.011	0.0024	0.30	-1.67	с	5 <i>n</i>
377.	z ⁵ F° - e ⁷ P (692)											
		4264.20	27167	50611	9	7	0.020	0.0043	0.55	1.41	С	5n
378.	z ⁵ F° – e ⁵ G (693)											
		4247.43	27167	50704	9	11	0.20	0.067	8.4	-0.22	C+	4n
		4238.81	27395	50980	7	9	0.22	0.077	7.5	0.27	C+	4 <i>n</i>
		4217.55	27666	51370	3	5	0.24	0.005	4.4	-0.50	C+	4n
		4196.21	27395	51219	7	7	0.11	0.028	2.7	-0.71	C	4n ,5n
		4198.64	27560	51370	5	5	0.13	0.036	2.5	~0.75	с	5 <i>n</i>
		4169.78	27395	51370	7	5	0.011	0.0021	0.20	1.84	С	5 <i>n</i>
379.	z ⁵F° - e [÷] C (694)											
		4149 37	26875	50968	11	13	0.043	0.013	20	0.84	C+	4 n 5 n
		4154.80	27167	51229	9	n	0.15	0.019	6.0	-0.36	C+	4n
		4182.79	27560	51461	5	7	0.014	0.0051	0.35	-1.59	С	5 <i>n</i>
		4104.97	26875	51229	11	11	0.0028	7.1(4)	0.10	-2.11	С	5 <i>n</i>
		4136.51	27167	51335	9	9	0.015	0.0039	0.47	1.46	C	5 <i>n</i>
		4168.94	27560	51540	5	5	0.020	0.0053	0.36	-1.58	C	5n An Eu
		4007.09	20013	01000	11	~	0.021	0.0044	0.04	-1.52	Ľ	411,511
380.	= ⁵ F° -∫ ⁻⁵ F (695)		-									
		4126.18	26875	51103	п	n	0.046	0.012	1.7	0.89	С	5n
		4114.96	27167	51462	9	9	0.012	0.0030	0.36	~1.57	c	5a
		4129.46	27395	51604	7	7	0.0070	0.0018	0.17	-1.90	С	5n
		4150.25	27666	51754	3	3	0.083	0.022	0.88	1.19	С	5 <i>n</i>
		4090.98	27167	51604	9	7	0.012	0.0023	0.27	-1.69	C	5n
		4112.35	27395	51705	7	5	0.016	0.0030	0.28	~1.68	C+	5n 4
		4158 .79	27666	51705	3	5	0.17	0.073	3.0	-0.66	c	5n
381.	z ⁵ F° - e ³ D (697)											
			07007		_		0.005					_
		4106.44 4183.03	27395 27395	51740 51294	7 7	5 7	0.029 0.0043	0.0052	0.49 0.11	-1.44 -2.10	C C	5n 5n
382.	≈ ⁵ F° − g ⁵ D (698)											
1		4084.49	26875	51350	11	9	0.12	0.024	3.5	~0.58	C+	4n
	1	4054.87	27560	52214	5	3	0.18	0.027	1.8	-0.87	C	5n
		4005.40	27000	52257	3	1	0.24	0.020	0.79		C	4n,5n
		4101.27	27395	51771	7	7	0.020	0.0070	0.66	~1.31	c l	4n 4n .5n
Ì		4082.13	27560	52050	5	5	0.027	0.0068	0.46	-1.47	č	5n
		4129.22	27560	51771	5	7	0.0061	0.0022	0.15	-1.96	C	5 <i>n</i>
383.	= ⁵ F° - r ⁵ P (700)											
		4051 02	27305	52067	-	Ę	0.035	0.0062	0.58	_1.26	C	5
		4090.09	27395	51837	7	7	0.011	0.0028	0.26	-1.30	c	ən Sn
		4079.18	27560	52067	5	5	0.059	0.015	1.0	1.13	č	5 <i>n</i>

Fe 1: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_{r} (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^{s} s^{-1})$	fu	S (at. u.)	log gf	Accuracy	Source
384.	$z {}^{5}F^{\circ} - g {}^{5}F$ (701)											
		3817.64	26875	53061	11	п	0.085	0.019	2.6	0.69	с	5 <i>n</i>
385.	$\begin{bmatrix} z \ ^{5}\mathbf{F^{o}} - h \ ^{5}\mathbf{D} \\ (702) \end{bmatrix}$											
		3804.01 3789.82	26875 27167	53155 53546	11 9	9 7	0.052 0.046	0.0093 0.0077	1.3 0. 86	0.99 -1.16	C+ C	4n ,5 <i>n</i> 5n
386.	$ \begin{array}{c} z^{-5}\mathbf{F}^{\circ} - \int^{-5}\mathbf{P} \\ (703) \end{array} $											
		3846.00 3819.50 3791.73	27167 27395 27560	53160 53569 53925	9 7 5	7 5 3	0.050 0.054 0.074	0.0086 0.0084 0.0096	0.98 0.74 0.60	-1.11 -1.23 -1.32	C C C	5n 5n 5n
387.	z ⁵ F° − ƒ ⁵ G (704)											
		3802.00	26875	53169	11	13	0.041	0.010	1.4	-0.94	С	5n
388.	$z^{-5}F^{\circ} = e^{-3}G$ (705)											
		3762.21	27167	53739	9	11	0.033	0.0086	0.96	-1.11	С	4n,5n
389.	$a^{-1}\mathbf{P} - {}^{-1}\mathbf{D}^{\mathbf{O}}$	5029.62	27543	47420	3	5	0.0055	0.0035	0.17	- 1.98	с	5 <i>n</i>
390.	$\frac{a^{-1}\mathbf{P}-x^{-3}\mathbf{P}^{\diamond}}{(720)}$											
		4779.44	27543	48460	3	1	0.017	0.0019	0.091	-2.24	с	5 <i>n</i>
391.	$a^{-1}P = w^{-3}F^{\circ}$ (723)											
		4566.99	27543	49433	3	5	0.0063	0.0033	0.15	-2.01	с	5 <i>n</i>
392.	a 'P - y 'D° (726)	4137.00	27543	51708	3	5	0.23	0.098	4.0	-0.53	C+	4 <i>n</i>
393.	a ⁻¹ P - u ⁻³ D° (728)											
		4003.76	27543	52512	3	3	0.082	0.020	0.78	-1.23	С	4n,5n
394.	$a^{-1}\mathbf{P} + {}^{3}\mathbf{D}^{\mathbf{o}}$											
		3976.61	27543	52683	3	5	0.18	0.073	2.9	-0.66	С	5n
205	in ino	9091.99	27343	53230	3	3	0.40	0.090	3.4	-0.57	C+	4n,5n
393.	a r - r*											
206	ln ico	3949.14	27543	52858	3	3	0.046	0.011	0.42	-1.49	С	5n
ə 9 0.	« г - 5°	3806.22	27543	53808	3	3	0,25	0.055	2.1	0.78	С	4n,5n
397.	$\frac{a}{(734)}^{1}P = w^{-1}D^{\circ}$	3543.67	27543	55754	3	5	0.18	0.058	2.0	-0.76	с	5 <i>n</i>
398.	a ¹ P - u ³ F° (735)											
		3410.17	27543	56859	3	5	0.48	0.14	4.7	-0.38	C+	4 <i>n</i>

fanne.

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g i	g,	$A_{ki}(10^8 \text{ s}^{-1})$	fu	S (at. u.)	log gf	Ассигасу	Source
399.	$a^{-1}D - x^{-3}D^{\circ}$ (738)											
		6016.66	28605	45221	5	7	0.0047	0.0036	0.35	1.75	с	5 <i>n</i>
400.	a ¹ D - w ³ F ^o (750)											
		4844.01	28605	49243	5	7	0.0045	0.0022	0.17	-1.96	С	5 <i>n</i>
401.	$a^{-1}D - v^{-3}D^{\circ}$ (751)											
		4869.45	28605	49135	5	7	0.0014	7.1(4)	0.057	-2.45	С	5 <i>n</i>
402.	a ¹ D - v ³ G ^o (752)											
		4705.46	28605	49851	5	7	0.0025	0.0012	0.089	-2.24	С	5 <i>n</i>
403.	a ¹ D - z ¹ D° (753)	4789.65	28605	49477	5	5	0.084	0.029	2.3	-0.84	C+	4 <i>n</i>
404.	a ¹ D - w ³ P° (754)											
		4663.18	28605	50043	5	3	0.0046	8.9(4)	0.069	-2.35	С	5 <i>n</i>
405.	$a^{-1}\mathbf{D} - z^{-1}\mathbf{F}^{0}$ (755)	4547.85	28605	50587	5	7	0.078	0.034	2.5	-0.77	C+	4 <i>n</i>
406.	a ¹ D ~ u ³ G° (760)											
		4305.20	28605	51826	5	7	0.0051	0.0020	0.14	-2.00	С	5 <i>n</i>
407.	a ¹ D - y ¹ D ^o (761)	4327.09	28605	51708	5	5	0.094	0.026	1.9	0.88	C+	4n,5n
408.	a ¹D − x ¹D° (762)	4317.04	28605	51762	5	5	0.0057	0.0016	0.11	-2.10	С	5n
409.	a 'D - 'P°	4240.37	28605	52181	5	3?	0.070	0.011	0.79	1.25	C+	4n,5n
410.	a ¹D − ³D°											
		4059.73	28605	53230	5	3	0.096	0.014	0.95	-1.15	C+	4n ,5n
411.	a ¹ D - y ¹ F ^o (768)	3989.86	28605	53661	5	7	0.058	0.020	1.3	1.01	с	5n
412.	$a^{-1}\mathbf{D} - x^{-3}\mathbf{F}^{0}$											
		3973.65	28605	53763	5	7	0.080	0.026	1.7	0.88	C+	4n,5n
413.	a ¹ D - t ³ G° (771)											
		3845.69	28605	54600	5	7	0.057	0.018	1.1	~ 1.05	С	5 <i>n</i>
414.	a ¹ D - w ¹ D° (772)	3682.24	28605	55754	5	5	1.7	0.36	22	0.25	C+	4n
415.	a 'D - w 'F° (773)	3677.31	28605	55791	5	7	0.31	0.089	5.4	0.35	С	5n

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_{i} (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f.ik	S (at. u.)	log gf	Accuracy	Source
416.	a 'H "F°											
		5584.77	28820	46721	11	9	0.0013	5.1(-4)	0.10	-2.25	с	5 <i>n</i>
417.	$a^{-1}H = {}^{5}D^{\circ}$											
		5532.75	28820	46889	11	9	0.0020	7.6(4)	0.15	-2.08	С	5 <i>n</i>
418.	a 'H - ^s H°											
		5263.87	28820	47812	11	9	0.0023	7.9(~4)	0.15	-2.06	С	5n
419.	a 'H - w 'G° (789)											
		5115.78	28820	48362	11	9	6.1(4)	1.9(-4)	0.036	-2.67	С	5 <i>n</i>
420.	a ¹ H - w ³ F ^o (792)											
		4927.42	28820	49109	11	9	0.0037	0.0011	0.20	-1.92	С	5n
421.	a ⁻¹ H - y ⁻³ H ^o (793)											
		4849.67 4809.94	28820 28820	49434 49604	11	13 11	5.4(4) 5.9(4)	2.2(-4) 2.0(-4)	0.039	-2.61	C C	5n 5n
422.	a ⁻¹ H - x ⁻¹ G° (795)	4587.13	28820	50614	11	9	0.0069	0.0018	0.29	-1.71	с	5n
423.	$a^{-1}H - x^{-3}H^{\circ}$ (796)											
		4502.59	28820	51023	11	13	0.0013	4.8(4)	0.078	-2.28	с	5 <i>n</i>
424.	a ¹ H - u ⁻¹ G° (797)	•										
		4432.57	28820	51374	11	11	0.0091	0.0027	0.43	~1.53	С	5 <i>n</i>
425.	<i>a</i> ¹ H - ¹ H ^o	4382.77	28820	51630	11	11	0.013	0.0039	0.62	-1.37	С	5 <i>n</i>
426.	$a^{-1}H - \gamma^{-3}I^{\circ}$ (800)											
		4219.36	28820	52514	11	13	0.38	0.12	18	0.12	C+	4n,8
427.	a 'H - z 'I° (801)	4118.54	28820	53094	11	13	0.58	0.17	26	0.28	С	8
428.	a ¹ H - y ¹ H° (802)	4014.53	28820	53722	11	11	0.24	0.059	8.5	-0.19	C+	4 <i>n</i>
429.	a ¹ H - w ¹ G° (804)	3846.41	28820	54811	11	9	0.19	0.035	4.8	~0.42	с	5 <i>n</i>
430.	a ^{−1} H → v ^{−3} H ^o (805)											
		3756.94	28820	55430	11	11	0.25	0.052	7.1	-0.24	C+	4n,5n
431.	a ¹ H - s ³ C° (807)											
Ì		3690.73	28820	55907	11	11	0.28	0.057	7.7	-0.20	C+	4 <i>n</i>

for the second

per la

Fe 1: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E; (cm ⁻¹)	E_t (cm ⁻¹)	g i	g.	$A_{ki}(10^8 \text{ s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
432.	a ¹ H - u ³ H ^o (808)											
		3627.05	28820	56383	11	11	0.027	0.0052	0.69	-1.24	с	5 <i>n</i>
433.	a ¹ H - u ³ F ^o (809)											
		3599.62	28820	56593	11	9	0.19	0.030	3.9	-0.48	C+	4n,5n
434.	α ⁻¹ Η ~ ν ⁻¹ G ^o (810)	3553.74	28820	56951	11	9	0.83	0.13	17	0.15	C+	4 <i>n</i>
435.	a ¹ H - x ³ I ^o (811)											
		3538.78 3534.53	28820 28820	57070 57104	11 11	13 11	0.0076 0.022	0.0017 0.0042	0.22 0.53	-1.73 -1.34	с с	8 5n
436.	z ⁵ P ^o - e ⁵ D (816)											
		6400.00	29056 29469	44677	7	9	0.059	0.046	6.8 3.4	~0.49	D- D-	14n 14n
		6246.32	29056	45061	7	7	0.029	0.017	2.4	0.93	D-	14n
		6336.84	29733	45509	3	3	0.053	0.032	2.0	-1.02	D	14n
437.	$z {}^{5}\mathbf{P}^{\circ} - e {}^{7}\mathbf{F}$ (819)	0141.73	29030	40004	ł		0.010	0.0041	0.30	1.04		Jn
		4572.86	29469	51331	5	5	0.0012	3.6(4)	0.027	2.74	c	5n
438.	$z {}^{5}P^{\circ} - f {}^{7}D$ (820)	4468.13	29056	51331	1	5	0.015	0.0032	0.35	-1.05	L.	on
		4596.06	29056	50808	7	9	0.0094	0.0038	0.41	-1.57	c	5n
		4673.16	29469	50862	5	7	0.049	0.022	1.7	0.95	D	14n
		4701.05	29733	50999	3	5	0.0078	0.0043	0.20	-1.89	C	5n
		4690.14	29469	51048	3	3	0.037	0.012	0.92	-1.61	c c	on 5n
439.	z ^s P ^o - f ^s D (821)											
		4678.85	29056	50423	7	9	0.085	0.036	3.9	-0.60	a	9
		4619.29	29056	50699	7	5	0.056	0.013	1.4	-1.05	C	5n
		4669.17	29469 29733	50880 50981	5	3	0.047 0.095	0.0091	0.70	-1.34	C C	5n 5n
440.	$z {}^{5}P^{\circ} - e {}^{7}P$ (822)				-							
		4638.01 4673.28	29056 29469	50611 50861	7 5	7 5	0.039 0.040	0.013 0.013	1.4 1.0	-1.05 -1.18	C C	5n 5n
441.	z ⁵ P° - e ⁵ G (823)											
		4560.09 4596.41	29056 29469	50980 51219	7 5	9 7	0.0050 0.0025	-0.0020 0.0011	0.21 0.085	-1.85 -2.25	C C	5n 5n

Fe 1: Allowed transitions --- Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{t} (cm ⁻¹)	B:	₿ŧ	$A_{ki} (10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Sourc
442.	$z^{-5}P^{\circ} - f^{-5}F$ (825)	;							:			
		4433.78	29056	51604	7	7	0.031	0.0090	0.92	-1.20	с	5n
		4495.95	29469	51705	5	5	0.015	0.0045	0.33	-1.65	С	5n
		4485.97	29469	51754	5	3	0.0058	0.0010	0.078	2.28	С	5n
43.	$z {}^{5}P^{o} - e {}^{3}D$ (827)											
- (4495.57	29056	51294	7	7	0.0042	0.0013	0.13	-2.05	с	5n
		4481.61	29733	52040	3	3	0.049	0.015	0.66	-1.35	С	5n
		4580.58	29469	51294	5	7	0.0043	0.0019	0.14	2.02	С	Sn
44.	z ⁵ P° - g ⁵ D (828)											
		4484.22	29056	51350	7	9	0.081	0.031	3.2	~0.66	D	9
1		4482.74	29469	51771	5	7	0.025	0.010	0.77	1.28	C	5n
İ		4401.29	29056	51771	7	7	0.069	0.020	2.0	-0.85	C+	4 <i>n</i>
		4446.83	29733	52214	3	3	0.062	0.018	0.80	-1.26	C	5 <i>n</i>
		4347.85	29056	52050	7	5	0.018	0.0037	0.37	-1.59	C	5 <i>n</i>
		4395.29	29469	52214	5	3	0.020	0.0035	0.25	1.76	С	5n
		4438.34	29733	52257	3	1	0.093	0.0092	0.40	-1.56	C	5n
45.	$z {}^{5}P^{o} - e {}^{7}S$ (829)							:				
		4440.48	29056	51570	7	7	0.0048	0,0014	0.15	2.00	с	5n
		4523.40	29469	51570	5	7	0.0056	0.0024	0.18	-1.92	С	5 <i>n</i>
46.	z ^s P° – e ^s P (830)											
		4388.41	29056	51837	7	7	0.13	0.038	3.8	0.58	C+	4.0
		4423.84	29469	52067	5	5	0.020	0.0058	0.42		С	5 <i>n</i>
		4485.67	29733	52020	3	3	0.12	0.037	1.7	-0.95	С	5 <i>n</i>
		4433.22	29469	52020	5	3	0.23	0.041	3.0	-0.69	C	5n
		4469.37	29469	51837	5	7	0.27	0.11	8.3	0.25	C+	4n
47.	z ^s P° - 4 (836)											
		3428.75	29056	58213	7	5	0.25	0.031	2.5	-0.66	D	12n
48.	a ¹ 1 - z ³ H° (838)										ł	
		5649.66	29313	47008	13	11	3.8(4)	1.5(4)	0.037	2.70	С	5n
149.	a 'I - w ³ C° (842)											
1		5284.42	29313	48231	13	11	6.7(4)	2.4(-4)	0.054	2.51	С	5n
45 0.	a ¹ I - z ¹ H ^o (843)	5242.49	29313	48383	13	11	0.032	0.011	2.5	0.84	C+	4n,8
1 51.	a ¹ I - v ³ G° (845)											
	ļ	4961.01	20313	49461	113	l n	0.0015	4 6(4)	0.098	-2.22	с	50

F-69

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	g∗	$A_{ki}(10^{9} \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
452.	a ¹ I - y ³ I° (849)											
		4309.03	29313	52514	13	13	0.024	0.0067	1.2	-1.06	C+	4n,5n,8
453.	a 'I - z 'I° (850)	4203.94	29313	53094	13	13	0.13	0.034′	6.2	-0.35	С	8
454.	a ¹ I - x ¹ H ^o (854)	3813. 88	29313	55526	13	11	0.091	0.017	2.7	-0.66	C+	4n,5n
455.	b ³ D - y ³ P° (867)											
		5760.35 5698.05	29372 29357	46727 46902	7 5	5 3	0.0015 0.0017	5.4(4) 4.9(4)	0.072 0.046	-2.42 -2.61	C C	5n 5n
456.	6 'D - 'F°											
		5762.43 5636.71	29372 29357	46721 47093	7 5	9 7	0.0014 8.6(4)	8.8(-4) 5.8(-4)	0.12 0.054	2.21 2.54	C C	5n 5n
457.	b ³ D - ⁵ D°											
		5707.07 5660.79	29372 29357	46889 47017	7 5	9 7	0.0011 4.6(4)	6.7(-4) 3.1(-4)	0.088 0.029	2.33 2.81	C C	5n 5n
458.	b ³ D - ³ D°											
		5754.41 5702.43 5568.81	29372 29357 29320	46745 46889 47272	7 5 3	7 5 3	6.7(3.3(-4) 3.2(-4) 4.4(-4)	0.044 0.030 0.024	2.63 2.80 2.88	C C C	5n 5n 5n
459.	6 ³ D - ¹ D°											
		5539.28	29372	47420	7	5	0.0011	3.7(-4)	0.047	-2.59	С	5n
4 60.	b ³ D - z ¹ G° (872)											
		5529.15	29 372	47453	7	9	5.3(4)	3.1(-4)	0.040	-2.66	С	5n
461.	b ³ D - v ⁵ F ^o (875)											
		5294.56 5298.79	29357 29372	48239 48239	5 7	5 5	7.7(4) 0.0039	3.2(-4) 0.0012	0.028 0.14	-2.79 -2.09	C C	5n 5n
462.	b ³ D - v ⁵ P° (877)											
		5320.05	29372	48163	7	5	0.0016	4.8(4)	0.059	-2.47	С	5n
463.	b ³ D - x ³ P ^o (880)											
		5280.36 5223.19 5207.95	29372 29320 29320	48305 48460 48516	7 3 3	5 1 3	0.0052 0.012 0.0034	0.0016 0.0016 0.0014	0.19 0.082 0.071	-1.96 -2.32 -2.38	C C C	5n 5n 5n
464.	b ³ D - w ³ F ^o (883)											
		4970.50	29320	49433	3	5	0.013	0.0078	0.38	1.63	с	5n

1 and

geren.

f^{arra}n.

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (cm^{-1})$	g i	g.	$A_{bi}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
465.	$\begin{vmatrix} b^{-3}\mathbf{D} - v^{-3}\mathbf{D}^{\circ} \\ (884) \end{vmatrix}$											
		5058.50 5054.64	29372 29357	49135 49135	7 5	7 7	6.2(-4) 0.0032	2.4(-4) 0.0017	0.028 0.14	-2.78 -2.07	D C	15n' 5n
466.	b ^{−3} D - z ^{−1} D° (887)											
		4968.69	29357	49477	5	5	0.011	0.0039	0.32	1.71	с	5 <i>n</i>
467.	$b^{-3}D - w^{-3}P^{\circ}$ (888)											
		4799.41	29357	50187	5	5	0.0040	0.0014	0.11	-2.16	с	5n
468.	$\begin{vmatrix} b^{-3}\mathbf{D} - v^{-3}\mathbf{F}^{\circ} \\ (894) \end{vmatrix}$											
		4542.41	29357	51365	5	7	0.0048	0.0021	0.16	-1.98	с	5n
469.	$b^{-3}D - u^{-3}C^{\circ}$ (898)											
		4483.78	29372	51668	7	9	0.0015	5.7(-4)	0.059	-2.40	с	5 <i>n</i>
470.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
		4360.81	29372	522 9 7	7	5	0.011	0.0023	0.23	1.80	С	5 <i>n</i>
471.	$b^{-3}D = {}^{3}D^{\circ}$											
		4285.83	29357	52683	5	5	0.014	0.0039	0.28	-1.71	с	5n
472.	b "D - "P"											
		4246.08	29372	52916	7	5	0.069	0.013	1.3	-1.03	C+	4n,5n
473.	$b^{-3}D - s^{-3}D^{\circ}$ (907)											
		4239.36	29372	52954?	7	7	0.019	0.0051	0.50	-1.45	с	5n
474.	$b^{-3}D - {}^{3}S^{\circ}$											
		4088.57 4082.44	29357 29320	53808 53808	5 3	3 3	0.046 0.044	0.0069 0.011	0.47 0.45	-1.46 1.48	C C	5n 5n
475.	b ³ D − ⁵ D°											
		4010.18	29372	54301	7	9	0.0088	0.0027	0.25	-1.72	с	5n
476.	b ⁻³ D - ι ⁻³ G° (913)											
		4020.49	29372	54237 54600	7	9	0.0091	0.0029	0.26	-1.70	с	5n
477.	b ⁻³ D - w ⁻¹ D° (916)	0900.20	£700(34000	J	(0.049	0.010	1.1	-1.09	L	5n
		3787.16	293 57	55754	5	5	0.12	0.026	16	0.88	C+	An 50

FUHR ET AL.

faire.

and the second

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \ { m s}^{-1})$	f _{ia}	S (at. u.)	log gf	Accuracy	Source
478.	$b^{-3}D \sim w^{-1}F^{\circ}$ (917)											
		3781.94	29357	55791	5	7	0.043	0.013	0.80	1.19	С	5 <i>n</i>
479.	b ¹G ⁵D°											
		5849.67	29799	46889	9	9	2.6(~~4)	1.3(4)	0.023	-2.92	С	5 <i>n</i>
480.	b ¹ G - z ¹ G° (924)	5662.94	29799	47453	9	9	0.0012	5.8(4)	0.098	2.28	С	5 <i>n</i>
481.	b ¹C - ⁵H°											
		5549.94 5543.15	29799 29799	47812 47834	9 9	9 7	3.5(-4) 0.0098	1.6(4) 0.0035	0.026 0.58	-2.84 -1.50	C C	5n 5n
482.	b ¹ G - w ³ G ^o (927)											
		5385.58	29799	48362	9	9	3.2(-4)	1.4(~4)	0.022	2.90	С	5n
483.	b ¹ G - z ¹ H° (928)	5379.57	29799	48383	9	11	0.0078	0.0041	0.66	-1.43	С	4n,5n,8
484.	b 'G y 'G° (929)	5288.53	29799	4870 3	9	9	0.0071	0.0030	0.47	- 1.57	D	15n
485.	b ⁻¹ G - w ⁻³ F ^ο (930)											
		5177.23	29799	4910 9	9	9	0.0012	5.0(-4)	0.076	-2.35	С	5n
486.	b ¹ C - x ³ H ^o (935)											
		4700.19	29799	51409	9	11	0.0067	0.0027	0.38	1.61	С	5n
487.	b 'G - y 'F° (940)	4189.56	29799	53661	9	7	0.030	0.0061	0.76	-1.26	C	5n
48B .	b ¹ G - x ³ F ⁰											
		4171.69	29799	53763	9	7	0.034	0.0069	0.85	-1.21	С	5n
489.	b ¹ G - w ¹ G° (945)	3996.97	29799	54811	9	9	0.074	0.018	2.1	0.80	C+	4n,5n
49 0.	b ¹ C - s ³ C° (948)											
		3829.13	29799	55907	9	11	0.031	0.0084	0.96	-1.12	С	5n
491.	z ³ F° – e ³ F (959)											
		6003.03 5952 75	31307 32134	47961	9 5	9	0.017	0.0090	1.6		D-	14n 5n
		5804.06	31307	48532	9	7	0.0017	6.7(4)	0.12	2.22	č	5n 5n
		5838.42	31805	48928	7	5	0.0021	7.7(4)	0.10	2.27	C	5n
		6188.04	31805	47961	7	9	0.0043	0.0032	0.46	-1.65	C	5 <i>n</i>
		6096.69	32134	48532	5	7	0.0035	0.0028	0.28	-1.86	C	5n

TRANSITION PROBABILITIES FOR IRON

Fe 1: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_t (\mathrm{cm}^{-1})$	g,	g.	$A_{ii}(10^8 \text{ s}^{-1})$	f ik	S (at. u.)	log gf	Accuracy	Source
492.	z ³ F° – e ³ D (965)											
		5001.86	31307	51294	9	7	0.40	0.12	17	0.02	C+	4n
		5014.94	31805	51740	7	5	0.31	0.082	9.5	0.24	C+	4n
		5022.24	32134	52040	5	3	0.27	0.060	5.0	-0.52	C+ C	4n 5n
		5099.09	32134	51740	5	5	0.0000	0.0069	0.58	-1.46	c	5n
49 3.	z ³ F° - g ^s D (966)											
		4978.60	32134	52214	5	3	0.11	0.025	2.1	0.90	D-	14n
494.	z ³ F° – e ² S (967)											
		5058.00	31805	51570	7	7	0.0013	5.0(-4)	0.058	-2.46	с	5n
495.	z ³ F° - g ⁵ F (969)											
		4452.62	31805	54258	7	5	0.0093	0.0020	0.20	-1.86	c	5n
		4492.68	32134	54386	5	3	0.029	0.0053	0.39	-1.58	с	5n
496.	z ³ F° - f ⁵ P (971)		:									
		4593.53	31805	53569	7	5	0.0065	0.0015	0.15	-1.99	C	5n
		4587.72	32134	53925	5	3	0.0088	0.0017	0.13	-2.08	L L	ən
49 7.	z ³ F ^o - f ⁵ G (972)											
		4551.65 4450.77	31805 31307	53769 53769	7 9	9 9	0.0037 0.0025	0.0015 7.5(-4)	0.15 0.099	-1.99 -2.17	C C	5n 5n
498.	z ³ F° – e ³ G (973)											
		4456.63	31307	53739	9	n	0.0075	0.0027	0.36	-1.61	С	5n
		4494.05	32134	54379	5	7	0.0086	0.0036	0.27	-1.74	C	5n
	1	4392.58	31307	54067	9	9	0.0045	0.0013	0.17	-1.93	L L	31
499.	z ³ F° - f ³ D (974)											
		4455.03	31307	53748	9	7	0.046	0.011	1.4	-1.02	С	5n
500.	z ³ F° – e ³ H (975)					l						
		4300.21	31307	54555?	9	9	0.0073	0.0020	0.26	-1.74	С	5n
501.	$\begin{bmatrix} z \ ^3F^\circ - f \ ^3F \\ (976) \end{bmatrix}$											
		4276.68 4300.83	31307 32134	54683 55379	9 5	9 5	0.029 0.055	0.0080 0.015	1.0 1.1	-1.14 1.12	C C	5n 5n
502.	z ³ F ^o - 2 (977)											
		3975.85	31307	56452	9	9	0.030	0.0070	0.83	-1.20	С	5n

Fe I: Allowed transitions--Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	₿ĸ	$A_{ki}(10^{*} \text{ s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
503.	z ³ D° – e ⁵ F (981)											
		6226.77	31323	47378	7	9	0.0014	0.0010	0.15	2.15	с	5a
504.	z ³ D° - e ³ F (982)							- 				
		5934.66	31686	48532	5	7	0.021	0.016	1.6	-1.10	с	5n
		5883.84	31937	48928	3	5	0.020	0.017	0.99	-1.29	C	5 <i>n</i>
		5798.19	31525 31686	46552 48928	5	5	0.0048	0.0024	0.32	-1.82	c	sn Sn
505.	z ³ D° - e ¹ D (984)											
		4973.10	31937	52040	3	3	0.12	0.044	2.2	0.88	C+	4 n
		4896.44	31323	51740	7	5	0.0058	0.0015	0.17	-1.98	C	5n
		4911.78	31686	52040 51740	3	5	0.018	0.0038	1.1	-1.12 -1.19	C C	5n 4n
506.	$z^{3}D^{\circ} - g^{5}D$ (985)										_	
					_							_
		4930.31 4870.05	31937 31686	52214 52214	3 5	3	0.048 0.0050	0.017	0.85	-1.28	C C	5n 5n
507.	z ³ D° – e ⁵ P (986)											
		4905.13	31686	52067	5	5	0.0058	0.0021	0.17	1.98	C	5n
508.	z ³ D° - f ³ D (992)											
		4466.94	31686	54067	5	-5	0.035	0.010	0.77	-1.28	c	5n
		4440.82	31937	54449 54449	3	3	0.033	0.0098	0.43	1.53	C	5n 5n
		4391.01	31060	J4447	5		0.012	0.0021	0.15	1.71		5/
509.	z ³ D° – f ³ F (993)											
		4279.48	31323	54683	7	9	0.016	0.0058	0.57	-1.39	C	5n
		4264.74	31937 31323	55379 55125	3	5	0.031 0.047	0.014	0.59	-1.38 -1.06	C C	5n 5n
510.	z ³ D ^o - e ³ P (994)											
		4243 79	31393	54880	7	5	0.028	0.0053	0.52	1 43	C	5.0
		4220.05	31686	55376	5	3	0.032	0.0051	0.36	-1.59	č	5 <i>n</i>
		4310.37	31686	54880	5	5	0.027	0.0074	0.53	-1.43	С	5n
511.	z ³ D° – i ⁵ D (995)											
		3839.61	31937	57974	3	5	0.40	0.15	5.6	0.35	с	5n
512.	c ³ F - ⁵ D°											
		7132.99 7068.42	32874 32874	46889 47017	9 9	9 7	0.0030 0.0093	0.0023 0.0054	0.49 1.1	-1.68 -1.31	с С	5n 5n
513.	c ³ F - z ³ H ^o (1003)											
		7024.08	32874	47106	9	9	0.0014	0.0011	0.22	-2.02	с	5n

ger anne an

fan.

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$\int E_i (\mathrm{cm}^{-1})$	E_k (cm ⁻¹)	g i	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ak}	S (at. u.)	log gf	Accuracy	Source
514.	$c^{-3}\mathbf{F} = w^{-5}\mathbf{G}^{\circ}$ (1005)											
		7000.63 7107.46	33413 33765	47693 47831	7 5	7 5	0.0014 0.0028	0.0010 0.0021	0.17 0.25	-2.14 -1.97	C C	5n 5n
515.	$c^{-3}\mathbf{F} = z^{-1}\mathbf{G}^{\circ}$ (1006)			-								
		6857.25	32874	47453	9	9	0.0013	9.2(-4)	0.19	- 2.08	с	5n
516.	$c^{-3}F - y^{-1}G^{\circ}$ (1014)											
		6315.81	32874	48703	9	9	0.0043	0.0025	0.48	-1.64	С	5 <i>n</i>
517.	$c^{-3}F - w^{-3}F^{\circ}$ (1015)											
		6157.73 6380.75	32874 33765	49109 49433	9 5	9 5	0.013 0.015	0.0072 0.0094	1.3 0.98	-1.19 -1.33	с с	5n 5n
518.	$\frac{e^{-3}\mathbf{F}-v^{-3}\mathbf{D}^{\diamond}}{(1016)}$											
		6147.85	32874	49135	9	7	0.0059	0.0026	0.47	-1.63	С	5 <i>n</i>
519.	$c^{-3}\mathbf{F} - v^{-3}\mathbf{G}^{\circ}$ (1018)	-										
		6027.06	32874	49461	9	11	0.012	0.0080	1.4	-1.14	С	5 <i>n</i>
		6215.15	33413 33765	49528 49851	7 5	9	0.0065 0.011	0.0047 0.0085	0.67 0.87	-1.48 -1.37	C C	5n 5n
520.	$c^{-3}\mathbf{F} = z^{-1}\mathbf{D}^{\circ}$ (1019)											
		6362.89	33765	494 77	5	5	0.0041	0.0025	0.26	-1.90	С	5n
521.	$c^{-3}\mathbf{F} - z^{-1}\mathbf{F}^{0}$ (1021)											
		5643.94	32874	50587	9	7	0.0031	0.0012	0.19	-1.98	С	5 <i>n</i>
522.	$c^{-3}F = x^{-1}G^{\circ}$ (1022)											
		5811.93	33413	50614	7	9	9.6(-4)	6.2(-4)	0.084	-2.36	с	5 <i>n</i>
523.	$c^{-3}F - x^{-3}H^{\circ}$ (1024)											
		5494.46	32874	51069	9	11	0.0019	0.0011	0.17	-2.02	с	5 <i>n</i>
524.	$c^{-3}F - t^{-5}D^{\circ}$ (1025)											
		5487.74	33413	51630?	7	5	0.093	0.030	3.8	-0.68	D	14n
525.	c ³ F - v ³ F ^o (1026)											
		5587.58 5680-26	33413 33765	51305	7	97	0.0039	0.0024	0.31	-1.78	C C	5n
			00100 1	01000 1	J		7.11 = 47	0.4(-4)	0.030	2.31 I	- U I	on

farmer.

FUHR ET AL.

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	₿+	$A_{ki}(10^{*} \text{ s}^{-1})$	fit	S (at. u.)	log gf	Accuracy	Source
526.	e ³ F - u ³ G° (1029)											
		5319.22	32874	51668	9	9	0.0013	5.6(4)	0.088	-2.30	с	5n
52 7.	c ³ F - ¹ H°											
:		5329.99	32874	51630	9	11	0.013	0.0065	1.0	~1.23	с	5n
528.	$c^{-3}F = y^{-1}D^{\circ}$ (1030)											
		5464.29	33413	51708	7	5	0.010	0.0032	0.40	1.65	С	5n
529.	c ³ F - u ³ D ^o (1031)											
		5293.97	33413	52297	7	5	0.0075	0.0023	0.28	-1.80	с	5n
		5332.67	33765	52512	5	3	0.0075	0.0019	0.17	-2.02	C	5 <i>n</i>
		5387.51	33413	51969	7	7	0.0028	0.0012	0.15	-2.07	C	5 <i>n</i>
		5394.68	33765	52297	5	5	0.013	0.0056	0,50	-1.55		51
		5491.84	33 765	51969	5	7	0.0015	9.4(4)	0.085	-2.33	L	50
530.	c ³ F − ³ D ^o											
		6107 O	22412	50(00	_		0.020	0.0000		1.10	C	4-5-
		5187.91	33413	52083		2	0.052	0.0092	1.1	-2.05		4 <i>n</i> ,5 <i>n</i>
		5130.09	33/03	53230	3	5	0.0073	0.0010	0.15	-2.03	C	57
		5284.02	33705	32063	3	3	0.0044	0.0018	0.10	2.04	Č	54
531.	c ³ F - ³ P ^o											
		5236.19	33765	52858	5	3	0.018	0.0045	0.39	-1.65	С	5n
532.	$c^{3}F - {}^{5}F^{0}$											
		4729.02	32874	54014	9	11	0.0070	0.0029	0.40	-1.59	с	5n
533.	$c^{3}\mathbf{F} - x^{3}\mathbf{F}^{0}$											
		4999.11	33765	53763	5	7	0.0082	0.0043	0.35	-1.67	С	5n
534.	$c^{3}\mathbf{F} - {}^{5}\mathbf{D}^{\circ}$											
		4785.96	33413	54301	7	9	0.0045	0.0020	0.22	1.86	С	5n
535.	$c^{-3}\mathbf{F} = t^{-3}\mathbf{G}^{0}$ (1042)											
		4735 BA	32874	53083	0	111	0.019	0.0079	111	-1.15	с	5n
		4800.65	33413	54237	7	9	0.021	0.0092	1.0	~1.19	C	5 <i>n</i>
		4798.26	33765	54600	5	7	0.014	0.0066	0.52	-1.48	C	5 <i>n</i>
		1, 20.20	00.00	1	ľ	.						
536.	$c^{3}F - {}^{5}P^{0}$											
		4854.89	33413	54005	7	7	0.0043	0.0015	0.17	-1.97	C	5n
537.	$c^{3}F - x^{1}H^{0}$ (1046)											
		4413.40	32874	55526	9	l 11	0.011	0.0039	0.50	-1.46	c	5n

TRANSITION PROBABILITIES FOR IRON

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_t (cm ⁻¹)	g,	B.	$A_{ki}(10^8 \text{ s}^{-1})$	fi k	S (at. u.)	log gf	Ассигасу	Source
538.	y ⁵ D° - e ⁵ F (1051)											
		7130.94	34017	48037	3	5	0.044	0.055	3.9	0.78	с	5 <i>n</i>
		7090.40	34122	48221	1	3	0.032	0.072	1.7	-1.14	С	5n
		6999.90	33096	47378	9	9	0.0049	0.0036	0.75	-1.49	С	5n
		7016.44	33507	47756	7	7	0.012	0.0092	1.5	-1.19	С	5n
		7022.98	33802	48037	5	5	0.018	0.013	1.5	1.18	С	5n
		7038.25	34017	48221	3	3	0.026	0.020	1.4	-1.23	С	5n
539.	y ⁵ D° - e ³ F (1052)											
		6916.70	33507	47961	7	9	0.0065	0.0060	0.95	-1.38	с	5n
		6786.88	33802	48532	5	7	0.0021	0.0020	0.22	~-2.00	C	5n
540.	y ⁵ D° - f ⁵ D (1055)					-						
		5815.16	33507	50699	7	5	0.0011	4.0(-4)	0.054	2.55	с	5n
541.	y ⁵ D° - e ⁷ G (1058)											
1		5481.25	33096	51335	9	9	0.012	0.0052	0.84	-1.33	с	5n
542.	$y {}^{5}D^{\circ} - e {}^{3}D$ (1061)											
		5493.51	33096	51294	9	7	0.0054	0.0019	0.31	-1.77	С	5 <i>n</i>
		5483.11	33507	51740	7	5	0.014	0.0044	0.56	-1.51	c	5n
		5381.45	33802	52040	5	3	0.031	0.0083	0.75	-1.38	С	5n
		5620.53	33507	51294	7	7	0.0057	0.0027	0.35	-1.72	C	5 <i>n</i>
		5547.00	34017	52040	3	3	0.010	0.0048	0.26	-1.84	С	5 <i>n</i>
543.	$y {}^{5}D^{\circ} - g {}^{5}D$ (1062)											4
		5473.90	33507	51771	7	7	0.057	0.025	3.2	0.75	C+	4 n
		5478.48	33802	52050	5	5	0.0074	0.0033	0.30	-1.78	c	5n
		5353.39	33096	51771	9	7	0.051	0.017	2.7	-0.81	D-	14n
		5480.87	34017	52257	3	1	0.14	0.022	1.2	-1.19	C	51
		5563.60	33802	51771	5	7	0.037	0.024	2.2	0.92	C	5n
		5543.94 5525.55	34017	52050 52214	3	5	0.037	0.028	1.6	-1.07 -1.26	C C	5n 5n
	- 100 in				•		0.010	0.000			0	
544.	y "D" - e "P (1064)											
		5386.34	33507	52067 52067	7	5	0.0092	0.0029	0.35	-1.70	C	5n 5n
		0415.10	33362	52001			0.0030	0.0011	0.15	2.01	, C	50
545.	y ^s D ^o - g ^s F (1065)											
		4991.27	33802	53831	5	7	0.088	0.046	3.8	0.64	D-	14n
546.	y ⁵ D° - h ⁵ D (1066)											
		4988.95	33507	53546	7	7	0.058	0.022	2.5	-0.82	C+	4n
		4969.92	34017	54133	3	3	0.16	0.061	3.0	-0.74	D+	10n
		4917.23	33802	54133	5	3	0.071	0.016	1.3	1.11	C	5 <i>n</i>
		1 5088 16	1 33507	⊢53155 I	7	0	0.0056	⊥ 0.0028 i	033	1 1 7 1	1 C	50

FUHR ET AL.

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{k} (cm ⁻¹)	g i	g,	$A_{ki}(10^8 \text{ s}^{-1})$	fit	S (at. u.)	log gf	Accuracy	Source
547.	y ⁵ D° - f ⁵ G (1068)											
		4835.87 4840.32 4859.13 4790.56	33096 33507 33802 33507	53769 54161 54376 54376	9 7 5 7	9 7 5 5	0.012 0.019 0.012 0.0016	0.0041 0.0068 0.0044 3.8(4)	0.59 0.76 0.35 0.042	-1.43 -1.32 -1.66 -2.57	C C C C	5n 5n 5n 5n
548.	y ⁵ D° - e ³ C (1069)											
549.	y ⁵ D° - f ³ D	4842.79	33096	53739	9	11	0.0084	0.0036	0.52	-1.49	С	5 <i>n</i>
	(1070)											
		4841.78 4892.87 4986.22 4918.01	33802 34017 34017 34122	54449 54449 54067 54449	5 3 3 1	3 3 5 3	0.015 0.057 0.026 0.047	0.0031 0.021 0.016 0.051	0.25 0.99 0.79 0.83	1.81 1.21 1.32 1.29	C D C C	5n 15n 5n 5n
550.	y ⁵ D° – i ⁵ D (1073)											
551.	y ⁵ D° - 4	4085.98	33507	57974	7	5	0.059	0.011	1.0	-1.13	С	5n
	(1075)	4095.27	33802	58213	5	5	0.037	0.0094	0.63	-1.33	с	5n
552.	y ⁵ F° – e ³ F (1078)											
		7008.01 7038.82	33695 34329	47961 48532	11 7	9 7	0.0015 0.0023	9.3(4) 0.0017	0.24 0.28	1.99 1.92	C C	5n 5n
553.	y ⁵ F° - e ⁵ G (1083)										_	
		5940.97 5877.77	33695 33695	50523 50704	11 11	13 11	0.0012 0.0012	7.6(-4) 6.3(4)	0.16 0.13	-2.08 -2.16	С С	5n 5n
554.	$y F^{0} - f F$ (1084)											
		5742.95 5858.77 5835.10	33695 34040 34329	51103 51103 51462	11 9 7	11 11 9	6.7(4) 0.0011 0.0011	3.3(-4) 7.2(-4) 7.2(-4)	0.069 0.12 0.096	2.44 2.19 2.30	C C C	5n 5n 5n
555.	y ⁵ F° – e ³ D (1086)											
		5793.93 5741.86 5814.80	34040 34329 34547	51294 51740 51740	9 7 5	7 5 5	0.0067 0.0089 0.0050	0.0026 0.0031 0.0025	0.45 0.41 0.24	-1.63 -1.66 -1.90	C C C	5ņ 5n 5n
556.	y ^s F° - g ^s D (1087)											
		5638.27 5641.46 5691.51 5731.77 5711.87 5705.48	34040 34329 34692 34329 34547 34692	51771 52050 52257 51771 52050 52214	9 7 3 7 5 3	7 5 1 7 5 3	0.048 0.033 0.073 0.017 0.017 0.020	0.018 0.011 0.012 0.0084 0.0081 0.0098	2.9 1.4 0.66 1.1 0.77 0.55	0.80 1.11 1.45 1.23 1.39 1.53	C C C C C C	5n 5n 5n 5n 5n
		5873.21 5804.48	34329 34547	51350 51771	7 5	9 7	0.0018 0.0030	0.0012 0.0021	0.16 0.20	-2.07	C C	5n 5n

 ρm_{ee}

parta da

/***

Fe I: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_{r} (cm ⁻¹)	$E_{\pm}(\mathrm{cm}^{-1})$	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f,k	S (at. u.)	log gf	Ассигасу	Source
557.	y ⁵ F° - e ⁵ P (1088)											
		5635.85	34329	52067	7	5	0.0064	0.0022	0.28	-1.82	с	5 <i>n</i>
558.	$y^{-5}F^{\circ} - g^{-5}F$ (1089)								-			
		5162.27	33695	53061	11	11	0.27	0.11	20	0.08	D	9
		5126.19	34329	53831	7	7	0.035	0.014	1.6	-1.01	C	5n
		5243.78	34329	53394	7		0.022	0.012	1.4	-1.08	C	5n 5n
		5109.65	34692	54258	3	5	0.063	0.041	2.0	-0.91	C–	15n
559.	y ^s F° - h ^s D (1090)											
		5137.38	33695	53155	11	9	0.11	0.037	6.9	-0.39	C+	4 <i>n</i>
		5125.11	34040	53546	9	7	0.30	0.092	14	-0.08	D	9
		5090.78	34329	53967	7	3	0.21	0.058	6.8 0.40	-0.39	С+ С	4n 5n
560.	y ⁵ F° - f ⁵ P (1091)			01100				0.0010				
		5228.41	34040	53160	0	7	0.021	0.0067	10	-1.22	C	5.0
		5159.06	34040	53925	5	3	0.021	0.0007	2.9	-0.77	D	14n,15n
		5197.93	34692	53925	3	3	0.022	0.0090	0.46	-1.57	С	5n
561.	y ^s F° - f ^s C (1092)											
		5133.69	33695	53169	11	13	0.31	0.14	27	0.20	D	9
		5104.21	33695	53282	11	11	0.0029	0.0011	0.21	-1.90	C	5n
		5067.15	34040	53769	9	9	0.037	0.014	2.1	-0.89	C	15n
562.	y ⁵ F° - e ⁵ H (1093)											
		5012.68	34547	54491	5	7	0.0072	0.0038	0.31	-1.72	С	5 <i>n</i>
563.	y ⁵ F° - e ³ G (1094)											
		4991.86	34040	54067	9	9	0.0043	0.0016	0.24	-1.84	С	5 <i>n</i>
		5074.75	34040	53739	9	11	0.15	0.072	11	-0.19	C·t-	4n
564.	y ^s F° - f ³ D (1095)		1									
		5023.23	34547	54449	5	3	0.026	0.0059	0.49		С	5n
		5121.64	34547	54067	5	5	0.086	0.034	2.9	-0.77	C+	4n,5n
565.	y ⁵ F° - e ³ H (1097)											
		4962.56	33695	53841?	11	13	0.013	0.0055	0.98	-1.22	с	5n
566.	$y {}^{5}F^{\circ} - f {}^{3}F$ (1098)											
		4011 59	34390	54683	7	0	0.0021	9.7(-4)	011	-217	C C	50
567.	y ⁵ F° - g ⁵ G (1103)	4711.32	04029	04000		9	0.0021	7. ((~~4)	0.11	1.1		51
		4119.04	12605	50000	 	1.2	0.15	0.044	65	-0.29	C	4
		4112.90	34547	58710?	5	7	0.072	0.044	1.8	-0.89	c c	5n
		4142.63	34692	58825	3	5	0.087	0.037	1.5	-0.95	l c	5n

FUHR ET AL.

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E _k (cm ¹)	Bi	g.	$A_{ki}(10^8 \ { m s}^{-1})$	fin	S (at. u.)	log gf	Accuracy	Source
568.	$z^{-3}P^{0} - e^{-5}F$ (1105)											
		7095.43	33947	48037	5	5	0.0030	0.0022	0.26	1.95	с	5n
569.	z [°] P° – e ³ Ð (1107)											
		5762.99	33947	51294	5	7	0.10	0.073	6.9	-0.44	C+	4n
		5753.12	34363	51740	3	5	0.072	0.059	3.4	-0.75	C+	4n
		5717.85 5618.65	34556 33947	52040 51740	1 5	3 5	0.059 0.021	0.087 0.0098	1.6 0.91		C C	5n 5n
570.	z ³ P ^o - g ⁵ D (1108)											
		5652.32	34363	52050	3	5	0.0055	0.0044	0.25	1.88	с	5 <i>n</i>
		5661.36	34556	52214	1	3	0.0078	0.011	0.21	1.95	C	5n
		5522.46	33947	52050	5	5	0.014	0.0066	0.60	-1.48	С	5n
		5472.72	33947	52214	5	3	0.017	0.0045	0.40	-1.65	c	5 <i>n</i>
571.	$z^{3}P^{\circ} - e^{-5}P$ (1109)											
		5517.08	33947	52067	5	5	0.0022	0.0010	0.091	-2.30	С	5n
572.	$z^{3}P^{\circ} - g^{5}F$ (1110)					1						
		5027.76 4992.80	33947 34363	53831 54386	5 3	7 3	0.025 0.0048	0.013 0.0018	1.1 0.088	-1.18 -2.27	C D	5n 15n
573.	z ³ P° ~ h ⁵ D (1111)											
		4993.68 5056.86	33947 34363	53967 54133	5 3	5 3	0.021 0.011	0.0080 0.0043	0.65 0.21	1.40 1.89	C C	5n 5n
574.	z ³ P ^o - f ⁵ P (1112)				_							_
		5004.04	33947	53925	5	3	0.042	0.0094	0.77	1.33	C	51
575.	z ³ P° - f ⁵ G (1113)											
		4945.64 4995.41	33947 34363	54161 54376	5 3	7 5	0.014 0.0081	0.0073 0.0050	0.59 0.25	-1.44 -1.82	C C	5n 5n
576.	b ¹ D - y ¹ D° (1128)	5856.08	34637	51708	5	5	0.010	0.0054	0.52	-1.57	с	5n
5 77.	b ¹ D - x ¹ D° (1129)	5837.71	34637	51762	5	5	0.0021	0.0011	0.10	-2.27	c	5n
578.	b 'D - 'P°	5698. 37	34637	52181	5	3?	0.0057	0.0017	0.16	2.08	с	5n
579.	<i>b</i> ¹ D – ³ D°											
		5539.83 5376.85	34637 34637	52683 53230	5 5	5 3	0.0015 0.0044	6.9(4) 0.0012	0.063 0.10	-2.46 -2.24	C C	5n 5n
580.	$b^{-1}D - w^{-1}D^{\circ}$ (1133)	4734.10	34637	55754	5	5	0.018	0.0062	0.48	1.51	с	5n

æ.

1^{em}

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	g,	8+	$A_{ki}(10^8 \text{ s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
581.	z ⁵ G° - g ⁵ F (1143)			ř								
		5361.64	35612	54258	7	5	0.020	0.0062	0.77	-1.36	С	5n
		5395.25	35856	54386	5	3	0.0061	0.0016	0.14	-2.10	C	5n
		5512.28	35257	53394	9	9	0.011	0.0050	0.81	-1.35	C	5n
		5487.16	35612	53831	5	5	0.011	0.0050	0.63	-0.97	C C	5n 5n
		0101.70	00000	0 1200		ľ	0.010	0.021		0.51	, U	
582.	$z {}^{5}G^{\circ} - h {}^{5}D$ (1144)											
		5441.32	34782	53155	11	9	0.0055	0.0020	0.39	-1.66	с	5 <i>n</i>
		5466.39	35257	53546	9	7	0.080	0.028	4.5	-0.60	D	14n
		5470.17	35856	54133	5	3	0.014	0.0036	0.33	-1.74	C	5n
583.	z ⁵ G° - f ⁵ G (1145)		:									
		5400.50	35257	53769	9	9	0.20	0.088	14	-0.10	D	9
		5389.48	35612	54161	7	7	0.14	0.060	7.4	-0.38	D-	14n
		5398.29	35856	54376	5	5	0.10	0.044	3.9	-0.66	С	5n
	l	5546.51	35257	53282	9		0.0017	0.0064	1.1	-1.24	C	5n
		5401.54	33630	54101	3	1	0.0041	0.0030	0.27	-1.63		Sn
584.	$z {}^{5}\text{G}^{\circ} - e {}^{5}\text{H}$ (1146)											
		5424.07	34844	53275?	13	15	0.57	0.29	68	0.58	D	9
		5383.37	34782	53353?	11	13	0.59	0.30	59	0.52	C+	4n,5n
		5369.96	35257	53874?	9	11	0.48	0.25	40	0.36	C+	4n
		5367.47	35012	54237	7	2	0.59	0.33	40	0.36		4n 0
		5401.27	34844	53353?	13	13	0.0025	0.0011	0.25	-1.85	Ċ	5n
		5295.32	35612	54491	7	7	0.0082	0.0034	0.42	-1.62	C	5n
585.	$z {}^{5}G^{\circ} - e {}^{3}G$ (1147)											
		5215.07	25957	54067			0.0087	0.0017	0.59	1.40	6	E
		5409.13	35257	53739	9	11	0.0087	0.0037	1.0	-1.48	c	5n
					-					1		
586.	$\begin{array}{c c} z \ {}^{5}\text{G}^{\circ} \ - \ f \ {}^{3}\text{D} \\ (1148) \end{array}$											
		5406.77	35257	53748	9	7	0.0073	0.0025	0.40	-1.65	С	5n
		5417.03	35612	54067	7	5	0.011	0.0035	0.44	-1.61	C	5n
		5489.85	35856	54067	5	5	0.0030	0.0014	0.12	-2.17	C	5 <i>n</i>
587.	$z {}^{5}\text{G}^{\circ} - e {}^{3}\text{H}$ (1149)											
		5056.00	34782	54555?	11	9	0.0033	0.0010	0.19	-1.94	с	5n
588.	$z {}^{5}\text{G}^{\circ} - f {}^{3}\text{F}$ (1150)											
		5000 50	24702	54600		0	0.00(7	0.0001	0.90			
		5023.50	34/82	54083		9	0.0067	0.0021	0.38	-1.64		5n 5n
		5146.30	35257	54683	9	9	0.0031	0.0012	0.19	-1.96	l č	5n
		5241.90	35612	54683	7	9	0.0068	0.0036	0.43	-1.60	С	5n
	500										l	l
589.	$\begin{bmatrix} z & G^{\circ} & -3 \\ (1152) \end{bmatrix}$											
		4631.48	35257	56843	9	9	0.0040	0.0013	0.18	-1.94	l c	5n

FUHR ET AL.

por la

for the second

Fe I: Allowed transitions--Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	B:	g.	$A_{ki}(10^8 \text{ s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
590.	z ³ G° - g ⁵ F (1159)											
		5653.89	35379	53061	n	11	0.0051	0.0024	0.50	-1.57	с	5n
591.	$z^{-3}G^{\circ} - h^{-5}D$ (1160)											
		5624.06	35379	53155	11	9	0.0091	0.0035	0.72	-1.41	с	5n
592.	z ³ G° - f ⁵ G (1161)											
		5619.60	35379	53169	11	13	0.0038	0.0021	0.43	1.63	С	5n
		5708.11	35768	53282	9	11	0.0059	0.0035	0.59	-1.50	C	5n
		5553.59	35768	53769	0	9	0.0027	0.0017	0.22	-1.93	C	5n 5-
		5528.89	36079	54161	7	7	0.0035	0.0016	0.20	-1.95	c c	ən 5n
		5436.30	35379	53769	11	9	0.0085	0.0031	0.61	-1.47	č	5 <i>n</i>
593.	$z^{-3}G^{\circ} - e^{-3}G$ (1163)											
		5445.04	35379	53739	11	11	0.22	0.10	20	0.04	D	9
		5463.27	35768	54067	9	9	0.33	0.15	24	0.12	C+	4 <i>n</i>
		5349.74	35379	54067	11	9	0.015	0.0054	1.0	-1.23	C	5 <i>n</i>
		əəə <i>1.</i> 9ə	30079	54007		9	0.015	0.0088	1.1	-1.21	С	5n
594.	z ³ G° - f ³ D (1164)											
		5560.23	35768	53748	9	7	0.023	0.0084	1.4	-1.12	С	5n
595.	z ³ G° - e ³ H (1165)											
		5415.20	35379	53841?	11	13	0.68	0.35	69	0.59	C+	4n.5n
		5410.91	36079	54555?	7	9	0.49	0.28	35	0.29	C+	4n,5n
		5293.03	35379	54267?	1 II	11	0.0011	4.8(-4)	0.091	2.28	С	5 <i>n</i>
		5321.11	35768	54555?	9	9	0.011	0.0047	0.75	-1.37	С	5n
596.	z ³ G° - ƒ ³ F (1166)	5178.3	35690	54996	27	2Ì	0.044	0.014	6.3	-0.43	C	5n
		5178.80	35379	54683	11	9	0.0047	0.0015	0.29	1.77	с	5n
		5164.55	35768	55125	9	7	0.018	0.0057	0.87	~1.29	č	5n
		5180.07	36079	55379	7	5	0.032	0.0092	1.1	~1.19	С	5 <i>n</i>
		5285.12 5240.10	35768	54683	9 7	9	0.0071	0.0030	0.47	1.57	C	5n
		5373.71	36079	54683	7	9	0.013	0.0030	0.07 2.9	-1.41 	C C	5n 5n
597.	y ³ F° – e ³ D (1173)									0.17	ŭ	57
		(0.10.47										
		0843.67	30086	51294 51740	9	7	0.028	0.015	3.1	-0.86	C	5n
		6885.77	37521	52040	5	3	0.029	0.0098	2.5].]	-0.99	C I	5n 5n
598.	γ ³ F ^o − g ⁵ D (1174)					-				1.01		
		6627 56	36686	51771	_	,	0.0052	0.0097	0.54	_10		F
		6715.41	37163	52050	7	5	0.0033	0.0027	0.54	-1.57	C	5n 5n
						-				1.01	~	011
599.	$y {}^{3}F^{\circ} - g {}^{5}F$ (1175)											
		5927.80	37521	54386	5	3	0.060	0.019	1.9	-1.02	с	5n

Fe I: Allowed transitions-Continued

No.	Multiplet	λ(Å)	$E_{r} (cm^{-1})$	E_{k} (cm ⁻¹)	g,	g.	$A_{k_{1}}(10^{8} \text{ s}^{-1})$	f.k	S (at. u.)	log gf	Accuracy	Source
600.	$y^{-3}F^{\circ} = h^{-5}D$ (1176)											
		6079.02 5929.70	37521 36686	53967 53546	5 9	5 7	0.032 0.012	0.018 0.0051	1.8 0.89	-1.05 -1.34	C C	5n 5n
601.	y ³ F ^o - f ⁵ P (1177)											
		6093.66 6094.42	37163 37521	53569 53925	7 5	5 3	0.013 0.0081	0.0053 0.0027	0.75 0.27	-1.43 -1.87	C C	5n 5n
602.	$y^{-3}F^{\circ} - f^{-5}C$ (1178)					1						
		6024.07 6020.17 5852.19 5881.28	36686 37163 36686 37163	53282 53769 53769 54161	9 7 9 7	11 9 9 7	0.14 0.12 0.012 0.0047	0.090 0.082 0.0061 0.0024	16 11 1.1 0.33	$ \begin{array}{r} -0.09 \\ -0.24 \\ -1.26 \\ -1.77 \end{array} $	D D C C	14n 14n 5n 5n
603.	$y^{-3}F^{\circ} = e^{-5}H$ (1179)											
		5816.36 5855.13 5696.10	36686 37163 36686	53874? 54237 54237	9 7 9	11 9 9	0.040 0.0044 0.0027	0.025 0.0029 0.0013	4.3 0.39 0.23	0.65 1.69 1.92	D— C C	14n 5n 5n
604.	$y^{-3}\mathbf{F^{o}} = e^{-3}\mathbf{G}$ (1180)											
		5930.17 5806.73	37521 37163	54379 54379	5 7	7 7	0.17 0.030	0.13 0.015	12 2.0	-0.20 -0.98	D- C	14n 5n
605.	y ³ F° - f ³ D (1181)									1		
606.	$y^{-3}F^{\circ} - e^{-3}H$ (1182)	5905.67	37521	54449	5	3	0.12	0.038	3.7	- 0.72	C	5 <i>n</i>
		5686.53 5747.95 5594.66	36686 37163 36686	54267? 54555? 54555?	9 7 9	11 9 9	0.045 0.0098 0.035	0.027 0.0062 0.016	4.5 0.83 2.7	-0.62 1.36 -0.83	C C C	5n 5n 5n
6 07.	$y^{-3}F^{\circ} = f^{-3}F$ (1183)											
		5554.89 5598.30 5421.85 5705.99 5679.02	36686 37521 36686 37163 37521	54683 55379 55125 54683 55125	9 5 9 7 5	9 5 7 9 7	0.093 0.19 0.0063 0.069 0.042	0.043 0.091 0.0022 0.043 0.028	7.1 8.4 0.35 5.7 2.6	$ \begin{array}{r} -0.41 \\ -0.34 \\ -1.71 \\ -0.52 \\ -0.85 \end{array} $	D- D- C C C	14n 14n 5n 5n 5n
608.	$\frac{y}{1}^{3}F^{\circ} - e^{-3}P$ (1184)											
609.	y ⁵P° - f ⁵D	5642.75	37163	54880	7	5	0.0037	0.0013	0.17	-2.05	С	5n
	(1187)	7024.65	36767	50999	7	5	0.014	0.0072	1.2	~1.30	С	5n
610.	y ⁵ P° - e ⁻ G (1191)											
		6862.48	36767	51335	7	9	0.0050	0.0045	0.71	-1.50	с	5 <i>n</i>

Fe 1: Allowed transitions---Continued

×.

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	g.	$A_{ki}(10^{8} { m s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
611.	y ^s P° ~ g ^s D (1195)											
		6841.35 6828.61 6752.72 6733.16	37158 37410 37410 37410 37410	51771 52050 52214 52257	5 3 3 3	7 5 3 1	0.037 0.040 0.025 0.045	0.036 0.047 0.017 0.010	4.1 3.2 1.1 0.69	-0.74 0.85 -1.29 -1.51	С С С С	5n 5n 5n 5n
612.	y ⁵ P ^o - e ⁵ P (1197)											
		6633.76 6842.67 6533.97 6810.28 6820.43	36767 37410 36767 37158 37410	51837 52020 52067 51837 52067	7 3 7 5 3	7 3 5 7 5	0.037 0.027 0.013 0.018 0.016	0.024 0.019 0.0058 0.018 0.019	3.7 1.3 0.88 2.0 1.3	0.77 -1.25 -1.39 -1.05 -1.25	C C C C C	5n 5n 5n 5n 5n
613.	y ⁵ P ^o - f ⁵ G (1201)											
		5880.00 5879.49	36767 37158	53769 54161	7 5	9 7	0.0029 0.0023	0.0019 0.0017	0.26 0.16	1.87 2.07	C C	5n 5n
614.	y ^s P° - e ^s H (1202)											
615.	y ³ P° - i ³ D (1206)	5640.46	36767	54491	7	7	0.0066	0.0031	0.41	- 1.66	С	5n
		4749.95 4714.07	36767 36767	57814 57974	7 7	7 5	0.023 0.020	0.0077 0.0048	0.84 0.53	1.27 1.47	C C	5n 5n
616.	y ⁵ P ^o - 4 (1207)											
617.	d ³ F - u ³ G° (1225)	4661.53	36767	58213	7	5	0.039	0.0090	0.97	1.20	С	5 <i>n</i>
618.	$d^{-3}F - t^{-3}G^{\circ}$	6837.00	37046	51668	9	9	0.0029	0.0020	0.41	-1.74	С	5n
		5902.52	37046	53983	9	11	0.0032	0.0020	0.35	1.74	с	5n
619.	d ¥ - s Go (1240)	5260.41	270.14	55007			0.0045	0.0000	0.37		6	
620.	d ³ F - t ³ H ^o (1245)	5300.41	37046	55907	9	11	0.0045	0.0023	0.36	1.68	C	5n
		4253.55 4203.67	37046 36976	60549 60758	9 7	11 9	0.025 0.088	0.0084 0.030	1.1 2.9	-1.12 -0.68	C C	5n 5n
621.	y ³ D ^o - g ⁵ F (1253)											
		6569.23 6597.61 6495.78 6364.38	38175 38678 38996 38678	53394 53831 54386 54386	7 5 3 5	9 7 3 3	0.067 0.022 0.071 0.024	0.056 0.020 0.045 0.0087	8.4 2.2 2.9 0.91	0.41 1.00 0.87 1.36	C C C C	5n 5n 5n 5n 5n

......

Fe 1: Allowed transitions-Continued

<u>.</u>

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_k (\mathrm{cm}^{-1})$	B,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f.a	S (at. u.)	log gf	Accuracy	Source
622.	у ³ D° - h ⁵ D (1254)											
		6330.86	38175	53967	7	5	0.0071	0.0031	0.45	-1.67	с	5n
623.	y ³ D° - f ⁵ P (1255)											
		6713.76	38678	53569	5	5	0.0087	0.0059	0.65	-1.53	С	5n
624.	y ³ D ^o - f ³ D (1258)											
		6419.98	38175	53748	7	7	0.14	0.084	12	-0.23	с	5n
		6496.46	38678	54067	5	5	0.087	0.055	5.9	-0.56	С	5n
		6469.21	38996	54449	3	3	0.092	0.058	3.7	-0.76	C	5n
		6338,90	38678	54449	5	3	0.057	0.020	2.1	0.99	C	5n
		6622.44	38078	53748	5		0.0095	0.0087	0.95	-1.36	C	5n
		0033.44	38990	54067	3	5	0.012	0.013	0.83	-1.42	C	5n
625.	y ³ D° - f ³ F (1259)											
		6055.99	38175	54683	7	9	0.075	0.053	74	-0.43	D-	140
		5898.21	38175	55125	7	7	0.0048	0.0025	0.34	-1.76	c	5n
626.	$y^{-3}D^{\circ} - e^{-3}P$ (1260)											
		6170. 49	38678	54880	5	5	0.14	0.078	7.9	0.41	D	14n
627.	x ⁵ D° - <i>i</i> ⁵ D (1281)											
		5531.95	39626	57698	9	9	0.0070	0.0032	0.53	-1.54	С	5n
		5552.70	39970	57974	7	5	0.0052	0.0017	0.22	-1.92	С	5 <i>n</i>
628.	x ⁵ D° - 4 (1282)											
		5559.64	40231	58213	5	5	0.0075	0.0035	0.32	-1.76	С	5 <i>n</i>
629.	x ⁵ F° - <i>i</i> ⁵ D (1313)											
		5732.29 5805.76	40257 40594	57698 57814	11 9	9 7	0.0073 0.0085	0.0029 0.0034	0.61 0.58	-1.49 -1.52	C C	5n 5n
630.	x ⁵ F° - g ⁵ G (1314)		i									
		5633 97	40257	58002	11	13	0.089	0.050	10	-0.26	с	5 <i>n</i>
		5655.18	40842	58520?	7	9	0.054	0.033	4.4	-0.63	č	5n
i		5650.71	41018	58710?	5	7	0.038	0.026	2.4	-0.89	Ċ	5 <i>n</i>
		5650.01	41131	58825	3	5	0.059	0.047	2.6	0.85	с	5 <i>n</i>
		5549.66	40257	58271?	11	11	0.0047	0.0022	0.44	-1.62	С	5n
631.	a ¹ F - v ¹ G° (1327)	6089.57	40534?	56951	7	9	0.023	0.017	2.4	-0.93	с	5n

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

FUHR ET AL.

Fe II

Ground State

Ionization Potential

1s²2s²2p⁶3s²3p⁶3d⁶4s⁶D_{9/2}

 $16.183 \text{ eV} = 130524 \text{ cm}^{-1}$

Allowed Transitions

List	of	tabulated	lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
2029 84	6	2666.63	35	4416.82	10	5234.62	28
2021.34	6	2684.94	29	4472.92	17	5264.81	27
2051.69	6	2712.39	29	4489.19	17	5276.00	28
2296.66	14	2753.29	32	4491.40	17	5284.10	21
2303.35	14	2879.24	36	4515.34	17	5316.62	28
2369 23	19	2902.46	36	4520.23	17	5325.56	28
2379.00	19	2910.76	36	4522.63	18	5337.73	27
2388.39	7	2934.49	36	4534.17	17	5362.87	27
2414.08	13	2997.75	40	4541.52	18	5414.05	27
2433.50	13	3002.33	41	4549.47	18	5425.25	28
2554.95	30	3044.84	41	4555.89	17	5534.83	31
2559.77	30	3131.72	43	4576.33	18	5627.49	34
2561 58	30	3162.80	45	4582.84	17	5991.37	26
2562.54	3	3186.74	5	4583.83	18	6084.10	26
2573 21	30	3187 29	45	4595.68	18	6113.33	26
2585.88	1	3213.31	5	4601.34	23	6147.77	39
2591.54	3	3277.35	2	4620.51	18	6149.25	39
2592.78	44	3360.10	42	4629.34	17	6239.91	39
2598.03	33	3938.29	4	4656.97	23	6247.55	39
2598.37	1	4087.27	11	4663.70	24	6369.46	20
2599.40	1	4122.64	11	4666.75	17	6383.72	46
2607.09	1 1	4124.79	8	4670.17	9	6416.92	39
2611.87	i	4128.74	10	4923.93	22	6432.68	20
2613.82	1	4173.45	10	4953,98	47	6446.40	48
2617.62	1	4178.86	11	4993.35	16	6456.39	39
2621.67	1	4227.14	25	5000.74	9	6516.08	20
2623.13	44	4233.17	10	5018.45	22	7224.47	38
2625.49	44	4258.16	11	5019,45	47	7301.56	37
2625.66	1	4303.17	10	5132.66	15	7479.69	37
2628.29		4369.40	11	5136.80	15	7515.79	38
2631.32	1	4385.38	10	5169.00	22	7711.71	38
2664.67	35	4413.60	12	5197.56	28		

For this spectrum, unlike that of Fe I, there is an extreme dearth of reliable *f*-value data. Recent advanced techniques have provided data for relatively few lines. Furthermore, due to the lack of appropriate comparison data, the absolute scale of Fe II is not nearly as well established as that of Fe I.

We chose the following experimental data sources for this compilation: work by Bridges [1] and Baschek et al. [3], who measured relative oscillator strengths in emission with wall-stabilized arc sources; Huber [2], who employed the anomalous dispersion (hook) method; Wolnik et al. [4], who used the shock tube-emission technique; Smith and Whaling [5], who determined absolute f-values by combining beam-foil lifetimes with branching ratios, obtained from a hollow cathode discharge; and f-value data derived from solar spectra, compiled by Blackwell et al. [6] and Phillips [7].

The most accurate set of relative oscillator strengths is probably that of Bridges. In his experiment, he measured all lines photoelectrically and accounted for effects of self-absorption. A calibrated tungsten strip lamp was used as a radiometric standard, and a predisperser served to reduce scattered light. He normalized his relative data to an absolute scale by using the phase-shift lifetime of the z $^{6}D_{9/2}^{0}$ level, as measured by Assousa and Smith [8]. As part of this normalization, Bridges measured all of the principal downward decays from this level. The absolute data of ref. [1] should generally be accurate to \pm 25 percent except for the weakest lines.

The lifetime data of Assousa and Smith appear to be quite reliable, and agree within ± 10 percent with the data of Brzozowski et al. [9], who used the high frequency deflection technique. A further indication of the reliability of the Assousa and Smith data is obtained from the case of Fe I, where these lifetimes agree---within \pm 6.1 percent---with the precise laser-excitation lifetime measurements of Figger et al. [10,11].

The data of refs. [2], [3], [4], and [7] overlap with those of Bridges [1]. We have compared these four sources directly to ref. [1] for subsequent normalization. A consistent absolute scale is

obtained by multiplying the oscillator strengths of Baschek et al. by a factor of 1.41, those of Huber by 0.52, those of Phillips by 1.56, and those of Blackwell et al. by 1.60. Ref. [6] did not share lines in common with ref. [1]. In this case, we adjusted the log gf-values of Blackwell et al. to agree with the renormalized data of Baschek et al. and Wolnik et al. (The data of Wolnik et al. required no renormalization.) As a consistency check, we have compared the (incomplete) inverse sums of our tabulated transition probabilities, for the downward transitions to the experimental lifetime of refs. [8] and [9]. As the following table shows, the agreement is satisfactory.

Lifetimes (in ns) of excited levels of Fe II

Upper atomic level	$ au_{i}$ (experiment)	$(\Sigma, A_h)^{-1}$ (this compilation)
z ⁶ D ^o ₅₂	3.9*	< 5.8°
z ⁶ D ^o ₇₂	4.0 ^h	< 4.9°

" Ref. [8].

" Ref. [9].

_

⁶ All measured downward transitions have been included. The indicated sums may be quite incomplete, since for several of the significant transitions, no reliable data exist. This is especially true for the $z^{-5}D_{2,2}^{6}$ upper level, where we have omitted the contribution of a blended resonance line.

The data of Smith and Whaling contain no lines in common with Bridges, as they all originate from high-lying levels. Nevertheless, we have included this reference because the beam-foil lifetimebranching ratio technique has been shown to be quite accurate for other members of the iron group, i.e., Ti I, Fe I, and Ni I.

References

- Bridges, J. M., Contributed Papers-International Conference on Phenomena in Ionized Gases, 11th, 418, Ed. Stoll, L., Czech, Acad. Sci., Inst. Phys., Prague, Czech. (1973).
- [2] Huber, M. C. E., Astrophys. J. 190, 237 (1974).
- [3] Baschek, B., Garz, T., Holweger, H., and Richter, J., Astron. Astrophys. 4, 229 (1970).
- [4] Wolnik, S. J., Berthel, R. O., and Wares, G. W., Astrophys. J. 166, L31 (1971).
- [5] Smith, P. L., and Whaling, W., Astrophys. J. 183, 313 (1973).
- [6] Blackwell, D. E., Shallis, M. J., and Simmons, G. J., Astron. Astrophys. 81, 340 (1980).
- [7] Phillips, M. M., Astrophys. J., Suppl. Ser. 39, 377 (1979).
- [8] Assousa, G. E., and Smith, W. H., Astrophys. J. 176, 259 (1972).
- [9] Brzozowski, J., Erman, P., Lyyra, M., and Smith, W. H., Phys. Scr. 14, 48 (1976).
- [10] Figger, H., Siomos, K., and Walther, H., Z. Phys. 270, 371 (1974).
- [11] Figger, H., Heldt, J., Siomos, K., and Walther, H., Astron. Astrophys. 43, 389 (1975).

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \text{ s}^{-1})$	f _{ik}	S (at. u.)	log gf	Accuracy	Source
1.	$a ^{\circ} D - z ^{\circ} D^{\circ}$											
	(uv 1)											
		2500 40	0.0	38450	10	10	2.22	0.225	10.3	0.352	C	1
		2611.87	384.8	38660	8	8	0.98	0.10	69	-0.10	n	2n
		2617.62	667.7	38859	6	6	0.43	0.044	2.3	-0.58	D	2 <i>n</i>
		2621.67	977.1	39109	2	2	0.66	0.068	1.2	-0.87	D	2n
		2585.88	0.0	38660	10	8	0.71	0.057	4.9	- 0.24	D	2 <i>n</i>
		2598.37	384.8	38859	8	6	1.3	0.10	6.8	-0.10	c	1
		2607.09	667.7	39013	6	4	1.5	0.10	5.1	-0.22	D	2n
		2613.82	862.6	39109	4	2	1.9	0.099	3.4	0.40	D	2n
		2625.66	384.8	38459	8	10	0.34	0.044	3.0	-0.45	С	1
		2631.32	667.7	38660	6	8	0.38	0.052	2.7	-0.51	D	2л
		2628.29	977.1	39013	2	4	0.77	0.16	2.8	-0.49	D	2n
2.	a ⁴ D - z ⁶ D ^o											
	(1)	1						Í				
		3277.35	7955	38459	8	10	0.0023	4.6(-4)*	0.040	2.43	D	1
3.	a ⁴D - z ³P°											
	(uv 64)											
		2562.54	7955	46967	8	6	1.5	0.11	7:4	-0.06	D	2n
		2591.54	8392	46967	6	6	0.52	0.052	2.7	-0.51	С	I
4.	$a^{4}P - z^{6}D^{9}$											
	(3)											
		2028.20	12474	20050	6	6	0.0020	65(1)	0.051	9.41	D	7
		3930.29	13474	30039	0	0	0.0028	0.5(-4)	0.051	2.41	U	in
5.	$a^{4}P - z^{4}D^{\circ}$											
	(6)											
		3213.31	13673	44785	4	6	0.065	0.015	0.63	-1.22	с	1
		3186.74	13673	45044	4	4	0.039	0.0060	0.25	-1.62	с	1

Fe II: Allowed transitions

FUHR ET AL.

Fe II: Allowed transitions-Continued

ي معجور

area.

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	F_k (cm ⁻¹)	g,	g.	$A_{ki}(10^{5} \text{ s}^{-1})$	f.*	S (at. u.)	log gf	Accuracy	Source
6.	a ² C - y ² C ^o (uv 93)	1										
	(2,	2041.25	15945	64929	10	10	0.46	0.020	10	-0.54	D	E
		2041.33	16369	65110	8	8	0.40	0.029	1.9	-0.54	D	5
		2029.84	15845	65110	10	8	0.076	0.0038	0.25	-1.43	D-	5
7.	a ² H - z ² I ^o (uv 117)											
		2388.39	20806	62662	10	12	0.14	0.014	1.1	0.84	D	5
8.	$a^{2}D - z^{4}F^{0}$ (22)											
		4124.79	20517	44754	6	8	5.0(5)	1.7(-5)	0.0014	- 3.99	D	6n
9.	b ⁴ P - z ⁶ F ^o (25)											
		4670.17 5000.74	20831 22410	42237 42401	6 2	8 4	3.0(-5) 2.0(-5)	1.3(5) 1.5(-5)	0.0012 4.9(~4)		E E	3n 6n
10.	$b {}^{4}P - z {}^{4}D^{o}$ (27)											
		4233.17	20831	44447	6	8	0.0064	0.0023	0.19	1.86	D	7n
		4416.82	22410	45044	2	4	0.0039	0.0023 5 7(4)	0.067	-2.34 -2.47	D	4 7n
		4303.17	21812	45044	4	4	0.0061	0.0017	0.096	2.17	D	7 <i>n</i>
		4385.38 4128.74	22410 20831	45206 45044	2 6	2 4	0.0059 4.2(-4)	0.0017 7.2(-5)	0.049 0.0059	-2.47 -3.36	D D-	7n 7n
11.	b 'P - z 'F° (28)											
		4178.86	20831	44754	6	8	0.0012	4.3(4)	0.035	-2.59	D	6n,7n
		4369.40	22410	45290	2	4	3.5(-4)	2.0(-4)	0.0058	-3.40	D	7n
		4122.64	20831	45080	6	6	5.1(···4)	1.3(-4)	0.011		D	7n 7-
		4087.27	20831	45290	6	4	5.6(-5)	9.4(6)	7.6(4)	-4.25	E	7n
12.	$a^{-4}H - z^{-4}F^{\circ}$ (32)											
		4413.60	21582	44233	10	10	7.5(-5)	2.2(5)	0.0032	-3.66	D	бн
13.	a ⁴ H - z ² l ⁴ (uv 164)											
		2414.08 2433.50	21252 21582	62662 62662	14 10	12 12	0.0094 0.091	7.0(-4) 0.0097	0.078 0.78	-2.01 -1.01	E D	5 5
14.	a ⁴ H - y ² G° (uv 167)											
		2303.35 2296.66	21430 21582	64832 65110	12 10	10 8	0.054 0.037	0.0036 0.0023	0.33 0.18	1.37 1.63	D D	5 5
15.	b ⁴ F - z ⁶ F ^o (35)											
		5132.66	22637	42115	10	10	2.8(-5)	1.1(5)	0.0019	-3.96	D-	6n
	Į	1 5136.80	1 22939	42401	1 6	4	J 3.3(5)	8.6(~6)	8.7(4)	4.29	I E	1 6n

TRANSITION PROBABILITIES FOR IRON

Fe II: Allowed transitions -- Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g∗	$A_{ki}(10^8 \text{ s}^{-1})$	f _{it}	S (at. u.)	log gf	Accuracy	Source
16.	b ⁴ F - z ^b P ^o (36)											
		4993.35	22637	42658	10	8	7.0(5)	2.1(-5)	0.0035	-3.68	Е	3 <i>n</i>
17.	b ⁴ F - z ⁴ F° (37)	4563.5	22807	44714	28	28	0.0024	7.4(-4)	0.31	-1.69	D	1,3n,6n,7n
		4629.34 4555.89 4515.34 4491.40 4520.23	22637 22810 22939 23031 22637	44233 44754 45080 45290 44754	10 8 6 4	10 8 6 4	0.0013 0.0019 0.0018 0.0023 0.0010	4.3(-4) 5.9(-4) 5.5(-4) 6.9(-4) 2.5(-4)	0.066 0.071 0.049 0.041 0.037	$ \begin{array}{r} -2.37 \\ -2.33 \\ -2.48 \\ -2.56 \\ -2.60 \\ \end{array} $	D D D D	$ 1 \\ 6n,7n \\ 1 \\ 6n,7n \\ 1 $
		4489.19 4472.92 4666.75 4582.84 4534.17	22810 22939 22810 22939 23031	45080 45290 44233 44754 45080	8 6 8 6 4	6 4 10 8 6	$\begin{array}{c} 6.6(-4) \\ 3.4(-4) \\ 1.4(-4) \\ 3.3(-4) \\ 2.4(-4) \end{array}$	$\begin{array}{c} 2.5(-4) \\ 1.5(-4) \\ 6.7(-5) \\ 5.6(-5) \\ 1.4(-4) \\ 1.1(-4) \end{array}$	0.018 0.0059 0.0069 0.013 0.0066	-2.92 -3.40 -3.35 -3.08 3.36	D D D D D	7n 7n 7n 3n 3n
18.	b ⁴ F - z ⁴ D° (38)											
		4583.83 4549.47 4522.63 4620.51 4576.33 4541.52 4595.68	22637 22810 22939 22810 22939 23031 23031	44447 44785 45044 44447 44785 45044 44785	10 8 6 8 6 4 4	8 6 4 8 6 4 6	0.0063 0.0018 0.0064 1.8(-4) 5.7(-4) 0.0022 2.5(-5)	$\begin{array}{c} 0.00159\\ 4.2(-4)\\ 0.0013\\ 5.9(-5)\\ 1.8(-4)\\ 6.8(-4)\\ 1.2(-5)\end{array}$	0.240 0.050 0.12 0.0072 0.016 0.041 7.3(-4)	1.80 2.47 2.11 3.33 2.97 2.57 4.32	C D E D D E	1 7n 4 3n 3n 4 7n
19.	b ⁴ F - y ² G° (uv 182)											
		2369.23 2379.00	22637 22810	64832 64832	10 8	10 10	0.026 0.064	0.0022 0.0068	0.17 0.43	-1.66 -1.27	D D	5 5
20.	a ⁶ S - z ⁶ D ^o (40)											
		6516.08 6432.68 6369.46	23318 23318 23318 23318	38660 38859 39013	6 6 6	8 6 4	1.5(~-4) 8.9(-5) 3.9(-5)	1.3(4) 5.5(5) 1.6(5)	0.017 0.0070 0.0020	3.11 -3.48 -4.02	D D E	6n,7n 6n,7n 6n,7n
21.	a ⁶ S = z ⁶ F ^o (41)											
		5284.10	23318	42237	6	8	3.9(-4)	2.2(-4)	0.023	-2.88	D	6n,7n
22.	a ⁶ S - z ⁶ P ^o (42)	5062.4	23318	43066	6	18	0.020	0.023	2.3	-0.86	C-	1,7n
		5169.00 5018.45 4923.93	23318 23318 23318	42658 43239 43621	6 6 6	8 6 4	0.011 0.026 0.030	0.0057 0.010 0.0073	0.58 0.99 0.71	-1.47 -1.22 -1.36	D C C	7n 1 1
23.	a ⁶ S - z ⁴ D ^o (43)											
		4656.97 4601.34	23318 23318	44785 45044	6 6	6 4	1.2(-4) 3.4(-5)	3.8(-5) 7.2(6)	0.0035 6.5(4)	-3.64 -4.36	E E	3n 7n
24.	a ⁶ S - z ⁴ F ⁰ (44)											
		4663.70	23318	44754	6	8	5.8(-5)	2.5(-5)	0.0023	~3.82	D	7 <i>n</i>

jana,

 $e^{i\pi i \alpha_{i}}$

Fe II: Allowed transitions---Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	8 *	A _{ki} (10 [°] s ⁻¹)	fi*	S (at. u.)	log gf	Accuracy	Source
25.	a ⁶ S - z ⁴ P ^o (45)											
		4227.14	23318	46967	6	6	3.1(4)	8.4(~5)	0.0070	~3.30	D-	7n
26.	a ⁴ C - z ⁶ F ^o (46)											
		5991.37 6084.10	25429 25805	42115 42237	12 10	10 8	5.4(5) 3.8(5)	2.4(5) 1.7(5)	0.0057 0.0034	-3.54 -3.77	D D	6n 6n
		6113.33	25982	42335	8	6	2.3(-5)	9.8(6)	0.0016	-4.11	Е	6n
27.	a ⁴ G - z ⁴ D° (48)											
		5362.87	25805	44447	10	8	0.0014	4.7(-4)	0.083	-2.33	D	7n 6n 7n
		5414.05	25982	44447	8	8	1.5(-4)	6.6(5)	0.0094	-3.28	D-	6n,7n
	4- 4-4	5331.13	20055	44785	0	0	1.9(4)	8.2(5)	0.0080	-3.31	D	/n
28.	a.*G - z *F° (49)											
		5316.62 5276.00	25429 25805	44233 44754	12 10	10 8	0.0045 0.0033	0.0016 0.0011	0.34 0.19	-1.72	D D	4
		5234.62	25982	45080	8	6	0.0032	0.0010	0.14	-2.10	D	7n 7
		5197.56 5425.25	25805	45290 44233	0 10	4 10	0.0041 2.2(4)	9.5(5)	0.11	-2.18	D	1n 6n,7n
		5325.56	25982	44754	8	8	2.8(4)	1.2(4)	0.017	-3.02	D	6n,7n
29.	a ⁴ G - z ² I° (uv 201)											
		2712.39 2684.94	25805 25429	62662 62662	10 12	12 12	0.11 0.0043	0.015 4.6(4)	1.3 0.049	-0.84 -2.25	D+ D	5 5
30.	a ⁴ G - y ² G° (uv 205)											
		2561.58	25805	64832	10	10	0.0081	8.0(4)	0.067	~2.10	D-	5
		2554.95 2573.21	25982 25982	65110 64832	8	8 10	0.019	0.0019 0.014	0.13 0.93	-1.83	D D	5 5
		2559.77	26055	65110	6	8	0.22	0.029	1.5	-0.76	D+	5
31.	b ² H - z ⁴ F° (55)											
		5534.83	26170	44233	12	10	5.2(4)	2.0(4)	0.044	-2.62	Ð	6n,7n
32.	b ² H – z ² I° (uv 235)											
		2753.29	26353	62662	10	ļ2	1.71	0.233	21.1	0.368	с	5
33.	b ² H - y ² C° (uv 239)											
		2598.03	26353	64832	10	10	0.020	0.0020	0.17	-1.69	D	5
34.	a ² F − z ⁴ F° (57)											
		5627.49	27315	45080	8	6	2.4(~5)	8.7(~6)	0.0013	-4.16	Е	6n

TRANSITION PROBABILITIES FOR IRON

Fe II: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_{i} (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	<i>g</i> ,	g.	$A_{i_{1}}(10^{8} \text{ s}^{-1})$	f_{ik}	S (at. u.)	log gf	Accuracy	Source
35.	a ² F - y ² G° (uv 263)											
		2664.67	27315	64832	8	10	1.50	0.200	14.0	0.203	С	5
		2066.63	27620	65110	0	8	1.62	0.230	12.1	0.140	L L	5
36.	b ² G - y ² G° (uv 278)	2906.1	30556	64956	18	18	0.043	0.0055	0.94	-1.01	D	5
		2902.46	30389	64832	10	10	0.038	0.0048	0.46	-1.32	D	5
		2910.76	30764	65110	8	8	0.0055	7.0(-4)	0.054	-2.25		5
		2879.24 2934.49	30389 30764	64832	10 8	8 10	0.029	0.0029 0.0021	0.27 0.16	-1.78	E D+	5 5
37.	$b \ {}^{4}D - z \ {}^{4}F^{\circ}$ (72)											
		7470.60	21200	44754	6	o	21(-5)	25(5)	0.0052			6.0
		7301.56	31388	45080	6	6	4.4(~5)	3.5(-5)	0.0032	-3.68	D- D-	6 <i>n</i>
38.	$b {}^{4}D - z {}^{4}D^{o}$ (73)											
		7711.71	31483	44447	8	8	4.0(-4)	3.6(-4)	0.073	-2.54	D	6 <i>n</i>
		7224.47	31368	45206	2	2	4.1(-4)	3.2(-4)	0.015	3.19	D	6 <i>n</i>
		7515.79	31483	44785	8	6	6.6(-5)	4.2(-5)	0.0083	-3.47	D	6n
39.	b ⁴ D - z ⁴ P ⁹ (74)											
		6456 20	21402	46067		6	0.0091	0.0010	0.17	-210	n	60.70
		6247.55	31388	40907	6	4	0.0021	9.1(-4)	0.17	-2.10 -2.26	Ð	6n.7n
		6147.77	31364	47626	4	2	0.0022	6.2(4)	0.050	-2.61	D	7 <i>n</i>
		6416.92	31388	46967	6	6	9.2(-4)	5.7(-4)	0.072	2.47	D	6n,7n
		6149.25	31368	47626	2	2	0.0021	0.0012	0.049	-2.62	D	6n,7n
		6239.91	31368	47390	2	4	1.9(-4)	2.2(4)	0.0090	-3.36	D	7n
40.	b ⁴ D - y ² G° (uv 292)			!								
		2997.75	31483	64832	8	10	0.0048	8.1(-4)	0.064	-2.19	E	5
41.	b ² F - y ² G° (98)											
		3044.84	31999	64832	8	10	0.011	0.0019	0.15	~1.82	D	5
		3002.33	31812	65110	6	8	0.018	0.0032	0.19	-1.71	D+	5
42.	$\frac{a^{-2}I - z^{-2}I^{\circ}}{(105)}$											
		3360.10	32910	62662	12	12	0.0084	0.0014	0.19	1.77	D	5
43.	a ² I - y ² G° (107)											
		3131.72	32910	64832	12	10	0.012	0.0015	0.18	-1.75	D	5
44.	α ² I – z ² K ^o (uv 318)	2607.9	32892	71225	26	30	2.2	0.26	58	0.83	с	5
		2592.78	32876	71433	14	16	2.25	0.259	31.0	0.56	c	5
		2625.49	32910	70987	12	14	2.04	0.246	25.5	0.470	С	5
	ł	2623.13	32876	70987	14	14	0.092	0.0095	1.1	88.0-1	D+	5

F-91

Fe II: Allowed transitions-Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g∗	$A_{ki}(10^{8} \text{ s}^{-1})$	f _i k	S (at. 11.)	log gf	Accuracy	Source
45.	c ² G - y ² G° (120)											
		3187.29 3162.80	33466 33501	64832 65110	10 8	10 8	0.028 0.042	0.0043 0.0063	0.45 0.52	1.37 1.30	D+ D+	5 5
46.	z ⁴ D° - c ⁴ D											
		6383.72	44785	60445	6	6	0.0023	0.0014	0.18	-2.08	D	6 <i>n</i>
47.	$c^{-2}\mathbf{F} - y^{-2}\mathbf{G}^{o}$ (168)											
		5019.45 4953.98	44915 44930	64832 65110	8 6	10 8	0.0015 0.0016	7.1(4) 7.8(4)	0.094 0.077	- 2.25 - 2.33	D- D-	5 5
48.	c ⁴F - x ⁴C° (199)											
		644 6.40	50188	65696	8	10	0.0018	0.0014	0.24	-1.95	Ð	6n

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe III

Ground State

Ionization Potential

Allowed Transitions

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No:
1942 4	15	1020 20	9	1061 23	2	2058.2	0
1040.4	15	1930.39	2	1901.23	3	2030.2	12
1044.0		1931.31	3	1902.72	3	2030.30	12
1843.0	15	1937.33	2	1904.20	3	2039.08	9
1846.9	15	1943.48	2	1966.20	3	2061.75	9
1849.41	11	1945.34	3	1987.50	1	2084.97	8
1854.38	1 11	1950.33	13	1991.61	1	2087.13	8
1865.20	17	1951.01	6	1994.07	1	2087.91	8
1893.98	10	1951.3	6	1995.27	1	2088.63	5
1896.80	10	1952.3	6	1995.56	1	2089.09	8
1898.9	7	1952.65	6	1996.42	1	2090.1	8
1903.3	7	1953.32	6	2002.5	18	2090.14	5
1904.3	19	1953.5	6	2039.51	14	2091.31	8
1907.58	10	1954.22	3	2053.5	9	2097.48	5
1915.08	2	1954.98	13	2057.06	9	2103.30	4
1922.79	2	1959.32	3	2057.9	16	2107.32	4

For this spectrum we have chosen the calculations of Biemont [1] and of Kurucz and Peytremann [2]. Biemont obtained radial wavefunctions by means of the scaled Thomas-Fermi method and calculated individual line strengths in intermediate coupling. Similarly, Kurucz and Peytremann used a semiempirical scaled Thomas-Fermi-Dirac approach with very limited configuration interaction. Generally, the log gf-values of refs. [1] and [2] are in quite good agreement, particularly for strong lines; e.g., 68% of the data for common lines agree within \pm 50%. In this compilation, we have included only those lines showing 50% or better agreement between refs. [1] and [2].

We were able to assess the reliability of Kurucz and Peytremann's (or Biemont's) absolute scale by comparing the calculated inverse transition probability sums with beam-foil lifetimes for four excited

1s²2s²2p⁶3s²3p⁶3d⁶ ⁵D₄

 $30.651 \text{ eV} = 247221 \text{ cm}^{-1}$

References

levels measured by Andersen et al. [3]. We considered only ref. [2] for this study because its branching ratio data were more complete than those of Biemont. The comparison shows that the beam-foil lifetimes are, on the average, only 14% longer than the corresponding inverse sums of Kurucz and Peytremann.

Biemont, E., J. Quant. Spectrosc. Radiat. Transfer 16, 137 (1976). Kurucz, R. L., and Peytremann, E., Smithsonian Astrophysical Observatory

- [2] KUTUCZ, K. L., and Peytremann, E., Smithsonian Astrophysical Observatory Special Report 362 (1975).
- [3] Andersen, T., Petersen, P., and Biemont, E., J. Quant. Spectrosc. Radiat. Transfer 17, 389 (1977).

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g ;	g.	$A_{ki}(10^8 \text{ s}^{-1})$	fik	S (at. u.)	log gf	Accuracy	Source
1.	⁵ G - ⁵ G° (uv 50)											
		1097 50	62495	112740	12	12	10	0.20	25	0.58	n	1.9
		1907.50	63466	113740	13	13	4.9	0.29	18	0.30	n n	1,2
		1994.07	63487	113635	9	9	3.5	0.23	12	0.28	D	1.2
		1995.56	63494	113605	7	7	3.7	0.22	10	0.19	D	1,2
		1996.42	63495	113584	5	5	4.2	0.25	8.2	0.10	Ð	1,2
		1995.27	63487	113605	9	7	1.0	0.048	2.8	-0.36	D	1,2
		1996.42	63494	113584	7	5	0.96	0.041	1.9	0.54	D	1,2
2.	⁵ G - ⁵ H°											
	(uv 51)											
		1915.08	63425	115642	13	15	6.0	0.38	31	0.69	D	1,2
		1922.79	63466	115474	11	13	5.5	0.36	25	0.60	D	1,2
		1930.39	63487	115290	9	11	5.1	0.35	20	0.50	D	1,2
		1937.35	63494 63495	115111	7	9	5.1	0.37	17	0.41	D	1,2
1												
3.	°D – °F°		ļ			ļ	Į	ļ				
	(uv 61)											
		1931.51	69696	121469	9	11	5.3	0.36	21	0.51	D	1,2
		1945.34	69837	121242	7	9	3.7	0.27	12	0.28	D	1,2
		1954.22	69838	121009	5	7	3.5	0.28	9.0	0.15	D	1,2
		1959.32	69788	120826	3	5	2.8	0.27	5.2	-0.09	D	1,2
		1962.72	69747	120697	1		2.3	0.39	2.5	-0.41		1,2
		1954.22	609837	121009			1.3	0.074	3.3	-0.29		1,2
		1964.26	69788	120620	3	3	22	0.13	25	-0.42	D	1,2
		1966.20	69838	120697	5	3	0.28	0.0099	0.32	-1.31	D	1,2
4.	³ G - ³ F°											
.	(uv 66)											
						}						Ì
		2103.80	70729	118247	9		2.9	0.15	9.3	0.13	D	1,2
		2107.32	70725	118164	7	5	3.8	0.18	8.7	0.10	D	1,2
5.	³ G ~ ³ H°]					
	(uv 67)										-	
		2097.48	70694	118355	11	13	4.5	0.35	27	0.59	D	1,2
		2090.14	70729	118557	9	11	4.4	0.35	22	0.50	D	1.2
		2088.63	70694	118557	11	11	0.17	0.011	0.83	-0.92	D	1,2
6.	³ G ~ ³ G°											
	(uv 68)											
		1951.01	70694	121950	11	11	5.3	0.30	21	0.52	D	1,2
		1952.65	70729	121941	9	9	4.9	0.28	16	0.40	D	1,2
		1953.32	70725	121920	7	7	5.1	0.29	13	0.31	D	1,2
		[[1951.3]	70694	121941	11	9	0.34	0.016		0.75		1,2
		[[1953.5]	70729	121920	9		0.40	0.018	1.0	-0.79		1,2

Fe III: Allowed transitions

Fe III: Allowed transitions----Continued

No.	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	g.	$A_{kr}(10^8 \ { m s}^{-1})$	fu	S (at. u.)	log gf	Accuracy	Source
7.	³ P - ³ S°											
		[1898.9] [1903.3]	73728 73849	126391 126391	5 3	3 3	3.7. 1.8	0.12 0.099	3.8 1.9	0.22 0.53	D D	1,2 1,2
8.	${}^{3}D - {}^{3}D^{o}$ (uv 77)											
		2087.13 2091.31 2087.91 2084.97 2089.09 [2090.1]	76957 77102 77075 76957 77102 77075	124854 124904 124955 124904 124955 124904	7 5 3 7 5 3	7 5 3 5 3 5	3.1 2.6 2.9 0.75 1.1 0.64	0.20 0.17 0.19 0.035 0.043 0.070	9.6 5.9 3.9 1.7 1.5 1.4	$\begin{array}{r} 0.15 \\ -0.07 \\ -0.24 \\ -0.61 \\ -0.67 \\ -0.68 \end{array}$	D D D D D D	1,2 1,2 1,2 1,2 1,2 1,2
9.	³ D - ³ F ^o (uv 78)											
		2061.75 2059.68 2057.06 [2053.5] [2058.2]	76957 77102 77075 76957 77102	125444 125638 125673 125638 125673	7 5 3 7 5	9 7 5 7 5	4.4 3.9 3.7 0.44 0.76	0.36 0.35 0.39 0.028 0.048	17 12 7.9 1.3 1.6	0.40 0.24 0.07 0.71 0.62	D D D D D	1,2 1,2 1,2 1,2 1,2
10.	³ I - ³ H ⁰ (uv 83)											
		1907.58 1896.80 1893.98	79840 79845 79860	132263 132565 132659	15 13 11	13 11 9	5.3 5.0 5.5	0.25 0.23 0.24	24 19 16	0.57 0.48 0.42	D D D	1,2 1,2 1,2
11.	⁵ F - ⁵ D° (uv 97)											
		1849.41 1854.38	83138 83647	137210 137573	11 3	9 1	4.3 5 .7	0.18 0.098	12 1.8	0.30 -0.53	D D	1,2 1,2
12.	'I - 'K° (uv 100)	2058.56	83430	131992	13	15	4.5	0.33	29	0.63	D	1,2
13.	³ H - ³]° (uv 116)											
		1950.33 1954.98	88923 88695	140196 139846	13 11	15 13	5.5 4.3	0.36 0.29	30 21	0.67 0.50	D D	1,2 1,2
14.	'H - 'l° (uv 134)	2039.51	92524	141540	11	13	4.3	0.32	24	0.55	D	1,2
15.	³ F - ³ D°	[1843.4]	93389	147636	9	7	4.8	0.19	10	0.23	D	1,2
		[1844.3] [1846.9] [1845.0]	93392 93413 93413	147615 147556 147615	7 5 5	5 .3 5	4.9 5.5 0.78	0.18 0.17 0.040	7.7 5.2 1.2	0.10 0.07 0.70	D D D	1,2 1,2 1,2
16.	¹ F - ¹ D ⁰	[2057.9]	97041	145618	7	5	3.7	0.17	8.1	0.08	D	1,2
17.	'F - 'F° (uv 154)	1865.20	97041	150655	7	7	6.1	0.32	14	0.35	Ď	1,2
18.	${}^{1}\mathbf{D} - {}^{1}\mathbf{F}^{o}$	[2002.5]	109571	159493	5	7	4.3	0.36	12	0.26	D	1,2
19.	'D - 'D°	[1904.3]	109571	162085	-5	5	5.7	0.31	9.7	0.19	D	1,2

pares.

jan.

farmer.

Fe vii

Ground State

Ionization Potential

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{2-3} F_2$

$[126] eV = [1016000] cm^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
						······································	
150.19	18	153.74	24	155.55	19	236.78	6
150.28	17	154.04	23	155.99	32	236.87	12
150.40	18	154.21	23	158.16	31	238.04	5
150.52	18	154.27	29	158.48	30	238.39	5
150.81	16	154.30	29	165.08	34	239.73	11
150.85	16	154.33	22	166.63	33	239.85	11
151.02	16	154.36	29	231.04	3	240.05	11
151.04	16	154.45	29	231.64	3	240.08	- 11
151.14	16	154.56	29	231.73	3	240.22	- 11
151.49	15	154.65	29	232.26	3	240.57	- 11
151.51	15	154.70	21	232.44	3	243.37	13
151.67	15	154.85	28	232.95	3	244.09	10
151.75	15	154.89	20	233.02	3	244.52	10
151.78	15	154.92	28	233.76	2	244.54	10
151.97	15	154.95	28	234.34	2	245.15	4
152.07	14	155.12	28	234.75	7	245.49	9
152.91	25	155.24	27	235.66	1	246.01	9
153.66	24	155.41	26	236.39	12	247.46	8

For this ion we have selected the data of Warner and Kirkpatrick [1], who used the single configuration scaled Thomas-Fermi approximation and calculated individual line strengths in intermediate coupling. These authors provided data for a large number of transitions within the $3d^2-3d4p$, $3d^2-3d4f$, and 3d4s-3d4p arrays. Of we have tabulated only those lines that have actually been observed, either by Edlén [2], as listed in the compilation of Kelly and Palumbo [3], or by Cady [4].

It is expected that for this relatively simple, essentially twoelectron spectrum Warner and Kirkpatrick's data should be fairly reliable (except when configuration interaction effects become appreciable). This conjecture seems to be supported by the good agreement between their calculated data and beam-foil lifetimes available for Ti III (see, for example, ref. [5]), an ion which is isoelectronic with Fe VII.

References

 Warner, B., and Kirkpatrick, R., Publications of the Department of Astronomy, University of Texas at Austin, Vol. 3, No. 2 (1969) and Mon. Not. R. Astron. Soc. 144, 397 (1969).

[2] Edlén, B., private communication.

[3] Kelly, R. L., and Palumbo, L. J., Atomic and Ionic Emission Lines Below 2000 Angstrons-Hydrogen through Krypton, Naval Research Laboratory Report 7599 (June 1973).

[4] Cady, W. M., Phys. Rev. 43, 322 (1933).

[5] Wiese, W. L., and Fuhr, J. R., J. Phys. Chem. Ref. Data 4, 263 (1975).

No.	Transition array	Multiplet	λ(Å)	E_r (cm ⁻¹)	E_k (cm ⁻¹)	g.	g.	$A_{k_{\ell}}(10^{8} { m s}^{-1})$	f.ı	S (at.u.)	log gf	Accu- racy	Source
1.	$3d^2$ - $3d4p$	${}^{3}F - {}^{1}D^{o}$											
			235.66	1047	425388	7	5	0.37	2.2(-4)*	0.0012	- 2.81	E	1
2.		³ F - ³ D°	:										
			234.34	1047	427780 427780	7	5	110 34	0.067	0.36	-0.33	D	1

Fe VII: Allowed transitions

F~9.5

FUHR ET AL.

para.

, see a

1000

Fe VII: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E _# (cm ⁻¹)	Bi	g,	$A_{ki}(10^8 { m s}^{-1})$	fik.	S (at.u.)	lag gf	Accu- racy	Source
3.		³ F - ³ F ^o	232.07	1346	432245	21	21	73	0.059	0.95	0.09	D	1
			231.73	2327	433870	9	9	60	0.049	0.33	-0.36	n	1
			232.26	1047	431606	7	7	21	0.017	0.092	-0.92	D	li l
			232.44	0	430215	5	5	21	0.017	0.065	-1.07	D	1
			232.95	2327	431606	9	7	67	0.042	0.29	-0.42	D	1
			233.02	1047	430215	7	5	46	0.027	0.14	-0.73	D	1
			231.04	1047	433870	7	9	4.1	0.0042	0.022	1.53	E	1
			231.64	0	431606	5	7	2.8	0.0032	0.012	-1.80	E	1
4.		¹ D ~ ¹ D°	245.15	17475	425388	5	5	70	0.063	0.26	0.50	D	1
5.		''D - "P°											
			238.04	17475	437567	5	5	0.98	8.3(4)	0.0033	~2.38	E	1
			238.39	17475	436963	5	3	18	0.0094	0.037	-1.33	D	1
6.		$^{1}D - ^{1}F^{\circ}$	236.78	17475	439812	5	7	6.8	0.0080	0.031	-1.40	D	1
7.		'D - 'P°	234.75	17475	443455	5	3	86	0.043	0.17	-0.67	D	1
8.		*P - 'D°											
			247.46	21275	425388	5	5	0.51	4.7(4)	0.0019	-2.63	Е	1
9.		³ P - ³ D°											
			245.49	20428	427780	3	5	23	0.035	0.085	0.98	D	1
			246.01	21275	427780	5	5	1.9	0.0017	0.0069	-2.07	E	1
10.		³ P - ³ F°										ļ	
			244.09	21275	431606	5	7	5.5	0.0069	0.028	-1.46	D	1
			244.52	20428	430215	3	5	1.9	0.0028	0.0069	-2.07	E	1
			244.54	21275	430215	5	5	0.024	2.2(5)	8.8(5)	3.96	Е	1
11.		³ P - ³ P ^o	240.13	20855	437304	9	9	120	0.11	0.75	0.02	D	1
			240.22	21275	437567	5	5	100	0.087	0.35	-0.36	D	1
			240.08	20428	436963	3	3	35	0.030	0.072		D	1
		1	240.57	21275	436963	5	3	40	0.021	0.083	~0.98	D	1
ł			240.05	20428	437010	3	1	130	0.037	0.089	-0.95	D	1
			239.73	20428	437567	3	5	25	0.037	0.087	0.96	D	1
			239.85	20037	436963	1	3	34	0.089	0.070	-1.05	D	1
12.		³ P - ¹ P ^o											
			236.87	21275	443455	5	3	18	0.0091	0.036	-1.34	Ð	1
			236.39	20428	443455	3	3	1.2	0.0010	0.0024	-2.52	E	1
13.		¹ G - ¹ F ^o	243.37	28915	439812	9	7	210	0.15	1.1	0.12	D	l
14.	$3d^2-3d4f$	³ F - ¹ G°											
			152.07	2327	659923	9	9	49	0.017	0.076	0.82	D	1
15.		${}^{3}\mathbf{F} - {}^{3}\mathbf{F}^{\mathbf{o}}$											
			151.78	2327	661176	9	9	170	0.058	0.26	~0.28	Ð	1
			151.67	1047	660360	7	7	390	0.13	0.47	-0.03	D	1
			151.51	0	660022	5	5	530	0.18	0.45	-0.04	D	1
			151.97	2327	660360	9	7	29	0.0077	0.035	-1.16	D	
		1	1 15175	1 1047	660022	- 7 I	5	50	10.012	0.044	L ••• 1.06	ID	11

Fe VII: Allowed transitions -- Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{t} (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \mathrm{s}^{-1})$	f.k	S (at.u.)	log gf	Accu- racy	Source
16.		³ F – ³ C°											
			151.02	9397	664483	0	111	1600	0.67	3.0	0.78	n.	,
		[150.85	1047	663953	7	0	1300	0.58	20	0.70	D D	1
]	150.81	0	663104	5	7	1300	0.50	1.5	0.01	D	
			151.14	2327	663953	Q	o o	210	0.02	0.32	-0.10		1
			151.04	1047	663104	7	7	220	0.072	0.02	-0.27	n	1
					000101		·		0.011	0.21	0.21		•
17.		³ F - ¹ F°											
										1			
			150.28	0	665425	5	7	220	0.10	0.25	-0.79	D	1
18.		${}^{3}F - {}^{3}D^{0}$											
		1	150.52	2327	666663	9	7	68	0.018	0.080	-0.79	D	1
1			150.40	1047	665925	7	5	73	0.018	0.061	-0.91	D	1
			150.19	0	665843	5	3	75	0.015	0.038	-1.12	D	1
19.		'D - 'F°											
			155 55	17475	660260	E	7	12	0.0066	0.017	1.40	n	
			100.00	11413	000300	3	<i>'</i>	15	0.0000	0.017	-1.46	U	1
20.		¹ D - ³ G°											
									-				
1			154.89	17475	663104	5	7	83	0.042	0.11	-0.68	D	1
21.		'D - 'D°	154.70	17475	663882	5	5	700	0.25	0.64	0.10	D	1
			154.00	12.05	((5 + 0 5	_	_	1000	0.50				
44.		D - P*	154.33	17475	005425	5	1	1200	0.58	1.5	0.46	D	1
23.		$^{1}D = ^{3}D^{\circ}$											
			154.04	17475	666663	5	7	44	0.022	0.056	-0.96	D	1
			154.21	17475	665925	5	5	.24	0.0087	0.022	~1.36	D	1
24.		'D - 'P°											
			100.04	12.25	((7000	_	-					-	
			153.74	17475	667903	5	5	15	0.0053	0.013	-1.58	E	1
			153.00	17475	008205	э	3	39	0.0083	0.021	-1.38	Ð	1
25		'D - 'P°	152.01	17475	671470	5	2	110	0.022	0.056	0.95	n	1
-0.			102.71	11410	011410		9	110	0.022	0.030	0.93		1
26.		³ P - ¹ D°											
			155.41	20428	663882	3	5	30	0.018	0.028	-1.26	D	1
27.		"P - 'F-											
			155.94	01075	665 AD5	-	-	17	0.0005	0.000		n	
			155.24	21275	005425	э	(⁽	17	0.0085	0.022	-1.37	D	Ţ
28		³ P - ³ D ^o											
			154.95	21275	666663	5	7	1000	0.53	1.3	0.42	D	1
Ì			154.92	20428	665925	3	5	970	0.58	0.89	0.24	D	1
			154.85	20037	665843	1	3	770	0.83	0.42	-0.08	D	1
			155.12	21275	665925	5	5	8.2	0.0030	0.0076	-1.83	E	1
20		3n 3no	154.50	80055			~						
29.		r - "r"	154.50	20855	668090	9	9	850	0.31	1.4	0.44	D	1
			154.65	21275	667903	5	5	880	0.32	0.81	0.20	n	1
			154.36	20428	668265	3	3	420	0.15	0.23	-0.35	D	1
			154.56	21275	668265	5	3	350	0.076	0.19	-0.42	D	ī
1			154.30	20428	668497	3	1	890	0.11	0.16	-0.50	D	1
			154.45	20428	667903	3	5	1.5	8.8(4)	0.0013	-2.58	E	1
1		1 1	154.27	20037	668265	1	3	81	0.087	0.044	-1.06	D	1
FUHR ET AL.

Fe vii: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	<i>E</i> ; (cm ⁻¹)	E_k (cm ⁻¹)	g i	g.	Aki (10 ⁸ 51)	f.i.k	S (at.u.)	log gf	Accu- racy	Source
30.		'G - 'G°	158.48	28915	659923	9	9	230	0.086	0.40	-0.11	D	1
31.		'G - 'F°											
			158.16	28915	661176	9	9	8.9	0.0034	0.016	-1.52	E	1
32.		'G – 'H°	155.99	28915	669978	9	11	1800	0.80	3.7	0.86	D	1
33.		'S - ³ D°											
ĺ			166.63	65707	665843	1	3	14	0.017	0.0095	-1.76	E	1
34.		'S - 'P°	165.08	65707	671470	1	3	690	0.85	0.46	-0.07	D	1

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe viii

Ground State

Ionization Potential

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
98.39	8	112.49	5	114.29	4	117.65	2
98.58	8	112.57	7	114.56	4	118.28	2
112.26	5	112.70	5	116.18	3	118.63	1
112.27	7	112.81	7	116.43	3	118.89	1
112.29	6	112.83	4	117.18	3	119.37	1
112.47	5	112.93	6				

For this potassium-like ion, we have compiled oscillator strengths taken from Cowan [1], who performed Hartree-Fock-Slater calculations in intermediate coupling. Biemont [2] has applied a single configuration Hartree-Fock approximation to the calculation of multiplet oscillator strengths for transitions of the type ns-n'p and np-n'd, where n,n' = 4, 5, 6, 7, and 8. We have not tabulated material, however, because of the strong possibility of configuration interaction of these single-valence-electron states with configurations of the type $3p^53d^2$, $3p^53dns$, $3p^53dnp$, etc.; e.g., the $3p^{5(2}P^{\circ})3d^2(^{3}P)$ ²P^o state can mix strongly with the $3p^{6}4p$ ²P^o state.

A third reference providing f-value data on this spectrum is that by Czyzak and Krueger [3]. These authors calculated radial wavefunctions by the Hartree-Fock self-consistent field method and used LS coupling to provide individual line strengths. Because of intermediate coupling effects found by Cowan, however, we did not tabulate the data of ref. [3].

References

[1] Cowan, R. D., Astrophys. J. 147, 377 (1967).

[2] Biemont, E., Physica C 81, 158 (1976).

[3] Czyzak, S. J., and Krueger, T. K., Astrophys J. 144, 381 (1966).

1s²2s²2p⁶3s²3p⁶3d⁻²D_{3/2}

 $151.06 \text{ eV} = 1218400 \text{ cm}^{-1}$

TRANSITION PROBABILITIES FOR IRON

Fe VIII: Allowed transitious

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_{\rm t} ({\rm cm}^{-1})$	g.	g.	$A_{ki}(10^8 \mathrm{s}^{-1})$	f _{ik}	S (at.u.)	log gf	Асси- тасу	Sourc
1.	3p°3d− 3p ⁵ 3d('₽°)4s	² D - ² P°	119.03	1103	841200	10	6	380	0.048	0.19	0.31	D	1
			118.89	1838	842930	6	4	330	0.047	0.11	0.55	D	1
			119.37	0	837750	4	2	380	0.041	0.064	-0.79	D	1
			118.63	0	842930	4	4	52	0.011	0.017	-1.36	D	1
2.	3p*3d - 3p*3d(3F*)4s	² D - ⁴ F°											
			118.28	1838	847250	6	8	9 9	0.0062	0.014	143	D	1
			117.65	0	849990	4	6	32	0.010	0.015	-1.40	D	1
3.		$^{2}D - ^{2}F^{\circ}$	116.76	1103	857560	10	14	350	0.10	0.39	0.01	D	1
			11718	1838	855100	6	8	320	0.088	0.20	0.28	n n	
			116.18	0	860710	4	6	400	0.12	0.18	-0.32	D	1
			116.43	1838	860710	6	6	22	0.0045	0.010	-1.57	D	1
4.	3p*3d - 3p*3d(*D*)4s	² D - ⁴ D°											
			114.56	1838	874770	6	8	97	0.0072	0.016			1
			114.30	1838	876810	6	6	50	0.0098	0.022	-1.23	D	1
			[112.83]	0	[886300]	4	4	30	0.0058	0.0086	-1.63	D	1
5.		² D - ² D°	112.48	1103	890130	10	10	430	0.081	0.30	0.09	D	1
			112.49	1838	890810	6	6	380	0.073	0.16	-0.36	D	1
			112.47	0	889110	4	4	320	0.061	0.090	-0.61	D	1
			112.70	1838	889110	6	4	87	0.011	0.024	-1.18	D	1
			112.26	0	890810	4	6	67	0.019	0.028	-1.12	D	1
6.	$\frac{3p^{h}3d}{3p^{5}3d}$	$^{2}D - ^{2}F^{\circ}$											
			112.93	1838	887320	6	8	220	0.055	0.12	-0.48	D	1
			[112.29]	1838	[892400]	6	6	150	0.028	0.062	-0.77	D	1
7.	3p*3d- 3p*3d(1D*)4s	² D - ² D°											
							i			1			
			[112.81]	1838	[888300]	6	6	19	0.0037	0.0082	~1.65		
			[112.57]	0	[888300]	4	6	84	0.024	0.032	-1.02	D	1
8.	3p ⁶ 3d- 3p ⁵ 3d(' P°)4s	² D - ² P°	98.53	1103	[1016000]	10	6	240	0.021	0.068	-0.68	D	1
				1000	E102(0003			910	0.000	0.020	. 0.02		,
			[98.39] [98.39]	1838 0	[1016000]	4	4	210	0.020	0.039	-1.14	D	
		1	1 L 1 2 2 2 3		[[1010000]			100	1 0.010	0.040			1.1

FUHR ET AL.

Fe ix

Ionization Potential

statistical exchange) method.

Line strengths for the first three multiplets of this argon-like ion

are from the superposition-of-configurations (SOC) calculations of

Weiss [1], which are expected to be fairly accurate. Lin et al. [2]

have computed transitions to 4s and 4d states by using the Dirac-

Hartree-Fock method, but they have omitted correlation in excited

states. Oscillator strengths for 3d-4f transitions have been calcu-

lated by Fawcett et al. [3] using Cowan's HX (Hartree-Fock with

1s²2s²2p⁶3s²3p⁶ ¹S₀

 $235.04 \text{ eV} = 1895800 \text{ cm}^{-1}$

Allowed Transitions

References

[1] Weiss, A. W., private communication.

[2] Lin, D. L., Fielder, W., Jr., and Armstrong, L., Jr., Phys. Rev. A 16, 589 (1977).

[3] Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).

	1												
No.	Transition array	Multiplet	λ(Å)	<i>E_i</i> (cm ¹)	E_k (cm ⁻¹)	gi	g,	$A_{ki}(10^8 \mathrm{s}^{-1})$	fa	S (at.u.)	log gf	Асси- гасу	Source
1.	3p ⁶ -3p ⁵ 3d	¹ S – ³ P ^o											
			244.912	0	408307	1	3	0.087	2.4(4)*	1.9(4)	- 3.63	Е	1
2.		¹ S - ³ D ^o											
			217.108	0	460609	1	3	2.0	0.0043	0.0031	-2.36	E	1
3.		'S - 'P°	171.075	0	584547	1	3	2010	2.65	1.49	0.423	C+	1
4.	$3p^{6}-3p^{5}(^{2}P^{o}_{3/2})4s$	'S (ૠ,½)⁰											
			105.208	0	950500	1	3	320	0.16	0.055	-0.80	D	2
5.	$3p^6-3p^{5}(^2P^o_{1/2})4s$	¹S - (½,½)°											
			103.566	0	965570	1	3	520	0.25	0.085	0.60	Ð	2
6.	$3p^{6}-3p^{5}(^{2}P^{0}_{3/2})4d$	'S - ²[½]º											
			83.457	0	1198220	1	3	990	0.31	0.085	0.51	D	2
7.	3p [*] - 3p ⁵ (² P ^o _{1/2})4d	'S – ²[‰]⁰											
			82.430	0	1213150	1	3	560	0.17	0.046	-0.77	D	2
8.	3p ⁵ 3d 3p ⁵ (² P ^o _{3/2})4f	³ P° - ³ [%]											
			111.791	408307	1302830	3	5	1200	0.39	0.43	0.07	E	3
0		3 DG 25V1	111.715	403703	1300920	1	3	1000	0.30	0.21	0.25	E	3
9.		r* - [2]											
		340 20-1-	112.096	413667	1305760	5	7	1600	0.41	0.76	0.31	E	3
10.		"F" - "[%]									1		
			113.793 114.024	425800 429311	1304590 1306320	9 7	11 9	2000 1600	0.48 0.40	1.6 1.1	0.64 0.45	E E	3 3

Fe IX: Allowed transitions

Ground State

TRANSITION PROBABILITIES FOR IRON

F-100

Fe IX: Allowed transitions-Continued

						. (106 6)	racy	Source
433807	1310150	5	7	1400	0.37	0.69	0.27	E	3
455612	1311750	7	9	1600	0.41	1.1	0.46	E	3
462616	1324710	5	7	1600	0.46	0.88	0.36	E	3
456744	1323650	5	7	1400	0.39	0.74	0.29	E	3
	433807 455612 462616 456744	433807 1310150 455612 1311750 462616 1324710 456744 1323650	433807 1310150 5 455612 1311750 7 462616 1324710 5 456744 1323650 5	433807 1310150 5 7 455612 1311750 7 9 462616 1324710 5 7 456744 1323650 5 7	433807 1310150 5 7 1400 455612 1311750 7 9 1600 462616 1324710 5 7 1600 456744 1323650 5 7 1400	433807 1310150 5 7 1400 0.37 455612 1311750 7 9 1600 0.41 462616 1324710 5 7 1600 0.46 456744 1323650 5 7 1400 0.39	433807 1310150 5 7 1400 0.37 0.69 455612 1311750 7 9 1600 0.41 1.1 462616 1324710 5 7 1600 0.46 0.88 456744 1323650 5 7 1400 0.39 0.74	433807 1310150 5 7 1400 0.37 0.69 0.27 455612 1311750 7 9 1600 0.41 1.1 0.46 462616 1324710 5 7 1600 0.46 0.88 0.36 456744 1323650 5 7 1400 0.39 0.74 0.29	433807 1310150 5 7 1400 0.37 0.69 0.27 E 455612 1311750 7 9 1600 0.41 1.1 0.46 E 462616 1324710 5 7 1600 0.46 0.88 0.36 E 456744 1323650 5 7 1400 0.39 0.74 0.29 E

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe x

Ground State

Ionization Potential

Allowed Transitions List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
75.685	17	96.122	10	104.248	23	180.407	6
76.006	16	96.788	10	104.638	23	182.310	6
76.495	17	97.122	9	137.027	20	184.542	2
76.822	16	97.591	10	139.868	18	190.044	2
77.627	14	100.026	24	140.296	21	192	8
77.728	13	101.733	25	140.678	18	195.399	8
77.812	12	101.846	25	144.328	19	201.556	8
77.865	12	102.095	25	170.58	7	220.882	5
78.151	15	102.192	22	174.534	7	229.99	4
78.769	12	102.829	27	175.266	7	234.356	3
94.012	11	103.319	27	175.474	6	345.75	1
95.338	10	103.724	26	177.243	6	365.57	1
95.374	11						

Significant correlation effects in this chlorine-like ion make theoretical oscillator strengths for low-lying transitions somewhat uncertain. Nussbaumer [1] has calculated energy levels and oscillator strengths for many transitions by using a scaled Thomas-Fermi method with configuration interaction and relativistic effects; we quote here his values for the $3s^23p^5-3s^3p^6$ resonance lines. Bromage et al. [2] have studied the 3p-3d transitions by using Cowan's semi-empirical HX method. Since they also tabulated percentage compositions of all levels of the $3p^43d$ configuration, we have their results over those of Nussbaumer, because this information allowed us to match the f-value data with the appropriate term designations. We have also employed earlier f-values due to Fawcett et al. [3] for transitions to n = 4 levels. The accuracy ratings for transitions for which the upper or lower level is indicated to be of low purity in LS coupling have been lowered to "E." Transitions are obving any level for which the dominant component is significantly less than 50% have been excluded from this compilation.

References

- [1] Nussbaumer, H., Astron. Astrophys. 48, 93 (1976).
- [2] Bromage, C. E., Cowan, R. D., and Fawcett, B. C., Phys. Scr. 15, 177 (1977).
- [3] Fawcett, B. C., Cowau, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).

 $1s^22s^22p^63s^23p^5 {}^{2}\mathbf{P}^{o}_{3/2}$

 $262.1 \text{ eV} = 2114000 \text{ cm}^{-1}$

FUHR ET AL.

Fe X: Allowed transitions

No.	Transition array	Multiplet	λ(Å)	E; (cm ⁻¹)	E_k (cm ⁻¹)	g i	g,	$A_{ki}(10^8 \mathrm{s}^{-1})$	fik.	S (at.u.)	log gf	Accu- racy	Source
1.	$3s^23p^5 - 3s3p^6$	²P° - ²S	352.11	5228	289230	6	2	56	0.035	0.24	-0.68	E	1
			345.75 365.57	0 15683	289230 289230	4 2	2 2	39 17	0.035 0.035	0.16 0.084	-0.85 -1.15	E E	1 1
2.	3p ^{\$} −3p ⁴ ('D)3d	² P° - ² S	186.34	5228	541882	6	2	1900	0.33	1.2	0.29	D	2
			184.542 190.044	0 15683	541882 541882	4 2	2 2	1500 420	0.38 0.23	0.92 0.29	0.18 ~0.34	D D	2 2
3.		² P° – ⁴ F	034.254	0	496701		4		5 2/- 4%			F	9
		200 40	234.350	U	420701	4	0		5.3(-4)		2.07	E	2
4.		*P ^o - *P	229.99	0	434800	4	2	3.0	0.0012	0.0036	-2.32	D	2
5		² P ^o - ² F											
0.			220.882?	0	452730?	4	6	0.30	3.3(-4)	9.6(-4)	-2.88	E	2
6.	3p ⁵ -3p ⁴ (³ P)3d	² P° – ² P	178.30	5228	566093	6	6	1900	0.91	3.2	0.74	E	2
			177.243	0	564197	4	4	1900	0.90	2.1	0.56	Е	2
			180.407	15683	569885	2	2	1400	0.70	0.83	0.15	E	2
			175.474	15683	564197	4 2	4	40	0.04	0.25	-1.1	Ē	2
7.		²P° ~ 2D	174.51	5228	578270	6	10	2200	1.7	5.7	1.00	D	2
			174.534	0	572954	4	6	2200	1.5	3.4	0.78	D	2
			175.266	15683	586244	2	4	2100	1.9	2.2	0.58	D	2
			170.58	U	580244	4	4	00	0.029	0.065	-0.94	D	2
8.	3p ⁵ 3p ⁴ (¹ S)3d	² P° - ² D	195	5228	[517000]	6	10	7.9	0.0075	0.029	-1.35	D	2
			[192]	0	[521000]	4	6	0.06	5(-5)	l(4)	-3.7	E	2
			201.556	15683	511773	2	4	11	0.014	0.019	-1.55	D	2
			192.399	U	511773	4	4	0.0	0.0038	0.0098	-1.82		2
9.	3p ³ -3p ⁴ (³ P)4s	²₽° ~ *P											
			97.122	0	1029600	4	4	350	0.050	0.064	-0.70	D	3
10.		² P ^o - ² P	96.342	5228	1043200	6	6	1100	0.15	0.28	-0.05	D	3
			96.122	0	1040300	4	4	870	0.12	0.15	-0.32	D	3
			96.788	15683	1048900	2	2	780	0.11	0.070	-0.66	0 0	3
			97.591	15683	1040300	2	4	70	0.02	0.01	-1.4	E	3
11.	3p ⁵ -3p ⁴ (1D)4s	² P° - ² D											
			94.012 95.374	0 15683	1063700 1064200	4 2	6 4	470 550	0.093 0.15	0.12 0.094	-0.43 -0.52	D D	3 3
12.	3p ⁵ -3p ⁴ (³ P)4d	²P° - ²D	78.163	5228	1284600	6	10	1400	0.22	0.34	0.12	D	3
			77.865	0	1284300	4	6	1600	0.22	0.23	-0.06	D	3
			78.769 77.812	15683 0	1285100 1285100	2 4	4	400 800	0.075	0.039	-0.82	E	3
		2B0 4F		ľ		*						_	-
15.		F - `F											
	1	I	77.728	0	1286500	4	6	280	0.038	0.039	-0.82	I D	13

eren e

1 anne

TRANSITION PROBABILITIES FOR IRON

Fe X: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	<i>E</i> ₄ (cm ⁻¹)	g,	g,	$A_{ki}(10^8 \mathrm{s}^{-1})$	f _{it}	S (at.u.)	log gf	Accu- racy	Source
14.		² P° – ² F											
		200 20	77.627	0	1288200	4	6	480	0.065	0.066	-0.59	D	3
15.		-PoP	78.151	15683	1295300	2	4	440	0.080	0.041	-0.80	D	3
16.	$3p^{5}-3p^{4}(^{1}\mathrm{D})4d$	²P° - ²P											
			76.006 76.822	0 15683	1315700 1317400	4 2	4 2	1300 1800	0.11 0.16	0.11 0.081	$-0.36 \\ -0.49$	D D	3 3
17.		² P ^o - ² D	75 (05		1001000								
			75.685 76.495	0 15683	1321300	4 2	6 4	780 1400	0.10 0.24	0.10	-0.40 -0.32	D D	3 3
18.	$3p^{4}(^{1}D)3d - 3p^{4}(^{1}D)4p$	$^{2}\mathbf{G} - ^{2}\mathbf{F}^{o}$											
			139.868 140.678	450753 451081	1165713 1161924	10 8	8 6	220 170	0.052 0.038	0.24 0.14	$-0.28 \\ -0.52$	D E	3 3
19.		$^{2}F - ^{2}D^{o}$	144,0000	405050	11700446								
20.	$3p^{4}(^{3}P)3d - 3p^{4}(^{3}P)4p$	*D - *P°	144.328?	485978	1178844?	8	6	140	0.033	0.13	-0.58	D	3
			137.027?	388708	1118491?	8	6	150	0.031	0.11	0.61	D	3
21.		⁴F - ⁴D°	140.000										
22.	$3p^{4}(^{\dagger}D)3d -$ $3p^{4}(^{\dagger}D)4f$	² G - ² H ^o	140.296	417653	1130432	10	8	220	0.052	0.24	-0.28	D	3
			102.192	450753	1429303	10	12	2900	0.55	1.9	0.74	D	3
23.	8	² F - ² C ^o	104.638	485978	1441654	8	10	2100	0.43	1.2	0.54	D	3
24	3 ⁴ / ³ D\2.4	40. 400	104.248	[482000]	[1441000]	6	8	1400	0.31	0.64	0.27	D	3
24.	3p ⁴ (³ P)4f	D - F											
25.		⁴F - ⁴G°	100.026	388708	1388448	8	10	2600	0.49	1.3	0.59	D	3
			102.095 101.733	417653 426701	1397133 1409666	10 6	12 8	2900 1300	0.55 0.38	1.8 0.76	0.74 0.36	D D	3
26.		² F - ² C°	101.846	428297	1410172	4	6	1700	0.39	0.52	0.19	E	3
			103.724	452730?	1416827?	6	8	1700	0.36	0.74	0.33	E	3
27.	3p ⁴ (¹ S)3d – 3p ⁴ (¹ S)4f	² D - ² F°											
			103.319 102.829	[521000] 511773	[1489000] 1484261	6 4	8 6	2600 2100	0.55 0.49	1.1 0.66	0.52 0.29	D D	3 3

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

F~103

FUHR ET AL.

Fe xi

Cround State

Ionization Potential

1s²2s²2p⁶3s²3p⁴ ³P₂

 $290.4 \text{ eV} = 2342000 \text{ cm}^{-1}$

Allowed Transitions

			List of tabe	lated lines			
Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
72.166	22	90.205	15	123.822	24	201.737	12
72.310	21	90.345	15	124.725	25	208	7
72.635	20	91.394	28	176.620	11	276.41	2
73.2	20	91.472	28	179.762	14	308.61	4
86.513	18	91.63	27	184.41	8	341.115	1
86.772	16	91.733	27	184.800	13	348.97	1
87.025	16	92.81	31	187.446	10	352.680	1
87.995	16	92.87	29,31	188.219	9	355.92	5
88.029	16	93.433	30	189.017	9	356.55	1 1
88.167	16	121.419	23	192.020	10	358.64	1
89.104	17	121.747	23	192.641	10	369.23	1
89.185	15	123.49	24	192.819	9	406.84	3
89.865	19	123.572	26	201.575	6		

For the resonance transitions of this highly ionized member of the sulfur isoelectronic sequence, we have chosen the data of Mason [1], computed by using a multiconfiguration scaled Thomas-Fermi method. Substantial correlation is present in these values, reducing them by as much as an order of magnitude below single configuration results.

The remainder of the oscillator strengths were computed by

Bromage et al. [2] and Fawcett et al. [3,4] using Cowan's semi-

empirical Hartree-Fock-Slater programs. The 3p-3d calculations

include the effects of configuration interaction [2]. Accuracy ratings

for some transitions for which the upper or lower level is indicated

to be of low purity in LS coupling have been lowered to "E," while those for which the dominant component is significantly less than 50% have been excluded from this compilation.

References

- [1] Mason, H. E., Mon. Not. R. Astron. Soc. 170, 651 (1975).
- [2] Bromage, C. E., Cowan, R. D., and Fawcett, B. C., Phys. Scr. 15, 177 (1977).
- [3] Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).
- [4] Fawcett, B. C., Peacock, N. J., and Cowan, R. D., J. Phys. B 1, 295 (1968).

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g;	₿×	$A_{ki}(10^8 { m s}^{-1})$	f _{ik}	S (at.u.)	log gf	Асси- гасу	Source
1.	3s ² 3p ⁴ ~3s3p ⁵	³ P - ³ P ⁰	353.76	5812	288490	9	9	23	0.043	0.45	-0.41	с	1
			352.680	0	283543	5	5	17	0.032	0.19	~0.80	с	1
			356.55	12667.9	293156	3	3	5.2	0.010	0.035	1.52	С	1
		1	341.115	0	293156	5	3	11	0.012	0.067	-1.22	C	1
			348.97	12667.9	299230	3	1	23	0.014	0.048	-1.38	С	1
			369.23	12667.9	283543	3	5	5.3	0.018	0.066	1.27	С	1
			358.64	14300	293156	1	3	7.1	0.041	0.048	1.39	С	1
2.		${}^{3}\mathbf{P} = {}^{t}\mathbf{P}^{0}$											
			[276.41]	0	361780	5	3	2.0	0.0014	0.064	-2.15	E	1

Fe XI: Allowed transitions

TRANSITION PROBABILITIES FOR IRON

Fe XI: Allowed transitions-Continued

No. Transition array Multiplet $\lambda(\tilde{A})$ E_i (cm ⁻¹) E_i (cm ⁻¹) g_i g_i $A_{i_i}(10^8 s^{-1})$ f_{i_i} S (at.u.) $\log gf$ A_i 3. $^1D - {}^3P^{\circ}$ [406.84] 37743.6 283543 5 5 0.40 0.0010 0.0067 -2.30 1 4. $^1D - {}^1P^{\circ}$ 308.61 37743.6 361780 5 3 75 0.064 0.33 0.49 1 5. $_3p^4 - 3p^3({}^2P^{\circ})3d$ $^3P - {}^3P^{\circ}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96 1 7. ${}^1D - {}^3D^{\circ}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96 1	ccu- acy Source 2 1 1 1 D 2 2 2 D 2
3. ${}^{1}D - {}^{3}P^{0}$ [406.84] 37743.6 283543 5 5 0.40 0.0010 0.0067 -2.30 4. ${}^{1}D - {}^{1}P^{0}$ 308.61 37743.6 361780 5 3 75 0.064 0.33 0.49 6 5. ${}^{1}S - {}^{1}P^{0}$ [355.92] 80815 361780 1 3 1.6 0.0094 0.011 -2.03 6 6. ${}^{3}p^{4} - 3p^{3}({}^{2}P^{0})3d$ ${}^{3}P - {}^{3}P^{0}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96 1 7. ${}^{1}D - {}^{3}D^{0}$.	E 1 C 1 D 1 D 2 E 2 D 2
4. ${}^{1}D - {}^{1}P^{\circ}$ 308.61 37743.6 283543 5 5 0.40 0.0010 0.0067 -2.30 4. ${}^{1}D - {}^{1}P^{\circ}$ 308.61 37743.6 361780 5 3 75 0.064 0.33 -0.49 6 5. ${}^{1}S - {}^{1}P^{\circ}$ [355.92] 80815 361780 1 3 1.6 0.0094 0.011 -2.03 6 6. ${}^{3}p - {}^{3}p^{3}({}^{2}P^{\circ})3d$ ${}^{3}P - {}^{3}P^{\circ}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96 6 7. ${}^{1}D - {}^{3}D^{\circ}$	E 1 C 1 D 1 D 2 E 2 D 2
4. ${}^{1}D - {}^{1}P^{\circ}$ 308.61 37743.6 361780 5 3 75 0.064 0.33 0.49 5. ${}^{1}S - {}^{1}P^{\circ}$ [355.92] 80815 361780 1 3 1.6 0.0094 0.011 -2.03 6. ${}^{3}p^{4}-3p^{3}({}^{2}P^{\circ})3d$ ${}^{3}P - {}^{3}P^{\circ}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96 7. ${}^{1}D - {}^{3}D^{\circ}$	1 1 1 2 2 2 2 2 2 2
5. ${}^{1}S - {}^{1}P^{\circ}$ [355.92] 80815 361780 1 3 1.6 0.0094 0.011 -2.03 6. ${}^{3}p^{4} - 3p^{3}({}^{2}P^{\circ})3d$ ${}^{3}P - {}^{3}P^{\circ}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96 7. ${}^{1}D - {}^{3}D^{\circ}$ <	D 1 D 2 E 2 D 2
6. $3p^4 - 3p^3(^2P^\circ)3d$ $^3P - {}^3P^\circ$ 7. $^1D - {}^3D^\circ$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96	 2 2 2 2 2
7. $^{1}D - {}^{3}D^{\circ}$ 201.575 0 496093 5 5 36 0.022 0.073 -0.96	D 2 E 2 D 2
7. ¹ D - ³ D ^o	E 2 D 2
	E 2 D 2
[208] 37743.6 [481000] 5 3 160 0.062 0.21 -0.51	0 2
8. ¹ S - ¹ P ^o 184.41 80815 623080 1 3 1400 2.2 1.3 0.34 1	
9. $3\rho^4 - 3\rho^{3/2}D^{\circ})3d$ ³ P - ³ P ^o	
188.219 0 531296 5 5 1100 0.59 1.8 0.47) 2
189.017 12667.9 541721 3 1 1400 0.25 0.47 -0.12 192.819 12667.9 531296 3 5 220 0.20 0.38 022	$\begin{array}{c c} 2 \\ 2 \\ 2 \end{array}$
10. ${}^{8}P - {}^{3}S^{0}$ 189.51 5812 533487 9 3 550 0.098 0.55 -0.05	2 2
187.446 0 533487 5 3 100 0.032 0.0990.80	2 2
192.020 12667.9 533487 3 3 290 0.16 0.30 -0.32 1	2 2
192.641 14300 533487 1 3 140 0.23 0.15 -0.64 1	2 2
11. ${}^{3}P - {}^{1}D^{\circ}$	
176.620 12667.9 578855 3 5 86 0.067 0.12 -0.70) 2
12. $^{1}D - {}^{3}S^{\circ}$	
201.737 37743.6 533487 5 3 630 0.23 0.76 0.06	2
13. ${}^{1}D - {}^{1}D^{\circ}$ 184.800 37743.6 578855 5 5 1200 0.63 1.9 0.50 1) 2
14. 'D - 'F° 179.762 37743.6 594035 5 7 1600 1.1 3.3 0.74 1) 2
15. $3p^4 - 3p^3 ({}^{4}S^{\circ})4s$ ${}^{3}P - {}^{3}S^{\circ}$ 89.647 5812 1121300 9 3 2100 0.083 0.220.13 1) 3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3
16. $3p^4 - 3p^{4/2}D^{0})4s$ ${}^{3}P - {}^{3}D^{0}$	
86.772 0 1152400 5 7 540 0.086 0.12 -0.37	3
87.995 12667.9 1149100 3 5 220 0.043 0.037 -0.89	3 3
88.167 14300 1148500 1 3 200 0.06 0.02 1.2 1 97.025 0 144000 5 5 250 0.040 0.057 0.77 0.77	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3
17. $ D - D^{\circ} = 89.104$ 37743.6 1160000 5 5 1300 0.16 0.23 -0.10	

fan .

1000

farme.

FUHR ET AL.

Fe XI: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g;	g,	$A_{ki}(10^{8}{ m s}^{-1})$	fik	S (at.u.)	log gf	Accu- racy	Source
18.	$3p^4 - 3p^3 (^2P^\circ) 4s$	'D - 'P°	86.513	37743.6	1193600	5	3	9.30	0.056	0.080	0.55	D	3
19.		'S - 'P°	[89.865]	80815	1193600	1	3	690	0.25	0.074	-0.60	D	3
20.	3p ⁴ -3p ³ (*S°)4d	³ P – ³ D°							j				
i			72.635 [73.2]	0 12667.9	1376700 [1380000]	5 3	7 5	1600 820	0.18 0.11	0.22 0.080	0.05 0.48	D D	3 4
21.	$3p^4 - 3p^3 (^2D^\circ) 4d$	'D - 'D°	72.310	37743.6	1420700	5	5	1500	0.12	0.14	-0.22	D	3
22.		$^{1}D - {^{1}F^{o}}$	72.166	37743.6	1423400	5	7	2900	0.32	0.38	0.20	D	3
23.	3p ³ (⁴ S ^o)3d - 3p ³ (⁴ S ^o)4p	⁵ D° - ⁵ P											
			121.419 121.747			9 7	7 5	290 210	0.050 0.033	0.1 8 0.093	0.35 0.64	D D	.3 3
24.	3p ³ (² D°)3d – 3p ³ (² D°)4p	³ G° ³ F											
			123.49 123.49			11 9	9 7	270 170	0.050 0.030	0.22	-0.26	D E	3
			123.822			7	5	220	0.036	0.10	-0.60	Ē	3
25.		'G° - 'F	124.725			9	7	220	0.040	0.15	0.44	D	3
26.	3p ³ (² P°)3d 3p ³ (² P°)4p	³ F° - ³ D											
			123.572			7	5	360	0.059	0.17	-0.38	E	3
27.	3p ³ (⁴ S°)3d - 3p ³ (⁴ S°)4f	⁵D° - ⁵F	ſ										
			91.733 91.63			9 7	11 9	4100 3400	0.63 0.55	1.7 1.2	0.75 0.59	D D	3 3
	9	1.63	91.63		3	5 5	7	2800 2300	0:49 0.48	0.74 0.43	0.39 0.16	D D	3 3
28.	$3p^{3}(^{2}D^{\circ})3d - 3p^{3}(^{2}D^{\circ})4f$	³ F° - ³ G				-							
i			91.472 91.394			7 5	9 7	2500 2600	0.41 0.45	0.86 0.68	0.46 0.35	D D	3 3
29.		³ G° - ³ H			· (I
			92.87 92.87			11 7	13 9	3900 3400	0.60 0.57	2.0 1.2	0.82 0.60	D D	3 3
30.		'C° - 'H	93.433			9	11	3200	0.51	1.4	0.66	Ð	3
31.	$3p^{3}(^{2}P^{o})3d - 3p^{3}(^{2}P^{o})4f$	³F° − ³G											
			92.81 92.87			9 7	11 9	3700 2800	0.59 0.47	1.6 1.0	0.73 0.52	D D	3 3

TRANSITION PROBABILITIES FOR IRON

Fe хн

Ground State

Ionization Potential

 $1s^22s^22p^63s^23p^{-3-4}S_{3/2}^{\circ}$

 $[328] eV = [2646000] cm^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
65.805	23	82.226	15	185.85	10	200.356	13
65.905	18	82.744	17	186.856	6	201.121	12
66.526	22	82.837	17	186.880	6	202.090	12
66.960	20	84.48	27	188.216	7	204.743	12
67.164	24	84.491	27	188.45	6	208.410	1 11
67.821	19	84.52	27	189.561	9	209.11	5
68.382	21	84.85	28	190.459	7	210.932	1 11
79.488	14	85.14	29	192.394	4	335.06	2
80.022	14	85.477	29	193.509	4	338.263	2
80.160	16	108.440	25	194.920	8	346.852	1
80.542	16	108.605	25	195.119	4,8	352.107	1
80.55	14	108.862	25	196.640	8	364.468	1
81.651	15	110.591	26	196.923	8	382.83	3
81.943	15	110.732	26	198.555	12		

Significant correlation effects in this P-like ion make the accurate calculation of oscillator strengths difficult.

Bromage et al. [1] have calculated gf-values of resonance transitions to levels of the $3s3p^4$ and $3s^23p^23d$ configurations by using Cowan's multiconfiguration Hartree-XR approach including exchange (X) and relativistic effects (R) and semiempirically scaled Slater parameters. Fawcett et al. [2] have used Cowan's Hartree-Fock-Slater (HX) method to determine gf-values of transitions to n = 4 states.

The accuracy ratings for transitions for which the upper or lower level is indicated to be of low purity in LS coupling have been

lowered to "E." Transitions involving any level for which the dominant component is significantly less than 50% have been excluded from this compilation.

References

- [1] Bromage, G. E., Cowan, R. D., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 183, 19 (1978).
- [2] Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, B. W., J. Phys. B 5. 1255 (1972).

No.	Transition array	Multiplet	λ(Å)	E_{r} (cm ⁻¹)	E_{i} (cm ⁻¹)	g,	g.	$A_{k_i}(10^8 \mathrm{s}^{-1})$	f _{ik}	S (at.u.)	log gf	Асси- гасу	Source
1.	$3s^23p^3-3s^3p^4$	4S° - 4P	357.26	0	279906	4	12	17	0.096	0.45	-0.42	D	1
			364.468 352.107 346.852	0 0 0	274373 284005 288307	4 4 4	6 4 2	16 18 18	0.048 0.033 0.016	0.23 0.15 0.073	-0.72 -0.88 -1.19	D D D	1 1 1
2.		² D ^o - ² D											
			338.263 335.06	46110 41560	341738 340010	6 4	6 4	27 34	0.047 0.058	0.31 0.26	-0.55 -0.63	D D	1

Fe XII: Allowed transitions

FUHR ET AL.

Fe XII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	· <i>E₁</i> (cm ^{~1})	$E_t (\mathrm{cm}^{-1})$	g i	g,	$A_{ki}(10^{8} \mathrm{s}^{-1})$	f _{it}	S (at.u.)	log gf	Accu- racy	Source
3.		² P ^o - ² D											
			382.83	80514	341730	4	6	5.5	0.018	0.091	-1.14	D	1
4.	$3p^{3}-3p^{2}(^{3}P)3d$.4S° – 4P	194.12	0	515139	4	12	950	1.6	4.1	0.81	D	1
			195 119	Û	512508	4	6	930	0.80	21	0.51	D	,
			193.509	Ő	516772	4	4	940	0.53	1.4	0.33	D	li l
			192.394	0	519767	4	2	900	0.25	0.63	0.00	D.	1
5.		²D° - *P											
			[209.11]	41560	519767	4	2	64	0.021	0.058	-1.08	D	1
6		² D ⁰ - ² F	186.02	44200	570202	10	14	1200	0.85	59	0.03	F	.
0.			180.92	47290	319292		1.4	1200	0.00	5.4	0.95	2	
			186.880	46110	581213	6	8	1100	0.80	3.0	0.68	D	
			186.856	41560	576731	4	6	1100	0.85	2.1	0.53	E	
			188.45	46110	576731	0	0	69	0.037	0.14	-0.65	2	1
7.		² P° - ² D										ł	
			188.216	74103	605407	2	4	800	0.85	1.1	0.23	E	1
			190.459	80514	605407	4	4	240	0.13	0.33	-0.28	ε	1
8.	$3p^{3}-3p^{2}('D)3d$	² D° - ² D	196.05	44290	554362	10	10	620	0.36	2.3	0.55	D	1
			196.640	46110	554654	6	6	480	0.28	1.1	0.23	D	1
			195.119	41560	553923	4	4	670	0.38	0.98	0.18	D	1
		1	196.923	46110	553923	6	4	110	0.043	0.17	-0.59	D	1
			194.920	41560	554654	4	6	.23	0.020	0.051	-1.10	D	1
9.		² D° - ² P											
			189.561	41560	569095	4	2	45	0.012	0.030	~1.32	E	1
10.		² D° - ² S											
			[185,85]	41560	579626	4	2	50	0.013	0.032	-1.28	D	1
		200 20	[]										-
11.		r* - D					ŀ						
			210.932	80514	554654	4	6	58	0.058	0.16	-0.63	D	1
			208.410	74103	553923	2	4	58	0.075	0.10	~0.82	D	1
12.		² P ^o - ² P	201.42	78377	574850	6	6	830	0.50	2.0	0.48	E	1
			201.121	80514	577727	4	4	640	0.39	1.0	0.19	D	1
			202.090	74103	569095	2	2	730	0.45	0.60	-0.05	E	1
			204.743	80514	\$69095	4	2	57	0.018	0.049	-1.14	E	1
			198.555	74103	577727	2	4	210	0.25	0.33	-0.30	D	1
13.		² P° - ² S											
			200.356	80514	579626	4	2	660	0.20	0.53	-0.10	D	1
14.	3p ³ -3p ² (³ P)4s	4S° - 4P	79.87	0	1252000	4	12	660	0.19	0.20	~0.12	Ð	2
			79.488	0	1258100	4	6	670	0.095	0.099	-0.42	D	2
			80.022	Ő	1249700	4	4	680	0.065	0.068	-0.59	D	2
			80.55	Ō	1241000	4	2	720	0.035	0.037	-0.85	D	2
15.		² D ^o - ² P	82.014	44290	1263600	10	6	1700	0.10	0.27	0.00	D	2
			81 043	46110	1266500	6	4	1400	0.097	0.16	-0.24	D	2
			82.226	41560	1257700	4	2	1900	0.095	0.10	-0.42	D	2
			81 651	41560	1266500	4	Ā	100	0.01	0.01	-14	F	12

form.

parte.

TRANSITION PROBABILITIES FOR IRON

Fe XII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \mathrm{s}^{-1})$	f.ı.	S (at.u.)	log gf	Accu- racy	Source
16.	$3p^3 - 3p^2(^1D)4s$	² D° - ² D											
			[80.542] 80.160	46110 41560	1287700 1289100	6 4	6 4	870 600	0.085	0.14 0.061	-0.29 -0.63	DD	22
17.		² P° - ² D											
			82.837 82.744	80514 80514	1287700 1289100	44	6 4	190 760	0.030 0.078	0.033 0.085	-0.92 -0.51	D D	2 2
18.	$3p^{3}-3p^{2}(^{3}\mathbf{P})4d$	*S° - *P											
19.		² D° - ² F	65.905	0	1517300	4	4	2000	0.13	0.11	-0.28	D	2
			67.821	41560	1516000	4	6	1400	0.14	0.13	-0.25	D	2
20.		² D° - ² D								-			
21.		² P° - ² D	66.960	41560	1535000	4	6	1600	0.16	0.14	-0.19	D	2
			68.382	74103	1536840	2	4	1700	0.24	0.11	0.32	D	2
22.	$3p^{3}-3p^{2}(D)4d$	$^{2}D^{\circ} - {}^{2}F$											
93		2 D ⁰ - 2 P	66.526	46110	1549280	6	8	1700	0.15	0.20	-0.05	D	2
			65.805	46110	1565750	6	4	510	0.022	0.029	-0.88	D	2
24.		²P° - ²S											
25.	3p ² (³ P)3d – 3p ² (³ P)4p	4F - 4Do	67.164	80514	1569400	4	2	1100	0.038	0.034	0.82	D	2
			108.440 108.605 108.862			10 8 6	8 6	330 330 320	0.047 0.044 0.038	0.17	-0.33 -0.45	DDD	2 2 2
26.	3p ² (¹ D)3d – 3p ² (¹ D)4p	² G - ² F ^o				Ŭ		520	0.000	0.002	0.04	D	2
			110.591 110.732			10 8	8 6	310 130	0.046 0.018	0.17 0.052	-0.34 -0.84	D D	2 2
27.	3p ² (³ P)3d – 3p ² (³ P)4f	⁴F - ⁴C°											
			84.491 84.48			10 8	12 10	5200 4900	0.67 0.66	1.9 1.5	0.83 0.72	D D	2 2
			84.52 84.48			6 4	8 6	4000 4500	0.57 0.72	0.95 0.80	0.53 0.46	D D	2 2
28.		*D - *F°											
29.	3p ² ('D)3d-	² G - ² H°	84.85			6	8	2300	0.33	0.55	0.30	D	2
	$3p^{2(^{1}D)}4f$												
			85.477 85.14			10 8	12 10	4600 3400	0.60 0.46	1.7 1.0	0.78 0.57	D D	2 2

FUHR ET AL.

Fe xill

Ground State

Ionization Potential

Allowed Transitions

Diet of the order of the oc	List	of	tabulated	lines
-----------------------------	------	----	-----------	-------

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
62.10	33	178.05	20	233.234	6	313	3
62.353	31	181.03	20	237	16	318.21	9
62.46	32	185.75	19	238	16	320.800	3
62.699	31	191.24	25	238.38	6	321.45	3
63.188	34	196.525	24	240.713	5	348.184	2
64.139	35	197.434	18	241.10	27	354.34	8
74.327	29	200.021	18	242	16	355.14	8
74.845	29	201.121	18	246.208	5	359.63	2
75.892	29	202.044	17	248.01	26	359.837	2
76.117	30	202.424	17	251.953	5	368.12	2
78.452	38	203.793	18	256	21	372.03	2
78.760	38	203.826	18	256.42	11	372.24	2
81.154	40	204.942	18	261	21	412.98	7
82.010	41	205.91	17	272.19	10	417.90	7
84.270	42	208.679	28	283.26	4	418.17	7
85.461	43	209.916	17	288.75	15	420.33	13
98.128	36	216.83	23	290.89	4	511.60	12
98.523	36	216.87	23	303.35	3	493	1
98.826	36	218.13	23	308.91	14	517	1
107.384	37	223.78	22	311.552	3		
175.15	20	228.28	6	312.164	3		

Significant correlation effects in this Si-like ion make the accurate calculation of oscillator strengths difficult. Flower and Nussbaumer [1] have studied resonance transitions to the $3s3p^3$ and $3s^23p3d$ configurations by using a variation of the Thomas-Fermi method with allowance for configuration interaction. They remark that their results are quite sensitive to the particular configurations included, causing substantial discrepancies with earlier, more restricted calculations. More recently, Bromage et al. [2] have used Cowan's multiconfiguration Hartree-XR approach including exchange (X) and relativistic effects (R) and semiempirically scaled Slater parameters to calculate gf-values for the strongest lines of these same transition arrays.

With the exception of a few lines of the $3p^2-3p\,3d$ array, the results of these two sources are in excellent agreement for the transitions in common. We have adopted the results of ref. [2] for the transitions treated there, while ref. [1] has been quoted for the remaining ones. Flower and Nussbaumer's *A*-values have been modified to account for the deviation of their calculated wavelengths from observed ones (or from wavelengths computed from experimentally derived energy levels). In a few cases, the calculated energy levels from ref. [2] have been used to determine wavelengths. The accuracy ratings for the two lines mentioned above have been lowered to "E," as have those for transitions whose upper or lower level is indicated to be of low purity in *LS* coupling. Transitions involving any level whose dominant component is significantly less than 50% have been excluded from this compilation.

 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{2}$ ³P₀

 $[360.0] eV = [2903700] cm^{-1}$

The *f*-value of 0.055 calculated by Sinanoglu and Beck [3] according to their non-closed shell many-electron theory (NCMET) for the $3s^23p^2$ ³P- $3s3p^3$ ³D° multiplet is in good agreement with our tabulated value derived from the results for individual lines.

Transitions to n = 4 states have been treated by Fawcett et al. [4] in Cowan's statistical Hartree-Fock approximation, as well as by Kastner et al. [5] in a multiconfiguration scheme. The results have been averaged for transitions in common. The remarks made above concerning accuracy ratings for lines connecting levels of low purity apply to these transitions as well. We should note further that the classifications of some observed spectral lines of these arrays are indicated by the respective authors to be questionable.

References

- [1] Flower, D. R., and Nussbaumer, H., Astron. Astrophys. 31, 353 (1974).
- [2] Bromage, C. E., Cowan, R. D., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 183, 19 (1978).
- [3] Sinanoglu, O., and Beck, D. R., Chem. Phys. Lett. 24, 20 (1974).
- [4] Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).
- [5] Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J., J. Opt. Soc. Am. 68, 1558 (1978).

TRANSITION PROBABILITIES FOR IRON

Fe XIII: Allowed transitions

No.	Transition array	Multiplet	λ(Å)	E_c (cm ⁻¹)	E_t (cm ⁻¹)	g,	g.	$A_k (10^8 \mathrm{s}^{-1})$	fa	S (at.u.)	log gf	Accu- racy	Source
1.	$3s^2 3p^2 - 3s 3p^3$	³ P - ⁵ S°											
			[517] [493]	18561.0 9302.5	[212000] [212000]	5 3	5 5	0.091 0.054	$3.6(-4)^{*}$ 3.3(-4)	0.0031 0.0016	-2.74 3.01	E E	1
2.	- 	³ P - ³ D°	363.31	13412.5	288660	9	15	14	0.047	0.51	0.37	D-	1,2
			368.12	18561.0	290210	5	7	13	0.036	0.22	-0.74	D	2
			359.63	9302.5	287360	3	5	15	0.050	0.18	0.82	D	2
			348.184	0.0	287205	1	3	10	0.07	0.08	1.2	E	2
			[372.03]	18561.0	287360	5	5	0.48	0.0010	0.0061	-2.30	D	
			359.837	9302.5	287205	3	3	3.5	0.0068	0.024	~1.69	D	
			[372.24]	18501.0	287205	5	3	0.11	1.4(-4)	8.4(-4)	-3.16	E	1
3.		³ P - ³ P°	316	13412.5	[330000]	9	9	41	0.061	0.57	-0.26	D	1,2
			320.800	18561.0	330279	5	5	34	0.052	0.27	-0.59	D	2
			312.164	9302.5	329647	3	3	20	0.029	0.089	1.06	D	2
			[321.45]	18501.0	329647	5	3	10	0.0096	0.051	-1.32	10	
			211 559	9302.5	[329000]	3 9	1 5	41	0.020	0.002	- 1.22		
			[203.35]	9302.3	320647		2	4.0	0.012	0.050	-1.45		
			[303,33]	0.0	329041			1.4	0.007	0.037	- 1.24		1
4.		^P - 'D°											
			[290.89]	18561.0	362330	5	5	1.3	0.0016	0.0076	-2.10	E	1
			[283.26]	9302.5	362330	3	5	0.70	0.0014	0.0039	-2.38	E	1
5.		${}^{3}P = {}^{3}S^{\circ}$	248.73	13412.5	415462	9	3	610	0.19	1.4	0.23	D	2
			251.953	18561.0	415462	5	3	350	0.20	0.83	0.00	D	2
			246.208	9302.5	415462	3	3	180	0.16	0.39	-0.32	D	2
			240.713	0.0	415462	1	3	69	0.18	0.14	-0.74	D	2
6.		³ P - ¹ P°											
			[938 38]	18561.0	129056	5	2	0.5	0.0049	0.010	-1.62	l n	1
		- A Advance	233.934	9302.5	438056	2	3	53	0.0040	0.019	-0.80	n n	9
			[228.28]	0.0	438056	1	3	7.4	0.017	0.013	-1.76	D	ī
7.		¹ D - ³ D°											
										1			
			[412.98]	48068	290210	5	7	0.90	0.0032	0.022	-1.79	D	4
	: I		[417.90]	48068	287360	5	5	0.11	2.8(-4)	0.0019	-2.86	E	1
			[418.17]	48068	287205	5	3	0.32	5.1(~4)	0.0035	-2.59	E	1
8.		${}^{1}D - {}^{3}P^{0}$											
			[[354.34]	100/0	220022	-	_	0.054	1.07	500 0	2.20	I E	
			[354.34]	48068	330279	5	3	0.054	1.0(-4)	5.9(-4)	3.30	E	
	1		[355.14]	48068	329647	5	3	0.53	0.0(-4)	0.0035	-2.52	E	
9.	1	¹ D - ¹ D°	318.21	48068	362330	5	5	53	0.080	0.42	-0.40	E	2
10.		$^{1}D = {}^{3}S^{\circ}$					I						
			[272.19]	48068	415462	5	3	6.0	0.0040	0.018	-1.70	D	1
		D DO	956 49	40040	190057	-		200	0.19	0.76	-0.05	n	9
11.	1	D = P-	200.42	48008	438036	5	ა	300	0.18	0.10	-0.05		4
12.		¹ S - ³ D°					:					ļ	
	-		[511.60]	91740	287205	1	3	0.028	3.3(4)	5.6(-4)	-3.48	E	1

FUHR ET AL.

Fe XIII: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (c m^{-1})	g i	₿×	$A_{4i}(10^{8}5^{-1})$	fix.	S (at.u.)	log g/	Accu- racy	Source
13.		'S - ³ P°											
			[420.33]	9 1740	329647	1	3	0.24	0.0019	0.0026	-2.73	D	1
14.		¹ S - ³ S°											
			[308.91]	91740	415462	1	3	3.9	0.017	0.017	-1.78	D	1
15.		'S - 'P°	[288.75]	91740	438056	1	3	40	0.15	0.14	-0.82	D	2
16.	$3p^2 - 3p 3d$	³ P - ³ F°											
			[238]	18561.0	[438000]	5	7	39	0.0038	0.015	-179	F	1
			[237]	9302.5	[431000]	3	5	11	0.0016	0.0037	-2.32	E	1
			[242]	18561.0	[431000]	5	5	1.3	0.0011	0.0045	-2.25	E	i
17		3p _ 3po	[]					-					
11.		1 1											
			[205.91]	9302.5	494942	3	3	0.16	1.0(4)	2.1(4)	3.51	E	1
			209.916	18561.0	494942	5	3	61	0.024	0.083	~0.92	E	2
			202.424	9302.5	503315	3	1	490	0.10	0.20	-0.52	D	2
			202.044	0.0	494942	1	3	530	0.97	0.65	-0.01	E	2
18.		³ P − ³ D ^o	201.92	13412 5	508666	9	15	640	0.65	3.9	0.77	Ð	2
			203.826	18561.0	509176	5	7	680	0.59	2.0	0.47	D	2
			200.021	9302.5	509250	3	5	190	0.19	0.38	-0.24	D	2
			197.434	0.0	506502	1	3	50	0.08	0.05	-1.1	E	2
			203.793	18561.0	509250	5	5	370	0.23	0.77	0.06	D	2
			201.121	9302.5	506502	3	3	410	0.25	0.50	-0.12	E	2
			204.942	18561.0	506502	5	3	160	0.060	0.20	-0.52	E	2
19.		3P - 'F°											
			[185.75]	18561.0	556910	5	7	32	0.023	0.071	0.94	D	1
20.		³ P - ¹ P°											
			[181.03]	18561.0	570944	5	3	0.11	3.4(~5)	1.0(-4)	-3.78	E	1
			[178.05]	9302.5	570944	3	3	1.8	8.5(4)	0.0015	-2.59	E	1
			[175.15]	0.0	570944	1	3	4.3	0.0059	0.0034	-2.23	D	1
21.		'D - 'Fo	:										
			{2561	48068	[4380001	5	7	0.28	3.8(-4)	0.0016	-2.72	E	1
			[261]	48068	[431000]	5	5	3.2	0.0033	0.014	~1.79	D	1
22.		¹ D - ³ P°											
			[223.78]	48068	494942	5	3	7.2	0.0033	0.012	-1.79	E	1
23.		$^{1}D - ^{3}D^{\circ}$											
			[216 97]	10040	500174	E	,	94	0.024	0.084	_0.02		9
			[216.92]	40000	500250	5	(5	2% 06	0.024	0.000	-0.92		2
			[21813]	48068	506502	5	,, 2	19	0.000	0.24	~1.60	F	1
			[210.10]	90000	000002	5	3	14	0.0000	0.010	1.00		•
24.		$^{1}D - {^{1}F^{o}}$	196.525	48068	556910	5	7	720	0.58	1.9	0.46	D	2
25.		1D - 1P°	191.24	48068	570944	5	3	0.0083	2.7(6)	8.6(6)	-4.86	E	1
26.		¹ S - ³ P ^o											
			[248.01]	91740	494942	1	3	0.89	0.0024	0.0020	-2.61	E	1

1^{an}

en.

TRANSITION PROBABILITIES FOR IRON

Fe XIII: Allowed transitions-Continued

	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \mathrm{s}^{-1})$	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
27.		¹ S - ³ D°											
			[241.10]	91740	506502	1	3	0.17	4.4(4)	3.5(-4)	-3.36	E	1
28.		¹ S - ¹ P ^o	208.679	91740	570944	1	3	610	1.2	0.82	0.08	D	2
29.	$3p^2-3p4s$	³ P - ³ P ^o											
			74.845 75.892	18561.0 18561.0	1354700 1336200	5 5	5	1000 770	0.088	0.11	-0.36	D	4
			74.327	9302.5	1354700	3	5	410	0.057	0.042	-0.77	ח	4
30.		'D - 'P°	76.117	48068	1361800	5	3	2100	0.11	0.14	-0.26	D	4
31.	$3p^2$ - $3p4d$	${}^{3}P - {}^{3}D^{o}$											
			62.699 62.353	9302.5 0 0	1604200 1603800	3	5	2300 2000	0.23	0.14	-0.17	D	4,5 5
39		³ P - ³ F ⁰	02.000	0.0	1000000	•	Ű	2000	0.00	0.012	0.10		
02.			62.46	18561.0	1620000	5	7	1200	0.008	0.10	0.31		5
43		³ P - ³ Po	02.40	10501.0	1020000		·	1200	0.050	0.10	0.51		0
00.						5	5	1400				D	5
			62.10?	9302.5	1620000?	3	1	1600	0.031	0.019	1.03	D	5
34.		'D - 'F°	63.188	48068	1630600	5	7	3900	0.33	0.34	0.21	D	4,5
35.		'S - 'P°	64.139	91740	1650900	1	3	2100	0.39	0.082	0.41	D	5
36.	3p3d-3p4p	³ F° - ³ D											
			98.128	[448000]	[1467000]	9	7	410	0.046	0.13	~0.38	D	4
			98.826	[431000]	[1433000]	5	3	390	0.034	0.055	0.77	E	4
37.		${}^{1}F^{\circ} - {}^{1}D$	107.384	556910	1488150	7	5	1800	0.22	0.54	0.19	D	4
38 .	3p3d-3p4f	³ F° - ³ G											
			78.452	[448000] [438000]	[1723000] [1708000]	9 7	11	6500 4100	0.73	1.7	0.82	DE	4,5
39		³ po _ ³ F		[100000]	[1100000]	•			0.00	0.70	0.01		.,.
			,			3	5	1900				E	5
40.		³ Po - ³ D											
			81.154?	503315	1735500?	1	3	2300	0.68	0.18	0.17	D	5
41.		³ D° - ³ F											
			82.010?	509176	1728500?	7	9	3700	0.48	0.91	0.53	E	4,5
						3	5	1900				E	5
42.		'F° - 'G	84.270	556910	1743600	7	9	5600	0.77	1.5	0.73	D	4,5
43.		$^{1}P^{\circ} - ^{1}D$	85.461?	570944	1741100?	3	5	3400	0.62	0.52	0.27	D	5

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

FUHR ET AL.

Fe xiv

Ground State

Ionization Potential

Allowed Transitions

List of tabulated lines	List	of	tabulated	lines
-------------------------	------	----	-----------	-------

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
58.963	47	76.022	49	219.13	21	356.60	1
59.579	47	76.137	49	220.09	21	719.58	51
59.626	47	76.152	49	252.190	3	747.38	51
69.176	46	78.449	20	257.385	3	786.41	52
69.386	46	78.584	20	264.799	3	811.03 .	52
69.66	46	78.769	20	270.512	3	819.74	52
69.685	45	90.845	48	274.22	2	1079	53
70.251	46	91.009	48	280.69	11	1095	53
70.613	45	9 1.273	48	288.45	11	1098	53
72.796	50	211.32	21	289.17	2		
72.95	50	216.95	24	334.15	1		
73.08	50	218.21	24	353.84	1		

Strong configuration interaction in the Al sequence makes the accurate calculation of oscillator strengths for Fe XIV difficult. In many cases the results are quite sensitive to the particular configurations included.

Blaha [1] has computed gf-values for a large number of transitions by combining Hartree-Fock wave functions with mixing coefficients which were derived from a diagonalization of a semi-empirical Slater parameter matrix. The accuracy of these data is difficult to assess because of the combination of *ab initio* and semi-empirical methods. Mason [2] has provided f-values for the 3p-3d transitions by using a scaled Thomas-Fermi method. The Hartree-Fock-Slater calculations of Fawcett et al. [3] might be expected to be reasonably accurate, although they have not explicitly included configuration interaction. It should be noted that all of the above calculations have included the effects of intermediate coupling.

The most sophisticated material available for high ions of the Al sequence consists of Weiss' superposition-of-configurations (SOC) calculations [4] and Froese Fischer's nonrelativistic multiconfiguration Hartree-Fock (MCHF) approach [5,6]. However, only multiplet f-values have been determined by these two investigators, and accurate values of relative strengths within multiplets are not available. Moreover, the accuracies of their multiplet strengths were difficult to assess, on account of the level crossings occurring along the isoelectronic sequence at or near the iron ion.

Multiplet *f*-values derived from Blaha's data for individual lines are in good agreement with Weiss' results for two of the four multiplets in common, while in the remaining two cases they deviate by 36 and 58 percent, respectively. Blaha's relative values nevertheless indicate that LS coupling is a good approximation in these cases. Weiss' multiplet f-values have thus been quoted here and his multiplet strengths have been distributed according to LS-coupling rules. Froese Fischer has made a detailed study of the $3s^23p$ ²P°-3s3p² ²D and 3p ²P°-3d ²D transitions in the Al sequence, and her multiplet values are in good agreement with those presented here. She has used the same method to calculate the oscillator strength of the $4s \, {}^2S - 4p \, {}^2P^\circ$ multiplet. The value of 0.48 obtained by using her own calculated energy difference is significantly lower than the value of 0.58 obtained by incorporating the experimentally derived energy difference, and both of these are lower than the multiplet value derived from the results of ref. [1] for individual lines. It is not known whether these discrepanicies arise from the methods used in performing the transition integral calculations or from the classifications of the observed spectral lines from which the energies of the 4s and 4p levels were derived.

References

- [1] Blaha, M., Sol. Phys. 17, 99 (1971).
- [2] Mason, H. E., Mon. Not. R. Astron. Soc., 170, 651 (1975).
- [3] Faweett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).
- [4] Weiss, A. W., Beam-Foil Spectroscopy, Vol. 1, 51-68 (Eds. Sellin, I. A., and Pegg, D. J., Plenum Press, New York, 1976) and private communication.
- [5] Froese Fischer, C., Can. J. Phys. 54, 740 (1976).
- [6] Froese Fischer, C., Can. J. Phys. 56, 983 (1978).

 $[391.0] eV = [3153700] cm^{-1}$

TRANSITION PROBABILITIES FOR IRON

Fe XIV: Allowed transitions

No.	Transition array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	E_k (cm ⁻¹)	g.	g,	$A_{k}(10^8 { m s}^{-1})$	f.i	S (at.u.)	log gf	Acou- racy	Source
1.	$3s^23p = 3s^23p^2$	"P° - "D	347.20	12568.3	300590	6	10	21	0.063	0.43	-0.42	Ð	1
			353.84	18852.5	301460	4	6	. 19	0.054	0.25	-0.67	D	1
			334.15	0.0	299280	2	4	24	0.079	0.17	~0.80	D	1
			356.60	18852.5	299280	4	4	0.63	0.0012	0.0056	- 2.32	D	1
2.		² P° - ² S	281.01	12568.3	364670	6	2	200	0.082	0.46	-0.31	D	1
			289.17	18852.5	364670	4	2	11	0.0069	0.026	-1.56	Е	1
			274.22	0.0	364670	2	2	210	0.24	0.43	-0.32	С	1
3.		$^{2}P^{o} - ^{2}P$	262.28	12568.3	393840	6	6	520	0.54	2.8	0.51	D	1
			264.799	18852.5	396510	4	4	430	0.45	1.6	0.26	Ð	1
1			257.385	0.0	388490	2	2	180	0.18	0.31	~ 0.44	D	
			270.512	18852.5	388490	4	2	260	0.14	0.50	-0.25	D	
			252.190	0.0	396510	$ ^{2}$	4	110	0.21	0.35	0.38	D	1
4.	$3s^23p-3s3d^2$	² P ^o - ² S				6	2		3.0(4)*		-2.74	С	4
5.	$\frac{.3s^2 3d}{3s 3p}(^3 P^{\circ}) 3d$	² D - ² F ^o							i.		1		
				1		6	8		0.032		-0.72	Е	1
		1				4	6]	0.029	1	-0.94	E	1
						6	6		0.0050		1.52	E.	1
6.		$^{2}D - ^{2}D^{\circ}$											
			1			6	6		0.26		0.19	D	1
						4	4	1	0.27		0.03	E E	
						4	4. 6		$\begin{bmatrix} 0.1(-4) \\ 0.0055 \end{bmatrix}$		-2.44	E E	1
7.		$^{2}D - ^{2}P^{\circ}$		-									
						6	4		0.12		0.14	D	1
		ł				4	2		0.10		-0.40	D	1
						4	4		0.0019		~ 2.12	E	1
8.	3s ² 3d - 3s3p(¹ P°)3d	°D - °F°											
						6	8		0.52		0.49	Ð	1
	(4	6		0.56		0.35	D	1
						6	6		0.016		-1.02	Е	1
9.		$^{2}D = ^{2}D^{\circ}$					1						
						6	6		0.0048		-1.54	E	1
						4	4 6	}	0.0062		-1.61	E. E	
10.		$^{2}D - ^{2}P^{\circ}$											
						6	4		0.029		-0.76	E	1
			1			4	2		0.0082		-1.48	E	1
		1				4	4		6.1(~4)		- 2.61	E	11

.

FUHR ET AL.

Fe XIV: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g,	$A_{ki}(10^8 { m s}^{-1})$	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
11.	$3s3p^2-3p^3$	\$₽ - \$S°											
			288.45 280.69			6 4 2	4 4 4	170 130	0.14 0.15 0.15	0.80 0.55	0.08 -0.22 0.52	D D D	1 1 1
12.		² D - ² D°				64	64		0.050 0.037 0.0064		0.52 0.83	E E	1
13.		² D ² P°				4	6		0.0070		-1.55	E	1
						6 4 4	4 2 4		0.015 0.019 0.0075		1.05 1.12 1.52	E E E	1 1 1
14.		²S - ²D°				9	4		0.019		-142	F	
15.		²S - ²P°				2	Ŧ		0.019		1.42		
16.		²P - ²D°				2 2	4 2		0.043 0.0015		-1.07 -2.52	E E	1
						4 2 4	6 4 4		0.031 0.028 0.017		-0.91 1.25 1.17	E E E	1 1 1
17.		² P - ² P ^o				4	4		0.11		-0.36	D	1
						24	2		0.059 0.0077		0.93 1.51	E E	1
18.	3s3p(³ P°)3d - 3p ² (¹ D)3d	²P° - ²S			- -	6	2		0.0012		2.14	D	4
19.	3s3p('P°)3d- 3p ² ('D)3d	²P° – ²S				6	2		0.032		0.72	D	4
20.	$3s3p^2-3s^24p$	² D - ² P ^o	7 8 .636	300590	1572270	10	6	320	0.018	0.047	0.74	С	4
			[78.584] [78.769] [78.449]	301460 299280 299280	1573990 1568820 1573990	6 4 4	4 2 4	290 330 33	0.018 0.015 0.0030	0.028 0.016 0.0031	-0.97 1.21 1.92	C C D	ls ls ls
21.	3p-3d	²₽° - ²D	216.53	12568.3	474400	6	10	440	0.51	2.2	0.49	С	2
			219.13 211.32 220.09	18852.5 0.0 18852.5	475200 473210 473210	4 2 4	6 4 4	420 370 83	0.45 0.50 0.060	1.3 0.70 0.17	0.26 0.00 0.62	C C C	2 2 2
22.	$3s^23p-3p^2(1D)3d$	² P ^o - ² S			ļ	6	2		1.1(4)		3.18	D	4

for the second

peres.

jame.

TRANSITION PROBABILITIES FOR IRON

Fe XIV: Allowed transitions-Continued

	Transition	T	<u> </u>		1	T	T		T	1	T		T
No.	array	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_t ({\rm cm}^{-1})$	g,	g.	$A_{k_1}(10^8 \mathrm{s}^{-1})$	fit	S (at.u.)	log gf	Accu- racy	Source
23.	$3s3p^2 - 3s3p(^3P^o)3d$	*P - *F°											
94		th the				6 4 2 6 4 6	8 6 4 6 4		0.0027 0.0017 0.072 6.2(-4) 0.022 0.0057		$ \begin{array}{r} -1.79 \\ -2.17 \\ -0.84 \\ -2.43 \\ -1.06 \\ -1.47 \end{array} $	E E E E E	1 1 1 1 1 1
24.		P - D*	210.01										
			216.95			6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	430 130	0.41 0.14 0.40 0.19 0.034 0.29 0.0068 7.9(4)	1.8 0.40	$\begin{array}{r} 0.39 \\ -0.25 \\ -0.10 \\ 0.06 \\ -0.87 \\ -0.24 \\ -1.39 \\ -2.50 \end{array}$	D D D E D E E	1 1 1 1 1 1 1
25.		⁴P – ⁴P°											
						6 4 2 6 4 4 2	6 4 2 4 2 6 4		0.025 0.16 0.0055 0.055 0.10 0.27 0.0079		$-0.82 \\ -0.19 \\ -1.96 \\ -0.48 \\ -0.40 \\ 0.03 \\ -1.80$	E D E D D E	1 1 1 1 1 1
26.		$^{2}D - ^{2}F^{\circ}$											
27.		² D - ² D°				6 4 6	8 6 6		0.22 0.20 0.029		0.12 -0.10 -0.76	D D E	1 1 1
Í						6	6		9.6/4)	Í			
28.		² D - ² P ^o				4	4		0.0049 9.6(4)		- 2.29 - 1.71 - 2.24	E E E	1 1 1
						6	4		0.18		0.03	D	
20		² 6 ² D0				4 4	2 4		0.068 0.020		-0.57	E I E I	
29.		5 - ⁻ D ^o											
30.		² S - ² P ^o				2	4		0.093		-0.73	E 1	
						2 2	4		0.0021		-2.38	E I E I	

FUHR ET AL.

sec.

1000

and the second s

Fe XIV: Allowed transitions-Continued

.....

No.	Transition array	Multiplet	λ(Å)	E; (cm ⁻¹)	E_k (cm ⁻¹)	g;	g.	A _{ki} (10 ⁸ s ⁻¹)	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
31.		² P - ² F ^o											
						4	6		3.4(4)		-2.87	E	1
32.		² P - ² D ^o				4	6		0.79		0.50	D	1
						2 4	4 4		0.46 0.093		-0.04 -0.43	D E	1
33.		² P - ² P ^o											
						4	4		0.010		-1.40 -0.62	ED	1
						4 2	4		0.37		-0.13	D	1
34.	3s3p ² - 3s3p('P°)3d	² D - ² F ^o											
						6 4	8 6		0.16		-0.02 -0.14	D D	1
35.		² D - ² D ^o				0	0		0.0067		~1.40	C	1
		-				6	6		0.30 0.31		0.26 0.09	D D	1
						6 4	4 6		0.025 0.063		-0.82 -0.60	E	1
36.		² D - ² P ^o											
						6 4 4	4 2 4		0.34 0.38 0.082		0.31 0.18 0.48	D D E	1 1 1
37.		² S - ² D ^o											
						2	4		0.012		-1.62	E	1
38,		² S – ² P ^o				2	4		0.6 9		0.14	D	1
30		² P _ ² FO				2	2		0.15		0.52	D	1
57.						4	6		0.0069		-1.56	E	1
40.		² P - ² D ^o											
						4 2 4	6 4 4		0.026 0.032 0.0060		-0.98 -1.19 -1.62	E	1
41.		² P – ² P ^o							0.0000		1.02		
						4	4 2		0.0071 0.21		-1.55 -0.38	E D	1
						4 2	2 4		0.0061 0.0014		-1.61 -2.55	E E	1
42.	3s3p(³ P°)3d- 3s3d ²	² P° - ² S				6	2		0.11		0.18	C	4

TRANSITION PROBABILITIES FOR IRON

Fe XIV: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{s} (cm ⁻¹)	g;	g,	A_{k} (10 ⁸ s ⁻¹)	f.k	S (at.u.)	log gf	Accu- racy	Source
43.	3s3p(¹ P°)3d- 3s3d ²	² P° - ² S				6	2		0.11		-0.18	с	4
44.	$3p^3-3p^2(^1D)3d$	² P° - ² S				6	2	3) 	0.090		-0.27	с	4
45.	3 <i>p</i> -4 <i>s</i>	² P° - ² S	70.301	12568.3	1435020	6	2	2500	0.062	0.086	0.43	с	4
			70.613 [69.685]	18852.5 0.0	1435020 1435020	4 2	2 2	1600 870	0.061 0.063	0.057 0.029	-0.61 -0.90	C C	ls Is
46.	$\frac{3s 3p^2}{3s 3p (^3P^0)4s}$	4P - 4P°						-					
			69.66			6	6	1300	0.092	0.13	-0.26	D	3
			70.251			6	4	810	0.040	0.056	-0.62	D	3
			69.176 69.386			4	0 4	560 760	0.060	0.055	-0.62	D	3
										0.000	0.00		
47.	3p-4d	² P° - ² D	59.375	12568.3	1696770	6	10	3200	0.28	0.33	0.23	С	4
			59.579	18852.5	1697290	4	6	3200	0.25	0.20	0.00	С	ts
			58.963	0.0	1695980 1695980	2	4	2700 530	0.28	0.11	-0.25	C C	ls Ic
			[07:000]	10002.0	10,0,00		7	550	0.020	0.022	0.95		6
48.	3 <i>d</i> -4 <i>p</i>	² D - ² P°	91.085	474400	1572270	10	6	380	0.028	0.084	-0.55	С	4
			91.009	475200	1573990	6	4	340	0.028	0.050	-0.78	С	ls
			91.273	473210	1568820	4	2	370	0.023	0.028		C	ls
			[90.845]	473210	1573990	4	4	38	0.0047	0.0056	-1.73	D	ls
49.	3 <i>d</i> -4 <i>f</i>	² D ~ ² F°	76.099	474400	1788470	10	14	6900	0.84	2.1	0.92	с	1,3
			76.152	475200	1788360	6	8	7000	0.81	1.2	0.69	с	3
			76.022	473210	1788620	4	6	6600	0.86	0.86	0.54	С	3
			[[76.137]	475200	1788620	6	6	390	0.034	0.051	-0.69	E	1
50.	3s3p(³ P°)3d- 3s3p(³ P°)4f	⁴F° - ⁴G											
			72.796			10	12	7900 5000	0.75	1.8	0.88	D	3
			73.08			8 6	10	5000 5100	0.50	0.96	0.60	D	3
51.	4s-4p	² S - ² P°	728.60	1435020	1572270	2	6	29	0.69	3.3	0.14	D	1
			[719.58]	1435020	1573990	2	4	30	0.46	2.2	-0.04	D	1
			[(4(.30]	1433020	1306620	4	4	20	0.22	1.1	-0.30	U	1
52.	4 <i>p</i> ~4 <i>d</i>	² P° - ² D	803.21	1572270	1696770	6	10	39	0.63	10	0.58	D	1
			[811.03]	1573990	1697290	4	6	39	0.57	6.1	0.36	D	1
			[786.41]	1568820	1695980	2	4	35	0.65	3.4	0.11	D	1
			[819.74]	1573990	1695980	4	4	6.3	0.063	0.68	-0.60	D	1
53.	4 <i>d</i> -4 <i>f</i>	$^{2}D - ^{2}F^{o}$	1091	1696770	1788470	10	14	7.2	0.18	6.5	0.26	D	1
ļ			[1098]	1697290	1788360	6	8	7.1	0.17	3.7	0.01	D	1
			[1079]	1695980	1788620	4	6	6.9	0.18	2.6	-0.14	D	1
			[1095]	1697290	1788620	6	6	0.47	0.0084	0.18	-1.30	D	1

" The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

FUHR ET AL.

Fe xv

Ground State

Ionization Potential

1s²2s²2p⁶3s² ¹S₀

 $[456] eV = [3678000] cm^{-1}$

Allowed Transitions

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
38.95	11	70.054	20	227.21	12	312.55	4
52.911	10	70.224	28	227.70	12	317.62	3
59.404	19	70.519	28	233.87	12	321.82	3
63.957	22	70.53	27	234.76	12	323.57	7
65.370	17	70.5 9	27	235.27	12	327.03	4
65.612	17	70.601	27	243.80	15	417.24	1
66.238	17	71.062	26	284.15	2	435.20	5
68.860	23	73.199	25	292.36	3	470.26	5
68.884	24	73.471	29	302.45	3	481.52	6
69.049	23	73.473	21	303.40	14	493.63	5
69.66	18	191.40	13	305.00	3		
69.945	20	196.73	13	305.88	14		
69.987	20	224.76	12	307.78	3		

List of tabulated lines

Results of several accurate theoretical calculations are available for in-shell (n = 3) transitions in this highly ionized member of the Mg isoelectronic sequence. Cheng and Johnson [1] have used a relativistic multi-configuration Hartree-Fock (MCHF) approach to determine line strengths for several transitions of the $3s^2-3s3p$ and $3s3p-3p^2$ arrays. Weiss [2] has performed superposition-ofconfigurations (SOC) calculations in intermediate coupling to determine line strengths for numerous transitions within the n = 3 shell, and his results are tabulated here for several transitions not treated in ref. [1].

We note that, with the exception of the $3s^2$ ¹S-3s3p ³P₁^o intercombination line, the results of Aymar and Luc-Koenig [3] obtained by introducing relativistic effects via a parametric potential method are in very good agreement with the data tabulated here. Multiplet strengths which include the effects of configuration interaction have been calculated by Froese [4] and by Crossley and Dalgarno [5] in the Hartree-Fock and Z-expansion approximations, respectively, for many additional $\Delta n = 0$ transitions, but they are not tabulated here since the wavelengths are unknown at this time.

The *f*-values of the $3s^{2}$ 'S - 3snp 'P° (n = 4,5) transitions calculated by Shorer et al. [6] in the relativistic random phase approximation (RRPA) are quoted here, and their results for the $3s^{2}-3s3p$ transitions are in good agreement with those of ref. [1].

The multiconfiguration results of Kastner et al. [7] in intermediate coupling have been tabulated for a number of 3p 3d-3p 4ftransitions. Data for additional lines involving electrons which occupy orbitals of principal quantum number n = 4 are from the Hartree-Fock-Slater (HX) results of Cowan and Widing [8] and Fawcett et al. [9]. (The *f*-value for the 3s 3p ${}^{5}P_{2}^{\circ}-3s 3d$ ${}^{3}D_{3}$ transition has also been taken from ref. [8].) Froese Fischer [10] has calculated oscillator strengths in a nonrelativistic MCHF scheme for a few D-F° multiplets. Her *f*-value of 0.90 for the multiplet could not be directly compared to the results of Cowan and Widing, since they have published *gf*-values for only the strongest lines of the multiplet.

A single-configuration approximation has been applied by Burkhalter et al. [11] to the calculation of A-values for several inner-shell transitions. Because of the neglect of correlation effects, we have not tabulated these data.

References

- [1] Cheng, K. T., and Johnson, W. R., Phys. Rev. A 16, 263 (1977).
- [2] Weiss, A. W., private communication.
- [3] Aymar, M., and Luc-Koenig, E., Phys. Rev. A 15, 821 (1977).
- [4] Froese, C., Astrophys. J. 140, 361 (1964).
- [5] Crossley, R. J. S., and Dalgarno, A., Proc. R. Soc. London, Ser. A 286, 510 (1965).
- [6] Shorer, P., Lin, C. D., and Johnson, W. R., Phys. Rev. A 16, 1109 (1977).
- [7] Kastner, S. O., Swartz, M., Bhatia, A. K., and Lapides, J., J. Opt. Soc. Am. 68, 1558 (1978).
- [8] Cowan, R. D., and Widing, K. G., Astrophys, J. 180, 285 (1973).
- [9] Fawcett, B. C., Cowan, R. D., Kononov, E. Y., and Hayes, R. W., J. Phys. B 5, 1255 (1972).
- [10] Freese Fischer, C., J. Opt. Soc. Am. 69, 118 (1979).
- [11] Burkhalter, P. G., Cohen, L., Cowan, R. D., and Feldman, U., J. Opt. Soc. Am. 69, 1133 (1979).

TRANSITION PROBABILITIES FOR IRON

.....

Fe XV: Allowed transitions

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g⊾	$A_{k_{1}}(10^{8}\mathrm{s}^{-1})$	f.k	S (at.u.)	log gf	Accu- racy	Source
1.	3s ² -3s3p	'S - ³ P°				_							
			417.24	0	239670	1	3	0.41	0.0032	0.0044	-2.49	D	1
2.		${}^{1}S - {}^{1}P^{o}$	284.15	0	351930	1	3	220	0.80	0.75	0.10	с	1
3.	$3s3p-3p^2$	³ P° - ³ P	306.67	246900	572980	9	9	179	0.252	2.29	0.356	C+	1
			305.00	253820	581710	5	5	127	0.177	0.891	-0.052	C+	1
			307.78	239670	564580	3	3	49.1	0.0697	0.212	-0.679	C+	1
			321.82	253820	564580	5	3	71.1	0.0663	0.351	-0.480	C+	1
			317.62	239670	554510	3	1	177	0.0893	0.280	-0.572	C+	1
			292.36	239670	581710	3	5	44.6	0.0952	0.275	-0.544	C+	1
			302.45	233950	564580	1	3	69.3	0.285	0.284	-0.545	C+	1
4.		³ P° - ¹ D											
			327.03	253820	559610	5	5	20	0.032	0.17	-0.30	С	,
			312.55	239670	559610	3	5	11	0.027	0.083	-1.09	D	i
5.		'P° - ³ P											
													1
			[435.20]	351930	581710	3.	5	4.7	0.022	0.096	1.17	D	1
			[4/0.26]	351930	564580	3	3	0.084	2.8(4)*	0.0013	-3.08	D	
			[493.03]	321930	554510	3	1	0.64	7.8(4)	0.0038	-2.63	U	1
6.		"P° - "D	481.52	351930	559610	3	5	15.5	0.0896	0.426	-0.571	C+	1
7.		'P° - 'S	323.57	351930	660980?	3	1	202	0.105	0.337	-0.50	С	2
8.	3s3d-3p3d	³ D - ³ F°	383.98	680360	940790	15	21	48.8	0.151	2.86	0.355	с	10
9.		,D - , Ł o				5	7		0.378		0.276	С	10
10.	$3s^2-3s4p$	'S – 'P°	52.911	0	1889970	1	3	2940	0.370	0.064	-0.432	С	6
11.	3s ² -3s5p	'S – 'P°	38.95	0	2567000	1	3	1690	0.115	0.0147	0.94	С	6
12.	3s3p-3s3d	³ P ^o - ³ D	230.70	246900	<mark>68</mark> 0360	9	15	238	0.316	2.16	0.454	С	2,8
			233.87	253820	681410	5	7	239	0.274	1.05	0.137	C	8
			227.21	239670	679790	3	5	180	0.233	0.522	-0.156	C+	2
			224.76	233950	678860	1	3	138	0.314	0.232	0.504	C+	2
			234.76	253820	679790	5	5	54.5	0.0450	0.174	0.648	C+	2
			[235.97]	239070	678860	3	3	99.0	0.0709	0.173	0.637	1.0+ n	2
			[200.21]	200020	010000			0.2	0.0031	0.012	1.01	U	-
13.		³ P° ~ 'D											
			[196.73]	253820	762130	5	5	0.11	6.5(-5)	2.1(-4)	3.49	D-	2
			[191.40]	239670	762130	3	5	3.0	0.0028	0.0052	-2.08	D	2
14.		¹ P ^o - ³ D								1			
			303.40	351020	670700	2	_	0.14	3 21-1	0.6(-4)	2.09	n	
			[305.88]	351930	678860	3	3	0.24	3.2(-4) 3.3(-4)	∍.σ(−4) 0.0010	-3.02	D	2
15.		${}^{1}P_{.}^{0} - {}^{1}D$	243.80	351930	762130	3	5	419	0.623	1.50	0.272	C+	2
16.	$3p^2 - 3p 3d$	D - Fo	1			5	7		0.232		0.064	C	10

FUHR ET AL.

Fe XV: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g i	B k	$A_{ki}(10^{8} { m s}^{-1})$	ſu	S (at.u.)	log gf	Асси- гасу	Source
17.	3s 3p ~ 3s 4s	³ P° - ³ S	65.930	246900	1763670	9	3	2800	0.061	0.12	0.26	D	8
			66.238	253820	1763670	5	3	1600	0.062	0.068	-0.51	D	8
			65.612	239670	1763670	3	3	98 0	0.063	0.041	-0.72	D	8
			6 5.370	233950	1763670	1	3	320	0.062	0.013	-1.21	D	8
18.		¹ P° - ¹ S	69.66?	351930	1787000?	3	1	1900	0.047	0.032	-0.85	D	8
19.	3s3p-3s4d	'P° - 'D	59.404	351930	2035320	3	5	3400	0.30	0.18	-0.05	С	8
20.	3s3d-3s4f	³ D - ³ F°											
			70.054	681410	2108880	7	9	8800	0.83	1.3	0.76	с	8
			69.987	679790	2108630	5	7	7900	0.81	0. 9 3	0.61	С	8
1			69.945	678860	2108550	3	5	7400	0.91	0.63	0.44	С	8
21.		³ D - ¹ F°	73.473?	762130	2123170	5	7	6100	0.69	0.83	0.54	С	10
22.	$3p^2-3s4f$	¹ D - ¹ F°	[63.9 57]	559610	2123170	5	7	2300	0.20	0.21	0.00	D	10
23.	3p 3d - 3p 4f	³F° - ³G											
			68.860	949660	2402110	9	11	9200	0.80	1.6	0.86	С	7
			69.049	938190	2386710	7	9	6500	0.60	0.95	0.62	D	7
24.		³ F° - ³ F											
			68.884?	938190	2389900?	7	9	2200	0.20	0.32	0.15	D	7
25.		'F° - 'C	73.199			7	9	8800	0.91	1.5	0.80	с	7
26.		³ D° - ³ F											
			71.062			7	9	5200	0.51	0.83	0.55	D	7
			71.062			3	5	6400	0.81	0.57	0.38	C	7
27.		³ D° - ³ D											
			70.59			7	7	1700	0.13	0.21	0.04	с	9
			70.53			5	5	3100	0.23	0.27	0.06	D	9
			70.53			7	5	260	0.014	0.023	-1.01	D	9
			70.601			5	7	4500	0.47	0.55	0.37	D	7
28.		³ P° - ³ D											
			70.519			3	5	4400	0.55	0.38	0.21	c	7
			70.224			1	3	4100	0.91	0.21	-0.04	c	7
			70.224			3	3	4200	0.31	0.22	-0.03	С	7
29.		'P° - 'D	73.471?			3	5	7000	0.94	0.69	0.45	с	7

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

10m

TRANSITION PROBABILITIES FOR IRON

Fe xvi

Ground State

Ionization Potential

 $1s^2 2s^2 2p^6 3s^{-2} S_{1/2}$

$489.5 \text{ eV} = 3947840 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
36.749	3	48.979	11	117.70	16	335.407	1
36.803	3	50.350	2	123.46	19	360.798	1
39.827	8	50.555	2	124.61	19	684.74	17
40.153	. 8	54.142	6	124.70	19	718.08	17
40.163	8	54.728	6	143.99	22	724.74	17
40.199	14	54.769	6	144.18	22	843.38	15
40.245	14	62.879	5	144.25	22	904.90	15
40.247	14	63.719	5	146.2	18	1411	25
41.095	13	66.263	10	148.0	18	1483	25
41.137	13	66.368	10	167.48	21	1496	25
41.17	13	66.393	10	167.84	21	1652	20
41.91	7	76.299	9	168.61	21	1672	20
42.30	7	76.502	9	251.058	4	1688	20
46.661	12	76.796	9	262.967	4	1690	24
46.718	12	96.245	23	265.007	4	1813	24
46.725	12	96.354	23	266.62	26		
48.883	11	96.364	23	266.96	26		
48.97	11	117.15	16	267.04	26		

Oscillator strengths have been computed for a great many transitions of this highly ionized member of the sodium isoelectronic sequence.

Kim and Cheng [1] have applied the relativistic singleconfiguration Hartree-Fock method to the calculation of f-values of individual lines for all cases in which the valence electron undergoes a transition of the type $nl^{2}L - n'l'^{2}L'(n, n' = 3.4)$.

Froese Fischer [2] has calculated f-values for a few multiplets of this type by using the nonrelativistic multiconfiguration Hartree-Fock approach, and her results are in very good agreement with the multiplet oscillator strengths derived from the results of ref. [1].

Biemont [3] has computed a large number of Hartree-Fock f-values; because of the small correlation expected in the Na sequence, these results are expected to be quite accurate.

Tull et al. [4] have computed a large number of oscillator strengths for Fe XVI by using the frozen-core HF approximation, of which we have included some strong transitions arising from 3d and 4d states. Relativistic corrections to the theoretical wavelengths have been used in their calculation.

Froese Fischer [5] has parametrized additional Hartree-Fock data of Biemont, obtaining fits with errors of 1-2% over the isoelectronic sequence.

Burkhalter et al. [6] have published gA-values for numerous transitions involving excitation of a core (2p) electron. We have not tabulated these data, however, since the authors apparently have not taken configuration interaction into account.

References

- [1] Kim, Y.-K., and Cheng, K.-t., J. Opt. Soc. Am. 68, 836 (1978).
- [2] Frocse Fischer, C., Beam-Foil Spectroscopy, Vol. 1, 69-76, Ed. Sellin, I. A.,
- and Pegg, D. J., Plenum Press, New York (1976).
 [3] Biemont, E., J. Quant. Spectrosc. Radiat. Transfer 15, 531 (1975); 16, 627 (1976).
- [4] Tull, C. E., McEachran, R. P., and Cohen, M., At. Data 3, 169 (1971).
- [5] Fruese Fischer, C., Phys. Scr. 14, 269 (1976).
- [6] Burkhahter, P. C., Cohen, L., Cowan, R. D., and Feldman, U., J. Opt. Soc. Am. 69, 1133 (1979).

FUHR ET AL.

Fe XVI: Allowed transitions

No.	Transition array	Multiplet	λ(Å)	E; (cm ⁻¹)	$E_t (\mathrm{cm}^{-1})$	gi	₿×	$A_{ki}(10^8 { m s}^{-1})$	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
1.	3s-3p	² S - ² P ^o	343.47	0	291150	2	6	74.8	0.397	0.898	0.100	B	1
			335 407	0	208140	9	4	80.6	0.979	0.601	-0.264	R	,
			360.798	0	277160	2	2	64.1	0.125	0.297	0.602	B	i i
2.	3s-4p	² S - ² P°	50.418	0	1983410	2	6	1890	0.217	0.0719	-0.363	B	1
			50.350	0	1986100	2	4	1850	0.141	0.0467	0.550	в	1
			50.555	0	1978040	2	2	1970	0.0756	0.0252	-0.820	B	1
3.	3s-5p	² S - ² P°	36.767	0	2719830.	2	6	1150	0.0697	0.0169	0.856	C+	3
			36.749	0	2721160	2	4	1150	0.0467	0.0113	1.030	с	ls
			36.803	0	2717170	2	2	1100	0.023	0.0056	1.34	D	ls
4.	3p-3d	² P° - ² D	259.01	291150	677240	6	10	170	0.285	1.46	0.234	в	1
			262.967	298140	678420	4	6	163	0.254	0.880	0.007	В	1
			251.058	277160	675470	2	4	156	0.294	0.486	-0.231	B	1
			265.007	298140	675470	4	4	26.5	0.0279	0.0974	0.952	B	1
5.	3p-4s	${}^{2}P^{o} - {}^{2}S$	63 .436	291150	1867530	6	2	3230	0.0649	0.0813	-0.410	8	1
			63.719	298140	1867530	4	2	2170	0.0661	0.0555	-0.578	8	1
			62.879	277160	1867530	2	2	1050	0.0622	0.0258	-0.905	B	1
6.	3p-4d	² P° - ² D	54.535	291150	2124850	6	10	4150	0.308	0.332	0.267	в	1
			54.728	298140	2125360	4	6	4160	0.280	0.202	0.049	в	1
			54.142	277160	2124080	2	4	3410	0.300	0.107	-0.222	B	1
			54.769	298140	2124080	4	4	698	0.0314	0.0226	0.901	B	1
7.	3p5s	³ P° - ² S	42.18	291150	2662000	6	2	1380	0.0123	0.0102	-1.132	C+	3
			42.30	298140	2662000	4	2	910	0.012	0.0068	-1.311	c	ls
			41.91	277160	2662000	2	2	468	0.0123	0.00340	-1.61	c	ls
8.	3p-5d	² P° - ² D	40.045	291150	2788370	6	10	2490	0.0996	0.0788	0.224	C+	3
			40.153	298140	2788610	4	6	2470	0.089	0.0473	-0.446	С	ls
			39 .827	277160	2788020	2	4	2110	0.100	0.0263	0.70	С	ls
		ĺ	[40.163]	298140	2788020	4	4	410	0.010	0.0053	-1,40	D	ls
9.	3 <i>d-4p</i>	² D - ² P°	76.560	677240	1983410	10	6	750	0.0397	0.100	0.401	С	1
			76.502	678420	1986100	6	4	668	0.0391	0.0591	0.630	B	1
			76.796	675470	1978040	4	2	769	0.0340	0.0344	0.866	B	1
			[76.299]	675470	1986100	4	4	74	0.0065	0.0065	-1.59	D	1
10.	3 <i>d</i> -4 <i>f</i>	$^{2}D - ^{2}F^{\circ}$	66.327	677240	2184930	10	14	1.00(+4)*	0.925	2.02	0.966	в	1
			66.368	678420	2185170	6	8	1.00(+4)	0.882	1.16	0.724	В	l
			66.263	675470	2184610	4	6	9360	0.924	0.806	0.568	B	1
			[66.393]	678420	2184610	6	6	667	0.0441	0.0578	-0.577	B	
11.	3d-5p	² D - ² P ⁿ	48.957	677240	2719830	10	6	290	0.0062	0.010	-1.21	D	3
			48.97	678420	2721160	6	4	260	0.0062	0.0060	1.43	D	ls
			[48.979] [48.883]	675470 675470	2717170	4	2 4	280	0.0051	0.0033 6.7(-4)	-2.38	D E	ls Is
10	9.1 Er	20 300	46 405	677940	2121100	10	14	3740	0.0010	0.262	0.922		
12.	sa-sj	U~ r	40.095	077240	2010/00	10	- 14	9740	0.171	0.203	0.233		
			46.718	678420 675470	2818920	6	8	3730	0.163	0.150	-0.011		is is
		1	40.001 E46 7957	679490	2010.390	6	6	250	0.0091	0.105		n n	10

.

fan seren en ser en seren en seren en seren en seren en seren en seren en seren en seren en seren en seren en seren en seren en s

per la

pres.

TRANSITION PROBABILITIES FOR IRON

Fe XVI: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	₿×	$A_{ki}(10^8 \mathrm{s}^{-1})$	fik	S (at.u.)	log gf	Accu- racy	Source
13.	3d-6p	² D - ² P°	41.139	677240	3108030	10	6	140	0.0022	0.0030	-1.66	D	4
			41.17	678420	3108870	6	4	130	0.0022	0.0018	-188		15
		Ì	[41.137]	675470	3106360	4	2	150	0.0018	0.0010	2.13	D	ls
			[41.095]	675470	3108870	4	4	15	3.7(-4)	2.0(-4)	-2.83	E	ls
14.	3d-6f	$^{2}D - ^{2}F^{\circ}$	40.227	677240	3163150	10	14	1860	0.0633	0.0838	-0.199	C+	3
			40.245	679490	2162200	6		1960	0.060	0.0470	0.449		
			40.243	675420	3163000		6	1000	0.000	0.0479	-0.442		ls lo
			[40.247]	678420	3163090	6	6	120	0.0030	0.0024	-1.74	D	ls
15.	4s-4p	² S - ² P°	862.96	1867530	1983410	2	6	17.1	0.574	3.26	0.060	в	1
			[0.10.00]	10/7700									
			[843.38]	1867530	1986100	2	4	18.4	0.393	2.18	-0.105	B	1
			[904.90]	1807530	1978040	2	2	14.8	0.182	1.08	-0.439	в	
16.	4s-5p	² S - ² P°	117.33	1867530	2719830	2	6	392	0.243	0.188	-0.313	C+	3
			[117.15]	1867530	2721160	2	4	394	0.162	0.125	-0.489	c	ls
			[117.70]	1867530	2717170	2	2	390	0.081	0.063	-0.79	D	is
17.	4 <i>p</i> -4d	² P° - ² D	707.01	1983410	2124850	6	10	36.2	0.453	6.32	0.434	B	1
			[718.09]	1086100	2125260		6	247	0.402	3.80	0.206	P	,
			[710.00]	1978040	2123300	, 1	4	331	0.402	2.10	~0.031	B	
			[724 74]	1976040	2124080		4	5.60	0.400	0.421	-0.754	R	3
			[-		0.00					
18.	4p-5s	² P° - ² S	147.4	1983410	2662000	6	2	976	0.106	0.309	-0.197	C+	3
			[148.0]	1986100	2662000	4	2	640	0.106	0.206	-0.374	С	ls
			[146.2]	1978040	2662000	2	2	334	0.107	0.103	0.67	C	ls
19.	4p-5d	² P° ~ ² D	124.23	1983410	2788370	6	10	711	0.274	0.672	0.216	C+	3
			£124.61]	1986100	2788610	4	6	700	0.246	0.403	~0.008	C	15
			[123.46]	1978040	2788020	2	4	600	0.276	0.224	-0.259	c	ls
			[124.70]	1986100	2788020	4	4	120	0.027	0.045	-0.96	D	ls
20.	4d-4f	² D - ² F°	1664	2124850	2184930	10	14	1.9	0.11	6.0	0.04	c	1
			[1679]	2125260	9195170	6	0	1.96	0.104	2.42	0 205		,
			[1672]	2123300	2184610	4	6	1.80	0.103	241	-0.353	B	1
			[1688]	2125360	2184610	6	6	0.12	0.0052	0.17	-1.51	D	1
21.	4d-5p	² D - ² P ^o	168.07	2124850	2719830	10	6	357	0.0907	0.502	-0.042	C+	3
			[167.84]	2125360	2721160	6		399	0.091	0 301	-0.264	C	1.
			[168.61]	2124080	2717170	4	2	353	0.075	0.167	-0.52	c	ls
			[167.48]	2124080	2721160	4	4	36	0.015	0.033	-1.22	D	ls
22.	4d-5f	$^{2}D - ^{2}F^{\circ}$	144.11	2124850	2818780	10	14	1670	0.726	3.44	0.861	C+	4
			F144 191	9195260	2818020	6		1660	0.69	1.07	0.62	C	1.
			[143.00]	2123300	2010920	4	6	1560	0.09	1.38	0.02	l č	ls
			[144.25]	2125360	2818590	6	6	110	0.034	0.098	0.69	D	ls
23.	4 <i>d</i> -6 <i>f</i>	$^{2}D - ^{2}F^{\circ}$	96.311	2124850	3163150	10	14	919	0.179	0.568	0.253	C+	4
			[96.354]	2125360	3163200	6	8	920	0.171	0.325	0.011	с	ls
	ł		[96.245]	2124080	3163090	4	6	860	0.179	0.227	-0.145	C	ls
		I	[96.364]	2125360	3163090	6	6	60	0.0084	0.016	-1.30	D	l <i>l</i> s

FUHR ET AL.

Fe XVI: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_t (cm ⁻¹)	g i	g.	$A_{ki}(10^8 { m s}^{-1})$	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
24.	5s-5p	² S - ² P°	1729	2662000	2719830	2	6	5.23	0.703	8.00	0.148	C+	3
			[1690] [1813]	2662000 2662000	2721160 2717170	2 2	4 2	5.6 4.6	0.48 0.23	5.3 2.7	-0.02 -0.34	C D	ls Is
25.	5p-5d	² P° - ² D	1459	2719830	2788370	6	10	11.0	0.586	16.9	0.546	C+	3
			[1483] [1411] [1496]	2721160 2717170 2721160	2788610 2788020 2788020	4 2 4	6 4 4	10.5 10 1.7	0.52 0.60 0.056	10.1 5.6 1.1	0.316 0.08 0.65	C C D	ls ls ls
26.	5d-6f	$^{2}D - ^{2}F^{\circ}$	266.82	2788370	3163150	10	14	432	0.646	5.67	0.810	C+	3
			[266.96] [266.62] [267.04]	2788610 2788020 2788610	3163200 3163090 3163090	6 4 6	8 6 6	431 404 28	0.61 0.65 0.030	3.24 2.27 0.16	0.57 0.413 0.74	C C D	ls ls ls

"The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe xvii

Ground State

Ionization Potential

1s²2s²2p⁶ ¹S₀

 $1266 \text{ eV} = 10210000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
10.660	52	49.6	98	57.9	95	102.1	7
10.771	51	49.7	98	58.1	89	102.4	16
11.03	33,34	50.1	104,112	58.8	119	103.0	16
11.130	48	50.2	101,103,	61.3	91	103.3	16
11.251	47		106	62.1	92	104.8	4
11.419	46	50.26	102	66.1	97	107.7	19
11.440	45	50.3	104	66.4	120	108.3	21
12.121	44	50.4	101	66.7	120	110.0	9
12.263	43	50.6	110	68.1	122	110.4	9
12.4	42	50.7	105	68.7	121	111.1	3
12.509	41	50.8	102,115,	94.8	5	111.2	10
12.681	40		116	95.3	2	111.7	26
13.824	32	50.9	110,115	95.8	13	111.8	26
13.889	31	51.1	107	96.5	5,15	112.1	25
15.013	39	51.2	107,109	96.9	5	112.3	14
15.259	38	51.3	107	98.6	12	112.6	18
15.449	37	51.5	110	98.8	6,17	113.0	18
16.769	36	52. 8	111	99	6	113.2	18
17.041	35	52.9	87,93	99.0	1	113.3	20
41.37	123	53.6	114,118	99.6	8	113.7	6,10,20
46.6	64	53.8	101	99.7	12	116.2	23
47.1	100	55.8	93	99.8	24	122.4	22
47.5	66	55.9	87	99.9	14	122.7	22
47.6	65	56.2	89	100.0	12,24	132.4	11
47.8	65	56.4	117	100.2	29	205.3	57
48.3	108	56.7	90,94	100.6	30	217.5	75
48.7	68	56.8	96	100.7	27,28	232.1	78
49.0	67	57.3	88	100.8	14	247.0	70
49.3	99	57.5	88	101.2	7,26	255.0	62
49.5	98,113	57.6	91,94	101.6	28	255.9	84

......

ومعجر

TRANSITION PROBABILITIES FOR IRON

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
260.8	69	286.4	83	316.3	76	379.0	58
264.4	56	287.8	77	320.5	85	386.6	55
267.0	73	288.2	83	322.4	85	396.9	54
269.4	73	288.3	82	326.2	76	403.0	60
272.0	69	289.5	74	332.9	76	404.2	63
274.6	79	292.5	72	345.9	55	410.9	63
277.2	72	292.6	81	364.6	58	420.6	60
278.3	69	295.8	72	373.9	61	448.8	59
281.0	86	298.9	80	375.2	63	450.9	53
283.1	71	302.3	83	376.9	54	484.4	71
284.0	77	314.7	55				

List of tabulated lines---Continued

Transition probabilities for the majority of the lines of this neonlike ion were taken from the results of the scaled Thomas-Fermi approach of Loulergue and Nussbaumer [1], which allows for extensive configuration interaction as well as spin-orbit coupling.

For the resonance transitions to J = 1 levels of the $2p^{5}3s$ and $2p^{5}3d$ configurations, we have selected the results of the relativistic random phase approximation (RRPA) calculations of Shorer [2], who has included mixing between $2p^53s$ and $2p^53d$ as well as correlation effects due to configurations having a vacancy in the 1s or 2s subshell. His calculations for this sequence provide an illustrative example of the rather drastic changes due to configuration interaction that can result in the values of oscillator strengths of heavy ions. The single-configuration relativistic Hartree-Fock results of Fielder et al. [3] for the same resonance transitions differ significantly (by 35-75 percent) in three of the five cases from the values obtained by Shorer. The multiconfiguration Dirac-Fock method of Cheng and Kim [4] which includes the effects of mixing between the $2p^53s$ and $2p^53d$ configurations yields oscillator strengths for the two resonance transitions to J = 1 levels of $2p^53s$ which are in much better agreement with Shorer's results than are those of ref. [3]. Shorer himself illustrates by numerical comparison the effects of including various configurations in his calculations.

Results of the model potential calculations of Crance [5] have been tabulated for other resonance transitions to $2p^{5}ns$ and $2p^{5}nd$ (n = 5,6).

Fawcett et al. [6] have used Cowan's Hartree-XR (i. e., allowing for statistical exchange and relativistic effects) and Slater-Condon programs to calculate f-values for the strongest lines of the 3l-4l'transition arrays and for one strong 3d-5f transition. Since they have labeled the levels in J_1l -coupling notation, while those of Loulergue and Nussbaumer are labeled in LS-coupling notation, an unambiguous comparison of their results could be made for only two of the lines in common, and the agreement is excellent. A few transitions treated by Fawcett et al. but excluded from the tabulation of Loulergue and Nussbaumer are presented here.

References

- [1] Loulergue, M., and Nussbaumer, H., Astron. Astrophys. 45, 125 (1975).
- [2] Shorer, P., Phys. Rev. A 20, 642 (1979).
- [3] Fielder, W., Jr., Lin, D. L., and Ton-That, D., Phys. Rev. A 19, 741 (1979).
 [4] Cheng, K. T., and Kim, Y.-K., Argonne National Laboratory Report
- ANL-78-65, 168 (1978).
- [5] Crance, M., At. Data 5, 185 (1973).
- [6] Fawcett, B. C., Broinage, G. E., and Hayes, R. W., Mon. Not. R. Astron. Soc. 186, 113 (1979).

No.	Transition array	Multiplet	λ(Å)	$E_{\epsilon}(\mathrm{cm}^{-1})$	$E_{\star} (\mathrm{cm}^{-1})$	g,	g.	A_{k} , (10 ⁸ s ⁻¹)	f.ik	S (at.u.)	log gf	Accu- racy	Source
1.	$2s^2 2p^5 ({}^2\mathbf{P}^{\mathbf{o}}_{1,2})3s - 2s 2p^5 3s$	(½,½)° − ³ S											
			[99.0]			5	3	750	0.066	0.11	-0.48	с	1
2.		(⅔,½)° - ¹S											
			[95.3]			3	1	510	0.023	0.022	1.16	с	1
3.	$\frac{2s^2 2p^5 ({}^2P^{0}_{1-2}) 3s -}{2s 2p^6 3s}$	(½,½)° - ³ S											
			[111.1]			3	3	180	0.033	0.037	-1.00	с	1
4.		(½,½)° - 'S											
			[104.8]			3	1	310	0.017	0.018	1.29	с	1

Fe XVII: Allowed transitions

FUHR ET AL.

 \sim

and the second

Fe XVII: Allowed transitions----Continued

No.	Transition array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_{\star} (\mathrm{cm}^{-1})$	g;	g,	$A_{i},(10^8 s^{-1})$	f _{ik}	S (at.u.)	log gf	Асси- гасу	Source
5.	2s ² 2p ⁵ 3p 2s2p ⁵ 3p	³ S - ³ P ^o	95.6			3	9	100	0.042	0.040	-0.90	c	1
			[94.8] [96.5] [96.9]			3 3 3	5 3 1	26 120 390	0.0058 0.017 0.018	0.0055 0.016 0.018	-1.76 -1.30 -1.26	C C C	1 1 1
6.		³ D - ³ P°											
			[98.8] [99] [113.7]			7 5 3	5 3 1	630 660 21	0.066 0.058 0.0014	0.15 0.095 0.0015	-0.34 0.54 -2.39	C C D	1 1 1
7.		³ P - ³ P ^o											
			[101.2] [102.1]			5 3	5 1	170 400	0.026 0.021	0.043 0.021	-0.88	с с	1 1
8.		³ P ¹ P°											
			[99.6]			5	3	310	0.028	0.045	-0.86	с	1
9.		¹ P - ³ P ⁰											
			[110.0] [110.4]			3 3	3 1	190 290	0.034 0.018	0.037 0.019	-0.99 1.28	c c	1 1
10.		'D - "P°											
			[111.2] [113.7]			5 5	5 3	150 8.9	0.028 0.0010	0.051 0.0019	-0.86 2.29	C D	1
11.		¹ S ~ ³ P ^o											
			[132.4]			1	3	31	0.024	0.011	-1.61	С	1
12.	2s ² 2p ⁵ 3d - 2s2p [*] 3d	³ P ^o - ³ D											
			[99.7] [100.0]	-		5	7	27 90	0.0056	0.0092		D	1
			[98.6]			3	3	96	0.014	0.014	1.38	c	1
13.		³ P° − ¹ D											
			[95.8]			5	5	32	0.0044	0.0069	-1.66	D	1
14.		³₽° - ³D											
			[99.9] [100.8]			9	7	540 430	0.063	0.19	-0.25	С	1
			[112.3]			5	3	190	0.047	0.040	-0.97	c	1
15.		³F° − 'D											
			[96.5]			7	5	150	0.015	0.033	-0.98	с	1
16.		³ D° - ³ D											
			[103.0] [103.3]			7	7 5	130 56	0.021 0.0064	0.049	0.84 1.35	C D	1
			[102.4]			5	3	320	0.030	0.051	-0.82	C	1
17.		$^{3}D^{\circ} - ^{1}D$											
			[98.8]			7	5	230	0.024	0.055	0.77	с	1

TRANSITION PROBABILITIES FOR IRON

Fe XVII: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E ₄ (cm ⁻¹)	g,	g.	A _{ki} (10 ⁸ s ⁻¹)	fit	S (at.u.)	log gf	Accu- racy	Source
18.		¹ D° - ³ D											
			[112.6] [113.0] [113.2]			5 5 5	7 5 3	51 48 6.5	0.014 0.0092 7.5(4)*	0.025 0.017 0.0014	-1.17 -1.34 -2.43	C C D	1 1 1
19.		¹ D° - ¹ D	[107.7]			5	5	66	0.011	0.020	-1.24	С	1
20.		¹ F° - ³ D											
			[113.3] [113.7]			7 7	7 5	120 49	0.023 0.0068	0.060 0.018	0.79 1.32	c c	1
21.		¹ F° - ¹ D	[108.3]			7	5	190	0.024	0.060	-0.78	С	1
22.		¹ P° - ³ D											
			[122.4] [122.7]			3 3	5 3	9.5 15	0.0036 0.0034	0.0043 0.0041	-1.97 -1.99	Ð D	1
23.		'P° - 'D	[116.2]			3	5	36	0.012	0.014	~1.44	с	1
24.	2s ² 2p ⁵ 4p- 2s2p ⁶ 4p	³S - ³Р°											
			[99.8] [100.0]			3 3	3 1	110 460	0.016 0.023	0.016 0.023	-1.31 -1.16	с с	1
25.		³ D - ³ P°											
			[112.1]			5	5	140	0.026	0.049	-0.88	С	1
2 6.		³ P - ³ P°											
			[101.2] [111.7] [111.8]			5 3 3	5 3 1	170 170 290	0.026 0.032 0.018	0.043 0.035 0.020	-0.88 -1.02 -1.26	C C C	1 1 1
27.		³ P - ¹ P ⁰											
			[100.7]			5	3	280	0.026	0.042	-0.89	С	1
28.		¹ P - ³ P ^o											
			[100.7] [101.6]			3	5 1	24 230	0.0061 0.012	0.0060 0.012	-1.74 -1.45	C C	1
29.		¹ P - ¹ P°	[100.2]			3	3	250	0.038	0.037	-0.95	с	1
30.		¹ D - ³ P ^o											
			[100.6]			5	3	590	0.054	0.089	-0.57	с	1
31.	2s ² 2p ⁶ - 2s2p ⁶ 3p	¹ S - ³ P ^o											
			13.889	0	7199900	1	3	3400	0.029	0.0013	-1.53	C	1
32.		S – יP°	13.824	0	7233800	1	3	3.3(+4)	0.28	0.013	-0.55	C	1
33.	2s ² 2p ⁶ - 2s2p ⁶ 4p	¹ S - ³ P°											
	1		11.03	0	9066000	1	3	2900	0.016	5.8(-4)	-1.80	c	1

FUHR ET AL.

e servere e

1000

Fe XVII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	Bi	₿¥	$A_{ki}(10^{8}5^{-1})$	fu	S (at.u.)	log gf	Accu- racy	Source
34.		¹ S - ¹ P°	11.03	0	9066000	1	3	2.1(+4)	0.11	0.0042	-0.94	с	1
35.	2p ⁶ ~ 2p ⁵ (² P ⁰ _{3/2})3s	¹S - (⅔,⊮)°											
•			17.041	0	5868200	1	3	9340	0.122	0.00684	-0.914	В	2
36.	$2p^{5}-2p^{5}(^{2}P^{o}_{1/2})3s$	'S - (½,½) ⁰											
37.	2p ⁶ -2p ⁵ 3d	¹ S – ³ P°	16.769	0	5963400	1	3	8300	0.105	0.00580	-0.979	В	2
			15.449	0	6472900	1	3	900	0.00966	4.91(4)	~ 2.0 15	B	2
38.		'S - 'D°	15.259	0	6553500	1	3	6.01(+4)	0.629	0.0316	-0.213	В	2
39.		'S - 'P°	15.013	0	6660900	1	3	2.28(+5)	2.31	0.114	0.364	B	2
40.	2p ⁶ - 2p ⁵ (² P ^o _{3/2})4s	¹ S ~ (¥,1⁄2)°											
			12.681	0	7885800	1	3	3000	0.022	9.1(4)	-1.66	с	1
41.	2p ⁶ - 2p ⁵ (² P ⁰ _{1/2})4s	¹S - (½,½)°											
			12.509	0	7994200	1	3	3500	0.025	0.0010	-1.61	C	1
42.	2p*-2p*4d	¹ S – ³ P°	6 1 1 1										
42		16 300	[12.4]			1	3	530	0.0037	1.5(-4)	-2.44	D	1
43.		5-0	12.263	0	8154600	1	3	5.9(+4)	0.40	0.016	~0.40	с	1
44.		¹ S ~ ¹ P°	12.121	0	8250100	1	3	8.0(+4)	0.53	0.021	-0.28	с	1
45.	2p ⁶ - 2p ⁵ (² P ⁰ _{3/2})5s	'S - (¾,½)°											
			11.440	0	8741300	1	3	1100	0.0065	2.4(4)	-2.19	D	5
46.	2p ⁶ - 2ρ ⁵ (² P ⁰ _{1/2})5s	'S − (½,½)°											
			11.419	0	8757300	1	3	600	0.0035	1.3(4)	2.46	D	5
47.	$2p^{\bullet}-2p^{5}5d$	¹ S – ³ D°											
49		le 100	11.251	0	8888100		3	2.3(+4)	0.13	0.0048	-0.89	D	5
40. 40	2n ⁶ -	5- F-	11.130	v	8984700		э	3.2(+4)	0.18	0.0000	-0.74	ט	5
*2.	$2p^{5}(^{2}P^{o}_{3/2})6s$	J (72,72)											
	- •					1	3	:	0.0033		2.48	D	5
50.	$2p^{\circ} - 2p^{\circ}({}^{\circ}P^{o}_{1/2})6s$	'S - (12,12)°				1	3		0.0017		-2.77	D	5

TRANSITION PROBABILITIES FOR IRON

Fe XVII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	E_k (cm ⁻¹)	g,	g.	$A_k (10^8 \mathrm{s}^{-1})$	f.u.	S (at.u.)	log gf	Accu- racy	Source
51]	2p ⁶ -2p ⁵ 6d	¹ S - ³ D ^o											
			10.771	0	9284200	1	3	1.1(+4)	0.060	0.0021	1.22	D	5
52.		¹ S – ¹ P°	10.660	0	9380900	1	3	1.9(+4)	0.096	0.0034	-1.02	D	5
53.	$2p^{5}({}^{2}\mathcal{P}^{\circ}_{3/2})3s - 2p^{5}3p$	(¾,½)° - ³ S											
			[450.9]			5	3	25	0.046	0.34	-0.64	с	1
54.		(⅔,⅔)° - ³D											
			[376.9] [396.9]			5 5	7 5	51 21	0.15 0.050	0.94 0.32	-0.12 0.61	c c	1
55.		(¾,½)° - ³P											
			[345.9] [386.6] [314.7]			5 3 3	5 3 1	37 45 65	0.066 0.10 0.032	0.38 0.38 0.10	0.48 -0.52 -1.02	C C C	1 1 1
56.		(½,½) ⁰ − ¹ D											
			[264.4]			5	5	1.0	0.0010	0.0046	2.28	D	1
57.		(½,½)° - 'S											
			[205.3]			3	I	120	0.025	0.051	-1.12	с	1
58.	2p ⁵ (² P ^o _{1/2})3s - 2p ⁵ 3p	(½,½)° − ³ D											
			[364.6] [379.0]			1 3	3 3	33 19	0.20 0.041	0.24 0.15	-0.70 -0.91	C C	1 1
59.		(5%,5%) ⁰ - ³ P											
			[448.8]			3	1	9.3	0.0094	0.041	-1.55	С	1
60.		(½,½) ^o – ¹ P											
			[420.6] [403.0]			3 1	3 3	22 17	0.058 0.12	0.24 0.16	-0.76 -0.91	с с	1 1
61.		(½,½)° − ¹D											
			[373.9]			3	5	53	0.1 9	0.68	-0.26	с	ł
62.		(½,½)° -¹S											
			[255.0]			3	1	130	0.042	0.11	-0.90	С	1
63.	2s2p*3s- 2s2p*3p	³ S - ³ P°	388.2			3	9	51	0.344	1.32	0.014	С	1
			[375.2] [404.2]			3	5 3	59 41	0.21	0.77	0.21 0.52	C C	1
			[410.9]			3	1	44	0.037	0.15	-0.95	č	1
64.	$2p^{5}({}^{2}P^{0}_{3/2})3s - 2p^{5}4p$	(ૠ,½)° − ³D											
			[46.6]			5	7	2600	0.12	0.092	-0.22	С	6

FUHR ET AL.

Fe XVII: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	$E_i (\mathrm{cm}^{-1})$	E_k (cm ⁻¹)	g i	g.	$A_{ki}(10^8 s^{-1})$	fia	S (at.u.)	log <i>gf</i>	Accu- racy	Source
65,	2s2p ⁶ 3s- 2s2p ⁶ 4p	³S – ³P°	47.6			3	9	2570	0.262	0.123	0.105	С	1
			[47.6] [47.8] [47.8]			3 3 3	5 3 1	2600 2400 2700	0.15 0.082 0.031	0.069 0.039 0.015	0.35 0.61 1.03	C C C	1 1 1
66.		³ S - ³ P°											
67.		'S – ³ P°	[47.5]			3	3	360	0.012	0.0057	-1.44	D	1
			[49.0]			1	3	400	0.043	0.0070	-1.36	D	1
68.		¹ S – ¹ P ^o	[48.7]			1	3	2400	0.26	0.041	0.59	c	1
69.	2p ⁵ 3p-2p ⁵ 3d	³ S - ³ P ^o	266.3			3	9	70	0.22	0.59	-0.17	С	1
			[260,8] [272.0] [278.3]			3 3 3	5 3 1	51 88 100	0.087 0.098 0.039	0.22 0.26 0.11	0.58 0.53 0.94	C C C	1 1 1
70.		³ S - ³ D°											
			[247.0]			3	5	2.6	0.0040	0.0097	1.92	D	1
71.		³D - ³₽°											
			[484.4] [283.1]			3 5	เ 5	1.2 9.1	0.0014 0.011	0.0067 0.051	-2.37 1.26	D D	1
72.		³ D - ³ F°											
			[292.5] [277.2] [295.8]			7 5 3	9 7 5	100 100 2.3	0.16 0.16 0.0050	1.1 0.74 0.015	0.06 0.09 1.82	C C C	1 1 1
73.		³ D - ³ D ^o											
			[269. 4] [267.0]			7 5	7 5	25 45	0.027 0.048	0.17 0.21	-0.72 -0.62	с с	1
74.		³ D - ¹ D°											
		:	[289.5]			3	5	91	0.19	0.54	0.24	C	1
75.		³ D - ¹ F ^o		ļ									
76		3D 3D0	[217.5]	4				1.6	0.0011	0.0057	2.10	U	
70.			[316.3] [332.9]			5	53	33 9.5	0.049	0.26	-0.61 1.32 2.40	C C D	
77.		'P - 'D°	[020.2]							0.0040			-
			[287.8] [284.0]			5 3	7	91 74	0.16 0.15	0.75 0.42	0.10 0.35	c c	
7 8 .		³ P ~ ¹ D ^o											
			[232.1]			5	5	6.6	0.0053	0.020	-1.57	l c	1

1000

TRANSITION PROBABILITIES FOR IRON

Fe XVII: Allowed transitions---Continued

-

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ti} (10^8 \mathrm{s}^{-1})$	fia	S (at.u.)	log gf	Accu- racy	Source
79 .		¹ P - ³ F ^o										+	
			[274.6]			3	5	110	0.21	0.56	-0.21	c	1
8 0.		¹ D - ³ F ^o											-
			[298.9]			5	5	13	0.017	0.086	-1.06	с	1
8 1.		${}^{1}D - {}^{1}D^{o}$	[292.6]			5	5	11	0.014	0.068	-1.15	с	1
82.		¹ D - ¹ F°	[288.3]			5	7	110	0.19	0.91	-0.02	c	1
83.	2s2p*3p- 2s2p*3d	³ P° - ³ D											
			[302.3]			5	7	100	0.19	0.95	-0.02	с	1
			[288.2]			3	5	81	0.17	0.48	-0.30	C	1
84.		³ P° - ¹ D					J	00	0.24	0.25	0.61	C	1
			[255.9]			3	5	14	0.022	0.050	1.14		
85.		¹ P° - ³ D	-					14	0.023	0.036	-1.16	C	I
			[320.5]			3	5	4.7	0.012	0.020			
			[322.4]			3	3	3.8	0.0059	0.038	-1.44 -1.75	C C	1
86.		¹ P° - 'D	[281.0]			3	5	120	0.24	0.66	-0.15	с	1
87.	$2p^{s}3p - 2p^{s}(^{2}P^{o}_{3/2})4s$	³S - (⅔,½)°											
			[55.9] [52.9]			3	5	670 56	0.052	0.029	-0.80	C	1
88.		³D - (⅔,⅔)°							0.0025	0.0012	~2.15		1
			[57.2]										
			[57.5]			7 3	5 3	1700 420	0.060 0.021	0.079 0.012	0.38 1.20	C C	1 1
89.		³ P ~ (½,½) ⁰						1					
			[58.1]			5	5	740	0.037	0.036	0.73	с	1
			[56.2]			1	3	120	0.017	0.0032	-1.77	D	l
90.		'P ~ (¥2, ¥2)°											
			[56.7]			3	3	560	0.027	0.015	1.09	С	l
91.		¹ D - (½,½) ^o											
			[61.3] [57.6]			5 5	5	11	6.2(-4) 0.063	6.3(-4)	-2.51	D	
92.	1	S - (32,)2)°	-			-			0.000	0.009	0.00		
			[62.1]			1	3	370	0.064	0.013	_1 10		
93.	$2\rho^{5}3p - 2\rho^{5}(^{2}P^{0}_{1/2})4s$	'S - (12.12)°	_			-				0.013	1.19		
			[55.8] [52.9]			3	3	55	0.0026	0.0014	-2.11	D 1	
FUHR ET AL.

Fe XVII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	E _k (cm ⁻¹)	g;	g⊧	$A_{4i}(10^8 { m s}^{-1})$	fik	S (at.u.)	log gf	Асси- гасу	Source
94.		³D - (½,½)°											
			[56.7] [57.6]			5 3	3 1	910 2300	0.026 0.038	0.025 0.022	-0.88 -0.94	с с	1
95.		³P - (½,½)°											
			[57. 9]			5	3	1000	0.030	0.029	0.82	С	1
9 6.		¹₽ - (½,½)°											
07		IS (14.14)8	[56.8]			3	1	1300	0.021	0.012	1.20	С	1
51.		5 - (72,72)	[66.1]			1	3	290	0.057	0.012	-1.24	С	1
98.	2p ^{\$} 3p-2p ^{\$} 4d	³S – ³Р°	49.5			3	9	2470	0.272	0.133	-0.088	с	1
			[49.5] [49.6]			3 3	5 3	2000 3900	0.12 0.14	0.060 0.070	-0.43 -0.36	с с	1
00		³ S ³ D ⁰	[49.7]			3	1	510	0.0063	0.0031	-1.72	D	1
27.		3	[49.3]			3	5	48	0.0029	0.0014	2.06	D	1
100.		³ S - ¹ D°											
			[47.1]			3	5	140	0.0078	0.0036	1.63	С	1
101.	:	°D – °Р°	[50.4]			F		£70	0.012				
			[50.4] [53.8] [50.2]			3 5	3 1 5	270 480	0.0039 0.018	0.011 0.0021 0.015	-1.19 -1.93 -1.04	D C	1 1
102.		³ D - ³ F ^o											
			50.26 [50.8]			7 3	9 5	5800 81	0.28 0.0052	0.33 0.0026	0.30 1.80	C D	1
103.		³ D - ¹ F ^o											
		1- 1-0	[50.2]			5	7	4500	0.24	0.20	0.08	С	1
104.		°D °D°	[50.3] [50.1]			7 5	7	1000 1600	0.038 0.060	0.044 0.050	-0.58 -0.52	c c	1
105.		³ D ¹ D ⁰											
			[50.7]			3	5	4800	0.31	0.15	-0.03	c	1
106.		³ D - ¹ P°	[50 9]					020	0.023	0.015	1.00		
107.		^s P - ^s P°	[30.2]			3	3	630	0.031	0.010	-1.03	C.	1
		Ì	[51.2] [51.3] [51.1]			5 5 3	5 3 1	2500 860 260	0.098 0.020 0.0034	0.083 0.017 0.0017	-0.31 -0.99 -1.99	C C D	1 1 1

per la

يمتعمر

TRANSITION PROBABILITIES FOR IRON

Fe XVII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_t (cm ⁻¹)	g,	g⊾	$A_{tr}(10^8 \mathrm{s}^{-1})$	fa	S (at.u.)	log gj	Асси- гасу	Source
108.		³ P - ³ F°											
			[48.3]			3	5	46	0.0027	0.0013	-2.09	D	1
109.		³ P - ¹ f ^o											
			[51.2]			5	7	54	0.0030	0.0025	-1.83	D	1
110.		³ P - ³ D ^o											
			[50.9] [50.6] [51.5]			5 3 1	7 5 3	4700 3600 2400	0.26 0.23 0.29	0.21 0.12 0.049	0.11 - 0.16 - 0.54	C C C	1 1 1
111.		${}^{1}P - {}^{3}P^{0}$											
			[52.8]			3	5	30	0.0021	0.0011	-2.20	Ð	1
112.		'P - ³ F°											
			[50.1]			3	5	4500	0.28	0.14	-0.07	C	1
113.		'P - 'P°	[49.5]			3	3	1200	0.044	0.022	0.88	C	I
114.		'D - 'P°	[[]] (]			_	_	10	0.0017	0.0015	2.04		
115		¹ D = ³ F ⁰	[53.0]			5	5	40	0.0017	0.0015	-2.06		ſ
115.		D - F	[50.8]			5	7	5800	0.31	0.26	0.20	C	1
			[50.9]			5	5	830	0.032	0.027	-0.79	c	1
116.		$^{1}D - ^{1}D^{\circ}$	[50.8]			5	5	610	0.024	0.020	-0.93	с	1
117.		¹ S - ³ D°											
			[56.4]			1	3	770	0.11	0.020	0.96	C	1
118.	052 0_54C	3E9 3C	[53.6]			1	3	2500	0.32	0.057	0.49	C	1
119.	2p 3a-2p 4j	r - G	58.8			0	11	12(+4)	0.78	14	0.85	C	6
120.	2s 2p ⁶ 3d – 2s 2p ⁶ 4p	³ D - ³ P°										J	C .
			[66.4] [66.7] [66.7]			7 5 3	5 3 1	690 600 860	0.033 0.024 0.019	0.050 0.026 0.013	-0.64 -0.92 -1.24	C C C	1 1 1
121.		¹ D ~ ³ P°											
			[68.7]			5	3	110	0.0047	0.0053	-1.63	D	1
122.		'D - 'P°	[68.1]			5	3	870	0.036	0.041	-0.74	с	1
123.	2p ⁵ 3d-2p ⁵ 5f	³ F° - ³ G											
			41.37			9	11	4800	0.15	0.18	0.13	С	6

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

FUHR ET AL.

Fe xviii

Ground State

Ionization Potential

ls²2s²2p⁵ ²P⁵_{3/2}

 $[1353] eV = [10913000] cm^{-1}$

Allowed Transitions

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
11.25	27	13.70	6	14.48	16	15.614	10
11.33	24	13.75	5	14.485	15	15.623	10
11.34	25	13.92	4	14.50	18	15.764	9
11.45	24,26	13.954	21	14.53	2	15.826	8
11.50	22	14.07	3	14.551	14	15.847	8
11.55	23	14.11	3	14.57	15	15.869	10
11.64	22	14.12	4	14.581	14	16.003	9
12,00	12	14.150	20	14.70	16	16.024	9
12.15	12	14.20	18	14.772	14	16.087	8
13.43	7	14.255	19	14.78	13	16.109	8
13.49	6	14.28	3,18	14.79	15	16.270	9
13.51	6	14.31	2	14.80	13	93.931	1
13.52	5	14.32	3,17	14.803	14	103.954	1
13.56	5	14.361	20	15.01	13		l
13.61	7	14.42	18	15.258	11		
13.68	6	14.467	19	15.491	11		ĺ

L	st	of	tal	kul	lat	ed	lines	;
---	----	----	-----	-----	-----	----	-------	---

Oscillator strengths for lines of the multiplet $2s^22p^5 {}^2P^{\circ}-2s2p^6 {}^2S$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [1], which include a perturbative treatment of the Breit interaction and the Lamb shift.

Data for transitions from the levels of the $2s2p^{5} {}^{2}P^{\circ}$ term to of configurations involving one electron in the n = 3 shell are from the comprehensive calculations of Chapman and Shadmi [2], who employed Hartree-Fock wavefunctions including the principal configuration mixing and calculated individual oscillator strengths in intermediate coupling.

The experimentally determined wavelengths and energy levels for the 2p-3s and 2p-3d transitions presented here are taken from work of Feldman et al. [3]. In some cases, however, we have permuted the "names" of the levels to coincide with those suggested by the percentage compositions given by Feldman et al. and/or by Chapman and Shadmi [2]. Specifically, within the $2p^{4(3P)}3s$ configuration the ${}^{2}P_{3/2}$ and ${}^{4}P_{3/2}$ designations given by Feldman et al. have been interchanged; and within the $2p^{4(3P)}3d$ configuration ${}^{4}P_{5/2}$ was changed to ${}^{4}F_{5/2}$.

Accuracy ratings for the weaker transitions, as well as for those involving levels of relatively low purity in LS coupling, were lowered to "E." Transitions to levels of extremely low purity, or to those for which the two largest components are very nearly equal, were omitted from the present compilation.

Oscillator strengths for a few transitions of the array $2p^{5}-2p^{4}dd$ have been calculated by Bromage et al. [4] with the Hartree-Fock method including statistical exchange (HX) and configuration interaction. The above remarks concerning purity of levels in LS coupling apply here as well. Additional data are available for resonance transitions to levels of configurations $2p^{4}nl$ ($n \ge 4$) [5,6], but they are not tabulated since the eigenvectors are not reported and such states are expected to be strongly mixed.

References

- Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [2] Chapman, R. D., and Shadmi, Y., J. Opt. Soc. Am. 63, 1440 (1973).
- [3] Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L., J. Opt. Soc. Am. 63, 1445 (1973).
- [4] Bromage, G. E., Fawcett, B. C., and Cowan, R. D., Mon. Not. R. Astron. Soc. 178, 599 (1977).
- [5] Bromage, G. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. C., Peacock, N. J., and Ridgeley, A., United Kingdom Atomic Energy Authority Report CLM-:R170 (August 1977).
- [6] Burkhalter, P. G., Dozier, C. M., Stallings, C., and Cowan, R. D., J. Appl. Phys. 49, 1092 (1978).

TRANSITION PROBABILITIES FOR IRON

Fe XVIII: Allowed transitions

No.	Transition array	Multiplet	λ(Å)	$E_{\rm r} ({\rm cm}^{-1})$	E_k (cm ⁻¹)	g.	g.	$A_{k}(10^8 \mathrm{s}^{-1})$	fa	S (at.u.)	log gf	Accu- racy	Source
1.	$2s^2 2p^5 - 2s 2p^6$	²P° - ²S	97.051	34220	1064610	6	2	1240	0.0584	0.112	0.455	C+	1
			93.931 103.954	0 102650	1064610 1064610	4 2	2 2	913 331	0.0604 0.0537	0.0747 0.0368	-0.617 -0.969	C+ C+	1
2.	2s ² 2p ⁵ - 2s2p ⁵ (³ P ⁰)3p	²P° - ⁴ S											
			[14.31] [14.53]			4 2	4 4	590 1700	0.0018 0.011	3.4(-4)* 0.0011	-2.14 -1.66	E E	2 2
3.		² P ^o - ² P	14.16			6	6	3.7(+4)	0.11	0.031	-0.18	E	2
			[14.11] [14.28] [14.07] [14.32]			4 2 4 2	4 2 2 4	3.0(+4) 1.0(+4) 4.1(+4) 23	0.089 0.032 0.061 1.4(-4)	0.017 0.0030 0.011 1.3(5)	-0.45 -1.19 -0.61 -3.55	D E E E	2 2 2 2
4.		² P° - ² S	13.99			6	2	6.7(+4)	0.065	0.018	-0.41	D	2
			[13.92] [14.12]			4 2	2 2	2.0(+4) 4.7(+4)	0.029 0.14	0.0053 0.013	-0.94 -0.55	D D	2 2
5.	$\frac{2s^2 2p^{5}}{2s 2p^{5}({}^{1}\mathrm{P}^{\circ})3p}$	² P ^o - ² D	13.60			6	10	3.0(+4)	0.14	0.037	-0.08	D	2
			[13.52] [13.75] [13.56]			4 2 4	6 4 4	1.8(+4) 3.7(+4) 9800	0.075 0.21 0.027	0.013 0.019 0.0048	0.52 0.38 0.97	D D D	2 2 2
6.	r -	² P ^o - ² P	13.56			6	6	3.9(+4)	0.11	0.029	-0.19	E	2
			[13.49] [13.70] [13.51] [13.68]			4 2 4 2	4 2 2 4	6600 4.3(+4) 8800 2.5(+4)	0.018 0.12 0.012 0.14	0.0032 0.011 0.0021 0.013	-1.14 -0.62 -1.32 -0.55	E D D D	2 2 2 2 2
7.		² P° - ² S	13.49			6	2	6200	0.0056	0.0015	-1.47	E	2
]	[13.43] [13.61]			4 2	2 2	1000 4700	0.0014 0.013	2.5(…4) 0.0012	-2.25 -1.59	E D	2 2
8.	2p ⁵ -2p ⁴ (³ P)3s	²P° - *P											
			16.087 15.826 16.109 [15.847]	102650 0 102650 0	6318700 6318700 6310500 6310500	2 4 2 4	4 4 2 2	490 150 23 130	0.0038 5.5(4) 9.0(5) 2.5(-4)	4.0(-4) 1.1(-4) 9.5(-6) 5.2(-5)	-2.12 -2.66 -3.74 -3.00	E E E	2 2 2 2
9.		² P ^o – ² P	16.010	34220	6280400	6	6	9100	0.035	0.011	-0.68	E	2
			16.003 16.024 15.764 16.270	0 102650 0 102650	6248800 6343600 6343600 6248800	4 2 4 2	4 2 2 4	630 1.0(+4) 1.6(+4) 250	0.0024 0.039 0.029 0.0020	5.1(-4) 0.0041 0.0060 2.1(-4)	-2.02 -1.11 -0.94 -2.40	E D D E	2 2 2 2 2

FUHR ET AL.

Fe XVIII: Allowed transitions----Continued

No.	Transition array	Multiplet	λ(Å)	<i>E</i> ; (cm ⁻¹)	E_k (cm ⁻¹)	gi	g₊	$A_{ki}(10^8 \mathrm{s}^{-1})$	fit	S (at.u.)	log gf	Асси- гасу	Source
10.	2p ^s -2p ⁴ ('D)3s	² P ^o - ² D	15.704	34220	6402200	6	10	4700	0.029	0.0089	-0.76	E	2
			15.623 15.869 [15.614]	0 102650 0	6400800 6404400 6404400	4 2 4	6 4 4	8.4 .1.0(+4) 1000	4.6(-5) 0.078 0.0038	9.5(6) 0.0081 7.8(4)	-3.74 -0.81 -1.82	E D E	2 2 2
11.	2p ⁵ -2p ⁴ (¹ S)3s	²p° - ²S	15.328	34220	6558200	6	2	2.2(+4)	0.026	0.0079	-0.81	D	2
			15.258 15.491	0 102650	6558200 6558200	4 2	2 2	1.4(+4) 8300	0.024 0.030	0.0048 0.0031	1.02 1.22	D D	2 2
12.	2s ² 2p ⁵ -2p [*] 3s	² P° - ² S	12.05			6	2	35	2.5(5)	6.0(-6)	-3.82	E	2
			[12.00] [12.15]			4 2	2 2	11 23	1.2(-5) 5.1(-5)	1.9(6) 4.1(6)	-4.32 -3.99	E E	2 2
13.	2p ^{\$} -2p ⁴ (³ P)3d	²₽° - *D											
			[14.80] [15.01] [14.78]			4 2 4	6 4 4	3000 340 5800	0.015 0.0023 0.019	0.0029 2.3(-4) 0.0037	-1.22 -2.34 -1.12	D E D	2 2 2
14.		²P° - 'P											
			14.772 14.551 [14.803] 14.581	102650 0 102650 0	6872500 6872500 6858200 6858200	2 4 2 4	4 4 2 2	3400 19 100 2000	0.022 6.1(5) 3.4(-4) 0.0032	0.0021 1.2(-5) 3.3(-5) 6.1(-4)	1.36 3.61 3.17 1.89	E E E E	2 2 2 2
15.		²P° – *F											
			14.485 [14.79] [14.57]	0	6903700	4 2 4	6 4 4	81 1200 1700	3.8(-4) 0.0081 0.0054	7.2(-5) 7.9(-4) 0.0010	-2.82 -1.79 -1.67	E E E	2 2 2
16.		²P° - ²P											
			[14.48] [14.70]			4 2	4 4	280 4900	8.9(4) 0.032	1.7(4) 0.0031	2.45 1.19	E E	2 2
·17.	2p⁵-2p⁴('D)3d	² P ⁰ - ² F											
			[14.32]			4	6	2.2(+4)	0.10	0.019	-0.40	E	2
18.		²pº - ²p	14.32			6	6	7.7(+4)	0.24	0.067	0.15	E	2
			[14.28] [14.42] [14.20]			4 2 4	4 2 2	3200 1.7(+5) 2.1(+4)	0.0098 0.53 0.031	0.0018 0.050 0.0058	-1.41 0.03 0.91	E E E	2 2 2
		200 20	[14.50]			2	4	1.6(+4)	0.10	0.0095	-0.70	E	2
19.		·P° - *S	14.325	34220	7015100	6	2	2.2(+4)	0.023	0.0065	-0.86	D-	2
			14.467	102650	7015100	2	2	2.2(+4)	0.068	5.2(5) 0.0065	-0.87	D	2
20.		²₽° - ²D											
			14.361 14.150	102650 0	7067100 7067100	2 4	4 4	8.1(+4) 1.4(+4)	0.50 0.041	0.047 0.0076	0.00 -0.79	E E	2 2
21.	2p ⁵ -2p ⁴ ('S)3d	² P° - ² D											
			13.954	0	7166400	4	6	1.4(+4)	0.061	0.011	-0.61	Ē	2

f.

, and the second

/***** \

~

TRANSITION PROBABILITIES FOR IRON

Fe XVIII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	<i>E</i> , (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g,	g.	$A_{ir}(10^8 { m s}^{-1})$	f.e	S (at.u.)	log g/	Асси- гасу	Source
22	2s ² 2p ⁵ -2p ⁶ 3d	² P° - ² D	11.54			6	10	1300	0.0044	0.0010	1.58	E	2
			[11.50] [11.64] [11.50]			4 2 4	6 4 4	57 1500 1900	1.7(4) 0.0059 0.0037	2.6(-5) 4.5(-4) 5.6(-4)	-3.17 1.93 1.83	E E	2 2 2
23.	2p ^{\$} -2p [*] (³ P)4d	² P ⁹ - ² P											
			[11.55]			2	4	2.4(+4)	0.095	0.0072	-0.72	E	4
24.	$2p^{5}-2p^{*}(^{1}\mathrm{D})$ 4d	²P° - ²P							:				
ĺ			[11.33] [11.45]			4 2	4 2	4.1(+4) 7.1(+4)	0.078 0.14	0.012 0.011	-0.51 -0.55	D D	4 4
25.		² P° - ² S											
			[11.34]			4	2	4.7(+4)	0.045	0.0067	-0.74	D	4
26.		² P° - ² D											
			[11.45]			2	4	4.3(+4)	0.17	0.013	-0.47	D	4
27.	2p ⁵ -2p ⁴ (¹ S)4d	² P° - ² D											
			[11.25]			2	4	3.2(+4)	0.12	0.0089	-0.62	D	4

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe xix

Ground State

Ionization Potential

 $1s^2 2s^2 2p^{4-3} P_2$

 $[1451] eV = [11703000] cm^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
10.58	22	13.45	13	77.6	2	109.97	1
10.62	23	13.49	12	82.5	2	111.70	1
10.63	19	13.54	11	83.4	2	115.42	8
10.65	18	13.74	15,16	84.8	7	120.00	1
10.73	24	13.76	14	91.02	4	132	3
10.80	21,25	13.82	10	101.56	1	149	5
10.81	17,20	14.04	10	106.12	6		
10.89	17	15.2	9	106.33	1		ł
10.92	17	15.4	9	108.37	1		

Oscillator strengths for 2s-2p transitions are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [1]. These relativistic calculations include a perturbative treatment

of the Breit interaction and the Lamb shift. The results should be quite accurate, except in the case of intercombination transitions, for which the f-values should be considered rather uncertain. The

FUHR ET AL.

 $2s^22p^{4-1}D_2-2s2p^{5-3}P_1^{\circ}$ transition has been omitted from this tabulation, because its *f*-value as reported in ref. [1] is extremely and therefore even more uncertain.

The results of the scaled Thomas-Fermi calculations of Kastner et al. [2] including configuration interaction and intermediate coupling are quoted for the two $2p^4-2p^33s$ intercombination lines treatby them.

Oscillator strengths tabulated for a few transitions of the $2p^{4}$ - $2p^{3}3d$ array are averages of the semi-empirical results of Bromage and Fawcett [3] and the Hartree-Fock-Pauli (HFP) data of Bogdanovicius et al. [4]. The *f*-values intercompared very well for the transitions presented here, except in the case of $2p^{4-1}D_{2}$... $2p^{3}(^{2}D^{\circ})3d^{-1}F_{3}^{\circ}$ and $2p^{4-1}D_{2}$... $2p^{3}(^{2}P^{\circ})3d^{-3}F_{3}^{\circ}$, for which the authors' published results differ from the values tabulated here by 30% and 50%, respectively. Transitions involving levels of purity less than 50% in *LS* coupling, as indicated in refs. [3] and [4], have omitted, and the accuracy ratings for transitions to levels of purity less than 60% have been lowered to "E," as have those for the two rather uncertain *f*-values discussed above.

The oscillator strengths tabulated for transitions of the $2p^{4}$. $2p^{3}4d$ are from the Hartree-Fock calculations with statistical exchange (HX) of Bromage et al. [5] with allowance for configuration interaction. The above remarks concerning purity in LS coupling apply here as well. The assignment of term designations to observed spectral lines of the rather complex transition arrays $2p^{4}-2p^{3}nd$ (n = 3,4) is rathdifficult, since these lines are closely spaced. For this reason, we have quoted the theoretical wavelengths of refs. [3] and [5], respectively, in order to provide an indication of the locations of these lines.

Data for additional transitions are available [6,7], but these results are not quoted here since no indication of the percentage compositions is given.

References

- Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [2] Kastner, S. O., Bhatia, A. K., and Cohen, L., Phys. Scr. 15, 259 (1977).
- [3] Bromage, C. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 178, 591 (1977).
- [4] Bogdanovicius, P. O., Kyckinas, I. S., Merkelis, G. V., Rudzikas, Z. B., Sivtsev, V. I., and Sadziuviene, S. D., Bull. Acad. Sci. USSR, Phys. Ser. 41, 121 (1977).
- [5] Bromage, C. E., Fawcett, B. C., and Cowan, R. D., Mon. Not. R. Astron. Soc. 178, 599 (1977).
- [6] Bromage, C. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. C., Peacock, N. J., and Ridgeley, A., United Kingdom Atomic Energy Authority Report CLM-R170 (August 1977).
- [7] Barkhalter, P. C., Dozier, C. M., Stallings, C., and Cowan, R. D., J. Appl. Phys. 49, 1092 (1978).

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_{*}(cm^{-1})$	g i	g,	$A_{ki}(10^8 { m s}^{-1})$	fu	S (at.u.)	log gf	Асси- гасу	Source
1.	$2s^22p^4-2s^2p^5$	³ P - ³ Po	109.04	38170	955290	9	9	540	0.096	0.31	0.06	с	1
			108.37	0	9 22770	5	5	390	0.068	0.12	-0.47	c	1
			111.70	89410	984650	3	3	126	0.0235	0.0259	1.152	C	1
			101.56	0	984650	5	3	320	0.0294	0.0491	0.83	C	1
			106.33	89410	1029830	3	1	610	0.0342	0.0359	-0.99	C	1
			120.00	89410	922770	3	5	104	0.0374	0.0443	0.95	С	1
			109.97	75290	984630	1	3	160	0.087	0.031	1.06	С	1
2.		³ P - ¹ P ^o											
			[77.6]	0	[1268440]	5	3	130	0.0071	0.0091	-1.45	E	1
			[83.4]	89410	[1268440]	3	3	9.6	0.0010	8.2(-4)	-2.52	E	1
			[82.5]	75290	[1268440]	1	3	16	0.0050	0.0014	- 2.30	Е	1
3.		1D - 3Po											
			[132]	[169800]	922770	5	5	23	0.0059	0.013	1.53	E	1
4.		'D - 'P°	91.02	[169800]	[1268440]	5	3	1490	0.111	0.166	-0.256	с	1
5.		'S - ³ P ^o											
			[149]	[326160]	984650	1	3	8.2	0.0082	0.0040	-2.09	E	1
6.		'S - 'P°	106.12	[326160]	[1268440]	ł	3	110	0.054	0.019	-1.27	с	1
7.	2s2p ^{\$} -2p ^{\$}	³P° ~ 'S											
			[84.8]	984650	[2134800]	3	1	130	0.0045	0.0038	-1.87	E	1
8.		'P° - 'S	115.42	[1268440]	[2134800]	3	1	1610	0.107	0.122	0.493	с	1

Fe XIX: Allowed transitions

TRANSITION PROBABILITIES FOR IRON

1

T

T

Fe XIX: Allowed transitions---Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	$E_{t} ({\rm cm}^{-1})$	g,	g.	$A_{ki}(10^8 \mathrm{s}^{-1})$	fa	<i>S</i> (at.u.)	log gf	Асси гасу	Source
9.	$2p^4 - 2p^3 ({}^4S^\circ) 3s$	³ P - ⁵ S°											-
		,	[15.2] [15.4]			5	5	450	0.0016	3.9(-4)	-2.11	Ł	2
10.	$2p^{4}-2p^{3}(^{4}S^{o})3d$	³ P - ³ D ^o							1.0(-4)	1.5(-3)	-3.32	E	2
			[13.82]			5	7	5.7(+4)	0.23	0.052	0.06	D	3,4
11.	$2p^4 - 2p^3(^2D^{\circ})3d$	³ P - ³ D°	[14.04]			3	5	1.4(+4)	0.070	0.0097	-0.68	E	3,4
			[13.54]			5	7	1.9(+5)	0.73	0.16	0.56	D	34
12.		³ P - ³ S°											
			[13.49]			5	3	15(+5)	0.25	0.056	0.10	D	3,4
13.		³ P - ¹ F°											
			[13.45]			5	7	5.5(+4)	0.21	0.046	0.02	Е	3,4
14.	a t a 3/2700 a t	$D - F^{\circ}$	[13.76]			5	7	7.5(+4)	0.30	0.068	0.18	E	3,4
15.	2p*-2p*(*P*)3d 	.D F o	[13 74]				7	6 <i>4</i> + 10				-	
16.		¹ S – ¹ P°	[13.74]			5	3	2.4(+4)	0.094	0.021	-0.33	E	3,4
17.	2p ⁴ -2p ³ (*S ^o)4d	³ P - ³ D°						2.0(+0)	2.4	0.10	0.34	D	3,4
			[10.81]			5	7	4.9(+4)	0.12	0.021	-0.22	D	5
			[10.92]			1	5 3	1.3(+4) 2.8(+4)	0.040 0.15	0.0043 0.0054	-0.92 -0.82	D D	5 5
18.	$2p^4 - 2p^3(^2D^o)4d$	³ P - ³ D°											
10		3D 3CO	[10.65]			5	7	3.2(+4)	0.076	0.013	-0.42	D	5
19.		F - 3	[10.63]			5	3	(4.3(+4))	0.044	0.0077	-0.66	D	r
20.		¹ D - ¹ D°	[10.81]			5	5	4.7(+4)	0.082	0.015	-0.39	D	5
21.		¹ D – ¹ F°	[10.80]			5	7	5.3(+4)	0.13	0.023	-0.19	D	5
22.	$2p^{4}-2p^{3}(^{2}P^{o})4d$	³ P - ³ P°											
			[10.58]			3	3	3.2(+4)	0.053	0.0055	-0.80	E	5
23.		³ P - ³ D ^o	[10.69]										
24.		'D - 3F°	[10.02]				3	4.7(+4)	0.24	0.0084	0.62	E	5
		-	[10.73]			5	7	1.6(+4)	0.038	0.0067	-0.72	E	5
25.		'S - 'P°	[10.80]			1	3	8.4(+4)	0.44	0.016	-0.36	E	5

• The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

FUHR ET AL. Fe xx

Ground State

Ionization Potential

1s²2s²2p³ ⁴S^o_{3/2}

 $[1575] eV = [12704000] cm^{-1}$

Allowed Transitions

List of	[tab	ulat	ed	ines
---------	-------	------	----	------

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
12.76 12.82 12.83 12.84 12.88 12.89 12.94 13.00 13.06 13.14 13.15 78.9	23 17 20 17,20 23 20 18 18 22 21 19 13	81.4 83.0 83.23 86.2 87.8 90.60 92.59 93.76 94.62 95.1 98.08 98.37	13 3 8 13 13 8 12 8 7 2 14 12	108.7 108.82 109.65 110.65 111.60 113.34 115 115.39 118.70 121.85 122.00 128	6 12 14 6 14 6 11,15 6 1 1 1 1 16 10	136.06 138.49 139 140.42 143 148 156 163 164 172 175 202	10 16 10 5 5 5 16 5 9 5 9 5 9
79.5 80.3	4 13	101.84 106.96	12 11	131.76 132.85	15	234	9

Oscillator strengths for transitions of the arrays $2s^22p^{3}-2s2p^{4}$ and $2s2p^{4}-2p^{5}$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [1]. These relativistic calculations include a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except in the case of intercombination lines, for which the *f*-values should be considered rather uncertain. (A few very weak intercombination lines have been omitted from this tabulation.) The *f*-value listed for the $2s^22p^{3-2}D_{3/2}^{3-2}-2s2p^{4-2}S_{1/2}$ transition is quoted with an uncertainty of 50%, since its magnitude is considerably larger than those of the other intercombination lines.

For transitions of the type $2p^3-2p^{23}d$, we quote the semiempirical results of Bromage and Fawcett [2], which include approximate correlation, relativistic, and intermediate coupling effects. Transitions to levels that are of very low purity in LS coupling have been excluded. The *f*-values for the remaining lines which involve nominally pure levels (i.e., less than 60% pure) have been assigned accuracy ratings of "E."

Oscillator strength data are available for additional transitions [3], but these results are not quoted here since no indication of the percentage compositions is given.

References

- Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [2] Bromage, G. E., and Fawcett, B. C., Mon. Not. R. Astron. Soc. 179, 683 (1977).
- [3] Bromage, C. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. C., Peacock, N. J., and Ridgeley, A., United Kingdom Atomic Energy Authority Report CLM-R170 (August 1977).

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E _k (cm ⁻¹)	g i	g,	$A_{tr}(10^8 { m s}^{-1})$	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
1.	2s ² 2p ³ -2s2p ⁴	⁴S° - ⁴P	126.53	0	790340	4	12	160	0.115	0.192	-0.336	c	1
			132.85 121.85 118.70	0 0 0	752730 820680 842460	4 4 4	6 4 2	130 186 209	0.052 0.0413 0.0221	0.091 0:066 0.0345	-0.68 -0.78 1.054	C C C	1 1 1

Fe XX: Allowed transitions

TRANSITION PROBABILITIES FOR IRON

Fe xx: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{k},(10^8 \mathrm{s}^{-1})$	f.t.	S (at.u.)	log gf	Accu- racy	Source
2.		⁴ S° − ² D											
			[95.1]	0	[1028100]	4	4	19	0.0026	0.0033	1.98	E	1
3.		4S° - 2S											
			[83.0]	0	[1181000]	4	2	19	0.0010	0.0011	-2.40	E	1
4.		⁴ S° - ² P											
ĺ			[79.5]	0	[1229000]	4	4	47	0.0045	0.0047	-1.74	E	1
5.		${}^{2}D^{\circ} - {}^{4}P$											
			[175]	[162000]	752730	6	6	2.6	0.0012	0.0041	-2.14	E	1
			[148]	[124300]	820680	4	4	1.3	4.2(-4)*	8.2(-4)	2.77	E	1
			[156]	[162000]	820680	6	4	0.45	1.1(4)	3.4(-4)	-3.18	E	1
			[143]	[124300]	842460	4	2	3.3	5.1(-4)	9.6(-4)	-2.69	E	1
			[164]	[124300]	752730	4	6	6.3	0.0038	0.0082	1.82	E	1
6.		$^{2}D^{\circ} - ^{2}D$	112.2	[146900]	[1037800]	10	10	360	0.068	0.25	-0.17	C-	1
			113.34	[162000]	[1044300]	6	6	330	0.063	0.14	-0.42	C	1
			110.65	[124300]	[1028100]	4	4	420	0.078	0.11	-0.51	C	
			E108 73	[102000]	[1028100]	0	4	0.43	5.7(-5)	1.3(-4)	-3.47	E	1
			[106.7]	[124300]	[1044500]	4	0	0.27	1.1(-3)	1.0(-4)	3.35	L L	1
7.		$^{2}D^{o} - ^{2}S$											
			94.62	[124300]	[1181000]	4	2	450	0.030	0.037	-0.92	D	1
8.		$^{2}D^{o} - ^{2}P$	89.76	[146900]	[1261000]	10	6	930	0.068	0.20	0.17	с	1
-			93.76	[162000]	[1229000]	6	4	1000	0.089	0.16	-0.27	С	1
			83.23	[124300]	[1326000]	4	2	291	0.0151	0.0165	1.219	С	1
			90.60	[124300]	[1229000]	4	4	147	0.0181	0.0216	-1.140	С	1
a		² P ⁰ _ ⁴ P											
			[234]	[309000]	752730	4	6	0.27	3.3(-4)	0.0010	-2.88	E	1
İ			[202]	[309000]	820680	4	4	1.8	0.0011	0.0029	2.36	E	1
			[172]	[246000]	842460	2	2	2.5	0.0011	0.0012	-2.66	E	1
10.		$^{2}P^{\circ} - ^{2}D$	133	[288000]	[1037800]	6	10	53	0.023	0.061	-0.86	C-	1
			136.06	[309000]	[1044300]	4	6	60	0.0250	0.0448	1.000	С	1
			[128]	[246000]	[1028100]	2	4	29.7	0.0146	0.0123	-1.53	C	1
			[139]	[309000]	[1028100]	4	4	6.9	0.0020	0.0037	-2.10	D	1
11.		² P° - ² S	112	[288000]	[1181000]	6	2	360	0.023	0.050	-0.87	C	1
			[115]	[309000]	[1181000]	4	2	30	0.0030	0.0045	1.92	D	1
			106.96	[246000]	[1181000]	2	2	370	0.064	0.045	-0.89	C	1
12.		$^{2}P^{o} - ^{2}P$	103	[288000]	[1261000]	6	6	423	0.067	0.137	-0.394	C-	1
			108.82	[309000]	[1229000]	4	4	94	0.0167	0.0239	-1.175	c	
			[92.59]	[246000]	[1326000]	2	2	44	0.0057	0.0035	-1.94	D	1
			98.37	[309000]	[1326000]	4	2	970	0.070	0.091	0.55	С	1
1			101.84	[246000]	[1229000]	2	4	91	0.0284	0.0190	1.246	С	1

.

FUHR ET AL.

Fe XX: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(cm^{-1})$	<i>B</i> i	Ë*	$A_{ki}(10^8 { m s}^{-1})$	f.x	5 (et.u.)	kug gf	Асси- гасу	Source
13.	2s2p4~2p5	⁴₽ ²₽°											
			[81.4] [78.9] [86.2] [80.3] [87.8]	752730 820680 820680 842460 842460	[1940400] [2048000] [1940400] [2048000] [1940400]	6 4 4 2 2	4 2 4 2 4	32 2.8 17 10 5.6	0.0021 1.3(4) 0.0019 9.7(-4) 0.0013	0.0034 1.4(4) 0.0022 5.1(4) 7.5(4)	1.90 3.28 2.12 2.71 2.59	E E E E	1 1 1 1
14.		²D ²p°	107	[1037800]	[1976000]	10	6	580	0.060	0.21	-0.22	c	1
			111.60 98.08 109.65	[1044300] [1028100] [1028100]	[1940400] [2048000] [1940400]	6 4 4	4 2 4	430 462 176	0.054 0.0333 0.0317	0.12 0.0430 0.0458	0.49 0.88 0.90	C C C	1 1 1
15.		² S - ² P ^o	126	[1181000]	[1976000]	2	6	75	0.053	0.0442	-0.97	c-	1
			131.76 [115]	[1181000] [1181000]	[1940460] [2048000]	2 2	4 2	90 23	0. 0469 0.0046	0.0407 0.0035	1.028 2.04	C D	1 1
16.		²P -²P°	140	[1261000]	[1976000]	6	6	420	0.12	0.34	-0.13	c	1
			140.42 138.49 122.00 [163]	[1229000] [1326000] [1229000] [1326000]	[1940400] [2048000] [2048000] [1940400]	4 2 4 2	4 2 2 4	310 320 370 17.8	0.092 0.093 0.0413 0.0142	0.17 0.085 0.066 0.0152	-0.43 0.73 0.78 -1.55	C C C C	
17.	$2p^{3}-2p^{2}(^{3}P)3d$	⁴S° - ⁴P								-			
			[12.84] [12.82]			4 4	6 4	1.5(+5) 2.1(+5)	0.56 0.52	0.095 0.088	0.35 0.32	E D	2 2
18.		² D° - ² D											
			[13.00] [12.94]			6 4	6 6	5.9(+4) 1.5(+5)	0.15 0.56	0.039 0.095	-0.05 0.35	E D	2 2
19.		² P° - ² D											
20.	$2p^{3}-2p^{2}(^{1}D)3d$	²D° – ²D	[13.15]			2	4	9.6(+4)	0.50	0.043	0.00	D	2
			[12.89] [12.84] [12.83]			6 4 4	6 4 6	9.6(+4) 1.2(+5) 1.1(+5)	0.24 0.30 0.42	0.061 0.051 0.071	0.16 0.08 0.23	E D E	2 2 2
21.		² P ⁰ - ² D											
22		² P ⁰ _ ² P	[13.14]			4	6	1.7(+4)	0.065	0.011	0.59	E	2
20.			[13.06]			4	4	1.5(+5)	0.39	0.067	0.19	D	2
23.	2p ³ -2p ² (¹ 5)3d	²P° - ²D											
			[12.88] [12.76]			4 2	6 4	1.4(++5) 1.5(+5)	0.53 0.73	0.090 0.061	0.33 0.16	D D	2 2

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

TRANSITION PROBABILITIES FOR IRON Fe xxi

Ground State

Ionization Potential

 $1s^2 2s^2 2p^2 {}^3 P_0$

 $[1685] eV = [13591000] cm^{-1}$

Allowed Transitions

List	of	tabulated	lincs
------	----	-----------	-------

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
8.47	69	9.68	53	13.25	31	124	19
8.53	67,68	9.69	44,60	13.41	33	124.26	3
8.56	66,68	9.70	53	78.3	16	125.30	28
8.57	67	9.73	44	83.4	6	128.73	2
8.61	66	9.74	46	84.4	16	136	14
8.62	62	9.75	45	86.6	6	137	19
8.63	62	9.79	59	87.7	21	140	19
8.64	65,66	9.85	47	91.29	4	142.14	2
8.65	65,73,74	12.02	37	94.480	5	142.25	2
8.66	71,72	12.10	36	95.656	18	144.46	8
8.68	62	12.13	37	97.89	4	144.82	25
8.71	62	12.192	38	98.140	18	145.66	2
8.72	63	12.21	36	98.525	5	148.79	8
8.74	70,76	12.25	35	99.05	11	151.51	2
8.81	64	12.28	36	102.23	4	151.63	2
8.83	75	12.36	35	103	17	155	22
9.34	52	12.38	35,42	104	23	156	22
9.41	52	12.393	41	108.45	3	164	24
9.42	51	12.43	35	111.02	20	178	27
9.44	50	12.47	40	112.47	15	179	13
9.45	49	12.525	34	113.34	10	180.55	7
9.46	51	12.53	34	113.56	20	182	22
9.47	49,50	12.587	39	114	17	189.61	7
9.52	49	12.623	43	115.16	3	189.81	7
9.54	48	12.91	30	117	17	193	24
9.56	48,49,57,	12.95	29	117.89	3	209	26
	58	12.99	30	118.3	9	244	12
9.58	48,54,56	13.00	29	118.70	3	251	1
9.59	44,55	13.03	29	120	19	260	26
9.62	44	13.13	29	121	19	282	1
9.63	44	13.14	29	121.22	3		
9.67	61	13.20	29,32	122	19		

Oscillator strengths for transitions of the arrays $2s^22p^{2}-2s2p^{3}$ and $2s2p^{3}-2p^{4}$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [1]. These relativistic calculations include a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except in the case of intercombination lines, for which the *f*-values should be considered rather uncertain. (A few very weak intercombination lines have been omitted from this tabulation.) The *f*-value listed for the $2s^22p^{2-3}P_2-2s2p^{3-1}D_2^{0}$ transition is quoted with an uncertainty of 50%, since its magnitude is considerably larger than those of the other intercombination lines.

Transition probabilities for the arrays $2p^2-2p\,3s$ and $2p^2-2p\,3d$ are the results of the scaled Thomas-Fermi calculations of Mason et al. [2] in intermediate coupling with limited configuration interaction. Their A-values and f-values were corrected for deviations of the calculated wavelengths from the observed ones wherever possible. Of the intercombination lines, only the stronger ones have been included here, since these values were considered to be more uncertain than those for transitions between terms of the same total spin. Transitions to J = 2 levels of the configuration 2p3d, with the exception of ${}^{3}F_{2}^{o}$, have been omitted since the eigenvectors calculated by Mason et al. for these levels indicate severe mixing of Russell-Saunders states.

Mason et al. [2] have also calculated gf-values for transitions of the arrays $2p^2-2pns$ and $2p^2-2pnd$ (n = 4,5). Again, only the stronger intercombination lines treated by them are tabulated here. Transitions involving the levels 2pnd ${}^{3}P_{2}^{\circ}$ and 2pnd ${}^{3}D_{2}^{\circ}(n = 4,5)$ have been excluded, since the results of ref. [2] indicate that these levels are of very low purity in LS coupling.

The remaining f-values were derived by interpolation from graphs of systematic trends along the isoelectronic sequence.

References

- Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [2] Mason, H. E., Doschek, C. A., Feldman, U., and Bhatia, A. K., Astron. Astrophys. 73, 74 (1979).
- Bromage, G. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. G., Peacock, N. J., and Ridgeley, A., United Kingdom Atomic Energy Authority Report CLM-R170 (August 1977).

Oscillator strength data are available for additional transitions [3], but they have not been tabulated here since no indication of the eigenvectors is provided.

 No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E _k (cm ⁻¹)	g i	g.	$A_{ki}(10^8 { m s}^{-1})$	fik	S (at.u.)	log gf	Accu- racy	Source
1.	$2s^22p^2-2s^2p^3$	³ P - ⁵ S°											
			[282] [251]			5 3	5 5	0.32 0.34	3.8(4)* 5.3(4)	0.0018 0.0013	-2.72 -2.80	E E	1
2.		³ P - ³ D°	142.89	89790	789620	9	15	88	0.045	0.1 9	-0.39	D	1
			145.66 142.14	117310 73850	803840 777380 776820	5 3	7 5 2	66 100	0.0295	0.071 0.072 0.020	0.83 0.82	C C	1
			128.73	117310	777380	5	5	0.13	0.093 4.4(5)	1.1(-4)	-3.66	E	1
			[142.25] [151.63]	73850 117310	776820 776820	3 5	3 3	7.9 0.73	0.0024 1.5(4)	0.0034 3.7(4)	-2.14 -3.12	D E	1
3.		³ P - ³ P ^o	118.65	89790	932620	9	9	237	0.050	0.176	-0.346	C-	1
			121.22 117.89	117310 73850	942210 922080	5 3	5 3	217 170	0.0479 0.0354	0.096 0.0412	-0.62 -0.97	C C	1
			[124.26]	117310	922080	5	3	32	0.0044	0.0090	-1.66	D	1
			118.70	73850	916310 942210	3	1 5	241 3.6	0.0170	0.0199	-1.292	D.	1
			108.45	0	922080	1	3	42.5	0.0225	0.0080	-1.65	C	1
4.		³ P - ³ S°	99.43	89790	1095500	9	3	1000	0.051	0.15	0.34	С	1
			102.23	117310	1095500	5	3	640	0.060	0.10	-0.52	C	1
			97.89 91.29	73850	1095500	3 1	3 3	204 99	0.0379	0.0366	-0.94	c	1
5.		³ P - ¹ D°											
			[98.525] [94.480]	117310 73850	1132280 1132280	5 3	5 5	89 4.3	0.013 9.5(4)	0.021 8.9(-4)	-1.19 -2.55	D E	1
6.		³ P - ¹ P ⁰											
			[86.6]			5	3	2.4 54	1.6(4)	2.3(-4) 0.0046	-3.10	E	1
7.		¹ D - ³ D°											
			[180.55]	249980	803840	5	7	10	0.0070	0.021	-1.46	E	1
			[189.61] [189.81]	249980 249980	777380 776820	5 5	5 3	0.37 2.0	2.0(-4)	6.2(-4) 0.0020	3.00 2.49	E	1
8.		'D - 'P°											
			[144.46]	249980	942210	5	5	2.4	7.5(4)	0.0018	-2.43	E	1
-		10.300	[146.79]	249980	922080	5	3	3.0	5.9(~4)	0.0014	~2.33		`
9.		.D - "So								h.			
		l	[118.3]	249980	1095500	5	3	2.9	3.7(4)	7.£(−4)	-2.73	E	1
10.	ļ	'D − 'D°	113.34	249980	1132280	5	5	480	0.092	0.17	-0.34	C	11

Fe XXI: Allowed transitions

F--146

TRANSITION PROBABILITIES FOR IRON

Fe XXI: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g,	$A_{i_i}(10^8 \mathrm{s}^{-1})$	f _{ik}	S (at.u.)	log gf	Accu- racy	Source
п.		'D - 'P°	99.05?			5	3	700	0.062	0.10	-0.51	с	1
12.		'S - 3D°											
			[244]			1	3	0.56	0.0015	0.0012	2.82	E	1
13.		¹ S - ³ P°							 				
			[179]			1	3	1.7	0.0024	0.0014	2.62	E	1
14.		¹ S - ³ S ^o											
			[136]			1	3	7.1	0.0059	0.0026	2.23	Е	1
15.		'S - 'P°	112.47			1	3	183	0.104	0.0385	0.98	с	1
16.	$2s2p^3-2p^4$	⁵ S° - ³ P											
			[84.4] [78.3]			5 5	5 3	15 2.9	0.0016 1.6(-4)	0.0022 2.1(-4)	-2.10	E E	1 1
17.		³ D° - ³ P	110		-	15	9	472	0.051	0.279	-0.113	с	1
			[117] [103] [103] [114] [103] [114]			7 5 3 5 3 3	5 3 1 5 3 5	319 231 383 150 158 38.5	0.0467 0.0220 0.0203 0.0292 0.0252 0.0125	0.126 0.0373 0.0207 0.055 0.0256 0.0141	$-0.486 \\ -0.96 \\ -1.215 \\ -0.84 \\ -1.121 \\ -1.426$	C C C C C C	1 1 1 1 1 1
18.		$^{3}D^{\circ} - ^{1}D$											
			[98.140] [95.656]	803840 777380	1822790 1822790	7 5	5 5	60 7.3	0.0062 0.0010	0.014 0.0016	-1.36 -2.30	E E	1 1
19.		³ P° - ³ P	131			9	9	130	0.033	0.13	-0.52	D	1
			[140] [121] [124] [122] [137] [120]			5 3 5 3 3 1	533153	37.8 1.5 181 208 39.2 53	0.0111 3.4(4) 0.0250 0.0155 0.0184 0.0341	0.0256 4.1(-4) 0.051 0.0187 0.0249 0.0135	-1.256 -2.99 -0.90 -1.333 -1.258 -1.467	C E C C C C	1 1 1 1 1
20.		"P° - 'D											
			[113.56] [111.02]	942210 922080	1822790 1822790	5 3	5 5	25 13	0.0049 0.0041	0.0092 0.0045	-1.61 -1.91	E E	1 1
21.		³ P° - ¹ S											
			[87.7]			3	1	47	0.0018	0.0016	2.27	E	1
22.		$^{3}S^{\circ} - ^{3}P$	169			3	9	100	0.13	0.22	-0.40	C	1
			[182] [155] [156]			3 3 3	5 3 1	68 140 193	0.056 0.052 0.0235	0.10 0.080 0.0362	-0.77 -0.81 1.152	C C C	1 1 1
23.		³ S° - ¹ Ś											
			[104]			3	1	59	0.0032	0.0033	-2.02	Е	1

1000

1000

, eren

FUHR ET AL.

Fe XXI: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	gi	₿*	$A_{ki}(10^{8} { m s}^{-1})$	f.ck	S (at.u.)	log g/	Accu- racy	Source
24.		¹ D° - ³ P											
			[193] [164]			5 5	5 3	8.4 3.5	0.0047 8.5(4)	0.015 0.0023	1.63 2.37	E E	i l
25.		'D° - 'D	144.82	1132280	1822790	5	5	356	0.112	0.267	~-0.252	С	1
26.		${}^{1}\mathbf{P}^{o} = {}^{3}\mathbf{P}$											
			[260] [209]			3 3	5 3	1.1 7.3	0.0019 0.0048	0.0049 0.0099	-2.24 -1.84	E E	1 1
27.		¹ P° - ¹ D	[178]			3	5	51	0.0400	0.070	-0.92	с	1
28.		¹ P ^o - ¹ S	125.30			3	1	870	0.068	0.084	-0.69	с	1
29.	$2p^2-2p3s$	³ P - ³ P ^o	13.06			9	9	2.0(+4)	0.052	0.020	-0.33	Ð	2
			[13.03] [13.13] [13.20] [13.14] [12.95] [13.00]			5 3 5 3 3 1	5 3 1 5 3	1.3(+4) 3900 1.2(+4) 2.0(+4) 6100 7300	0.033 0.010 0.019 0.017 0.026 0.055	0.0071 0.0013 0.0041 0.0022 0.0033 0.0024	0.78 1.52 1.03 1.29 1.12 1.26	D D D D D D	2 2 2 2 2 2 2 2
30.		³ P - ³ P ^o											
			[12.99] [12.91]			5 3	3 3	1100 1200	0.0017 0.0030	3.6(4) 3.8(4)	2.08 2.05	E E	2 2
31.		¹ D ~ ³ P°											
			[13.25]			5	5	3400	0.0089	0.0020	-1.35	E	2
32,		¹ D - ¹ P°	[13.20]			5	3	2.3(+4)	0.036	0.0078	0.74	Ð	2
33.		¹ S - ¹ P ^o	[13.41]			1	3	7300	0.059	0.9026	-1.23	E	2
34.	$2p^2$ – $2p3d$	³ P - ³ F ^o											
			12.525 [12.53]	117310	8101300	5 5	7 5	5.9(+4) 1.5(+4)	0.19 0.035	0.040 0.0073	-0.01 -0.75	D D	2 2
35.		³ P - ³ D°					1						
			12.38 [12.25] [12.36] [12.43]	117310	8195000	5 1 3 5	7 3 3 3	2.1(+5) 2.1(+5) 3.6(+4) 2100	0.69 1.4 0.082 0.0029	0.14 0.057 0.010 6.0(-4)	0.54 0.15 0.61 1.84	D D D E	2 2 2 2
36.		'P - 'Po											
			[12.21] [12.28] [12.21] [12.10]			3 5 3 1	3 3 1 3	1.2(+5) 5.2(+4) 1.5(+5) 230	0.27 0.071 0.11 0.0015	0.032 0.014 0.013 6.0(-5)	-0.09 -0.45 0.47 2.82	D D D E	2 2 2 2
37.		³ P - ¹ P°											
			[12.13] [12.02]			3 1	3 3	1.8(+4) 1.3(+4)	0.040 0.084	0.0048 0.0033	-0.92 -1.07	E E	2 2
38.		³ P - ¹ F ^o	[12.192]	117310	8319160	5	7	2.2(+4)	0.070	0.014	-0.46	E	2

TRANSITION PROBABILITIES FOR IRON

Fe XXI: Allowed transitions --- Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g.	g.	$A_{k_{1}}(10^{8}\mathrm{s}^{-1})$	fu.	S (at.u.)	log gf	Асси- гасу	Source
.39.		¹ D - ³ D ^o											
			[12.587]	249980	8195000	5	7	1.2(+4)	0.039	0.0081	0.71	Е	2
40.		¹ D - ³ P°											
			[12.47]			5	3	1.3(+4)	0.018	0.0037	-1.04	Е	2
41.		'D - 'F°	12.393	249980	8319100	5	7	3.2(+5)	1.0	0.21	0.71	D	2
42.		'D – 'P°	[12.38]			5	3	6900	0.0095	0.0019	-1.32	E	2
43.		'S - 'P°	12.623			1	3	7.1(+4)	0.51	0.021	-0.30	E	2
44.	$2p^2-2p4s$	³ P - ³ P°	9.65			9	9	4500	0.0063	0.0018	-1.25	E	2
			[9.63] [9.69]			5	5	3000	0.0042	6.7(-4)	-1.68	E F	2
			[9.73]		l	5	3	2300	0.0020	3.2(-3)	~2.39	E	2
			[9.69]			3	ĩ	3600	0.0017	1.6(-4)	-2.29	Ē	2
			[9.59]			3	5	1700	0.0040	3.8(-4)	-1.92	E	2
			[9.62]			1	3	1200	0.0049	1.6(~~4)	-2.31	E	2
45.		¹ D - ³ P°					ĺ						
			[9.75]			5	5	770	0.0611	1.8(-4)	-2.26	E	2
46.		'D - 'P°	[9.74]			5	3	5300	0.0045	7.2(-4)	1.65	E	2
47.		¹ S - ¹ P ^o	[9.85]			1	3	2200	0.0095	3.1(-4)	-2.02	E	2
48.	$2p^2-2p4d$	³ P - ³ F ^o											
}			[9 56]			5	7	$3.2(\pm 4)$	0.061	0.0006	-0.52	л	9
			[9.54]			3	5	750	0.0017	1.6(-4)	-2.20	E	2
			[9.58]			5	5	5200	0.0071	0.0011	-1.45	Ē	2
							-					-	-
49.		³ P - ³ D°											
			[9.47]			5	7	4.9(+4)	0.093	0.014	-0.33	D	2
			[9.45]			1	3	5.2(+4)	0.21	0.0065	-0.68	D	2
			[9.52]			3	3	8100	0.011	0.0010	-1.48	D	2
			[9.56]			5	3	850	7.0(-4)	1.1(-4)	-2.46	E	2
50.		${}^{3}P - {}^{1}D^{o}$		ę									
			[9.47]			5	5	6100	0.0082	0.0013	-1.39	E	2
1			[7.99]	1	Ì	3	3	1. ((+4)	0.051	0.0034	-0.95	ע	2
51.		³ P – ³ P°											
			[9.42]			3	3	3.3(+4)	0.044	0.0041	-0.88	D	2
			[9.46]		-	5	3	1.5(+4)	0.012	0.0019	-1.22	D	2
			[9.42]			3	1	4.3(+4)	0.019	0.0018	-1.24	D	2
52.		³ P - ¹ P°											
			[9.41]			3	3	1300	0.0017	1.6(-4)	-2.29	Е	2
			[9.34]			1	3	2200	0.0086	2.6(-4)	-2.07	E	2
53.		'D - ³ F°											
			[9.68] [9.70]			5 5	7 5	4000 1900	0.0079 0.0027	0.0013 4.3(-4)	-1.40 -1.87	E E	2 2

FUHR ET AL.

Fe XXI: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	Ē∗ (cm ¹)	g i	g.	$A_{ki}(10^{8} \mathrm{s}^{-1})$	fit.	S (at.u.)	log gf	Асси- тасу	Source
54.		¹ D ³ D°											
			[9.58]			5	7	1700	0.0033	5.2(-4)	~1.78	E	2
55.		¹ D - ¹ D ^o	[9.59]			5	5	1.0(+4)	0.014	0.0022	-1.15	D	2
56.		¹ D - ³ P ^o											
		ł	[9.58]			5	3	3900	0.0032	5.0(-4)	-1.80	E	2
57.		¹ D - ¹ F ^o	[9.56]			5	7	8.9(+4)	0.17	0.027	-0.07	D	2
58.		¹ D - ¹ P°	[9.56]			5	3	2300	0.0019	3.0(-4)	-2.02	E	2
59.		³ S - ³ D ^o											
			[9.79]			1	3	2200	0.0094	3.0(4)	-2.03	E	2
60.		¹ S - ³ P ^o											
			[9.69]			1	3	500	0.0021	6.7(5)	-2.68	E	2
61.		'S - 'P°	[9.67]			1	3	5.7(+4)	0.24	0.0076	-0.62	D	2
62.	$2p^2 - 2p5s$	³ P - ³ P°											
			[8.63]			5	5	510	5.7(-4)	8.1(-5)	-2.55	E	2
			[8.68]			3	3	160	1.8(-4)	1.5(~5)	-3.27	E	2
			[8.71]			5	3	730	5.0(-4)	7.2(-5)	-2.60	E	2
			[8.68]			3	1 2	280	3.9(4)	3.3(-5) 27(-5)	-2.93	E	2
63		¹ D - ¹ P ^o	[8.72]			5	3	2000	0.0014	2.0(-4)	-2.15	E	2
64.		¹ S - ¹ P ^o	[8.81]			1	3	890	0.0031	9.0(-5)	-2.51	E	2
65	$2u^2 - 2u^5d$	³ P - ³ F ⁰											
00.	20 2004		[8.64] [8.65]			5 5	7 5	1.5(+4) 2500	0.024 0.0028	0.0034 4.0(-4)	-0.92 -1.85	D E	2 2
66.		³ P - ³ D ^o											
			[8 56]			5	7	2.0(+4)	0.030	0.0042	-0.82	D	2
			[8.56]			1	3	2.1(+4)	0.070	0.0020	-1.15	D	2
			[8.61]			3	3	3200	0.0036	3.1(-4)	~1.97	E	2
			[8.64]	1		5	3	400	2.7(-4)	3.8(-5)	-2.87	E	2
6 7.		$^{3}P - ^{1}D^{\circ}$											
			[8.57]			5	5	2800	0.0031	4.4(-4)	-1.81	E	2
(0		30 300	[0.33]						0.011	1.0(1)			-
08.		r - r-	50 503								1.20		
			[8.53] [8.56]			5	3	6500	0.018	0.0013 6.1(4)	-1.52	E	2
			[8.53]		1	3		1.8(+4)	0.0066	5.0(-4)	-1.70		
69.		³ P - ¹ P ^o										1	
			[8.47]			1	3	1400	0.0046	1.3(-4)	-2.34	E	2
70.		¹ D ~ ³ F°											
	1		[8.74]			5	7	2700	0.0044	6.3(4)	-1.66	E	2

/m.

from.

TRANSITION PROBABILITIES FOR IRON

 No.	Transition array	Multiplet	λ(Å)	<i>E</i> , (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^8 \mathrm{s}^{-1})$	fit	S (at.u.)	log gf	Асси- гасу	Source
71.		'D - 'D°	[8.66]			5	5	4400	0.0049	7. 0(-4)	1.61	E	2
72.		${}^{1}D - {}^{3}P^{o}$											
			[8.66]			5	3	1600	0.0011	1.6(4)	-2.26	Е	2
73.		'D – 'F°	[8.65]			5	7	3.9(+4)	0.061	0.0087	0.52	D	2
74.		'D – 'P°	[8.65]			5	3	1000	6.9(-4)	9.8(5)	-2.46	E	2
75.		'S - "D°											
			[8.83]			1	3	1600	0.0055	1.6(4)	-2.26	Е	2
76.		$^{1}S = {^{1}P^{o}}$	[8.74]			1	3	2.5(+4)	0.085	0.0024	-1.07	D	2
77.	2p3s-2p3p	³ ₽° - ³D				9	15		880.0		-0.10	D	interp.
78.		³ P° - ³ S				9	3		0.021		-0.72	D	interp.
7 9 .		³ P° - ³ P				9	9		0.073		0.18	D	interp.
80.		¹ P ^o - ¹ P				3	3		0.050		-0.82	D	interp.
81.		¹ P° - ¹ D				3	5		0.14		-0.38	D	interp.
82.	2p3p-2p3d	'P - 'P°				3	3		0.030		1.05	D	interp.
83.		*D - *F°				15	21		0.032		-0.32	D	interp.
84.		¹ D - ¹ P°				5	3		5.8(4)		2.54	E	interp.
85.		'D - 'F°				5	7		0.11		-0.26	D	interp.
86.		¹ S - ¹ P ^o				1	3		0.067		1.17	D	interp.

Fe XXI: Allowed transitions---Continued

 • The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe ххн

Ground State

Ionization Potential

 $1s^2 2s^2 2p^{-2} P_{1/2}^{o}$

 $[1794] eV = [14470000] cm^{-1}$

Allowed Transitions

List of tabulated line:	List	of	tabulated	lines
-------------------------	------	----	-----------	-------

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
8.960	33,38	9.215	37	11.837	21	12.095	23
8.977	36	9.241	36	11.886	20	12.193	22,24
8.992	35	10.25	40	11.898	27	12.22	17
9.006	35	10.30	40	11.921	18	12.325	25
9.057	33	10.31	40	11.933	18	12.38	17
9.065	33,34	11.748	20,21,26	11.976	19	14.05	31
9.08	32	11.767	18	12.027	30	14.14	31
9.16	32	11.789	21,26	12.045	23,28	14.16	31
9.163	39	11.797	21	12.053	23	84.4	7
9.183	38	11.823	20	12.077	27,29	84.6	7

FUF	IR	ΕT	AL
-----	----	----	----

List of tabulated lines---Continued

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
88.4	7	116.29	4	149.90	9	230.05	12
99.3	6	117.17	3	151.30	9	238.53	15
100.78	3	117.52	5	153.95	16	246.82	12
102	6	120.17	10	155.87	2	251	1
102.23	4	125.71	5	156.84	9	255	- 11
105	6	129.15	13	157.36	13	258	1
108	6	134.65	5	161.75	2	299	1
111	6	135.78	2	169.35	16	358	1
112.20	10	136.02	3	173.49	13	372	14
114.42	3	139.82	13	183.84	12	398	11
115.22	10	144.82	9	195	8		

The tabulated oscillator strengths for transitions of the arrays $2s^22p-2s2p^2$ and $2s2p^2-2p^3$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [1]. These relativistic calculations include a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except in the case of intercombination lines, for which the *f*-values should be considered rather uncertain. (A few very weak intercombination lines have been omitted from this tabulation.)

Other sources of reliable data for 2s-2p transitions are the multiconfiguration Breit-Pauli method of Glass [2,3] (including relativistic effects) and the similar but somewhat less sophisticated approach of Dankwort and Trefftz [4]. With the exception of some weaker lines, they agree very well with the results of Cheng et al. [1], but the latter are quoted exclusively since ref. [1] provides data derived from comprehensive calculations for all outer-shell 2s-2p transiin ions of the isoelectronic sequences of Li through F.

According to the sources of data mentioned above, the lower of the two levels $2s2p^2$ ² $P_{1/2}$ and ² $S_{1/2}$ is mostly of ²P character, "crossed" the ² $S_{1/2}$ level at about V XIX or Cr XX. We have thus labeled these two levels accordingly, in contrast to their labeling by Cheng et al. [1], which is consistent with their ordering at the neutral end of the B sequence.

The results of the Hartree-XR (Hartree-Fock with exchange and relativistic effects) calculations of Bromage et al. [5] are quoted for several 2p-3d and 2p-4d transitions. The Hartree-Fock (HF) sults of Shamey [6] are tabulated for a few transitions of the type 2p-ns,nd (n = 3,4). The very weak lines have been omitted, Shamey's calculations accounted for very limited configuration interaction. A few multiplet *f*-values are the results of Chapman's single-configuration HF calculations [7].

The f-value for the 3p-3d multiplet was derived by graphical interpolation along the isoelectronic sequence.

References

- Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Yables 24, 111 (1979) and private communication.
- [2] Glass, R., J. Phys. B 13, 15 (1980).
- [3] Glass, R., J. Phys. B 13, 899 (1980).
- [4] Dankwort, W., and Trefftz, E., Astron. Astrophys. 65, 93 (1978).
- [5] Bromage, C. E., Cowan, R. D., Fawcett, B. C., and Ridgeley, A., J. Opt. Soc. Am. 68, 48 (1978).
- [6] Shamey, L. J., J. Opt. Soc. Am. 61, 942 (1971).
- [7] Chapman, R. D., Astrophys. J. 156, 87 (1969).

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{i} (cm ⁻¹)	g,	g,	$A_{ki}(10^{9}{ m s}^{-1})$	fa	S (st.u.)	log gf	Асси- гясу	Source
1.	2s ² 2p-2s2p ²	² P ^o - *P											
		Í	[258]			4	6	0.67	0.0010	0.0034	-2.40	E	1
			[299]			4	4	0.082	1.1(-4)"	4.3(4)	-3.36	E	1
	j		[251]			2	2	0.84	7.9(4)	0.0013	2.80	E	1
			[358]			4	2	0.14	1.3(…4)	6.1(4)	~3.28	E	1
2.		$^{2}P^{o} - ^{2}D$	148.89	78850	750490	6	10	77	0.0425	0.125	-0.59	C	1
			155.87	118270	759830	4	6	62	0.0340	0 .070	-0.87	С	1
			135.78	0	736490	2	4	110	0.062	0.055	0.91	С	1
	ł	1	[161.75]	118270	736490	4	4	0.38	1.5(-4)	3.2(4)	-3.22	E	1

Fe XXII: Allowed transitions

TRANSITION PROBABILITIES FOR IRON

Fe XXII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	g,	g.	$A_{ki}(10^{6} \mathrm{s}^{-1})$	fa	S (at.u.)	log gf	Accu- racy	Source
3		² P° - ² P	115.32	78850	945990	6	6	440	0.088	0.20	-0.28	C-	1
			114.42 117.17 [136.02]	118270 0 118270	992260 853460 853460	4 2 4	4 2 2	450 390 0.12	0.088 0.080 1.6(-5)	0.13 0.062 2.9(-5)	-0.45 -0.80 -4.19	C C E	1 1 1
			100.78	0	992260	2	4	62	0.0189	0.0125	-1.423	С	1
4.		² P ^o - ² S	111.19	78850	978190	6	2	430	0.026	0.058	-0.80	С-	1
			116.29 102.23	118270 0	978190 978190	4 2	2 2	353 27	0.0358 0.0042	0.055 0.0028	-0.84 -2.08	C D	1
5.	$2s2p^2-2p^3$	*P - *S°	128.48			12	4	449	0.0370	0.188	-0.352	c	1
			134.65 125.71 117.52			6 4 2	4 4 4	196 152 103	0.0356 0.0360 0.0428	0.095 0.060 0.0331	-0.67 -0.84 -1.068	C C C	1 1 1
6.		*P ~ 2D°	5										
			[108] [105] [111] [102] [99.3]			6 4 6 4 2	6 4 4 6 4	20 24 2.3 0.51 0.34	0.0035 0.0039 2.8(-4) 1.2(-4) 1.0(-4)	0.0075 0.0054 6.1(-4) 1.6(-4) 6.5(-5)	-1.68 -1.81 -2.77 -3.32 -3.70	E E E E	1 1 1 1
7.		*P - ² P ⁰											
			[88.4] [84.4] [84.6]		i	6 4 2	4 4 2	1.5 3.0 2.3	1.2(-4) 3.2(-4) 2.5(4)	2.1(-4) 3.6(-4) 1.4(-4)	-3.14 -2.89 -3.30	E E E	1 1 1
8.		² D - ⁴ S ^o											
			[195]			4	4	1.3	7.4(-4)	0.0019	-2.53	E	1
9,		² D - ² D ^o	150.46	750490	1415130	10	10	149	0.050	0.250	-0.297	С	1
			149.90 [151.30] 156.84 144.82	759830 736490 759830 736490	1426940 1397420 1397420 1426940	6 4 6 4	6 4 4	128 76 50 35 4	0.0432 0.0260 0.0124 0.0167	0.128 0.052 0.0384 0.0318	-0.59 -0.98 -1.128	C C C	1 1 1
10.		² D - ² P ^o	116.61	750490	1608060	10	6	230	0.029	0.11	-0.54	D	1
			[115.22]	759830	1627750	6	4	142	0.0189	0.0430	0.95	с	1
			[120.17] [112.20]	736490 736490	1568670 1627750	4 4	2 4	296 51	0.0320 0.0097	0.051 0.014	-0.89 -1.41	C D	1 1
11.		²P - 4S°											
			[398] [255]			4 2	4 4	0.28 1.1	6.7(-4) 0.0022	0.0035 0.0037	-2.57 -2.36	E E	1 1
12.		$^{2}P - ^{2}D^{\circ}$	213.16	945990	1415130	6	10	42	0.048	0.20	-0.55	D	1
			[230.05] [183.84] [246.82]	992260 853460 992260	1426940 1397420 1397420	4 2 4	6 4 4	33.8 66 0.44	0.0402 0.067 4.0(-4)	0.122 0.081 0.0013	-0.79 -0.87 -2.80	C C E	1 1 1

FUHR ET AL.

farm.

 $f^{\overline{a}\overline{a}}$.

190**00**0

Fe XXII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_{t} (cm ⁻¹)	gi	8 *	$A_{ti}(10^8 { m s}^{-1})$	fu.	S (at.u.)	log gf	Accu- racy	Source
13.		²P - ²P°	151.04	945990	1608060	6	6	190	0.064	0.19	-0.42	с	1
			157.36 139.82	992260 853460 992260	1627750 1568670 1568670	4	4 2 2	200 26 22	0.075 0.0075 0.0050	0.16	-0.52 -1.82 	C D	1
			[129.15]	853460	1627750	2	4	37.4	0.0187	0.0159	-1.427	c	1
14.		²S - ⁴ S°										ļ	
			[372]			2	4	0.12	4.8(4)	0.0012	-3.02	E	1
15.		² S - ² D ^o				· ·		1					
			[238.53]	978190	1397420	2	4	8.6	0.0146	0.0229	~1.53	c	1
16.		² S - ² P ^o	158.76	978190	1608060	2	6	58	0.066	0.069	-0.88	с	1
			[153.95] [169.35]	978190 978190	1627750 1568670	2 2	4 2	17.4 120	0.0124 0.050	0.0126 0.056	-1.61 -1.00	C C	1
17.	2p-3s	²P° - ²S	12.33			6	2	2.4(+4)	0.018	0.0045	-0.96	D	6
			[12.38] [12.22]			4 2	2 2	1.6(+4) 8500	0.018 0.019	0.0030 0.0015	-1.13 -1.42	D D	6 6
18.	2p-3d	² P° - ² D	11.870	78850	8503500	6	10	1.8(+5)	0.64	0.15	0.58	D	5,6
			11.921	118270	8506900	4	6	1.8(+5)	0.59	0.093	0.37	D	5
			[11.767] [11.933]	0 118270	8498300 8498300	2 4	4	1.6(+5) 3.0(+4)	0.66 0.064	0.051	0.12	D D-	5 6
19.	$ \begin{array}{c} 2s2p^2 - \\ 2s2p(^3\mathbf{P}^\circ)3d \end{array} $	⁴P ⁴F°								-			
			11.976			6	8	5.9(+4)	0.17	0.040	0.01	D	5
20.		⁴P ⁴P°											
			11.748			4	4	1.2(+5)	0.25	0.039	0.00	D	5
			11.823			0 4	4	7.9(+4) 1.8(+5)	0.11	0.026	-0.18	D D	5
		4- 4	11.886			4	0	1.3(+5)	0.42	0.066	0.23	0	5
21.		*P - *D*					_						
			11.837 11.748			6 4	8 6	2.3(+5) 4.8(+4)	0.65 0.15	0.15 0.023	0.59 	D D	5 5
			11.797 11.837			2 6	4 6	1.7(+5) 1.7(+5)	0.70 0.35	0.054 0.082	0.15 0.32	D D	5 5
			11.789			2	2	2.6(+5)	0.55	0.043	0.04	D	5
22.		${}^{2}D - {}^{2}D^{0}$											
			12.193	736490	8937900	4	6	9.9(+4)	0.33	0.053	0.12	D	5
23.		²D - ²F°	12.049	750490	9049700	10	14	2.0(+5)	0.61	0.24	0.78	D	5
			12.045 12.053	759830 736490	9062000 9033200	6 4	8 6	2,4(+5) 6,1(+4)	0.71	0.17	0.63 0.10	D D	5 5
			12.095	759830	9033200	6	6	7.8(+4)	0.17	0.041	0.01	D	5
24.		² P - ² P ⁰											
			12.193	853460	9054900	2	4	7.2(+4)	0.32	0.026	-0.19	D	5

F…154

TRANSITION PROBABILITIES FOR IRON

Fe XXII: Allowed transitions-Continued

No.	Transition acray	Multiplet	λ(Å)	$E_{\rm c}({\rm cm}^{-1})$	E_{\star} (cm ⁻¹)	g.	g⊾	$A_{k_i}(10^8 { m s}^{-1})$	f_{ik}	S (at.u.)	log gf	Accu- racy	5
25.		² S - ² P°											
			12.325	978190	9091800	2	2	1.5(+5)	0.35	0.028	-0.15	D	:
26.	$\frac{2s 2p^2}{2s 2p({}^1\mathbf{P}^{\mathbf{o}})3d}$	² D - ² F°											
			11.789 11.748	759830 736490	9242300 9248600	6	8 6	1.2(+5) 1.6(+5)	0.32 0.49	0.075 0.076	0.28 0.29	D D	
27.		${}^{2}P - {}^{2}D^{\circ}$	2										
			12.077 11.898	992260 853460	9272500 9258200	4 2	6 4	2.4(+5) 8.2(+4)	0.78 0.35	0.12 0.027	0. 49 -0.15	D D	
28.		$^{2}\dot{P} - ^{2}P^{o}$											
			12.045	99 2260	9294500	4	4	9.7(+4)	0.21	0.033	0.08	D	
29.		² S - ² D°											
			12.077	978190	9258200	2	4	1.0(+5)	0.44	0.035	-0.06	D	
30.		$^{2}S - ^{2}P^{o}$											
			12.027	978190	9294500	2	4	6.9(+4)	0.30	0.024	-0.22	D	:
31.	$2p^3-2s^23d$	²Ч° - ²Д	14.11			6	10	3200	0.016	0.0044	-1.02	D	•
			[14.14] [14.05]			4	6	3000 2900	0.013	0.0025	1.27	D D	•
			[14.05]			4	4	590	0.0018	3.3(-4)	-2.15	E	
32.	2p-4s	² P° - ² S	9.13			6	2	9700	0.0040	7.3(-4)	-1.61	E	
			[9.16] [9.08]			4 2	2 2	6400 3300	0.0040 0.0041	$\begin{array}{ c c c c c } 4.9(-4) \\ 2.4(-4) \end{array}$		E E	
33.	2p-4d	² P° - ² D	9.032	78850	11150000	6	10	6.0(+4)	0.12	0.022	-0.13	D	
			9.065 8.960	118270 0	11150000 11160000	4	6 4	6.0(+4) 5.0(+4)	0.11	0.013	-0.36 -0.62	D D	
			[9.057]	118270	11160000	4	4	9900	0.012	0.0015	-1.31	D-	•
34.	$\frac{2s 2p^2}{2s 2p}({}^3P^{\circ})4d$	*P - *F°											
			9.065			4	6	3.5(+4)	0.065	0.0078	-0.59	D	
35.		⁴ P - ⁴ D°											
			9.006 8.992			$\frac{6}{2}$	8 4	5.7(+4) 4.9(+4)	0.093 0.12	0.017 0.0071	-0.25 -0.62	D D	
			9.006			6	6	5.3(+4)	0.065	0.012	-0.41	D	
36.		² D - ² F°				1							
			8.977 9.241	759830 736490	11900000 11560000	6 4	8 6	2.5(+4) 5.1(+4)	0.040 0.098	0.0071 0.012	0.62 0.41	D D	
37.		$^{2}D - ^{2}D^{\circ}$											
			9.215	759830	11610060	6	6	2.7(+4)	0.035	0.0064	-0.68	D	

FUHR ET AL.

Fe XXII: Allowed transitions-Continued

No.	Transition array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	B i	g,	$A_{4i}(10^{3}s^{-1})$	f.a	S (at.u.)	log gf	Accu- racy	Source
38.	2s2p ² - 2s2p('P°)4d	²D - ²F°											
			9.183	759830	11650000	6	8	8.3(+4)	0.14	0.025	~-0.08	D	5
			8.960	736490	11900000	4	6	3.8(+4)	0.068	0.0080	~0.57	D	5
39.		² P - ² D°											
			9.163	992260	11910000	4	6	6.9(+4)	0.13	0.016	-0.28	D	5
40.	$2p^{3}-2s^{2}4d$	²P° - ²D	10.28			6	10	1000	0.0028	5.6(4)	-1.78	E	6
			[10.30]			4	6	1000	0.0024	3.2(-4)	2.02	Е	6
			[10.25]			2	4	960	0.0030	2.0(4)	2.22	E	6
			[10.31]			4	4	170	2.7(4)	3.7(~5)	~2.97	E	6
41.	3s - 3p	² S - ² P ^o				2	6		0.17		-0.47	D-	7
42.	3s-4p	²S ²P°	34.40			2	6	7000	0.37	0.084	-0.13	D	7
43.	3 <i>p</i> -3 <i>d</i>	² P° - ² D				6	10		0.048		~0.54	E	interp.
44.	3p-4s	² P° - ² S	37.66	1		6	2	6300	0.045	0.033	-0.57	D	7
45.	3p-4d	² P ^o - ² D	35.88			6	10	1.7(+4)	0.54	0.38	0.51	D	7
46.	3 <i>d</i> -4 <i>p</i>	²D ~ ²P°	38.85			10	6	1200	0.016	0.020	-0.80	D-	7
47.	3d-4f	² D - ² F°	3 7. 48			10	14	3.4(+4)	0.99	1.2	1.00	D	7

* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

Fe xxIII

Ground State

Ionization Potential

1 s²2s² ¹S₀

 $[1950] eV = [15730000] cm^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
7.45	21	8.63	37	11.44	24	144	3
7.48	20	8.669	36	11.440	24	147	3
7.66	39	8.67	36	11.49	27,28	149	7
7.68	39	8.752	38	11.517	27	154	3
7.73	39	8.764	35	11.594	29	166	3
7.78	42	8.812	34	11.690	26	173	3
7.83	42	8.94	32	11.737	25	179	3
7.85	43	10.903	11	11.84	30	223	6
7.86	41	10.927	10	32.6	47	263.76	1
7.89	40	10.934	10	33.4	53	321	1 5
8.271	19	10.979	9	35.2	51	377	5
8.303	18	11.07	23	35.4	57	513	5
8.316	17	11.14	12	36.1	55	607.5	49
8.528	33	11.298	24	120	4		
8.547	33	11.33	24	132.83	2		
8.614	33	11.333	24	135	4		

Sector,

TRANSITION PROBABILITIES FOR IRON

The tabulated oscillator strengths for transitions of the arrays $2s^2-2s 2p$ and $2s 2p-2p^2$ are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [1]. These relativistic calculations include a perturbative treatment of the Breit interaction and the Lamb shift. The results should be quite accurate, except in the case of intercombination lines, for which the *f*-values should be considered more uncertain. (The 2s 2p ³P₁^o- $2p^2$ ¹S₀ trantion has been omitted from this tabulation, since its *f*-value is considerably smaller than those of the other lines of the array.)

Several other sources of reliable data are available for the 2s-2ptransitions treated by Cheng et al. Those which provide results for most or all of the lines of these arrays are: the superposition-ofconfigurations calculations of Weiss [2] in intermediate coupling; the multiconfiguration Breit-Pauli method of Glass [3,4] (including relativistic effects); and the scaled Thomas-Fermi approach of Nussbaumer and Storey [5] with extensive allowance for configuration interaction and including a perturbational treatment of relativistic effects. Those which treat only the resonance lines include: the multiconfiguration Dirac-Fock (MCDF) approaches of Armstrong et al. [6] and Cheng and Johnson [7]; and the relativistic random phase approximation (RRPA) of Lin and Johnson [8]. With the exception of some weaker lines, these sources agree very well with the results of Cheng et al. [1], but the latter are quoted exclusively since ref. [1] provides data derived from comprehensive calculations for all outer-shell 2s-2p transitions in ions of the isoelectronic sequences Li through F.

A preliminary result derived from the beam-foil lifetime experiment by Dietrich et al. [9] for the $2s^2 \, {}^{1}S_0 - 2s 2p \, {}^{3}P_1^{\circ}$ transition deviates considerably from the calculated value of Cheng et al. [1] quoted here, although the experimental result with its stated error limits lies within our estimated uncertainty of the theoretical value. Nussbaumer and Storey [5] have calculated A-values for all downward transitions from levels of the configurations 2l'nl (l' = s,p;n = 3,4; l = s,p,d), as well as 2s4f and 2p4f, in order to struct simulated decay curves of the levels $2s2p \, {}^{3}P_1^{\circ}$ and $2s2p \, {}^{1}P_1^{\circ}$. They conclude that the suspected blending of $2s^2 \, {}^{1}S_0 - 2s2p \, {}^{3}P_1^{\circ}$ the second-order line of $2s^2 \, {}^{1}S_0 - 2s2p \, {}^{1}P_1^{\circ}$ in the experiment of Dietrich et al. should not have been a significant factor in the determination of the lifetime, and that there must have been additional problems in their experiment.

Nussbaumer and Storey [5] reported the results of their calculations for only a few of the transitions mentioned above. These results are tabulated here, as are the *A*-values for two transitions calculated by Nussbaumer [10] in the scaled Thomas-Fermi approximation with limited configuration interaction.

Lin and Johnson [8] have calculated f-values for the transitions $2s^{2-1}S_0-2snp^{-1}P_1^{\circ}$ (n = 3,4), which are quoted here. In addition, they determined f-values for the intercombination lines $2s^{2-1}S_0-2snp^{-3}P_1^{\circ}$ (n = 3,4), but only for selected ions of the Be sequence (not including Fe XXIII). The Hartree-XR (Hartree-Fock with statistical exchange and relativistic effects) calculations of Bromage et al. [11] yielded a result for $2s^{2-1}S_0-2sap^{-3}P_1^{\circ}$ which lies outside the interval bracketed by the calculated f-values of Lin and Johnson for V XX and Ni XXV. This transition has thus been omitted from our tabulation, since it is difficult to derive an f-value by

interpolation along an isoelectronic sequence for a transition that is increasing rather rapidly in strength, as is the case here. The result of Doschek et al. [12] for the $2s^{2-1}S_0-2s\,4p^{-3}P_1^o$ transition calcuin the same approximation as that used by Bromage et al. [11] lies slightly beyond the interval of *f*-values given by Lin and Johnson for the corresponding ions of V and Ni; it is thus quoted here, but with an accuracy rating of "E."

Oscillator strengths for several transitions involving electron jumps from the n = 2 shell to an upper state characterized by principal quantum number n' (n' = 3,4,5) are from the Hartree-XR calculations of Bromage et al. [11] mentioned above. It is indicated there that the 2p 3d ³D₂^o and ¹D₂^o levels are severely mixed. Thus transitions to these states are omitted here, and the *f*-value for the single transition to the 2p 3d ³P₂^o level is given an accuracy of "E," since its purity in LS coupling is slightly greater than 50%. All transitions to the levels 2p 4d ³D₂^o, ¹D₂^o, and ³P₂^o are omitted, they are even more strongly mixed than those of 2p 3d.

A few multiplet f-values are from the single-configuration Hartree-Fock (HF) calculations of Chapman [13]. The remaining multiplet f-values were derived by interpolation along the Be isoelectronic sequence. Line strengths for the ${}^{3}P_{2}^{o-3}D_{2}$ and ${}^{3}P_{1}^{o-3}D_{1}$ transitions of the array 2s2p-2s3d were estimated to be in the proportion to the strongest line of the multiplet (${}^{3}P_{2}^{o-3}D_{3}$) as they would be in a pure LS-coupled multiplet. The calculated f-values of Fawcett et al. [14] for lines of the same multiplet in Ni XXV are an indication that this is a reasonable assumption to make, since the ratios of line strengths derived from their f-values deviate by only few percent from the LS-coupling ratios.

Transition probabilities are available in graphical form for several transitions involving vacancies in the K shell [15], but they are not tabulated here since relativistic effects were not taken into account.

References

- [1] Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [2] Weiss, A. W., Beam-Foil Spectroscopy, Vol. 1, 51-68 (Eds. Sellin, I. A., and Pegg, D. J., Plenum Press, New York, 1976) and private communication.
- [3] Glass, R., J. Phys. B 12, 689 (1979).
- [4] Glass, R., J. Phys. B 12, 697 (1979).
- [5] Nussbaumer, H., and Storey, P. J., J. Phys. B 12, 1647 (1979).
- [6] Armstrong, L., Jr., Fielder, W. R., and Lin, D. L., Phys. Rev. A 14, 1114 (1976).
- [7] Cheng, K. T., and Johnson, W. R., Phys. Rev. A 15, 1326 (1977).
- [8] Lin, C. D., and Johnson, W. R., Phys. Rev. A 15, 1046 (1977).
- [9] Dietrich, D. D., Leavitt, J. A., Bashkin, S., Conway, J. G., Gould, H., Mac-Donald, D., Marrus, R., Johnson, B. M., and Pegg, D. J., Phys. Rev. A 18, 208 (1978).
- [10] Nussbaumer, H., Astron. Astrophys. 16, 77 (1972).
- [11] Bromage, G. E., Cowan, R. D., Fawcett, B. C., and Ridgeley, A., J. Opt. Soc. Am. 68, 48 (1978).
- [12] Doschek, G. A. Meekins, J. F., and Cowan, R. D., Astrophys. J. 177, 261 (1972).
- [13] Chapman, R. D., Astrophys. J. 156, 87 (1969).
- [14] Fawcett, B. C., Ridgeley, A., and Hughes, T. P., Mon. Not. R. Astron. Soc. 188, 365 (1979).
- [15] Boiko, V. A., Chugunov, A. Yu., Ivanova, T. G., Faenov, A. Ya., Holin, I. V., Pikuz, S. A., Urnov, A. M., Vainshtein, L. A., and Safronova, U. I., Mon. Not. R. Astron. Soc. 185, 305 (1978).

FUHR ET AL.

Fe XXIII: Allowed transitions

 \approx

for the second s

e and

T

-

No.	Transition array	Multiplet	λ(Å)	$E_i (\mathrm{cm}^{-1})$	$E_k (\mathrm{cm}^{-1})$	8	g	$A_{ki} (10^8 \mathrm{s}^{-1})$	f.s.	S (at.u.)	log gf	Accu racy	Source
1.	2s ² -2s2p	'S - ³ P°											
			263.76	0	379130	1	3	0.48	0.0015	0.0013	2.82	D	1
2.		¹ S – ¹ P°	132.83	0	752840	1	3	195	0.155	0.0678	-0.810	в	1
3.	$2s2p-2p^2$	³ P° - ³ P	162			9	9	132	0.0521	0.250	~0.329	в	1
			[166]			5	5	76.5	0.0316	0.0863	-0.801	в	1
			[179]			5	3	41.9	0.0149	0.0227	-1.350	BB	1
			[173]			3	1	124	0.0185	0.0316	-1.256	B	1
			[147]				3	66.2	0.0643	0.0402	-1.192	B	1
4.		³ P° - 'D											
			[135]			5	5	49.4	0.0135	0.0300	-1.171	с	1
5		100 Jp	[120]			3	5	4.4	0.0016	0.0019	- 2.32	D	1
			50013										
			[321] [377]			3	5	3.5 0.070	0.0090	0.029 5.6(~~4)	-1.57	Ð	1
			[513]			3	1	0.21	2.8(-4)	0.0014	3.08	E	1
6.		'P° - 'D	[223]			3	5	45.4	0.0564	0.124	-0.772	В	1
7.		¹ P° - 'S	[149]			3	1	328	0.0364	0.0536	-0.962	в	1
8.	2s3d-2p3d	³ D - ³ F ^o											
						7	9	24				C+	5
9.	2s ² 2s3p	'S – 'P°	10.979	0	9108300	1	3	1.14(+5)	0.620	0.0224	-0.208	в	8
10.	2s2p-2p3p	³ P ^o - ³ D											
			±0.927	462000	9614000	5	7	5.2(+4)	0.13	0.023	0.19	D	11
		300 30	101704	319130	9324900	3	э	5.0(+4)	0.15	0.016	-0.35	D	11
		P* - P											
Í			10.903	462000	9634000	5	5	4.9(+4)	0.088	0.016	-0.36	D	11
12.		${}^{1}P^{\circ} - {}^{1}D$	[11.14]			3	5	6.8(+4)	0. 2 1	0.023	-0.20	D	11
13.	2p ² -2s3p	³ P - ³ P°											
						5	5	400 380				c	5
						3	5	300				C	5 5
14.		¹ D - ³ P°											
						5	5	79				D	5
15.		¹ D ~ ¹ P ^o				5	3	1700					10
16.		'S - 'P°				1	3	1400					10
17.	2s ² -2s4p	¹ S - ³ P ^o											
			8.316	0	12030000	1	3	1.2(+4)	0.036	9.9(4)	-1.44	E a:	2

TRANSITION PROBABILITIES FOR IRON

Fe XXIII: Allowed transitions -- Continued

No.	Transition array	Multiplet	λ(Å)	<i>E</i> , (cm ⁻¹)	E_{k} (cm ⁻¹)	g,	g.	$A_{k_1}(10^8 \mathrm{s}^{-1})$	f.s.	S (at.u.)	log gf	Accu- racy	Source
18.		'S – 'P°	8.303	0	12040000	l	3	4.97(+4)	0.154	0.00421	-0.812	в	8
19.	2s2p-2p4p	${}^{3}P^{\circ} - {}^{3}D$											
			8.271	462000	12550000	5	7	2.6(+4)	0.038	0.0052	-0.72	D	11
20	$2s^2 - 2s5n$	S_ Po	[7.48]			1	3	25(+4)	0.063	0.0016	-1.20	D	11
20.	2.3 2.30p	300 30	[1.10]					2.0(1.1)	0.000	0.0010			
21.	2s2p-2p5p					_							
			[7.45]			5		1.5(+4)	0.018	0.0022	-1.05		11
22.	2s2p-2s3s	³ P° – ³ S				9	3		0.028		-0.60	D	interp.
23.		'P° - 'S	[11.07]			3	ł	9800	0.0060	6.6(-4)	-1.74	E	interp.
24.	2s2p-2s3d	³ P ^o - ³ D											
			11.440	462000	9203000	5	7	2.2(+5)	0.60	0.11	0.48	C+	5
			11.333	379130	9202900	3	3	$1.7(\pm 5)$ $1.3(\pm 5)$	0.56	0.003	-0.23	D	11
			11.44	462000	9202900	5	5	5.4(+4)	0.11	0.020	-0.27	D	ls
			11.33	379130	9205000	3	3	9.3(+4)	0.18	0.020	-0.27	D-	Ls
25.		'P° – 'D	11.737	752840	9272900	3	5	1.7(+5)	0.59	0.068	0.25	Ð	11
26.	$2p^2 - 2p 3d$	³ P - ³ F°											
			11.690			5	7	7.7(+4)	0.22	0.042	0.04	D	11
27.		³ P - ³ D°											
			11.517			5	7	2.3(+5)	0.64	0.12	0.51	D	11
			11.49			1	. 3	2.4(+5)	1.4	0.053	0.15	D	11
28.		³ P - ³ P°											
			11.49			5	5	1.2(+5)	0.23	0.044	0.06	E	11
29.		'D – 'F°	11.594			5	7	3.5(+5)	0.99	0.19	0.69	D	11
30.		$^{1}S - ^{1}P^{o}$	[11.84]			1	3	2.1(+5)	1.3	0.051	0.11	D	11
31.	2s 2p - 2s 4s	³ P° - ³ S	8.70			9	3	1.1(+4)	0.0042	0.0011	1.42	Ð	13
32.		¹ P ^o - ¹ S	[8.94]			3	1	1.6(+4)	0.0064	5.7(4)	-1.72	D	13
33.	2s2p-2s4d	³ P° - ³ D											
				11 2200	10070000			71(14)	0.11	0.016	0.00		
			8.547	379130	12070000	3	5	5.3(+4)	0.097	0.0082	-0.54	D	
		1	8.528	354000	12080000	1	3	4.0(+4)	0.13	0.0036	-0.89	D	11
34.		$ ^{1}\mathbf{P}^{\circ} - {}^{1}\mathbf{D}$	8.812	752840	12100000	3	5	6.2(+4)	0.12	0.010	-0.44	D	11
35	$2p^2-2pAd$	3Б - 3Ło											
00.	T Pro		8 764			5	7	4.6(+4)	0.074	0.011	-0.43	D	11
			0.107				.	1.0(+ 1)		0.011	5.10		
36.		³ P - ³ D°											
			8.669			5	7	6.1(+4)	0.096	0.014	0.32	D	11
		1	[8.67]		1	1	3	6.8(+4)	0.23	0.0066	-0.64	D	111

FUHR ET AL.

Fe XXIII: Allowed transitions-Continued

~~~.

fare.

| No.         | Transition<br>array | Multiplet                                    | λ(Å)                       | $E_i$ (cm <sup>-1</sup> ) | $E_k$ (cm <sup>-1</sup> ) | gi          | ₿4          | A <sub>ki</sub> (10 <sup>6</sup> s <sup>~1</sup> ) | ſu                      | S (at.u.)                  | log gf                | Асси-<br>гясу | Source         |
|-------------|---------------------|----------------------------------------------|----------------------------|---------------------------|---------------------------|-------------|-------------|----------------------------------------------------|-------------------------|----------------------------|-----------------------|---------------|----------------|
| 37.         |                     | <sup>3</sup> P - <sup>3</sup> P <sup>o</sup> |                            |                           |                           |             |             |                                                    |                         |                            |                       |               |                |
|             |                     |                                              | <b>[8</b> .63]             |                           |                           | 3           | 3           | 4.5(+4)                                            | 0.050                   | 0.0043                     | 0.82                  | D             | n              |
| 38.         |                     | <sup>1</sup> D - <sup>1</sup> F°             | 8.752                      |                           |                           | 5           | 7           | 1.2(+5)                                            | 0.19                    | 0. <b>02</b> 7             | -0.02                 | D             | 11             |
| 39.         | 2s2p-2s5d           | ³P° - ³D                                     |                            |                           |                           |             |             |                                                    |                         |                            |                       |               |                |
|             |                     |                                              | [7.73]<br>[7.68]<br>[7.66] |                           |                           | 5<br>3<br>1 | 7<br>5<br>3 | 3.0(+4)<br>2.5(+4)<br>1.8(+4)                      | 0.038<br>0.037<br>0.047 | 0.0048<br>0.0028<br>0.0012 | -0.72<br>0.95<br>1.33 | D<br>D<br>D   | 11<br>11<br>11 |
| 40.         |                     | <sup>1</sup> P <sup>o</sup> - <sup>1</sup> D | [7.89]                     |                           |                           | 3           | 5           | 2.B(+4)                                            | 0.043                   | 0.0034                     | -0.89                 | D             | 11             |
| 41.         | $2p^2-2p5d$         | <sup>3</sup> P - <sup>3</sup> F <sup>o</sup> |                            |                           |                           |             |             |                                                    |                         |                            |                       |               |                |
|             |                     |                                              | [7.86]                     |                           |                           | 5           | 7           | 2.3(+4)                                            | 0.030                   | 0.0039                     | -0.82                 | D             | 11             |
| 42.         |                     | ³P - ³D°                                     |                            |                           |                           |             |             |                                                    |                         |                            |                       |               |                |
|             |                     |                                              | [7.78]<br>[7.83]           |                           |                           | 5<br>3      | 7<br>5      | 2.5(+4)<br>2.6(+4)                                 | 0.032<br>0.040          | 0.0041<br>0.0031           | 0.80<br>0.92          | D<br>D        | 11<br>11       |
| 43.         |                     | <sup>1</sup> D - <sup>1</sup> F <sup>0</sup> | [7.85]                     |                           |                           | 5           | 7           | 4.9(+4)                                            | 0.064                   | 0.0083                     | -0.49                 | D             | 11             |
| 44.         | 2s3s-2s3p           | <sup>3</sup> S - <sup>3</sup> P <sup>o</sup> |                            |                           |                           | 3           | 9           |                                                    | 0.12                    |                            | -0.44                 | D             | interp.        |
| 45.         |                     | 'S - 'P°                                     |                            |                           |                           | 1           | 3           |                                                    | 0.050                   |                            | -1.30                 | €             | interp.        |
| <b>46</b> . | 2s3s-2s4p           | <sup>3</sup> S - <sup>3</sup> P°             | .32.6                      |                           |                           | .3          | 9           | 8200                                               | 0.390                   | 0.126                      | 0.068                 | с             | 13             |
| 47.         |                     | 'S - 'P°                                     | [32.6]                     |                           |                           | 1           | 3           | 6200                                               | 0.294                   | 0.0316                     | -0.53                 | с             | 13             |
| 48.         | 2s3p-2s3d           | <sup>3</sup> P° - <sup>3</sup> D             |                            |                           |                           | 9           | 15          |                                                    | 0.027                   |                            | 0.61                  | E             | interp.        |
| 49.         |                     | <sup>1</sup> P <sup>o</sup> - <sup>1</sup> D | [607.5]                    | 9108300                   | 9272900                   | 3           | 5           | 5.1                                                | 0.047                   | 0.28                       | 0.85                  | E             | interp.        |
| 50.         | 2s3p-2s4s           | ³P° - ³S                                     | 35.1                       |                           |                           | 9           | 3           | 7000                                               | 0.0428                  | 0.0445                     | -0.414                | c             | 13             |
| 51.         |                     | <sup>1</sup> P° - <sup>1</sup> S             | [35.2]                     |                           |                           | 3           | 1           | 6200                                               | 0.0383                  | 0.0133                     | ~0.94                 | c             | 13             |
| 52.         | 2s3p-2s4d           | <sup>3</sup> P° - <sup>3</sup> D             | 33.9                       |                           |                           | 9           | 15          | 2.0(+4)                                            | 0.57                    | 0.57                       | 0.71                  | C             | 13             |
| 53.         |                     | <sup>1</sup> P° - <sup>1</sup> D             | [33.4]                     | 9108300                   | 12100000                  | 3           | 5           | 2.0(+4)                                            | 0.56                    | 0.18                       | 0.23                  | с             | 13             |
| 54.         | 2s3d-2s4p           | <sup>3</sup> D - <sup>3</sup> P <sup>o</sup> | 35.4                       |                           |                           | 15          | 9           | 1200                                               | 0.0135                  | 0.0236                     | ~0.69                 | с             | 13             |
| 55.         |                     | <sup>1</sup> D - <sup>1</sup> P <sup>o</sup> | [36.1]                     | 9272900                   | 12040000                  | 5           | 3           | 1300                                               | 0.015                   | 0.0089                     | -1.12                 | D             | 13             |
| 56.         | 2s3d-2s4f           | ³D − ³Fo                                     | 34.6                       |                           |                           | 15          | 21          | 3.9(+4)                                            | 0.99                    | 1.7                        | 1.17                  | с             | 13             |
| 57,         |                     | <sup>1</sup> D ~ <sup>1</sup> F <sup>o</sup> | [35.4]                     |                           |                           | 5           | 7           | 3.84(+4)                                           | 1.01                    | 0.59                       | 0.70                  | С             | 13             |

\* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

# TRANSITION PROBABILITIES FOR IRON Fe xxiv

Ground State

**Ionization** Potential

1s<sup>2</sup>2s <sup>2</sup>S<sub>1/2</sub>

 $[2045] eV = [16494000] cm^{-1}$ 

| Allowed 1 | ransitions |
|-----------|------------|
|-----------|------------|

| List | of | tabulated | lines |
|------|----|-----------|-------|

| Wavelength (Å) | No. | Wavelength (Å) | No. | Wavelength (Å) | No. | Wavelength (Å) | No. |
|----------------|-----|----------------|-----|----------------|-----|----------------|-----|
| 1.8523         | 8   | 1.8739         | 5   | 8.280          | 17  | 21.8           | 27  |
| 1.8552         | 2   | 1.874          | 1   | 8.316          | 18  | 22.0           | 27  |
| 1.8563         | 8   | 1.8767         | 5   | 8.369          | 17  | 30.7           | 22  |
| 1.8572         | 2   | 1.891          | 4   | 10.619         | 10  | 30.9           | 22  |
| 1.858          | 7   | 1.897          | 4   | 10.663         | 10  | 31.5           | 26  |
| 1.8604         | 3   | 6.749          | 21  | 11.030         | 16  | 31.9           | 26  |
| 1.8614         | 7   | 6.787          | 13  | 11.171         | 16  | 37.0           | 36  |
| 1.8626         | 6   | 6.808          | 21  | 11.187         | 16  | 37.3           | 36  |
| 1.8627         | 7   | 6.972          | 20  | 11.262         | 15  | 44.2           | 32  |
| 1.8637         | 3   | 7.033          | 20  | 11.422         | 15  | 44.8           | 35  |
| 1.8655         | 6   | 7.169          | 12  | 17.1           | 29  | 45.2           | 35  |
| 1.8672         | 7   | 7.370          | 19  | 17.3           | 29  | 67.6           | 31  |
| 1.8678         | 6   | 7.438          | 19  | 18.3           | 24  | 68.5           | 34  |
| 1.8700         | 5   | 7.983          | 11  | 18.7           | 28  | 69.4           | 34  |
| 1.8721         | 5   | 7.993          | 11  | 18.8           | 28  | 192.04         | 9   |
| 1.8730         | 1   | 8.231          | 18  | 21.4           | 23  | 255.10         | 9   |

Transition probabilities for the inner-shell transitions to doubly excited n = 2 states are the results of the multiconfiguration scaled Thomas-Fermi calculations of Bely-Dubau et al. [1] in intermediate coupling. The multiplet oscillator strengths for the  ${}^{2}P^{\circ}-{}^{2}P$  and  ${}^{2}P^{\circ}-{}^{2}D$  transitions of the  $1s^{2}2p-1s2p^{2}$  array which were calculated by Fox and Dalgarno [2] in a Z-expansion approximation that allowed for extensive configuration interaction are in good agreement with the results of ref. [1].

Oscillator strengths for lines of the principal (2s-2p) resonance multiplet are the results of the multiconfiguration Dirac-Fock (MCDF) calculations of Cheng et al. [3], which include a perturbative treatment of the Breit interaction and the Lamb shift. Other sources of reliable theoretical data for these 2s-2p transitions are the Hartree-Fock line strength calculations of Weiss [4] with relativistic corrections and the MCDF approach of Armstrong et al. [5].

Lifetimes of the 2p levels have been determined by Dietrich et al. [6] using the beam-foil technique. The associated oscillator strengths for the 2s-2p transitions are in excellent agreement with the results mentioned above.

The results of the relativistic Hartree-Fock calculations of Kim and Desclaux [7] were averaged with the results of Armstrong et al. [5] for the 2s-3p transitions. The data of ref. [5] are quoted for the lines of the 2p-3d multiplet too.

The results of the scaled Thomas-Fermi calculations of Hayes [8] are tabulated for the 2p-3s transitions. He used the Breit-Pauli

approximation to account for relativistic effects. The Hartree-Fock results of Doschek et al. [9] that included configuration interaction and relativistic corrections are quoted for transitions of the type 2l-4t'. The 2p-5d f-values are the results of the Hartree-Fock calculations with statistical exchange (HX) of Burkhalter et al. [10].

The f-value for the  $3d \cdot 4f$  transition was taken from a study of systematic trends along isoelectronic sequences by Smith and Wiese [11]. The tabulated data for the remaining transitions were taken from the theoretical analysis of Martin and Wiese [12], which was based on a generalized study of systematic trends for several spectral series of the lithium isoelectronic sequence. For these transitions, no relativistic calculations were available. However, the relativistic calculations of Younger and Weiss [13] for the hydrogen isoelectronic sequence provide a means of assessing the magnitude of relativistic corrections since the Li sequence is very similar in structure to the H sequence. For those transitions for which relativistic effects were estimated to be significant (specifically, whenever the ratio of the weighted relativistic hydrogenic f-values  $g_i f_{ik}$  of any two lines within a multiplet was found to deviate from the corresponding LS-coupling line-strength ratio by more than 5% for the appropriate value of the nuclear charge Z), the f-values were excluded from the compilation. A more detailed discussion of this comparison is given in ref. [12].

Transition probability data are available for numerous transitions between doubly excited states in which one of the electrons occupies the n = 3 shell [1] or the n = 4 shell [14]. There are A-value

#### FUHR ET AL.

data for many transitions involving a vacant K shell as well [15,16]. None of these data have been tabulated, however, since such transition arrays are rather complex and all of the lines are concentrated in a very narrow wavelength range.

#### References

- Bely-Dubau, F., Gabriel, A. H., and Volonté, S., Mon. Not. R. Astron. Soc. 186, 405 (1979).
- [2] Fox, J. L., and Dalgarno, A., Phys. Rev. A 16, 283 (1977).

÷

- [3] Cheng, K. T., Kim, Y.-K., and Desclaux, J. P., At. Data Nucl. Data Tables 24, 111 (1979).
- [4] Weiss, A. W., J. Quant. Spectrosc. Radiat. Transfer 18, 481 (1977).
- [5] Armstrong, L., Jr., Fielder, W. R., and Lin, D. L., Phys. Rev. A 14, 1114 (1976).

- [6] Dietrich, D. D., Leavitt, J. A., Bashkin, S., Conway, J. G., Gould, H., Mac-Donald, D., Marrus, R., Johnson, B. M., and Pegg, D. J., Phys. Rev. A 18, 208 (1978).
- [7] Kim, Y.-K., and Desclaux, J. P., Phys. Rev. Lett. 36, 139 (1976) and private communication.
- [8] Hayes, M. A., Mon. Not. R. Astron. Soc. 189, 55P (1979).
- [9] Doschek, C. A., Meekins, J. F., and Cowan, R. D., Astrophys. J. 177, 261 (1972).
- [10] Burkhalter, P. G., Dozier, C. M., Stallings, C., and Cowan, R. D., J. Appl. Phys. 49, 1092 (1978).
- [11] Smith, M. W., and Wiese, W. L., Astrophys. J. Suppl. Ser. 23, No. 196, 103 (1971).
- [12] Martin, G. A., and Wiese, W. L., J. Phys. Chem. Ref. Data 5, 537 (1976).
- [13] Younger, S. M., and Weiss, A. W., J. Res. Nat. Bur. Stand., Sect. A 79, 629 (1975).
- [14] Bely-Dubau, F., Gabriel, A. H., and Volonté, S., Mon. Not. R. Astron. Soc. 189, 801 (1979).
- [15] Safronova, U. I., and Senashenko, V. S., J. Phys. B 11, 2623 (1978).
- [16] Nussbaumer, H., J. Phys. B 9, 1757 (1976).

| No. | Transition<br>array                                          | Multiplet                                    | λ(Å)                                           | $E_i$ (cm <sup>-1</sup> )                      | $E_t$ (cm <sup>-1</sup> )                                | g,                    | ₿ŧ                    | A <sub>ki</sub> (10 <sup>8</sup> s <sup>-1</sup> ) | fix.                                         | S (at.u.)                                           | log gf                               | Асси-<br>гасу         | Source           |
|-----|--------------------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------|------------------|
| 1.  | 1s <sup>2</sup> 2s-<br>1s2p( <sup>3</sup> P <sup>0</sup> )2s | ²S - 4P°                                     |                                                |                                                |                                                          |                       |                       |                                                    |                                              |                                                     |                                      |                       |                  |
|     |                                                              |                                              | 1.8730<br>[1.874]                              | 0                                              | 53390000                                                 | 2<br>2                | 4<br>2                | 1.5(+5)*<br>4.9(+4)                                | 0.016<br>0.0026                              | 1.9(4)<br>3.2(5)                                    | 1.50<br>2.29                         | D+<br>D+              | 1<br>1           |
| 2.  |                                                              | ²S – ²P°                                     | 1.8559                                         | 0                                              | 53883000                                                 | 2                     | 6                     | 6.9(+5)                                            | 0.11                                         | 0.0013                                              | 0.67                                 | D                     | 1                |
|     |                                                              |                                              | 1.8552<br>1.8572                               | 0<br>0                                         | 53903000<br>53844000                                     | 2<br>2                | 4<br>2                | 4.4(+4)<br>1.96(+6)                                | 0.0045<br>0.101                              | 5.5(5)<br>0.00124                                   |                                      | E<br>C                | 1<br>1           |
| 3.  | ls <sup>2</sup> 2s-<br>ls2p( <sup>1</sup> P <sup>0</sup> )2s | ²S - ²P°                                     | 1.8615                                         | 0                                              | 53720000                                                 | 2                     | 6                     | 4.1(+6)                                            | 0.64                                         | 0.0079                                              | 0.11                                 | С                     | 1                |
|     |                                                              |                                              | 1.8604<br>1.8637                               | 0<br>0                                         | 53752000<br>53657000                                     | 2<br>2                | 4<br>2                | 4.74(+6)<br>2.93(+6)                               | 0. <b>492</b><br>0.153                       | 0.0060<br>0.00187                                   | 0.007<br>0.52                        | C<br>C                | 1                |
| 4.  | 1s <sup>2</sup> 2p-1s2s <sup>2</sup>                         | ²P° - ²S                                     | 1.895                                          |                                                |                                                          | 6                     | 2                     | 1.9(+5)                                            | 0.0035                                       | 1.3(4)                                              | -1.68                                | D+                    | 1                |
|     |                                                              |                                              | [1.897]<br>[1.891]                             |                                                |                                                          | 4<br>2                | 2<br>2                | 9.4(+4)<br>9.5(+4)                                 | 0.0025<br>0.0051                             | 6.3(-5)<br>6.3(-5)                                  | 1.99<br>1.99                         | D+<br>D+              | 1<br>1           |
| 5.  | $1s^22p-1s2p^2$                                              | ²₽° - *P                                     |                                                |                                                |                                                          |                       |                       |                                                    |                                              |                                                     |                                      |                       |                  |
|     |                                                              |                                              | 1.8721<br>1.8700<br>1.8739<br>1.8721<br>1.8767 | 520720<br>392000<br>520720<br>392000<br>520720 | 53937000<br>53877000<br>53877000<br>53807000<br>53807000 | 4<br>2<br>4<br>2<br>4 | 6<br>4<br>4<br>2<br>2 | 3.3(+5)<br>1300<br>8.1(+4)<br>1.9(+5)<br>2000      | 0.026<br>1.4(4)<br>0.0043<br>0.010<br>5.3(5) | 6.4(~4)<br>1.7(-6)<br>1.1(-4)<br>1.2(-4)<br>1.3(~6) | 0.98<br>3.56<br>1.77<br>1.70<br>3.68 | D<br>E<br>D<br>D<br>E | 1<br>1<br>1<br>1 |
| 6.  |                                                              | <sup>2</sup> P <sup>0</sup> - <sup>2</sup> D | 1.8648                                         | 477810                                         | 54104000                                                 | 6                     | 10                    | 2.6(+6)                                            | 0.23                                         | 0.0084                                              | 0.14                                 | С                     | i                |
|     |                                                              |                                              | 1.8655<br>1.8626<br>1.8678                     | 520720<br>392000<br>520720                     | 54126000<br>54070000<br>54070000                         | 4<br>2<br>4           | 6<br>4<br>4           | 2.10(+6)<br>3.13(+6)<br>3.0(+5)                    | 0.164<br>0.326<br>0.016                      | 0.00404<br>0.00399<br>3.9(4)                        | -0.182<br>-0.186<br>-1.20            | C<br>C<br>D           | 1<br>1<br>1      |
| 7.  |                                                              | ²p° - ²p                                     | 1.8618                                         | 477810                                         | 54188000                                                 | 6                     | 6                     | 6.5(+6)                                            | 0.340                                        | 0.0125                                              | 0.310                                | с                     | 1                |
|     |                                                              |                                              | 1.8614<br>[1.8627]<br>1.8672                   | 520720<br>392000<br>520720                     | 54244000<br>54077000<br>54077000                         | 4<br>2<br>4           | 4<br>2<br>2           | 6.2(+6)<br>5.4(+6)<br>1.57(+6)                     | 0.32<br>0.28<br>0.0410                       | 0.0079<br>0.0034<br>0.00101                         | 0.11<br>0.25<br>0.78                 | с<br>с<br>с           | 1<br>1<br>1      |
|     |                                                              | I                                            | 1.858                                          | 392000                                         | 54244000                                                 | 21                    | 4                     | 1.3(+5)                                            | 0.013                                        | ∣1.6(4)∣                                            | -1.57                                | ID                    | 11               |

#### Fe XXIV: Allowed transitions

# TRANSITION PROBABILITIES FOR IRON

Fe XXIV: Allowed transitions -- Continued

| No. | Transition<br>array | Multiplet                                    | λ(Å)             | $E_{\rm c}$ (cm $^{-1}$ ) | $E_k$ (cm <sup>-1</sup> ) | g,     | g*     | $A_{k_t}(10^8 { m s}^{-1})$ | fa               | S (at.u.)          | log gf          | Accu-<br>racy | Source |
|-----|---------------------|----------------------------------------------|------------------|---------------------------|---------------------------|--------|--------|-----------------------------|------------------|--------------------|-----------------|---------------|--------|
| 8.  |                     | <sup>2</sup> P° - <sup>2</sup> S             | 1.8550           | 477810                    | 54385000                  | 6      | 2      | 2.54(+6)                    | 0.0437           | 0.00160            | -0.58           | с             | 1      |
|     |                     |                                              | 1.8563<br>1.8523 | 520720<br>392000          | 54385000<br>54385000      | 4<br>2 | 2<br>2 | 2.44(+6)<br>8.8(+4)         | 0.063<br>0.0045  | 0.00154<br>5.5(-5) | 0.60<br>2.04    | C<br>D        | 1<br>1 |
| 9.  | 2s-2p               | <sup>2</sup> S - <sup>2</sup> P <sup>o</sup> | 209.29           | 0                         | 477810                    | 2      | 6      | 33.2                        | 0.0654           | 0.0901             | -0.883          | B+            | 3      |
|     |                     |                                              | 192.04<br>255.10 | 0<br>0                    | 520720<br>392000          | 2<br>2 | 4<br>2 | 43.2<br>18.1                | 0.0478<br>0.0177 | 0.0604<br>0.0297   | -1.020<br>1.451 | B+<br>B+      | 3<br>3 |
| 10. | 2s-3p               | $^{2}S - ^{2}P^{o}$                          | 10.634           | 0                         | 9404100                   | 2      | 6      | 7.36(+4)                    | 0.374            | 0.0262             | -0.126          | B+            | 5,7    |
|     |                     |                                              | 10.619           | 0                         | 9417100                   | 2      | 4      | 7.28(+4)                    | 0.246            | 0.0172             | 0.308           | B+            | 5,7    |
|     |                     |                                              | 10.663           | 0                         | 9378200                   | 2      | 2      | 7.51(+4)                    | 0.128            | 0.00899            | -0.592          | <b>B</b> +    | 5,7    |
| 11. | 2s-4p               | <sup>2</sup> S - <sup>2</sup> P <sup>o</sup> | 7.987            | 0                         | 12520000                  | 2      | 6      | 3.4(+4)                     | 0.097            | 0.0051             | -0.71           | C+            | 9      |
|     |                     |                                              | 7.983            | 0                         | 12530000                  | 2      | 4      | 3.43(+4)                    | 0.0655           | 0.00344            | -0.883          | C+            | 9      |
|     |                     |                                              | 7.993            | 0                         | 12510000                  | 2      | 2      | 3.4(+4)                     | 0.033            | 0.0017             | -1.18           | C+            | 9      |
| 12. | 2s-5p               | $ ^{2}S - {}^{2}P^{\circ}$                   | 7.169            | 0                         | 13950000                  | 2      | 6      | 1.7(+4)                     | 0.040            | 0.0019             | -1.10           | C+            | 12     |
| 13. | 2s-6p               | ${}^{2}S - {}^{2}P^{o}$                      | 6.787            | 0                         | 14730000                  | 2      | 6      | 1.02(+4)                    | 0.0212           | 9.47(-4)           | 1.373           | C+            | 12     |
| 14. | 2s-7p               | <sup>2</sup> S - <sup>2</sup> P <sup>o</sup> |                  |                           |                           | 2      | 6      |                             | 0.0125           |                    | -1.602          | C+            | 12     |
| 15. | 2p-3s               | <sup>2</sup> P <sup>o</sup> - <sup>2</sup> S | 11.370           | 477810                    | 9272500                   | 6      | 2      | 2.6(+4)                     | 0.017            | 0.0038             | 0.99            | D             | 8      |
|     |                     |                                              | 11.422<br>11.262 | 520720<br>392000          | 9272500<br>9272500        | 4<br>2 | 2<br>2 | 1.80(+4)<br>7900            | 0.0176<br>0.015  | 0.00265<br>0.0011  | -1.152<br>1.52  | C<br>D        | 8<br>8 |
| 16. | 2p-3d               | <sup>2</sup> P <sup>o</sup> - <sup>2</sup> D | 11.124           | 477810                    | 9467100                   | 6      | 10     | 2.19(+5)                    | 0.678            | 0.149              | 0.609           | В             | 5      |
|     |                     |                                              | 11.171           | 520720                    | 9472500                   | 4      | 6      | 2.18(+5)                    | 0.611            | 0.0899             | 0.388           | В             | 5      |
|     |                     |                                              | 11.030           | 392000                    | 9459000                   | 2      | 4      | 1.84(+5)                    | 0.670            | 0.0487             | 0.127           | В             | 5      |
|     |                     |                                              | 11.187           | 520720                    | 9459000                   | 4      | 4      | 3.6(+4)                     | 0.068            | 0.010              | -0.57           | В             | 5      |
| 17. | 2 <i>p</i> -4s      | <sup>2</sup> P <sup>o</sup> - <sup>2</sup> S | 8.339            | 477810                    | 12470000                  | 6      | 2      | 1.0(+4)                     | 0.0036           | 6.0(4)             | -1.66           | D             | 9      |
|     | ;                   |                                              | [8.369]          | 520720                    | 12470000                  | 4      | 2      | 6900                        | 0.0036           | 4.0(-4)            | -1.84           | D             | 9      |
|     |                     |                                              | [8.280]          | 392000                    | 12470000                  | 2      | 2      | 3600                        | 0.0037           | 2.0(-4)            | -2.13           | D             | 9      |
| 18. | 2p-4d               | $^{2}P^{o} - ^{2}D$                          | 8.284            | 477810                    | 12550000                  | 6      | 10     | 7.16(+4)                    | 0.123            | 0.0201             | -0.133          | C+            | 9      |
|     |                     | 1                                            | 8.316            | 520720                    | 12550000                  | 4      | 6      | 7.07(+4)                    | 0.110            | 0.0120             | -0.357          | C+            | 9      |
|     |                     |                                              | 8.231            | 392000                    | 12550000                  | 2      | 4      | 6.10(+4)                    | 0.124            | 0.00672            | -0.606          | C+            | 9      |
|     |                     |                                              | 8.310            | 520720                    | 12550000                  | 4      | 4      | 1.18(++4)                   | 0.0122           | 0.00134            | 1.312           | Ľ             | 9      |
| 19. | 2p-5d               | $^{2}P^{\circ} - ^{2}D$                      | 7.412            | 477810                    | 13970000                  | 6      | 10     | 3.3(+4)                     | 0.045            | 0.0066             | -0.57           | C-            | 10     |
|     |                     |                                              | 7.438            | 520720                    | 13970000                  | 4      | 6      | 3.26(+4)                    | 0.0405           | 0.00397            | -0.79           | C             | 10     |
|     |                     |                                              | 7.370            | 392000                    | 13970000                  |        | 4      | 2.8(+4)                     | 0.046            | 0.0022             | -1.04           |               |        |
|     |                     |                                              | 1.430            | 320720                    | 13970000                  | 4      | 4      | 3400                        | 0.0045           | 4.9(-4)            | 1.74            | U             | 10     |
| 20. | 2p-6d               | <sup>2</sup> P° - <sup>2</sup> D             | 7.012            | 477810                    | 14740000                  | 6      | 10     | 1.79(+4)                    | 0.0220           | 0.00305            | -0.879          | C-+-          | 12     |
|     |                     |                                              | 7.033            | 520720                    | 14740000                  | 4      | 6      | 1.78(+4)                    | 0.0198           | 0.00183            | -1.102          | C+            | ls     |
|     |                     | 1                                            | 6.972            | 392000                    | 14740000                  | 2      | 4      | 1.52(+4)                    | 0.0222           | 0.00102            | -1.352          |               | ls     |
|     |                     |                                              | 7.033            | 520720                    | 14/40000                  | 4      | 4      | 2900                        | 0.0022           | 2.0(4)             | -2.06           | U             | ls     |
| 21. | 2p-7d               | ${}^{2}P^{0} - {}^{2}D$                      | 6.788            | 477810                    | 15210000                  | 6      | 10     | 1.09(+4)                    | 0.0126           | 0.00169            | 1.121           | C+            | 12     |
|     |                     |                                              | 6.808            | 520720                    | 15210000                  | 4      | 6      | 1.08(+4)                    | 0.0113           | 0.00101            | -1.346          | C+            | ls     |
|     |                     |                                              | [6.749]          | 392000                    | 15210000                  | 2      | 4      | 9280                        | 0.0127           | 5.63(-4)           |                 | C+-           | ls     |
|     | ł                   | 1                                            | 6.808            | 520720                    | 15210000                  | ⊢ 4    | I 4    | 1800                        | 0.0012           | 1.1(-4)            | - 2.31          | ĽΨ            | l ls   |

.....

\_\_\_\_\_

#### FUHR ET AL.

Fe XXIV: Allowed transitions-Continued

|             | Transition<br>array    | Multiplet                                    | <i>ϵ</i><br>λ(Å) | $E_i$ (cm <sup>-1</sup> ) | $E_k$ (cm <sup>~1</sup> ) | g      | g,     | $A_{ki}(10^8 { m s}^{-1})$ | f <sub>ix</sub> | S (at.u.)      | log g∫         | Асси-<br>гасу | Source   |
|-------------|------------------------|----------------------------------------------|------------------|---------------------------|---------------------------|--------|--------|----------------------------|-----------------|----------------|----------------|---------------|----------|
| 22.         | 35-4p                  | <sup>2</sup> S – <sup>2</sup> P°             | 30.8             | 9272500                   | 12520000                  | 2      | 6      | 1.1(+4)                    | 0.45            | 0.091          | -0.05          | с             | 12       |
|             |                        |                                              | [30.7]<br>[30.9] | 9272500<br>9272500        | 12530000<br>12510000      | 2<br>2 | 4<br>2 | 1.1(+4)<br>1.0(+4)         | 0.30<br>0.15    | 0.061<br>0.030 | -0.22<br>-0.53 | C<br>C        | ls<br>Is |
| 23.         | 3s-5p                  | ²S - ²P°                                     | [21.4]           | 9272500                   | 13950000                  | 2      | 6      | 5200                       | 0.108           | 0.0152         | -0.67          | с             | 12       |
| 24.         | 3s6p                   | <sup>2</sup> S - <sup>2</sup> F°             | [18.3]           | 9272500                   | 14730000                  | 2      | 6      | 3200                       | 0.048           | 0.0058         | -1.02          | с             | 12       |
| 25.         | 3s-7p                  | <sup>2</sup> S - <sup>2</sup> P <sup>o</sup> |                  |                           |                           | 2      | 6      |                            | 0.0250          |                | -1.301         | С             | 12       |
| <b>2</b> 6. | 3p-4d                  | <sup>2</sup> P° - <sup>2</sup> D             | 31.8             | 9404100                   | 12550000                  | 6      | 10     | 2.4(+4)                    | 0.60            | 0.38           | 0.56           | B             | 12       |
|             |                        |                                              | [31.9]           | 9417100                   | 12550000                  | 4      | 6      | 2.4(+4)                    | 0.55            | 0.23           | 0.34           | B             | ls       |
|             |                        |                                              | [31.5]           | 9378200                   | 12550000                  | 2      | 4      | 2.1(+4)                    | 0.63            | 0.13           | 0.10           | B             | ls       |
|             |                        |                                              | [31.9]           | 9417100                   | 12550000                  | 4      | 4      | 3900                       | 0.060           | 0.025          | -0.62          | C+            | ls       |
| 27.         | 3p-5d                  | <sup>2</sup> P° - <sup>2</sup> D             | 21.9             | 9404100                   | 13970000                  | 6      | 10     | 1.15(+4)                   | 0.138           | 0.0597         | -0.082         | C+            | 12       |
|             |                        |                                              | [22.0]           | 9417100                   | 13970000                  | 4      | 6      | 1.14(+4)                   | 0.124           | 0.0358         | -0.306         | C+            | ls       |
|             |                        |                                              | [21.8]           | 9378200                   | 13970000                  | 2      | 4      | 9730                       | 0.139           | 0.0199         | -0.557         | C+            | ls       |
|             |                        |                                              | [22.0]           | 9417100                   | 13970000                  | 4      | 4      | 1900                       | 0.014           | 0.0040         | ~1.26          | D             | ls       |
| 28.         | 3p6d                   | <sup>2</sup> P° - <sup>2</sup> D             | 18.7             | 9404100                   | 14740000                  | 6      | 10     | 6390                       | 0.0558          | 0.0206         | -0.475         | C+            | 12       |
|             |                        |                                              | [18.8]           | 9417100                   | 14740000                  | 4      | 6      | 6300                       | 0.0501          | 0.0124         | ~0.698         | C+            | ls       |
|             |                        |                                              | [18.7]           | 9378200                   | 14740000                  | 2      | 4      | 5320                       | 0.0558          | 0.00687        | -0.952         | C+-           | ls       |
|             |                        |                                              | [18.8]           | 9417100                   | 14740000                  | 4      | 4      | 1100                       | 0.0057          | 0.0014         | ~1.65          | D             | ls       |
| 29.         | 3p7d                   | <sup>2</sup> P° - <sup>2</sup> D             | 17.2             | 9404100                   | 15210000                  | 6      | 10     | 3910                       | 0.0289          | 0.00982        | -0.761         | C+            | 12       |
|             |                        |                                              | [17.3]           | 9417100                   | 15210000                  | 4      | 6      | 3840                       | 0.0259          | 0.00589        | ~0.985         | C+            | ls       |
|             |                        |                                              | [17.1]           | 9378200                   | 15210000                  | 2      | 4      | 3310                       | 0.0290          | 0.00327        | -1.236         | C+            | ls       |
|             |                        |                                              | [17.3]           | 9417100                   | 15210000                  | 4      | 4      | 640                        | 0.0029          | 6.5(4)         | -1.94          | D             | ls       |
| 30.         | 3d-4f                  | <sup>2</sup> D - <sup>2</sup> F <sup>o</sup> |                  |                           |                           | 10     | 14     |                            | 1.00            |                | 1.000          | в             | 11       |
| 31.         | 4s-5p                  | <sup>2</sup> S - <sup>2</sup> P <sup>o</sup> | [67.6]           | 12470000                  | 13950000                  | 2      | 6      | 2330                       | 0.478           | 0.213          | -0.020         | с             | 12       |
| 32.         | 4s-6p                  | <sup>2</sup> S - <sup>2</sup> P <sup>o</sup> | [44.2]           | 12470000                  | 14730000                  | 2      | 6      | 1460                       | 0.128           | 0.0373         | -0.59          | с             | 12       |
| 33.         | 4s-7p                  | <sup>2</sup> S - <sup>2</sup> P°             |                  |                           |                           | 2      | 6      |                            | 0.056           |                | -0.95          | С             | 12       |
| 34.         | 4 <i>p</i> -5 <i>d</i> | <sup>2</sup> P <sup>o</sup> - <sup>2</sup> D | 69.0             | 12520000                  | 13970000                  | 6      | 10     | 4920                       | 0.585           | 0.797          | 0.545          | C+            | 12       |
|             |                        |                                              | [69.4]           | 12530000                  | 13970000                  | 4      | 6      | 4830                       | 0.523           | 0.478          | 0.321          | C+            | Ls       |
|             |                        |                                              | [68.5]           | 12510000                  | 13970000                  | 2      | 4      | 4190                       | 0.590           | 0.266          | 0.072          | C+            | ls       |
|             |                        |                                              | [69.4]           | 12530000                  | 13970000                  | 4      | 4      | 800                        | 0.058           | 0.053          | -0.63          | D             | ls       |
| 35.         | 4p-6d                  | <sup>2</sup> P° - <sup>2</sup> D             | 45.0             | 12520000                  | 14740000                  | 6      | 10     | 2810                       | 0.142           | 0.126          | 0.070          | C+            | 12       |
|             |                        |                                              | [45.2]           | 12530000                  | 14740000                  | 4      | 6      | 2760                       | 0.127           | 0.0756         | ~0.294         | C+            | ls       |
|             |                        |                                              | [44.8]           | 12510000                  | 14740000                  | 2      | 4      | 2370                       | 0.142           | 0.0420         | -0.545         | C+            | ls       |
|             |                        |                                              | [45.2]           | 12530000                  | 14740000                  | 4      | 4      | 460                        | 0.014           | 0.0084         | -1.25          | D             | ls       |
| 36.         | 4p7d                   | . <sup>2</sup> P° – <sup>2</sup> D           | 37.2             | 12520000                  | 15210000                  | 6      | 10     | 1780                       | 0.0617          | 0.0453         | -0.432         | C+            | 12       |
|             |                        |                                              | [27 2]           | 19530000                  | 15210000                  |        | 6      | 1770                       | 0.0554          | 0.0279         | -0.655         | C+            | 1.       |
|             |                        |                                              | [37.0]           | 12510000                  | 15210000                  | 9      | 4      | 1510                       | 0.0534          | 0.0272         | -0.000         | $ c_{+}$      | ls       |
|             |                        |                                              | [37.3]           | 12530000                  | 15210000                  | 4      | 4      | 290                        | 0.0061          | 0.0030         | -1.61          | D             | Ls       |
|             |                        |                                              |                  |                           |                           |        | Ĺ      |                            |                 |                |                | [             | L        |

\* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

# TRANSITION PROBABILITIES FOR IRON Fe xxv

Ground State

**Ionization** Potential

 $1s^{2-1}S_0$ 

 $[8828.8] eV = [71208500] cm^{-1}$ 

| AI | lowed | 1 | l'ransitions |
|----|-------|---|--------------|
|    |       |   |              |

List of tabulated lines

| Wavelength (Å) | No.  | Wavelength (Å) | No. | Wavelength (Å) | No. | Wavelength (Å) | No. |
|----------------|------|----------------|-----|----------------|-----|----------------|-----|
| 1.4607         | 19   | 1.792          | 9   | 6.9468         | 38  | 28.950         | 41  |
| 1.4611         | 18   | 1.793          | 3   | 7.4924         | 25  | 29.253         | 42  |
| 1.4945         | 17   | 1.794          | 9   | 7.6191         | 26  | 29.795         | 46  |
| 1.4952         | 16   | 1.797          | 11  | 7.6527         | 33  | 30.224         | 47  |
| 1.5730         | 15   | 1.798          | 11  | 7.7930         | 34  | 62.846         | 57  |
| 1.5749         | 14   | 1.800          | 5   | 10.038         | 23  | 63.295         | 58  |
| 1.778          | 4    | 1.802          | 7   | 10.221         | 24  | 64.608         | 60  |
| 1.782          | 13   | 1.810          | 8   | 10.371         | 29  | 65.342         | 61  |
| 1.787          | 6,10 | 1.8502         | 2   | 10.586         | 30  | 194.9          | 21  |
| 1.788          | 3,9  | 1.8593         | 1   | 19.934         | 43  | 272.6          | 20  |
| 1.789          | 9    | 6.7073         | 27  | 20.139         | 44  | 384.3          | 22  |
| 1.790          | 9    | 6.8157         | 28  | 20.272         | 50  | 398.9          | 20  |
| 1.791          | 3,12 | 6.8288         | 37  | 20.527         | 51  | 426.6          | 20  |

Oscillator strengths for transitions of the  $1s^2-1s2p$  array are taken from the results of Drake [1], who incorporated accurate nonrelativistic matrix elements and exact Dirac hydrogenic matrix elements into a Z-expansion technique in order to provide f-values which would accurately reflect correlation effects for low-Z ions and relativistic effects for high-Z ions of the He isoelectronic sequence. Results for the stronger transitions to doubly excited n = 2 states are from the charge-expansion perturbation theory calculations of Vainshtein and Safronova [2]. The f-values for the (n = 3-5) transitions were interpolated from results of the relativistic random phase approximation (RRPA) calculations of Johnson and Lin [3]. Data for numerous other s-p and p-s transitions are from the RRPA results of Lin et al. [4,5].

The Z-expansion results of Laughlin [6] have been tabulated for various p-d and d-p transitions, as well as transitions between 4d and 4f levels. For those multiplets which involve no change of quantum number (3p-3d, 4p-4d, 4d-4f) the results should be considered to be rather uncertain, since the *f*-values are very sensitive to energy differences. It should be noted that, according to Laughlin's calculations, the nd <sup>1</sup>D levels (n = 3,4) lie below the

corresponding np <sup>1</sup>P<sup>o</sup> levels, and that the 4*f* <sup>1</sup>F<sup>o</sup> level lies below 4*d* <sup>1</sup>D. The opposite is true for the triplet states. Oscillator strengths for a few p-d transitions were extrapolated from the variational calculations of Weiss [7].

Brown and Cortez [8] have provided f-values for numerous d - fand f - d transitions for the entire isoelectronic sequence by deriving Z-expansion formulae based on variational calculations for the low-Z ions. Their results for transitions between the lower-lying D and F<sup>o</sup> terms are tabulated here.

#### References

- [1] Drake, G. W. F., Phys. Rev. A 19, 1387 (1979).
- [2] Vainshtein, L. A., and Safronova, U. I., At. Data Nucl. Data Tables 21, 49 (1978).
- [3] Johnson, W. R., and Lin, C. D., Phys. Rev. A 14, 565 (1976).
- [4] Lin, C. D., Johnson, W. R., and Dalgarno, A., Astrophys. J. 217, 1011 (1977).
- [5] Lin, C. D., Johnson, W. R., and Dalgarno, A., Phys. Rev. A 15, 154 (1977).
- [6] Laughlin, C., J. Phys. B 6, 1942 (1973).
- [7] Weiss, A. W., J. Res. Nat. Bur. Stand., Sect. A 71, 163 (1967).
- [8] Brown, R. T., and Cortez, J.-L., Astrophys. J. 176, 267 (1972).

| No. | Transition<br>array   | Multiplet | λ(Å)     | $E_i  ({ m cm}^{-1})$ | $E_t$ (cm <sup>-1</sup> ) | g, | gı | $A_{ki}(10^8 \mathrm{s}^{-1})$ | fik    | S (at.u.) | log gf | Асси-<br>гасу | Source |
|-----|-----------------------|-----------|----------|-----------------------|---------------------------|----|----|--------------------------------|--------|-----------|--------|---------------|--------|
| 1.  | 1s <sup>2</sup> -1s2p | 'S - 'P°  |          |                       |                           |    |    |                                |        |           |        |               |        |
|     |                       |           | [1.8593] | 0                     | [53785000]                | 1  | 3  | 4.42(+5)*                      | 0.0687 | 4.21(4)   | -1.163 | в             | 1      |
| 2.  |                       | 'S – 'P°  | [1.8502] | 0                     | [54047400]                | 1  | 3  | 4.57(+6)                       | 0.703  | 0.00428   | -0.153 | В             | 1      |

Fe XXV: Allowed transitions

# FUHR ET AL.

Fe XXV: Allowed transitions---Continued

| No. | Transition<br>array   | Multiplet                                    | λ(Å)                                                | E <sub>i</sub> (cm <sup>-1</sup> )                                 | $E_k$ (cm <sup>-1</sup> )                                               | <b>g</b> i            | g.                    | $A_{ki}(10^{8} \mathrm{s}^{-1})$                    | fa                                      | S (at.u.)                                      | log gf                                    | Accu-<br>racy         | Source                |
|-----|-----------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------|-----------------------|
| 3.  | 1s2s-2s2p             | <sup>3</sup> S - <sup>3</sup> P°             | 1.790                                               | [53534300]                                                         | [109400000]                                                             | 3                     | 9                     | 2.8(+6)                                             | 0.41                                    | 0.0072                                         | 0.09                                      | с                     | 2                     |
|     |                       |                                              | [1.788]<br>[1.791]<br>[1.793]                       | [53534300]<br>[53534300]<br>[53534300]                             | [109450000]<br>[109350000]<br>[109300000]                               | 3<br>3<br>3           | 5<br>3<br>1           | 2.9(+6)<br>2.7(+6)<br>2.8(+6)                       | 0.23<br>0.13<br>0.045                   | 0.0041<br>0.0023<br>8.0(-4)                    | -0.16<br>-0.41<br>-0.87                   | C<br>C<br>C           | 2<br>2<br>2           |
| 4.  |                       | <sup>3</sup> S - <sup>1</sup> P <sup>o</sup> |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       |                                              | [1.778]                                             | [53534300]                                                         | [109760000]                                                             | 3                     | 3                     | 1.1(+5)                                             | 0.0052                                  | 9.2(5)                                         | -1.81                                     | D                     | 2                     |
| 5.  |                       | 'S – <sup>3</sup> P°                         |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       |                                              | [1.800]                                             | [53787200]                                                         | [109350000]                                                             | 1                     | 3                     | 1.1(+5)                                             | 0.016                                   | 9.5(5)                                         | 1.80                                      | D                     | 2                     |
| 6.  |                       | 'S – 'P°                                     | [1.787]                                             | [53787200]                                                         | [109760000]                                                             | 1                     | 3                     | 2.8(+6)                                             | 0.40                                    | 0.0024                                         | 0.40                                      | с                     | 2                     |
| 7.  | $1s2p-2s^2$           | <sup>3</sup> P <sup>o</sup> - <sup>1</sup> S |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       |                                              | [1.802]                                             | [53785000]                                                         | [109290000]                                                             | 3                     | 1                     | 4.9(+5)                                             | 0.0080                                  | 1.4(4)                                         | - 1.62                                    | D                     | 2                     |
| 8.  |                       | <sup>1</sup> P <sup>o</sup> - <sup>1</sup> S | [1.810]                                             | [54047400]                                                         | [109290000]                                                             | 3                     | 1                     | 5.9(+5)                                             | 0.0097                                  | 1.7(4)                                         | -1.54                                     | D                     | 2                     |
| 9.  | 1s2p-2p <sup>2</sup>  | <sup>3</sup> Po - <sup>3</sup> P             | 1.791                                               | [53847700]                                                         | [109670000]                                                             | 9                     | 9                     | 5.1(+6)                                             | 0.243                                   | 0.0129                                         | 0.340                                     | С                     | 2                     |
|     |                       |                                              | [1.792]<br>[1.790]<br>[1.794]<br>[1.792]<br>[1.788] | [53901100]<br>[53785000]<br>[53901100]<br>[53785000]<br>[53785000] | [109700000]<br>[109650000]<br>[109650000]<br>[109590000]<br>[109700000] | 5<br>3<br>5<br>3<br>3 | 5<br>3<br>3<br>1<br>5 | 2.9(+6)<br>1.3(+6)<br>2.4(+6)<br>5.2(+6)<br>1.8(+6) | 0.14<br>0.062<br>0.069<br>0.083<br>0.14 | 0.0041<br>0.0011<br>0.0021<br>0.0015<br>0.0025 | -0.16<br>-0.73<br>-0.46<br>-0.60<br>-0.37 | с<br>с<br>с<br>с<br>с | 2<br>2<br>2<br>2<br>2 |
| 10  |                       | 3 <b>00</b> lp                               | [1.789]                                             | [53768700]                                                         | [109620000]                                                             | 1                     | 3                     | 1.9(+6)                                             | 0.27                                    | 0.0016                                         | -0.56                                     | ¢                     | 2                     |
| 10. |                       | r" - D                                       | [1.787]                                             | [53901100]                                                         | [109870000]                                                             | 5                     | 5                     | 1.4(+6)                                             | 0.067                                   | 0.0020                                         | -0.47                                     | С                     | 2                     |
| 11. |                       | <sup>1</sup> Po - <sup>3</sup> P             |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       |                                              | [1.797]<br>[1.798]                                  | [54047400]<br>[54047400]                                           | [109700000]<br>[109650000]                                              | 3<br>3                | 5<br>3                | 1.0(+6)<br>1.2(+5)                                  | 0.081<br>0.0058                         | 0.0014<br>1.0(4)                               | -0.62<br>-1.76                            | C<br>D                | 2<br>2                |
| 12. |                       | <sup>1</sup> P° - <sup>1</sup> D             | [1.791]                                             | [54047400]                                                         | [109870000]                                                             | 3                     | 5                     | 4.3(+6)                                             | 0.34                                    | 0.0061                                         | 0.01                                      | С                     | 2                     |
| 13. |                       | <sup>1</sup> P <sup>o</sup> - <sup>1</sup> S | [1.782]                                             | [54047400]                                                         | [110160000]                                                             | 3                     | 1                     | 5.0(+6)                                             | 0. <b>079</b>                           | 0.0014                                         | -0.62                                     | C                     | 2                     |
| 14. | 1s <sup>2</sup> -1s3p | <sup>1</sup> S - <sup>3</sup> P°             |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       |                                              | [1.5749]                                            | 0                                                                  | [63496000]                                                              | 1                     | 3                     | 1.5(+5)                                             | 0.017                                   | 8.8(5)                                         | -1.77                                     | E                     | interp.               |
| 15. |                       | 'S - 'P°                                     | [1.5730]                                            | 0                                                                  | [63570800]                                                              | 1                     | 3                     | 1.24(+6)                                            | 0.138                                   | 7.15(4)                                        | 0.860                                     | В                     | 4                     |
| 16. | ls <sup>2</sup> -ls4p | <sup>1</sup> S – <sup>3</sup> P <sup>o</sup> |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       |                                              | [1.4952]                                            | 0                                                                  | [66881100]                                                              | 1                     | 3                     | 6.0(+4)                                             | 0.0060                                  | 3.0(5)                                         | -2.22                                     | E                     | interp.               |
| 17. |                       | 'S – 'P°                                     | [1.4945]                                            | 0                                                                  | [669' 2100]                                                             | 1                     | 3                     | 5.05(+5)                                            | 0.0507                                  | 2.49(4)                                        | -1.295                                    | B                     | 4                     |
| 18. | ls <sup>2</sup> -1s5p | 'S – <sup>3</sup> P°                         |                                                     |                                                                    |                                                                         |                       |                       |                                                     |                                         |                                                |                                           |                       |                       |
|     |                       | 1- 1                                         | [1.4611]                                            | 0                                                                  | [68443500]                                                              | 1                     | 3                     | 3.1(+4)                                             | 0.0030                                  | 1.4(5)                                         | 2.52                                      | E                     | interp.               |
| 19. | 1                     | 'S – 'P°                                     | [1.4607]                                            | 0                                                                  | [68459300]                                                              | 1                     | 3                     | 2.54(+5)                                            | 0.0244                                  | 1.17(-4)                                       | -1.613                                    | B                     |                       |

10000

a series

# TRANSITION PROBABILITIES FOR IRON

Fe XXV: Allowed transitions--Continued

\_\_\_\_

| Transition        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                                      |                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| аггау             | Multiplet                                                                                                                 | λ(Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $E_i$ (cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $E_t$ (cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A_{ki}(10^8 \mathrm{s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f.k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S (at.u.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | log gf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | лсси-<br>гасу                                          | Source                                                  |
| 1 s 2 s - 1 s 2 p | <sup>3</sup> S - <sup>3</sup> P°                                                                                          | 319.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [53847700]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | в                                                      | 5                                                       |
|                   |                                                                                                                           | [272.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [53901100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в                                                      | 5                                                       |
|                   |                                                                                                                           | [398.9]<br>[426.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [53534300]<br>[53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [53785000]<br>[53768700]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.31<br>3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.511<br>-1.982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B<br>B                                                 | 5<br>5                                                  |
|                   | 2- 1-0                                                                                                                    | [+20.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [00003000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [00100100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | -                                                       |
|                   | "S - 'P <sup>o</sup>                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [194.9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [54047400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                                                      | 5                                                       |
|                   | 'S - 'P°                                                                                                                  | [384.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [53787200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [54047400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                      | 5                                                       |
| 1 s 2 s - 1 s 3 p | <sup>3</sup> S - <sup>3</sup> P <sup>o</sup>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [10.038]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [63496000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.08(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | в                                                      | 4                                                       |
|                   | 16_1po                                                                                                                    | [10.221]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53787200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [63570800]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 75(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в                                                      | 4                                                       |
|                   |                                                                                                                           | [10.221]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [03101200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [00010000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | -                                                       |
| 1s2s-1s4p         | "S – "P"                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [7.4924]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [66881100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                      | 4                                                       |
|                   | <sup>1</sup> S - <sup>1</sup> P <sup>o</sup>                                                                              | [7.6191]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53787200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [66912100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.4(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                                      | 4                                                       |
| 1s2s-1s5p         | <sup>3</sup> S - <sup>3</sup> P°                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [6.7073]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53534300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [68443500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.9(-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | в                                                      | 4                                                       |
|                   | is ipo                                                                                                                    | [6.8157]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53787200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [68459300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.1(-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в                                                      | 4                                                       |
|                   |                                                                                                                           | [0.0131]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [00101200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [00403000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1(1 ₽)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
| 1s2p-1s3s         | °P° - °S                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [10.371]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53785000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [63426900]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                      | 4                                                       |
|                   | <sup>1</sup> P° - <sup>1</sup> S                                                                                          | [10.586]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [54047400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [63493700]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                      | 4                                                       |
| 1s2p-1s3d         | <sup>3</sup> P° - <sup>3</sup> D                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C+                                                     | interj                                                  |
|                   | <sup>1</sup> P° - <sup>1</sup> D                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C+                                                     | interp                                                  |
| 1.9. 1.4.         | 3p0 _ 3g                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
| 152p-1848         | r - 5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [7.6527]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53785000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [66852300]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3(~4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ľ                                                      | 4                                                       |
|                   | 'P° - 'S                                                                                                                  | [7.7930]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [54047400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [66879400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4(-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                      | 4                                                       |
| 1s2p-1s4d         | <sup>3</sup> P <sup>o</sup> - <sup>3</sup> D                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                      | 6                                                       |
|                   | <sup>1</sup> P° - <sup>1</sup> D                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                      | 6                                                       |
| 1s2p-1s5s         | <sup>3</sup> P° - <sup>3</sup> S                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           | [6 R2RR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [53785000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [68428900]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.1(-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | с                                                      | 4                                                       |
|                   | ino in                                                                                                                    | [0.0400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [60440500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 24-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _2 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | A                                                       |
|                   | ·P~ - 'S                                                                                                                  | [0.9468]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [54047400]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [08442500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2(-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | 4                                                       |
| 1 s 3 s - 1 s 3 p | <sup>3</sup> S - <sup>3</sup> P <sup>o</sup>                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
|                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                      | 4                                                       |
|                   | 'S - 'P'                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                      | 4                                                       |
| 1s3s-1s4p         | <sup>3</sup> S - <sup>3</sup> P <sup>o</sup>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                         |
| -                 |                                                                                                                           | [28.950]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [63426900]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [66881100]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07(+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | в                                                      | 4                                                       |
|                   | втау<br>1s2s-1s2p<br>1s2s-1s3p<br>1s2s-1s4p<br>1s2s-1s5p<br>1s2p-1s3d<br>1s2p-1s4d<br>1s2p-1s4d<br>1s2p-1s5s<br>1s3s-1s4p | array       Multiplet $1s 2s - 1s 2p$ ${}^{3}S - {}^{3}P^{\circ}$ $1s 2s - 1s 2p$ ${}^{3}S - {}^{1}P^{\circ}$ $1s 2s - 1s 3p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 2s - 1s 3p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 2s - 1s 4p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 2s - 1s 4p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 2s - 1s 5p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 2p - 1s 3s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 3d$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 4s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 4s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 5s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 5s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 5s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 2p - 1s 5s$ ${}^{1}P^{\circ} - {}^{1}S$ $1s 3s - 1s 3p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 3s - 1s 3p$ ${}^{1}S - {}^{1}P^{\circ}$ $1s 3s - 1s 4p$ ${}^{1}S - {}^{1}P^{\circ}$ | array         Multiplet $A(A)$ $1s 2s - 1s 2p$ $^{3}S - ^{3}P^{\circ}$ $319.1$ $1s 2s - 1s 2p$ $^{3}S - ^{3}P^{\circ}$ $[272.6]$ $^{3}S - ^{1}P^{\circ}$ $[194.9]$ $1s - ^{1}P^{\circ}$ $[10.038]$ $1s - ^{1}P^{\circ}$ $[384.3]$ $1s - ^{1}P^{\circ}$ $[10.038]$ $1s - ^{1}P^{\circ}$ $[10.038]$ $1s - ^{1}P^{\circ}$ $[10.021]$ $1s - ^{1}P^{\circ}$ $[10.221]$ $1s - ^{1}P^{\circ}$ $[10.211]$ $1s - ^{1}P^{\circ}$ $[10.221]$ $1s - ^{1}P^{\circ}$ $[10.211]$ $1s - ^{1}P^{\circ}$ $[10.211]$ $1s - ^{1}P^{\circ}$ $[6.7073]$ $1s - ^{1}P^{\circ}$ $[6.8157]$ $1s - ^{1}P^{\circ} - ^{1}S$ $[10.371]$ $1P^{\circ} - ^{1}S$ $[10.586]$ $1s - ^{1}P^{\circ} - ^{1}D$ $[10.586]$ $1s - ^{1}P^{\circ} - ^{1}S$ $[7.6527]$ $1s - ^{1}P^{\circ} - ^{1}S$ $[7.7930]$ $1s - ^{1}P^{\circ} - ^{1}S$ $[6.8288]$ $1s - ^{1}P^{\circ} - ^{1}S$ $[6.9468]$ $1s - ^{1}P^{\circ} - ^{1}S$ | array         Matuplet         X(A) $E_{c}$ (cm $^{-1}$ )           1s 2s - 1s 2p         "S - "P°         319.1         [53534300]           1s 2s - 1s 2p         "S - "P°         319.1         [53534300]           'S - "P°         [194.9]         [53534300]           'S - "P°         [384.3]         [53787200]           1s 2s - 1s 3p         'S - "P°         [10.038]         [53534300]           'S - "P°         [10.211]         [53787200]           1s 2s - 1s 4p         "S - "P°         [10.213]         [53787200]           1s 2s - 1s 5p         "S - "P°         [10.214]         [53534300]           'S - "P°         [10.213]         [53787200]         [53787200]           1s 2s - 1s 5p         "S - "P°         [7.6191]         [53787200]           1s 2s - 1s 5p         'S - "P°         [6.8157]         [53785000]           1s 2p - 1s 3s         "P° - "S         [10.371]         [53785000]           1s 2p - 1s 4d         "P° - "S         [7.6527]         [53785000]           1s 2p - 1s 4s         "P° - "S         [7.6527]         [53785000]           1s 2p - 1s 4d         "P° - "S         [6.8288]         [53785000]           1s 2p - 1s 5         "P° - "S | array         Multiplet $A(A)$ $F_{c}$ (cm <sup>-1</sup> ) $F_{c}$ (cm <sup>-1</sup> ) $1s_{2s-1s_2p}$ $S = {}^{1}P^{\circ}$ $319.1$ [53534300]         [53785000] $^{1}S = {}^{1}P^{\circ}$ [272.6]         [53534300]         [53768700] $^{1}S = {}^{1}P^{\circ}$ [194.9]         [53534300]         [54047400] $1s_{2s-1s_3p}$ $^{1}S = {}^{1}P^{\circ}$ [10.038]         [53534300]         [64047400] $1s_{2s-1s_4p}$ $^{1}S = {}^{1}P^{\circ}$ [10.038]         [53534300]         [6484000] $1s_{2s-1s_4p}$ $^{1}S = {}^{1}P^{\circ}$ [10.221]         [53787200]         [66881100] $1s_{2s-1s_5p}$ $^{1}S = {}^{1}P^{\circ}$ [7.4924]         [53534300]         [66881100] $1s_{2s-1s_5p}$ $^{1}S = {}^{1}P^{\circ}$ [7.6191]         [53787200]         [66881300] $1s_{2p-1s_3s}$ $^{1}P^{\circ} - {}^{1}S$ [10.371]         [53785000]         [63443500] $1s_{2p-1s_4s}$ $^{1}P^{\circ} - {}^{1}S$ [10.371]         [53785000]         [66852300] $1s_{2p-1s_4s}$ $^{1}P^{\circ} - {}^{1}S$ [7.6527]         [53785000]         [66852300] $1s_{2p-1s_4s}$ <td< td=""><td>array         Multiplet         <math>A(A)</math> <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})         <math>F_{a}</math> (cm <math>^{-1})</math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></td><td>wray         Multiplet         A(A)         E, (cm ')         <math>P_{A}</math> (cm ')         <math>P_{C}</math> <math>P_{C}</math>           1x 2x - 1x 2p         'S - 'P°         319.1         [53534300]         [53785000]         3         5           1x 2x - 1x 2p         'S - 'P°         [194.9]         [53534300]         [53785000]         3         3           'S - 'P°         [194.9]         [53534300]         [54047400]         3         3           1x 2x - 1x 3p         'S - 'P°         [10.038]         [53534300]         [63496000]         3         3           1x 2x - 1x 3p         'S - 'P°         [10.038]         [53534300]         [66496000]         3         3           1x 2x - 1x 4p         'S - 'P°         [10.221]         [53787200]         [66912100]         1         3           1x 2x - 1x 5p         'S - 'P°         [10.221]         [53787200]         [66981100]         3         3           1x 2x - 1x 5p         'S - 'P°         [7.6191]         [53787200]         [668443500]         3         3           1x 2p - 1x 3x         'P° - 'S         [10.371]         [53785000]         [63426900]         3         3           1x 2p - 1x 3d         'P° - 'D         [10.586]         [54047400]&lt;</td><td>wray         Multiplet         A(A)         <math>k</math> (cm ')         <math>k_i</math> (m ')         <math>k_i</math> <math>\mu_i</math> <math>\lambda_i(10^{-1})^{-1}</math> <math>1_22_{i-1} x_2p</math>         'S - 'P<sup>0</sup> <math>319.1</math>         [53534300]         [5391100]         3         5         <math>1.4.7</math> <math>[396.9]</math>         [53534300]         [5393100]         3         3         3         3.82           <math>S - 'P^0</math>         [194.9]         [53534300]         [54047400]         3         3         3.46           <math>1_22_{i-1} x_3p</math>         'S - 'P<sup>0</sup>         [10.038]         [53787200]         [6496000]         3         3         4.96           <math>1_22_{i-1} x_4p</math>         'S - 'P<sup>0</sup>         [10.038]         [53534300]         [669496000]         3         3         3.6(+4)           <math>1_22_{i-1} x_4p</math>         'S - 'P<sup>0</sup>         [10.211]         [53787200]         [6691100]         3         3         3.6(+4)           <math>1_2_{i-1} x_4p</math>         'S - 'P<sup>0</sup>         [1.4724]         [53534300]         [66843500]         3         3         1.8(+4)           <math>1_2_{i-1} x_3p</math>         'S - 'P<sup>0</sup>         [1.3711]         [53787200]         [66845300]         3         3         1.8(+4)           <math>1_2_{i-1} x_3 d</math>         'P<sup>0</sup> - 'S         [10.371</td><td>Multiplet         M(A)         <math>L</math> (cm<sup>-1</sup>)         <math>E_1</math> (cm<sup>-1</sup>)         <math>E_1</math> <math>A_1(0^{-1})^{-1}</math> <math>I_A</math> <math>1x^2 - 1x^2 p</math> <math>S - 1^{po}</math> <math>319.1</math>         [53534300]         [53947700]         <math>S</math> <math>S</math> <math>14.3</math> <math>0.0409</math> <math>1x^2 - 1x^2 p</math> <math>S - 1^{po}</math> <math>[275.6]</math> <math>[53534300]</math> <math>[53765700]</math> <math>S</math> <math>S</math> <math>14.31</math> <math>0.00337</math> <math>S - 1^{po}</math> <math>[10.4.9]</math> <math>[53534300]</math> <math>[54047400]</math> <math>I</math> <math>S</math> <math>S</math> <math>0.00337</math> <math>1x^2 - 1x^3 p</math> <math>S - 1^{po}</math> <math>[10.038]</math> <math>[535787200]</math> <math>[54047400]</math> <math>I</math> <math>S</math> <math>0.0329</math> <math>1x^2 - 1x^3 p</math> <math>S - 1^{po}</math> <math>[10.038]</math> <math>[535787200]</math> <math>[64047400]</math> <math>I</math> <math>S</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math> <math>I</math></td><td>Makipel         A(A)         <math>E_{cm}</math> <math>A_{c}(m^{-1})</math> <math>E_{c}</math> <math>E_{c}</math> <math>A_{c}(0.5^{-1})</math> <math>f_{c}</math>         SALD           1:2:-1:2p         S = 'p°         <math>3/9/t</math>         (553534300)         [53591700]         3         5         1.4.7         0.0409         0.129           1:2:-1:2p         [27:6]         [553534300]         [5578500]         3         5         1.4.7         0.0273         0.0135         0.0405           [29:-1:4]         [19:4.9]         [53534300]         [5508700]         3         3         3.4.60         0.00197         0.00379           [1:2:-1:3:2]         S = 'P°         [10:0.38]         [53534300]         [63496000]         3         3         4.966         0.0329         0.0417           [1:2:-1:4:4]         S = 'P°         [10:0.38]         [53534300]         [6489000]         3         3         3.6(+4)         0.122         0.0121           [1:2:-1:4:4]         S = 'P°         [10:0.38]         [53534300]         [66881100]         3         3         3.6(+4)         0.022         0.022           [1:2:-1:4:4]         S = 'P°         [1:4:2:4]         [53534300]         [6688100]         3         3         1.8(+4)         0.088<td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td><td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></td></td<> | array         Multiplet $A(A)$ $F_{a}$ (cm $^{-1})         F_{a} (cm ^{-1})                 Multiplet         A(A)         E, (cm ') $P_{A}$ (cm ') $P_{C}$ $P_{C}$ 1x 2x - 1x 2p         'S - 'P°         319.1         [53534300]         [53785000]         3         5           1x 2x - 1x 2p         'S - 'P°         [194.9]         [53534300]         [53785000]         3         3           'S - 'P°         [194.9]         [53534300]         [54047400]         3         3           1x 2x - 1x 3p         'S - 'P°         [10.038]         [53534300]         [63496000]         3         3           1x 2x - 1x 3p         'S - 'P°         [10.038]         [53534300]         [66496000]         3         3           1x 2x - 1x 4p         'S - 'P°         [10.221]         [53787200]         [66912100]         1         3           1x 2x - 1x 5p         'S - 'P°         [10.221]         [53787200]         [66981100]         3         3           1x 2x - 1x 5p         'S - 'P°         [7.6191]         [53787200]         [668443500]         3         3           1x 2p - 1x 3x         'P° - 'S         [10.371]         [53785000]         [63426900]         3         3           1x 2p - 1x 3d         'P° - 'D         [10.586]         [54047400]< | wray         Multiplet         A(A) $k$ (cm ') $k_i$ (m ') $k_i$ $\mu_i$ $\lambda_i(10^{-1})^{-1}$ $1_22_{i-1} x_2p$ 'S - 'P <sup>0</sup> $319.1$ [53534300]         [5391100]         3         5 $1.4.7$ $[396.9]$ [53534300]         [5393100]         3         3         3         3.82 $S - 'P^0$ [194.9]         [53534300]         [54047400]         3         3         3.46 $1_22_{i-1} x_3p$ 'S - 'P <sup>0</sup> [10.038]         [53787200]         [6496000]         3         3         4.96 $1_22_{i-1} x_4p$ 'S - 'P <sup>0</sup> [10.038]         [53534300]         [669496000]         3         3         3.6(+4) $1_22_{i-1} x_4p$ 'S - 'P <sup>0</sup> [10.211]         [53787200]         [6691100]         3         3         3.6(+4) $1_2_{i-1} x_4p$ 'S - 'P <sup>0</sup> [1.4724]         [53534300]         [66843500]         3         3         1.8(+4) $1_2_{i-1} x_3p$ 'S - 'P <sup>0</sup> [1.3711]         [53787200]         [66845300]         3         3         1.8(+4) $1_2_{i-1} x_3 d$ 'P <sup>0</sup> - 'S         [10.371 | Multiplet         M(A) $L$ (cm <sup>-1</sup> ) $E_1$ (cm <sup>-1</sup> ) $E_1$ $A_1(0^{-1})^{-1}$ $I_A$ $1x^2 - 1x^2 p$ $S - 1^{po}$ $319.1$ [53534300]         [53947700] $S$ $S$ $14.3$ $0.0409$ $1x^2 - 1x^2 p$ $S - 1^{po}$ $[275.6]$ $[53534300]$ $[53765700]$ $S$ $S$ $14.31$ $0.00337$ $S - 1^{po}$ $[10.4.9]$ $[53534300]$ $[54047400]$ $I$ $S$ $S$ $0.00337$ $1x^2 - 1x^3 p$ $S - 1^{po}$ $[10.038]$ $[535787200]$ $[54047400]$ $I$ $S$ $0.0329$ $1x^2 - 1x^3 p$ $S - 1^{po}$ $[10.038]$ $[535787200]$ $[64047400]$ $I$ $S$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ | Makipel         A(A) $E_{cm}$ $A_{c}(m^{-1})$ $E_{c}$ $E_{c}$ $A_{c}(0.5^{-1})$ $f_{c}$ SALD           1:2:-1:2p         S = 'p° $3/9/t$ (553534300)         [53591700]         3         5         1.4.7         0.0409         0.129           1:2:-1:2p         [27:6]         [553534300]         [5578500]         3         5         1.4.7         0.0273         0.0135         0.0405           [29:-1:4]         [19:4.9]         [53534300]         [5508700]         3         3         3.4.60         0.00197         0.00379           [1:2:-1:3:2]         S = 'P°         [10:0.38]         [53534300]         [63496000]         3         3         4.966         0.0329         0.0417           [1:2:-1:4:4]         S = 'P°         [10:0.38]         [53534300]         [6489000]         3         3         3.6(+4)         0.122         0.0121           [1:2:-1:4:4]         S = 'P°         [10:0.38]         [53534300]         [66881100]         3         3         3.6(+4)         0.022         0.022           [1:2:-1:4:4]         S = 'P°         [1:4:2:4]         [53534300]         [6688100]         3         3         1.8(+4)         0.088 <td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

# FUHR ET AL.

etter .

farra a

Fe xxv: Allowed transitions---Continued

| No.         | Transition<br>array | Multiplet                                    | λ(Å)     | $E_i$ (cm <sup>-1</sup> ) | $E_k (\mathrm{cm}^{-1})$ | <b>g</b> i | g. | $A_{ki}(10^{9} { m s}^{-1})$ | fu            | .S (at.u.) | log gf | Aceu-<br>racy | Source |
|-------------|---------------------|----------------------------------------------|----------|---------------------------|--------------------------|------------|----|------------------------------|---------------|------------|--------|---------------|--------|
| 42.         |                     | <sup>1</sup> S - <sup>1</sup> P <sup>0</sup> | [29.253] | [63493700]                | [66912100]               | 1          | 3  | 1.04(+4)                     | 0.400         | 0.0385     | -0.398 | B             | 4      |
| 43.         | ls3s-ls5p           | <sup>3</sup> S – <sup>3</sup> Ро             |          |                           |                          |            |    |                              |               |            |        |               |        |
|             |                     |                                              | [19.934] | [63426900]                | [68443500]               | 3          | 3  | 5700                         | 0.034         | 0.0067     | -0.99  | B             | 4      |
| 44.         |                     | 'S – 'P°                                     | [20.139] | [63493700]                | [68459300]               | ł          | 3  | 5650                         | 0.103         | 0.00683    | -0.987 | B             | 4      |
| 45.         | 1s3p-1s3d           | <sup>3</sup> P° - <sup>3</sup> D             |          |                           |                          | 9          | 15 |                              | 0.012         |            | -0.97  | D             | interp |
| 46.         | 1s3p-1s4s           | <sup>3</sup> P° - <sup>3</sup> S             |          |                           |                          |            |    |                              |               |            |        |               |        |
|             |                     |                                              | [29.795] | [63496000]                | [66852300]               | 3          | 3  | 2500                         | 0.033         | 0.0097     | -1.00  | в             | 4      |
| 47.         |                     | <sup>1</sup> P <sup>o</sup> - <sup>1</sup> S | [30.224] | [63570 <b>8</b> 00]       | [66879400]               | 3          | 1  | 7400                         | 0.034         | 0.010      | 0.99   | в             | 4      |
| <b>48</b> . | 1s3p-1s4d           | <sup>3</sup> P° - <sup>3</sup> D             |          |                           |                          | 9          | 15 |                              | 0.60          |            | 0.73   | С             | 6      |
| 49.         |                     | <sup>1</sup> P° - <sup>1</sup> D             |          |                           |                          | 3          | 5  |                              | 0.62          |            | 0.27   | с             | 6      |
| 50.         | 1s3p-1s5s           | <sup>3</sup> P° - <sup>3</sup> S             |          |                           |                          |            |    |                              |               |            |        |               |        |
|             |                     |                                              | [20.272] | [63496000]                | [68428900]               | 3          | 3  | 1200                         | 0.0073        | 0.0015     | -1.66  | с             | 4      |
| 51.         |                     | <sup>1</sup> P° - <sup>1</sup> S             | [20.527] | [63570800]                | [68442500]               | 3          | 1  | 3700                         | 0.0077        | 0.0016     | ~1.64  | с             | 4      |
| 52.         | 1s3d-1s3p           | <sup>1</sup> D - <sup>1</sup> P°             |          |                           |                          | 5          | 3  |                              | 0.0020        |            | ~2.00  | E             | 6      |
| 53.         | 1s3d~1s4p           | <sup>3</sup> D - <sup>3</sup> P <sup>o</sup> |          |                           |                          | 15         | 9  |                              | 0.012         |            | -0.74  | с             | 6      |
| 54.         |                     | 'D - 'P°                                     |          |                           |                          | 5          | 3  |                              | 0.011         |            | -1.26  | с             | 6      |
| 55.         | 1s4s-1s4p           | <sup>3</sup> S - <sup>3</sup> P <sup>o</sup> |          |                           |                          |            |    |                              |               |            |        |               |        |
|             | v                   |                                              |          |                           |                          | 3          | 3  |                              | 0.023         |            | -1.16  | Е             | 4      |
| 56.         |                     | <sup>1</sup> S - <sup>1</sup> P°             |          |                           |                          | 1          | 3  |                              | <b>0</b> .078 |            | -1.11  | D             | 4      |
| 57.         | 1s4s-1s5p           | <sup>3</sup> S - <sup>3</sup> P <sup>o</sup> |          |                           |                          |            |    |                              |               |            |        |               |        |
|             |                     |                                              | [62.846] | [66852300]                | [68443500]               | 3          | 3  | 2530                         | 0.150         | 0.0931     | 0.347  | в             | 4      |
| 58.         |                     | <sup>1</sup> S ~ <sup>1</sup> P°             | [63.295] | [66879400]                | [68459300]               | 1          | 3  | 2480                         | 0.446         | 0.0929     | -0.351 | в             | 4      |
| 59.         | 1s4p-1s4d           | <sup>3</sup> P° - <sup>3</sup> D             |          |                           |                          | 9          | 15 |                              | 0.019         |            | -0.77  | D             | 6      |
| 60.         | 1s4p-1s5s           | <sup>3</sup> P° - <sup>3</sup> S             |          |                           |                          |            |    |                              |               |            | 1      |               |        |
|             |                     |                                              | [64.608] | [66881100]                | [68428900]               | 3          | 3  | 850                          | 0.053         | 0.034      | -0.80  | B             | 4      |
| 61.         |                     | 'P° - 'S                                     | [65.342] | [66912100]                | [68442500]               | 3          | 1  | 2600                         | 0.055         | 0.035      | -0.78  | в             | 4      |
| 62.         | 1s4d-1s4p           | <sup>1</sup> D - <sup>1</sup> P <sup>o</sup> |          |                           |                          | 5          | 3  |                              | 0.0031        |            | 1.81   | Е             | 6      |
| 63.         | 1s4d-1s4f           | $^{3}D - ^{3}F^{o}$                          |          |                           |                          | 15         | 21 |                              | 7.8(-4)       |            | -1.93  | Е             | 6      |
| 64.         | 1s4d-1s5f           | <sup>3</sup> D - <sup>3</sup> F <sup>o</sup> |          |                           |                          | 15         | 21 |                              | 0.89          |            | 1.13   | в             | 8      |
| 65.         |                     | <sup>1</sup> D - <sup>1</sup> F°             |          |                           |                          | 5          | 7  |                              | 0.89          |            | 0.65   | В             | 8      |
| 66.         | 1s4f-1s4d           | <sup>1</sup> F <sup>o</sup> - <sup>1</sup> D |          |                           |                          | 7          | 5  |                              | 4.2(4)        |            | -2.53  | E             | 6      |
| 67.         | 1s4f-1s5d           | <sup>3</sup> F° - <sup>3</sup> D             |          |                           |                          | 21         | 15 |                              | 0.0089        |            | -0.73  | C             | 8      |
| 68.         |                     | <sup>1</sup> F° – <sup>1</sup> D             |          |                           |                          | 7          | 5  |                              | 0.0089        |            | -1.21  | c             | 8      |

#### TRANSITION PROBABILITIES FOR IRON

Fe XXV: Allowed transitions----Continued

| No. | Transition<br>array | Multiplet                        | λ(Å) | $E_i$ (cm <sup>-1</sup> ) | E4 (cm <sup>-1</sup> ) | <b>g</b> i | g. | $A_{ki}(10^8 { m s}^{-1})$ | fik   | S (at.u.) | log gf | Accu-<br>racy | Source |
|-----|---------------------|----------------------------------|------|---------------------------|------------------------|------------|----|----------------------------|-------|-----------|--------|---------------|--------|
| 69. | 1s5s-1s5p           | <sup>3</sup> S - <sup>3</sup> P° |      |                           |                        |            |    |                            |       |           |        |               |        |
|     |                     | :                                |      |                           |                        | 3          | 3  |                            | 0.029 |           | -1.06  | Е             | 4      |
| 70. |                     | <sup>1</sup> S - <sup>1</sup> P° |      |                           |                        | 1          | 3  |                            | 0.099 |           | 1.00   | E             | 4      |

\* The number in parentheses following the tabulated value indicates the power of ten by which this value has to be multiplied.

### Fe xxvi

Ground State

**Ionization** Potential

 $1s {}^{2}S_{1/2}$ [9277.2] eV = [74827600] cm<sup>-1</sup>

#### **Allowed Transitions**

The transition probability data for this hydrogen-like ion may be obtained by scaling the data available for the hydrogen spectrum (see NSRDS-NBS 4 [1]) according to

$$\begin{split} f_{\rm Fe \ XXVI} &= f_{\rm Hydrogen}, \\ A_{\rm Fe \ XXVI} &= (26)^4 \ A_{\rm Hydrogen}, \\ S_{\rm Fe \ XXVI} &= (26)^{-2} \ S_{\rm Hydrogen}. \end{split}$$

An uncertainty of a few percent arises from the neglect of relativistic effects. Recent theoretical studies [2,3] indicate that relativistic effects on line strengths for this ion are generally in this range, with the relativistic value usually slightly below the non-relativistic one, although in certain transitions where n increases and l decreases the

line strength increases. Younger and Weiss [3] have calculated exact Dirac relativistic hydrogenic line strengths for a number of transitions of interest along the hydrogen isoelectronic sequence.

#### References

- Wiese, W. L., Smith, M. W., and Glennon, B. M., Atomic Transition Probabilities---Hydrogen through Neon (A Critical Data Compilation), Vol. I, 157 pp., Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 4 (May 1966).
- [2] Garstang, R. H., Topics in Modern Physics (A Tribute to Edward U. Condon), 153-167, Ed. Brittin, W. E., and Odabasi, H., Colorado Associated Univ. Press, Boulder, Colorado (1971).
- [3] Younger, S. M., and Weiss, A. W., J. Res. Nat. Bur. Stand., Sect. A 79, 629 (1975).
ORNL-6089/V4

## INTERNAL DISTRIBUTION

| 1-25.  | C. F. Barnett     | 64-88. | R. A. Phaneuf              |
|--------|-------------------|--------|----------------------------|
| 26.    | L. A. Berry       | 89.    | I. A. Sellin               |
| 27.    | E. C. Crume       | 90.    | W. L. Stirling             |
| 28.    | S. Datz           | 91.    | C. C. Tsai                 |
| 29.    | R. A. Dory        | 92.    | J. H. Whealton             |
| 30.    | D. C. Gregory     | 93.    | J. B. Wilgen               |
| 31.    | P. M. Griffin     | 94.    | Central Research Library   |
| 32.    | H. H. Haselton    | 95.    | Document Reference Section |
| 33.    | C. C. Havener     | 96-97. | Laboratory Records         |
| 34.    | S. Hiroe          | 98.    | Laboratory Records, RC     |
| 35.    | H. T. Hunter      | 99.    | ORNL Patent Section        |
| 36.    | R. C. Isler       | 100.   | Fusion Energy Div. Library |
| 37-61. | M. I. Kirkpatrick | 102.   | Fusion Engineering Design  |
| 62.    | H. F. Krause      |        | Center                     |
| 63.    | F. W. Meyer       |        |                            |

## EXTERNAL DISTRIBUTION

- 103. Office of Assistant Manager, Energy Research and Development, DOE-ORO
- 104. Dr. V. A. Abramov, Institute Atommoi Energii, I. V. Kurchatova, 46 Ulitsa Kurchatova, Moscow D-182,, U.S.S.R.
- Dr. I. Alexeff, Dept. Electrical Engineering, Ferris Hall, University of Tennessee, Knoxville, TN 37996-2100
- 106. Dr. M. A. Ali, Chemistry Department, Howard University, Washington, DC 20059
- 107. Dr. L. W. Anderson, Department of Physics, University of Wisconsin, Madison, WI 53706
- 108. Dr. K. Ando, Atomic Process Laboratory, Rikagaku Kenkyusho, The Institute of Phys. & Chem. Res., Wako-Shi, Saitama, 351, Japan
- 109. Prof. K. L. Andrew, Department of Physics, Purdue Univ., Lafayette, IN 47907
- 110. Atomic Energy Levels Data Center, Attn: Mrs. Arlene F. Musgrove, Physics A-155, National Bureau of Standards, Gaithersburg, MD 20899
- 111. Dr. E. H. Avrett, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
- 112. Dr. W. Bauer, Sandia Laboratories, Dept. 8340, Livermore, CA 94550
- 113. Dr. M. Bacal, Laboratoire P.M.I., Ecole Polytechnique, 91128 Palaiseau Cedex, France
- 114. Dr. A. Barany, Inst. of Theoretical Physics, Uppsala University, Thunbergsv. 3, S-752 38 Uppsala, Sweden
- 115. Dr. J. F. Baur, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138

- 116. Prof. G. Bekefi, Department of Physics, Room 36-213, Massachusetts Inst. of Techn., Cambridge, MA 02139
- 117. Dr. H. Behrens, Fachinformationszentrum, Energie Physik Mathematick GMBH, 7514 Eggenstein-Leopoldshafen 2, Federal Republic Germany
- 118. Dr. K. Behringer, Jet Joint Undertaking, Culham Laboratory, Abingdon, OXON. OX14 3DB, England
- 119. Dr. R. Behrisch, Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-8046 Garching, B. Munchen, West Germany
- 120. Dr. R. D. Bengtson, Department of Physics, University of Texas, Austin, TX 78712
- Dr. D. Berenyi, Inst. of Nuclear Research, The Hungarian Academy of Sci., H-4001 Debrecen PF. 51, 18/C BEM TER, Hungary
- 122. Prof. R. S. Berry, Department of Chemistry, The Univ. of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
- 123. Dr. P. J. Bertoncini, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- 124. Biblioteca Att. Clelia De Palo, ENEA-Centro Ricerche, C.P. 65, 00044 Frascati, Roma, Italy
- 125. Dr. S. L. Bliman, Centre D'etudes Nucleaires, De Grenoble, 85 X Avenue Des Martyrs, F-38041 Grenoble, Cedex, France
- 126. Dr. R. Boxman, School of Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
- 127. Dr. J. W. Brault, National Solar Observatory, P.O. Box 26732, Tucson, AZ 85726
- 128. Dr. F. Bresnock, 36 Milltown Road, New Fairfield, CT 06810
- 129. Dr. F. Brouillard, Institut De Physique, Chemin Du Cyclotron. 2, Universite De Louvain, B 1348 Louvain-La-Neuve, Belgium
- 130. Dr. R. Bruch, Department of Physics, Univ. Nevada-Reno, Reno, NV 89557-0058
- 131. Dr. K. H. Burrell, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- Dr. J. Callaway, Dept. of Phys. and Astronomy, Louisiana State University, Baton Rouge, LA 70803
- 133. Dr. J. D. Callen, Nuclear Engineering Department, ERB, 1500 Johnson Drive, University of Wisconsin, Madison, WI 053706
- Dr. S. Chakrabarti, Space Sciences Laboratory, Univ. California, Berkeley, Berkeley, CA 94720
- 135. Dr. F. Chang, Astronaut Office/Code CB, NASA Johnson Space Center, Houston, TX 77058
- 136. Dr. C. K. Choi, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907
- 137. Dr. Y. P. Chong, Lawrence Livermore National Lab., P. O. Box 808, MS L-626, Livermore, CA 94550
- 138. Dr. A. Chutjian, Jet Propulsion Laboratory, Mail Stop 183-601, California Inst. of Techn., 4800 Oak Grove Drive, Pasadena, CA 91109
- 139. Dr. E. J. Clothiaux, Department of Physics, Auburn University, Al 36849-3501
- Dr. F. H. Coensgen, Radiation Laboratory, Lawrence Livermore National Lab., P.O. Box 808, Livermore, CA 94550

- 141. Dr. S. A. Cohen, Plasma Physics Laboratory, Forrestal Campus, Princeton University, Princeton, NJ 08540
- 142. Dr. J. Comly, LANL, Group X-7, MS B-257, Los Alamos, NM 87545
- 143. Prof. R. W. Conn, UCLA, 6291 Boelter Hall, Los Angeles, CA 90024
- 144. Dr. J. G. Conway, MMRD Bldg. 70A-1159, 1 Cyclotron Road, Lawrence Berkeley Laboratory, Berkeley, CA 94720
- 145. Dr. J. L. Cook, AAEC Research Establishment, Physics Division, AAEC - Lucas Heights, Sutherland 2232, N.S.W., Australia
- 146. Dr. D. H. Crandall, ER-542, G-216 GTN, Office of Fusion Energy, U.S. Dept. of Energy, Washington, DC 20545
- 147. Dr. R. Danford, Intl. Research & Evaluation, Attn: Input Processing Director, 21098 IRE Control Center, Eagan, MN 55121
- 148. Dr. R. U. Datla, Bldg. 221, MS A-176, National Bureau of Standards, Gaithersburg, MD 20899
- 149. Dr. H. Davis, LANL, P. O. Box 1663, MS E-526, Los Alamos, NM 87545
- 150. Dr. J. Davis, Code 4720, Plasma Radiation Branch, Naval Research Laboratory, Washington, DC 20375
- 151. Dr. F. J. De Heer, FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
- 152. Prof. J. L. Delcroix, Lab. Physique Des Plasmas, Faculte Des Sci. D'Orsay, Batiment 212, F-91400 Orsay, France
- 153. Dr. J. J. Dorning, Department of NEEP, Reactor Facility, University of Virginia, Charlottesville, VA 22901
- 154. Dr. J. R. Drake, Royal Institute of Technology, Division Plasma Physics, Teknikringen 31, S-100 44, Stockholm 70, Sweden
- 155. Dr. H. W. Drawin, Centre D'Etudes Nucleaires, De Fontenay-AuxRoses, DRFC - SCP, B. P. No 6, F-92260 Fontenay-Aux-Roses, France
- 156. Dr. P. D. Dumont, Universite De Liege, Faculte Des Sciences, Inst. De Phys. Nucl. Experiment., Sart Tilman B - 4000 Liege 1, Belgium
- 157. Dr. G. H. Dunn, JILA, CAmpus Box 440, University of Colorado, Boulder, CO 80309
- 158. Dr. W. Eckstein, Max-Planck Institut für Plasmaphysik, 8046 Garching Bei Muchen, West Germany
- 159. Dr. R. C. Elton, Code 4733, Naval Research Lab., Washington, DC 20375
- 160. Dr. E. S. Ensberg, GA Technologies Inc., P.O. Box 85608, San Diego, CA 92138
- Dr. B. Feinberg, Lawrence Berkeley Laboratory, University of California, MS 71259, Berkeley, CA 94720
- 162. Dr. U. Feldman, Code 4174, Naval Research Lab., Washington, DC 20375
- 163. Dr. M. Fink, Rlm Bldg. 10.202, Department of Physics, University of Texas, Austin, TX 78712
- 164. Dr. C. F. Fischer, Department of Computer Science, Box 6035, Station B, Vanderbilt University, Nashville, TN 37235
- 165. Dr. R. K. Fisher, GA Technologies, Inc., P. O. Box 85608, L-338, San Diego, CA 92138
- 166. Dr. T. K. Fowler, Lawrence Livermore Laboratory, P. O. Box 5511, Mail Code L-640, Livermore, CA 94550

- 167. Dr. A. Fukuda, Quantumtechnology Division, Electrotechnical Laboratory, 1-1-4, Umezono, Sakura-Mura, Niihari-Gun, Ibaraki, Japan
- 168. Dr. G. Fussmann, Max-Planck Institut für Plasmaphysik (IPP), 8046 Garching bei Munchen, Cermany Abtl. E3
- 169. Dr. J. Gallagher, JILA, University of Colorado, Boulder, CO 80309
- 170. Mrs. B. Garton, Department of Physics, Imperial College of Science & Technology, London S.W. 7, England
- 171. Dr. W.R.S. Garton, Department of Physics, Imperial College of Science & Technology, London S.W. 7, England
- 172. Dr. W. B. Gauster, Division 6248, Sandia National Laboratories, Albuquerque, NM 87185
- 173. Dr. K. W. Gentle, Department of Physics, University of Texas, Austin, TX 78712
- 174. Prof. H. B. Gilbody, Head, Department of Pure & Applied Phys., The Queen's University of Belfast, Belfast BT 7, 1NN, Northern Ireland
- 175. Dr. S. Goldsmith, Department of Physics, Tel-Aviv University, Tel-Aviv, Israel
- 176. Dr. I. N. Golovin, I. V. Kurchatov Institute, Atomic Energy, Ulitsa Kurchatova 46, Moscow 123182, U.S.S.R.
- 177. Dr. W. G. Graham, Physics Department, New University of Ulster, Coleraine BT52 1SA, Northern Ireland
- 178. Dr. E. Greenspan, Atomic Energy Commission, Nuclear Research Centre-Negev, P. O. Box 9001, Beersheva, 84190, Israel
- 179. Dr. H. R. Griem, Dept. of Physics and Astronomy, University of Maryland, College Park, MD 20742
- 180. Dr. D. C. Griffin, Department of Physics, Rollins College, Winter Park, FL 32789
- 181. Dr. R. J. Groebner, Doublet III Program, 13/463, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 182. Dr. R. A. Gross, Department of Applied Physics & Nuclear Engineering, Columbia University, New York, NY 10027
- 183. Dr. G. E. Guest, Applied Microwave Plasma Concepts, 2210 Encinitas Blvd., Suite P, Encinitas, CA 92024
- 184. Dr. A. Haasz, Univ. of Toronto, Inst. for Aerospace Studies, 4925 Dufferin Street, Downsview, Ontario, Canada M3H 5T6
- 185. Dr. H. Hacker, Max Planck Institut für Plasmaphysik, 8046 Garching bei Müenchen, West Germany
- 186. Dr. S. Hagmann, Department of Physics, Kansas State University, Manhattan, KS 66506
- 187. Dr. S. P. Hatchett II, L-477, Lawrence Livermore National Lab., Livermore, CA 94550
- 188. Dr. R. J. Henry, Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803
- 189. Dr. R. A. Hess, Laboratory for Plasma, and Fusion Energy Studies, University of Maryland, College Park, MD 20742
- 190. Dr. K. W. Hill, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 191. Dr. G. Himmel, Ruhr-Universitat Bochum, Experimentalphysik, Lehrstuhl II, Universitatsstr. 150, Postfach 102148, 4630 Bochum 1, West Germany

- 192. Dr. B. Hodge, Fusion Research Center, RLM 11.222, University of Texas, Austin, TX 78712
- 193. Dr. G. R. Hopkins, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 194. Dr. Keh-Ning Huang, Inst. of Atomic & Molecular Sci., Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 107, ROC
- 195. Dr. W. F. Huebner, Group T-4, MS 212, Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545
- 196. Dr. J. G. Hughes, International Atomic Energy Agency, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria
- 197. Dr. R. Hulse, Plasma Physics Laboratory, Princeton Univ., Princeton, NJ 08544
- 198. Dr. A. Hunt, Lawrence Livermore National Lab., P. O. Box 5511, L-637, Livermore, CA 94550
- 199. Institute of Theoretical Astrophys., Librarian, University of Oslo, P. O. Box 1029, Blinderen, N-0315 Oslo 3, Norway
- 200. International Research & Evaluation, Attn: IRE-ITTD Input Processing Dir., 21098 IRE Control Ctr., Eagan, MN 55121
- 201. Dr. Y. Itikawa, Institute of Space and Astronautical Science, 6-1, Komaba 4-Chome, Meguro-Ku, Tokyo 153, Japan
- 202. Dr. V. L. Jacobs, Plasma Physics Division, Code 4720, Naval Research Laboratory, Washington, DC 20375
- 203. Dr. F. C. Jahoda, CTR Division, Los Alamos National Laboratory, P. O. Box 1663, MS F-639, Los Alamos, NM 87545
- 204. Dr. B. C. Johnson, Harvard College Observatory, Cambridge, MA 02138
- 205. Dr. B. M. Johnson, Department of Applied Sci., Brookhaven National Lab., Bldg. 901-A, Tandem, Upton, NY 11973
- 206. Dr. R. R. Johnston, Science Applications, Inc., Suite B-31, 5150 El-Camino Real, Los Altos, CA 94022
- 207. Dr. E. G. Jones, Systems Research Lab., Inc., 2800 Indian Ripple Road, Dayton, OH 45440
- 208. Dr. E. M. Jones, Jet Joint Undertaking, Data Acquisitions Group, Codas Division J2, Abingdon, Oxfordshire OX14 3EA, England
- 209. Dr. K. W. Jones, Brookhaven National Laboratory, Bldg. 901-A, Upton, NY 11973
- 210. Dr. R. A. Jong, Lawrence Livermore Laboratory, P. O. Box 5511, L-637, Livermore, CA 94550
- 211. Dr. E. Kallne, Jet Joint Undertaking, Abingdon, Oxon, OX14 3EA, England
- 212. Dr. T. Kammash, Dept. of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48104
- 213. Dr. T. Kato, Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan
- 214. Dr. K. Katsonis, Lab. Physique Des Plasmas, Faculte Des Sci. D'Orsay, Batiment 212, F-91400 Orsay, France
- 215. Dr. H. P. Kelly, Dept. of Physics, Univ. of Virginia, McCormick Rd., Charlottesville, VA 22901
- 216. Dr. R. A. Kenefick, Dept. of Physics, Texas A&M University, College Station, TX 77843

- 217. Kernforschungszentrum Karlsruhe GMBH, Literaturabteilung, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany
- 218. Dr. H. Kilic, Yale Univ., P.O. Box 2159, New Haven, CT 06520
- 219. Dr. Y.-K. Kim, Bldg. 221, Rm A-267, National Bureau of Standards, Gaithersburg, MD 20899
- 220. Dr. H. Knudsen, Institute of Physics, University of Aarhus, DK-8000, Aarhus C, Denmark
- 221. Dr. K. Kondo, Plasma Physics Laboratory, Kyoto University, Gokashyo Uji, Kyoto, Japan
- 222. Dr. N. Konjevic, Institute of Physics, 11001 Beograd, P. O. Box 57, Yugoslavia
- 223. Dr. W. B. Kunkel, Lawrence Berkeley, Lab., MS 4-230, Univ. of California, Berkeley, CA 94720
- 224. Dr. H. J. Kunze, Institut Fuer Exp.-Physics, Ruhr-Universitaet, 4630 Bochum, West Germany
- 225. Dr. R. Kurucz, Smithsonian Astrophys. Obs., Harvard University, 60 Garden Street, Cambridge, MA 02138
- 226. Dr. Neal F. Lane, Chancellor, University of Colorado, P. O. Box 7150, Colorado Springs, CO 80933-7150
- 227. Lawrence Livermore National Lab., Attention: Tech. Infor. Dept., P. O. Box 5500, Livermore, CA 94550
- 228. Prof. B. Lehnert, The Royal Institute of Techn., Div. of Plasma Phys. Fusion Res., Stockholm, 70, Sweden
- 229. Dr. W. N. Lennard, Solid State Science, Chemistry & Materials Division, Atomic Energy of Canada Limited, Nuclear Laboratories, Chalk River, Ontario, Canada KOJ 1JO
- 230. Dr. G. W. Leppelmeier, Magnetic Fusion Energy Division, Lawrence Livermore National Lab., P. O. Box 5511, L-637, Livermore, CA 94550
- 231. Dr. K. Leung, Fusion Engineering, 6291 Boelter Hall, UCLA, Los Angeles, CA 90024
- 232. Dr. C. C. Lin, Department of Physics, University of Wisconsin, Madison, MI 53706
- 233. Dr. J. L. Linsky, JILA, Campus Box 440, Univ. Colorado, Boulder, CO 80309
- 234. Dr. A. E. Livingston, Department of Physics, University of Notre Dame, Notre Dame, IN 46556
- 235. Dr. A. Lorenz, Nuclear Data Section, International Atomic Energy Agency, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria
- 236. Los Alamos National Laboratory, Attention: Librarian, MS P362, P. O. Box 1663, Los Alamos, NM 87545
- 237. Ms. H. W. Lovitts, Sci. Information Service, Inc., 7 Woodland Avenue, Larchmont, NY 10538
- 328. Dr. J. B. Mann, Theoretical Division, Los Alamos National Laboratory, P. O. Box 1663, MS 212, Los Alamos, NM 87545
- 239. Dr. S. T. Manson, Department of Physics, Georgia State University, Atlanta, GA 30303
- 240. Dr. W. C. Martin, National Bureau of Standards, Physics A-167, Gaithersburg, MD 20899

- 241. Dr. J. V. Martinez, Division of Chemical Sciences, Off. of Basic Energy Sci., J-309, U.S. Department of Energy, Washington, DC 20545
- 242. Dr. H. E. Mason, Dept. of Applied Mathematics & Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England
- 243. Dr. M. Mattioli, Association Euratom-CEA Sur La Fusion, DPH PFC - B.P. 6, F 92260 Fontenay-Aux-Roses, France
- 244. Max-Planck Inst, für Plasmaphysik, Mrs. A. Hohaus, Librarian, 8046 Garching bei Muenchen, West Germany
- 245. Dr. J. W. McConkey, Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
- 246. Prof. E. W. McDaniel, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- 247. Dr. R. McFarland, Department of Physics, University of Missouri-Rolla, Rolla, MO 65401
- 248. Dr. E. J. McGuire, 1271 Sandia Natl. Lab., Albuquerque, NM 87185
- 249. Dr. D. J. McLaughlin, Physics Dept., U-46, Univ. of Connecticut, Storrs, CT 06268
- 250. Mr. E. A. McLean, Plasma Physics Division, Code 4732, Naval Research Laboratory, Washington, DC 20375
- 251. Dr. R.W.P. McWhirter, Rm. 1.61, Bldg. R25, Space and Astrophysics Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 OQX, United Kingdom
- 252. Dr. G. H. Miley, University of Illinois, 216 Nuclear Engineering Lab., 103 S. Goodwin Avenue, Urbana, IL 61801
- 253. Mirror Fusion Experimental Group, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550
- 254. Dr. A. A. Mondelli, Science Applications, Inc., 8400 Westpark Drive, McLean, VI 22102
- 255. Dr. H. W. Moos, Physics Department, Johns Hopkins University, Baltimore, MD 21218
- 256. Dr. K. Mori, 1-508 Shakujii-Koen Danchi, 1-127 Kamishakujii, Nerima-Ku, Tokyo 177, Japan
- 257. Dr. K. Moses, JAYCOR, Plasma Technology Division, 2908 Oregon Court, Bldg. I-7, Torrance, CA 90503
- 258. Prof. J. R. Mowat, Department of Physics, North Carolina State University, P.O. Box 8202, Raleigh, NC 27695-8202
- 259. Dr. Y. Nakai, Department of Physics, Japan Atomic Energy Res. Inst., Tokai Research Establishment, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
- 260. Dr. S. Nakazaki, Department of Applied Physics, Faculty of Engineering, Miyazaki University, Miyazaki 880, Japan
- 261. I.M.A. Nassev, Physics Dept., Univ. of Connecticut, Storrs, CT 06268
- 262. Dr. F. Nehring, Rt. 3, Box 57A, Clinton, TN 37716
- 263. Dr. H. Nguyen, Lab. De Spectroscopie Des Plasmas, Tour 22,
- Universite Paris Vi, 4 Place Juvieu, 75230 Paris 05, Cedix, France 264. Dr. D. W. Norcross, JILA, Campus Box 440, University of Colorado, Boulder, CO 80309

- 265. Prof. H. Nussbaumer, Institute of Astronomy, ETH Zentrum, CH-8092 Zurich, Switzerland
- 266. Dr. K. W. Ogilvie, Code 692, Goddard Space Flight Center, Greenbelt, MD 20771
- 267. Dr. T. Ohkawa, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 268. Dr. S. Ohtani, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan
- 269. Dr. R. E. Olson, Department of Physics, University of Missouri-Rolla, Rolla, MO 65401
- 270. Dr. A. Osman, Theoretical Nuclear Physics, Department of Physics, Faculty of Science, Cairo University, Cairo, Egypt
- 271. Dr. M. Otsuka, Institute of Plasma Physics, Nagoya University, Nagoya, Japan
- 272. Dr. E. S. Parilis, Institute of Electronics, Tashkent, U.S.S.R.
- 273. Dr. W. H. Parkinson, Center for Astrophysics, MS-50, 60 Garden Street, Cambridge, MA 02138
- 274. Dr. N. J. Peacock, Culham Laboratory, UKAEA Research Group, Abingdon Oxfordshire OX 14 3DB, England
- 275. Dr. D. C. Pease, 5102, Delco Systems Operations, 6767 Hollister, Goleta, CA 93117
- 276. Dr. R. Petrasso, NW16-112, MIT, Plasma Fusion Center, 167 Albany Street, Cambridge, MA 02139
- 277. Prof. E. Pfender, Dept. of Mechanical Engineering, University of Minnesota, 125 Mechanical Engineering Bldg., Minneapolis, MN 55455
- 278. Dr. L. G. Phadke, Physics Department, Northeastern State University, Tahlequah, OK 74464
- 279. Dr. A. V. Phelps, JILA, University of Colorado, Boulder, CO 80309
- 280. Physics and Applied Maths Library, College Park, The Queen's University of Belfast, Belfast BT 7 INN, Northern Ireland
- 281. Physics/Optics/Astron. Library, 374 Bausch & Lomb Building, University of Rochester, Rochester, NY 14627
- 282. Dr. P. A. Pincosy, Lawrence Berkeley Laboratory, Bldg. 9, 1 Cyclotron Road, Berkeley, CA 94720
- 283. Dr. M. S. Pindzola, Physics Department, Auburn University, Auburn, AL 36849
- 284. Dr. E. H. Pinnington, Department of Physics, The University of Alberta, Edmonton, Canada T6G 2J1
- 285. Plasma Fusion Center Library, Massachusetts Inst. of Technology, NW16-153, Cambridge, MA 02139
- 286. Dr. R. S. Post, Massachusetts Institute of Techn., Plasma Fusion Center, 190 Albany Street, Cambridge, MA 02139
- 287. Dr. F. Prevot, Centre D'Etudes Nucleaires, De Fontenay-Aux-Roses, DRFC, B. P. No 6, 92260 Fontenay-Aux-Roses, France
- 288. Princeton University, Attention: C-Site Library, Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08544
- 289. Dr. G. Proulx, Pulse Sciences, Inc., 14796 Wicks Blvd., San Leandro, CA 94577
- 290. Dr. Niansheng Qi, Dept. of Physics, Yale Univ., New Haven, CT 06520

- 291. Dr. B. H. Quon, JAYCOR, Plasma Technology Div., 2908 Oregon Ct., Bldg. I-7, Torrance, CA 90503
- 292. Dr. J. Reader, Physics Bldg. A-167 SPC, National Bureau of Standards, Gaithersburg, MD 20899
- 293. Dr. D. Register, Phillips Petroleum Co., MS-118-A1, PRC, Bartlesville, OK 74004
- 294. Dr. D. J. Rej, Los Alamos National Laboratory, Ctr. 3, MS 638, P. O. Box 1663, Los Alamos, NM 87545
- 295. Dr. J. R. Roberts, A-167, Physics Building, National Bureau of Standards, Gaithersburg, MD 20899
- 296. Dr. H. Rohr, Max-Planck Inst. für Plasmaphysik, Boltzmann Str. 3, D-8046 Garching bei Munchen, West Germany
- 297. Dr. T. Romesser, Defense and Space Systems Group of TRW Inc., R1-2020, One Space Park, Redondo Beach, CA 90278
- 298. Dr. W. L. Rowan, Fusion Research Center, University of Texas, Austin, TX 78712
- 299. Dr. J. R. Rumble, Physics Building A323, National Bureau of Standards, Washington, DC 20234
- 300. Rutherford Appleton Laboratory, Mrs. E. Marsh, Librarian, Chilton, Didcot, Oxfordshire OX11 OQX, England
- 301. Prof. E. Salzborn, Strahlenzentrum, Der Justus LiebigUniversitaet, Leihgesterner Weg 217, D-6300 Giessen, West Germany
- 302. Dr. D. H. Sampson, Department of Astronomy, The Pennsylvania State Univ., 525 Davey Laboratory, University Park, PA 16802
- 303. Dr. J.A.R. Samson, Department of Physics, University of Nebraska, Lincoln, NB 68588-0111
- 304. Dr. A. Sanchez, Calle Angostura Quinta-Carmen, Urbanizacion El Marquez, Caracas 1070, Venezuela 348380
- 305. Dr. F. C. Sanders, Dept. of Physics & Astronomy, Southern Illinois University, Carbondale, IL 62901
- 306. Dr. G. Schilling, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08540
- 307. Dr. J. J. Schmidt, Nuclear Data Section, International Atomic Energy Agency, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria
- 308. Prof. H. A. Schuessler, Department of Physics, Texas A&M University, College Station, TX 77843
- 309. Dr. J. Scofield, L-297, Lawrence Livermore National Lab., Livermore, CA 94550
- 310. Dr. M. J. Seaton, Department of Physics, University College London, Gower Street, London WCIE 6BT, England
- 311. Dr. J. F. Seely, Code 4174, Space Science Division, Naval Research Laboratory, Washington, DC 20375
- 312. Dr. M. Seidl, Stevens Inst. Techn., Dept. of Physics, Hoboken, NJ 07030
- 313. Dr. V. S. Senashenko, Institute of Nuclear Physics, M. V. Lomonosov Moscow State Univ., Moscow 119899, U.S.S.R.
- 314. Dr. A. Surjalal Sharma, Plasma Physics Programme, Physical Research Laboratory, Navrangpura, Ahmedabad-380-009, India
- 315. Dr. V. B. Sheorey, 461 Physical Research Laboratory, Navrangpura, Ahmedabad-380-009, India

- 316. Dr. J. Sherman, AT-2, MS 818, Los Alamos National Laboratory, Los Alamos, NM 87545
- 317. Dr. M. Shimada, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 318. Dr. I. Shimamura, Riken, Hirosawa, Wako-Shi, Saitama 351-01, Japan
- 319. Dr. T. Shirai, Japan Atomic Energy Research Inst., Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
- 320. Prof. H. A. Shugart, Dept. of Physics, Univ. of California, Berkeley, CA 94720
- 321. Dr. J. S. Sims, Mont Alto Campus, The Pennsylvania State Univ., Mont Alto, PA 17237
- 322. Dr. C. H. Skinner, Plasma Physics Laboratory, Princeton University, James Forrestal Campus, Princeton, NJ 08544
- 323. Prof. B. M. Smirnov, Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, Pr. Ac. Lavrentyeva, 1, 630090 Novosibirski - 90, U.S.S.R.
- 324. Dr. J. N. Smith, Mail Stop L-520, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 325. Dr. P. L. Smith, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
- 326. Prof. J. C. Sprott, Department of Physics, Univ. of Wisconsin, Madison, 1150 University Avenue, Madison, WI 53706
- 327. Dr. K. R. Stalder, 515 King Street, Redwood, CA 94062
- 328. Prof. B. Stansfield, Universite De Quebec, Institut National De La Recherche Scientifique, Case Postale 1020, Varennes, Quebec, Canada
- 329. Dr. P. M. Stone, ER 532 GTN, Office of Fusion Energy, U.S. Department of Energy, Washington, DC 20545
- 330. Dr. H. Suzuki, Department of Physics, Faculty of Science & Technology, Sophia University, Chiyoda-Ku, Kioicho 7, Tokyo 102, Japan
- 331. Prof. K. Takayanagi, Inst. of Space & Astron. Sci., Komaba 4-6-1, Meguro-Ku, Tokyo 153, Japan
- 332. Dr. H. Tawara, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan
- 333. Technical Information Center, Stone & Webster Engineering Corp., 3 Executive Campus, P. O. Box 5200, Cherry Hill, NJ 08034
- 334. Dr. A. Temkin, Head, Atomic Physics Office, Code 680.1, Goddard Space Flight Center, Greenbelt, MD 20771
- 335. Dr. D. M. Thomas, L-334, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 336. Dr. E. W. Thomas, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- 337. Dr. D. B. Thomson, CTR-DO, MS F-648, Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545
- 338. Dr. G. P. Tozzi, Arcetri Astrophysical Observatory, Largo E. Fermi 5, I-50125 Firenze, Italy
- 339. U.K.A.E.A. Culham Laboratory, Attn: Mrs. S. Smith, Library Reading Room, Abingdon, Oxfordshire OX14 3DB, United Kingdom
- 340. Universitaetsbibliothek and Techn., Informationsbibliothek, Welfengarten 1, 3 Hanover, West Germany

- 341. Dr. E. Veje, Physics Laboratory II, Univ. of Copenhagen, H. C. Orsted Institute, Universitetsparken 5, DK 2100 Copenhagen, Denmark
- 342. Dr. H. Vernickel, Max-Planck Institut für Plasmaphysik, 8046 Garching bei Munchen, West Germany
- 343. Dr. V. A. Vershkov, Institute Atommoi Energii, I. V. Kurchatova, 46 Ulitsa Kurchatova, Moscow D-182, U.S.S.R.
- 344. Prof. G. C. Vlases, Aerospace and Energetics, Research Program, FL-10, University of Washington, Seattle, WA 98195
- 345. Dr. S. E. Von Goeler, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 346. Dr. F. Waelbroeck, Institut Fuer Plasmaphysik, Kernforschungsanlage, 517 Juelich, Federal Republic of Germany
- 347. Dr. J. S. Wang, University of Maryland, Energy Research Bldg., College Park, MD 20740

348-

- 397. Dr. W. L. Wiese, National Bureau of Standards, Atomic & Plasma Radiation Div., Gaithersburg, MD 20899
- 398. Prof. K. Wiesemann, Ruehr-Universitaet, Inst. Exp. Phys. Agii, Postfach 102148, D-4630 Bochum 1, West Germany
- 399. Dr. J. F. Williams, Department of Physics, The University of Western Australia, Nedlands, Western Australia 6009
- 400. Dr. H. Winter, Institut Fuer Allgemeine Physik, Technische Universitaet Wien, Karlsplatz 13, A-1040 Wien, Austria
- 401. John G. Wolbach Library, Attention: Librarian, Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138
- 402. Dr. R.L.C. Wu, Brehm Laboratory, Wright State University, Dayton, OH 45435
- 403. Dr. C. E. Young, CHM 200, Argonne National Lab., 9700 South Cass Avenue, Argonne, IL 60439
- 404. Dr. S. M. Younger, L-17, Lawrence Livermore National Lab., Livermore, CA 94550
- 405-

431. Technical Information Center, Office of Information Services, P. O. Box 62, Oak Ridge, TN 37831

432-

500. Controlled Fusion Atomic Data Center, Bldg. 6003, ORNL