ORNL-6088/V3 (Third volume of ORNL-6086)

Contract No. DE-AC05-840R21400

Physics Division

FED LIBRARY APR 1 1985

ATOMIC DATA FOR CONTROLLED FUSION RESEARCH VOLUME III "PARTICLE INTERACTIONS WITH SURFACES"

EUSION ENERGY DIVISION LIBEARY

E. W. Thomas Georgia Institute of Technology

Published and Edited by Controlled Fusion Atomic Data Center

Date Published - February 1985

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes—Printed Copy: A09 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SERIES PREFACE

The primary objective of the Controlled-Fusion Atomic Data Center at Oak Ridge National Laboratory is to publish handbooks containing numerical and graphical cross sections and other physical data relevant to fusion energy research. In 1977, a two-volume compilation was published as ORNL reports ORNL-5206 and ORNL-5207. Since that time, a large volume of pertinent data has become available, necessitating an update of the previous compilation. Plans are to include both cross sections and rate coefficients for collisional processes, and to publish the revised series in handbook form. The specific volumes which are in preparation are listed below, with their expected completion dates.

- Vol. 1, "Collisions of H, H₂, He, and Li Atoms and Ions with Atoms and Molecules," C. F. Barnett, ORNL (January 1986).
- Vol. 2, "Collisions of Electrons with Atoms and Molecules," J. W. Gallagher, Joint Institute for Laboratory Astrophysics; and C. F. Barnett, ORNL (October 1985).
- Vol. 3, "Particle Interactions with Surfaces," E. W. Thomas, Georgia Institute of Technology (January 1985).
- Vol. 4, "Spectroscopic Data for Iron," W. L. Wiese, National Bureau of Standards (March 1985).
- Vol. 5, Collisions of Carbon and Oxygen Ions with Electrons, H, H₂, and He," R. A. Phaneuf, ORNL; R. K. Janev, Institute of Physics, Yugoslavia; and M. S. Pindzola, Auburn University (March 1986).

C. F. Barnett

H. T. Hunter

M. I. Kirkpatrick

R. A. Phaneuf

TABLE OF CONTENTS

Page

form.

 $r^{m_{n}}$

1000

SPUTTERING	1
Introductory Notes	2
Sputtering of C by H^+ , D^+ , and ${}^{4}He^+$ (normal incidence, room temperature)	6
Sputtering of A1 by H^+ , D^+ , and ${}^{4}He^+$ (normal incidence, room temperature)	8
Sputtering of Ti by H^+ , D^+ , and ${}^{4}He^+$ (normal incidence, room temperature)	10
Sputtering of Mo by H^+ , D^+ , and ${}^{4}He^+$ (normal incidence, room temperature)	12
Sputtering of Stainless Steel by H^+ , D^+ , and ${}^{4}He^+$	
(normal incidence, room temperature)	14
Sputtering of TiC by H ⁺ , D ⁺ , and He ⁺ (normal incidence, room temperature)	16
Self-Sputtering Coefficients for Al, Cr, Ni, Cu, and Zn (normal incidence, room temperature) A-1	18
Self-Sputtering Coefficients for Ag, Au, Mo, Nb, and W (normal incidence, room temperature)	20
Example of Energy Distribution of Sputtered Atoms. Gold Atoms Sputtered from Au by H ⁺ Impact	
(normal incidence, room temperature)	22
Example of Chemical Sputtering. Sputtering of C (Graphite) by H ⁺ and He ⁺ as a Function of Temperature (normal incidence)	2.4
Sputtering Coefficient of Ni and W by 0^+	
(normal incidence, room temperature)	26
Neutron Sputtering of V, Co, Nb, and Au (Materials are polycrystalline. Temperatures are Room	~~
Temperature.)	28
SECONDARY ELECTRON EMISSION BY ELECTRON IMPACT	1
Secondary Electron Emission Coefficients for Electron Impact on Clean Surfaces of C, Al, and Ti	2

Secondary Electron Emission Coefficients for Electrons at Normal Incidence on Clean SS, Ni, Mo, B-4 Secondary Electron Emission Coefficients for Electrons at Normal Incidence on Clean and Gas B-6Secondary Electron Emission Coefficients for Electrons at Normal Incidence on Clean and Gas B---8 Secondary Electron Emission Coefficients for Electrons on Ti for 0°, 35°, 40°, and 60° Incident Angle. O° is Normal to the Surface B - 10Secondary Electron Emission Coefficients for Electrons at Normal Incidence on Different B-12 Textured Pyrolytic Graphite (PG) Surfaces SECONDARY ELECTRON EMISSION BY HEAVY PARTICLE IMPACT C---1 Secondary Electron Emission Coefficients of Normally Incident H⁺, H₂⁺ Ions on C C-2 Secondary Electron Emission Coefficients by Impact of Normally Incident H⁺, H₂⁺, He⁺, C⁺, and O⁺ Ions C--4 Secondary Electron Emission Coefficients by Impact of Normally Incident H⁺ and H₂⁺ Ions on Ti C--6 Secondary Electron Emission Coefficients by Impact of Normally Incident H⁺, H₂⁺, and He⁺ Ions on Ni C-8 Secondary Electron Emission Coefficients of Normally Incident H^+ , H_2^+ , and He^+ Ions on Cu C-10 Secondary Electron Emission Coefficients by Impact of Normallu Incident H⁺, H₂⁺, He⁺, and O⁺ Ions on Mo . . . C-12 The Dependence of the Secondary Electron Emission Coefficients on the Excited States of 0_2^+ Bombarding a Clean Mo Surface at Normal Incidence C--14 Typical Energy Distributions of Secondary Electron Emission Coefficients by He⁺ on a Clean Mo Surface at Normal Incidence C-16 Energy Distributions of Secondary Electrons Ejected by 40, 200, and 1000 eV He⁺ Ions Normally Incident C-18

Seconda H^+ , H_2^+ of a Cl	ry Electron Emission , and H_3^+ as a Functi ean Target	Coefficients fo on of the Atomi	r 100 keV c Number · · · · · ·	••	•	C- 20
Seconda Functic Beam an	ry Electron Emission n of the Angle betwee d a Clean Ni Target .	Coefficients as n a 120 keV Pro	a ton •••••		•	C-22
Time to Surface	Build-up a N ₂ Monola at Room Temperature	yer on a Previo	usly Clean	l ₽●	•	C-24
Changes when a H ⁺ + H	in the Secondary Ele Titanium Surface is C ⁺ Normally Incident o	ctron Emission ompletely Outga n Ti	Coefficien ssed,	its	•	C-26
The Eff Coeffic	ect of the Secondary ients on the Degassin	Electron Emissi g Technique. H	on ⁺ Normally	,		a 00
Seconda	t on Mo	Coefficient for		• •	•	C-28
C ⁿ '(n'= Seconda	4-6) on Gas Covered C ry Electron Emission	u at High Energ Coefficients by	ies Impact of	••	•	C-3 0
Al Mult Energie	icharged Ions on Gas	Covered Au at L	ow Impact	• •	•	C-32
Ratios H ^O tot Surface	of the Number of Seco hat of H ⁺ Impact on G s at Normal Incidence	ndary Electrons as Covered and •••••	from Clean •••••	••	•	C-34
Ratios Normall on Gas	of the Number of Seco y Incident H ⁻ and O ⁻ Covered and Clean Met	ndary Electrons to that of H ⁺ a allic Surfaces	from nd O ⁺	• •	•	C-3 6
Ratios Normall on Gas	of the Number of Seco y Incident Helium Ato Covered and Clean Met	ndary Electrons ms to that of H allic Surfaces	from e Ions		•	C-38
ELECTRON REFI	ECTION		• • • 5 •		•	D-1
Backsca Normall	ttering Coefficients y on C, Al, Ti, and F	for Electrons I e	ncident	÷ •	•	D-2
Backsca Normall	ttering Coefficients y on Ni, Cu, and Mo .	for Electrons I	ncident	••	•	D-4
Backsca Normall	ttering Coefficients y on Ag, W, and Au .	for Electrons I	ncident	s •	•	D-6

peres.

f.

	Backscattering Coefficients for Electrons Incident Normally on a "Gassy" and "Degassed" TiC Surface • • • • •	D-8
	Backscattering Coefficients for 20, 40, and 60 keV Electrons Incident on Ti as a Function of Angle between the Incident Electron and the Normal to	
	the Surface	D-10
HEAVY	PARTICLE REFLECTION	E-1
	Introductory Notes	E-2
	Composite Figure Showing Calculated Particle Reflection Coefficients for Several Ion-Target Combinations Versus the Reduced Energy ε	E-4
	Composite Figure Showing Measured Particle Reflection Coefficients for Several Ion-Target Combinations Versus the Reduced Energy ϵ	E-5
	Particle Reflection Coefficients (R _N) for H ⁺ , D ⁺ , and He ⁺ Incident on C (normal incidence, room temperature)	E-6
	Energy Reflection Coefficients (R _E) for H ⁺ , D ⁺ , and He ⁺ Incident on C (normal incidence, room temperature)	E-8
	Particle Reflection Coefficients (R _N) for H ⁺ and He ⁺ Incident on Al (normal incidence, room temperature)	E-10
	Energy Reflection Coefficients (R_E) for H ⁺ and He ⁺ on Al (normal incidence, room temperature)	E-12
	Particle Reflection Coefficients (R_N) for H^+ , D^+ , and He^+ Incident on Ti (normal incidence, room temperature)	E-14
	Energy Reflection Coefficients (R_E) for H^+ , D^+ , and He^+ Incident on Ti (normal incidence, room temperature)	E-16
	Particle Reflection Coefficients (R_N) for H^+ , D^+ , and He^+ Incident on Fe and on Stainless Steel (normal incidence, room temperature)	E-18
	Energy Reflection Coefficients (R_E) for H^+ , D^+ , and He^+ Incident on Fe and on Stainless Steel (normal incidence, room temperature)	F- 20
	incidence, foom temperature	<u>5</u>

Particle Reflection Coefficients (R_N) for H^+ , D^+ , and He^+ Incident on Mo (normal incidence, room	
temperature)	E-22
Energy Reflection Coefficients (R_E) for H^+ , D^+ , and He^+ Incident on Mo (normal incidence, room temperature) .	E-24
Example of Charge State Distributions of Scattered Particles. For Stainless Steel Bombarded with 10 keV Protons	E-26
Example of Energy Distributions for Different Scattering Angles. Data for 5 keV H ⁺ Incident on Stainless Steel at an Angle of 45° to the Surface Normal (room temperature)	E-28
TRAPPING AND REEMISSION	F-1
Introductory Notes	F-2
Selected Values of Hydrogen (H) Diffusitivity and Solubility for Various Metals and Alloys	F-8
Selected Values for Deuterium (D) Recombination on Steel and Gold	F-9
Trapped Fluence as a Function of Incident Fluence for 50, 150, and 300 eV D ⁺ on C (normal incidence, room temperature, polycrystalline material)	F-10
Trapped Fluence as a Function of Incident Fluence for 500-eV, 700-eV, and 1-keV D ⁺ on C (normal incidence, room temperature, polycrystalline material)	F-12
Fluence Trapped at Saturation for D ⁺ on C (normal incidence, room temperature, polycrystalline	
material)	F-14
Reemission of Deuterium at Various Temperatures for 20 keV D ⁺ on C (normal incidence, various temperatures, polycrystalline material)	F-16
Trapped Fluence at 50, 150, and 300 eV as a Function of Incident Fluence for D^+ on Si (normal incidence,	
room temperature, single crystal)	F-18
Trapped Fluence at 500 eV, 700 eV, and 1 keV as a Function of Incident Fluence for D ⁺ on Si (normal incidence, room temperature, single crystal)	F-20

f^{anne}.

/~~.

/^{nma}

Fluence of Deuterium Trapped at Saturation for D^+ on Si (normal incidence, room temperature, polycrystalline target) F-22 Reemission of Deuterium at Various Temperatures for 20 keV D⁺ on SiC (normal incidence, various temperatures, 20 keV energy, polycrystalline targets) ... F-24 Trapping Coefficient as a Function of Dose for 18 keV D⁺ Impact on Ti (normal incidence, various temperatures, 18 keV energy, polycrystalline target) . . . F-26 Trapping Coefficient as a Function of Temperature at a Fixed Fluence (or Dose) for 18 keV D⁺ incident on Ti (normal incidence, various temperatures, fixed fluence or dose of 5×10^{18} ions cm⁻², energy F-28 Trapping Coefficient as a Function of Energy at a Fixed Dose for H⁺ Incident on Ti (normal incidence, temperature in the region 403 to 503 K) F-30 Fluence Trapped at Saturation for D⁺ on Stainless Steel (normal incidence, 90 K or 150 K temperatures) . . . F-32 Reemission of Deuterium Due to D⁺ Impact on Stainless Steel (type 304) at Low Temperatures (normal incidence, F-34 Reemission of Deuterium Due to D⁺ Impact on Stainless Steel (types 304 and 321) at Low Temperatures (normal F-36 Reemission of Deuterium Due to D⁺ Impact on Stainless Steel at Room Temperature and Above (normal incidence, room temperature but 500 K data are identical) F--38 Replacement Efficiency of D in stainless steel by Subsequent H Impact (normal incidence, temperature F-40 Reemission of Deuterium Due to D⁺ Impact on Ni at Various Temperature (normal incidence, various F-42 Trapped Fluence as a Function of Incident Fluence for D⁺ on Mo with Various Predamage Conditions (normal incidence, room temperature, 8 keV D⁺ energy, predamaged by 11 keV He⁺ to fluences shown, F-44 single crystal target)

Abstract

This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping.

......

Introduction

This volume provides a compendium of data concerning processes which occur at the first wall of fusion plasma devices. Included are sputtering, ejection of electrons by impact of electrons and heavy particles, heavy particle reflection, as well as hydrogen trapping and re-emission. Plasma wall interactions are of substantial importance to device operation. Most impurities have their origin at the wall and most of the fuel recycles from the wall during a discharge; potentials in the plasma edge are much influenced by electrons ejected from the wall.

In assembling data for inclusion I have restricted myself largely to projectile-target combinations of direct importance to the fusion program. Thus projectiles are generally hydrogen, helium, common impurities, ions of these species, as well as electrons. Targets are materials commonly employed for walls, limiters and coatings. Generally I include only data for polycrystalline targets of possible technical ability. Thus I do not include here the voluminous data for single crystal surfaces and for rare gas projectiles that are of such importance for fundamental research.

A potential difficulty in the use of these data for modelling purposes is that the surface used for the measured data presented here is generally not the same as one would find in a practical fusion device. A device wall will initially carry a macroscopic layer of dirt and oxides with a topography related to the metal working processes employed in its fabrication. With cleaning (e.g., by glow discharges) and repetitive use, these surfaces change. On the one hand the surface may become cleaner and flatter due to erosion. the other hand certain surfaces may become coated with foreign materials due to re-deposition from eroded surfaces or from subsidiary sources such as getter pumps. Thus in general the nature of the surface of the wall, limiter or other component is unknown. By contrast the data presented here is (unless otherwise indicated) for atomically clean, homogeneous, pure materials. In using these data for modelling purposes the reader will inevitably first choose a data set appropriate to the material of nominal construction. We would urge the reader also to try using data that may be appropriate to a contaminated surface and then determine whether the predicted device behavior will be significantly altered. For example, with a steel walled device operating with titanium getter pumps one should certainly compare predictions using data for a titanium surface with predictions for a steel surface. If differences are found to be critical then clearly the composition of the device wall should be monitored in situ and data appropriate to actual wall composition should be obtained by laboratory experiments. It is to be expected that processes involving electron ejection (i.e., secondary electron ejection coefficients) and electron transfer (excited and ionized states of reflected and sputtered species) will be very sensitive to surface contamination. Processes governed by kinematic effects (total sputtering and total projectile reflection) are likely to be fairly independent of minor surface contamination.

In choosing data for inclusion here we have concentrated on the experimental work of research groups that have an extended record of studying a specific class of processes and where one might reasonably expect that systematic errors have been elminated. In general, we have avoided theoretical predictions. We have omitted data that appears to be inaccurate, inconsistent with the work of other well established groups or where data was extracted by use of assumptions that were not separately tested. Many sections of this volume have an introduction which includes a note giving references to other major data compendia. Frequently those other compendia include all available data even when there are serious inconsistencies; those compendia also sometimes include semi-empirical theoretical formulations that describe much of the data by simple algebraic formulations.

The compendium has many serious gaps. Data on processes induced by impurity ion impact are generally sparse. Secondary electron emission has received little recent attention and the data presented were often acquired with antiquated and inferior technology. Synergistic effects occuring when two or more species are simultaneously (or sequentially) incident on a surface have not yet been systematically studied. It is to be hoped that the present compendium will prompt further work on areas that are now inadequately covered.

> E, W. Thomas Atlanta, GA 1 October 1984

A. SPUTTERING

Sputtering

Introductory Notes

A. Cautionary Notes

Light ion sputtering has been the subject of many accurate experimental studies. Algebraic representation of data are available to permit extrapolation and interpolation of data. To maintain a consistent picture we have chosen to present data drawn primarily from the group of Roth, Bohdansky and Ottenberger at MPI Garching.

Sputtering yields of alloys may be roughly estimated as a sum of the yields for the components each weighted by the proportion of the component present. However it must be recognized that sputtering will remove components at different rates so that surface composition is different from that in bulk.

Sputtering is basically a kinematic effect involving energy transfer from projectile to target. Such processes are known as physical sputtering. For certain conditions the projectiles may form volatile compounds with target atoms resulting in a chemical erosion process. This is known as chemical sputtering and can have sputtering yields some orders of magnitude higher than physical sputtering. The best known case of chemical sputtering is for H^T and D^T on C where CH₄ (or CD₄) is formed giving very high erosion rates for targets at elevated temperatures (300 to 500° C).

B. Definitions

<u>Sputtering Yield</u> is defined as the ratio between the number of target atoms ejected to the number of projectile ions incident. Most of the data presented here were determined by weight loss from the bombarded target.

C. Algebraic Representation

1. Total Yield

The total yield S of sputtered atoms due to light ion impact can be frequently represented by the following equation.

$$S = 6.4 \times 10^{-3} M_2 \left[\frac{4 M_1 M_2}{(M_1 + M_2)^2} \right]^{5/3} E^{-1/4} \left(1 - \frac{1}{E^*} \right)^{7/2}$$
(1)

Where M₁ = projectile mass (a.m.u.)

 $M_{2} = \text{target mass (a.m.u.)}$ $E' = \frac{E}{E_{\text{th}}}$ E = Projectile energy $E_{\text{th}} = \text{Threshold energy for sputtering}$

The threshold energy E_{th} is obtained by fitting to experimental data. Typical values are as follows.

		infestiold energy	th in ev	
Ion			3	4
Target	H	D	He	He
A1	53	34		20.5
Au	184	94	60	44
Be	27.5	24		33
С	9.9	11		16
Fe	64	40		35
Мо	164	86	45	39
Ni	47	32.5		20
Si	24.5	17.5		14
Та	460	235		100
Ti	43.5			22
V	76			27
W	400	175		100
Zr				60

When the later and the R

For cases where there are no experimental data equation 1 can be used to provide a reliable prediction. In this case threshold energy E th must be predicted from the equation

$$E_{\text{th}} = \frac{E_{\text{B}}}{\gamma(1-\gamma)}$$
$$\gamma = \frac{4 M_1 M_2}{(M_1 + M_2)^2}$$

 $E_B =$ surface binding energy (can be obtained from sublimation energies as in JANAF - Thermo-Chemical Tables, Ed. D. R. Stull, H. Prophet, NSRDS-NBS 37).

This equation is valid only for $M_1/M_2 < 0.4$ and generally overestimates E_{th} .

Dependence on Incidence Angle 2.

The sputtering yield S(θ) for projectiles incident at an angle of θ^0 to the normal is related to that for incidence at 0° to the normal, S, by the relation

$$S(\theta) = S \cos^{-t} \theta$$
.

where $1 \le f \le 2$. This relationship is valid only to an angle θ of about 60° . The value to be assigned to f is not clear but unity has been satisfactory in the few cases where experiments have been performed.

d - 17

3. Impact of Molecules

Studies have been made of the sputtering yield S for impact of different molecular ions H (m = 1, 2, 3) at various energies E_m . It is found that S \ddagger m plotted against E \ddagger m is the same for all species. Thus each constituent nucleon acts as a separate particle. [See E. Hintz et al., J. Nucl. Mater. 93 & 94, 656 (1980)].

D. Principal Compendia

Two major data compendia are available.

- J. Roth, J. Bohdansky, W. Ottenberger. "Data on Low Energy Light Ion Sputtering," Report No. IPP 9/26 (May 1979), Max-Planck-Institut fur Plasmaphysik, Garching.
- N. Matsunami et al., "Energy Dependence of Sputtering Yields at Monatomic Solids", Report No. IPPJ-AM-14 (June 1980), Institute of Plasma Physics, Nagoya University.

4

This page left blank intentionally.

10000

1000

Sputtering of C by H^+ , D^+ and ${}^{4}He^+$

Energy	Sputtering	Coefficient S (a	atoms/ion)	
(keV)	H+	D ⁺	⁴ He ⁺	
2.0E-02	6.00E-04	8.50E-04	3.30E-04	
3.0E-02	1.80E-03	3.10E-03	2.20E-03	
4.0E-02	3.00E-03	5.70E-03	7.20E-03	
6.0E-02	4.90E-03	9.70E-03	1.80E-02	
1.0E-01	7.40E-03	1.60E-02	3.60E-02	
2.0E-01	9.00E-03	2.30E-02	6.40E-02	
3.0E-01	9.00E-03	2.55E-02	7.80E-02	
4.0E-01	8.60E-03	2.60E-02	8.30E-02	
6.0E-01	7.80E-03	2.30E-02	8.90E-02	
1.0E+00	6.40E-03	1.80E-02	8.80E-02	
2.0E+00	4.70E-03	1.20E-02	8.20E-02	
3.0E+00	3.80E-03	8.80E-03	7.80E-02	
4.0E+00	3.30E-03	7.20E-03	7.45E-02	

(normal incidence, room temperature)

References:

J. Roth, J. Bohdansky, and W. Ottenberger, Report IPP 9/26 (May 1979) from Max-Planck-Institut fur Plasmaphysik, Garching. This report is a compendium of data from various sources.

Accuracy: + 10%.

Notes: (1) The data shown here is largely derived from a semi-empirical expression [Eq. 1 in the introduction] fitted to experimental data in the region 0.05 to 0.3 keV and extrapolated to lower energies. At higher energies it is simply a fit to experimental data. Experimental data agrees with this presentation to better than + 10%.

(2) The sputtering yield for carbon varies by as much as a factor of two depending on the type and manufacturer. [See R. Behrisch et al., J. Nucl. Mater. 60, 321 (1976) and J. A. Borders et al., J. Nucl Mater. 76 & 77, 168 (1978)]. These data are appropriate to pyrolytic carbon (Union Graphite).

(3) The sputtering yield of C by H and D increases by orders of magnitude at elevated temperatures due to chemical effects. [See J. Roth et al., J. Nucl. Mater. 63, 222 (1976)].

Sputtering of Al by H^+ , D^+ and ${}^{4}He^+$

(normal incidence, room temperature)

Energy	Sputtering	Coefficient S (a	atoms/ion)
(keV)	н+	D+	4 _{He} +
4.0E-02		2.00E-04	8.20E-03
6.0E-02		1.30E-03	2.90E-02
1.0E-01	5.00E-04	6.80E-03	7.00E-02
2.0E - 01	2.80E-03	2.00E-02	1.50E-01
3.0E-01	5.00E-03	2.80E-02	1.80E-01
$4 \cdot 0E - 01$	6.70E-03	3.20E-02	2.00E-01
6.0E-01	9.00E-03	3.80E-02	2.20E-01
1.0E+00	1.20E-02	4.10E-02	2.10E-01
2.0E+00	1.22E-02	3.30E-02	1.73E-01
3.0E+00	1.05E-02	2.50E-02	1.50E-01
4.0E+00	9.00E-03	2.00E-02	1.20E-01
6.0E+00	6.70E-03	1.30E-02	9.20E-02

References:

J. Roth, J. Bohdansky, and W. Ottenberger, Report IPP 9/26 (May 1979) from Max-Planck-Institut fur Plasmaphysik, Garching. This report is a compendium of data from various sources.

Accuracy: + 10%.

Notes: (1) The data shown here is largely derived from a semi-empirical expression [Eq. 1 in the introduction] fitted to experimental data in the region 0.07 to 1.0 keV and extrapolated to lower energies. At higher energies it is simply a fit to experimental data. Experimental data agrees with this presentation to better than + 10%. (2) For H and D impact the data is very similar to that for $A1_{20_3}$

suggesting perhaps that oxide was present during the experimental measurements.

Sputtering of Ti by $\text{H}^+,\ \text{D}^+$ and ${}^4\text{He}^+$

(normal incidence, room temperature)

Energy	Sputtering	Coefficient S	(atoms/ion)
(keV)	H ⁺	D+	$_{\mathrm{He}}^{\mathrm{+}}$
4.0E-02			5.20E-04
6.0E-02		2.80E-04	2.90E-03
1.0E-01	1.00E-04	1.70E-03	9.20E-03
2.0E-01	8.00E-04	5.10E-03	2.10E-02
3.0E-01	1.70E-03	7.40E-03	2.90E-02
4.0E-01	2.20E-03	9.30E-03	3.40E-02
6.0E-01	3.00E-03	1.20E-02	4.00E-02
1.0E+00	3.50E-03	1.30E-02	4 .9 0E-02
2.0E+00	3.40E-03	1.20E-02	5.55E-02
3.0E+00	2.80E-03	1.04E-02	5.30E-02
4.0E+00	2.30E-03	9.20E-03	5.00E-02
6.0E+00	1.70E-03	7.90E-03	4.30E-02

References:

J. Roth, J. Bohdansky, and W. Ottenberger, Report IPP 9/26 (May 1979) from Max-Planck-Institut fur Plasmaphysik, Garching. This report is a compendium of data from various sources.

Accuracy: + 20%.

Notes: (1) The data shown here is largely derived from a semi-empirical expression [-Eq. 1 in the introduction] fitted to experimental data in the region 0.1 to 6.0 keV and extrapolated to lower energies. Experimental data for H and He agrees with this presentation to better than $\pm 20\%$.

(2) The data for D^{\dagger} impact are interpolated by Eq. 1 in the introduction and have not been confirmed experimentally.

Sputtering of Mo by H^+ , D^+ , and ${}^{4}He^+$

(normal incidence, room temperature)

			Sputtering Coefficient	S
Ene) (ke)	rgy V)	н+	D+	4 _{He} +
6.0	E-02			9.5 E-04
1.0	E-01		3.0 E-05	4.8 E-03
2.2	E-01	1.0 E-05	9.0 E-04	1.8 E-02
3.0	E-01	6.3 E-05	1.7 E-03	2.4 E-02
4.0	E-01	2.0 E-04	2.6 E-03	2.8 E-02
6.0	E-01	5.0 E-04	4.1 E-03	3.8 E-02
1.0	E+00	1.1 E-03	6.0 E-03	4.8 E-02
2.0	E+00	2.0 E-03	7.9 E-03	5.1 E-02
3.0	E+00	2.1 E-03	7.9 E-03	5.1 E-02
4.0	E+00	2.0 E-03	7.7 E-03	5.0 E-02
6.0	E+00	1.8 E-03	7.4 E-03	4.7 E-02
9.0	E+00	1.5 E-03	5.0 E-03	4.2 E-02

References: J. Roth, J. Bohdansky, and W. Ottenberber, Report IPP 9/26 (May 1979) from Max-Planck-Institut für Plasmaphysik, Garching. This report is a compendium of data from various sources.

Accuracy: ±10%.

Notes: (1) The data shown here are largely derived from a semi-empirical expression [Eq. 1 in the introduction] fitted to experimental data in the region 0.15 to 8.0 keV and extrapolated to lower energies. Experimental data agree with this presentation to better than ±10%.

A-13

Sputtering of Stainless Steel by H^+ , D^+ and ${}^{4}He^+$

(normal incidence, room temperature)

Energy	Sputtering	g Coefficient S (a	atoms/ion)
(keV)	н+-	D ⁺	⁴ He ⁺
4.0E-02 6.0E-02		1.00E-04 5.30E-04	3.80E-03 1.40E-02
1.0E-01 2.0E-01	4.90E-04 2.60E-03	3.60E-03	3.50E-02
3.0E-01	4.30E-03	1.70E-02	7.90E-02
4.0E-01 6.0E-01	5.80E-03 7.80E-03	2.10E-02 2.50E-02	9.10E-02 1.10E-01
1.0E+00 2.0E+00	9.60E-03 9.00E-03	2.90E-02 2.70E-02	1.30E-01 1.40E-01
3.0E+00 4.0E+00	8.00E-03	2.20E-02 1.90E-02	1.40E-01
6.0E+00	4.80E-03	1.60E-02	1.17E-01

References:

J. Roth, J. Bohdansky, and W. Ottenberger, Report IPP 9/26 (May 1979) from Max-Planck-Institut fur Plasmaphysik, Garching. This report is a compendium of data from various sources.

Accuracy: + 20%.

Notes: (1) The data shown here is largely derived from a semi-empirical expression [Eq. 1 in the introduction] fitted to experimental data in the region 0.1 to 1.0 keV and extrapolated to lower energies. At higher energies it is simply a fit to experimental data. Experimental data agrees with this presentation to better than $\pm 20\%$.

(2) The stainless stee $\overline{1}$ was types 316 and 304.

Sputtering of TiC by H^+ , D^+ and ${}^{4}He^+$

(normal incidence, room temperature)

Energy	Sputtering	Coefficient S (a	atoms/ion)	
(keV)	H^+	D+	4 _{He} +	
4.0E-02			3.20E-04	
6.0E-02		1.00E-04	2.70E-03	
1.OE-01	1.10E-04	1.50E-03	1.30E-02	
2.OE-01	1.30E-03	7.10E-03	3.10E-02	
3.0E-01	2.80E-03	1.20E-02	4.40E-02	
4.0E-01	4.00E-03	1.50E-02	5,50E-02	
6.0E-01	5.80E-03	1.80E-02	6.30E-02	
1.0E+00	7.20E-03	2.00E-02	7.60E-02	
2.0E+00	7.20E-03	1.90E-02	8.50E-02	
3.0E+00	6.80E-03	1.80E-02	8.30E-02	
4.0E+00	6.10E-03	1.70E-02	8.40E-02	
6.0E+00	4.50E-03	1.50E-02	7.90E-02	

References:

J. Roth, J. Bohdansky, and W. Ottenberger, Report IPP 9/26 (May 1979) from Max-Planck-Institut fur Plasmaphysik, Garching. This report is a compendium of data from various sources.

Accuracy: + 10%.

Notes: (1) The data shown here is largely derived from a semi-empirical expression [Eq. 1 in the introduction] fitted to experimental data in the region 0.1 to 1.0 keV and extrapolated to lower energies. At higher energies it is simply a fit to experimental data. Experimental data agrees with this presentation to better than $\pm 10\%$.

Self-Sputtering Coefficients for

Al, Cr, Ni, Cu, and Zn

(normal incidence, room temperature)

			Self-Sputtering Coefficients, S (atoms/ion)				
Energy (keV)	A1	Cr	Ni	Cu	Zn		
2.0E-02	1.6E-02						
3.0E-02	2.5E-02	2.4E-02			1.7E-01		
4.0E-02	3.7E-02	4.0E-02			3.0E-01		
6.0E-02	7.1E-02	7.4E-02		2.1E-01	5.0E-01		
1.0E-01	1.7E-01	2.0E-01	1.8E-01	5.3E-01	6.4E-01		
2.0E-01	4.7E-01	4.6E-01	4.6E-01	1.1E+00	7.2E-01		
3.0E-01	7.0E-01	7.0E-01	7.2E-01	1.7E+00			
4.0E-01	8.9E-01	9.1E-01	9.5E-01	2.0E+00			
6.0E-01	1.1E+00		1.4E+00	2.5E+00			
1.0E+00	1.3E+00		1.8E+00	3.5E+00			
2.0E+00	1.2E+00		2.5E+00	4.4E+00			
3.0E+00	1.1E+00		3.0E+00	5.0E+00			
4.0E+00	1.0E+00			5.2E+00			
6.0E+00	8.6E-01			6.0E+00			
1.0E+01	7.0E-01			6.9E+00			
2.0E+01	5.5E-01			7.8E+00			
3.0E+01	4.8E-01			8.1E+00			
4.0E+01	4.2E-01			8.2E+01			

References:

Al⁺ + Al: W. W. Hayward and A. R. Wolter, J. Appl. Phys. <u>40</u>, 2911 (1969); O. Almen and G. Bruce, Nucl. Instrum. Meth. <u>11</u>, 279 (1961). $Cr^+ + Cr:$ W. W. Hayward and A. R. Wolter, J. Appl. Phys. <u>40</u>, 2911 (1969). Ni⁺ + Ni: E. Hechtl, H. L. Bay, and J. Bohdansky, Appl. Phys. (Germany) <u>16</u>, 147 (1978). $Cu^+ + Cu:$ W. H. Hayward and A. R. Wolter, J. Appl. Phys. <u>40</u>, 2911 (1969); O. Almen and G. Bruce, Nucl. Instrum. Meth. <u>11</u>, 279 (1961). $Zn^+ + Zn:$ A. Fontell and E. Arminen, Can. J. Phys. <u>47</u>, 2405 (1969). <u>Accuracy</u>: Unknown. <u>Note</u>: The data for Al involve a liberal interpolation from 5.0E-01 to <u>4.0E01 keV energy</u>.

Self-Sputtering Coefficients for

Ag, Au, Mo, Nb, and W

(normal incidence, room temperature)

Fnorgy		Self-Sputtering Coefficients (atoms/ion)			
(keV)	Ag	Au	Мо	Nb	Ŵ
3.0E-02 4.0E-02 6.0E-02 1.0E-01 2.0E-01 3.0E-01 4.0E-01 6.0E-01 1.0E+00 2.0E+00 3.0E+00 4.0E+01 2.0E+01 3.0E+01 4.0E+01 6.0E+00 6.0E+00 6.0E+00 6.0E+01 6.0	1.3E-01 $2.7E-01$ $5.5E-01$ $9.7E-01$ $1.8E+00$ $2.4E+00$ $2.9E+00$ $3.9E+00$ $5.3E+00$ $7.3E+00$ $8.9E+00$ $1.0E+01$ $1.2E+01$ $1.5E+01$ $2.0E+01$ $2.3E+01$ $2.6E+01$ $3.1E+01$	3.3E-02 1.0E-01 2.5E-01 6.0E-01 1.4E+00 2.0E+00 2.5E+00 3.3E+00 4.7E+00 7.0E+00 9.0E+00 1.1E+01 1.3E+01 1.3E+01 2.6E+01 3.3E+01	4.0E-02 1.2E-01 1.9E-01 2.5E-01 3.7E-01 5.6E-01 8.3E-01 1.1E+00 1.3E+00 1.6E+00 2.1E+00	2.6E+00 2.5E+00 3.0E+00 3.3E+00 3.8E+00	1.1E-01 1.9E-01 2.7E-01 3.5E-01 4.7E-01 6.9E-01 1.1E+00 1.5E+00 2.0E+00 2.5E+00 3.8E+00
1.0E+02	3.7E+01			0.000	

References:

Ag⁺ + Ag: H. Andersen and H. L. Bay, Radiat. Eff. 19, 139 (1973); W. H. Hayward and A. R. Wolter, J. Appl. Phys. <u>40</u>, 2911 (1969).

Au⁺ + Au: W. H. Hayward and A. R. Wolter, J. Appl. Phys. <u>40</u>, 2911 (1969); E. P. Eernisse, Appl. Phys. Lett. <u>29</u>, 14 (1976).

Nb⁺ + Nb: A. J. Summers, N. J. Freeman, and N. R. Daly, J. Appl. Phys. <u>42</u>, 4774 (1971).

Mo⁺ + Mo: M. Saidoh and K. Sone, Jap. J. Appl. Phys. 22, 1361 (1983).

W⁺ + W: M. Saidoh and K. Sone, Jap. J. Appl. Phys. 22, 1361 (1983).

Accuracy: Unknown.

Note: The data for Au involve a liberal interpolation from 4.0E-01 to 4.0E01 keV energy.

A-21

Example of Energy Distribution of Sputtered Atoms

Gold Atoms Sputtered from Au by H⁺ Impact

(normal incidence, room temperature)

Energy of Sputtered Particles (eV)	Flux of (a	Flux of Sputtered Particles (arbitrary units)		
	н+	\mathbf{H}^{+}		
	(15-keV Impact)	(30-keV Impact)		
5.0E-01	8.0	6.5		
1.0E 00	13.0	9.5		
2.0E 00	14.0	10.0		
3.0E 00	13.0	9.0		
5.0E 00	10.0	6.5		
1.OE 01	5.0	3.4		
2.0E 01	2.0	1.3		
3.0E 01	1.0	0.6		
5.0E 01	0.4	0,25		

Reference:

P. Hucks et al., J. Nucl. Mater. 76 & 77, 136 (1978).

Accuracy: + 5%.

Note: (1) The fluxes are in arbitrary units; the numbers for 15-keV and 30-keV impact have no relative significance.

Example of Chemical Sputtering

Sputtering of C (Graphite) by H^+ and He^+ as a Function

Temperature (°C)	e Sputtering Coefficients, S (atoms/ion)				
	H ⁺ (0.67 keV)	H ⁺ (1.0 keV)	H ⁺ (2.0 keV)	H ⁺ (3.0 keV)	He ⁺ (6.0 keV)
2.0E 01					9. 1E-02
2.0E 02		2.0E-03	4.0E-03	2.0E-03	
3.0E 02		2.5E-03	6.0E-03	3.0E-03	
4.0E 02	1.3E-02	8.0E-03	7.0E-03	5.0E-03	
4.5E 02	2.7E-02	1.6E-02	9.0E-03	8.0E-03	
5.0E 02	4.3E-02	3.0E-02	1.3E-02	1.2E-02	
5.5E 02	6.8E-02	5.1E-02	2.0E-02	1.9E-02	
6.0E 02	8.0E-02	7.0E-02	3.2E-02	3.0E-02	9.9 E-02
6.5E 02	8.1E-02	7.8E-02	6.0E-02	3.0E-02	
7.OE 02	6.7E-02	5.5E-02	5.0E-02	2,0E-02	
7.5E 02		4.0E-02	3.5E-02	1.2E-02	

of Temperature (normal incidence)

Reference:

J. Roth et al., J. Nucl. Mater. 63, 222 (1976).

Accuracy: + 20%.

<u>Notes:</u> (1) The sample material is pyrolytic graphite from Union Carbide with the surface cut parallel to the c-axis. It is well known that sputtering coefficients of carbon vary greatly depending on manufacturer, form of material, and orientation of the surface; variations of at least a factor of two are to be expected - see reference cited.

(2) Many other measurements of sputtering are available, generally for incident energies of 1 eV or less. For a complete listing see B. M. U. Scherzer et al., in Proc. Int. Symposium on Plasma Wall Interaction, Julich, 1976 (Pergammon Press, Oxford, 1977), p. 353. (3) The data were taken using H_2 and H_3 projectiles; they are shown being the taken using H_2 the set of the relation of the set of

(3) The data were taken using H_2^{+} and H_3^{+} projectiles; they are shown here as though they were for protons of the same velocity with S given as atoms ejected per nucleon incident.

(4) It is noted that the values of S at low temperatures are inconsistent with those presented in D.1.4 and D.1.5. These differences may simply be due to different forms of carbon.

(5) Chemical sputtering may be dependent on projectile flux (see J. N. Smith and R. H. Meyer, J. Nucl. Mater. 76 & 77, 193 (1978)).

f stars.

Sputtering Coefficient of

Ni and W by O⁺

(normal incidence, room temperature)

_	Sputtering Co (atoms	efficients, S /ion)
Energy (keV)	Ni	W
1.0E-01 2.0E-01 3.0E-01	2.46E-02 1.01E-01 1.62E-01	1.16E-02 1.56E-02
4.0E-01 6.0E-01 1.0E+00 2.0E+00	2.05E-01 2.69E-01 3.51E-01 4.81E-01	2.23E-02 6.41E-02 1.95E-01 3.47E-01

- Reference: J. Roth, J. Bohdansky, and W. Ottenberger, Report IPP 9/26 (May 1979) from Max-Planck-Institut fur Plasmaphysik, Garching. This report is a compendium of data from various sources.
- Accuracy: Unknown.
- Note: Original data points deviate from the curve shown here by up to 40% in limited energy regions.

A-27

Neutron Sputtering of V, Co, Nb, and Au

(Materials are polycrystalline.

Temperatures are room temperature.)

Material	Neutron Energy (MeV)	Upper Bound to Sputtering Coefficients (atoms/neutron)	Principal Reference
v	14.8	$< 5 \times 10^{-5}$	5
Со	16 (avg)	$< 2 \times 10^{-5}$	1
Nb	14.8	< 10 ⁻⁴ "certain"	2,3
		$< 5 \times 10^{-5}$ "most likely"	2,3
Au	14.8	$< 4 \times 10^{-5}$	1,4

References:

(1) L. H. Jenkins et al., J. Nucl. Mater. 63, 438 (1976).

(2) R. Behrisch et al., J. Appl. Phys. 48, 3914 (1977).

(3) O. K. Harling et al., J. Appl. Phys. 48, 4315 (1977).

(4) O. K. Harling et al., J. Nucl. Mater. 63, 422 (1976).

(5) M. Kaminsky and S. K. Das, J. Nucl. Mater. 66, 333 (1977).

Accuracy: Unknown.

Notes: (1) In most neutron sputtering measurements the quoted results are an upper bound set by the limits of detectability. Numerous earlier measurements exist (not quoted here but largely cited in references 2, 3, and 4) giving larger upper bounds reflecting poorer detection sensitivity.

(2) All quoted measurements involve removal of less than one monolayer of a surface covered with an unknown amount of oxide; consequently, the data may not be representative of bulk metal.

(3) Early reports of "chunk" ejection appear to be related to the method of target preparation and are not reported by most workers; see reference 2.

(4) For a theoretical estimate see R. Behrisch, Nucl. Instrum. Meth. 132, 293 (1976) and also H. Uecher et al., J. Nucl. Mater. 93 & 94, 670 (1980).

B. SECONDARY ELECTRON EMISSION BY ELECTRON IMPACT

Secondary Electron Emission Coefficients for Electron

	Secondary	Electron Emission (electrons/electro	Coefficient on)
Energy (keV)	С	Al	Ti
1.0 E-02 2.0 E-02 4.0 E-02 7.0 E-02 1.0 E-01 2.0 E-01 4.0 E-01 7.0 E-01 1.0 E 00 1.5 E 00	3.73 E-01 5.22 E-01 6.32 E-01 8.92 E-01 9.24 E-01 7.46 E-01 6.08 E-01 4.77 E-01	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.80 E-01 5.42 E-01 7.72 E-01 8.41 E-01 7.54 E-01 6.79 E-01 6.05 E-01
2.0 E 00 4.0 E 00 5.0 E 00	3.79 E-01 2.28 E-01 1.87 E-01	6.56 E-01	

Impact on Clean Surfaces of C, Al, and Ti

 References:
 e + C - H. Bruining, Philips Tech. Rev. 3, 80 (1938); J.

 Holzl and K. Jacobi, Surface Sci. 14, 351 (1969); D. Ruzic,

 R. Moore, D. Manos, and S. Cohen, J. Vac. Sci. Technol.,

 20, 1313 (1982).

e + Al - 1. M. Bronshtein and V. V. Roshchin, Sov. Phys. Tech. Phys. 3, 2271 (1958); S. Thomas and E. B. Pattinson, J. Phys. D 3, 349 (1969).

e + Ti - D. Ruzic, R. Moore, D. Manos, and S. Cohen, J. Vac. Sci. Technol. 20, 1313 (1982).

Accuracy: Random error <5% (estimated).

Note: The relative variation of the secondary emission coefficient may be reliable. The absolute data from different sources may differ up to 30% in some cases.

Secondary	Electron	Emission	Coefficients	for	Electrons
-----------	----------	----------	--------------	-----	-----------

Secondary Electron Emission Coefficient (electrons/electron) Energy (eV)SS N1 Мо Au 3.4 E-03 6.16 E-03 7.0 E-03 8.89 E-02 1.0 E-02 1.43 E-01 2.04 E-01 2.0 E-02 2.66 E-01 3.64 E-01 4.0 E-02 4.18 E-01 6.97 E-01 7.0 E-02 5.22 E-01 5.71 E-01 6.08 E-01 9.38 E-01 1.0 E-01 6.77 E-01 8.36 E-01 6.96 E-01 1.09 E 00 2.0 E-01 1.00 E 00 1.16 E 00 1.01 E 00 1.37 E 00 4.0 E-01 1.24 E 00 1.34 E 00 1.25 E 00 1.63 E 00 7.0 E-01 1.14 E 00 1.29 E 00 1.18 E 00 1.80 E 00 1.0 E 00 1.77 E 00 1.03 E 00 1.18 E 00 1.05 E 00 2.0 E 00 7.82 E-01 1.59 E 00 4.0 E 00 4.72 E-01 7.0 E 00 3.29 E-01

at Normal Incidence on Clean SS, Ni, Mo, and Au

References: <u>E + SS</u> - D. Ruzic, R. Moore, D. Manos, and S. Cohen, J. Vac. Sci. Technol. 20, 1313 (1982).

e + Ni - S. Thomas and E. B. Pattinson, J. Phys. D 3, 349 (1969).

e + Mo - Von G. Blankenfeld, Ann. der Physik 9, 48 (1951);
I. M. Bronshtein, Bull. Acad. Sci. USSR 22, 442 (1958);
D. Ruzic, R. Moore, D. Manos, and S. Cohen, J. Vac. Sci. Technol. 20, 1313 (1982).

e + Au - I. M. Bronshtein and V. V. Roshchin, Sov. Phys. Tech. Phys. 3, 2271 (1958); S. Thomas and E. B. Pattinson, J. Phys. D 3, 349 (1969).

Accuracy: Random error <5% (estimated).

Notes: (1) Errors for the four elements are estimated.
 (2) For secondary emission from steel in the energy range 40-200 keV, see J. G. Trump and R. J. Van de Graff, Phys. Rev. 75, 44 (1948).
 (3) The relative variation of the secondary emission coefficient may be reliable. The absolute data from different sources may differ up to 30% in some cases.

B-5

Secondary Electron Emission Coefficients for Electrons

at Normal Incidence on Clean and Gas Covered Ti

	Seconda	ry Electron Emission (electrons/electron	Coefficient
Energy (eV)	Before Cleaning	200 Å Removed	Air Exposure
200	9.31 E-01	1.44 E 00	1.25 E 00
400	9.13 E-01	1.31 E 00	1.15 E 00
600	8.75 E-01	1.17 E 00	1.07 E 00
800	8.31 E-01	1.07 E 00	9.96 E-01
1000	7.83 E-01	9.93 E-01	9.25 E-01
1200	7.46 E-01	9.31 E-01	8.67 E-01
1400	7.11 E-01	8.80 E-01	8.15 E-01
1600		8.27 E-01	

Reference: H. Padamsee and A. Joshi, J. Appl. Phys. 50, 1112 (1979).

.

Accuracy: Systematic error, uncertain; random error, <5% (estimated).

Notes: (1) The column, before cleaning, refers to the Ti as received; clean Ti refers to Ti after a 200 Å layer was removed from the surface; after exposure refers to exposing the Ti surface to air after the 200 Å layer was removed.
(2) The Ti data after the 200 Å layer was removed do not agree with "clean Ti" of other authors and other graphs.

B-7

Secondary Electron Emission Coefficients for Electrons

at Normal Incidence on Clean and Gas Covered TiC

-	Secondary Electron	Emission Coefficient
Lnergy (eV)	Clean	Gassy
75		1.01 E 00
90	5.73 E-01	1.12 E 00
100	6.25 E-01	1.16 E 00
200	8.48 E-01	1.43 E 00
300	9.70 E-01	1.47 E 00
400	1.02 E 00	1.42 E 00
600	9.96 E-01	1.26 E 00
800	9.35 E-01	1.12 E 00
1000	8.33 E-01	1.00 E 00
1200	8.08 E-01	9.41 E-01

Reference: S. Thomas and E. B. Pattinson, J. Phys. D 2, 1539 (1969).

Accuracy: Systematic error, uncertain; random error <5.

Notes: (1) TiC was deposited on a Cu substrate. The clean TiC refers to the surface after heating at 800°C for 6 hours. Cassy refers to the surface as received from the supplier.

Secondary Electron Emission Coefficients for Electrons

on Ti for 0°, 30°, 45°, and 60° Incident Angle.

0° is Normal to the Surface

	Secondary Electron Emission Coefficient (electrons/electron)				
Energy (keV)	0 °	30 °	45°	60°	
7.0 E-02	4.80 E-01	4.61 E-01	4.60 E-01	5.15 E-01	
1.0 E-01	5.37 E-01	5.48 E-01	5.43 E-01	5.83 E-01	
2.0 E-01	7.73 E-01	7.36 E-01	7.41 E-01	7.94 E-01	
4.0 E-01	8.39 E-01	7.97 E-01	8.47 E-01	9.09 E-01	
7.0 E-01	7.52 E-01	7.40 E-01	8.07 E-01	9.11 E-01	
1.0 E-01	6.78 E-01	6.93 E-01	7.65 E-01	8.71 E-01	
1.5 E-01	6.06 E-01	6.27 E-01	7.05 E-01	8.20 E-01	

Reference: D. Ruzic, R. Moore, D. Manos, and S. Cohen, J. Vac. Sci. Technol. 20, 1313 (1982).

Accuracy: Systematic error, uncertain; random error ≤5%.

Secondary Electron Emission Coefficients for

Electrons at Normal Incidence on Different Textured

Pyrolytic Graphite (PG) Surfaces

1 7	Secondary	Electron Emission (electrons/electro	Coefficient on)
£nergy (keV)	Smooth PG	Textured PG	Soot
3.0 E-0	1.02 E 00	2.81 E-01	3.81 E-01
4.0 E-01	9.33 E-01	3.37 E-01	3.97 E-01
6.0 E-01	7.84 E-01	3.20 E-01	3.75 E-01
8.0 E-01	6.49 E-01	2.95 E-01	3.62 E-01
1.0 E 00) 5.32 E-01	2.86 E-01	3.54 E-01
1.2 E 00) 4.69 E-01	2.76 E-01	3.54 E-01
1.4 E 00) 4.30 E-01	2.68 E-01	3.54 E-01
1.6 E 00) 3 .93 E-01	2.63 E-01	3.54 E-01
1.8 E 00) 3. 70 E-01	2.52 E-01	3.55 E-01
2.0 E 00) 3.55 E-01	2.49 E-01	3.57 E-01

Reference: E. G. Wintucky, A. N. Curren, and J. S. Sovey, Thin Sol. Films <u>84</u>, 161 (1981).

C. SECONDARY ELECTRON EMISSION BY HEAVY PARTICLE IMPACT

of Normally Incident H^+ , H_2^+ Ions on C

	Secondary Emission Coefficient Electrons/Ion		
Energy (keV)	H+	H ₂ +	
2.0 E+01 3.0 E+01	1.68 E 00	2.40 E 00 2.70 F 00	
5.0 E+01 7.0 E+01	2.25 E 00 2.50 E 00	3.40 E 00 3.90 E 00	
1.0 E+02	2.55 E 00	4.55 E 00	

- References: L. N. Large and W. S. Whitlock, Proc. Phys. Soc. (London) 79, 148 (1962).
- Accuracy: + 10%.
- Notes: (1) There is substantial evidence that coefficients for H^+ and D^+ are the same at equal velocities suggesting that this is true also for T^+ .

of Normally Incident H^+ , H_2^+ , He^+ , C^+ , and O^+ Ions on Al

		Secon	dary Emission Electrons/	Coefficient Ion	
Energy (keV)	H+	H2+	4 _{He} +	C+	0+
2.0 E 00 4.0 E 00 7.0 E 00 1.0 E+01 2.0 E+01 3.0 E+01 4.0 E+01	2.25 E-01 3.80 E-01 5.60 E-01 7.00 E-01 1.01 E 00 1.23 E 00 1.34 E 00 1.38 E 00	1.74 E-01 3.12 E-01 4.60 E-01 6.20 E-01 1.11 E 00 1.50 E 00 1.77 E 00	2.80 E-01 3.80 E-01 5.10 E-01 6.20 E-01 8.85 E-01 1.10 E 00 1.31 E 00	2.40 E-01 4.40 E-01 6.50 E-01 1.06 E 00 1.38 E 00 1.65 E 00	4.50 E-01 6.80 E-01 8.80 E-01 1.32 E 00 1.58 E 00 1.72 E 00

References: R. A. Baragiola, E. V. Alonso, and A. Olivia-Florio, Phys. Rev. B 19, 121 (1979). E. V. Alonso, R. A. Baragiola, J. Ferron, M. M. Jakas, and A. Olivia-Florio, Phys. Rev. A 22, 80 (1980).

Accuracy: ±10%.

Notes: (1) There is substantial evidence that coefficients for H⁺ and D⁺ are the same at equal velocities suggesting that this is true also for T⁺.
(2) Data for He⁺ are by Baragiola et al. Data for H⁺ and H₂⁺ come from both Baragiola and Large. Data for C⁺ and O⁺ are from Alonso.

of Normally Incident H^+ and H_2^+ Ions on Ti

	Secondary Emis Elect	ssion Coefficient rons/Ion
(keV)	H+	H2 ⁺
2.0 E+01 4.0 E+01 5.0 E+01 7.0 E+01 1.0 E+02 1.5 E+02	8.50 E-01 1.07 E 00 1.12 E 00 1.18 E 00 1.20 E 00 1.20 E 00	1.25 E 00 1.60 E 00 1.74 E 00 1.95 E 00 2.23 E 00 2.57 E 00

- References: L. N. Large and W. S. Whitlock, Proc. Phys. Soc. (London) 79, 148 (1962).
- Accuracy: ±10%.
- Notes: (1) There is substantial evidence that coefficients for H^+ and D^+ are the same at equal velocities suggesting that this is true also for T^+ .

of Normally Incident H^+ , H_2^+ , and He^+ Ions on Ni

	Secondary Emission Coefficient Electrons/Ion			
Energy (keV)	н+	н ₂ +	Het	
1.0 E 00 2.0 E 00 3.0 E 00 5.0 E 00 7.0 E 00 1.0 E+01 2.0 E+01 3.0 E+01 5.0 E+01 7.0 E+01 1.0 E+02 1.3 E+02	9.50 E-01 1.15 E 00 1.39 E 00 1.50 E 00 1.58 E 00 1.60 E 00	1.18 E-01 1.41 E 00 1.77 E 00 2.18 E 00 2.60 E 00 2.92 E 00	1.80 E-01 2.40 E-01 3.00 E-01 4.30 E-01 5.20 E-01 6.30 E-01 9.30 E-01 1.13 E 00 1.45 E 00	

 References:
 H^+ , H_2^+ , H_3^+ on Ni: L. N. Large and W. S. Whitlock, Proc.

 Phys. Soc. 79, 148 (1962).

 He⁺ on Ni:
 \overline{V} . A. Arifov, R. R. Rakhimov, and O. V.

 Khozinskii, Bull. Acad. Sci. USSR, Phys. Ser. 26, 1422

 (1962)
 [Izv. Akad. Nauk SSR, Ser. Fiz, 26, 1398) (1962)].

Accuracy: ±10%.

Notes: (1) There is substantial evidence that coefficients for H^+ and D^+ are the same at equal velocities suggesting that this is true also for T^+ .

of Normally Incident H^+ , H_2^+ , He^+ Ions on Cu

Energy (keV)	Secondary Emission Coefficient Electrons/Ion H ⁺ H ₂ ⁺ He ⁺			
2.0 E 00	3.80 E-01	3.24 E-01	4.55 E~01	
4.0 E 00	4.80 E-01	5.30 E-01		
7.0 E 00	6.50 E-01	7.60 E-01	6.20 E-01	
1.0 E+01	7.80 E-01	8.90 E-01	8.00 E-01	
2.0 E+01	1.08 E 00	1.20 E 00	1.18 E 00	
3.0 E+01	1.15 E 00	1.50 E 00	1.44 E 00	
4.0 E+01	1.23 E 00	1.70 E 00	1.70 E 00	
7.0 E+01 1.0 E+02 1.5 E+02	1.32 = 00 1.32 = 00 1.32 = 00 1.32 = 00	2.14 E 00 2.60 E 00 2.90 E 00	1170 2 00	

References: L. N. Large and W. S. Whitlock, Proc. Phys. Soc. (London) 79, 148 (1962). R. A. Baragiola, E. V. Alonso, and A. Olivia-Florio, Phys. Rev. B 19, 121 (1979).

Accuracy: ±10%.

Notes: (1) There is substantial evidence that coefficients for H^+ and D^+ are the same at equal velocities suggesting that this is true also for T^+ . (2) Data for He^+ are by Baragiola et al. Data for H^+ and H_2^+ come from both sources cited.

Ene	ergy			Se	Secondary Emission Coefficient (electrons/ion)				
(k	.eV)]	н+	H	2+	⁴ I	He ⁺	0	+
3.0	E-02			3.3	E-02	2.9	E-01		
5.0	E-02	6.3	E-02	3.4	E-02	2.8	E-01	4.0	E-02
7.0	E-02	7.2	E-02	3.5	E-02	2.7	E-01	4.2	E-02
1.0	E-01	8.3	E-02	3.8	E-02	2.6	E-01	4.3	E-02
2.0	E-01	1.1	E-01	5.2	E-02	2.5	E-01	5.4	E-02
4.0	E-01	1.6	E-01	9.8	E-02	2.5	E-01	8.0	E-02
7.0	E-01	2.1	E-01	1.7	E-01	2.6	E-01	1.3	E-01
1.0	E 00	2.5	E-01	2.4	E-01	2.8	E-01	1.8	E-01
2.0	E 00	3.9	E-01	4.5	E-01	4.0	E-01	3.3	E-01
4.0	E 00	6.2	E-01	7.6	E-01	6.0	E-01	5.7	E-01
7.0	E 00	8.4	E-01	1.05	E 00	8.5	E-01	8.7	E-01
1.0	E+01	9.8	E-01	1.25	E 00	1.0	E 00	1.1	E 00
2.0	E+01	1.2	E 00	1.7	E 00	1.5	E 00	1.7	E 00
4.0	E+01	1.4	E 00	2.4	E 00	2.1	E 00	2.2	E 00
7.0	E+01	1.5	E 00	3.0	E 00				
1.0	E+02	1.5	E 00	3.0	E 00				
1.2	E+02	1.4	E 00	2.8	E 00				

of Normally Incident H⁺, H₂⁺, He⁺, and O⁺ Ions on Mo

 References:
 U. A. Arifov, R. R. Rakhimov, and O. V. Khozinskii, Bull.

 Acad. Sci. USSR-Phys. Ser. 26, 1422 (1962); J. Ferrón,

 E. V. Alonso, R. A. Baragiola, and A. Oliva-Florio, J.

 Phys. D 14, 1707 (1981); H. D. Hagstrum, Phys. Rev. 104,

 672 (1956); L. N. Large and W. S. Whitlock, Proc. Phys.

 Soc. 79, 148 (1962); W.H.P. Losch, Phys. Stat. Sol. (A) 2,

 123 (1970); P. Mahadevan, G. D. Magnuson, J. K. Layton, and

 C. E. Carlston, Phys. Rev. 140, Al407 (1965); M. Perdix, S.

 Paletto, R. Goutte, and C. Guilland, Brit. J. Appl. Phys.

 2, 441 (1969); D. W. Vance, Phys. Rev. 169, 252 (1968).

Accuracy: ±10%.

Notes: (1) There is substantial evidence that coefficients for H⁺ and D⁺ are the same at equal velocities suggesting that this is true for T⁺.
(2) Data for H⁺ taken from Ferrón et al., Large and Whitlock, Losch, Mahadevan et al., and Perdix et al.; data for H₂⁺ from Ferrón et al., Large and Whitlock, Losch, Mahadevan et al., and Vance; data for He⁺ from Arifov et al., Ferrón et al., Hagstrum, and Vance; and for 0⁺ Ferrón et al., Mahadevan et al., and Perdix et al.

The Dependence of the Secondary Electron Emission Coefficients on the Excited States of ${\rm O_2}^+$ Bombarding

Energy (eV)	γg	Yi	γ*
25	0.7 E-02	1.6 E-02	3.2 E-02
50	0.8 E-02	1.7 E-02	3.4 E-02
100	1.1 E-02	2.1 E-02	3.7 E-02
150	1.5 E-02	2.5 E-02	4.3 E-02
200	2.0 E-02	3.1 E-02	4.8 E-02
300	3.0 E-02	4.2 E-02	6.1 E-02
400	4.1 E-02	5.3 E-02	7.3 E-02

a Clean Mo Surface at Normal Incidence

References: D. W. Vance, Phys. Rev. 169, 263 (1968).

Accuracy: Unknown.

<u>Notes</u>: Curve labelled γ_g is for incident 0_2^+ in the ground electronic state; γ_1 is for 0_2^+ in a mixture of electronic states; and γ^* is the calculated coefficient for 0_2^+ in the $a^4\Pi_u$ state.

Emission Coefficients by He⁺ on a Clean Mo Surface at Normal Incidence

Energy				
(eV)	2 keV	5 keV	10 keV	15 keV
0.2	1.0 E-01	7.0 E-02	6.0 E-02	1.0 E-01
0.4	2.6 E-01	2.0 E-01	2.0 E-01	2.6 E-01
0.6	4.6 E-01	4.0 E-01	3.6 E-01	4.1 E-01
0.8	6.0 E-01	5.5 E-01	5.5 E-01	5.7 E-01
1.0	7.2 E-01	6.8 E-01	6.8 E-01	7.0 E-01
1.2	8.3 E-01	8.0 E-01	8.0 E-01	8.2 E-01
1.4	9.3 E-01	9.9 E-01	9.1 E-01	9.2 E-01
1.6	1.0 E 00	1.0 E 00	9.9 E-01	9.9 E-01
1.8	9.9 E-01	1.0 E 00	1.0 E 00	1.0 E 00
2.0	9.6 E-01	9.9 E-01	9.9 E-01	9.9 E-01
2.5	8.2 E-01	9.1 E-01	9.0 E-01	9.3 E-01
3.0	7.1 E-01	8.1 E-01	8.1 E-01	8.3 E-01
4.0	5.0 E-01	6.3 E-01	6.6 E-01	6.7 E-01
6.0	2.5 E-01	4.2 E-01	4.6 E-01	5.0 E-01
8.0	1.3 E-01	2.7 E-01	3.2 E-01	3.6 E-01
10.0	7.0 E-02	1.8 E-01	2.1 E-01	2.6 E-01
12.0		1.1 E-01	1.5 E-01	1.8 E-01
14.0		7.0 E-02	1.0 E-01	1.3 E-01
16.0		5.0 E-02	8.0 E-02	1.0 E-01
18.0		3.0 E-02	5.0 E-02	7.0 E-02
20.0		2.0 E-02	4.0 E-02	6.0 E-02
22.0		1.0 E-02	3.0 E-02	4.0 E-02

References: G. Wehner, Z. Phys. 193, 439 (1966).

Accuracy: ±10%.

Notes: (1) All distributions normalized to one at the maximum emission.

(2) For metallic surfaces the maximum energy of the electrons ejected from the surface is approximately 25-30 eV.

C-17

Energy Distributions of Secondary Electrons

Ejected by 40, 200, and 1000 eV He^+

Ions Incident on a Clean W Surface

	Energy Distribution (e/ion/eV)						
Energy	40 oV	200 aV	1000 eV				
(kev)	40 EV	200 EV	1000 24				
0	4.4 E-03	8.0 E-03	7.0 E-03				
0.25	6.3 E-03	1.0 E-02	1.9 E-02				
0.5	8.0 E-03	1.2 E-02	2.4 E-02				
0.75	9.5 E-03	1.3 E-02	2.4 E-02				
1.0	1.6 E-02	1.4 E-02	2.5 E-02				
1.5	1.3 E-02	1.6 E-02	2.5 E-02				
2.0	1.5 E-02	1.8 E-02	2.5 E-02				
3.0	1.9 E-02	2.0 E-02	2.3 E-02				
4.0	2.3 E-02	2.1 E-02	2.2 E-02				
5.0	2.4 E-02	2.3 E-02	2.0 E-02				
6.0	2.5 8-02	2.3 E-02	1.9 E-02				
8.0	2.5 E-02	2.1 E-02	1.6 E-02				
10.0	2.3 E-02	1.8 E-02	1.3 E-02				
12.0	1.5 E-02	1.3 E-02	1.0 E-02				
14.0	3.4 E-03	5.4 E-03	6.8 E-03				
16.0	3.7 E-04	1.4 E-03	3.2 E-03				
18.0	2.0 E-04	5.6 E-04	1.2 E-03				
20.0		2.3 E-04	6.0 E-04				

References: H. D. Hagstrum, Phys. Rev. 96, 325 (1954).

Accuracy: ±10%.

C-19

Secondary Electron Emission Coefficient for

100 keV H⁺, H_2^+ , and H_3^+ as a Function of

the Atomic Number of a Clean Target

Z	н +	н ₂ +	н ₃ +
20	1.25	2.24	2.75
30	1.50	2.61	3.35
40	1.72	2.96	3.84
50	1.90	3.36	4.17
60	1.98	3.41	4.28
70	2.05	3.47	4.33
80	2.08	3.48	4.40

References: U. A. Arifov and R. R. Rakhimov, Bull. Acad. Sci. U.S.S.R., Phys. Ser. 24, 266 (1960) [Mo, Ta, and W]; G. D. Magnuson and C. E. Carlston, Phys. Rev. 129, 2403 (1963) [Al, Ni, Cu, Zr, Mo, and Ti]; L. N. Large and W. S. Whitlock, Proc. Phys. Soc. (London) 79, 148 (1962) [Ti, Ni, Cu, Zr, Mo, Ag, Au, and Pt].

Accuracy: ±25%

Secondary Electron Emission Coefficients as a Function

of the Angle between a 120 keV Proton Beam

and a Clean Ni Target

Angle (deg.)	Secondary Emission Coefficient (electrons/ion)
21	4.5
30	3.1
40	2.4
50	2.0
60	1.8
70	1.7
80	1.6
9 0	1.6

Reference: J. S. Allen, Phys. Rev. 55, 336 (1939).

Accuracy: Unknown

Notes: (1) For all projectile-target combinations the secondary emission coefficient decreases as the angle between projectile and target increases. (2) Allen's data are normalized at 120 keV to the data given by L. N. Large and W. S. Whitlock, Proc. Phys. Soc. 79, 148 (1962).

Time to Build Up a $N_{\rm 2}$ Monolayer on a Previously

Clean Surface at Room Temperature

Pressure	Time			
(mm Hg)	(sec)			
1.0 E-12	2.0 E 06			
1.0 E-11	2.6 E 05			
1.0 E-10	3.5 E 04			
1.0 E-09	5.0 E 03			
1.0 E-08	6.7 E 02			
1.0 E-07	9.3 E 01			
1.0 E-06	1.3 E 01			
1.0 E-05	1.6 E 00			
6.0 E-05	3.8 E-01			

Reference: K. H. Krebs, Fortschr. Phys. 16, 419 (1968).

Accuracy: Unknown.

Notes: (1) Values are computed.
(2) The thickness of a monolayer of N₂ is approximately 4 Å which is comparable to the penetration depth of atomic particles in the lower keV region.
(3) Note that at a pressure of 10⁻⁹ mm Hg the build up time of a monolayer is ~30 minutes.

Changes in the Secondary Electron Emission When

a Titanium Surface is Completed Outgassed.

Energy	Ga	ssy	Degassed		
(keV)	H+	H2+	H+	H ₂ +	
30	3.62	5.03	0.94	1.32	
40	3.72	5.28	1.00	1.58	
60	3.90	5.70	1.08	1.86	
80	4.01	6.12	1.12	2.13	
100	3.98	6.48	1.12	2.30	
120	3.86	6.66	1.11	2.41	
130	3.75	6.78	1.10	2.48	

 H^+ and H_2^+ Normally Incident on Ti

Reference: L. N. Large, Proc. Phys. Soc. (London) 81, 175 (1963).

Accuracy: Unknown.

Notes: (1) The upper two curves were obtained from a Ti surface after exposure to air at atmospheric pressure for six months. (2) The two lower curves were obtained after degassing in a background pressure of 10^{-8} mm Hg. The Ti target was cleaned by flashing to 1300° C.

The Effect of the Secondary Electron Emission Coefficient

on the Degassing Technique. H⁺ Normally Incident on Mo

	Flashed to
EnergyChemicallyBaked at(keV)Etched400°C	1750°C
15	1.02 E 00
20	1.06 E 00
35 4.55 E 00 2.38 E 00	1.22 E 00
40 4.59 E 00 2.44 E 00	1.28 E 00
60 4.74 E 00 2.69 E 00	1.42 E 00
80 4.80 E 00 2.82 E 00	1.53 E 00
100 4.78 E 00 2.81 E 00	1.56 E 00
120 4.72 E 00 2.71 E 00	1.51 E 00
125 4.69 E 00 2.67 E 00	1.50 E 00

Reference: L. N. Large and W. S. Whitlock, Proc. Phys. Soc. (London) 79, 148 (1962).

Accuracy: Unknown.

Notes: Targets were heated and flashed in a vacuum of approximately 10^{-8} mm Hg.

Energy (keV)	C ⁴⁺	C2+	Ce+
50	5.35		
60	5.50	6.00	
70	5.65	6.15	7.10
100	6.00	6.50	7.52
200	7.08	7.75	8.90
300	7.98	8.80	9.92
385	8.70	9.58	10.55
400		9.70	10.70
470		10.20	11.20
500			11.45
600			12.10

Secondary Electron Emission Coefficient for C^{n+} ($n^+ = 4-6$)

on Gas Covered Cu at High Energies

Reference: R. Decoste and B. H. Ripin, J. Appl. Phys. 50, 1503 (1979).

Accuracy: ±10%.

Note: (1) Since the ion kinetic energy is much greater than the multicharged ion potential energy, the kinetic emission dominates the potential emission.

Secondary Electron Emission Coefficients by Impact of Al Multicharged Ions on Gas Covered Au at Low Impact Energies

n	Secondary Emission Coefficient (electrons/ion)					
1	0.65					
2	1.35					
3	2.52					
4	4.22					
5	6.35					
6	8.60					
7	11.00					
8	13.50					
9	16.00					

Reference: G. L. Cano, J. Appl. Phys. 44, 5293 (1973).

Accuracy: ±10% (estimated).

Notes: (1) n is the ion charge state. (2) Data were obtained over the incide

(2) Data were obtained over the incident 1-6 keV energy range. In this energy region the coefficient is practically independent of the energy. The observed increase in the coefficient with n results from potential emission.

Ratios of the Number of Secondary Electrons from H^{O} to that of H^{+} Impact on Gas Covered and

Clean Surfaces at Normal Incidence	
------------------------------------	--

Energy	Hº/H ⁺	H ⁰ /H ⁺	H ⁰ /H ⁺	H ⁰ /H ⁺
(keV)	Gassy	Clean Ni	Clean Al	Clean Ag
3.0 $E-02$ 6.0 $E-02$ 1.0 $E-01$ 2.0 $E-01$ 4.0 $E-01$ 7.0 $E-01$ 1.0 $E+00$ 2.0 $E+00$ 4.0 $E+00$ 7.0 $E+00$ 1.0 $E+01$ 2.0 $E+01$ 4.0 $E+01$ 7.0 $E+01$ 1.0 $E+02$ 2.0 $E+02$ 4.0 $E+02$ 7.0 $E+02$ 1.0	1.18 1.19 1.21 1.33 1.47 1.55 1.65	0.37 0.45 0.60	0.29 0.38 0.55	0.24 0.34 0.54

 References:
 Gassy - C. F. Barnett and J. A. Ray, Rev. Sci. Instrum. 43,

 218 (1972) [Cu]; C. F. Barnett and H. K. Reynolds, Phys. Rev.

 109, 355 (1958) [brass]; R. Dagnac, D. Blanc, and D. Molina,

 J. Phys. B 3, 1239 (1970) [CuO-Be]; R. L. Fitzwilson and E. W.

 Thomas, Rev. Sci. Instrum. 42, 1864 (1971) [Ni]; M. W. Geis,

 K. A. Smith, and R. D. Rundel, J. Phys. E, 8, 1011 (1975)

 [Ag]; A. I. Kislyakov, J. Stöckel and K. Jakubka, Sov.

 Phys.-Tech. Phys. 20, 986 (1976) [A1, Cu, Mo]; F. W. Meyer,

 unpublished [SS]; J. A. Ray, C. F. Barnett, and B. Van Zyl, J.

 Appl. Phys. 50, 6516 (1979) [Cu]; L. E. Sharp, L. S. Holmes,

 P. E. Stott, and D. A. Aldcroft, Rev. Sci. Instrum. 45, 378

 (1974) [A1]; K. A. Smith, M. D. Duncan, M. W. Geis, and R. D.

 Rundel, J. Geophys. Res. 81, 2231 (1976) [Ag]; P. M. Stier, C.

 F. Barnett, and G. E. Evans, Phys. Rev. 96, 973 (1954) [Ni].

<u>Clean-Ni</u> - Al, and Ag: K. Morita, H. Akimune, and T. Suita, Jap. J. Appl. Phys. 5, 511 (1966).

Accuracy: ±20%.

Notes: For a "gassy" surface the ratio of the secondary electron emission of H^0 to that of H^+ is to within $\pm 20\%$ for all those metallic surfaces indicated in brackets in the reference list. The interpretation of electron emission from a gassy surface is that the gas coverage dominates the emission process.

C-35

Normally Incident H⁻ and O⁻ to that of H⁺ and O⁺

		Ra	atio	Rat	io
Energ (keV)	g y	H ⁻ /H ⁺ (gassy)	H ⁻ /H ⁺ (clean)	0 ⁻ /0 ⁺ (gassy)	0 ⁻ /0 ⁺ (clean)
4.0 E-	-02	7.3			
5.0 E-	-02	6.3			
7.0 E-	-02	5.0			
1.0 E-	-01	4.0			
2.0 E-	-01	2.8	0.06		
4.0 E-	-01	2.2	0.20		0.10
5.0 E-	-01	2.08	0.26	1.55	0.14
7.0 E-	-01	1.9	0.39	1.40	0.20
1.0 Et	-00	1.8	0.55	1.28	0.32
2.0 EH	-00	1.7	0.84	1.14	0.54
4.0 EH	-00		1.05		0.74
7.0 EH	-00		1.10		0.82
1.0 EH	-01		1.13		0.85
2.0 EH	-01		1.22		0 .9 0
2.8 EH	-01		1.27		0.91

on Gas Covered and Clean Metallic Surfaces

References: $H^-/H^+ - gassy - J.$ A. Ray, C. F. Barnett, and B. Van Zyle,
J. Appl. Phys. 50, 6516 (1979) [Cu]; F. W. Meyer,
unpublished [SS].
 $H^-/H^+ - clean - M.$ Perdrix, S. Paletto, R. Goutte, and C.
Guilland, J. Phys. D 2, 441 (1969) [W]; P. Mahadevan, G. D.
Magnuson, J. K. Layton, and C. E. Carlston, Phys. Rev. 140,
A1407 (1965) [Mo].
 $O^-/O^+ - gassy - P.$ Mahadevan, G. D. Magnuson, J. K. Layton,
and C. E. Carlston, Phys. Rev. 140, A1407 (1965) [Mo].
 $O^-/O^+ - clean - P.$ Mahadevan, G. D. Magnuson, J. K. Layton,
and C. E. Carlston, Phys. Rev. 140, A1407 (1965) [Mo].
 $O^-/O^+ - clean - P.$ Mahadevan, G. D. Magnuson, J. K. Layton,
and C. E. Carlston, Phys. Rev. 140, A1407 (1965) [Mo].
 $O^-/O^+ - clean - P.$ Mahadevan, G. D. Magnuson, J. K. Layton,
and C. E. Carlston, Phys. Rev. 140, A1407 (1965) [Mo]; M.
Perdrix, S. Paletto, R. Goutte, and C. Guilland, J. Phys. D
2, 441 (1969) [Mo].

Accuracy: ±20% (estimated).

C-37

Ratios	of	the	Nun	aber	of	Second	lary	Elec	etro	ons	from
Normally	' Ir	ncide	nt	Heli	lum	Atoms	to	that	of	He	Ions

on Gas Covered and Clean Metallic Surfaces

Energy (keV)	He ^o /He ⁺ (gassy)	Ratio He ^O / (cle	He ⁺ an)
5.0 $E-02$ 7.0 $E-02$ 1.0 $E-01$ 2.0 $E-01$ 3.0 $E-01$ 4.0 $E-01$ 7.0 $E-01$ 1.0 $E+00$ 2.0 $E+00$ 4.0 $E+00$ 7.0 $E+01$ 2.0 $E+01$ 2.0 $E+01$ 4.0 $E+01$ 7.0 $E+01$ 1.0 $E+02$ 2.0 $E+02$	0.037 0.11 0.28 0.66 0.80 0.87 0.95 0.97 1.02 1.07 1.10 1.10 1.10 1.10 1.09 1.07 1.05	0.0 0.1 0.2 0.3 0.5 0.8	6 1 5 6 8 4

 References:
 Gassy - H. W. Berry, J. Appl. Phys. 29, 1219 (1958) [W];

 M. W. Geis, K. A. Smith, and R. D. Rundel, J. Phys. E 8, 1011 (1975) [Ag]; H. C. Hayden and N. G. Utterback, Phys. Rev. 135, A1575 (1964) [Au]; J. K. Layton, J. Chem. Phys. 59, 5744 (1973); A. Rostagni, Z. Physik 88, 55 (1934) [Cu, Brass]; P. M. Stier, C. F. Barnett, and G. E. Evans, Phys. Rev. 96, 973 (1954) [Ni]. Clean - H. W. Berry, J. Appl. Phys. 29, 1219 (1958) [W].

Accuracy: ±20% (estimated).

D. ELECTRON REFLECTION

Backscattering Coefficients for Electrons

Incident Normally on C, Al, Ti, and Fe

	Backscattering Coefficient (electrons/electron)							
Energy (keV)	С	Al	Ti	Fe				
6.0 E-02		1.20 E-01	in Handland Bord and Bord and Bord and Bord and Anna Anna Anna Anna Anna Anna Anna					
1.0 E-01		1.78 E-01						
2.0 E-01	1.23 E-01	2.22 E-01						
4.0 E-01	1.43 E-01	2.31 E-01		2.11 E-01				
7.0 E-01	1.49 E-01	2.31 E-01		2.06 E-01				
1.0 E 00	1.45 E-01	2.31 E-01		2.11 E-01				
2.0 E 00	1.20 E-01	2.21 E-01		2.54 E-01				
4.0 E 00	9.63 E-02	1.96 E-01	2.59 E-01	2.84 E-01				
7.0 E 00	8.16 E-02	1.76 E-01	2.62 E-01	2.93 E-01				
1.0 E+01	7.49 E-02	1.65 E-01	2.59 E-01	2.86 E-01				
2.0 E+01	6.43 E-02	1.50 E-01	2.52 E-01	2.77 E-01				
4.0 E+01	5.68 E-02		2.40 E-01	2.66 E-01				
6.0 E+01	5.39 E-02							

 References:
 e + C - J. Hölzl and K. Jacobi, Surf. Sci. 14, 351 (1969);

 H. J. Hunger and L. Kuchler, Phys. Stat. Sol. (a) 56, K45

 (1979); G. Neubert and S. Rogaschewski, Phys. Stat. Sol.

 (a) 59, 35 (1980); H. Sørensen and J. Schou, J. Appl. Phys.

 43, 5311 (1978).

<u>e</u> + Al - G. Neubert and S. Rogaschewski, Phys. Stat. Sol. (a) <u>59</u>, 35 (1980); H. E. Bishop, in "Optique des Rayons X et Microanalyse," IV Congrès International sur l'optique des Rayons X et la Microanalyse," Sept. 1965, p. 153, Herman, Paris; S. Thomas and E. B. Pattinson, J. Phys. D: Appl. Phys. <u>2</u>, 1539 (1969).

e + Ti - H. J. Hunger and L. Kuchler, Phys. Stat. Sol. (a) 56, K45 (1979).

<u>e + Fe</u> - H. J. Hunger and L. Kuchler, Phys. Stat. Sol. (a) <u>56</u>, K45 (1979); E. J. Sternglass, Phys. Rev. <u>95</u>, 345 (1954).

Backscattering Coefficients for Electrons

Energy (keV)	Backs (e Ni	cattering Coeffi electrons/electro Cu	ficient ron) Mo			
2.0 $E-01$ 4.0 $E-01$ 5.0 $E-01$ 7.0 $E-01$ 1.0 E 00 2.0 E 00 2.2 E 00 4.0 E 00 7.0 E 00 1.0 $E+01$ 2.0 $E+01$ 4.0 $E+01$ 7.0 $E+01$ 1.0 $E+01$ 1.0 $E+02$	2.91 E-01 2.98 E-01 3.04 E-01 3.06 E-01 3.02 E-01 2.92 E-01	2.62 E-01 2.62 E-01 2.66 E-01 2.82 E-01 3.15 E-01 3.22 E-01 3.23 E-01 3.18 E-01 3.09 E-01 2.99 E-01 2.92 E-01	1.40 E-01 1.73 E-01 1.88 E-01 2.07 E-01 2.30 E-01 2.87 E-01 3.36 E-01 3.69 E-01 3.84 E-01 3.94 E-01			

Incident Normally on Ni, Cu, and Mo

References: e + Ni - H. J. Hunger and L. Kuchler, Phys. Stat. Sol. (a) 56, K45 (1979); P. Palluel, Comptes Rendus 224, 1492 (1947).

> <u>e + Cu</u> - H. J. Hunger and L. Kuchler, Phys. Stat. Sol (a) <u>56</u>, K45 (1979); P. Palluel, Comptes Rendus <u>224</u>, 1492 (1947); E. J. Sternglass, Phys. Rev. 95, 345 (1954).

<u>e + Mo</u> - H. E. Bishop, "Optique des Rayons x et Microanalyse," IV Congrès International sur l'optique des Rayons X et la Microanalyse, p. 153, Herman, Paris (1965); P. Palluel, Comptes Rendus 224, 1492 (1947); E. J. Sternglass, Phys. Rev. <u>95</u>, 345 (1954).

Accuracy: ±5% above 5 keV; ±20% below 5 keV (estimated).

Backscattering Coefficients for Electrons

Incident Normally on Ag, W, and Au

Energy	Bac	Backscattering Coefficient (electrons/electrons)						
(keV)	Ag	W	Au					
7.0 E-02 $1.0 E-03$ $2.0 E-03$ $4.0 E-03$ $1.0 E 00$ $2.0 E 00$ $4.0 E 00$ $7.0 E 00$ $1.0 E+03$ $2.0 E+03$ $7.0 E+03$	$\begin{array}{c} 1 & 1.49 & \text{E-01} \\ 2.59 & \text{E-01} \\ 3.60 & \text{E-01} \\ 4.05 & \text{E-01} \\ 1 & 4.05 & \text{E-01} \\ 1 & 4.13 & \text{E-01} \\ 1 & 4.13 & \text{E-01} \\ 1 & 4.13 & \text{E-01} \\ 1 & 4.11 & \text{E-01} \\ 1 & 4.10 & \text{E-01} \\ 1 & 4.09 & \text{E-01} \\ 1 & 4.09 & \text{E-01} \\ \end{array}$	3.56 E-01 4.15 E-01 4.48 E-01 4.57 E-01 4.76 E-01 4.75 E-01	1.88 E-01 1.91 E-01 1.99 E-01 2.77 E-01 3.74 E-01 4.13 E-01 4.50 E-01 4.59 E-01 4.66 E-01 4.72 E-01 4.81 E-01 4.85 E-01					

References: e + Ag - H. E. Bishop, "Optique des Rayons X et Microanalyse," IV Congrès International sur l'optique des Rayons X et la Microanalyse, p. 153, Herman, Paris (1965); H. J. Hunger and L. Küchler, Phys. Sat. Sol (a) 56, K45 (1979); G. Neubert and S. Rogaschewski, Phys. Stat. Sol. (a) 59, 35 (1980); S. Thomas and E. B. Pattinson, J. Phys. D: Appl. Phys. 3, 349 (1969).

> <u>e + Au</u> - H. J. Hunger and L. Küchler, Phys. Sat. Sol. (a) 56, K45 (1979); J. Schou and H. Sørenson, J. Appl. Phys. 49, 816 (1978); S. Thomas and E. B. Pattinson, J. Phys. D: Appl. Phys. 3, 349 (1969).

e + W - H. J. Hunger and L. Küchler, Phys. Sat. Sol. (a) 56, K45 (1979).

Backscattering Coefficients for Electrons Incident

_	Backscattering Coefficient (electrons/electron)						
Energy (keV)	Gassy	Degassed					
0.10	2.50 E-01	9.64 E-02					
0.15	2.88 E-01	1.58 E-01					
0.20	3.00 E-01	1.91 E-01					
0.30	2.92 E-01	2.17 E-01					
0.40	2.89 E-01	2.38 E-01					
0.60	2.92 E-01	2.56 E-01					
0.80	2.95 E-01	2.64 E-01					
1.00	2.95 E-01	2.64 E-01					
1.20	2.96 E-01	2.64 E-01					

Normally on a "Gassy" and "Degassed" TiC Surface

Reference: S. Thomas and E. B. Pattinson, J. Phys. D 2, 1539 (1969).

.

Backscattering Coefficients for 20, 40, and 60 keV

Electrons Incident on Ti as a Function of Angle

Between the Incident Electrons and the Normal to the Surface

	Backs (e	scattering Coeffi electrons/electro	icient on)
Angle (deg)	20 keV	40 keV	60 keV
0	2.63 E-01	2.52 E-01	2.46 E-01
10	2.69 E-01	2.58 E-01	2.51 E-01
20	2.87 E-01	2.76 E-01	2.69 E-01
30	3.16 E-01	3.06 E-01	3.00 E-01
40	3.60 E-01	3.51 E-01	3.45 E-01
50	4.19 E-01	4.10 E-01	4.05 E-01
60	4.96 E-01	4.89 E-01	4.83 E-01
70	5.95 E-01	5.87 E-01	5.87 E-01
80	7.29 E-01	7.21 E-01	7.15 E-01

Reference:	G. Ne	eubert	and	s.	Rogaschewski,	Phys.	Stat.	Sol.	(a)	59,	35
	(1980	0).			-	-					

Backscattering Coefficients for 20, 40, and 60 keV

·
E. HEAVY PARTICLE REFLECTION

Particle Reflection from Surfaces

Introductory Notes

A. Definition of Quantities

1. R_N Particle reflection coefficient

Ratio of total backscattered flux (integrated over all angles and energies) to total incident flux. Specifically if a projectile beam of energy E falls on a target, and a fraction $r(E_0, E)dE$ is scattered back with energies in the interval $E \rightarrow E + dE$ (integrated over all emergent angles) then

$$R_{N} = \int_{0}^{E_{O}} r(E_{O}, E) \cdot dE$$

2. R_E Energy reflection coefficient

Ratio of integrated energy of backscattered particles to energy of incident projectiles.

$$R_{E} = \frac{1}{E_{O}} \int_{O}^{E_{O}} E \cdot r(E_{O}, E) dE$$

3. E Mean backscattered energy

Average energy of backscattered particles.

$$\overline{E} = \frac{\int_{0}^{E_{0}} E \cdot r(E_{0}, E) dE}{\int_{0}^{E_{0}} r(E_{0}, E) dE}$$
$$\equiv \frac{R_{E}}{R_{N}} E_{0}$$

4. N^{i}/N^{T} charge state fraction

For recoils at some energy E the ratio of the flux N^1 in charge state i (e.g., i = +, 0 or - for H⁺, H⁰ or H⁻) to the total scattered flux N^T at that energy.

B. Scaling Laws

It has generally been found that particle or energy reflection coefficients (R_N and R_E) are the same for most projectile-target combinations when plotted as a function of "reduced energy" ε , where

$$\epsilon = \frac{32.5 \text{ A}_2 \text{ E}}{(Z_1^{2/3} + Z_2^{2/3})^{1/2} (A_1 + A_2)Z_1 Z_2}$$

Here Z_1 and Z_2 are the atomic numbers of the projectile and target; A_1 and A_2 are the masses of the projectile and target; and E is the projectile energy (in keV). [See, for example, J. Schou et al., J. Nucl. Mater. <u>76</u> and <u>77</u>, 359 (1978).] This equation may be used to reliably estimate R_N or $\overline{R_E}$ for \overline{D} and T using available data for H or He. It may be used, with some caution to scale between different target material.

A more complete (and more reliable) scaling technique involving the above feature is to be found in work by Tabata [T. Tabata et al., Jap. J. Appl. Phys. 20, 1929 (1981).

- C. Major Data Compendia
 - "Data on the Backscattering Coefficients of Light Ions from Solids," T. Tabata et al., IPPJ-AM-18 (Institute of Plasma Physics, Nagoya, Japan). 1981
 - "Data on Light Ion Reflection," W. Eckstein and H. Verbeek, IPP 9/32 (Institute fur Plasmaphysik, Garching, Germany). 1979
- D. Data Presentation

In Figs. 5.4 and 5.5 we display a compendium of R_N values for a variety of elements as a function of reduced energy ε . The objective is to illustrate the success of scaling against reduced energy ε .

Subsequent data tables shown particle and energy reflection coefficients R_N and R_E for various projectile target combinations. Samples of data on angular distributions, energy distributions and charge state distributions are shown at the end.

Fig. E-4. Composite Figure Showing Calculated Particle Reflection Coefficients for Several Ion-Target Combinations Versus the Reduced Energy ε (defined on previous pages). Taken from W. Eckstein and H. Verbeek, Report IPP 9/32, MPI Garching, August, 1979.

Fig. E-5. Composite Figure Showing Measured Particle Reflection Coefficients for Several Ion-Target Combinations Versus the Reduced Energy ε (defined on previous pages). Taken from W. Eckstein and H. Verbeek, Report IPP 9/32, MPI Garching, August, 1979.

Particle Reflection Coefficients (R_N) for

H⁺, D⁺, and He⁺ Incident on C

(normal incidence, room temperature)

Energ (keV)	y ^R h (H ⁺ c	N F Dn C) (D ⁺	n C) (He ⁺ o	n C)
1.0 E- 2.0 E- 4.0 E- 6.0 E- 1.0 E- 2.0 E- 4.0 E- 6.0 E- 1.0 E+ 2.0 E+ 4.0 E+ 6.0 E+ 1.0 E+ 2.0 E+ 4.0 E+ 2.0 E+ 4.0 E+ 2.0 E+ 4.0 E- E+ 2.0 E- E- 2.0 E- 2.0 E+ 2.0	02 4.56 02 4.13 02 3.64 02 3.31 01 2.87 01 2.23 01 1.59 01 1.25 00 8.73 00 4.83 00 2.33 00 1.42 01 7.01 01 2.31 01 6.27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E-01 1.07 $E-01$ 8.71 $E-01$ 7.61 $E-01$ 7.20 $E-01$ 6.83 $E-01$ 6.44 $E-01$ 6.02 $E-01$ 5.71 $E-02$ 5.23 $E-02$ 4.38 $E-02$ 3.36 $E-02$ 2.74 $E-03$ 1.99 $E-03$ 1.14 $E-04$ 5.49	E - 01 E - 02 E - 03
6.0 E+ 1.0 E+	01 02		3.29 1.56	E-03 E-03

References: H⁺ and D⁺ Projectiles: W. Eckstein and H. Verbeek, Report IPP 9/32, MPI Garching, August 1979 (10⁻² to 10 keV); T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981 (10-40 keV).

> He⁺ Projectiles: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown,

Notes: (1) H⁺; D⁺. These data are based primarily on computer models by the TRIM and MARLOWE codes. Experimental data confirm these codes adequately (±25%) at energies above 1 keV. At lower energies there is recent experimental data [E. W. Thomas and M. Braun, J. Appl. Phys. 53, 6446 (1982)] for D⁺ that lies above the calculated values by as much as 100% at 30 eV. This discrepancy may be related to the low density form of C used in the experiments (Papyex). It is suggested that the data reproduced here be used for high density forms of C.

(2) For He^+ these values from from a computer simulation and there is no experimental confirmation.

Energy Reflection Coefficients (R_E) for

H⁺, D⁺, and He⁺ Incident on C

(normal incidence, room temperature)

Energy	R _E	$(D^+ on C)$	^R E
(keV)	(H ⁺ on C)		(He ⁺ on C)
1.0 E-02	$\begin{array}{c} 2.65 \ E-01 \\ 2.21 \ E-01 \\ 1.82 \ E-01 \\ 1.59 \ E-01 \\ 1.31 \ E-01 \\ 9.49 \ E-02 \\ 6.29 \ E-02 \\ 4.72 \ E-02 \\ 3.09 \ E-02 \\ 1.54 \ E-02 \\ 6.61 \ E-03 \\ 3.71 \ E-03 \\ 1.63 \ E-03 \\ 4.49 \ E-04 \\ 9.87 \ E-05 \end{array}$	1.68 $E-01$	7.58 E-02
2.0 E-02		1.28 $E-01$	5.66 E-02
4.0 E-02		1.01 $E-01$	4.54 E-02
6.0 E-02		8.87 $E-02$	4.08 E-02
1.0 E-01		7.49 $E-02$	3.63 E-02
2.0 E-01		7.59 $E-02$	3.14 E-02
4.0 E-01		4.22 $E-02$	2.69 E-02
6.0 E-01		3.37 $E-02$	2.69 E-02
1.0 E+00		2.41 $E-02$	2.08 E-02
2.0 E+00		1.36 $E-02$	1.60 E-02
4.0 E+00		6.57 $E-03$	1.13 E-02
6.0 E+00		3.94 $E-03$	8.75 E-03
1.0 E+01		1.87 $E-03$	5.98 E-03
2.0 E+01		5.56 $E-04$	3.14 E-03
4.0 E+01		1.28 $E-04$	1.40 E-03
6.0 E+01 1.0 E+02			8.01 E-04 3.58 E-04

References: H⁺ and D⁺ Projectiles: W. Eckstein and H. Verbeek, Report IPP 9/32, MPI Carching, August 1979 (10⁻² to 10 keV); T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981 (10-40 keV).

> He⁺ Projectiles: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown,

Notes: (1) H^+ ; D^+ . These data are based primarily on computer models by the TRIM and MARLOWE codes. Experimental data confirm these codes adequately (±25%) at energies above 1 keV.

(2) For He^+ these values from from a computer simulation and there is no experimental confirmation.

Particle Reflection Coefficients (R_N)

for H⁺ and He⁺ Incident on Al

(normal incidence, room temperature)

Energy (keV)	(H ⁺ on Al)	(He ⁺ on Al)
1.0 E-02	2.79 E-01	4.42 E-01
2.0 E-02	2.85 E-01	3.13 E-01
4.0 E-02	2.80 E-01	2.47 E-01
6.0 E-02	2.82 E-01	2.22 E-01
1.0 E-01	2.72 E-01	2.01 E-01
2.0 E-01	2.47 E-01	1.81 E-01
4.0 E-01	2.10 E-01	1.65 E-01
6.0 E-01	1.84 E-01	1.55 E-01
1.0 E+00	1.49 E-01	1.41 E-01
2.0 E+00	1.01 E-01	1.18 E-01
4.0 E+00	6.14 E-02	9.02 E-02
6.0 E+00	4.30 E-02	7.34 E-02
1.0 E+01	2.56 E-02	5.31 E-02
2.0 E+01	1.11 E-02	2.99 E-02
4.0 E+01	4.02 E-03	1.41 E-02
6.0 E+01	2.04 E-03	8.25 E-03
1.0 E+02	7.91 E-04	3.67 E-03

Reference: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: These data are largely based on a theoretical interpolation from data for other materials and have been confirmed experimentally only for H^+ at energies above 10 keV.

Energy Reflection Coefficients (R_E)

for H⁺ and He⁺ Incident on Al

(normal incidence, room temperature)

Energy (keV)	(H ⁺ on Al)	(He ⁺ on Al)
1.0 $E-02$ 2.0 $E-02$ 4.0 $E-02$ 6.0 $E-02$ 1.0 $E-01$ 2.0 $E-01$ 4.0 $E-01$ 6.0 $E-01$ 1.0 $E+00$ 2.0 $E+00$ 4.0 $E+00$ 6.0 $E+00$ 1.0 $E+01$ 2.0 $E+01$ 4.0 $E+01$ 6.0 $E+01$ 6.0 $E+01$	2.05 E-01 2.04 E-01 1.90 E-01 1.77 E-01 1.55 E-01 1.22 E-01 8.74 E-02 6.91 E-02 4.90 E-02 2.81 E-02 1.44 E-02 9.29 E-03 5.02 E-03 1.96 E-03 6.69 E-04 3.35 E-04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.0 E+02	1.31 E-04	9.49 E-04

Reference: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: These data are largely based on a theoretical interpolation from data for other materials. Experimental tests are confirmed to a few energies at about 10 keV where experiment lies 30% below the data quoted here.

Energy Reflection Coefficient for

Particle Reflection Coefficients (R_N) for

H⁺, D⁺, and He⁺ Incident on Ti

(normal incidence, room temperature)

Energy	R _N	(D ⁺ on Ti)	R _N
(keV)	(H ⁺ on Ti)		(He ⁺ on Ti)
1.0 E-02	3.31 E-01	6.22 E-01 4.67 E-01 3.78 E-01 3.43 E-01 3.08 E-01 2.69 E-01 2.32 E-01 2.09 E-01 1.78 E-01 2.61	7.93 E-01
2.0 E-02	3.17 E-01		5.23 E-01
4.0 E-02	3.07 E-01		3.90 E-01
6.0 E-02	3.01 E-01		3.36 E-01
1.0 E-01	2.91 E-01		2.86 E-01
2.0 E-01	2.71 E-01		2.38 E-01
4.0 E-01	2.41 E-01		2.02 E-01
6.0 E-01	2.18 E-01		1.83 E-01
1.0 E+00	1.86 E-01		1.61 E-01
2.0 E+00	1.38 E-01	1.34 $E-01$	1.31 E-01
4.0 E+00	9.24 E-02	9.06 $E-02$	1.01 E-01
6.0 E+00	6.91 E-02	6.79 $E-02$	8.45 E-02
1.0 E+01	4.48 E-02	4.38 $E-02$	6.44 E-02
2.0 E+01	2.19 E-02	2.08 $E-02$	4.08 E-02
4.0 E+01	9.10 E-03	8.14 $E-03$	2.29 E-02
6.0 E+01	5.00 E-03	4.24 $E-03$	1.53 E-02
1.0 E+02	2.14 E-03	1.66 $E-03$	8.54 E-03

References: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: (1) These data are based generally on a theoretical formulation. They have been confirmed experimentally at energies between 1 and 10 keV to within 20% for most cases.

(2) It has been shown [Oen and Robinson, J. Nucl. Mat. 76 and 77, 370 (1978)] that as hydrogen builds up in the Ti the reflection coefficient decreases to a value appropriate to TiH_2 .

Energy Reflection Coefficients (R_E) for

H⁺, D⁺, and He⁺ Incident on Ti

(normal incidence, room temperature)

Ener (ke	rgy ≥V)	R _E (H ⁺ on Ti)	(D ⁺ on Ti)	(He ⁺ on Ti)
1.0 E	202	2.80 E-01	4.24 E-01	5.46 E-01
2.0 E	3-02	2.53 E-01	3.06 E-01	3.57 E-01
4.0 E	E-02	2.25 E-01	2.36 E-01	2.53 E-01
6.0 H	E-02	2.08 E-01	2.07 E-01	2.12 E-01
1.0 E	E-01	1.84 E-01	1.78 E-01	1.74 E-01
2.0 E	E-01	1.51 E-01	1.46 E-01	1.37 E-01
4.0 E	2-01	1.16 E-01	1.17 E-01	1.09 E-01
6.0 H	E-01	9.65 E-02	1.00 E-01	9.46 E-02
1.0 H	G+00	7.35 E-02	8.06 E-02	7.86 E-02
2.0 E	E+00	4.68 E-02	5.55 E-02	5.92 E-02
4.0 E	E+00	2.69 E-02	3.43 E-02	4.22 E-02
6.0 E	E+00	1.84 E-02	2.43 E-02	3.34 E-02
1.0 E	3+01	1.07 E-02	1.46 E-02	2.39 E-02
2.0 E	E+01	4.57 E-03	6.31 E-03	1.38 E-02
4.0 E	3+01	1.68 E-03	2.23 E-03	7.06 E-03
6.0 E	E+01	8.65 E-04	1.09 E-03	4.47 E-03
1.0 H	3+02	3.46 E-04	3.97 E-04	2.33 E-03

References: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

(2) It has been shown [Oen and Robinson, J. Nucl. Mat. 76 and 77, 370 (1978)] that as hydrogen builds up in the Ti the reflection coefficient decreases to a value appropriate to TiH_2 .

Notes: (1) These data are based generally on a theoretical formulation. They have been confirmed experimentally at energies between 1 and 10 keV to within 20% for most cases.

E-17

Particle Reflection Coefficients (R_N) for

H⁺, D⁺, and He⁺ Incident on Fe and on Stainless Steel

Ene (k	ergy eV)	(H ⁺ on Fe)	R _N (D ⁺ on Fe)	(He ⁺ ^R N (He ⁺ on Fe)
1.0	E-02	8.35 E-01	8.26 E-01	8.42 E-01
2.0	E-02	6.84 E-01	6.38 E-01	5.77 E-01
4.0	E-02	5.98 E-01	5.39 E-01	4.27 E-01
6.0	E-02	5.63 E-01	5.04 E-01	3.69 E-01
1.0	E-01	5.28 E-01	4.72 E-01	3.14 E-01
2.0	E-01	4.81 E-01	4.38 E-01	2.60 E-01
4.0	E-01	4.27 E-01	4.01 E-01	2.20 E-01
6.0	E-01	3.87 E-01	3.74 E-01	2.00 E-01
1.0	E+00	3.31 E-01	3.33 E-01	1.76 E-01
2.0	E+00	2.45 E-01	2.63 E-01	1.46 E-01
4.0	E+00	1.60 E-01	1.85 E-01	1.16 E-01
6.0	E+00	1.18 E-01	1.41 E-01	9.89 E-02
1.0	E+01	7.40 E-02	9.26 E-02	7.84 E-02
2.0	E+01	3.50 E-02	4.43 E-02	5.33 E-02
4.0	E+01	1.47 E - 02	1.70 E-02	3.30 E-02
6.0	E+01	8.40 E-03	8.69 E-03	2.36 E-02
1.0	E+02	4.25 E-03	3.26 E-03	1.46 E-02

(normal incidence, room temperature)

References: H⁺ and D⁺ Projectiles: W. Eckstein and H. Verbeek, Report <u>TPP 9/32, MPI Garching</u>, August 1979 (10⁻² to 10 keV); T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981 (10 to 10² keV).

> He⁺ Projectiles: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: (1) The data are largely for Fe but are expected also to be appropriate for stainless steel.

(2) Data for H^+ and D^+ are based primarily on computer models by the TRIM and MARLOWE codes. Experimental data for stainless steel at 2.5 to 15.0 keV agree with the model calculations which are for Fe.

(3) Data for He^+ are from a theoretical calculation that has not been confirmed by experiment.

E-19

Energy Reflection Coefficients (R_E) for

H⁺, D⁺, and He⁺ Incident on Fe and on Stainless Steel

Energy (keV)	, R _E (H ⁺ on F	re) (D ⁺ on Fe) (He ⁺ on Fe)
$1.0 \ E-0$ $2.0 \ E-0$ $4.0 \ E-0$ $6.0 \ E-0$ $4.0 \ E-0$ $4.0 \ E+0$ $4.0 \ E+0$ $6.0 \ E+0$ $1.0 \ E+0$	2 $6.26 = -0$ 2 $4.96 = -0$ 2 $4.96 = -0$ 2 $4.16 = -0$ 2 $3.81 = -0$ 2 $3.81 = -0$ 2 $3.81 = -0$ 1 $2.92 = -0$ 1 $2.39 = -0$ 1 $2.06 = -0$ 0 $1.62 = -0$ 0 $1.07 = -0$ 0 $6.07 = -0$ 0 $4.03 = -0$ 0 $2.20 = -0$	1 $5.93 = -01$ 1 $4.46 = -01$ 1 $3.64 = -01$ 1 $3.64 = -01$ 1 $3.64 = -01$ 1 $3.64 = -01$ 1 $2.98 = -01$ 1 $2.61 = -01$ 1 $2.61 = -01$ 1 $2.23 = -01$ 1 $1.99 = -01$ 1 $1.99 = -01$ 1 $1.66 = -01$ 1 $1.20 = -01$ 2 $7.65 = -02$ 2 $5.48 = -02$ 2 $3.31 = -02$	$\begin{array}{c} 6.25 \ \text{E-01} \\ 4.21 \ \text{E-01} \\ 3.01 \ \text{E-01} \\ 2.54 \ \text{E-01} \\ 2.68 \ \text{E-01} \\ 1.62 \ \text{E-01} \\ 1.62 \ \text{E-01} \\ 1.10 \ \text{E-01} \\ 9.14 \ \text{E-01} \\ 6.91 \ \text{E-02} \\ 5.00 \ \text{E-02} \\ 4.03 \ \text{E-02} \\ 2.97 \ \text{E-02} \end{array}$
2.0 E+0 4.0 E+0 6.0 E+0 1.0 E+0)1 8.55 E-0)1 2.90 E-0)1 1.52 E-0)2 6.70 E-0)3 1.40 E-02)3 4.75 E-03)4 2.24 E-03)4 7.60 E-04	1.83 E-02 1.02 E-02 6.29 E-03 3.98 E-03

(normal incidence, room temperature)

References: H⁺ and D⁺ Projectiles: W. Eckstein and H. Verbeek, Report IPP 9/32, MPI Garching, August 1979 (10⁻² to 10 keV); T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981 (10 to 10² keV).

> He⁺ Projectiles: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: (1) The data are largely for Fe but are expected also to be appropriate for stainless steel.

(2) Data for H^+ and D^+ are based primarily on computer models by the TRIM and MARLOWE codes. Experimental data for stainless steel at 2.5 to 15.0 keV agree to a few percent with the model calculations which are for Fe.

(3) Data for He^+ are from a theoretical calculation that has not been confirmed by experiment only to 15 keV.

Particle Reflection Coefficients (R_N)

for H⁺, D⁺, and He⁺ Incident on Mo

(normal incidence, room temperature)

Energy (keV)	R _N (H ⁺ on Mo)	(D ⁺ on Mo)	R _N (He ⁺ on Mo)
1.0 E-02	3.66 E-01	9.22 E-01	7.87 E-01
2.0 E-02	3.28 E-01	6.69 E-01	5.57 E-01
4.0 E-02	3.06 E-01	5.24 E-01	4.18 E-01
6.0 E-02	2.96 E-01	4.65 E-01	3.61 E-01
1.0 E-01	2.85 E-01	4.09 E-01	3.06 E-01
2.0 E-01	2.70 E-01	3.49 E-01	2.49 E-01
4.0 E-01	2.50 E-01	2.99 E-01	2.07 E-01
6.0 E-01	2.34 E-01	2.70 E-01	1.86 E-01
1.0 E+00	2.11 E-01	2.34 E-01	1.62 E-01
2.0 E+00	1.73 E-01	1.84 E-01	1.33 E-01
4.0 E+00	1.30 E-01	1.34 E-01	1.06 E-01
6.0 E+00	1.05 E-01	1.07 E-01	9.18 E-02
1.0 E+01	7.64 E-02	7.62 E-02	7.45 E-02
2.0 E+01	4.43 E-02	4.30 E-02	5.35 E-02
4.0 E+01	2.23 E-02	2.09 E-02	3.60 E-02
6.0 E+01	1.39 E-02	1.27 E-02	2.75 E-02
1.0 E+02	7.01 E-03	6.20 E-03	1.88 E-02

References: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: (1) These data are based generally on a theoretical formulation. They have been confirmed experimentally at energies between 2.5 and 20 keV to within +5%.

E-23

Energy Reflection Coefficients (R_E)

for H⁺, D⁺, and He⁺ Incident on Mo

(normal incidence, room temperature)

Ene (ke	ergy ≥V)	(H ⁺ On Mo)	(D ⁺ on Mo)	(He ⁺ R _E Mo)
1.0	E-02	3.18 E-01	6.61 E-01	6.05 E-01
2.0	E-02	2.77 E-01	4.78 E-01	4.24 E-01
4.0	E-02	2.43 E-01	3.64 E-01	3.10 E-01
6.0	E-02	2.24 E-01	3.15 E-01	2.62 E-01
1.0	E-01	2.01 E-01	2.66 E-01	2.14 E-01
2.0	E-01	1.70 E-01	2.12 E-01	1.65 E-01
4.0	E-01	1.38 E-01	1.67 E-01	1.28 E-01
6.0	E-01	1.20 E-01	1.44 E-01	1.10 E-01
1.0	E+00	9.67 E-02	1.16 E-01	9.06 E-02
2.0	E+00	6.81 E-02	8.31 E-02	6.82 E-02
4.0	E+00	4.41 E-02	5.51 E-02	4.98 E-02
6.0	E+00	3.28 E-02	4.15 E-02	4.07 E-02
1.0	E+01	2.14 E-02	2.77 E-02	3.08 E-02
2.0	E+01	1.08 E-02	1.43 E-02	2.01 E-02
4.0	E+01	4.79 E-03	6.49 E-03	1.23 E-02
6.0	E+01	2.79 E-03	3.80 E-03	8.91 E-03
1.0	E+02	1.31 E-03	1.78 E-03	5.69 E-03

References: T. Tabata et al., Report IPPJ-AM-18, IPP Nagoya, October 1981.

Accuracy: Unknown.

Notes: (1) These data are based generally on a theoretical formulation. They have been confirmed experimentally at energies between 2.5 and 20 keV to within +5%.

Example of Charge State Distributions of Scattered Particles. Data Show,

at a Specific Recoil Energy, the Fraction of Total Recoil Flux which is

H, H⁺, and H⁻. For Stainless Steel Bombarded with 10 keV Protons

(normal incidence, room temperature)

	Charge St	ate Fraction (%)	
Recoil Energy (keV)	N ⁰ /N ^{tot}	N ⁺ /N ^{tot}	N ⁻ /N ^{tot}
0.0	100.0	0.0	0.0
1.0 E+00	90.7	5.0	4.5
2.0 E+00	88.5	7.0	5.5
3.0 E+00	87.6	8.0	5.2
4.0 E+00	87.0	8.7	4.8
5.0 E+00	86.5	9.4	4.5
6.0 E+00	85.9	10.2	3.8
7.0 E+00	85.5	11.0	3.5
8.0 E+00	85.1	12.0	2.8
9.0 E+00	84.7	13.0	2.4

Reference:

W. Eckstein, F. E. P. Matschke, and H. Verbeek, J. Nucl. Mat. 63, 199 (1976).

Accuracy: + 1%.

Notes: (1) The data are to be interpreted as follows. For an impact energy E_0 a recoil energy interval dE is selected centered on a recoil energy E. The ratios presented are the flux of scattered particles, with the defined charge state, recoiling into the interval dE, divided by the total flux of all particles (i.e., all charge states) into that same interval dE.

(2) It is generally found that these ratios are approximately the same for all target materials and are independent of incident energy, incident angle and exit angle. (See R. Behrisch et al., in <u>Atomic Collisions in Solids</u>, ed. by S. Datz et al., Plenum Publ. Corp., New York, 1975, p. 315).

Charge State Fractions

E-28

Example of Energy Distributions for Different Scattering Angles.

Data for 5 keV H⁺ Incident on Stainless Steel at an Angle

of 45° to the Surface Normal

(room temperature)

Reflected Flux (defined below) at scattering angle ϕ (defined below)

Reco Ener (keV	эі1 (gy /)	φ =	50°	55°	85°	115°	145 °
0		5.30	E-06	0	3.80 E-04	4.82 E-04	1.12 E-03
5.0	E-01	2.57	E05	4.47 E-0	5 4.66 E-04	7.27 E-04	7.93 E-04
1.0	E+00	3.83	E-05	9.51 E-0	4 5.67 E-04	8.22 E-04	6.17 E-04
1.5	E+00	5.23	E-05	1.21 E-0	4 6.55 E-04	8.11 E-04	5.04 E-04
2.0	E+00	7.21	E-05	1.57 E-0	4 7.10 E-04	7.35 E-04	4.04 E-04
2.5	E+00	9.77	E-05	2.12 E-0	4 7.17 E-04	6.23 E-04	3.03 E-04
3.0	E+00	1.24	E-04	2.60 E-0	4 6.68 E-04	4.97 E-04	2.10 E-04
3.5	E+00	1.43	E-04	2.75 E-0	4 5.63 E-04	3.72 E-04	1.38 E-04
4.0	E+00	1.41	E-04	2.44 E-0	4 4.08 E-04	2.53 E-04	9.59 E-05
4.5	E+00	9.83	E-05	1.61 E-0	4 2.14 E-04	1.38 E-04	6.58 E-05
5.0	E+00	0		0	0	0	0

References: W. Eckstein and H. Verbeek, J. Nucl. Mater. 93 and 94, 518 (1980).

Accuracy: Relative values +10%.

Notes: (1) The data are for a quantity equal to the number of scattered particles per incident particle and per steradian reflected into the energy interval of 64.3 eV.

(2) The incident beam, reflected particles and surface normal are all in the same plane. Incidence angle (45°) is measured from the surface normal. Scattering angle is defined, as in the original publication, as the deviation from the projectile's trajectory. Thus a scattering angle of 50° is a direction 85° (180-45-50) from the surface normal; a scattering angle of 145° in a direction 0° (180-45-145) from the surface normal.

(3) Substantial further information of this type for other energies and materials is to be found in Report IPP 9/32, by
W. Eckstein and H. Verbeek, Max-Planck Institute fur Plasmaphysik, Garching, August 1979. See also references cited therein. 5 keV H^{\star} on SS

F. TRAPPING AND REEMISSION

Introductory Notes

The subjects of trapping, retention and reemission remain in a confused state. Each is in fact an operationally defined quantity related to the circumstances of an experiment; none can be regarded as a fundamental physical quantity. Two approaches may be used in modelling device operation. One may adopt a model for the thermal energy processes occurring in a candidate wall material and predict behavior using fundamental quantities such as diffusion solubility and recombination. Alternatively one may use an empirical measurement of a specific signal (e.g., reemission rate). Both approaches are discussed below and relevant input data provided on the following pages of tables and graphs.

1. Modelling. In principle the reemission and retention of fuel in a wall material may be represented by a model that uses solubility, diffusion and surface recombination. This may be used to predict the behavior of a device wall for the specific conditions of flux, temperature and time expected in a device; the model may include the important temporal dependence of these quantities. We define below the relevant parameters and list major references for modelling codes. The principal limitation of this approach is that the quoted parameters are for virgin materials and are undoubtedly incorrect for a wall material during device operation. For example the data for diffusion are for undamaged metals; undoubtedly radiation enhanced diffusion in a radiation damaged material will be greatly different.

(a) Diffusivity. Hydrogen migration in a metal is characterized by Diffusivity D that can be written as an Arrhenius equation

$$D = D_{o} \exp(-E_{D}/kT) \quad . \tag{1}$$

Here T is material temperature, $E_{\rm D}$ is the migration energy for diffusion and k is Boltzmann's constant. In the tabular data we quote $D_{\rm o}$ and $E_{\rm D}$ from which D may be computed.

(b) Solubility. The solubility S of hydrogen in a metal is given by Sievert's law.

$$S = S \sqrt{\tilde{P}} \exp(-E_{c}/kT)$$
 (2)

 E_S is the heat of solution, P is gas pressure and again T is temperature. In the tabular data we quote S and E_S from which S may be computed.

(c) <u>Recombination</u>. The rate at which hydrogen atoms recombine on a surface to form molecules which desorb is operationally defined by the equation

$$\phi = 2\sigma k_r e^2 \cdot$$
 (3)

Here ϕ is the flux of desorbing molecules (measured in terms of the number of atoms desorbed per cm² per sec), c is the near surface <u>volume</u> concentration of hydrogen atoms (atoms/cm³), σ is a dimensionless surface roughness factor (true surface area/projected area) and the factor 2 is introduced because each molecule contains two atoms. The quantity k_r is a constant of proportionality called the recombination rate. Most measurements of recombination rate provide a value of $2\sigma k_r$ with no specification of σ . It is normally found that $2\sigma k_r$ obeys an Arrhenius expression of the form

$$2\sigma k_{\rm r} = 2\sigma k_{\rm ro} \exp(-E_{\rm r}/kT)$$
⁽⁴⁾

where E_r is an activation energy for recombination, T is material temperature and k_r is a constant. In the tabular data we quote $2 \, \text{ck}_r$ and E_r from which $2 \, \text{ck}_r$ can be calculated.

The reader is cautioned that the whole definition of this quantity may be incorrect. The reemission of surface hydrogen must involve first a diffusion of atoms to a recombination site, secondly the recombination itself and thirdly the reemission of a molecule from the surface. The measured recombination rate includes all three factors. It has been suggested (Jin-gor Chang and E. W. Thomas, J. Appl. Phys., to be published) that for a steel surface the recombination rate measured through application of Eq. 3 is in fact not the recombination step at all; for C and O recombination on Pt it has been suggested [J. D. Doll and D. L. Freeman, Surf. Sci. 134, 769 (1983)] that in fact surface diffusion is the rate limiting step.

(d) Models. A variety of modelling codes have been used to interrelate the fundamental quantities. A major limitation is that the quoted values of D, S and 2ok are for virgin materials exposed to thermal energy particles while in practice wall materials will be radiation damaged and sputter eroded; moreover particle impact is energetic. Principle references to codes: -

> DIFFUSE - M. I. Baskes, Sandia National Laboratories, Report SAND80-8201 (1980).

- PERI P. Wienhold, M. Profant, F. Waelbroeck, J. Winter, J. Nucl. Mater. 93 and 94, 866 (1980).
- ELM Model D. K. Brice, B. L. Doyle and W. R. Wampler, J. Nucl. Mater. 111 and 112, 598 (1982).

Gaussian Trapping Model - K. Sone and G. M. McCracken, J. Nucl. Mater. 111 and 112, 606 (1982).

2. <u>Direct Measurement</u>. Data on trapping and reemission are traditionally presented in various forms. Experiments may record what is retained in a surface or what is emitted from a surface as a function of such parameters

as cumulative dose, projectile energy, target temperature, radiation damage and other preliminary treatments. In the data compendium we have generally retained the method of presentation employed in the original publication. The forms of display, their definitions, and relationships are as follows.

(a) Reemission refers to the emission of gas from the target while the target is being bombarded by the projectile ions; the reemission rate is generally measured by the rise in partial pressure of the projectile species as monitored in the vessel which contains the target. If the flux of ions (or atoms) incident on the surface is F_i and the flux of atoms emerging is F_e , then the rate of reemission, expressed as a percentage, is given by:

reemission rate R (%) =
$$\frac{F_e}{F_i} \times 100$$

The general form of reemission rate as a function of dose is shown in Fig. 1; reemission rate is plotted as a function of cumulative areal

dose (ions or $atoms/cm^2$), otherwise known as Fluence. At low dose the reemission is equal to the backscattered fraction; all ions not backscattered are retained or trapped. As dose increases the reemission rate increases to a saturated value, which is normally 100%; at this value an atom is ejected for every ion or atom incident.

(b) <u>Trapping</u> refers to the fraction of the incident flux which is retained in the target; this is generally determined by a direct measure of the retained projectile density. The measured quantity is the areal density of retained projectiles, or <u>Trapped Fluence</u> (atoms/cm²), plotted as a function of the incident projectile dose or fluence; a facsimile of such a presentation is shown in Fig. 2. For

Fig. 2. Retained projectile as a function of dose.

low dose the trapped density increases linearly with fluence; however, the trapped density is less than incident fluence by an amount equal to the fraction backscattered. The dashed line shows the behavior expected if all incident particles not reflected are retained. At high dose the trapped density saturates, corresponding to the 100% reemission in Fig. 1; at this point, for each new ion incident one atom in the target is ejected.

One can relate the presentations of Figs. 1 and 2 as follows: The projectile atoms retained (Fig. 2) is equal to

$$\left(1 - \frac{R}{100}\right) \times Fluence$$
,

where R is the reemission rate (in %) from Fig. 1.

- (c) Saturation Density is the areal density of the retained atoms at saturation (i.e., at 100% reemission); in Fig. 1 it is the number of atoms represented by the area between the reemission curve and the 100% reemission line. An alternative terminology is <u>Fluence Trapped</u> at 100% Reemission.
- (d) <u>Trapping Coefficient</u> is the probability that an incident ion will be retained. Its maximum value of unity represents the condition where each incident ion is retained. The trapping coefficient will vary with fluence (or dose), eventually dropping to zero when the target saturates and each new ion incident causes one atom to be ejected. Trapping coefficient is equal to

$$1 - \frac{R}{100}$$

where R is the reemission rate (in %) discussed in note 2a above.

- (e) It should be noted that the reemission behavior is closely related to <u>Temperature</u>. The behavior shown in Figs. 1 and 2 is appropriate to <u>temperatures</u> where the implanted species has negligible diffusion. At temperatures where diffusion is significant the rising portion of Fig. 1 commences at essentially zero dose; this means also that the retained density of atoms displayed in Fig. 2 always falls below the 100% trapping line.
- (f) Replacement Cross Sections refer to the replacement of implanted species (e.g., D) by the arrival of a subsequent atom (such as H). In general, the cross section is evaluated as follows: the target is implanted with one species (e.g., D) to a saturation density (or trapped fluence at saturation) of n_{sat} atoms/cm². Subsequently the second species (e.g., H⁺) is directed onto the target with a flux density J (atoms/cm²s), and the trapped fluence decreases with time t as

$$n = n_{sat} exp - (J_o \sigma t)$$
.

Consequently, the rate of removal of the first species (D in our example) is given by

$$\frac{dn}{dt} = n \qquad J_o \sigma exp - (J_o \sigma t) .$$
σ is called the replacement cross section (or sometimes the gas sputtering cross section).

- (g) Replacement Efficiency is related to replacement cross section defined in note 2f above. It is the number of primary implanted atoms (in our example, D) removed for every secondary particle (in our example, H) incident; dn_D/dn_H for our example. It is often plotted as a function of the ratio of the fluence of incoming secondary particles (H in our sample) to the saturation density of the primary implant (D in our example), that is to say, as a function of n_H/n_{sat} .
- 3. Major Reviews. Two major reviews and data compendium are available.
- (a) R. A. Langley et al., Nucl. Fusion, Special Edition, "Data Compendium for Plasma - Surface Interactions (1984) - see particularly Chapter 3.
- (b) S. Yamaguchi, K. Ozawa, Y. Nakai and Y. Sugizaki, Japan Atomic Energy Research Institute, Report JAERI-M 82-118 (Aug. 1982).

Se	lected Value	es of Hydroge	n (H) Diffusiv	ity and	
	Solubility	for Various	Metals and All	oys	
	$D = D_0$	exp - E _d /kT	$\rm cm^2~s^{-1}$		
	$S = S_0 P$, ^{1/2} exp - E _s	/kT H/cm ³ (atm) $^{1/2}$	
	D _o	Ed	So	Es	
Material	$\frac{\mathrm{cm}^2}{\mathrm{s}}$	eV	$\frac{H}{cm^3(atm)^{1/2}}$	eV	Ref ¹
Carbon	3.3 E-02	4.3 E 00	9.0 E 15	-1.4 E 00	а
Aluminum	2.1 E-01	4.7 E-01	3.1 E 21	8.4 E-01	Ъ
Titanium	1.8 E-02	5.4 E-01	1.5 E 20	-4.9 E-01	с
304 Stainless	2.0 E-03	5.4 E-01	7.7 E 19	1.1 E-01	đ
Nickel	6.9 E-03	4.2 E-01	3.1 E 20	1.6 E-01	е
INC 718	1.0 E-02	5.2 E-01	4.1 E 19	6.0 E-02	f
Copper	1.1 E-02	4.0 E-01	1.3 E 20	3.7 E-01	b
Molybdenum I	4.8 E-03	3.9 E-01	2.7 E 20	5.4 E-01	g
Molybdenum II	2.4 E-04	1.1 E-01	2,3 E 21	6.8 E-01	h
Tungsten	4.1 E-03	3.9 E-01	6.9 E 20	9.8 E-01	i
	 b) W. Eichen c) R. J. Was (1954). 56, 354 d) M. R. Lon e) J. Volk1 A. S. Nov W. M. Rol f) W. M. Rol f) W. M. Rol g) W. G. Per Oates and (h) H. Katsu Solids 4 (i) R. Frayer R. Frayer 	hauer and A. silewsky and J. R. Morton (1960). uthan and R. and G. Alefe wick and J. J bertson, Z. M bertson, Meta rkins, J. Vac d R. B. McLel ta, R. B. McLel ta, R. B. McI 3, 533 (1982) afelder, J. V	Pebler, Z. Met G. M. Kehl, Me and D. S. Sta D. Derrick, Co eld in <u>Diffusic</u> Metallkd. <u>64</u> , 4 Illurgical Tran c. Sci. Technol lan, Scr. Meta Lellan, K. Furu Vac. Sci. Techr Them. Phys. <u>48</u> ,	allkd. <u>48</u> , 37 etallurgical <u>5</u> ork, Trans. Fa pros. Sci. <u>15</u> on in <u>Solids</u> , lemic Press, 2 <u>36</u> (1973). as. <u>8A</u> , 1709 (<u>10</u> , 543 (19 all. <u>6</u> , 349 (1 akawa, J. Phys nol. <u>6</u> , 388 (1 <u>3955</u> (1967).	3 (1957). 0, 225 raday Soc. , 287 (1965). edited by 31 (1975). 1977). 73). W. A. 972). . Chem. 969).
<u>Notes</u> : (1) (2) (3)	This materia Langley et Compendium For explana The data ar to radiation	al is quoted al., Nucl. Fu for Plasma-Su tion of symbo e all for mat n damage.	in toto from a sion, Special urface Interact ols, see introd cerials that ha	review by R. Edition, "Data tions" (1984). Nuction. The not been s	A. a ubjected
(4)	Two values controversy	are quoted fo in the liter	or Molybdenum t cature.	ecause there	is

Selected Values for Deuterium (D) Recombination

on Steel and Cold

$2\sigma k_r = 2\sigma k_r \exp - E_r/kT$

Material	Condition	20k ro cm ⁴ /s	E _r (eV)	Ref.
304 Stainless	Electro polished	1.3 E-17	8.1 E-01	(a)
304 Stainless	Sputter cleaned	9.6 E-20	3.4 E-01	(a)
Gold	Polycrystalline - no surface contamination (not dependent on prior bombardment)	2.2 E-23	3.2 E-01	(b)

- References: (a) S. M. Myers and W. R. Wampler, J. Nucl. Mater. <u>111 & 112</u>, 579 (1982). (b) Jin-gor Chang and E. W. Thomas, (to be published).
- Accuracy: The data for steel should be used with great caution. Values are greatly influenced by pre-treatment that changes surface composition. None of the data quoted here is for properly defined surfaces and values ranging from 10^{-29} cm⁴ s⁻¹ to 10^{-24} cm⁴ s⁻¹ are reported in the literature for 300 K stainless steel [see review by Langley, Nucl. Fusion, Special Edition, "Data Compendium for Plasma-Surface Interactions," (1984)].

Notes: The data are determined for temperatures in the range 425 K to 575 K for steel and 400 K to 550 K for gold.

Trapped Fluence as a Function of Incident

Fluence for 50-, 150-, and 300-eV $\ensuremath{\mathsf{D}^+}$ on C

Fluence Incident (D+ ions/cm ²)		Fluence Trapped (D atoms/cm ²)	
	<u>50 eV</u>	150 eV	<u>300 eV</u>
2.0 E 15	1.2 E 15	1.¼ E 15	2.0 E 15
3.0 E 15	1.7 E 15	2.0 E 15	3.0 E 15
5.0 E 15	2.6 E 15	3.3 E 15	5.0 E 15
1.0 E 16	4.4 E 15	6.2 E 15	1.0 E 16
2.0 E 16	6.6 E 15	1.2 E 16	2.0 E 16
3.0 E 16	8.0 E 15	1.6 E 16	2.6 E 16
5.0 E 16	9.8 E 15	2.0 E 16	3.5 E 16
1.0 E 17	1.2 E 16	2.6 E 16	4.7 E 16
2.0 E 17	1.3 E 16	2.9 E 16	5.5 E 16
3.0 E 17	1.4 E 16	3.0 E 16	5.8 E 16
5.0 E 17	1.4 E 16	3.0 E 16	6.0 E 16
1.0 E 18	1.4 E 16	3.0 E 16	6.1 E 16

Reference:

G. Staudenmaier et al., J. Nucl. Mater. 84, 149 (1979).

Accuracy: Unspecified

Note: (1) For a definition of trapping see note 2b at the beginning of this section.

Trapped Fluence as a Function of Incident

Fluence for 500-eV, 700-eV, and 1-keV D^+ on C

Fluence Incident	Fluence Trapped		
(D ⁺ ions/cm ²)	(D atoms/cm ²)		
	500 eV	<u>700</u> eV	<u>l keV</u>
2.0 E 15	2.0 E 15	2.0 E 15	2.0 E 15
3.0 E 15	3.0 E 15	3.0 E 15	3.0 E 15
5.0 E 15	5.0 E 15	5.0 E 15	5.0 E 15
1.0 E 16	1.0 E 16	1.0 E 16	1.0 E 16
2.0 E 16	2.0 E 16	2.0 E 16	2.0 E 16
3.0 E 16	3.0 E 16	3.0 E 16	3.0 E 16
5.0 E 16	5.0 E 16	5.0 E 16	5.0 E 16
1.0 E 17	7.8 E 16	8.7 E 16	9.3 E 16
2.0 E 17	8.8 E 16	1.1 E 17	1.2 E 17
3.0 E 17	9.0 E 16	1.2 E 17	1.3 E 17
5.0 E 17	9.0 E 16	1.2 E 17	1.3 E 17
1.0 E 18	9.0 E 16	1.2 E 17	1.3 E 17

Reference:

G. Staudenmaier et al., J. Nucl. Mater. <u>84</u>, 149 (1979).

Accuracy: Unspecified

Note: (1) For a definition of trapping see note 2b at the beginning of this section.

Fluence Trapped at Saturation

for D⁺ on C

Energy	Fluence Trapped at Saturation
(keV)	(D atoms/cm ²)
5.0 E-02	1.3 E 16
7.0 E-02	1.7 E 16
1.0 E-01	2.3 E 16
2.0 E-01	4.1 E 16
3.0 E-01	5.9 E 16
5.0 E-01	9.7 E 16
7.0 E-01	1.3 E 17
1.0 E 00	1.7 E 17
2.0 E 00	3.2 E 17
3.0 E 00	4.6 E 17
5.0 E 00	7.5 E 17
7.0 E 00	1.0 E 18
1.0 E 01	1.4 E 18

Reference:

G. Staudenmaier et al., J. Nucl. Mater. 84, 149 (1979).

Accuracy: ±10%

Notes: (1) For a definition of trapped fluence and its relationship to reemission, see note 2b at the beginning of this section.

(2) The carbon used here is a flexible polycrystalline graphite strip known by the commercial name of "Papyex" (Le Carbonne, France).

Reemission of Deuterium at Various

Temperatures for 20-keV D⁺ on C

<pre>Fluence Incident (D⁺ ions/cm²)</pre>		Reemissior	n Rate (%)	
00 〒 00	<u>293 K</u>	<u>773 K</u>	<u>973 K</u>	<u>1273 K</u>
2.0 E 16	0.0 E 00	0.0 E 00	0.0 E 00	6.0 E 00
4.0 E 16	0.0 E 00	0.0 E 00	0.0 E 00	1.1 E 01
6.0 E 16	0.0 E 00	0.0 E 00	2.0 E 00	1.4 E Ol
8.0 E 16	0.0 E 00	0.0 E 00	7.0 E 00	2.6 E 01
1.0 E 17	0.0 E 00	0.0 E 00	1.0 E 01	3.5 E 01
2.0 E 17	0.0 E 00	0.0 E 00	5.0 E Ol	4.6 E 01
4.0 E 17	0.0 E 00	4.0 E 00	7.7 E 01	5.3 E 01
6.0 E 17	0.0 E 00	1.1 E 01	8.4 E 01	5.5 E 01
8.0 E 17	0.0 E 00	2.4 E 01	8.7 E 01	5.6 E 01
1.0 E 18	3.0 E 00	3.5 E 01	9.0 E 01	5.6 E 01
1.2 E 18	1.0 E 01	4.4 E 01	9.1 E 01	
1.4 E 18	2.0 E 01	5.0 E 01		
1.6 E 18	2.7 E 01	5.5 E 01		
1.8 E 18	3.4 E 01	5.8 E 01		
2.0 E 18	3.7 E 01	6.1 E 01		

Reference:

S. K. Erents, Inst. Phys. Conf. Ser. 28, 318 (1976).

Accuracy: Unknown

Notes: (1) For a definition of reemission and how it relates to trapping, see note 2a at the beginning of this section.

(2) The type of carbon used was not specified.

(3) The above data represent the reemission of deuterium in the form of D_2 and HD. In addition, there is some reemission of CD_4 at higher temperatures; this is believed to be less than 5% of the total deuterium emission.

Trapped Fluence at 50, 150, and 300 eV

as a Function of Incident Fluence for $\textbf{D}^{\!+}$ on Si

Fluence Incident (D ⁺ ions/cm ²)		Fluence Trapped (D atoms/cm ²)	
	<u>50</u> eV	<u>150 eV</u>	<u>300 eV</u>
1.0 E 15 2.0 E 15 3.0 E 15 5.0 E 15 1.0 E 16 2.0 E 16 3.0 E 16 5.0 E 16 1.0 E 17 2.0 E 17 3.0 E 17 5.0 E 17 1.0 E 18	1.0 E 15 1.5 E 15 2.5 E 15 4.1 E 15 5.3 E 15 6.7 E 15 8.5 E 15 9.2 E 15 9.3 E 15	1.6 E 15 2.8 E 15 5.5 E 15 9.2 E 15 1.2 E 16 1.5 E 16 1.8 E 16 1.8 E 16 1.8 E 16	1.0 E 15 2.0 E 15 3.0 E 15 5.0 E 15 9.0 E 15 1.5 E 16 1.8 E 16 2.3 E 16 3.1 E 16 3.1 E 16 3.1 E 16 3.1 E 16

Reference:

G. Staudenmaier et al., J. Nucl. Mater. <u>84</u>, 149 (1979).

Accuracy: Unknown

Note: (1) For a definition of trapping see note 2b at the beginning of this section.

Trapped Fluence at 500 eV, 700 eV, and 1 keV as a Function of Incident Fluence for D^+ on Si

Fluence Incident (D ⁺ ions/cm ²)	Fluence Trapped (D atoms/cm ²)		
	<u>500 eV</u>	700_eV	<u>l keV</u>
1.0 E 15 2.0 E 15 3.0 E 15 5.0 E 15 1.0 E 16 2.0 E 16 3.0 E 16 5.0 E 16 1.0 E 17 2.0 E 17 3.0 E 17 5.0 E 17 1.0 E 18	1.0 E 15 2.0 E 15 3.0 E 15 5.0 E 15 1.0 E 16 2.0 E 16 2.8 E 16 4.0 E 16 5.1 E 16 5.1 E 16 5.4 E 16 5.4 E 16 5.4 E 16	1.0 E 15 2.0 E 15 3.0 E 15 5.0 E 15 1.0 E 16 2.0 E 16 3.0 E 16 4.5 E 16 5.8 E 16 6.7 E 16 7.0 E 16 7.0 E 16 7.0 E 16	1.0 = 15 2.0 = 15 3.0 = 15 5.0 = 15 1.0 = 16 2.0 = 16 3.0 = 16 5.0 = 16 5.0 = 16 7.2 = 16 8.0 = 16 8.3 = 16 8.5 = 16 8.5 = 16

Reference:

G. Staudenmaier et al., J. Nucl. Mater. <u>84</u>, 149 (1979).

Accuracy: Unknown

Note: (1) For a definition of trapping see note 2b at the beginning of this section.

Fluence of Deuterium Trapped at Saturation

for D⁺ on Si

Energy	Fluence Trapped at Saturation
(keV)	(D atoms/cm ²)
5.0 E-02	8.0 E 15
7.0 E-02	1.1 E 16
1.0 E-01	1.4 E 16
2.0 E-01	2.5 E 16
3.0 E-01	3.5 E 16
5.0 E-01	5.4 E 16
7.0 E-01	7.0 E 16
1.0 E 00	9.2 E 16

Reference:

G. Staudenmaier et al., J. Nucl. Mater. <u>84</u>, 149 (1979).

Accuracy: ±10%

Note: (1) For a definition of trapped fluence and its relationship to reemission, see note 2b at the beginning of this section.

Reemission of Deuterium at Various Temperatures

for 20-keV D⁺ on SiC

(normal incidence, various temperatures, 20-keV energy, polycrystalline target)

Fluence Incident (D ⁺ ions/cm ²)		Reemissic	on Rate (%)	
	<u>293 K</u>	<u>773 K</u>	<u>973 k</u>	<u>1273 K</u>
$\begin{array}{c} 0.0 & \text{E} & 00 \\ 2.0 & \text{E} & 16 \\ 4.0 & \text{E} & 16 \\ 6.0 & \text{E} & 16 \\ 8.0 & \text{E} & 16 \\ 1.0 & \text{E} & 17 \\ 2.0 & \text{E} & 17 \\ 4.0 & \text{E} & 17 \\ \end{array}$	2.0 E 00 2.0 E 00 3.0 E 00 3.0 E 00 3.0 E 00 3.0 E 00 3.0 E 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.6 \pm 01 \\ 2.0 \pm 01 \\ 2.3 \pm 01 \\ 2.5 \pm 01 \\ 2.9 \pm 01 \\ 3.6 \pm 01 \\ 6.8 \pm 01 \\ 8.6 \pm 01 \end{array}$
$\begin{array}{c} 4.0 & \text{E} & 17 \\ 6.0 & \text{E} & 17 \\ 8.0 & \text{E} & 17 \\ 1.0 & \text{E} & 18 \\ 1.2 & \text{E} & 18 \\ 1.4 & \text{E} & 18 \\ 1.6 & \text{E} & 18 \\ 1.8 & \text{E} & 18 \\ 2.0 & \text{E} & 18 \end{array}$	$\begin{array}{c} 4.0 & E & 00 \\ 6.0 & E & 00 \\ 8.0 & E & 00 \\ 1.1 & E & 01 \\ 1.6 & E & 01 \\ 2.3 & E & 01 \\ 3.0 & E & 01 \\ 3.7 & E & 01 \\ 4.3 & E & 01 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.7 E 01 6.5 E 01 7.3 E 01 7.7 E 01 8.2 E 01 8.5 E 01 8.9 E 01 9.0 E 01	9.3 E 01 9.5 E 01 9.6 E 01 9.7 E 01 9.7 E 01 9.7 E 01 9.7 E 01 9.7 E 01 9.7 E 01

Reference:

S. K. Erents, Inst. Phys. Conf. Ser. 28, 318 (1976).

Accuracy: Unknown

Note: (1) For a definition of reemission and how it relates to trapping, see note 2a at the beginning of this section.

Trapping Coefficient as a Function of

Dose for 18-keV D⁺ Impact on Ti

(normal incidence, various temperatures, 18-keV energy, polycrystalline target)

Fluence Incident (D ⁺ ions/cm ²)		Trapping C	oefficient		
	<u>477 K</u>	531 K	699 K	<u>728 k</u>	
8.0 E 16 1.0 E 17 2.0 E 17 3.0 E 17 5.0 E 17 7.0 E 17 1.0 E 18 2.0 E 18 3.0 E 18 5.0 E 18	9.4 E-01 9.3 E-01 9.2 E-01 9.0 E-01 8.8 E-01 8.6 E-01 8.3 E-01	9.2 E-01 8.9 E-01 8.6 E-01 8.3 E-01 7.7 E-01 7.3 E-01 6.8 E-01	8.7 E-01 8.6 E-01 6.8 E-01 5.0 E-01 3.9 E-01 3.5 E-01 3.1 E-01 2.6 E-01 2.4 E-01 2.2 E-01	8.3 E-01 7.8 E-01 4.7 E-01 3.4 E-01 2.3 E-01 2.0 E-01 1.7 E-01 1.4 E-01 1.3 E-01 1.2 E-01	

Reference:

E. S. Hotston and G. M. McCracken, J. Nucl. Mater. <u>68</u>, 277 (1977).

Accuracy: Unknown

Notes: (1) For a definition of trapping coefficient see note 2d at the beginning of this section.

(2) At low dose the coefficient should tend asymptotically to 0.97 because 3% of the beam is backscattered.

Trapping Coefficient as a Function of Temperature

at a Fixed Fluence (or Dose) for 18-keV D⁺ Incident on Ti

Temperature (K)	Trapping Coefficient
1.0 E 02 2.0 E 02 3.0 E 02 4.0 E 02 5.0 E 02 6.0 E 02 7.0 E 02 8.0 E 02 9.0 E 02	1.3 E-01 8.0 E-01 9.6 E-01 9.6 E-01 8.8 E-01 4.4 E-01 1.7 E-01 5.0 E-02 3.0 E-02

Reference:

G. M. McCracken et al., Proc. 4th Int. Vacuum Congress, Inst. Phys. Conf. Ser. 5, 149 (1968).

<u>Accuracy</u>: Unknown. The random scatter of the data points about the line given here is approximately $\pm 10\%$.

Notes: (1) For a definition of trapping coefficient see note 2d at the beginning of this section.

(2) The data are for a fixed incident fluence (or dose) of $5 \times 10^{18} \text{ D}^+$ ions cm⁻². For information on how trapping coefficient varies with incident fluence, see adjacent figures.

Trapping Coefficient as a Function of Energy

at a Fixed Dose for H⁺ Incident on Ti

(normal incidence, temperature in the region 403 to 503 K)

Energy (keV)	Trapping Coefficient
3.0 E-01	1.7 E-01
5.0 E-01	4.5 E-01
1.0 E 00	7.8 E-01
2.0 E 00	8.2 E-01
3.0 E 00	9.0 E-01
4.0 E 00	9.4 E-01
5.0 E 00	9.7 E-01
6.0 E 00	9.5 E-01

Reference:

J. Bohdansky et al., J. Nucl. Mater. 63, 115 (1976).

Accuracy: See below.

Notes: (1) For a definition of trapping coefficient see note 2d at the beginning of this section.

(2) Below 1 keV the data are believed to represent not Ti, but rather titanium oxide, which exists as a film on the sample. Thus, below 1 keV the accuracy of the data (insofar as they refer to Ti) are suspect.

(3) Fluence or dose used in the bombardment was between 3 x 10^{19} and 5 x 10^{20} ions $\rm cm^{-2}$.

Fluence Trapped at Saturation

for D⁺ on Stainless Steel

(normal incidence, 90 K or 150 K temperature)

Ener	'gy	Fluence Trapped at Saturation
(keV	')	(D atoms/cm ²)
1.25	E-01	2.4 E 16
2.0	E-01	3.6 E 16
3.0	E-01	5.3 E 16
5.0	E-01	8.8 E 16
7.0	E-00	1.2 E 17
1.0	E 00	1.7 E 17
2.0	E 00	3.4 E 17
3.0	E 00	5.0 E 17
5.0	E 00	8.1 E 17
7.0	E 00	1.0 E 18
1.0	E 01	1.3 E 18
1.5	E 01	1.6 E 18

References:

E. W. Thomas, J. Appl. Phys. <u>51</u>, 1176 (1980).
R. S. Blewer et al., J. Nucl. Mater. 76 and 77, 305 (1978).

Accuracy: ±10%

Notes: (1) For a definition of trapped fluence and its relationship to reemission, see note 2b at the beginning of this section.

(2) Data up to 1 keV are by Thomas and are for a temperature of 90 K. Data at 1 keV and above are by Blewer et al., at a temperature of 150 K. The two data sets are in agreement at 1 keV.

(3) The work by Thomas uses type 304 stainless steel; the work by Blewer uses type 321.

Reemission of Deuterium Due to D⁺ Impact on

Stainless Steel (Type 304) at Low Temperature

(normal incidence, 90 K temperature)

Fluence Incident (D ⁺ ions/cm ²)		Reemission Rate (%)		
	D ⁺ (125 eV)	D ⁺ (250 eV)	$D^+(500 eV)$	D ⁺ (750 eV)
$\begin{array}{l} 0.0 \ E \ 00 \\ 2.0 \ E \ 16 \\ 4.0 \ E \ 16 \\ 5.0 \ E \ 16 \\ 6.0 \ E \ 16 \\ 1.0 \ E \ 17 \\ 1.2 \ E \ 17 \\ 1.4 \ E \ 17 \\ 1.6 \ E \ 17 \\ 1.8 \ E \ 17 \\ 2.0 \ E \ 17 \\ 2.5 \ E \ 17 \\ 3.0 \ E \ 17 \\ 3.5 \ E \ 17 \\ 4.0 \ E \ 17 \end{array}$	5.0 E Ol 5.0 E Ol 5.5 E Ol 8.5 E Ol 9.5 E Ol 1.0 E O2 1.0 E O2	4.0 E 01 4.6 E 01 5.2 E 01 5.9 E 01 7.2 E 01 8.5 E 01 9.7 E 01 1.0 E 02 1.0 E 02	4.0 = 01 4.0 = 01 4.0 = 01 4.0 = 01 4.0 = 01 4.0 = 01 4.0 = 01 5.1 = 01 7.6 = 01 9.6 = 01 9.9 = 01 1.0 = 02 1.0 = 02	3.5 = 01 3.5 = 01 3.8 = 01 5.2 = 01 6.3 = 01 8.8 = 01 9.8 = 01 1.0 = 02 1.0 = 02

Reference:

E. W. Thomas, J. Appl. Phys. 51, 1176 (1980).

Accuracy: ±10%

Notes: (1) For a definition of reemission rate and how it relates to trapping, see note 2b at the beginning of this section.

(2) Further data for higher D^+ energies are to be found in the following table.

Reemission of Deuterium Due to D⁺ Impact

on Stainless Steel (Types 304 and 321) at

Low Temperature

(normal incidence, 90 to 120 K temperature)

Fluence Incident (D ⁺ ions/cm ²)		Reemission Rate (%)		
	D ⁺ (1 keV)	D^{+} (4 keV)	\underline{D}^{+} (γ keV)	D ⁺ (14 keV)
0.0 E 00 1.0 E 17 2.0 E 17 3.0 E 17 4.0 E 17 6.0 E 17 8.0 E 17 1.0 E 18 1.2 E 18 1.5 E 18 2.0 E 18 2.0 E 18 3.0 E 18	3.0 E 01 3.0 E 01 4.4 E 01 7.3 E 01 8.4 E 01 9.8 E 01 1.0 E 02 1.0 E 02	1.6 E 01 1.6 E 01 1.6 E 01 1.6 E 01 1.8 E 01 2.3 E 01 4.3 E 01 4.3 E 01 9.0 E 01 1.0 E 02 1.0 E 02	1.3 E 01 1.3 E 01 1.3 E 01 1.3 E 01 1.4 E 01 1.6 E 01 1.8 E 01 3.2 E 01 3.2 E 01 5.4 E 01 8.8 E 01 9.7 E 01 1.0 E 02 1.0 E 02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.5 E 18 4.0 E 18				9.7 E 01 1.0 E 02

References:

R. S. Blewer et al., J. Nucl. Mater. <u>76</u> and <u>77</u>, 305 (1978) (data for 4, 7, and 14 keV at 120 K temperature; E. W. Thomas, Georgia Institute of Technology, J. Appl. Phys. <u>51</u>, 1176 (1980).

Accuracy: ±10%

<u>Notes</u>: (1) For a definition of reemission rate and how it relates to trapping, see note 2a at the beginning of this section.

(2) Further data for lower D^+ energies are to be found in the preceding table.

(3) Type 304 stainless steel was used for the 1-keV data, type 321 for the remainder.

Reemission of Deuterium Due to D^+ Impact on Stainless

Steel at Room Temperature and Above

(normal incidence; data are for room temperature, but 500 K data are identical)

Fluence Incident (D ⁺ ions/cm ²)		Reemission rate (%)	
	D ⁺ (500 eV)	D ⁺ (750 eV)	D ⁺ (1000 eV)
0.0 E 00 1.0 E 16 2.0 E 16 4.0 E 16 6.0 E 16 8.0 E 16 1.0 E 17 1.2 E 17 1.4 E 17 1.6 E 17 1.8 E 17 2.0 E 17 2.2 E 17 2.4 E 17	4.0 E 01 7.8 E 01 9.2 E 01 1.0 E 02 1.0 E 02	3.5 E Ol 5.5 E Ol 7.2 E Ol 8.7 E Ol 9.4 E Ol 9.8 E Ol 1.0 E O2 1.0 E O2 1.0 E O2	3.0 E 01 4.2 E 01 5.3 E 01 6.7 E 01 7.5 E 01 8.1 E 01 8.5 E 01 8.9 E 01 9.1 E 01 9.3 E 01 9.4 E 01 9.6 E 01 9.7 E 01 9.8 E 01

Reference:

E. W. Thomas, J. Appl. Phys. 51, 1176 (1980).

Accuracy: ±10%

<u>Notes</u>: (1) For a definition of reemission rate and how it relates to trapping, see note 2a at the beginning of this section.

(2) Type 304 stainless steel was used.

Replacement Ef	ficiency of D in Stainless Steel
by	v Subsequent H Impact
(normal i	ncidence, temperature 150 K)
The data for for respectively the resul	t 1-, 4-, 7-, and 14-keV D replaced, y, by 1-, 4-, 7-, and 14-keV H; t is independent of energy.
Fluence Relative to Saturation $\binom{n_H^n_{sat}}{}$	Replacement Efficiency Deuterium Released per Incident Proton dn _D /dn _H
0.0 E 00 5.0 E-01 1.0 E 00 1.5 E 00 2.0 E 00 2.5 E 00 3.0 E 00 3.5 E 00	1.0 E 00 5.4 E-01 2.8 E-01 1.6 E-01 1.1 E-01 1.0 E-01 8.0 E-02 6.0 E-02

Reference:

R. S. Blewer et al., J. Nucl. Mater. 76 and 77, 305 (1978).

Accuracy: ±10%

Notes: (1) For explanation of this parameter see note 2g at the beginning of this section.

(2) Type 321 stainless steel was used.

Reemission of Deuterium Due to D^+ Impact on Ni

at Various Temperatures

Reemission Rate (%)		
208 к	<u>273 K</u>	<u>323 K</u>
0.0 E 00 3.0 E 00 6.0 E 00 7.0 E 00 8.0 E 00 8.0 E 00 8.0 E 00 8.0 E 00 9.0 E 00 1.8 E 01	$\begin{array}{cccccc} 0.0 & E & 00 \\ 5.0 & E & 00 \\ 9.0 & E & 00 \\ 1.2 & E & 01 \\ 1.5 & E & 01 \\ 1.8 & E & 01 \\ 2.4 & E & 01 \\ 3.3 & E & 01 \\ 4.3 & E & 01 \\ 4.8 & E & 01 \end{array}$	0.0 E 00 4.9 E 01 6.3 E 01 6.8 E 01 7.1 E 01 7.3 E 01 7.4 E 01 7.4 E 01
	$\frac{208 \text{ K}}{0.0 \text{ E } 00}$ $3.0 \text{ E } 00$ $6.0 \text{ E } 00$ $7.0 \text{ E } 00$ $8.0 \text{ E } 00$ $9.0 \text{ E } 00$ $1.8 \text{ E } 01$	208 K 273 K $0.0 \ge 00$ $0.0 \ge 00$ $3.0 \ge 00$ $5.0 \ge 00$ $6.0 \ge 00$ $9.0 \ge 00$ $7.0 \ge 00$ $1.2 \ge 01$ $8.0 \ge 00$ $1.5 \ge 01$ $8.0 \ge 00$ $1.8 \ge 01$ $8.0 \ge 00$ $2.4 \ge 01$ $8.0 \ge 00$ $3.3 \ge 01$ $9.0 \ge 00$ $4.3 \ge 01$ $1.8 \ge 01$ $4.8 \ge 01$ $5.3 \ge 01$

Reference:

K. Erents and G. M. McCracken, Br. J. Appl. Phys. (J. Phys. D) Ser. 2, 2, 1397 (1969).

Accuracy: Unknown

Notes: (1) For a definition of reemission and how it relates to trapping, see note 2a at the beginning of this section.

(2) A measurement at lower temperature (77 K) is given by K. Erents and G. M. McCracken, Radiat. Eff., $\underline{3}$, 123 (1970).

Trapped Fluence as a Function of Incident Fluence

for D⁺ on Mo with Various Predamage Conditions

(normal incidence; room temperature; 8-keV D⁺ energy; predamage by ll-keV He⁺ to the fluences shown; single crystal target)

Fluence Incident (D ⁺ ions/cm ²)		Fluence Trapped (D atoms/cm ²)		
	No Predamage	Predamage 6x10 ¹⁴ He/cm ²	Predamage <u>3xl0¹⁵He/cm²</u>	Predamage 10 ¹⁶ He/cm ²
0.0 E 00 1.0 E 16 2.0 E 16 3.0 E 16 4.0 E 16 5.0 E 16 6.0 E 16 7.0 E 16 8.0 E 16 9.0 E 16 1.0 E 17	$\begin{array}{ccccccc} 0.0 & E & 00 \\ 2.5 & E & 15 \\ 5.5 & E & 15 \\ 8.0 & E & 15 \\ 1.0 & E & 16 \\ 1.1 & E & 16 \\ 1.2 & E & 16 \\ 1.3 & E & 16 \\ 1.4 & E & 16 \\ 1.5 & E & 16 \\ 1.6 & E & 16 \end{array}$	0.0 E 00 7.0 E 15 1.1 E 16 1.3 E 16 1.5 E 16 1.7 E 16 1.8 E 16 2.0 E 16 2.2 E 16 2.3 E 16 2.5 E 16	0.0 E 00 7.0 E 15 1.3 E 16 2.0 E 16 2.3 E 16 2.5 E 16 2.5 E 16 2.8 E 16 3.0 E 16 3.2 E 16 3.4 E 16	$\begin{array}{ccccccc} 0.0 & E & 00 \\ 7.0 & E & 15 \\ 1.3 & E & 16 \\ 2.0 & E & 16 \\ 2.7 & E & 16 \\ 3.3 & E & 16 \\ 3.6 & E & 16 \\ 3.8 & E & 16 \\ 4.0 & E & 16 \\ 4.3 & E & 16 \\ 4.5 & E & 16 \end{array}$

Reference:

J. Bottinger et al., J. Appl. Phys. <u>48</u>, 920 (1977).

Accuracy: Unknown

Notes: (1) For a definition of trapping see note 2b at the beginning of this section.

(2) "Predamage" is created by a preliminary bombardment with 11-keV He⁺ to the dose indicated; no quantitative measure of the damage was made.

(3) The cited reference includes additional data for predamage with other projectiles (Ne⁺, Bi^+).

(4) The data are for an aligned signel crystal of Mo. Limited studies on polycrystalline Mo show similar behavior [see S. T. Picraux et al., J. Nucl. Mater. <u>63</u>, 110 (1976)].

(5) Additional data are to be found in work by G. M. McCracken and S. K. Erents, in <u>Applications of Ion Beams to Metals</u>, ed. by S. T. Picraux et al. (Plenum Publ. Corp., New York, 1974), p. 585.

INDEX

```
Ag target
      electron reflection D-6, 7
      ratio secondary electron emission (H^{O}/H^{+}) C-34, 35
      ratio secondary electron emission (He^{0}/He^{+}) C-38, 39
      sputtering coefficient A-20, 21
Ag<sup>+</sup> projectile
      sputtering coefficient A-20, 21
Al target
      diffusivity F-8
      electron reflection D-2, 3
      energy reflection E-12, 13
      particle reflection E-10, 11
      ratio secondary electron emission (H^{0}/H^{+}) C-34, 35
      secondary emission coefficient-e impact B-2, 3
      secondary emission coefficient-ion impact C-4, 5
      solubility F-8
      sputtering coefficients A-8, 9, 18, 19
      sputtering threshold energy A-3
Al<sup>+</sup> projectile
      sputtering coefficient A-18, 19
Al<sup>n+</sup> projectile
      secondary electron emission C-32, 33
Au target
      electron reflection D-6, 7
      ratio secondary emission coefficient (He<sup>O</sup>/He<sup>+</sup>) C-38, 39
      recombination F-9
      secondary emission coefficient-e impact B-4, 5
      secondary emission coefficient-ion impact C-32, 33
      sputtering coefficient A-20, 21, 22, 23, 28
      sputtering threshold energy A-3
Au<sup>+</sup> projectile
      sputtering coefficient A-20, 21
Be target
      sputtering threshold energy A-3
Brass target
      ratio secondary emission coefficient (H^{\circ}/H^{+}) C-34, 35
      ratio secondary emission coefficient (He<sup>0</sup>/He<sup>+</sup>) C-38, 39
```

 $\mathcal{J}^{(n)}(\alpha)$

```
C target
      energy reflection E-8, 9
      particle reflection E-6, 7
      reemission rate F-16, 17
      secondary emission coefficient-e impact B-2, 3
      secondary emission coefficient-ion impact C-2, 3
      sputtering coefficient A-6, 7, 24, 25
      sputtering energy threshold A-3
      trapping coefficient F-10, 11, 12, 13
      trapping coefficient (saturation) F-14, 15
C<sup>+</sup> projectile
      secondary emission coefficient C-4, 5
C<sup>n+</sup> projectile
      secondary emission coefficient C-30, 31
Co target
      sputtering coefficient A-28
Cr target
      sputtering coefficient A-18, 19
Cr<sup>+</sup> projectile
      sputtering coefficient A-18, 19
Cu target
      diffusivity F-8
      electron reflection D-4, 5
      ratio secondary emission coefficient (H<sup>O</sup>/H<sup>+</sup>) C-34, 35
      ratio secondary emission coefficient (H^{-}/H^{+}) C-36, 37
      secondary emission coefficient-ion impact C-10, 11, 30, 31
      solubility F-8
      sputtering coefficient A-18, 19
Cu<sup>+</sup> projectile
      sputtering coefficient A-18, 19
D projectile
      recombination F-9
      sputtering threshold energy A-3
D<sup>+</sup> projectile
      energy reflection coefficient E-8, 9, 16, 17, 20, 21, 24, 25
      particle reflection coefficient E-6, 7, 14, 15, 18, 19, 22, 23
      reemission rate F-16, 17, 24, 25, 34, 35, 36, 37, 38, 39, 42, 43
      sputtering coefficients A-6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
                                 16, 17
      sputtering threshold energy A-3
trapping coefficient F-10, 11, 12, 13, 18, 19, 20, 21, 26, 27,
                              28, 29, 44, 45
      trapping coefficient-saturation F-14, 15, 22, 23, 32, 33
```

```
Electron projectile
     reflection coefficient D-2, 3, 4, 5, 6, 7, 8, 9, 10, 11
     secondary electron emission B-2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                                   13
Electron reflection
     incident angle
        e + Ti D-10, 11
      reflection coefficient
        e + Ag D-6, 7
        e + A1 \quad D-2, 3
        e + Au
               D-6, 7
        e + C D - 2, 3
        e + Cu D-4, 5
                D-2, 3
        e + Fe
               D-4, 5
        e + Mo
               D-4.5
        e + Ni
        e + Ti D - 2, 3
        e + TiC D-8, 9
        e + W D - 6, 7
Graphite target
      secondary emission coefficient-e impact B-12, 13
H projectile
      diffusivity F-8
      ratio secondary emission C-34, 35
      recombination F-9
      solubility F-8
      sputtering threshold energy A-3
H<sup>+</sup> projectile
      charge state distribution E-26, 27
      chemical sputtering A-24, 25
      degassing C-26, 27, 28, 29
      energy distribution E-28, 29
      energy reflection coefficients E-8, 9, 12, 13, 16, 17, 20, 21,
                                      24, 25
      particle reflection coefficients E-6, 7, 10, 11, 14, 15, 18, 19,
                                        22, 23
      replacement efficiency F-40, 41
      secondary electron emission-ion impact C-2, 3, 4, 5, 6, 7, 8, 9,
                                              10, 11, 12, 13, 20, 21,
                                              22, 23, 34, 35, 36, 37
      sputtering coefficient A-6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                              17
      trapping coefficient F-44, 45
H_2^+ projectile
      secondary emission coefficients C-2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                                       12, 13, 20, 21, 26, 27
```

```
H<sub>3</sub><sup>+</sup> projectile
       secondary emission coefficient C-20, 21
Heavy particle reflection
       calculated compendium E-2
       charge state distribution
          H^+ + SS = E - 26, 27
       data compendium E-3
       energy distribution E-2
          H^+ + SS = -28, 29
       energy reflection coefficients
          D^{+} + C = -8, 9
          D^+ + Fe (SS) E-20, 21
         D^+ + M_0 = E-24, 25

D^+ + Ti = E-16, 17

H^+ + A1 = E-12, 13
          H^+ + C = -8, 9
          H^{+} + Fe (SS) E-20, 21
          H^+ + M_0 = E - 24, 25
          H^+ + Ti = -16, 17
          He^+ + Al = E-12, 13
He^+ + C = E-8, 9
          He^+ + Fe (SS) E-20, 21
          He^+ + Mo = E-24, 25
          He^+ + Ti = E-16, 17
       experimental compendium E-5
       particle reflection coefficients
          D^{+} + C = -6, 7
          D^+ + Fe (SS) E-18, 19
D^+ + Mo E-22, 23
          D<sup>+</sup> + Ti E-14, 15
          H^+ + A1 = E - 10, 11
         H^+ + C = E-6, 7
H^+ + Fe (SS) = -18, 19
          H^+ + Mo = E - 22, 23
          H^+ + Ti = E-14, 15
          He^+ + A1 = E-10, 11
          He^{+} + C = E-6, 7
          He^+ + Fe (SS) E-18, 19
          He^+ + Mo = E-22, 23
He^+ + Ti = E-14, 15
       scaling law E-2
<sup>3</sup>He projectile
       sputtering threshold energy A-3
He<sup>O</sup> projectile
       ratio secondary emission C-38, 39
```

```
He<sup>+</sup> projectile
      chemical sputtering A-24, 25
      energy reflection coefficient E-8, 9, 12, 13, 16, 17, 20, 21, 24,
                                      25
      particle reflection coefficient E-6, 7, 10, 11, 14, 15, 18, 19,
                                        22, 23
      ratio secondary emission C-38, 39
      secondary electron emission C-8, 9, 10, 11, 16, 17, 18, 19
<sup>4</sup>He<sup>+</sup> projectile
      secondary emission coefficient C-4, 5, 12, 13, 16, 17, 18, 19
      sputtering coefficients A-6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                                17
      sputtering threshold energy A-3
Inconel target
      diffusivity F-8
      solubility F-8
Fe target
      electron reflection coefficient D-2, 3
      particle reflection coefficient E-18, 19
      sputtering threshold energy A-3
Mo target
      diffusivity F-8
      electron reflection coefficient D-4, 5
      energy distribution-secondary electrons-ion impact C-16, 17
      energy reflection coefficient E-24, 25
      outgassing - degassing C-28, 29
      particle reflection coefficient E-22, 23
      ratio secondary emission coefficient (H^-/H^+) C-36, 37
      ratio secondary emission coefficient (H^0/H^+) C-34, 35
      ratio secondary emission coefficient (0^{-}/0^{+}) C-36, 37
      secondary emission coefficient-e impact B-4, 5
      secondary emission coefficient-ion impact C-12, 13
      solubility F-8
      sputtering coefficient A-12, 13, 20, 21
      sputtering threshold energy A-3
      trapping coefficient F-44, 45
Mo<sup>+</sup> projectile
      sputtering coefficient A-20, 21
Nb target
      sputtering coefficient A-20, 21, 28
Nb<sup>+</sup> projectile
      sputtering coefficient A-20, 21
```

```
Neutron projectile
       sputtering coefficient A-28
Ni target
       diffusivity F-8
       electron reflection D-4, 5
       incident angle C-22, 23
       ratio secondary emission coefficient (H^{0}/H^{+}) C-34, 35
       ratio secondary emission coefficient (He<sup>0</sup>/He<sup>+</sup>) C-38, 39
       reemission rate F-42, 43
       secondary emission coefficient-e impact B-4, 5
       secondary emission coefficient-ion impact C-8, 9
       solubility F-8
       sputtering coefficient A-18, 19, 26, 27
       sputtering threshold energy A-3
Ni<sup>+</sup> projectile
      sputtering coefficient A-18, 19
0<sup>+</sup> projectile
       secondary emission coefficient C-4, 5, 12, 13
       sputtering coefficients A-26, 27
0<sup>°+</sup> projectile
      secondary emission coefficient C-14, 15
0<sub>2</sub><sup>+*</sup> projectile
       secondary emission coefficient C-14, 15
Secondary electron emission coefficients
      electron impact coefficients
         e + A1 B - 2, 3
         e + Au B-4, 5
         e + C B - 2, 3
         e + graphite B-12, 13
         e + Mo B - 4, 5
         e + Ni B-4, 5
         e + SS B-4, 5
         e + Ti B-2, 3, 6, 7
         e + TiC B-8, 9
      incident angle
         e + Ti B-10, 11
Secondary electron emission coefficients
      ion impact coefficients
         Atomic number
           H^+ + Z = C-20, 21
           H_2^+ + Z = C-20, 21
        H_{3}^{+} + Z = C - 20, 21
H_{3}^{+} + Z = C - 20, 21
A1^{n+} + Au = C - 32, 33
         C^{+} + A1 \quad C-4, 5
```

 $C^{n+} + Cu \quad C-30, 31$ $H^+ + A1 \quad C-4, 5$ $H^+ + C C^{-2}$, 3 $H^+ + Cu \quad C-10, 11$ $H^+ + M_0$ C-12, 13 $H^+ + Ni \quad C-8, 9$ H⁺ + Ti C-6, 7 $H_2^+ + A1 \quad C-4, 5$ $H_2^+ + C \quad C-2, 3$ $H_2^+ + Cu \quad C-10, 11$ $H_2^+ + M_0$ $H_2^+ + M_1$ $H_2^+ + M_1$ $H_2^+ + M_1$ C-12, 13 C-8, 9 C-6, 7 $He^{+} + A1$ C-4, 5 $He^+ + Cu$ C-10, 11 $He^+ + Mo C-12$, $He^+ + Ni C-8$, 9 C-12, 13 $0^{+} + A1 \quad C-4, 5$ $0^+ + Mo \quad C-12, 13$ $0_2^+ + Mo$ C-14, 15 $0_2^{+*} + Mo$ C-14, 15 energy distribution $He^+ + Mo$ C-16, 17 $He^+ + W$ C-18, 19 incident angle $H^+ + Ni$ C-22, 23 outgassing or degassing $H^+ + Ti \quad C-26, 27$ $H_2^+ + Ti \quad C-26, 27$ $H^{f} + M_{0} C - 28, 29$ ratio H^0/H^+ secondary emission A1 C-34, 35 Ag C-34, 35 Brass C-34, 35 Cu C-34, 35 CuO-Be C-34, 35 Mo C-34, 35 Ni C-34, 35 SS C-34, 35 ratio H⁻/H⁺ secondary emission Cu C-36, 37 Mo C-36, 37 SS C-36, 37 W C-36, 37 ratio He⁰/He⁺ secondary emission Ag C-38, 39 Au C-38, 39 Brass C-38, 39 Ni C-38, 39 W C-38, 39

time to form monolayer C-24, 25

ي وحصور

```
Si target
        sputtering threshold energy A-3
        trapping coefficient F-18, 19, 20, 21
        trapping coefficient at saturation F-22, 23
SiC target
        reemission rate F-24, 25
Sputtering
        chemical
          H^+ + C = A - 24, 25
          He^{+} + C = A-24, 25
        coefficients
          A1^+ + A1 \quad A-18, 19
          Ag^{+} + Ag = A - 20, 21
          Au^+ + Au = A-20, 21
          Cu^+ + Cu = A - 18, 19
          Cr^{+} + Cr A - 18, 19
          D^+ + A1 A - 8, 9
D^+ + C A - 6, 7
          D^{+} + M_{0} A - 12, 13
          D^{+} + SS A-14, 15
          D^{+} + Ti A-10, 11
          D^{+} + TiC A - 16, 17
          H^{+} + A1 = A-8, 9
          H^+ + C A - 6, 7
          H^+ + M_0 A - 12, 13
H^+ + SS A - 14, 15
          H^+ + Ti A-10, 11
          H^+ + TiC A-16, 17
           ^{4}\text{He}^{+} + A1 A-8, 9
           ^{4}\text{He}^{+} + C \quad \text{A-6}, 7
           ^{4}\text{He}^{+} + Mo A-12, 13
           {}^{4}\text{He}^{+} + \text{SS} \quad \text{A-14, 15}
{}^{4}\text{He}^{+} + \text{Ti} \quad \text{A-10, 11}
           "He<sup>+</sup> + TiC A-16, 17
          Mo^{+} + Mo = A - 20, 21
          Nb^+ + Nb A-20, 21
Ni^+ + Ni A-18, 19
          0^{+} + Ni = A - 26, 27
          0^+ + W = A - 26, 27
          W^+ + W A - 20, 21
           Zn^+ + Zn A-18, 19
        energy distribution
          H^+ + Au = A - 22, 23
        incident angle A-3
        molecules A-4
        neutron coefficients
          n + V A - 28
          n + Co A-28
          n + Nb A-28
          n + Au A-28
```

```
I--8
```

```
threshold energy
         D + A1
                  A-3
         D + Au A - 3
         D + Be
                 A--3
         D + C A-3
                  A--3
         D + Fe
                  A-3
         D + Mo
         D + Ni
                  A-3
         D + Si
                  A-3
         D + Ta
                  A--3
         D + Ti
                  A-3
         D + W A-3
         H + A1
                  A-- 3
         H + Au
                  A--3
         H + Be A-3
         H + C A-3
         H + Fe A-3
         H + Mo
                  A-3
         H + Ni
                  A-3
         H + Si
                  A--3
         H + Ta
                  A-3
         H + Ti A-3
         H + V A-3
         H + W A-3
         ^{3}He + Au A-3
         ^{3}\text{He} + Mo
                     A-3
         <sup>4</sup>He + A1
                     A-3
         <sup>4</sup>He + Au
                     A-3
         <sup>4</sup>He + Be
                    A-3
         ^{4}He + C A-3
         <sup>4</sup>He + Fe A-3
         <sup>4</sup>He + Mo
                     A-3
         <sup>4</sup>He + Ni
                    A-3
         <sup>4</sup>He + Si
                    A-3
         <sup>4</sup>He + Ta
                    A-3
         <sup>4</sup>He + Ti
                    A--3
         <sup>4</sup>He + V A-3
         ^{4}\text{He} + W \text{ A-3}
         <sup>4</sup>He + Zr A-3
       sputtering yield A-2
SS target
       charge state distribution (reflection) E-26, 27
      energy distribution E-28, 29
       energy reflection coefficient E-20, 21
       particle reflection coefficient E-18, 19
       ratio secondary emission (H^{O}/H^{+}) C-34, 35
       ratio secondary emission (H^-/H^+) C-36, 37
       recombination F-9
       reemission rate F-34, 35, 36, 37, 38, 39
       replacement efficiency F-40, 41
```

```
secondary emission coefficient-e impact B-4, 5
      solubility F-8
      sputtering coefficients A-14, 15
      trapping coefficient-saturation F-32, 33
Ta target
      sputtering threshold energy A-3
Ti target
      diffusivity F-8
      electron reflection D-2, 3, 10, 11
      energy reflection coefficient E-16, 17
      incident angle D-10, 11
      outgassing or degassing C-26, 27
      particle reflection E-14, 15
      secondary emission coefficient-e impact B-2, 3, 6, 7, 10, 11
      secondary emission coefficient-ion impact C-6, 7
      sputtering coefficients A-10, 11
      sputtering threshold energy A-3
      trapping coefficient F-26, 27, 28, 29, 30, 31
TiC target
     electron reflection D-4, 5
      secondary electron emission-e impact B-8, 9
     sputtering coefficients A-16, 17
Trapping and reemission
     diffusivity F-2
        H + A1 F - 8
        H + Cu F-8
        H + INC-675 F-8
        H + INC-718 F-8
        H + INC-903 F-8
        H + Mo F - 8
        H + Ni F - 8
        H + 306 SS F-8
        H + Ti F - 8
        H + W F - 8
     models F-3
     recombination F-2
        D + 304 SS F-9
        D + 301 SS F-9
        D + Au F - 9
     reemission rate F-4
       D^+ + C F-16, 17
D^+ + Ni F-42, 43
        D^+ + SiC F - 24, 25
        D^+ + SS F - 34, 35, 36, 37, 38, 39
     replacement cross section F-6
     replacement efficiency F-7
       H^+ + (D+SS) F-40, 41
```

```
reviews F-7
      saturation density F-6
      solubility
        H + A1 F - 8
        H + Cu F - 8
        H + INC 625 F-8
        H + INC 718 F-8
        H + INC 903 F-8
        H + Mo F - 8
        H + Ni F-8
        H + 306 SS F-8
        H + Ti F-8
        H + W F - 8
      trapping F-5
      trapping coefficient
        D^+ + C F = 10, 11, 12, 13
        D^+ + Mo F - 44, 45
        D^+ + Si F-18, 19, 20, 21
        D^+ + Ti F-26, 27, 28, 29
H<sup>+</sup> + Ti F-30, 31
      trapping coefficient-saturation
        D^+ + C F - 14, 15
        D^+ + Si = F - 22, 23
        D^+ + SS F - 32, 33
V target
      sputtering coefficient A-28
      sputtering threshold energy A-3
W target
      diffusivity C-36, 37
      electron reflection coefficient D-6, 7
      energy distribution C-18, 19
      ratio secondary emission ratio (H^-/H^+) C-36, 37
      ratio secondary emission ratio (He<sup>0</sup>/He<sup>+</sup>) C-38, 39
      solubility F-8
      sputtering coefficient A-20, 21, 26, 27
      sputtering threshold energy A-3
W<sup>+</sup> projectile
      sputtering coefficient A-20, 21
Z target
      secondary emission coefficient-ion impact C-20, 21
Zn target
      sputtering coefficient A-18, 19
Zn<sup>+</sup> projectile
      sputtering coefficient A-18, 19
Zr target
      sputtering energy threshold A-3
```

INTERNAL DISTRIBUTION

1-25.	C. F. Barnett	69. F. W. Meyer
26.	L. A. Berry	70. G. Michaels
27.	R. E. Clausing	71-95. R. A. Phaneuf
28.	R. J. Colchin	96. J. A. Rome
29.	0. H. Crawford	97. P. Ryan
30.	S. Datz	98. I. A. Sellin
31.	R. A. Dory	99. W. L. Stirling
32.	J. L. Dunlap	100. C. E. Thomas
33.	C. A. Foster	101. C. C. Tsai
34.	D. C. Gregory	102. J. H. Whealton
35.	P. M. Griffin	103. W. White
36.	H. H. Haselton	104. J. B. Wilgen
37.	C. C. Havener	105. Central Research Library
38.	S. Hiroe	106. Document Reference Section
39.	H. Howe	107-108. Laboratory Records
40.	H. T. Hunter	109. Laboratory Records, RC
41.	R. C. Isler	110. ORNL Patent Section
42-66.	M. I. Kirkpatrick	111. Fusion Energy Div. Library
67.	H. F. Krause	112. Fusion Engineering Design
68.	R. A. Langley	Center

EXTERNAL DISTRIBUTION

- 113. Office of Assistant Manager, Energy Research and Development, DOE-ORO
- 114. Dr. V. A. Abramov, Institute Atommoi Energii, I. V. Kurchatova, 46 Ulitsa Kurchatova, Moscow D-182, U.S.S.R.
- 115. Dr. I. Alexeff, Dept. Electrical Engineering, Ferris Hall, University of Tennessee, Knoxville, TN 37996-2100
- 116. Dr. M. A. Ali, Chemistry Department, Howard University, Washington, DC 20059
- 117. Dr. P. Allison, Los Alamos National Laboratory, P. O. Box 1663, MS H-818, Los Alamos, NM 87545
- 118. Dr. R. C. Amme, Department of Physics, University of Denver, Denver, CO 80208
- 119. Dr. N. O. Andersen, Institute of Physics, University of Aarhus, Dk-8000 Aarhus C, Denmark
- Dr. L. W. Anderson, Department of Physics, University of Wisconsin, Madison, WI 53706
- 121. Dr. K. Ando, Atomic Process Laboratory, Rikagaku Kenkyusho, The Institute of Phys. & Chem. Res., Wako-Shi, Saitama, 351, Japan
- 122. Dr. D. Armstrong, Los Alamos National Laboratory, P. O. Box 1663, MS H-821, Los Alamos, NM 87544
- 123. Dr. M. Bacal, Laboratoire P.M.I., Ecole Polytechnique, 91128 Palaiseau Cedex, France

- 124. Mr. T. Banno, University of Tokyo, Faculty of Engineering, Department of Applied Phys., Bunkyo-Ku Tokyo, Japan
- 125. Dr. A. Barany, Inst. of Theoretical Physics, Uppsala University, Thunbergsv. 3, S-752 38 Uppsala, Sweden
- 126. Dr. M. Barat, LCAM Bat 351, Universite Paris-Sud, 91405-Orsay Cedex, France
- 127. Dr. W. Bauer, Sandia Laboratories, Dept. 8340, Livermore, CA 94550
- 128. Dr. J. F. Baur, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 129. Dr. H. Behrens, Fachinformationszentrum, Energie Physik Mathematick Gmbh, 7514 Eggenstein-Leopoldshafen 2, Federal Republic Germany
- 130. Dr. K. Behringer, Jet Joint Undertaking, Culham Laboratory, Abingdon, Oxon. OX14 3DB, England
- 131. Dr. R. Behrisch, Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-8046 Garching Bei Munchen, West Germany
- 132. Prof. G. Bekefi, Department of Physics, Room 36-213, Massachusetts Inst. of Techn., Cambridge, MA 02139
- 133. Dr. R. D. Bengtson, Department of Physics, University of Texas, Austin, TX 78712
- 134. Dr. D. Berenyi, Inst. of Nuclear Research of The Hungarian Academy of Sci., H-4001 Debrecen Pf. 51,, 18/C Bem Ter, Hungary
- 135. Dr. K. H. Berkner, Bldg. 50, Rm. 149, 1 Cyclotron Road, Lawrence Berkeley Laboratory, Berkeley, CA 94720
- 136. Prof. R. S. Berry, Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
- 137. Dr. P. J. Bertoncini, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- 138. Biblioteca Att. Clelia De Palo, Enea-Centro Ricerche, C.P. 65, 00044 Frascati, Roma, Italy
- 139. Dr. R. S. Blewer, Sandia Laboratories, Org. 2147, P. O. Box 5800, Alburquerque, NM 87185
- 140. Dr. S. L. Bliman, Centre D'etudes Nucleaires, De Grenoble, 85 X Avenue Des Martyrs, F-38041 Grenoble, Cedex, France
- 141. Prof. Dr. A. L. Boers, Kernfysisch Versneller, Instituut Der Rijksuniversiteit, Universiteitscomplex Paddepoel, 9747 AA Groningen, The Netherlands
- 142. Dr. R. Boxman, School of Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
- 143. Dr. Manuel Braun, Forskningsinstitutet for Atomfysik, Frescativagen 24, S-104 05 Stockholm, Sweden
- 144. Dr. F. Bresnock, 36 Milltown Road, New Fairfield, CT 06810
- 145. Dr. F. Brouillard, Institut De Physique, Chemin Du Cyclotron. 2, Universite De Louvain, B 1348 Louvain-La-Neuve, Belgium
- 146. Dr. K. H. Burrell, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 147. Dr. V. A. Burtsev, D. V. Efremov Scientific Res., Inst. of Electrophys. Apparatus, 188631, Leningrad, U.S.S.R.
- 148. Dr. J. Callaway, Dept. of Phys. and Astronomy, Louisiana State University, Baton Rouge, LA 70803

- 149. Dr. J. D. Callen, Nuclear Engineering Dept., ERB, 1500 Johnson Drive, University of Wisconsin, Madison, WI 053706
- 150. Dr. S. Chakrabarti, Space Sciences Laboratory, Univ. California-Berkeley, Berkeley, CA 94720
- 151. Dr. F. Chang, Astronaut Office/Code CB, NASA Johnson Space Center, Houston, TX 77058
- 152. Dr. C. L. Chen, Westinghouse Research and Development Center, 1310 Beulah Road, Pittsburgh, PA 15235
- 153. Dr. C. K. Choi, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907
- 154. Dr. Y. P. Chong, Lawrence Livermore National Lab., P. O. Box 808, MS L-626, Livermore, CA 94550
- 155. Prof. S. Chu, Department of Chemistry, University of Kansas, Lawrence, KS 66045
- 156. Dr. D. A. Church, Physics Dept., Texas A&M University, College Station, TX 77843
- 157. Dr. A. Chutjian, Jet Propulsion Laboratory, Mail Stop 183-601, California Inst. of Techn., 4800 Oak Grove Drive, Pasadena, CA 91109
- 158. Dr. E. J. Clothiaux, Department of Physics, Auburn University, Auburn, AL 36849-3501
- 159. Dr. F. H. Coensgen, Radiation Laboratory, Lawrence Livermore National Lab., P.O. Box 808, Livermore, CA 94550
- 160. Dr. M. J. Coggiola, Molecular Physics Lab., SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025
- 161. Dr. S. A. Cohen, Plasma Physics Laboratory, Forrestal Campus, Princeton University, Princeton, NJ 08544
- 162. Prof. R. W. Conn, UCLA, 6291 Boelter Hall, Los Angeles, CA 90024
- 163. Dr. K. Connor, ECSE Department, Rensselaer Polytechnic Institute, Troy, NY 12181
- 164. Dr. D. L. Cook, Organization 1260, Sandia Laboratories, P. O. Box 5800, Albuquerque, NM 87185
- 165. Dr. J. L. Cook, AAEC Research Establishment, Physics Division, AAEC - Lucas Heights, Sutherland 2232, N.S.W., Australia
- 166. Dr. J.N.L. Coonor, Department of Chemistry, University of Manchester, Manchester M13 9PL, England
- 167. Dr. D. H. Crandall, ER-542, G-215 GTN, Office of Fusion Energy, U.S. Dept. of Energy, Washington, DC 20545
- 168. Dr. R. A. Dandl, Applied Microwave Plasma Concepts, 2210 Encinitas Blvd., Suite P, Encinitas, CA 92024
- 169. Dr. R. Danford, Intl. Research & Evaluation, Attn: Input Processing Director, 21098 IRE Control Center, Eagan, MM 55121
- 170. Dr. H. Davis, LANL, P. O. Box 1663, MS E-526, Los Alamos, NM 87545
- 171. Dr. F. J. De Heer, FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
- 172. Prof. J. L. Delcroix, Lab. Physique Des Plasmas, Faculte Des Sci. D'Orsay, Batiment 212, F-91400 Orsay, France
- 173. Prof. K. T. Dolder, Dept. of Atomic Physics, School of Physics, Univ. of Newcastle Upon Tyne, Newcastle-On-Tyne NEl 7RU, England

- 174. Dr. J. J. Dorning, Department of NEEP, Reactor Facility, University of Virginia, Charlottesville, VA 22901
- 175. Dr. L. D. Doverspike, Department of Physics, College of William & Mary, Williamsburg, VA 23185
- 176. Dr. J. R. Drake, Royal Institute of Technology, Division Plasma Physics, Teknikringen 31, S-100 44, Stockholm 70, Sweden
- 177. Dr. H. W. Drawin, Centre D'etudes Nucleaires, De Fontenay-Aux-Roses, DRFC - SCP, B. P. No 6, F-92260 Fontenay-Aux-Roses, France
- 178. Dr. R. Dubois, Battelle-Pacific Northwest Labs, P. O. Box 999, Richland, WA 99352
- 179. Dr. P. D. Dumont, Universite De Liege, Faculte Des Sciences, Inst. De Phys. Nucl. Experiment., Sart Tilman B - 4000 Liege 1, Belgium
- 180. Dr. G. H. Dunn, JILA, Campus Box 440, University of Colorado, Boulder, CO 80309
- Dr. H. F. Dylla, Princeton Plasma Physics Lab., Princeton University, P. O. Box 451, Princeton, NJ 08544
- 182. Dr. W. Eckstein, Max-Planck-Institut für Plasmaphysik, 8046 Garching, Bei Muchen, West Germany
- 183. EG&G Idaho, Inc., Attn: Inel Techn. Library-I.F., P.O. Box 1625, Idaho Falls, ID 83415
- 184. Dr. R. C. Elton, Code 4733, Naval Research Lab., Washington, DC 20375
- 185. Dr. B. Feinberg, Lawrence Berkeley Laboratory, University of California, MS 71259, Berkeley, CA 94720
- 136. Dr. C. R. Finfgeld, Office of Fusion Energy, Office of Energy Research, Mail Station G-256, U.S. Department of Energy, Washington, DC 20545
- 187. Dr. J. H. Fink, 4023 East Avenue, Hayward, CA 04542
- 188. Dr. M. Fink, RLM Bldg. 10.202, Department of Physics, University of Texas, Austin, TX 78712
- 189. Dr. R. K. Fisher, GA Technologies, Inc., P. O. Box 85608, L-338, San Diego, CA 92138
- 190. Dr. D. L. Flamm, Room 6E216, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
- 191. Dr. H. H. Fleischmann, Department of Applied Physics, Clark Hall, Cornell University, Ithaca, NY 14853
- 192. Dr. R. F. Fleming, 19167 Stedwick Drive, Gaithersburgh, MD 20879
- 193. Dr. R. J. Fonck, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 194. Dr. T. K. Fowler, Lawrence Livermore Laboratory, P. O. Box 5511, Mail Code L-640, Livermore, CA 94550
- 195. Dr. R. S. Freund, Bell AT&T Labs., Rm. 1D-256, Murray Hill, NJ 07974
- 196. Dr. A. Fukuda, Quantumtechnology Division, Electrotechnical Laboratory, 1-1-4, Umezono, Sakura-Mura, Niihari-Gun, Ibaraki, Japan
- 197. Dr. G. Fussmann, Max-Planck Institut fuer Plasmaphysik (IPP), 8046 Garching, Bei Munchen, Germany Abtl. E3

- 198. Dr. A. Futch, MS L-437, Lawrence Livermore National Lab., P.O. Box 808, Livermore, CA 94550
- 199. Dr. J. Gallagher, JILA, University of Colorado, Boulder, CO 80309
- 200. Dr. A. Garscadden, Aero Propulsion Laboratory, AFWAL-POOC-3,
- Building 450, Wright-Patterson AFB, Dayton, OH 45433
- 201. Mrs. B. Garton, Department of Physics, Imperial College of Science & Technology, London S.W. 7, England
- 202. Dr. W. B. Gauster, Division 6248, Sandia National Laboratories, Albuquerque, NM 87185
- 203. Dr. K. W. Gentle, Department of Physics, University of Texas, Austin, TX 78712
- 204. Prof. H. B. Gilbody, Department of Pure & Applied Phys., The Queen's University of Belfast, Belfast BT 7, 1NN, Northern Ireland
- 205. Dr. H. Goldberg, Rockwell Hanford Operations, 622-G Bldg., 600-W Area, Richland, WA 99352
- 206. Dr. L. B. Golden, Department of Physics, The Worthington Scranton Campus, Pennsylvania State Univ., 120 Ridge View Drive, Dunmore, PA 18512
- 207. Dr. S. Goldsmith, Department of Physics, Tel-Aviv University, Tel-Aviv, Israel
- 208. Dr. I. N. Golovin, I. V. Kurchatov Institute, Atomic Energy, Ulitsa Kurchatova 46, Moscow 123182, U.S.S.R.
- 209. Dr. R. W. Gould, MS 128-95, Dept. of Applied Physics, California Institute of Techn., Pasadena, CA 91109
- 210. Dr. W. G. Graham, Physics Department, New University of Ulster, Coleraine BT52 1SA, Northern Ireland
- 211. Dr. T. A. Green, Division 1151, Sandia National Laboratories, Albuquerque, NM 87185
- 212. Dr. E. Greenspan, Atomic Energy Commission, Nuclear Research Centre-Negev, P. O. Box 9001, Beersheva, 84190, Israel
- 213. Dr. R. J. Groebner, Doublet III Program, 13/463, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 214. Dr. R. A. Gross, Department of Applied Physics & Nuclear Engineering, Columbia University, New York, NY 10027
- 215. Dr. D. Gruen, Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
- 216. Dr. G. E. Guest, Applied Microwave Plasma Concepts, 2210 Encinitas Blvd., Suite P, Encinitas, CA 92024
- 217. Dr. A. Haasz, Univ. of Toronto, Inst. for Aerospace Studies, 4925 Dufferin Street, Downsview, Ontario, Canada M3H 5T6
- 218. Dr. L. Hage, Library Adm. Department, Technische Hogeschool, Bibliotheek, 2120.41233, Postbus 513, 5600-MB Eindhoven, The Netherlands
- 219. Dr. S. Hagmann, Department of Physics, Kansas State University, Manhattan, KS 66506
- 220. Dr. S. M. Hamberger, Plasma Research Laboratory, Australian National University, G. P. O. Box 4, Canberra, ACT, 2601, Australia

- 221. Dr. S. P. Hatchett II, L-477, Lawrence Livermore National Lab., Livermore, CA 94550
- 222. Dr. H. C. Hayden, Department of Physics, U-46, University of Connecticut, Storrs, CT 06268
- 223. Dr. F. A. Herrero, Code 960, NASA Goddard, Greenbelt, MD 20771
- 224. Dr. R. A. Hess, Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, MD 20742
- 225. Dr. R. L. Hickok, Jr., ECSE Dept. JEC 6003, Rensselaer Polytechnic Inst., Troy, NY 12180-3590
- 226. Dr. K. W. Hill, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 227. Dr. G. Himmel, Ruhr-Universitat Bochum, Experimentalphysik, Lehrstuhl II, Universitatsstr. 150, Postfach 102148, 4630 Bochum 1, West Germany
- 228. Dr. J. R. Hiskes, L-630, Lawrence Livermore National Lab., P.O. Box 5511, Livermore, CA 94550
- 229. Dr. B. Hodge, Fusion Research Center, RLM 11.222, University of Texas, Austin, TX 78712
- 230. Dr. S.-P. Hong, Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
- 231. Dr. E. B. Hooper, Jr., Neutral Beam Group, Lawrence Livermore National Lab., P. O. Box 5511, L-537, Livermore, CA 94550
- 232. Dr. J. W. Hooper, 5260 Northside Drive, N.W., Atlanta, GA 30327
- 233. Dr. G. R. Hopkins, GA Technologies Inc., P. O. Box 85608, San Diego, CA 92138
- 234. Dr. W. F. Huebner, Group T-4, MS 212, Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545
- 235. Dr. J. G. Hughes, International Atomic Energy Agency, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria
- 236. Dr. A. Hunt, Lawrence Livermore National Lab., P. O. Box 5511, L-637, Livermore, CA 94550
- 237. International Research & Evaluation, Attn: IRE-ITTD Input Processing Dir., 21098 Ire Control Ctr., Eagan, MN 55121
- 238. Dr. Y. Itikawa, Institute of Space and Astronautical Science, 6-1, Komaba 4-Chome, Meguro-Ku, Tokyo 153, Japan
- 239. Dr. F. C. Jahoda, CTR Division, Los Alamos National Laboratory, P.O. Box 1663, MS F-639, Los Alamos, NM 87545
- 240. Dr. A. K. Jain, Government of India, Bhabha Atomic Research Centre, Nuclear Physics Division, Trombay Bombay 400 085, India
- 241. Dr. B. C. Johnson, Harvard College Observatory, Cambridge, MA 02138
- 242. Dr. P. B. Johnson, Department of Physics, Victoria University of Weelington, Private Bag Wellington, New Zealand
- 243. Dr. R. E. Johnson, Dept. of Nuclear Engineering and Engineering Physics, Thornton Hall, University of Virginia, Charlottesville, VA 22901
- 244. Dr. E. G. Jones, Systems Research Lab., Inc., 2800 Indian Ripple Road, Dayton, OH 45440
- 245. Dr. E. M. Jones, Jet Joint Undertaking, Data Acquisitions Group, Codas Division J2, Abingdon, Oxfordshire OX14 3EA, England

- 246. Dr. K. W. Jones, Brookhaven National Laboratory, Bldg. 901-A, Upton, NY 11973
- 247. Dr. W. D. Jones, Department of Physics, University of South Florida, Tampa, FL 33620
- 248. Dr. R. A. Jong, Lawrence Livermore Laboratory, P. O. Box 5511, L-637, Livermore, CA 94550
- 249. Dr. B. R. Junker, Code 412, Office of Naval Research, 800 North Quincy Street, Arlington, VA 22217
- 250. Dr. T. Kammash, Dept. of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48104
- 251. Dr. T. Kato, Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan
- 252. Dr. K. Katsonis, Lab. Physique Des Plasmas, Faculte Des Sci. D'Orsay, Batiment 212, F-91400 Orsay, France
- 253. Dr. J. J. Kaufman, Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
- 254. Dr. R. A. Kenefick, Dept. of Physics, Texas A&M University, College Station, TX 77843
- 255. Kernforschungszentrum Karlsruhe GMBH, Literaturabteilung, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany
- 256. Dr. Y.-K. Kim, Bldg. 221, Rm A-267, National Bureau of Standards, Gaithersburg, MD 20899
- 257. KMS Fusion, Inc., Library, 3621 S. State Road, P. O. Box 1567, Ann Arbor, MI 48106
- 258. Dr. H. Knudsen, Institute of Physics, University of Aarhus, DK-8000, Aarhus C, Denmark
- 259. Dr. K. Kondo, Plasma Physics Laboratory, Kyoto University, Gokashyo Uji, Kyoto, Japan
- 260. Dr. G. Kulcinski, Dept. of Nuclear Engineering, University of Wisconsin, Madison, WI 53706
- 261. Dr. H. J. Kunze, Institut fuer Exp.-Physics, Ruhr Universitaet, 4630 Bochum, West Germany
- 262. Dr. Neal F. Lane, University of Colorado, P. O. Box 7150, Colorado Springs, CO 80933-7150
- 263. Dr. B. Laskowski, Analatom Inc., 253 Humboldt Court, Sunnyvale, CA 94086
- 264. Lawrence Livermore National Lab., Attention: Tech. Infor. Dept., P. O. Box 5500, Livermore, CA 94550
- 265. Dr. N. H. Lazar, Bldg. R1, Defense and Space Systems Group of TRW Inc., One Space Park, Redondo Beach, CA 90278
- 266. Prof. B. Lehnert, The Royal Institute of Techn., Div. of Plasma Phys. Fusion Res., Stockholm, 70, Sweden
- 267. Dr. W. N. Lennard, Solid State Science, Chemistry & Materials Division, Atomic Energy of Canada Limited, Nuclear Laboratories, Chalk River, Ontario, Canada KOJ 1JO
- 268. Dr. G. W. Leppelmeier, Magnetic Fusion Energy Division, Lawrence Livermore National Lab., P. O. Box 5511, L-637, Livermore, CA 94550
- 269. Dr. K. N. Leung, Bldg. 4, Lawrence Berkeley Laboratory, Berkeley, CA 94720

- 270. Dr. K. Leung, Fusion Engineering, 6291 Boelter Hall, UCLA, Los Angeles, CA 90024
- 271, Dr. M. A. Levine, Lawrence Berkeley Laboratory, University of California, Bldg. 9, MS 41230, Berkeley, CA 94720
- 272. Prof. D. Lichtman, Department of Physics, Univ. of Wisconsin-Milwaukee, Milwaukee, WI 53201
- 273. Dr. A. Lietzke, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Bldg. 4, Berkeley, CA 94720
- 274. Dr. C. C. Lin, Department of Physics, University of Wisconsin, Madison, MI 53706
- 275. Dr. F. Linder, Department of Physics, Univ. of Kaiserslautern, D-675 Kaiserslautern, West Germany
- 276. Dr. A. E. Livingston, Department of Physics, University of Notre Dame, Notre Dame, IN 46556
- 277. Dr. G. J. Lockwood, Division 1234, Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185
- 278. Dr. D. C. Lorents, Chemical Physic Laboratory, SRI International, 333 Ravenwood Avenue, Menlo Park, CA 94025
- 279. Dr. A. Lorenz, Deputy Head, Nuclear Data Section, International Atomic Energy Agency, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria
- 280. Prof. M. Los, FOM-Institute of Atomic and Molecular Physics, Kruislaan 407, Amsterdam/watergraafsmeer, The Netherlands
- 281. Los Alamos National Laboratory, Attention: Librarian, MS P362, P. O. Box 1663, Los Alamos, NM 87545
- 282. Ms. H. W. Lovitts, Sci. Information Service, Inc., 7 Woodland Avenue, Larchmont, NY 10538
- 283. Dr. M. W. Lucas, University of Sussex, School of Mathematical and Physical Sciences, Falmer, Brighton BN1 9QH, United Kingdom
- 284. Dr. S. R. Lundeen, Department of Physics, University of Notre Dame, Nieuwland Science Hall, Notre Dame, IN 46556
- 285. Dr. D. M. Manos, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 286. Dr. S. T. Manson, Department of Physics, Georgia State University, Atlanta, GA 30303
- 287. Dr. E. S. Marmar, Massachusetts Institute of Techn., NW 16-280, Cambridge, MA 02139
- 288. Dr. J. V. Martinez, Division of Chemical Sciences, Off. of Basic Energy Sci., J-309, U.S. Department of Energy, Washington, DC 20545
- 289. Dr. S. Matsuda, Fusion Research Center, Japan Atomic Energy Res. Inst., Mukaiyama, Naka-Machi, Naka-Gen, Ibaraki-Ken, T 311-02 Japan
- 290. Dr. M. Mattioli, Association Euratom-CEA Sur La Fusion, DPH PFC - B.P. 6, F 92260 Fontenay-Aux-Roses, France
- 291. Dr. H. M. Mayer, Max-Planck-Institut fuer Plasmaphys., 8046 Garching, West Germany
- 292. Max-Planck-Inst. fuer Plasmaphys., Mrs. A. Hohaus, Librarian, 8046 Garching Bei Muenchen, West Germany

- 293. Dr. J. W. McConkey, Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
- 294. Dr. G. M. McCracken, Culham Laboratory, Abingdon Oxfordshire OX14 3DB, England
- 295. Prof. E. W. McDaniel, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- 296. Dr. R. McFarland, Department of Physics, University of Missouri-Rolla, Rolla, MO 65401
- 297. Dr. W. Meckbach, Centro Atomico Bariloche, 8400 San Carlos De Bariloche, Argentina
- 298. Dr. B. B. Meckel, Deposition Technology, Inc., 8963 Carroll Way, San Diego, CA 92121
- 299. Dr. D. R. Mikkelsen, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 300. Dr. G. H. Miley, University of Illinois, 216 Nuclear Engineering Lab., 103 S. Goodwin Avenue, Urbana, IL 61801
- 301. Dr. S. V. Mirnov, I. V. Kurchatov Institute of Atomic Energy, Ulitsa Kurchatova, 46, Moscow 123182, U.S.S.R.
- 302. Mirror Fusion Experimental Group, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550
- 303. Dr. A. A. Mondelli, Science Applications, Inc., 8400 Westpark Drive, McLean, Virginia 22102
- 304. Dr. H. W. Moos, Physics Department, Johns Hopkins University, Baltimore, MD 21218
- 305. Dr. T. J. Morgan, Department of Physics, Wesleyan University, Middletown, CT 06457
- 306. Dr. W. L. Morgan, L-18, Lawrence Livermore National Lab., University of California, P. O. Box 808, Livermore, CA 94550
- 307. Dr. K. Mori, 1-508 Shakujii-Koen Danchi, 1-127 Kamishakujii, Nerima-Ku, Tokyo 177, Japan
- 308. Dr. K. Moses, JAYCOR, Plasma Technology Division, 2908 Oregon Court, Bldg. I-7, Torrance, CA 90503
- 309. Dr. Y. Nakai, Department of Physics, Japan Atomic Energy Res. Inst., Tokai Research Establishment, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
- 310. Dr. S. Nakazaki, Department of Applied Physics, Faculty of Engineering, Miyazaki University, Miyazaki 880, Japan
- 311. Dr. F. Nehring, Rt. 3, Box 57A, Clinton, TN 37716
- 312. Dr. D. W. Norcross, JILA, Campus Box 440, University of Colorado, Boulder, CO 80309
- 313. Dr. K. W. Ogilvie, Code 692, Goddard Space Flight Center, Greenbelt, MD 20771
- 314. Dr. T. Ohkawa, GA Technologies, Inc., P. O. Box 85608, San Diego, CA 92138
- 315. Dr. S. Ohtani, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan
- 316. Dr. J. E. Osher, Lawrence Livermore National Lab., University of California, P. O. Box 808, L-637, Livermore, CA 94550
- 317. Dr. A. Osman, Theoretical Nuclear Physics, Department of Physics, Faculty of Science, Cairo University, Cairo, Egypt

- 318. Dr. M. Otsuka, Institute of Plasma Physics, Nagoya University, Nagoya, Japan
- 319. Dr. W. Ott, Max-Planck-Institut fuer Plasmaphysik, 8046 Garching Bei Muenchen, West Germany
- 320. Dr. H. G. Paretzke, GSF, D-8042 Neuherberg, West Germany
- 321. Dr. E. S. Parilis, Institute of Electronics, Tashkent, U.S.S.R.
- 322. Dr. J. T. Park, Vice Chancellor, Physics Department, 102 Physics, University of Missouri-Rolla, Rolla, MO 65401
- 323. Dr. N. J. Peacock, Culham Laboratory, Ukaea Research Group, Abingdon Oxfordshire OX 14 3DB, England
- 324. Dr. D. C. Pease, Delco Systems Operations, 6767 Hollister, Goleta, CA 93117
- 325. Dr. P. J. Persiani, Argonne National Laboraory, 9700 South Cass Avenue, Bldg. 208, Argonne, IL 60439
- 326. Dr. J. R. Peterson, SRI International, Menlo Park, CA 94025
- 327. Prof. E. Pfender, Dept. of Mechanical Engineering, University of Minnesota, 125 Mechanical Engineering Bldg., Minneapolis, MN 55455
- 328. Dr. L. G. Phadke, Physics Department, Northeastern State University, Tahlequah, OK 74464
- 329. Dr. A. V. Phelps, JILA, University of Colorado, Boulder, CO 80309
- 330. Physics and Applied Maths Library, College Park, The Queen's University of Belfast, Belfast BT 7 INN, Northern Ireland
- 331. Physics/Optics/Astron. Library, 374 Bausch & Lomb Building, University of Rochester, Rochester, NY 14627
- 332. Plasma Fusion Center Library, Massachusetts Inst. of Technology, NW 16-153, Cambridge, MA 02139
- 333. Dr. R. S. Post, Massachusetts Institute of Techn., Plasma Fusion Center, 190 Albany Street, Cambridge, MA 02139
- 334. Dr. K. Prelec, Accelerator Department, Building 911B, Brookhaven National Laboratory, Upton, NY 11973
- 335. Dr. F. Prevot, Centre D'etudes Nucleaires de Fontenay-AuxRoses, Drfc, B. P. No 6, 92260 Fontenay-Aux-Roses, France
- 336. Princeton University, Attention: C-Site Library, Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
- 337. Dr. G. Proulx, Pulse Sciences, Inc., 14796 Wicks Blvd., San Leandro, CA 94577
- 338. Dr. R. V. Pyle, Bldg. 4-230, Lawrence Berkeley Laboratory, Berkeley, CA 94720
- 339. Dr. B. H. Quon, JAYCOR, Plasma Technology Div., 2908 Oregon Ct., Bldg. I-7, Torrance, CA 90503
- 340. Dr. D. Register, Phillips Petroleum Co., MS-118-AL, PRC, Bartlesville, OK 74004
- 341. Dr. D. J. Rej, Los Alamos National Laboratory, Ctr. 3, MS 638, P. O. Box 1663, Los Alamos, NM 87545
- 342. Dr. J. Reece Roth, University of Tennessee, Dept. of Electrical Engineering, Rm. 316, Ferris Hall, Knoxville, TN 37916
- 343. Dr. H. Rohr, Max-Planck-Inst. fuer Plasmaphys., Boltzmann Str. 3, D-8046 Garching Bei Munchen, West Germany
- 344. Dr. W. L. Rowan, Fusion Research Center, University of Texas, Austin, TX 78712

- 345. Dr. M. E. Rudd, Dept. Physics and Astronomy, University of Nabraska, Lincoln, NE 68588-0111
- 346. Dr. J. R. Rumble, Physics Building A323, National Bureau of Standards, Washington, DC 20234
- 347. Rutherford Appleton Laboratory, Mrs. E. Marsh, Librarian, Chilton, Didcot, Oxfordshire OX11 OQX, England
- 348. Dr. G. Schilling, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 349. Dr. A. S. Schlachter, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
- 350. Dr. J. J. Schmidt, Nuclear Data Section, International Atomic Energy Agency, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria
- 351. Dr. M. Seidl, Stevens Inst. Techn., Dept. of Physics, Hoboken, NJ 07030
- 352. Dr. V. S. Senashenko, Institute of Nuclear Physics, M. V. Lomonosov Moscow State Univ., Moscow 119899, U.S.S.R.
- 353. Dr. A. Surjalal Sharma, Plasma Physics Programme, Physical Research Laboratory, Navrangpura, Ahmedabad-380-009., India
- 354. Dr. V. B. Sheorey, 461 Physical Research Laboratory, Navrangpura, Ahmedabad-380-009, India
- 355. Dr. J. Sherman, AT-2, MS 818, Los Alamos National Laboratory, Los Alamos, NM 87545
- 356. Dr. M. Shimada, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 357. Dr. T. Shirai, Japan Atomic Energy Research Inst., Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
- 358. Dr. R. Shuker, Department of Physics, Ben-Gurion University of the Negev, P. O. Box 653, Beer Sheva 84105, Israel
- 359. Dr. P. Sigmund, Institut Physics, Campusvej 55, Odense University, 5230 Odense, Denmark
- 360. Dr. C. H. Skinner, Plasma Physics Laboratory, Princeton University, James Forrestal Campus, Princeton, NJ 08544
- 361. Dr. J. N. Smith, Mail Stop L-520, General Atomic Company, P.O. Box 81608, San Diego, CA 92138
- 362. Dr. L. D. Smullin, Massachusetts Institute of Techn., Dept. of Electrical Engineering and Computer Science, Cambridge, MA 02139
- 363. Dr. E. Speth, Department of Technology, Max-Planck-Institut fuer Plasmaphysik, 8046 Garching Bei Munchen, West Germany
- 364. Prof. J. C. Sprott, Department of Physics, Univ. of Wisconsin, Madison, 1150 University Avenue, Madison, WI 53706
- 365. Dr. K. R. Stalder, 515 King Street, Redwood, CA 94062
- 366. Prof. B. Stansfield, Universite de Quebec, Institut National De La Recherche Scientifique, Case Postale 1020, Varennes, Quebec, Canada
- 367. Dr. J. W. Stearns, MS 5-119, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
- 368. Dr. R. F. Stebbings, Dept. Space Phys. & Astron., Rice University, Houston, TX 77001

- 369. Dr. D. Steiner, Dept. Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181
- 370. Dr. W. C. Stwalley, Department of Chemistry, University of Iowa, Iowa City, IA 52242
- 371. Dr. H. Sugiyama, Electrotechnical Laboratory, 1-1-4 Umezone, Sakura-Mura, Niihari-Gun, Ibaraki-Ken, Japan
- 372. Dr. A. Surjalal Sharma, Plasma Physics Programme, Physical Research Laboratory, Navrangpura, Ahmedabad-380-009., India
- 373. Dr. D. R. Sweetman, U.K.A.E.A., Culham Laboratory, Bldg. E-5, Abingdon, Oxfordshire OX14 3DB, United Kingdom
- 374. Dr. H. Takahashi, Brookhaven National Laboratory, Upton, Long Island, NY 11973
- 375. Prof. K. Takayanagi, Inst. of Space & Astron. Sci., Komaba 4-6-1, Meguro-Ku, Tokyo 153, Japan
- 376. Dr. H. Tawara, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan
- 377. Technical Information Center, Stone & Webster Engineering Corp.,
 3 Executive Campus, P. O. Box 5200, Cherry Hill, NJ 08034
- 378. Dr. D. M. Thomas, L-334, GA Technologies, Inc., P. O. Box 85608, San Diego, CA 92138
- 379. Dr. E. W. Thomas, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- 380. Dr. L. H. Toburen, Battelle Pacific Northwest Labs, 300 Area 3745-B, P. O. Box 999, Richland, WA 99352
- 381. U.K.A.E.A. Culham Laboratory, Attn: Mrs. S. Smith, Library Reading Room, Abingdon, Oxfordshire OX14 3DB, United Kingdom
- 382. Dr. M. C. Undersood, Reservoir Technology Branch, B. P. Research Centre, Chertsey Road, Sunbury-Di-Thames, Middlesex, England
- 383. Dr. J. Valerio, General Dynamics Corp., Covair Division, P. O. Box 80847, MS 42-6210, San Diego, CA 92138
- 384. Dr. E. Veje, Physics Laboratory II, University of Copenhagen, H. C. Orsted Institute, Universitetsparken 5, DK 2100 Copenhagen, Denmark
- 385. Dr. H. Vernickel, Max-Planck-Institut fuer Plasmaphys., 8046 Garching Bei Munchen, West Germany
- 386. Prof. G. C. Vlases, Aerospace and Energetics, Research Program, FL-10, University of Washington, Seattle, WA 98195
- 387. Dr. S. E. Von Goeler, Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08544
- 388. Dr. F. Waelbroeck, Institut fuer Plasmaphysik, Kernforschungsanlage, 517 Juelich, Federal Republic of Germany
- 389. Dr. F. Wagner, Max-Planck-Inst. fuer Plasmaphys., D-8046 Garching, West Germany
- 390. Prof. K. Wiesemann, Ruehr-Universitaet, Inst. Exp. Phys. Agii, Postfach 102148, D-4630 Bochum 1, West Germany
- 391. Dr. J. F. Williams, Department of Physics, The University of Western Australia, Nedlands, Western Australia 6009
- 392. Dr. H. Winter, Institut Fuer Allgemeine Physik, Technische Universitaet Wien, Karlsplatz 13, A-1040 Wien, Austria

393. John G. Wolbach Library, Attention: Librarian, Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138

alter.

- 394. Dr. J. T. Woo, Interscience, Inc., One Washington Avenue, Suite 1, Schenectady, NY 12305
- 395. Dr. R.L.C. Wu, Brehm Laboratory, Wright State University, Dayton, OH 45435
- 396. Dr. C. E. Young, Chm 200, Argonne National Lab., 9700 South Cass Avenue, Argonne, IL 60439
- 397-423. Technical Information Center, Department of Energy, Oak Ridge, Tennessee 37831
- 424-500. Controlled Fusion Atomic Data Center, Bldg. 6003, ORNL