ORNL--6086/V1

4

DE91 000527

Physics Division

ATOMIC DATA FOR FUSION

VOLUME 1

COLLISIONS OF H, H₂, He and Li ATONS and IOWS with ATOMS and MOLECULES

> C. F. Barnett Oak Ridge National Laboratory

Published and Edited by Controlled Fusion Atomic Data Center

H. T. Hunter and M. I. Kirkpatrick Series Technical Editors

I. Alvarez, C. Cisneros, University of Mexico, and R. A. Phaneuf Contributing Editors

Date Published - July 1990

Prepared for the Office of Fusion Energy U.S. Department of Energy Washington, DC 20545 Budget Activity No. AT 05 30 04 0

Prepared by the OAK RIDGE NATIONAL LABORATORY Cak Ridge, Tennessee 37831-6372 operated by MARTIN MARIFTTA ENERGY SYSTEMS, INC. for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400

U

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes—Printed Copy: A-99Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or upsfulness of any information, spparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or oth source, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency "hereof.

ATOMIC DATA FOR FUSION

VOL. 1

COLLISIONS OF H, H₂, Re, AND Li ATOMS AND <u>IONS WITH ATOMS AND MOLECULES</u>

Foreword	•	•	٠	•	•	•	٠	•	•	•	٠	٠	٠	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	xiii
Series Preface	<u>e</u>	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	XV
Abstract .	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	xvii
Introduction		•	•		•		•	•	•		•			•				•	•	•		•		•	•	-	I-1

A. Electron Capture Collisions

H	+ H _> H ⁻ + H ⁺ • • •	•		•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	A-2
H	$+ H_2 \rightarrow H^- + H_2 $	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A8
H	+ He -> H" + He ⁺ .		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	A-10
H	+ Li -> H ⁻ + Li ⁺	•		•	•	•	•				•	•					•	•	•	•	•		A-16
H	+ R ⁻ -> H ⁻ + H · · ·	•	•	•	•	•	•	•	•	•	•	•	•	-	٠	•	•	٠	•	•	•	•	A-20
H,	+ H -> H + H [*]								•	-													A-22
H+	+ H ₂ -> H			•																			A-28
н*	+ H ₂ -> H ⁻			-														-				-	A-30
H*	+ He -> H + He* .	•	•	•	•									•		•	•		•	•		•	A-32
H,	+ He -> H' + He ²⁺	•														•							A-38
H+	+ Li -> E + Li* .	•																					A-40
H*	+ H ⁻ -> H ⁻ + H ⁺ .				•																		A-44
H+	+ H ⁻ -> 2H																						A- 46
н*	+ He' -> $\sigma(\text{He}^{2+} \text{ Total})$)																					X-48
H,	+ He' -> H + He ²	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	X-54
н.,'	+ H -> H ₂ + H ⁺																						A-58
Н,	+ []> H																						A-58
Н2,	+ He -> H ₂ + He																						A-58
H ₂ '	$(v) + H_2 -> H_2$		-	•	•	•	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	h-60
He	' + H -> He + H' .					_				_			_	_		_	_			_		_	A-62
He	' + H ⁻ ~> He + H																			ĺ			A-86
He	+ Ha -> He								·			Ż	•										A-68
He	+ He -> He + He										•	Ī	,			÷			÷				A-70
He	' + Li -> He + Li*			2		-	÷			-				÷		÷							A-76
He	He' -> He + He ²⁺					•								-									A-86
He	² ' + He' -> He' + He ² '	(Pa	rti	a)		£	ፕቦ	t A	• •						_		_				_		4-84
He	$^{2^{+}}$ + H [*] -> He [*] + H								- ,		•			•	•	•	•		•	•	•		A-04 A-86
He	^{2*} + H -> He [*] + R [*]						•	•	•	•	•	•	•		•	•	•	•	•	•	•		A-00
Не	24 + H ₂ -> 11e ⁴		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	1-00
He	2^{+} + H ₂ => 36		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A-94
He	2^{+} + He -> He ⁺ + He ⁺	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A-20 A-00
He	$1 + lo - 2 + lo + lo^2$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A-70
He	2^{+} + 1.1 => He ⁺ + 1.1^{+}	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A-110
He	$2^{+} + 1.1 => 10^{+} + 1.1^{+}$	•	•	•	•	•	•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	A-110 A-114

B. Electron Capture into Excited States

н*	+	H ->	- H(261 + 1	н• _		-					-	-									-		8- 2
				201 4	u* •	•••	•	•	•	•••	•	•	•	•••	•	•	-	•	•	•	•	•	•	BC.
n +	Ŧ	n	. ""	201 + -	· ·	• •	•	•	•	• •	•	•	•	•	•	•	·	•	•	•	•	•	•	D0
H	+	H ₂ -	> H	(26)	• • •	• •	٠	•	•	• •	•	•	•	• •	•	•		•	٠	٠	•	•	•	9-14
H.	+	H ₂ -	-> H	(2p)		• •	•	•	•			-	•		•	•	-	•	•	•	•	•		B-14
н *	+	H ₂ -	-> H	(Lyman-a	1 Tota	11		-	•			•			•			•	•				•	B-16
н*	+	Н	> н	(Balmer-		· ·						-	-				_	_			_		_	B-JH
+	÷	23	- II	(Dalmar	~, 	•••	•	•	•	• •	-	•	•	• •	•	•	-	•	•		•	•	•	0.1
п +				(Daimer.	-p)	• •	•	•	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	D3
H	+	$H_2 =$	> H	(36)	• • •	•••	-	•	•	• •	•	•	•	• •	•		•	٠	•	•	•	٠	•	8-2-C
H.	+	H ₂ -	·> H	(3p)	• • •	• •	•	•	•	• •	•	•	•	• •	•		•	•	•		•	•	•	B-20
н'	+	H ₂ -	-> H	(3d)			•	•	•			•									•	•		8-20
н+	+	He -	-> R	1(26) +	He ⁺							_	_											8-22
+	÷	Lio I		1(2n) +	110 ⁺	•••	•	•		• •	•	-	•	• •	•	•	-	•	•	•	-	-	•	0 20
п +				1(2)	ne	1. :	•		•	•••	•	•	•	• •	•	-	•	•	•	•	•	-	•	D-/0
H	+	HE -	-> H	(Baimer	-a} +	не		•	•	• •	•	•	•	• •	•		•	•	•	•	•	•	•	8-24
8	+	He -	-> H	I(3B) +	He	• •	٠	•	•	• •	•	•	•		•	•	•	٠	•		•	•	•	B-4C
н* –	+	He -	-> H	I(3p) +	He		•	•	•			•	•				•		•	•	•	•		B-45
H+	+	He -	-> B	(3d) +	He																			6-52
н*	•	T.i _	-> #	1(28) +	1.4								•				_			•	•			8-55
+		11			11	•••	•	•	•	•••	•	•	•	• •	•	•	•	•	•	•	•	•	•	n'n
п.	•	<u>ы</u> -	-> n	1(2p) +	61	• •	•	•	٠	•••	•	•	•	• •	•	•	•	•	•	٠	•	•	•	6
H	+	Li -	-> H	I(3B) +	Li	• •	•	•	•	• •	•	٠	٠	• •	•	•	•	•	•	٠	•	•	•	8-00
НT	+	Li -	-> F	1(3p) +	51	• •	•	•	-		•	•	•	• •	•		•	•	•		•	•	•	6-60
H.	+	Li -	-> F	I(3d) +	Li*			•				•							•				•	2 60
He'	+	н.	->	H(215 +	+ 2 ³ S1		_	-			_	_	_										_	1:- 12
U*		. ц.	_	He(210)	,	•	•	•	•	•••		-	•	• •		•	•	•	•	•	'n	•	•	P 6.4
ne +				ne(2 c)	•••	•••	•	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	6 04
не	+	· H ₂	->	He(3-P)		• •	•	•	•	•••	•	•	•	• •	•	•	•	٠	•	•	•	•	•	8-34
He'	+	· H ₂	->	He(\ ≖	447.1	nma)		٠	•	• •	•	•	•	• •	•	•	-	٠	•	•	•	•	•	B - 56
He'	+	H ₂	->	He(λ ≃	587.6	nm)			•		•	•					•	•			•	•		8-66
He'	+	H-	->	Heix =	667.8	(נתת																		6-66
Het	+	He	->	He(2 ¹ G	+ 2351	+	He'	•									_							B-58
u+		. Ho	_	Ho(2 ¹ P)		•			•	•••	•	•	•	• •	•	•	•	•	•		•	•	•	D 74
ne +		ne	-/	ne(2 P)	T ne	, `	•	•	•	• •	•	•	٠	• •	•••	-	•	•	•		•	•	•	
не	+	He	->	He(3°S)	+ не		•	•	•	• •	•	•	•	• •	• •	,	•	٠	•	•	•	٠	٠	B - 9:2
lie	+	He	->	He(3^P)	+ He	•	•	•	•		•	•	•		•	*	•	•	•	٠	٠	•	•	E 80
He'	+	He	->	He(3 ¹ D)	+ He'	•	•					•		• •			•	•	•	•		•		B-1-0
He	+	He	->	$He(3^{3}S)$	+ He'	•	•																•	T -dz
He'	+	He	->	He(3 ³ P)	+ He	•					_					_							-	B-82
ц.,+		. Ho	- 5	He(3 ³ D)	- 110		•	•	•	• •	•	•	•	• •		•	•	•	•	•	•	•	•	r. 0'
11-00		ne		ne(5 D)	· ne		•	•	•	• •	•	•	•	• •	•••	•	•	•	•	•	•	•	•	
не	*	ne ne	->	He(4 5)	+ He	. •	•	•	•	• •	•	•	٠	• •	• •	•	•	•	•	•	٠	•	•	F 96
He	+	: l :e	->	Ee(4 P)	+ He	•	•	•	•	• •	•	•	•	•	• •	•	•	٠	•	•	•	•	•	1 -84
He'	+	He	->	$He(4^{1}D)$	+ He	۰.						•		• •										B84
He	+	He	->	$He(4^{3}S)$	+ He	۰.								•										B-86
He *	+	Ho	->	He (43P)	+ Ho	•													_	•				B-86
ц о *					+ Ho	• •	•	•	•	• •	•	•	•	•	•••	•	•	•	•	•	•	•	•	D D.
ne *		ne	~/	ne(40)	+ ne		· ·	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	D-00
не	1	· L1	->	He(23./	ពា៣)	+ L	1	•	•	• •	•	•	٠	•	• •	•	•	٠	•	٠	•	•	•	8-98
He	+	· Li	->	He(58.4	nm)	+ L	1	•	•	• •	•	•	•	•	• •	•	•	٠	•	•	•	•	•	B-80
He_	-	+ H	->	He'(2s)	+ H'			•	•		•	•	•	•				•	•		•	•		B-90
He ²	•	+ H	->	He'(2p)	+ H*		•													•				8-96
He ²	•	+ H	->	He'(Lym	an-a)	+ 8	•																	8-102
Ho2	•	+ U	->	Ho [*] (1.um	an_A)	+ 4	•	•	-	•	•	•	-	- '	•	•	•	•	-	•	-	-	-	
	٠	· n	~	He (Lym	aii~p)	• n		•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	.4	•	E
He		4 H	->	He (LYTT	an-1)	+ H	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	٠	•	•	8~101
He		+ H	->	He (Balı	mer−a)	+	Н.	•	•		•	•	•	•			•	•	•		·	•	•	8-107
He ²	•	+ H	->	He'(3p)	+ H*													•			•		,	8-104
He ²	•	+ н	->	He'(3s+	3d) +	н*														-				5-104
He 2	•	+ 11	->	He'rant	+ H*		-							-		•	÷					-	•	8-10
	•	· D		Hat ()-	, п ,	•	•	•	•	• •	•	•	•	•	•••	•	•	•	٠	•	•	•	·	0-j+4 0 1 4
2	•	т H2	.,	ne (28		• •	•	•	•	• •	•	•	•	•	•••	•	•	·	٠	•	٠	•	•	N-148
He		+ H ₂	->	не (2р) .	• •	•	•	٠	• •	•	•	•	•	•••	•	•	٠	•	•	•	•	•	B~106
He		+ H ₂	->	HeitLy	man~a)	•	•	•	•	• •	•	•						•	٠	•			٠	8-108
He ²	•	+ H ₂	->	He'(Ly	man-ß)														•					8-108

.

B. Electron Capture into Excited States (Cont'd)

He ² *	+	H ₂	->	He'(Lyman-r)	•	•	•	•	•	•	-		•	•	•	•	•	•	•	•	•	•	•	-	B-108
He ²⁺	+	H ₂	->	He'(Balmer-a)	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	B-108
He ² *	+	H ₂	->	Не (3р)	•		•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	B-110
ile ²⁺	+	H ₂	->	He'(3s+3d) .	•		•		•	•	•	•	•		•	•	•	•		•	•	•	•	•	B-110
He ²⁺	+	H ₂	->	He'(4p) .	•	•	•	•		•	•		•	•	•		•	•	•		•	-	•	•	B-110
He ²⁺	+	He	->	He [*] (2s) + He [*]	•	•		•	•	•	•	•	•	•	•		-	•		•	•	•	•	•	B-112
He ²⁺	+	Ъi	->	He'(2p) + Li	•	•	•	•	•	•	•		-		•	•	•	•	•	•	•	•			B-118
He ^{2*}	+	Ьİ	->	$He^{+}(3p) + Li^{\circ}$	•		•	•	•	٠	•	•		•	•	•	•	•	•	•	•	•		•	B-118
He ²	+	Li	->	He'(4p) + Li	•	•	•		•	•	•	•	-	•	•	•	٠	•	•	•	•	•		-	B-118
He ²⁺	+	Ъi	->	He'(3s+3d) +	Гì	•	•		•	٠	•	•	•	•	•	•	-	•	•	•	•	•	•	•	B-118
He ²⁺	+	Li	->	He*(4s+4d) +	Li	•	•	•	•	•		-	•	•	•	•	•	•	•	•	•	•		•	B-118
He ²⁺	+	Li	->	He*(Lyman-a)	+ :	Li*		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	B-120
He ²⁺	+	Li	->	He'(Lyman-β)	+	ьi*		•		•	•	-	•	•	•	•		•	•	•	•	•	•	•	B-120
He ²⁺	+	Li	->	He'(Lyman-r)	+ :	Li*		•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	B-120
He ²⁺	+	Ьi	->	He'(Balmer~u)	+	Li	•	•		•		•	-	•	•	•	-		•	•		•	•	•	B-122
He ²⁺	+	Lí	->	He'(Balmer-Ø)	+	Li	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	B-122
fle ² '	+	Ъi	->	He'(Balmer-r)	+	Li	•							-	•	•	•	٠	•	•			•	•	B-122
He ²⁺	ł	Li	->	Re*(Ealmer-o)	+	Γ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	B-122

C. Excitation and Spectral Line Emission

H + H -	-> %(2s)																							C-2
	-> ili20	1													•			•							C-2
-	-> Б(3 8	· · ·												•		•	•	•		•	•	•	•	•	C-4
-	> H(3p	í						•		•	•	÷		•							•				C-4
-	> H(3d	j.,			•	,	•	•							•	•				•	•				C-4
-	> H(Ba	imer-a)	-		•	-				•	•			•			•	•	-		•	•	•		C-4
H + H ₂	-> H(2	s) (pr	oject	ile]			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-6
	-> H(2	p) (pr	oject	ile	T		•	٠	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-6
	-> (25) (*.ar	get j	•	•	•	-	•		•	•	•		•	•	•	•	٠	•	•	•	•	•	•	C-6
	-> (2p) [tar	gec]	•	•	•	•	-	•	•	•	٠	•	•	•	•	•	•	•	٠	٠	•	•	•	C-6
	-> (նy	M&N-a)		•	•	•	٠	٠	•	•	٠	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	C-8
	-> H(3	8)		•	•	•	•	•	•	٠	٠	•	•	•	٠	٠	•	•	٠	•	•	•		•	C-10
	-> H(3	p+3d)	•••	•		•	•	•	٠	•			•	٠	•	•	•	•	•		•	•	•	•	C-10
	-> H(B	almer-u	i) -	٠	•	•	•	٠	٠	ŗ.	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	C-12
	-> H(4	8)			-			•				•		٠	•	•	•	•	•		•	•		•	C-14
	-> H(4	p+4d)	-	•	•			٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-14
	-> H(B	alme <i>r-B</i>	i) -	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	C-14
																									~ • • •
H(28) 4	⊢H ₂ -	·> H(I·yi	Ran-a)	•	•	-	٠	•	•		•	•	٠	•	•	•	•	•	•	•	•	•	•	C-16
	-	-> H(3ø) .	٠	•	•	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	٠	C-18
	-	-> H(Ba	lmer-	a)		•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-18
			1																						a 20
H(28) 1	- ne ->	• HLLYP	an-a)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	0
	->	H(38)	• •	•	•	•	•	٠	•	1	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	C-22
	-)	H(Ba)	me 1 - J)	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	C-22
U V UA	-> 40	10020)																							C-24
n · n-		lγ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C 10
	-> n(2	. 8) - ·	• • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-30
	-> n(2	(p) · ·	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0-32
		109) • ·	• • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-32
	-> B(3	idi.	• • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-12
	-> n() -> h()	ion i di i	• • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0-32
	-> 0(3	iprou) Ialmor		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-34
		oluor 40 matimat 40	• / •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0-34
	-> n(b	5a 1 me 1 - 6	• •	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	0-34
	-> H(4	18) - I	••••	•	•	•		•	٠	•	•	•	•	٠	•	·	•	٠	•	٠	·	٠	•	•	C-30
	-> H(4	(p+4d)		•	•	•	•	•	٠	٠	٠	•	•	٠	٠	•	•	•	•	•	•	٠	٠	•	0-35
	-> He(⊐°P) -		•	•	•			•		•	•	•		•	•		•	•	٠	•	•		•	C-38

T.

vi

C. Excitation and Spectral Line Emission (Cont'd)

					,																								
H	+	He	->	He	13'P	·) _		-																					C-38
					1.1.		•	•	•	•	-	•	-	•	-	•	•	•	•		-	-	-	-		-	-		
			->	He	(3~0) .	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	C-38
				llo	Ale	1																							C 40
				ne	(* 3	• •	•	•	•	•	•	•	٠	•	•	•	•	•		•	•	•	•	•	•	•	•	•	0-40
			->	He	(4'P	Y .	-							-	-														C-40
							•	-		-	-		•	•		-	•		•				-			•	-		
			->	He	(4]D) .	•	•	•	•	•	٠	٠	•	•	•	•	•		•	•	•	•	•	•	•	•	•	C-40
			->	No	/ A ³ C	1																							C 42
				ne	(, , , ,	• •	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	C-42
			->	He	(4 ³ P	n .	-				-																	-	C-42
					<u>)]] </u>		•	•	-	•	-	-	•	•	•	•	•	-	• •		-	-	-	-			-	-	
			->	He	(4°D)) .		•	•	•	•	•			•	•	•	•			•	•	•	•	•	•	•	•	C-42
H	+	8	->	8(2	28)	• •			•	•	•		•	•	•	•	•	•		•	•	•	•	•	٠	•		•	C-44
					2-1																								0 44
				n (4P j	• •	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	C-94
			->	H(n=2)) .		•		•	•	•			•					-			•	•	•			•	C-48
			->		- 21																								C 49
			-/	n ()		•	•	٠	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	C-40
			->	- H (1	<u>n=4</u>)	•	•			•	•			•		•	•	•		•		•	•	•	•	•		•	C-48
*													-																~
H	+	H2	->	н	•	H(26	, ·	• ;		•	•	•	٠	•	•	•	•	•	• •	•	•	•	٠	٠	•	•	•	•	C-30
			- `	. 11	• •	412-			u																				C-50
					. ·		· ·	•	••	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	C=30
			->	► H	* +	- H(3p))	+	H		•	•				•		•										U	C-52
							. ·																						0 E4
				• n	(гл	au-a)	•	•	•	•	•	•	٠	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	L-34
			- 3	⊳н	(Ba)	ber-	م ۱				-															-			C-56
			-						•		•	•	•	•	•	•	•	•		•		•	•	-	-	-	•	•	
				> H	(Ba)	Lmer-	B)			•	•	٠	•		•	•		•		•	•	•	•	•	•	•		•	C-55
				. 13	. Dal		~ `																						C 64
					(pa)	runc (-	• 7		•	•	•	•	٠	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	C-30
			-2	• H	1 LS	man-i	Band	d١																					C-58
			_		<u></u>			3.		-	•	•	-	•	-	-	-		•		•	-	•			•			0.50
			->	• н	2[1]	/man-I	Ban	a)		•	•	•	٠	•	٠	•	•	•	• •	•	•	•	•	•	•	•	•	•	C-28
+																													~ ~~
H	+	He	->	H	e(2-	'S)	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	C-60
				. 11	A12	101																							C 60
					۳۱2	, r)	•.	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	C-00
				► H	e(2'	'S +	21	P)					-																C-60
				••	- 1 - 1		-	• /		•	•	•	•	•	•	•	•	-	•		•	•	•	•	•	•	•	•	
			2	► H	e(3'	`S)	•	•			•	•	-			•	•	•				•	•	•	•			•	C-65
					1.12	1																							~ ~ ~ ~
					= (J	, F J	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	C-00
			-3	• H	e(3'	ופי							~		-	-	-								•			•	C-66
			_				•	•	-	•	•	-	•	•	•	•	•	-	• •		•	•	•	•	•	-	•	-	
				Н	e (4)	-S)	•	•	•		•	٠	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	C-08
				. 0	A 1 A	101																							0-69
			-,		e(+	, F /	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	C-00
			>	► H	e(4'	'D)			•									•											C-68
					- •			~	-																				~ 74
				• v	• • • •	v. (20	-14	υ	n	unu)		•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	C-70
un	•				() \																							~ 72
ne		- n		. ц	(0-4	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	-	•	•	•	•	•	•	•	C-72
			- 3	• н	(28).					-														-				C-74
					120			-	•	•	-		•	•	•	•	•	•	•		•	-	•			-	-	•	0 74
			~,		(2P	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	U-14
uم	٠	+ H	<u>ما</u>	->	HIT	vman	-1																						C-78
				-		J	u,		•	•	•	•	•	•	•	•	•	•	• •	•••	•	•	•	•	•	•	•	•	0-10
				->	H (L	yman-	B)		•			•	•	•	•			•	• •	•			•			•			C-78
					U/P																								C 00
					u (D	G THE L	-a)		•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	C-30
				->	H(B	almer	-81			-								•										•	C-80
							- /						-	-						-		-	-			-			0 00
				- /	n (2	. (6	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	0-02
				->	H(2)	p) .																			•				C-82
				~	412	a) .															-								C 94
					11 ()		•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	0-04
				->	H(3)	p) .	٠	•		•	•	•			•	•	•				•			•	•	•	٠	•	C-84
				->	He'	(28)		-					_			_	_	_	-								-		C-86
				•		(,	•		•	•	•	•	•	•		•	•		•		•	•		•		•	•	•	0.00
He	•	+ 5	le -	.>	Hei	2151	1+	ari)et	1		c						_				-	-						C_88
		• •		-		-1."	15		,	1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0-00
				->	He (2'P)	[t	ar	get	- 1																			C-88
				•	Uc .	23e.		a - 1																					0 00
				- >	ne (∡ູຈ)	l L	81(y n t	- 1		•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	•	C-30
				->	Hei	2'P1	11	ar	aet	1			-	-	-	-		-					-		-		-	-	C-90
				-					3-6	- 1		•	-	•	•	•	•	•	•	- •	•	•	•	•		•	•	•	
				->	He (3°S)	[t	ar	get	1			•		•		•					•		•					C-92
					He I	1101		a		ì																			r 00
					ne (J (P)	l r	ar	yet	· J -		•	•	•	•	•	•	•	•	• •	٠	•	•	•	•	٠	•	•	1.492
				->	He (3,01	11	ar	aet	.1		-									-								C-92
						3.			<u>ه</u> - د			-	-	•	•	•	•	-	-	•	•	•	•	·	-	•	•	•	
				->	не (3 <u>7</u> 8)	- (t	ar	yec	:]		٠		•	٠	•	•	•	•			•	•	•	•	•	•	•	C-94
				->	Hei	1,01		31	-	1																			0-94
				-	ne (1, F)	1.	сц	400	• †		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	- 74
				->	Het	3.0	1+	ar	uet	1											-								C-94
						·· /	• -	_				-		-	-	-		-		-		-	-	-	-	-	-	-	

C. Excitation and Spectral Line Emission (Cont'd)

He [*] + He -> He(4 ¹ S) [target]				•		•		•		•				•	,	C-95
\rightarrow He(4 ¹ P) [target]		•	•	•		•				•			•	•	•	C-96
\rightarrow He(4^{1} D) [target]		•						-		•		•	•			C-95
\rightarrow He(4 ³ S) [target]				•		•		•		•		•	•		•	C-98
\rightarrow He(4 ³ P) (target)			•													C-98
\rightarrow He(4 ³ D) [target]						-							•		•	C98
-> (le'(n=2) (projecti	lel															C-100
-> He'(n=3) (projecti	lei							•								C-102
	•										-					
He + H_2 -> H(Balmer-a)		•		•		•		•		•	•	•	•		•	C-104
-> H(Balmer-ß)			•						•	•	•		•		•	C-104
He + He -> He $(2^{1}S)$	• •	•	•	•		•	. .	•	•	•	•	•	•	•	•	C-106
-> He(2 ¹ P)	•••	•	•	•		•		•	•	•	•	•	•	•	-	C-106
-> He(3 ¹ P)	• •	•	•	•		•		•	•		•	•	•	•	•	C-108
-> He(3 ¹ D)	• •	•	•	•		•		•		•	•	•	٠	•	•	C-108
> He(3 ³ P)		•	•	•	• •	•		•	•	•	•	•	-	•	•	C-108
-> He(3 ³ D)	• •	•	•	•					•	•	•	•	•	•	•	C-108
-> He(4 ¹ S)		•	•	•		•		•		•	•		•		•	C-110
-> fle(4 ¹ P)			•		• •	•		•	•	•		•	•		•	C-110
-> He(4 ³ S)		•	•	•				•	•	•		•	•		•	C-112
-> He(4 ³ P)			•			•		•	•	•	•	•	•	•	•	C-112
-> He(2s ² ¹ G),			•	•		•		•	•		•	•	•	•	•	C-114
-> He(2s2p ³ P)			•	•		•				•		٠	•			C-114
-> He(2p ² ¹ D)		•	•	•					•	•			•	•	•	C-114
-> He(2s2p ¹ P)	• •	•	•	•		•			•	•		•	•	•	•	C-114
-> He ⁻ (1s2s ² ² S)	• •	•	•			•		•	•	•		•		•	•	C-114
•.																
$He^{2^*} + H -> H(2B)$	• •		•	•	- •	•	• •		•	•	•	•	•	•	•	C-116
-> H(2p)	• •	•	•	•	•••	•	• •	•	•	•	•	•	•	•	•	C-115
u_{-1}																a 110
ne(2.5) + ne(1.5) - 2 ne(3.7)	T ne	•	•	•	• •	•	•••	•	•	•	•	•	•	•	•	C-118
\rightarrow He(3'P)	+ не	٠	•	•	•••	•	• •	•	•	•	٠	•	•	•	•	C-120
-> He(4°S)	+ He	•	•	•	•••	•	• •	•	•	•	•	•	•	•	•	C-122
-> He(4 ⁻ D)	+ не "}а,	•	•	•	•••	•	• •	-	•	•	•	•	•	•	•	C-122
-> He + He(4°5)	•	•	•	•••	•	•••	-	•	•	•	•	•	٠	•	C-124
-> He + He(4"D)	•	•	•	•••	•	• •	•	•	•	٠	٠	•	•	•	C-124
$W^{\dagger} + Li(2e) = Ti(2e)$																C144
$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$	• •	•	•	•	•••	•	• •	•	•	•	•	•	•	•	•	0 124
-> DI(0/0.8 (MR) .	•	•	•	•	• •	•	• •	•	•	•	•	•	•	•	•	C-120
He' + Li(28) -> Li(670.8 rum)	•••	•	•	•	· •	•		•	•	•	•	•	•	•	•	C-128
H_{0}^{2} + $L_{1}^{1}(2\pi)$ > $L_{1}^{1}(2\pi)$																C 130
$ne + bi(2b) + bi(2b) + \cdots + bi$	•••	•	•	•	•••	•	• •	•	•	•	•	•	•	•	•	0-130
-> L1(0/0.8 nm)	• •	•	•	•	• •	•	• •	•	•	•	•	•	•	•	•	C-130

D. Ionization Collisions and Charge Production

H	+	H ₂	-> ->	Total Total	Slow	, 1 , 1	POE Ele	ect	ive roi	e n	Io Pi	on r od	P1 luc	rod tic	luc' on	tic	on •	•		•	•		•		•			•	D-2 D-2
			-/	ית	n ₂ •	e	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10-4
н.	+	H	->	н. +	н' +	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D-6
н.	+	H.	->	H₂⁺	+ e	•			•	•	•	•		•	•	•		•	•	•	•		•	•	•	•	•	•	D-12
н.	+	Н ₂	->	Tota	al Slo	w	E	lec	tr	on	1	Pro	du	ct	ior	1													D-14
			- 2	▶ Н• -	+ H ₂ +	e	•	•				•		•	•		•					•				•	•		D-16

1

vii

v	i	i	i
•	-	-	-

D. Ionization Collisions and Charge Production (Cont'd)

H [*] + H ₂ -> Total Production of H ₂ [*]	D-16 D-16
$B^{*} + Be \rightarrow Electrons and B^{-}$	D-18
	D-24
-> (R + Re ⁺) or (R ⁺ + Re ⁺ + e)	D-24
- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	D-34
\rightarrow (H [*] + He ^{2*}) or (H [*] + He ^{2*} + 2e)	D-34
$Be(2^{1}S) + H -> He + B^{*} + e$	D-42
-> BeK* + e	D-42
> (‰e + H [*] + e) or (‰eH [*] + e)	D-42
,	
$He(2^{3}S) + H -> He + H' + e$	D-44
-> HeH' + e	D-44
-> (Be + B' + e) or (BeB' + e)	D-44
$He(2^{-}S) + H_2 \rightarrow TOTAl lonization \dots	D-46
<pre>*> wearrangement ionization</pre>	D-40
$He^{2^{1}S}$ + H_{2} -> Total lonization	D-48
-> Rearrangement Ionization	D-48
$P^* + He^* -> (H^* + He^{2^*} + e)$	D-50
-> $(H^{+} + He^{2+} + e)$ or $(H^{0} + He^{2+})$	D-50
$He^{*} + He^{*} -> (He^{*} + He^{2*} + e) \dots$	D-58
-> (He + He ^{**}) or (He [*] + He ^{**} + e)	D-58
the total processing the Angle	
He + H ₂ -> TOTAL SLOW POBILIVE ION Production	D-64
\rightarrow Total Slow Electron Production	D-04
\sim ne n_2 $v \in \dots$ \dots \dots \dots \dots \dots \dots \dots	D-66
	0-00
He + He -> Total Slow Positive Ion Production	D-68
-> Total Slow Electron Production	D-68
-> He + He + e	D-70
-> He + He'' + 2e	D-70
n - * · · · · · · · · · · · ·	- 70
He + H -> He + H + e	D- 12
He' + He -> Total Clow Positive Too Production	n-76
-> Total Slow Flectron Production	D=76
	0-10
He [*] + H ₂ -> (He + H ₂ [*]) or (He [*] + H ₂ [*] + e)	D-78
-> Total H [*] Production	D-78
-> He⁴ + H⁴ + H⁴ + 2e	D-78
	0-70
	0-70
He [*] + He -> Total Slow Positive Ion Production	D-80
He' + He -> Total Slow Positive Ion Production	D-80 D-80
He' + He -> Total Slow Positive Ion Production	D-80 D-80 D-90
He* + He -> Total Slow Positive Ion Production	D-80 D-80 D-90 D-90
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D-80 D-80 D-90 D-90 D-90
$He^* + He \rightarrow Total Slow Positive Ion Production$	D-80 D-80 D-90 D-90 D-90 D-96
$\begin{array}{rcl} \text{He}^* &+ &\text{He} &-> &\text{Total Slow Positive} & \text{Ion Production} & & & & & & & & & & & & & & & & & & &$	D-80 D-80 D-90 D-90 D-90 D-96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D-80 D-80 D-90 D-90 D-96 D-96 D-100 D-100 D-102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D-80 D-80 D-90 D-90 D-96 D-96 D-100 D-102 D-102 D-102
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D-80 D-80 D-90 D-90 D-96 D-100 D-102 D-102 D-102 D-102
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D-80 D-80 D-90 D-90 D-96 D-100 D-102 D-102 D-102 D-102 D-102

D. Ionization Collisions and Charge Production (Cont'd)

He ²⁺	+	He	-> -> -> ->	Total Total He ²⁺ He ²⁺	++	Slow Slow He [*] He ²	E 7 : : +	PO8 E1 • •	sit ect ? 2e	iv tro	e on ·	1 	on Pro •	P du	rot ct:	ion	ti	on • •	•	• • •		• • •	• • •		• • •	• • •	• • •	• • •	D-104 D-104 D-114 D-114
H, +	Lj	L ->	H,	+ Li	•	+ e		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D-122
He [*]	+ 1	hi -	-> H	ie' +	L	i* +	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D-126
He ²⁺	÷	Li	->	Be ²⁺	+	ьi*	+	e	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	-	•	•	•	•	D-128

E. Electron Loss or Stripping Collisions

H +	H	->	8	+	8 +	⊦ e		•	•	•	•	•	٠	٠	•	•	•	•	٠	•	٠	•	•	•	•	٠	•	-	•	E-2
H(2)	5)	+ 1	H(18)	->	8,	+	H	+	е		•	٠	•			٠	•	٠	•	•	•	•	•	•	•	•	•	•	E-4
8 +	H	, _>	• J	+	H2	+	е		•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	E-6
H(2	B) .	+	H2 -	>	E* ¯	+	H ₂	+	e				•	•					•			-	•	•		•	•	•	•	E-8
8 +	H	e -:	> ิส'	+	He	; +	e			•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	e -10
H(2)	5)	+ 1	He -	->	н,	+	He	+	e	•	•	•	•	٠	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	E-14
He	+ i	H -:	> He	•	+ P	ł +	e	•			•				•	•			•		•						•	•		E-16
He	+ 1	H ₂ •	-> H	le'	+	H ₂	+	е	•				•				•	•	•	•	•		•	•		•			•	E-18
He	+ 1	H ₂ ·	-> H	le ²⁺	· +	H	2 +	- 2	e			•	•	•		•	•	•	•		•				•				•	E-18
He*	+	H ₂	->	iie	or	; B	le*		•			•		•		•	•	•	•		•		•	•		,	•		•	E-20
Be*	+	H2	->	He	• +	H	2 4	• •	•				•	•			•	-			•							•	•	E-20
He*	+	H ₂	->	He	+	H ₂	٠.		•			•					•						•	•		-	•		•	E -20
He	+ ;	He .	-> ł	le*	+	He	+	e					•	•		•			•		•			٠					•	E-22
He	+ 1	He ·	-> F	/e ²	* +	Ĥ	e	+ :	2e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	E-22
He ⁺	+	н.	-> H	ie ²⁺	• +	н	+	е					•	•										•					•	E-28
He'	+	H ₂	->	Ће ²	!+ .	+ 1	H-2	+	е								•						•							E -30
He*	+	He	->	He	2+	+ '	He	+	e	•		•	•				•	•			•		•	•	•	•		•	•	E-32

F. Electron Detachment Collisions

H.	+	н	-> F	l + H	i +	e	•	•	•		•				•				•	•	•	•	•	•		•	•	•	F-2
			-> (H +	H +	e)	οτ	· ()	H	+	H)	•						•	•					•	•	•		F-2
			-> H	i* +	H 🕑	2e		•	•	•			•									•							F-4
H_	+	H.	->	H + 1	н* ⊣	+ 2e							•																P-6
R*	+	H2	->	H +	H ₂	+ e	•		•																				F-8
		•	->	н* +	H ₂	+ 2	e!e																						F-10
H.	+	He	->	H t	не	+ e		•																	•			•	F-12
			->	Н' +	He	+ :	?e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-14
He	•	+ H	->	He +	H	+ e	•											•											F-16
He		₽ H	l ₂ ->	He	+ B	12 +			•	•						•			•										P-18
			->	He'	+	Ū₂ +	2	e		•																			F-18
He	•	+ H	ie ->	He	+ 8	le +																	•						F-20
			->	He	+	He	+ 2	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	F-20
Lí'	•	+ A	12 ->	• Li	+ H	12 +	e													•		•							F-22
			->	• Li*	+	H ₂ +	2	e	•	•							•		•			•							F-22
LI	•	+ H	le ->	LI -	+ 8	e +	e													•									F-24
			>	⊢ Li*	+	He	+ 2	e																					F-24

G. Dissociative Collisions

$\mathbf{H} + \mathbf{H}_2 \rightarrow \mathbf{H}^* + (\mathbf{H}^* + \mathbf{H}^*) + \mathbf{e} + \cdots + \mathbf{e} + \cdots + \mathbf{e} + e$	G-2
-> H + (H [*] + H [*]) + ?e	G-2
-> R* + (R* + H*) + 3e	G-2
-> H + (8 + 8°) + e	G-4
-> H [*] + (H + H [*]) + 2e	G-6
-> H" + (H' + H)	G8
$H^{*} + R_{2} \rightarrow H^{*} + H^{*} + H^{*} + 2e \dots $	G-10
$He^{+} + H_2 -> He^{+} + H^{+} + H^{+} + 2e \dots $	G-12
$Be^{2^*} + H_2 \rightarrow Be^{2^*} + (H^* + H) + e (via 1s\sigma_a) \dots \dots \dots \dots$	G- 34
\sim He ²⁺ + (H ⁺ + H) + e (via 2 ρv_{u})	G-16
-> Be [*] + (R [*] + R)	6-18
-> He* + (H* + H*) + e	G- 20
$-> He^{2*} + (H^* + H^*) + 2e$	G-22
-> He + (H [*] + H [*])	G-24
H ₂ [*] + H ₂ -> H [*] _{Proj.}	G-26
H ₂ ⁺ + H -> H [*] proj.	G-28
	G- 30
$-> (H^* + H) + H_2 + \cdots + $	G-32
H_2 + He -> Total H \cdots	G-34
-> (B' + H) + He · · · · · · · · · · · · · · · · · ·	G-36
$H_2 + H_2 \rightarrow H^*(Fast,Total) \cdots	G-38
-> H(Past, Total)	G~40
-> Total Destruction of Fast H_2 Proj	G-42
H_3^+ + H_2 -> Total Destruction of H_3^+	G-44
H_2^* + H_2 -> Total Destruction of H_2^*	G-46
H ₃ ' + H ₂ -> H'(Total, Projectile)	G-48
\rightarrow H ₂ [*] (Tetal, Projectile)	G-50
-> H(Total, Projectile)	G-52
-> H ₂ (Total, Projectile)	G-54
$H_3^{+} + H_2 \rightarrow H^{+}(Total)$	6-56
-> H ₂	G-58
HeH [*] + H ₂ -> Total HeH [*] Dissociation Prod	G-60
HeH' + He -> Total HeH' Dissociation Prod	G-62

H. Particle Interchange Reactions

Н.	ŧ	D_2	->	D*	+	HD		•	•		•				•	•			•			•				•	•				H-2
			->	HD.	+	D		•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H-2
HD.		+ D ₂	->	> HI	D ₂ •	+	D				•				•	•												•			H-4
			->	D D	•	+ 1	H	•	•	٠		•		•		•		•		•		•		•	•	•	•	•			H-4

х

H. Particle Interchange Reactions (Cont'd)

HD⁺(v=0)	+ He -> Hell	+ D		•	• •		• •	•		• •	•		•	•	•	H-6
8D ⁺ (v=1)	+ Se -> Hell	+ D	• •	•		• •		• •			•	• •		•	•	H-6
HD [*] (∪=2)	+ He -> Heil	* + D		•			••	•		• •	•	• •		•	•	H-6
HD*(v=3;	+ He -> Hell	* + Đ		•				•			•				•	H-6
HD*(v=4)	+ He -> Hell	• + Đ	• •	•	• •	••	••	•	•••	•••	•	• •	•	•	•	H-6
H ₂ * + He	-> Hell* + B	•••	•••	•		••	••	•	•••	•••	•	• •		•	•	H-8
B2 ⁺ + B2	-> H ₃ * + H	•••	••	•	••	••	•••	•	••	••	•	• •		•	•	H-10
$D_2^{+} + D_2$	-> D ₃ * + D	• · •	•••	•	••	••	••	•	•••	•••	•	• •	, •	•	•	H-12
D2*(v=0)	+ H ₂ -> HD ₂ *	+ B	• •	•	•••	• •	• •	•	•••	• •	•	• •	•	•	•	H-14
$D_2^{+}(v=1)$	$+ H_2 -> HD_2^{\dagger}$	+ H	• •	•	••	• •	• •	•	•••	• •	•	• •	•	•	•	H14
D2 [*] (v=2)	+ H ₂ $->$ HD ₂	+ H	• •	•	• •	• •	• •	•	• •	• •	•	• •	•	•	•	8-14
D ₂ *(v=3)	+ $H_2 \rightarrow HD_2^*$	+ H	• •	•	• •	• •	••	•	• •	•••	•	• •	•	•	•	H-14
H2*(v=0)	+ D ₂ -> HD ₂ *	+ D		•			•••	•		• •	•	•		•	•	H16
H2 ⁺ (v=1)	$+ D_2 -> HD_2^*$	+ D		•		• •	••	•	•••	• •	•	• •		•	•	H~16
H₂*(v=2)	$+ D_2 -> HD_2^*$	+ D		•	• •	• •	••	•	••	• •	•	• •	•	•	٠	H-16
H2 [*] (v=3)	$+ D_2 -> HD_2^*$	+ D	• •	•		• •	••	•	••	• •	•	• •	•	•	•	H-16
H2 [*] (v=4)	+ D ₂ -> HD ₂ *	+ D	••	•	••	••	• •	•	• •	••	•	• •	•	•	•	H-16
Reference	8			•	••			•	•••	••	•			•	•	R-1
Appendix	l: Calculat from Ch	ion of ebyshev	Cr Fi	058 ttir	Sec 19	ction Par a	is a Neter	nd i s	Rate • •	Co	eff: •	ici	enti	B •	•	1-1
Appendix	2: ALADDIN	Databa	5e	Syst	tem	and	Date	a P:	iles	•	•	•	, .	•	•	2-1
Appendix	3: Atomic	Physics	(H	andy	, a	onvei	rsion	U	nits	an	df	orm	wla	18)		3-1

1 I

xiii/XIV

FOREWORD

The Controlled Fusion Atomic Data Center (CFADC) was founded informally at Oak Ridge National Laboratory by Clarence F. Barnett in 1957, and was officially established six years later. The continuing mission of the CFADC is to identify, compile, evaluate and recommend data on atomic and molecular collision processes which are important in fusion energy research. "Barney" dedicated much of his professional career to the promotion of effective scientific communication between the atomic and fusion research communities, and was still actively engaged in this mission at the time of his death in 1989. This "Redbook" volume represents a major part of his continuing professional efforts during the years following his formal retirement from ORNL in 1985. Barnett's insights, guidance and dedication to this mission will be sorely missed by the CFADC and by the fusion research community.

Ronald A. Phaneuf Hamilton T. Hunter M. Imogene Kirkpatrick David H. Crandall (DOE)

This photo is from his "official" retirement in 1985. His spirit will continue to encourage us in the future.

Series Preface

xv/XVI

The primary objective of the Controlled Fusion Atomic Data Center at Oak Ridge National Laboratory is to publish and distribute handbooks containing numerical and graphical crosssection and other physical data relevant to fusion energy research. In 1977, a two-volume compilation was published as ORNL reports ORNL-5206 and ORNL-5207. Since that time, a large volume of pertinent data has become available, necessitating an update and expansion of the previous compilation. The specific volumes in this series, entitled "Atomic Data for Fusion," are listed below.

Vol. 1, *Collisions of H, H₂, He, and Li Atoms and Ions with Atoms and Molecules,* C. F. Barnett, ORNL, ORNL-6086 (June 1990).

. -

- Vol. 2, "Collisions of Electrons with Atoms and Molecules," J. W. Gallagher, National Institute of Standards and Technology; and D. C. Gregory, ORNL (in preparation).
- Vol. 3, "Particle Interactions with Surfaces," E. W. Thomas, Georgia Institute of Technology, OKNL-6088 (January 1985).
- Vol. 4, "Spectroscopic Data for Iron," W. L. Wiese, National Bureau of Standards, ORNL-6089 (March 1985).
- Vol. 5, "Collisions of Carbon and Oxygen Ions with Electrons, H, H₂, and He," R. A. Phaneuf, ORNL; R. K. Janev, Institute of Physics, Yugoslavia; and M. S. Pindzola, Auburn University, ORNL-6090 (January 1987).
- Vol. 6, "Spectroscopic Data for Titanium, Chromium, and Nickel," W. L. Wiese and A. Musgrove, National Institute for Standards and Technology, ORNL-6551 (September 1989).

C. F. Barnett H. T. Hunter M. I. Kirkpatrick R. A. Phaneuf

June 1990

ABSTRACT

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange The range of collision energies is reactions. appropriate to applications in fusion-energy research.

INTRODUCTION

This volume contains recommended cross-section and ratecoefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasees 383 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Inelastic processes include excitation and spectral-line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. Emphasis has been given to the range of collision energies appropriate to diagnostic and modelling applications in fusion-energy research.

The data which form the basis for this volume of recommended data are those which were available as of September 1988. The bibliographic files of the ORNL Controlled Fusion Atomic Data Center provided the lists of references for this volume. In the vast majority of cases, the numerical data were obtained from the original publications, either from tables where available, or from figures using a precision graphical digitizer system. The rms uncertainty associated with the digitization system was determined to be less than 2%.

The recommended data in this compilation are based almost exclusively on experimental data. Theoretical data have been considered when it was desirable to extend the measurements to higher or lower collision energies, and also for a few important reactions where experimental data were unavailable. Specific references to the literature and notes are presented for each reaction, along with an estimated uncertainty in the recommended cross section. The latter was determined from uncertainties quoted in the original data sources, and also from the consistency of the data when more than one source was available. To determine the recommended cross sections in the latter case, relative weightings were made on the basis of the reliability of the different experimental methods used. In some cases, possible effects on the measurements due to other competing processes were also considered in determining the recommended cross section and its estimated uncertainty. For some reactions, it was not possible to estimate an uncertainty. In all cases, the estimated accuracies of the recommended data are believed to have been conservatively estimated, and are intended to represent upper limits.

Reaction rate coefficients have been calculated from the recommended cross-section data where appropriate for fusion applications, and where the energy range of the available data permits. These are based on Maxwellian velocity distributions for each reactant, where each may be characterized by a different temperature, and also for the case of a monoenergetic (neutral) beam interacting with a Maxwellian distribution. The temperature ranges for the calculated rate coefficients are constrained by the energy range over which cross-section data are available. The tabulated values for the rate coefficients have been flagged in those temperature ranges where the limited energy range of the data appreciably influences their accuracy.

For convenience, least-squares Chebyshev polynomial fits to the recommended cross-sections and rate coefficients are presented for each reaction. These polynomial fits are indicated graphically, and a statement is made concerning the accuracy of each fit to the recommended data. Practical details on the least-squares fits and sample computer programs for hepidly generating the recommended cross sections and rate coefficients from the fitting coefficients are presented in Appendix 1.

For further ease of retrieval and application of the recommended cross-section data, a PC-DOS formatted diskette has been prepared and is available for distribution. Included on this diskette are data files with the Chebyshev fitting coefficients for each reaction encoded in ALADDIN format,^{1,2} along with a copy of the ALADDIN program (written in FORTRAN-77). The ALADDIN program and data files may also be conveniently transmitted by electronic mail. Further details about ALADDIN are presented in Appendix 2, along with samples of the data entries from each chapter. Information about how to obtain the program and data files for this and other compilations may also be found in Appendix 2.

- R. A. Hulse, "The ALADDIN Atomic Physics Database System," pp. 63-72 in <u>Atomic Processes in Plasmas</u>, AIP Conference Proceedings 206, ed. Y. K. Kim and R. C. Elton, AIP, New York, 1990.
- ALADDIN Manual, A System for Storage, Exchange and Management of Atomic and Molecular Data for Fusion, IAEA-NDS-AM-17, Atomic and Molecular Data Unit, Nuclear Data Section, International Atomic Energy Agency, Vienna, June 1989.

A. Total Electron Capture Cross Sections (* denotes rate coefficient data also)

Electron Capture by Neutra	ıl	E	I	•	•	•	•	•	•	•	A-2
я + н _> н- + н ^ь			•	•							A-2*
$H + H_2 -> H^- + H_2^+$											A-8
$H + He -> H^- + He^+$		_				-					A-10*
$H + T_i => H^- + L_i^+$						-					A-16*
$H + H^{-} -> H^{-} + H$		-									A-20
Electron Capture by H ⁺	•	•	•	•	•	•	•	•	•	•	A- 22
$H^+ + H -> H + H^+$,			•	•		•	•	A-22*
$H^+ + H_2 -> H$				•	•	•			•	•	A-28
$H^+ + H_2 -> H^-$		•	•				•	•	•	•	A-30
$H^+ + He -> H + He^+$.			•		•	•			•	•	A-32*
$H^+ + He -> H^- + He^{2+}$.	,									•	A-38
$H^{+} + Li -> H + Li^{+}$.											A-40*
$H^{+} + H^{-} -> H^{-} + H^{+}$											A-44
H ⁺ + H ⁻ -> 2H							-				A-46
H^+ + He ⁺ -> $a(He^{2+}$ Total	1	•	•	Ż							A-48*
$H^{+} + He^{+} -> H + He^{2+}$	• •		-	•	•	•	•			-	A-54*
		•	•	•	•	•	•	•	•	•	
Electron Capture by H_2^+ .	•	•	•	•	•	•	•	•	•	•	A-58
$H_2^+ + H -> H_2 + H^+$.	,										A-58
H_{2}^{+} + H_{2} -> H_{2}		-							•	-	A-58
H_{2}^{+} + He -> H_{2} + He ⁺						-		,			A-58
$H_2^+(v) + H_2 -> H_2$	•	•	•	•	•	•	•	•	•	•	A-60
Electron Capture by He ⁺	•	•	•	•	•	•	•	•	•	•	A-62
$He^+ + H -> He + H^+$.		•									A-62*
$He^{+} + H^{-} -> He + H$.											A-86
$He^+ + H_2 => He$										_	A-68
He^{+} + He -> He + He^{+}	_										A-70*
$He^{+} + Li -> He + Li^{+}$	-					•					A-76*
$He^{+} + He^{+} -> He + He^{2+}$					•			•	•		A-86*
Blectron Capture by He²⁺	•						•			•	A-84
		_									
He'' + He' -> He' + He''	· (Pa	rt	18	11	8	Т	oti	al)	Λ-84
$He'' + H^> He' + H$	•	٠	•	•	•		•	•	•	•	A-86
He^{2} + H -> He' + H'	•	•	•	•		•	•	•	•	•	A-88*
$He^{2+}_{2} + H_{2} -> He^{2+}_{2}$		•			•	•			•		A-94
$He^{2+} + H_2 - He$		•			•				•	•	A-96
He ²⁺ + He -> He ⁺ + He ⁺											A-98*
He ²⁺ + He -> He + He ²⁺											A-104
He ²⁺ + Li -> He' + Li'			-								A-110
He^{2} + Li -> He + Li ²				_							A-114

Page

Electron Capture Cross Sections for $E + B \rightarrow B^- + B^+$

Energy	Velocity	Cross 5: 4: 197
(eV/amu)	(CP/5)	{c=*!
2.0E+03	6.21E+07	I.565-18
4.0E+03	8.79E+07	3.64E-18
7.0E+03	1.16E+08	7.635-18
1.0E+04	1.39E+08	1.18E-17
1.6E+04	1,76E+08	1.636-17
2.0E+04	1.96E+08	1.55E-17
3.1E+04	2.45E+08	9.98E-18
4.0E+04	2.785+08	5.588-16
7.0E+04	3.68E+08	1.485-16
7.3E+04	3.75E+06	1.37E-18

References: 33, 34, 396

Accuracy: $E < 8x10^3 eV/amu - 50$; $E > 8x10^3 eV/amu - 20$

Note: For energies less than 8x10³ eV/amu large discrepancies exist between the data.

Por a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.0E+03 \text{ eV/amu}, \quad E_{max} = 7.3E+04 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

AO A1 A2 A3 A4 A5 A6 A7 A8 -79.9637 .00368622 -1.08628 -.302134 .0745111 .148356 -.0426883 .0535533 -.0289283

The fit represents the above cross sections with an rus deviation of 1.0%. The maximum deviation is 2.0% at 2.0E+04 eV/amu. See appendix for Chebyshev fit details.

10⁴ Energy (eV/amu)

ı.

A-3

Electron Capture Rate Coefficients for $H + H \rightarrow H^{-} + H^{+}$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

R								
Temp.	Fqual				H Temp. (eV)	1		
(eV)	Cemp.	1000.	2000.	5000.	10000.	12000.	15090.	20000.
1.02+02	1.965-14	7.56E-11	2.82E-10	1.01E-09	1.62E-09	1.70E-09	1.722-09	1.65E-09
2.0E+02	2.57E-12	9.228-11	3.06E-10	1.03E-09	1.63E-09	1 70E-C9	1.72E-09	1.65E-09
4.0E+02	3.362-11	1.29E-10	3.56E-10	1.07E-09	1.64E-09	1.71E-09	1.72E-09	1.04E-09
7.0E+02	1.29E-10	1.902-10	4.322-10	1.13E-09	1.65E-09	1.71E-09	1.72E-09	1.63E-09
1 0E+03	2.58E-10	2.582-10	5.10E-10	1.18E-09	1.66E-09	1.722-09	1.728-09	1.63E-09
2.0E+03	7.64E-10	5.10E-10	7.645-10	1.34E-09	1.70E-09	1.725-09	1.71E-09	1.60E-09
4.0E+03	1.46E09	9.918-10	1.18E-09	1.55E-09	1.728-09	1.722-09	1.67E-09	1.55E-09
7.0z+03	1.72E-09	1.46 -09	1.55E-09	1.70E-09	1.71E-09	1.67E-09	1.60E-09	1.47E-09
1.0E+04	1.65E-09	1.66E-09	1.70E-09	1.72E-09	1.652-09	1.602-09	1.528-09	1.38E-09
2.0E+04	1.14E-39*	1.63E-09	1.60E-09	1.52E-09	1.38E-09	1.332-09	1.26E-09*	1.14E-09

Accuracy: * - Pessible Error Greater Than 10% ** - Possible Error Greater Than 100%

Note: For Chebyslev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

Temp.							
(eV)	A 0	1 A	A2	A3	۸4	A5	٨6
1000.	-4.34136E+01	1.77058E+00	-2.19086E-02	-1.545398-01	-5.12704E-02	1.82644E-02	9.12815E-C3
2000.	-4.221415+01	1.02952E+00	3.420578-02	-1.66830E-01	-5.60021E-02	5.86271E-03	8.15346E-03
5000.	-4.093682+01	2.82198E-C1	-5.96305E-03	-7.32604E-02	-3.54191E-02	-5.05727E-03	2.39134E-03
10000.	-4.04860E+01	-3.08846E-02	-5.68396E-02	-4.34280E-02	-1.90470E-02	-4.61028E-53	-1.806952-05
12000.	-4.04639E+01	-7.77066E-02	-6.68905E-02	-3.99404E-02	-1.61322E-02	-3.99466F-03	-2.04042E-04
15000.	-4.049492+01	-1.183252-01	-7.604842-02	-3.69771E-02	-1.33535E-02	-3.2467: E-C3	-2.69603E-04
20000.	-4.06294E+01	-1.47825E-01	-8.23614E-02	-3.42640E-02	-1.08621E-02	-2.448268-03	-2.606942-04
Equal Temp.	-4.70326E+01	4.896212+00	-2.27782E+00	4.67042E-01	-2.66936E-01	1.22082E-01	-1.65425E-02

See appendix for Chebyshev fit details.

H

A-4

 $H + H -> H^- + H^+$

Maxwellian - Maxwellian

1

Electron Capture Rate Coefficients for H + E -> H⁺ + H⁺

Beam - Maxwellian Rate Coefficients (cm^3/s)

8							
Temp.			H EDG	rgy (eV/amu)			
(eV)	10000.	20000.	40000.	45000.	50000.	60000.	70080.
1.0E+00	1.63E-09**	3.03E-09**	1.55E-09**	1_24E-09**	1.02E-09**	7.26E-10**	5.452-10**
2.0E+00	1.63E-09*	3.03E-09*	1.552-09**	1.24E-09**	1.02E-09**	7.262-10**	5.456-10**
4.0E+00	1.632-09*	3.02E-09*	1.55E-09**	1.24E-09**	1.022-09**	7.26E-1C**	5.452-10**
7.0E+00	1.63E-09*	3.022-09*	1.55E-09**	1.242-09**	1.022-09**	7.26E-1C**	5.458-10**
1.02+01	1.63E-09*	3.01E-09*	1.55E-09**	1.24E-09**	1.02E-05**	7.26E-10**	5.43E-10**
2.0E+01	1.63E-09*	3.00E-09*	1.54E-09**	1.24E-09**	1.02E-09**	7.26E-10**	5.278-10**
4.0E+01	1.63E-09*	2.98E-09*	1.54E-09**	1.25E-09**	1.02E-09**	7.27E-10**	4.94E-10**
7.02+01	1.63E-09*	2.96E-09*	1.54E-09**	1.25E-09**	1.02E-09**	7.28E-10**	4.628-10**
1.0E+02	1.64E-09*	2.94E-09*	1.54E-09**	1.25E-09**	1.03E-09**	7.29E-10**	4-42E-10**
2.0E+02	1.66E-09*	2.89E-09*	1.548-09**	1.25E-09**	1.03E-09**	7,292-10**	4.10E-10**
4.0E+02	1.712-09*	2.81E-09*	1.55E-09*	1.262-09**	1.042-09**	7.19E-16**	3.91E-10**
7.02+02	1.76E-09*	2.71E-09*	1.55E-09*	1.272-09**	1.05E-C9**	7.63E-10**	3.662-10**
1.92+03	1.80E-09*	2.628-09*	1.54E-09*	1.282-09*	1.05E09**	6.93E-10**	3.88E-10**
2.0E+03	1.88E-09*	2.40E-09*	1.52E-09*	1.27E-09*	1.05E-09**	6.86E-10**	4.08E-10**
4.0E+03	1.90E-09	2.128-09*	1.422-09*	1.21E-09*	1.022-09**	6.97E-10**	4.51E-10**
7.0E+03	1.86E-09*	1.85E-09*	1.28E-09*	1.12E-09*	9.66E-10*	7.01E-10**	4.92E-10**
1.0E+04	1.78E-09*	1.67E-09*	1.16E-09*	1.032-09*	9.19E-10*	6.90E-10**	5.112-10**
2.0E+04	1.48E-09*	1.292-09*	9.212-10*	8.39F-10*	7.61E-10**	6.22E-10**	5.03E-10**

Accuracy: • - Possible Error Greater Than 108 •• - Possible Error Greater Than 1008

e

Note: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients												
H												
Energy												
(eV∕a≋u)	AO	A 1	A2	A 3	A4	A5	A6					
10000.	-4.04105E+01	2.91340E-02	-2.63688E-02	-6.02938E-02	-4.80367E-02	-1.897218-02	-1.817562-03					
20000.	-3.96573E+01	-3.51288E-01	-1,956948-01	-7.65178E-02	-1.76176E-02	6.76024E-05	8.20202E-04					
40000.	-4.07630E+C1	-1.72032E-01	-1.30927E-01	-8.12602E-02	-3.70555E-02	-8.684162-03	3.26863E-03					
45000.	-4.11299E+01	-1.16178E-01	-1.03253E-01	-7.22628E-02	-3.62733E-02	-1.02839E-02	1.03555E-03					
50000.	-4.14810E+01	-7.829772-02	-7.66264E-02	-5.87240E-02	-3.17702E-02	-1.03177E-02	-4.839022-04					
60000.	-4.21440E+01	-5.01687E-02	-2.65441E-02	-1.113146-02	-8.496862-03	-1.304228-02	-1.433568-02					
70000.	-4.28827E+01	-7.90160E-02	1.09848E-01	8.45395E-02	-3.13642E-02	-4.50109E-02	-6.862685-03					

See appendix for Chebyshev fit details.

Beam – Maxwellian

A-7

Energy	Velocity	Cross Section
(eV/am)	(CR/S)	(cm ²)
4.0E+01	8.792+06	1.05E-18
7.0 2+0 1	1.16 6+07	1.785-18
1.02+02	1.39E+07	2.528-18
1.42+02	1.64E+07	3.08E-16
2.0E+02	1.96E+07	2.74E-18
4.0E+02	2.78E+07	1.70E-18
7.0E+92	3.682+07	1.248-18
1.0E+03	4.398+07	1.31E-18
2.0E+03	6.21E+07	5.288-18
4.0E+03	8.792+07	1.46E-17
7.0E+03	1.16E+03	2.18E-17
1.02+04	1,392+08	2.32E-17
2.0E+01	1.96E+08	1.916-17
4.0E+04	2.782+38	9.932-18
7.0E+04	3.632+08	4.07E-18
1.0E+05	4_392+98	1.682-18
2.02+05	6.212+06	1.72E-19
4.02+05	8.788+98	6.12E-21
4.62+05	9_422+08	2.97E-2)

References: 26, 27, 28, 29, 30, 21, 32, 33, 35, 396

ι

Accuracy: 25%

Mcle: The quoted results are believed to be accurate to within 25%, although the data presented in some of the references may deviate by 50-60%.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 4.0E+01 \text{ eV/asu}, \quad E_{max} = 4.6E+05 \text{ eV/asu}$

Chebyshev Fitting Parsmeters for Cross Sections

DA	A1	A2	K3	34	A 5	A6	A7	84
-82.8333	-1.65457	-2.60408	-1.53870	368649	. 413620	165702	127116	.256041

The fit represents the above cross sections with an rms deviation of 9.5%. The maximum deviation is 26.2% at 1.08+03 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Cross Sections for $\mathbf{E} + \mathbf{E}_2 \rightarrow \mathbf{E}^2$

Electron Capture Cross Sections for H + He \rightarrow H⁻ + He⁺

Energy	Velocity	Cross Section
(eV/anu)	(ca/ s)	(cn ²)
7.7 E+02	<u>3.852+07</u>	1.478-19
1.02+03	4.39E+07	2.15E-19
2.0E+03	6.21E+07	5.80E-19
3.02+03	7.61E+07	1.04E-18
4.0E+03	8.79E+07	1.61E-18
5.0E+03	9.82E+07	2.238-18
6.02+03	1.08E+08	2.88E-18
7.08+03	1-16E+08	3.46E-18
9.0E+03	1.32E+08	4.342-18
1.0E+04	1.39E+08	4.83E-18
2.0E+64	1.96E+08	6.51E-18
3.0E+04	2.41E+08	6.06B-18
4.0E+04	2.782+08	5.282-18
7.0E+04	3.68E+08	2.928-18
1.02+05	4.39E+08	1.46E-18
2.0E+05	6.212+08	2.338-19
4.0E+05	8.78E+08	2.47E-20
7.0E+05	1.162+09	1.87E-21
7.6E+05	1.21E+09	1.162-21

References: 26, 27, 29, 35, 268, 269, 270

Accuracy: 30%

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 7.7E+02 \text{ eV/amu}, E_{max} = 7.6E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	λ1	A2	A3	84	A5	A6	A7	X8
-85.5215	-1.87685	-3.06302	-, 492323	.117220	0269941	0479364	0315786	0439288

The fit represents the above cross sections with an rms deviation of 1.8%. The maximum deviation is 2.9% at 7.0E+05 eV/amu. See appendix for Chebyshev fit details.

1 I.I.

Cross Section vs. Energy

Electron Capture Rate Coefficients for H + He \rightarrow H⁻ + He⁺

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

Temp.	Equal				He Temp. (et	V)		
(eV)	Te sp .	1.	100.	500.	1000.	5000.	10000.	20000.
7.0E+01	3.79E-15	4.61E-16	7.47E-15	4.58E-13	2.43E-12	5.54E-11	1.74E-10	4.26E-10
1.0E+02	5.02E-14	1.13E-14	5.02E-14	7.92E-13	3.116-12	5.78E-11	1.77E-10	4.28E-10
2.0E-02	1.14E2	5.09E-13	7.92E-13	2.54E-12	5.86E-12	6.603-11	1.87E-10	4.37E-10
4.0E+02	7.502-12	4.40E-12	5.11E-12	8.38E-12	1.34E-11	8.33E-11	2.08E-10	4.55E-10
7.0E+02	2.48E-11	1.57E-11	1.69E-11	2.20E-11	2.93E-11	1.11E-10	2.40E-10	4.82E-10
1.02+03	5.00E-11	3.24E-11	3.40E-11	4.082-11	5.00E-11	1.41E-10	2.71E-10	5.08E-10
2.02+03	1.67E-10	1.16E-10	1.192-10	1.29E-10	1.41E-10	2.45E-10	3.72E-10	5.86E-10
4.0E+03	4.19E-10	3.22E-10	3.25E-10	3.35E-10	3.47 <u></u> -10	4.42E-10	5.48E-10	7.17E-10
7.0E+03	7.02E-10	5.86E-10	5.88E-10	5.96E-10	6.05E-10	6.72E-10	7.44E-10	8.55E-10
1.0E+04	8.73E-10	7.70E-10	7.71E-10	7.76E-10	7.82E-10	8.26E-10	8.73E-10	9.43E-10
2.02+04	1.04E-09	1.02E-09	1.02E-09	1.02E-09	1.02E-09	1.02E-09	1.03E-09	1.04E-09

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 7.0E+01 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

He							
Temp.							
(eV)	¥0	¥1	٨2	A 3	84	A5	A6
1.	-5,10941E+01	6.54972E+00	-2.07764E+00	6.21336E-01	-3.71355E-01	1.34135E-01	-1.51404E-02
100.	-5.00589E+01	5.62889E+00	-1.42974E+00	2.34011E-01	-1.74762E-01	5.17776E-92	1.40144E-02
500.	-4.81708E+01	4.05303E+00	-4.72178E-0]	-2.11436E-01	-1.16459E-02	1.30366E-02	9.51225E-03
1000.	-4.7167JE+01	3.28859E+00	-1.32390E-01	-2.90109E-01	-1.07340E-02	2.14696E-02	2.38292E-03
5000.	-4.45966E+01	1.61569E+00	1.93393E-01	-1.64393E-01	-5.91438E-02	7.61287E-03	6.54831E-03
10000.	-4.34391E+01	9.76929E-01	1.85422E-01	-8.18919E-02	-5.25533E-02	-5.26730E-03	3.997802-03
20000.	-4.2439+01	4.84530E-01	1.19557E-01	-3.07242E-02	-3.26702E-02	-9.20869E-03	1.64244E-04
Equal Temp.	-4.97998E+01	5.73848E+00	-1.74839E+00	4.04712E-01	-2.79431E-01	1.179002-01	-2.07435E-02

See appendix for Chebyshev fit details.

H

 $H + He -> H^- + He^+$

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for He + H \rightarrow H⁻ + He⁺

Beam - Maxwellian Rate Coefficients (cr^3/s)

Ð							
Temp.			Be E	inergy (eV/an	u)		
(eV)	10000.	26000.	40000.	73000.	100000.	200600.	500000.
1.CE+00	6.69E-10	1.28E-09	1.46E-09	1.07E-09	6.41E-10	1.45E-10	8.66E-12**
2.0E+00	6.69E-10	1.27E-09	1.46E-09	1.07E-09	6.40E-10	1.45E-10	8.67E-12**
4.0E+00	6.67E-10	1.27E-09	1.46E-09	1.07E-09	6.40E-10	1.458-10	8.67E-12**
7.0E+00	6.66E-10	1.27E-09	1.46E-09	1.07E-09	6.39E-10	1.44E-10	8.67E-12**
1.02+01	6.65E-10	1.27E-09	1.46E-09	1.07E-09	6.39E-10	1.44E-10	8.67E-12**
2.0E+01	6.64E-10	1.27E-09	1.46E-09	1.06E-09	6.38E-10	1.44E-10	8.67E-12**
4.0E+01	6.63E-10	1.26E-09	1.45E-09	1.062-09	6.37E-10	1.44E-10	8.68E-12**
7.0E+01	6.63E-10	1.26E-09	1.45E-09	1.06E-09	6.36E-10	1.44E-10	8.68E-12**
1.0E+02	6.64E-10	1.25E-09	1.44E-09	1.05E-09	6.35E-10	1.44E-10	8.69E-12**
2.0E+02	6.69E-10	1.24E-09	1.43E-09	1.05E-09	6.33E-10	1.44E-10	8.72E-12**
4.0E+02	6.82E-10	1.24E-09	1.42E-09	1.04E-09	6.312-10	1.44E-10	8.77E-12*
7.0E+02	7.04E-10	1.23E-09	1.40E-09	1.03E-09	6.30E-10	1.44E-10	8.85E-12*
1.0E+03	7.2:5-10	1.22E-09	1.39E-09	1.022-09	6.30E-10	1.45E-10	8.93E-12*
2.0E+03	7.87E~10	1.21E-09	1.34E-09	9.96E-10	6.29E-10	1.47E-10	9.20E-12*
4.0E+03	8.79E-10	1.18E-09	1.27E-09	9.60E-10	6.26E-10	1.52E-10	9.70E-12*
7.0E+03	9.652-10	1.15E-09	1.18E-09	9.11E-10	6.18E-10	1.60E-10	1.04E-11*
1.02+04	1.01E-09	1.12E-09	1.11E-09	8.67E-10	6.07E-10	1.68E-10	1.10E-11*
2.0E+04	1.05E-09	1.C4E-09	9.50E-10	7.54E-10	5.63E-10	1.90E-10	1.34E-11*

Accuracy: * - Possible Error Greater Than 108 ** - Possible Error Greater Than 1008

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients						
He						-	
Energy							
(eV/amu)	A0	Al	λ2	A3	24	A5	AG
10000.	-4.19935E+01	2,19891E-01	1.242428-01	2.58739E-02	-1.969282-02	-2.10662E-02	-9.41303E-03
20000.	-4.10635E+01	-7.94718E-02	-3.94031E-02	-1.87660E-02	-9.93076E-03	-4.65478E-03	-1.666892-03
40000.	-4.08823E+01	-1.64742E-01	-9.93840E-02	-4.75948E-02	-1.79398E-02	-4.361812-03	4.08769E-04
70000.	-4.14695E+01	-1.30558E-01	-7.61140E-02	-3.80809E-02	-1.75717E-02	-6.97521E-03	-1.718732-03
100000.	-4.23878E+01	-4.00395E-02	-2.39094E-02	-1.67316E-02	-1.22134E-02	-7.11472E-03	-2.89733E-03
200000.	-4.52157E+01	9.17644E-02	7.160762-02	4.20628E-02	1.789052-02	4.62301E-03	-6.388722-04
500000.	-5.07701E+01	1.52640E-01	1.03844E-01	5.55224E-02	2.32810E-02	7.67676E-03	2.39728E-03

See appendix for Chebyshev fit details.

A-14

He + H
$$->$$
 H⁻ + He⁺

Beam - Maxwellian

Electron Capture Cross Sections for $H + Li \rightarrow H^- + Li^+$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(cs ²)
3.0E+05	7.61E+08	1.71E-18
4.0E+05	8.78E+08	8.97E-19
5.0E+05	9.82E+08	6.99E-19
6.0E+05	1.08E+09	6.13E-19
7.0E+05	1.16E+09	5.48E-19
8.0E+05	1.24E+09	4.93E-19
9.0E+05	1.32E+09	4.49E-19
1.0E+06	1.392+09	4.15E-19

References: 268

Accuracy: 30%

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 3.0E+05 \text{ eV/amu}, \quad E_{max} = 1.0E+06 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A 1	A2	A3	λ4	٨5	A6	እ7	X 8
-83.5167 -	.651028	.130590 -	.0639887	.0130205	6.980642-03	-3.26857E-03	5.16789E-05	

The fit represents the above cross sections with an rms deviation of 0.0%. The maximum deviation is 0.0%. See appendix for Chebyshev fit details. 8

L

Т

Т

Electron Capture Rate Coefficients for Li + H \rightarrow H⁻ + Li⁺

Beam - Maxwellian Rate Coefficients (cm^3/s)

H							
Temp.			Li En	ergy (eV/asu	3		
(eV)	300000.	350000.	400900.	450000.	500000.	550000.	600000.
1.02+00	6.49E-10**	9.94E-10**	7.89E-10**	7.33E-10**	6.87E-10**	6.72E-10**	6.59E-10**
2.0E+00	6.482-10**	9.94E-10**	7.89E-10**	7.33E-10**	6.87E-10**	6.72E-10**	6.592-10**
4.0E+00	6.47E-10**	9.94E-10**	7.89E-10**	7.33E-10**	6.87E-10**	6.722-10**	6.59E-10**
7.0E+00	6.462-10**	9.94E-10**	7.90E-10**	7.33E-10**	6.87E-10**	6.72E-10**	6.59E-10**
1.02+01	6.45E-10**	9.94E-10**	7.90E-10**	7.33E-10**	6.87E-10**	6.722-10**	6.59E-10**
2.0E+01	6.43E-10**	9.94E-10**	7.91E-10**	7.33E-10**	6.87E-10**	6.72E-10**	6.59E-10**
4.0E+01	6.40E-10**	9.95E-10**	7.93E-10**	7.332-10**	6.88E-10**	6.72E-10**	6.59E-10**
7.0E+01	6.37E-10**	9.95E-10**	7.95E-10**	7.33E-10**	6.88E-10**	6.72E-10**	6.59E-10**
1.0E+02	6.34E-10**	9.95E-10**	7.96E-10**	7.33E-10**	6.89E-10**	6.722-10**	6.59E-10**
2.02+02	6.28E-10**	9.95E-10**	7.99E-10**	7.33E-10**	6.89E-10**	6.72E-10**	6.59E-10**
4.02+02	6.192-10**	9.96E-10**	8.05E-10**	7.33E-10**	6.91E-10**	6.72E-10**	6.59E-10**
7.0E+02	6.09E-10**	9.87E-10**	8.10E-10**	7.33E-10**	6.92E-10**	6.72E-10**	6.59E-10**
1.02+03	6.02E-10**	9.70E-10**	8.15E-10**	7.34E-10**	6.93E-10**	6.72E-10**	6.59E-10**
2.0E+03	5.842-10**	9.G4E-1C**	8.24E-10**	7.39E-10**	6.96E-10**	6.74E-10**	6.592-10**
4.0E+03	5.622-10**	8.102-10**	8.13E-10**	7.49E-10**	7.02E-10**	6.76E-10**	6.60E-10**
7.0E+03	5.432-10**	7.33E-10**	7.78E-10**	7.49E-10**	7.09E-10**	6.81E-10**	6.61E-10**
1.02+04	5.31E-10**	6.89E-10**	7.46E-10**	7.398-10**	7,11E-10**	6.84E-10**	6.63E-10**
2.0E+04	5.11E-10**	6.17E-10**	6.75E-10**	6.96E-10**	6.922-10**	6.77E-10**	6.55E~10**

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Note: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients						
Lİ							
Energy							
(eV/anu)	04	Al	A2	A3	84	A5	A6
300000.	-4.246302+01	-1.12797E-01	-4.738232-02	-9.52319E-03	2.18237E-03	2.88098E-03	1.39108E-03
350000.	-4.168742+01	-2.00135E-01	-1.31634E-01	-5.41437E-02	-1.93565E-03	1.56830E-02	1.05923E-02
400000.	-4.19480E+01	-3.48038E-02	-4.56039E-02	-3.81117E-02	-2.13775E-02	-6.73960E-03	1.93438E-03
450000.	-4.20718E+01	-4.96888E-03	-8.42094E-03	-1.19219E-02	-1,19411E-02	-8.70975E-03	-4.48543E-03
500000.	-4.21803E+01	1.24481E-02	3.32025E-03	-3.095752-03	-5.02533E-03	-4.35643E-03	-3.20289E-03
550000.	-4.223442+01	5.60707E-03	3.46072E-03	4.863322-04	-1.436238-03	-1.96514E-03	-1.824328-03
600000,	-4.22797E+01	-3.01170E-04	-3.84669E-04	-9.55080E-04	-1.27882E-03	-1.246802-03	-1.16149E-03

See appendix for Chebyshev fit details.

A-18

$$Li + H -> H^{-} + Li^{+}$$

Beam – Maxwellian

Electron Capture Cross Sections for

H + H -> H + H

Energy	Velocity	Cross Section
(eV/amu)	(Cn /s)	(c m ²)
2.0E+00	1.962+06	1.338-14
4.0E+00	2.78E+06].242-14
7.0E+00	3.68E+06	1.158-14
1.02+01	4.39E+06	1.07E-14
2.0E+01	6.21E+06	8.97E-15
4.02+01	8.792+06	7.24E-15
7.02+01	1.16E+07	5 .99E -15
9.98+01	1.38E+07	5.27E-15
2.0E+02	1.962+07	4.20E-15
4.0E+02	2.78E+07	3.19E-15
7.02+02	3.68E+07	2.43B-15
1.0E+03	4.39E+07	1.902-15
2.02+03	6.21E+07	9.49E-16
4.0E+03	8.792+07	3.29E-16
7.1E+03	1.172+08	1.03E-16

References: 162, 271, 272, 281

Accuracy: 30%

<u>Mote</u>: For energies less than 40 eV the data were taken from the theoretical papers of Ref. 271 and 272.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.0E+00 \text{ eV/amu}, E_{max} = 7.1E+03 \text{ eV/amu}$

Chebyshev Pitting Parameters for Lioss Sections

AO A1 A2 A3 A4 A5 A6 A7 A8 -67.0414 -2.13773-.748888 -.288550 -.136764 -.0116298 .0247820 .00770226 2.25210E-04

The fit represents the above cross sections with an rms deviation of 0.3%. The maximum deviation is 0.7% at 4.0E+J2 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Energy	Velocity	Cross Section
(eV/aas)	(ca/s)	(cs ²)
1.22-01	4.798+05	4.96E-15
2.02-01	6.21E+85	4,782-15
4. 62-0 1	8.792+05	4.458-15
7.02-01	1.162+06	4.242-15
3.0E+00	1.392+86	4.102-15
2.02+99	1.962+06	3-038-15
4.02+00	2.782+66	3.582-15
7.8E+88	3.602+66	3.338-15
1.02+01	4.392+06	3.178-15
2.62+81	6.21g+06	2.938-15
4.62+01	\$.792+86	2.702-15
7.02+01	3-165+87	2.548-15
1.02+02	1.392+07	2.442-15
2.02+02	1. 96E+8 7	2_228-15
4.82+82	2.782+67	2.938-15
7.9 2+0 2	3.682+97	1.888-15
1.02+03	4.392+67	1.718-15
2.02+03	6-21E+67	1.442-15
4.02+03	8.792+67	1.208-15
7.02+03	1.14 2+88	9.428-16
1.02+04	1.372+04	7.758-16
2.92+04	1.96E+88	4.452-16
4.92+84	2.782+68	1.678-16
7.82+64	3-682+68	3.774-17
1.02+05	4.392+08	1.012-17
2.42+05	6,212+88	6.09E-19
4.82+85	8.782+68	1.762-24
6.32+85	1.102+09	1.358-21

Electron Capture Cross Sections for \mathbf{R}^+ + R -> R + R⁺

Buferences: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 273, 395

<u>ACCREACY:</u> K⁺ Energy: < 10 eV/anu, 10%; 10 eV/anu - 1x10³ eV/anu, 15%; 1x10³ eV/anu - 1x10⁵ eV/anu, 5%; 1x10⁵ eV/anu - 6.25x10⁵ eV/anu, 20%

<u>Moters</u> (1) This reaction has been measured by three different techniques: 1. Static Gas Target, 2. Crown Beams, 3. Herged Beams.

(2) The maximum deviation of the recommended data from the data points in the references cited is less than 45%.

[3] Herman in .: formate 9 found that when D atoms were the target the cross section decreased 16% from that using R atoms at an energy of .12 eV. At high energies the cross sections were the same.

(4) The recent ref. 273 extends the measurements up to an energy of 7.5×10^6 eV/amu. The cross sections are (a) 2.0×10^6 eV/amu - 5.25×10^{-24} cm²; (b) 3.5×10^6 eV/amu - 2.14×10^{-25} cm²; (c) 5.0×10^6 eV/amu - 3.1×10^{-26} cm²; (d) 7.5×10^6 eV/amu - 4.10×10^{-27} cm². Quoted errors are as greet as able.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.22-01 \text{ eV/amu}, \quad E_{max} = 6.32+05 \text{ eV/amu}$

Chabyshev Fitting Parameters for Cross Sections

A0 A1 A2 A3 A4 A5 A6 A7 A8 -72.6656 -5.49142 -3.42948 -1.98377 -.878009 -.198932 .0837431 .121252 .0827182

I.

The fit represents the above cross sections with an rms deviation of 4.5%. The maximum deviation is 13.5% at 1.08+05 eV/amu. See appendix for Chebyshav fit details.

Electron Capture Rate Coefficients for $H^+ + H \rightarrow H + H^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Temp.	Equa l	H Temp. (eV)							
(e¥)	Temp.	1.	10.	100.	1000.	5000.	10000.	20000.	
1.0 F+00	8.10E-09	8.10E-09	1.56E-08	3.632-08	7.65E-08	9.74E-08	8.95E-08	6.34E-08	
2.0E+00	1.06E-08	9.502-09	1.61E-08	3.642-08	7.652-08	9.74E-08	8.95E-08	6.84E-08	
4.0E+00	1.38E-08	1.16E-08	1.71E-08	3.672-08	7.66E-08	9.74E-08	8.95E-08	6.84E-08	
7.0E+00	1.718-08	1.38E-08	1.85E-08	3.712-08	7.66E-08	9.74E-08	8.95E-08	6.84E-08	
1.0E+01	1.96E-08	1.56E-08	1.96E-08	3.75E-08	7.67E-08	9.74E-08	8.95E-08	6.84E-08	
2.0E+01	2.56E-08	2.00E-08	2.30E-08	3.87E-08	7.692-08	9.74E-08	8.95E-08	6.84E-08	
4.0E+01	3.33E-08	2.59E-08	2.79E-08	4.10E-08	7.73E-08	9.74E-08	8.94E-08	6.84E-08	
7.0E+01	4.108-08	3.18E-08	3.33E-08	4.40E-98	7.78E-08	9.74E-08	8.94E-08	6.83E-08	
1.0E+02	4.66E-08	3.63F-08	3.75E-08	4.66E-08	7.84E-08	9.74E-08	8.93E-08	6.83E-08	
2.0E+02	5.88E-08	4.67E-08	4.74E-08	5.36E-08	8.00E-08	9.732-08	8.912-08	6.81E-08	
4.02+02	7.21E-08	5.89E-08	5.93E-08	6.302-08	8.30E-08	9.72E-08	8.87E-08	6.77E-08	
7.02+02	8.30E-08	6-95E-08	6.98E-08	7.21E-08	8.65E-08	9.708-08	8.80E-08	6.72E-08	
1.0E+03	8.92E-08	7.65E-08	7.67E-08	7.84E-08	8.922-08	9.67E-08	8.73E-08	6.66E-08	
2.0E+03	9.70E-08	8.92E-08	8.93E-08	9.002-08	9.48E-08	9.540-08	8.51E-08	6.49E-08	
4.0E+03	9.362-08	9.70E-08	9.70E-08	9.71g-08	9.74E-08	9.17E-08	8,06E-08	6.16E-08	
7.0E+03	8.06E-08	9.54E-08	9.54E-08	9.522-08	9.362-08	8.51E-08	7.432-08	5.70E-08	
1.0E+04	6.84E-08	8.95E-08	8.95E-08	8.93E-08	8.73E-08	7.84E-08	6.84E-08	5.302-08	
2.02+04	4-238-08	6.84E-08	6.842-08	6.83E-08	6.66E-08	6.00E-08	5.30E-08	4.23E-08	

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

B							
Temp.							
(eV)	A0	A1	A2	λ3	84	A5	A6
1.	-3.44869E+01	1.27901E+00	-2.75515E-01	-1.94518E-01	-4-149132-02	-1.79417E-02	-4.17985E-03
10.	-3.41227E+01	5.80499E-01	-1.177028-01	-2.363302-01	-4.90489E-02	-5.739812-03	-8.768482-03
100.	-3.34478E+01	5.02257E-01	-2.990012-03	-1.75672E-01	-9.20126E-02	-1.06753E-02	3.21804E-03
1000.	-3.26740E+01	4.695338-02	-4.61309E-02	-8.813678-02	-6.79803E-02	-2.93738E-02	-4,42210E-03
5000.	-3.24495E+01	-1.48073E-01	-1.15160E-01	-7.59145E-02	-4.138912-02	-1.79143E-02	-5.55664E-03
10000.	-3.26521E+01	-1.74458E-01	-1.252258-01	-7.36305E-02	-3.55149E-02	-1.38261E-02	-4.10388E-03
20000.	-3.31787E+01	-1.63538E-01	-1.15089E-01	-6.54004E-02	-3.010538-02	-1.10769E-02	-3.10752E-03
Equal Temp.	-3.44313E+01	1.06711E+00	-5.19907E-01	-2.29247E-01	-6.988962-02	-1.36578E-02	4,42580E-04

See appendix for Chebyshev fit details.

1

a+

Maxwellian - Maxweilian

Electron Capture Rate Coefficients for $H + H^+ \rightarrow H + H^+$

Beam - Maxwellian Rate Coefficients (cm^3/s)

E+	-						
Temp.			H En	ergy (eV/amu)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	1.08E-07	8.72E-08	4.62E-08	1.382-08	4.43E-09	3.78E-10	4.79E-12**
2.0E+00	1.076-07	8.71E-08	4.62E-08 .	1.38E-08	4.43E-09	3.78E-10	4.79E-12**
4.0E+00	1.07E-07	8.70E-08	4.61E-08	1.38E-08	4.43E-09	3.77E-10	4.79E-12**
7.0E+00	1.07E-07	8.69E-08	4.60E-08	1.38E-08	4.43E-09	3.77E-10	4.79E-12**
1.0E+01	1.07E-07	8.68E-08	4.59E-08	1.38E-08	4.43E-09	3.77E-10	4.79E-12**
2.0E+01	1.07E-07	8.65E-08	4.57E-08	1.37E-08	4.43E-09	3.77E-10	4.79E-12**
4.0E+01	1.07E-07	8.61E-08	4.55E-08	1.37E-08	4.44E-09	3.76E-10	4.80E-12**
7.0E+01	1.06E-07	8.57E-08	4.52E-08	1.37E-08	4.44E-09	3.76E-10	4.802-12**
1.0E+02	1.06E-07	8.53E-08	4.50E-08	1.37E-08	4.45e-09	3.76E-10	4.81E-12**
2.0E+02	1.05E-07	8.45E-08	4.45E-08	1.37E-08	4.48E-09	3.77E-10	4.83E-12**
4.0E+02	1.04E-07	8.34E-08	4.39E-08	1.376-08	4.55E-09	3.79E-10	4.88E-12**
7.0E+02	1.03E-07	8.21E-08	4.34E-08	1.38E-03	4.67E-09	3.84E-10	4.96E-12**
1.0E+03	1.01E-07	8.102-08	4.31E-08	1.40E-08	4.79E-09	3.89E-10	5.03E-12**
2.0E+03	9.70E-08	7.79E-08	4.23E-08	1.46E-08	5.178-09	4.11E-10	5.298-12**
4.0E+03	9.00E-08	7.24E-08	4.11E-08	1.56E-08	5.91E-09	4.64E-10	5.82E-12*
7.0E+03	8.16E-08	6.57E-08	3.92E-08	1.66E-08	6.90E-09	5.69E-10	6.71E-12*
1.0E+04	7.46E-08	6.03E-08	3.74E-08	1.722-08	7.74E-09	7.01E-10	7.80E-12*
2.0E+04	5.70E-08	4.72E-08	3.20E-08	1.75E-08	9.46E-09	1.285-09	1.36E-11*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{\text{min}} = 1.0E+00 \text{ eV}, \quad E_{\text{max}} = 2.0E+04 \text{ eV}$

		Chebyshev i	Fitting Parame	eters for Rate	e Coefficients	6	
£ -						-	
Energy							
(eV/amu)	A0	Al	٨2	A3	٨4	۸5	A6
10000.	-3.23588E+01	-2.28428E-01	-1.47539E-01	-7.73418E-C2	-3.29002E-02	-1.09141E-02	-2.931588-03
20000.	-3.27829E+C1	-2.26775E-01	-1.38750E-01	-7.044328-02	-3.03096E-02	-1.00013E-02	-1.47228E-03
40000,	-3.39547E+01	-1.36550E-01	-7.15786E-02	-3.656822-02	-2.10115E-02	-1.11355E-02	-4.14062E-03
70000.	-3.60736E+01	1.09084E-01	7.35296E-02	2.31264E-02	-7.74992E-03	-1.38165E-02	-8.49906E-03
100000.	-3.81082E+01	3.09107E-01	1,95996E-01	8.14408E-02	1.35787E-02	-9.21346E-03	-1.02081E-02
200000.	-4.296086+01	3.96726E-01	2.99000E-01	1.81207E-01	8.74182E-02	3.26701E-02	7.33350E-03
500000.	-5.17564E+01	3.37283E-C1	2.43298E-01	1.480986-01	7.72749E-02	3.54105E-02	1.568842-02

See appendix for Chebyshev fit details.

10² 10³ H⁺ Temp. (eV)

10³

104

105

10-1

10-12

10°

10

Chebyshev Fit

Energy	Velocity	Cross Section
(eV/anu)	(CR/S)	(cm ²)
2.6E+00	2:24E+06	1.815-17
4.02+00	2.78E+06	4.96E-17
4.7E+00	3-01E+06	5.68E-17
7.02+00	3 ~68E+06	2.76E-17
1.02+01	4.392+06	1.30E-17
1.4E+01	5.202+06	1.016-17
2.0E+01	6.212+06	1.116-17
4.0E+01	8.79E+06	1.682-17
7.0E+01	1.162+07	2.612-17
1.0E+02	1.392+07	3.658-17
2.0E+02	1.952+07	6.96E-17
4.0E+02	2.782+07	1.56E-16
7.0E+02	3.682+07	2.93E-16
1.0E+03	4.39E+07	4.26E-16
2.0E+03	6.21E+07	6.88E-16
4.0E+03	8.79E+07	9.33g-16
7.0E+03	1,162+68	9.57E16
1.0E+04	1.392+08	8.66E-16
2.0E+04	1,96E+08	5.79E-16
4.0E+04	2.782+08	2.50g-16
7.0E+04	3.68E+08	7.785-17
1.0E+05	4.392+08	2.91E-17
2.0E+05	6.21E+08	1.762-18
4.0E+05	8.78E+58	6.09E-20
7.0E+05	1.162+09	3-642-21
1.02+06	1.392+09	4.142-22
2.0E+06	1.962+0 /	1.682-23
4,02+06	2.772+09	1.03E-24

Electron Capture Cross Sections for $B^+ + B_2 \rightarrow B$

References: 7, 27, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 62, 273, 395

Accuracy: E < 100 eV/amu - Unknown; E > 100 eV/amu - 10%

<u>Motas:</u> (1) The peak in the cross section at 4 eV comes from the data of reference 41. The origin of this maximum is unknown.

(2) Recent data of reference 273 extend the energy range to 7.5×10^5 eV/amu. The cross sections reported are: (a) 2.0×10^6 eV/amu - 7.00×10^{-24} cm²; (b) 3.5×10^6 eV/amu - 4.85×10^{-25} cm²; (c) 5.0×10^6 eV/amu - 6.47×10^{-26} cm²; (d) 7.5×10^6 eV/amu - $.30 \times 10^{-27}$ cm². Errors of 10-15% are reported.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.6E+00 \text{ eV/amu}, E_{max} = 4.0E+06 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	A2	A3	A4	A5	A6	A7	84
-82.5164	-6.70755	-6.10977	-2.62810	.709759	.639033	.102980	.261240	263817

The fit represents the above cross sections with an rms deviation of 15.5%. The maximum deviation is 41.3% at 1.02+01 eV/amu. See appendix for Chebyshev fit details.

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(c n ²)
2.0E+02	1.96E+07	1.178-20
4.0E+02	2.78E+07	2.228-20
7.02+02	3.68E+07	4.82E-20
1.0E+03	4.398+07	8.94E-20
2.0E+03	6.21E+07	2.80E-19
4.0E+03	8-79E+07	8.642-19
7.0E+03	1.16E+08	2.09E-18
1.0E+04	1-39E+08	3.632-18
2.0E+04	1.96E+08	8.89E-18
4.0E+04	2.782+08	2.21E-18
7.0E+04	3 - 68E+08	2.422-19
1.02+05	4.392+08	3.15E-20
2.0E+05	6.212+08	1.84E-22
4.0E+05	8.782+08	7.228-25
7.0E+05	1.16E+09	6.64E-27
1.02+06	1.39E+09	2.70E-28

Double Electron Capture Cross Sections for $B^+ + B_2 \rightarrow B^- + 2B^+$

References: 35, 44, 50, 51, 52, 53, 54

Accuracy: E < 1x10⁴ eV/amu - 25%; 1x10⁴ eV/amu < E < 1x10⁵ eV/amu - 15%; E > 1x10⁵ eV/amu - 40%

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.0E+02 \text{ eV/amu}, E_{max} = 1.0E+06 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

-95.8165	-7.17049	-7.48288	-1.93034	.761153	.556689	0542859	270184	0147551
AG	A1	A2	73	84	λ5	X6	A 7	X8

The fit represents the above cross sections with an rms deviation of 9.4%. The maximum deviation is 15.0% at 1.0E+04 eV/amu. See appendix for Chebyshev fit details.

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(cm ²)
9.9E+01	1.38E+07	4.28E-22
2.0E+02	1.96E+07	2.46E-21
4.0E+02	2.78E+07	1.77E-20
7.02+02	3.68E+07	1.12E-19
1.0E+03	4.39E+07	4.73E-19
2.0E+03	6.21E+07	4.25E-18
4.0E+03	8.79E+07	1.98E-17
7.0E+03	1.16E+0B	5.18E-17
1.0E+04)_39E+08	8.52E-17
2.0E+04	1.962+08	1.75E-16
2.4E+04	2.15E+08	1.83E-16
4.02+04	2.78E+08	1.41E-16
7.02+04	3.68E+08	6.98E-17
1.02+05	4.392+08	3.38E-17
2.0E+05	6.21E+08	3.952-18
4.0E+05	8.782+08	3.222-19
7.0E+05	1.16E+09	3.07E-20
1.0 E+06	1.392+09	5.428-21
2.0E+06	1.962+09	1.42E-22
4.0E+06	2.772+09	3.29E-24
7.0E+06	3.652+09	1.622-25
1.02+07	4.362+09	2.09E-26
1.1E+07	4.57E+09	1.022-26

Electron Capture Cross Sections for $B^+ + Be \rightarrow B + Be^+$

References: 27, 35, 37, 40, 47, 49, 51, 82, 83, 84, 85, 86, 87, 88, 89, 272

<u>Accuracy:</u> $E < 5x10^3 \text{ eV/amu} - 40%; E > 5x10^3 \text{ eV/amu} - 20%$

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 9.9E+01 \text{ eV/amu}, E_{max} = 1.1E+07 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

DA DA	A1	¥2	A3	84	A5	N6	A 7	8 4
-92.7819	-4.69073	-8.99666	490484	.935276	-,0504855	0420750	0730136	.0189320

The fit represents the above cross sections with an rms deviation of 10.0%. The maximum deviation is 18.7% at 7.0E+02 eV/amu. See appendix for Chebyshev fit details.

1 - 1

Electron Capture Rate Coefficients for $B^+ + Be \rightarrow B + Be^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

8+									
Tenp.	Equai	Be Temp. (eV)							
(eV)	Temp.	50.	100.	500.	1000.	5000.	10000.	20000.	
7.0E+01	7.21E-14	5.8IE-14	9.77E-14	1.60E-12	1.02E-11	6.38E-10	2.68E-09	8.50E-09	
1.0E+02	2.79E-13	1.85E-13	2.79E-13	2.78E-12	1.39E-11	6.73E-10	2.74E-09	8.57E-09	
2.0E+02	4.14E-12	2.23E-12	2.78E-12	1.08E-11	3.22E-11	7.95E-10	2.95E-09	8.81E-09	
4.0E+02	4.51E-11	2.43E-11	2.68E-11	5.24E-11	9.92E-11	1.07E-09	3.37E-09	9.28E-09	
7.0E+02	2.27E-10	1.29E-10	1.36E-10	1.94E-10	2.82E-10	1.53E-09	4.03E-09	5.99E-09	
1.0E+03	5.60E-10	3.32E-10	3.42E-10	4.33E-10	5.60E-10	2.06E-89	4.73E-09	1.07E-08	
2.0E+03	2.54E-09	1.64E-09	1.66E-09	1.83E-09	2.06E-09	4.155-09	7.122-09	1.29E-08	
4.0E+03	8.33E-09	5.94E-09	5.97E-09	6.21E-09	6.522-09	8.93E-09	1.182-08	1.66E-08	
7.0E+03	1.62E-08	1.292-08	1.29E-08	1.31E-08	1.34E-08	1.53E-08	1.742-08	2.07E-08	
1.0E+04	2.12E-08	1.82E-08	1.822-08	1.83E-08	1.85E-08	1.98E08	2.122-08	2.33E-08	
2.0E+04	2.60E-08	2.55E-08	2.55E-08	2.55E-08	2.55 E-08	2.57E-08	2.59E-08	2.60E-08	

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 7.0E+01 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients						
He						
Temp.						
(eV) A0	Al	A2	A3	۸4	A5	A6
504.54767E+01	6.67186E+00	-1.30388E+00	-1.33476E-01	4.396322-02	-4.52889E-02	1.85831E-02
1004.51974E+01	6.44612E+00	-1.18362E+00	-1.72127E-01	4.666198-02	-4.04263E-02	1.553888-02
5004.35812E+01	5.17359E+00	-5.65656E-01	-3.28985E-01	3.26661E-02	-7.759342-03	1.09010E-03
10004.23753E+01	4.27018E+00	-2.074702-01	-3.69408E-01	-9.50854E-04	1.17863E-02	-8.41076E-04
50003.90038E+01	2.05191E+00	2.491242-01	-2.121012-01	-8.19217E-02	7.92950E-03	1.06018E-02
100003.75454E+01	1.249992+00	2.326932-01	-1.10685E-01	-6.99375E-02	-5.625728-03	6.74424E-03
200003.62570E+01	6.126702-01	1.456122-01	-4.25717E-02	-4.13562E-02	-1.03361E-02	9.23441E-04
Equal Temp4.47894E+01	6.48647E+00	-1.503632+00	-5.56465E-02	1.00897E-02	-3.20031E-02	2.61002E-02

See appendix for Chebyshev fit details.

$$H^*$$
 + He –> H + He^*

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for $\exists e + B^+ \rightarrow B + Be^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

B ⁺							
Temp.			Se E	nergy (eV/am	u)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	1.18E-08	3.43E-08	3.91E-08	2.56E-08	1.485-08	2.45E-09	1.24E-10
2.JE+00	1.18E-08	3.42E-08	3.91E-08	2.56E-08	1.48E-08	2.45E-09	1.24E-10
4.0E+00	1.18E-08	3.42E-08	3.90E-08	2.56E-08	1.48E-08	2.45E-09	1.24E-10
7.0E+00	1.182-08	3.412-08	3.90E-08	2.55E-08	1.48E-08	2.45E-J9	1.248-10
1.02+01	1.18E-08	3.412-08	3.89E-08	2.55E~08	1. 48 E-08	2.45E-09	1.74E-10
2.0E+01	1.18E-06	3.40E-08	3.88E-08	2.55E-08	1.47E-08	2.45E-09	1.24E-10
4.0E+01	1.19E-08	3.38E-08	3.872-08	2.54E-08	1.47E-08	2.45E-09	1.242-10
7.0E+01	1.196-08	3.37E-08	3.85E-08	2.53E-08	1.46E-08	2.45E-09	1.242-10
1.02+02	1.20E-08	3.36E-08	3.842-08	2.532-08	1.46E-08	2.45E-09	1.24E-10
2.0E+02	1.24E-08	3.33E-08	3.802-08	2.512-08	1.452-08	2.45E-09	1.24E-10
4.0E+02	1.312-06	3.292-08	3.76E-08	2.492-08	1.458-08	2.45E-09	1.25E-10
7.0E+02	1.41E-08	3.25E-08	3.702-08	2.47E-08	1.442-08	2.47E-09	1.26E-10
1.0E+03	1.51E-08	3.21E-08	3.66E-08	2.46E-08	1.44E-08	2.48E-09	1.27E-10
2.0E+03	1.77E-08	3.142-08	3.532-08	2,42E-08	1.44E-08	2.55E-09	1.30E-10
4.0E+03	2.11E-08	3.052-08	3.30E-08	2.348-08	1.44E-08	2.76 2-0 9	1.36E-10
7.0E+03	2.3¥E-08	2.95E-08	3.03E-08	2.23E-08	1.438-08	2.942-09	1.45E-10
1.0E+04	2.54E-08	2.87E-08	2.82E-08	2.128-08	1.41E-08	3.182-09	1.55E-10
2.0E+04	2.642-08	2.61E-08	2.37E-08	1.63E-08	1.32E-08	3.84E-09	1.94E-10

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

		ويجاكنان ويبد أأكرهمان				-	
He							
Energy							
(eV/amu)	A0	A1	A2	A3	84	A5	۸6
10000.	-3.59874E+01	4.174305-01	1.93060E-01	1.41316E-02	-4.62466E-02	-3.20698E-02	-6.14466E-03
20000.	-3.452102+01	-1.10051E-01	-5.31364E-02	-2.095088-02	-8.289162-03	-4.291312-03	-2.80760E-03
40000.	-3.43437E+01	-1.933632-01	-1.15051E-01	-5.413548-02	~1.98052E-02	-4.140438-03	1.32023E-03
70000.	-3.510592+01	-1.20106E-01	-7.367572-02	-4.02144E-02	-2.035462-02	-8.657322-03	-2.246072-03
100000.	-3.61082E+01	-3.880362-02	-1.73976E-02	-1.16387E-02	-1.05935E-02	-7.518262-03	-3.79933E-03
200006.	-3.94814E+01	1.554782-01	1.145128-01	6.41579E-02	2.615028-02	6.208892-03	-1.41106E-03
500090.	-4.54567E+01	1.496422-01	1.062122-01	6.21478E-02	3.03614E-02	1.26308E-02	4.94057E-03

See appendix for Chebyshev fit details.

He +
$$H^*$$
 -> H + Fie^*

Beam – Maxwellian

Double Electron Capture Cross Sections for $B^+ + He^{->} H^- + He^{2+}$

Energy	Velocity	Cruss Section
(eV/amu)	(cm/s)	(cm ²)
4.7E+02	3.01E+07	2.705-22
7.0E+02	3.685+07	5.75E-22
1.0E+03	4.37E+07	1.128-21
2.0E+03	6.21E+07	4.20E-21
4.0E+03	8.89E+07	1.78E-20
7_0E+03	1.16E+08	5.088-20
1.0E+04	1.385+08	1.068-19
2.0R+04	1.962+08	3.75E-19
3.23+04	2.48E+08	7.08E-19
4.0B+04	2.78E+08	6.422-19
7.0E+04	3.652+08	1.738-19
1.CE+05	4.372+08	3.768-20
2.0E+05	6.21E+08	9.67E-22
4.0E+05	8.78E+08	7.64E-24
7.0E+05	1.15E+09	9.68E-26
1.0E+06	1.388+09	3.76E-27

References: 35, 50, 52, 53, 54

-

Accuracy: $E < 1x10^4 eV/amu - factor 2 or more; E > 1x10^4 eV/amu - 400$

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 4.7E+02 \text{ eV/amu}, \quad E_{max} = 9.9E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	٨2	A3	λ4	A5	A6	٨7	84
-98.3453	-4,13574	-6.43185	-1.70697	435158	.417370 -	125015	191020	.0356727

The fit represents the above cross sections with an rms deviation of 10.0%. The maximum deviation is 20.7% at $2.02 \div 04$ eV/amu. See appendix for Chebyshev fit details.

Electron Capture Cross Sections for $H^+ + Li \rightarrow H + Li^+$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(cm ²)
2.5E+02	2.202+07	1.75E-16
3.0E+02	2.412+07	2.38E-16
4.0E+02	2.78E+07	3.79E-16
5.0E+02	3.11E+07	5.40E-16
7.0E+02	3.68E+07	8.95E-16
1.0E+03	4.39E+07	1.40E-15
2.0E+03	6 21E+07	3.282-15
3.0E+03	7.61E+07	4.26E-15
3.6E+03	8.332+07	4.35E-15
5.0E+03	9.82E+07	4.07E-15
8.0E+03	1.24E+08	2.682-15
1.0E+04	1.392+08	1.80E-15
1.5E+04	1.70E+08	7.52E-16
3.0E+04	2.41E+08	7.98E-17
5.0E+04	5.11E+08	2.84E-17
8.0E+04	3.93E+08	1.77E-17
1.52+05	5.38E+08	8.73E-18
2.0E+05	6.21E+08	5.21E-18
3.02+05	7.61E+0 8	1.88E-18
4.0E+05	8.782+08	7.17E-19
5.0E+05	9,822+08	2.93E-19
5.6E+05	1.042+09	2.02E-19

References: 230, 231, 232, 233, 234, 235, 236, 237, 238, 239

Accuracy: 30%

<u>Hotes:</u> (1) Gruebler et al. (Ref. 235) found up to a factor of 2 greater cross section when H⁺ was the projectile compared to D⁺ incident at equivalent velocities.
 (2) For data on electron capture cross sections of Li⁺ + H see references 247, 248, 232, 253.

Po; a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $z_{min} = 2.5E+02 \text{ eV/amu}, \quad E_{max} = 5.6E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	A2	A3	24	A5	A6	A7	84
-74.2905	-3.64125	-2.48131	.598612	.0178325	507845	166745	.177271	.132733

The fit represents the above cross sections with an rms deviation of 6.4%. The maximum deviation is 17.7% at 3.0E+04 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for Li + $B^+ \rightarrow H + Li^+$

Beam - Maxwellian Rate Coefficients (cm^3/s)

Temp.			Li E	nergy (eV/as	iu)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	2.50E-07	5.82E-08	1.24E-08	7.44E-09	6.05E-09*	3.23E-09*	2.88E-10**
2.0E+00	2.49E-07	5.83E-08	1.24E-08	7.44E-09	6.05E-09*	3.23E-09*	2.88E-10**
4.0E+00	2.49E-07	5.83E-08	1.24E-08	7.44E-09	6.05E-09*	3.23E-C9*	2.88E-1C**
7.0E+00	2.49E-07	5.842-08	1.24E-08	7.44E-09	6.05E-09*	3.23E-09*	2.88E-10**
1.02+01	2.49E-07	5.84E-08	1.24E-U8	7.44E-09	6.05E-09*	3.23E-09*	2.88E-10**
2.0E+01	2.48E-07	5.86E-08	1.24E-08	7.44E-09	6.05E-09*	3.22E-09*	2.89E-10**
4.02+01	2.48E-07	5.89E-08	1.24E-08	7.44E-09	6.05E-09	3.222-09*	2.89E-10**
7.0E+01	2.48E-07	5.95E-08	1.24E-08	7.44E-09	6.05E-09	3.21E-09*	2.89E-10**
1.02+02	2.47E-07	6.00E-08	1.24E-08	7.44E-09	6.05E-09	3.212-09*	2.90E-10**
2.0E+02	2.44E-07	6.17E-08	1.25E-08	7.44E-09	6.05E-09	3.20E-09*	2.91E-10**
4.0E+02	2.39E-07	6.46E-08	1.27E-08	7.44E-09	6.05E-09	3.19E-09*	2.93E-10**
7.0E+02	2.30E-07	6.81E-08	1.30E-08	7.44E-09	6.C5E-09	3.18E-09*	2.93E-10**
1.0E+03	2.21E-07	7.10E-08	1.35E-08	7.45E-09	6.05E-09	3.17E-09*	2.91E-10**
2.0E+03	1.962-07	7.73E-08	1.56E-08	7.53E-09	6.04E-09	3.16E-09*	2.86E-10**
4.0E+03	1.64E-07	8.02E-08	2.04E-08	7.94E-09	6.04E-09	3.14E-09*	2.85E-10**
7.0E+03	1.342-07	7.672-08	2.59E-08	9.12E-09	6.14E-09	3.11E-09	2.94E-10**
1.02+04	1.14E-07	7.14E-08	2.90E-08	1.06E-08	6.44E-09	3.08E-09	3.08E-10**
2.0E+04	7.50E-08	5.52E-08	3.08E-08	1.44E-08	8.16E-09	3.06E-09	3.61E-10**

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

E+

Notes: Por Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.9E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

Li							
Energy							
(eV/amu)	A0	A1	A2	A3	۸4	λ5	X6
10000.	-3.094812+01	-4,64901E-01	-2.95108E-01	-1.33838E-01	-3.59323E-02	-1.292182-03	8.76916E-04
20000.	-3.31581E+01	9,290242-02	-3.27874E-02	-9.34862E-02	-7.42714E-02	-2.98862E-02	-6.36610E-04
40000.	-3.59040E+01	4.303132-01	2.62445E-01	8.26693E-02	-2.56118E-02	-5.35625E-02	-3.78019E-02
70000.	-3.72045E+01	2.09566E-01	1.668162-01	1.083742-01	5.50349E-02	1.810512-02	-2.94289E-03
100000.	-3.777482+01	7.11403E-02	6.19800E-02	5.19417E-02	3.830272-02	2.396932-02	1.32084E-02
200000.	-3.913512+01	-2.544128-02	-9.95070E-03	-2.34861E-03	-2.74660E-04	3.660298-04	9.29558E-04
500000.	-4.387362+01	5.64031E-02	4.45512E-02	3.82771E-02	3.08448E-02	1.91863E-02	5.93228E-03

See appendix for Chebyshev fit details.

$$Li + H^{+} -> H + Li^{+}$$

Beam – Maxwellian

Double Electron Capture Cross Sections for H+ + H- -> H+ + H+

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(c s ²)
5.9E+01	1.072+07	9.982-17
6.4E+01	1.112+07	1.022-16
6.9E+01	1.15E+07	8.45E-17
7.4E+01	1-19E+07	5.63E-17
8.0E+01	1-24E+07	3.96E-17
8.16+01	1-252+07	3.958-17
8.4E+01	1.272+07	4.632-17
8.9E+01	1.312+07	6.11 <u>2-1</u> 7
9.4 2+0 1	1.352+07	7.542-17
9.9E+01	1.38E+07	5.722-17
1.02+02	1.392+07	8.822-17
J.15+02	1.462+07	6.842-17
1.22+02	1.522+07	4_705-17
1.35+02	1.582+07	4.238-17
1.42+02	1.64E+07	4.842-17
1.5E+02	1.702+07	6.33E-17
1.6E+02	1.762+07	7.202-17
1.78+02	1.811+07	6.128-17
1.82+02	1.862+07	4,27E-17
1.92+02	1.912+07	4.10E-17
2.02+02	1.96E+07	4.62E-17
2.5 2+0 2	2.202+07	8.338-17
3.0E+02	2.412+07	1.082-16
3.5E+02	2.60E+07	1.27E-16
4.02+02	2.782+07	1.442-16
4.5E+02	2.95E+07	1.50E-16
4.7E+02	3.01E+07	1.512-16
5.0E+02	3.11E+07	1.502-16
6.0E+02	3.402+07	1.402-16
8.02+02	3.932+07	1.142-16
8.4E+02	4.032+07	1.072-16
1.02+03	4.392+07	8.798-17
1.12+03	4.612+07	7.482-17

References: 69, 274, 275, 276

ACCULACY: 30%

<u>Motes:</u> (1) The oscillatory behaviour results from the formation of a guasi- π_2 molecule. (2) The cross section as plotted is an average of that measured by Peart (Ref. 274) and that of Brouillard et al. (Ref. 275).

- (3) Plotted are the R^+ energies with the B^- gt rest. (4) The interaction energy is given by $E_{int} = \frac{R^+}{2}$ for equal masses.

For a Chebyshev fit of the above cross sections it is necessery to use the following parameters. $E_{min} = 5.9E+01 \text{ eV/amu}, E_{max} = 1.1E+03 \text{ eV/amu}$

Chebyshev Pitting Palameters for Cross Sections

AO A1 A2 13 74 2.5 **A**-1 ٨7 88 -74.0098 .227379 .0232305 -.384332 -.00604588 .0351595 .101175 -.132093 -.0302977

The fit represents the above closs sections with an rms devision of 2 3%. The maximum deviation is 46.4% at 8.12+01 eV/ar-u. See appendix for Chebyshev fit details.

Mutual Neutralization Cross Sections for $H^+ + H^- \rightarrow H + H$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/S)	(cm ²)
2.06-01	6.21E+05	1.69E-13
4.0E-01	8.79E+05	9.09E-14
7.0E-01	1.16E+06	5.74E-14
1.0E+00	1.39E+06	4.27E-14
2.0E+00	1.96E+06	2.40E-14
4.0E+00	2.78E+06	1.40E-14
7.0E+00	3.68E+06	9.21E-15
1.02+01	4.39E+06	7.362-15
2.0E+01	6.21E+06	6.538-15
4.0E+01	8.79E+06	7.11E-15
7.0E+01	1.16E+07	8.205-15
1.02+02	1.39E+07	8.80E-15
2.0E+02	1.962+07	1.06E-14
4.0E+02	2.78E+07	1.30E-14
7.0E+02	3.68E+07	1.39E-14
1.0E+03	4.39E+07	1.38E-14
2.0E+03	6.21E+07	1.17E-14
4.0E+03	8.79E+07	7.54E-15
4.8E+03	9.62E+07	6.36E-15

References: 63, 64, 65, 64, 67, 68, 69, 280

Accuracy: E > 20 eV/amu - 20%; E < 20 eV/amu - factor 2 (see notes)

Notes: (1) Measurements made in the 1970's showed structure in the cross section curve in the energy range of 40 - 700 eV/amu. More recent measurements (Ref. 67 and 68) show no evidence of structure and the cross sections are approximately a factor of 2 less than those reported in Refs. 63-66 for energies less than 400 eV.
 (2) Mosley (Ref. 63) found a sharp rise in the cross section for energies less than 30

eV/amu. In the region of overlap, with the most recent papers, Mosely was a factor of two greater. Thus, the data of Mosely have been reduced by approximately a factor of two which more nearly coincides with the theoretical data of Ref. 280.

- (3) The data below 10 eV/amu should be used with caution.
- (4) Plotted is the H⁺ energy with H⁻ at rest.
- (5) The interaction energy is given by $E_{int}=E_{H}+/2$.
- (6) See Dolder's review (Ref. 69) for a discussion of this reaction.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.0E-01 \text{ eV/amu}, E_{max} = 4.8E+03 \text{ eV/amu}$

Chebyshev Fitting Paramete.s for Cross Sections

AO A1 A2 A3 X4 A5 X6 A7 A8 -63.1439 -1.23277 .753504 -.408901 -.276190 .0381613 .0408940 -.0423914 .00269073

The fit represents the above cross sections with an rms deviation of 2.4%. The maximum deviation is 5.6% at 1.0E+01~eV/amu. See appendix for Chebyshev fit details.

Energy	Velocity	Cross Section
(eV/anu)	(CB/S)	(cs ²)
3.3E+03	7 .98 E+07	7.43E-20
4.0E+03	8.79E+\$7	1.042-19
7.0E+03	1.162+08	3.628-19
1.02+04	1.398+08	9.898-19
2.0E+04	1.962+08	1.008-17
4.0E+04	2.785+08	2.31E-17
7.0E+04	3.682+08	2.55E-17
1.08+05	4.39E+08	2.19E-17
2.0E+05	6.212+38	1.36E-17
4.0E+05	8.782+08	6.84Z-18
5.2E+05	1.002+09	4.822-18

Sum of the Electron Capture and Ionization Cross Sections for $H^+ + He^+ \rightarrow [(H + He^{2+}) + (H^+ + He^{2+} + e^-)]$

References: 69, 73, 75, 76, 77, 81, 277, 278, 279

Accuracy: 20%

<u>Notes:</u> (1) Plotted are B^+ energies with the Be^+ particles at rest. (2) The interaction energy is given by $E_{int} = \frac{E_B^+}{1.25}$.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 3.3E+03 \text{ eV/amu}, \quad E_{max} = 5.2E+05 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0 A1 A2 A3 A4 A5 A6 A7 A8 -80.8329 2.22908 -1.82091 -.0490894 .341964 -.150988 -.0383566 .0746090 -.0322523

The fit represents the above cross sections with an rms deviation of 4.3%. The maximum deviation is 9.2% at 1.02+04 eV/amu. See appendix for Chebyshev fit details.

$$H^{+} + He^{+} -> ((H + He^{2+}) + (H^{+} + He^{2+} + e^{-}))$$

Sum of the Electron Capture and Ionization Rate Coefficients for $R^+ + Be^+ \rightarrow [(H + Be^{2+}) + (B^+ + Be^{2+} + e^-)]$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

E+										
Temp.	Equal		He ⁺ Temp. (eV)							
(eV)	Tesp.	509.	750.	1000.	2500.	500C.	10600.	20000.		
2.0E+02	5.59E-17	1.11 E-1 5	5.53E-15	1.78E-14	5.49E-13	4.80E-12	4.15E-11	3.10E-10		
4.0E+02	3.71E-14	5.08E-14	1.00E-13	1.74E-13	1.35E-12	7.55E-12	5.28E-11	3.428-10		
7.0E+02	7.08E-13	5. 49 E-13	7.52E-13	9.96E-13	3.49E-12	1.35e-11	7.31E-11	3.93E-10		
1.0E+03	2.83E-12	1.92E-12	2.35E-12	2-83E-12	7.15E-12	2.22E-11	9.75E-11	4.46E-10		
2.0E+03	3.19E-11	1.82E-11	2.01E-11	2.22E-11	3.77E-11	7 .69 E-11	2.08E-1C	6.41E-10		
4.0E+03	2.79E-10	1.62E-10	1.69E-10	1.76E-10	2.25E-10	3.18E-10	5.41E-10	1.08E-09		
7-0E+03	1.02E-09	6.66E-10	6.79E-10	6.92E-10	7,728-10	9.10E-10	1.202-09	1.78E-09		
1.0Z+04	1.90E-09	1.346-09	1.36E-09	1.37E-09	1.46E-09	1.61E-09	1.90E-09	2.47E-09		
2.08+04	4.31E-09	3.51E-09	3.52E-09	3.53E-09	3.60E-09	3.71E-09	3.922-09	4.31E-09		

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{\text{Bin}} = 2.0E+02 \text{ eV}, \quad E_{\text{max}} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

Be ⁺						-	
Temp.							
(eV)	GA	LA LA	A2	A3	A4	A5	A6
500.	-5.13885 <u>E</u> +01	7.38050E+00	~1.17079E+00	6.70967E-02	-1.42287£-01	3.79377E-02	5.355452-02
750.	-5.05826E+01	6.73738E+00	-8.10583E-01	-8.730942-02	-9.21944E-02	3.17877E-02	4.71527E-02
1060.	-4.99515E+01	6,24899E+00	-5.58489E-01	-1.8276CE-01	-6.61605E-02	3.204902-02	4.02355E-02
2500.	-4,77567E+01	4.68556E+00	6.56666E-02	-3.34420E-01	-3.90804E-02	4.27066E-02	1.486362-02
5000.	-4.59364E+01	3,57181E+00	2.68644E-01	-2.792082-01	-4.43108E-02	3.19665E-02	6.39440E-03
10000.	-4.38282E+01	2,41498E+00	3.24673E-01	-1.50289E-01	-4.79414E-02	9.61266E-03	5.766328-03
20000.	-4.16749E+01	1,36451E+C0	2.92509E-01	-4.41725E-92	-3.607622-02	-3.52436E-03	2.65593E-03
Equal Temp.	-5.18052E+01	8.42203E+00	-2.101912+00	5.095522-01	-3.49726E-01	1.50596E-01	1.1148)E-02

I.

See appendix for Chebyshev fit details.

<u>A-51</u>

Total Electron Capture Rate Coefficients for $He^4 + H^4 \rightarrow ((H + He^{24}) + (H^4 + He^{24} + e^{-}))$

Beam - Maxwellian Rate Coefficients (Cm³/S)

H' Temp.							
(eV) `	10000.	20000.	40000.	70000.	100000.	206000.	500000.
1.05+00	1.42E-10	1.95 E -09	6.39E-09	9.31E-09	9.56E-C9	8.57E-09	4.98E-09
2.0E+00	1.43E-10	1.94E-09	6.39E-09	9.31E-09	9.56 E-09	8.57 E-09	4.98E-09
4.0E+00	1.43E-10	1.94E-09	6.38E~09	9.31 E-09	9.55E-09	8.56E-09	4.985-09
7.02+00	1.44E-10	1.93E-09	6.37E-09	9.31E-09	9.55E-09	8.56E-09	4.98E-09
1.0E+01	1.45E-10	1.92E-09	6.36E-09	9.30E-09	9.55E-09	8.56E-09	4.988-09
2.0E+01	1.47E-10	1.91E-09	6.34E-09	9.29E-09	9.558-09	8.552~09	4.988-09
4.0E+01	1.53E-10	1.90E-09	6.31 E-09	9.27E-09	9.54E-09	8.55E-09	4.98E-09
7.02+01	1.60E-10	1.89E-09	6.29E-09	9.25E-09	9.53E-09	8.54E-09	4.948-09
1.0E+02	1.682-10	1.895-09	6.278-09	9.23E-09	9.53E-09	8.53E-09	4.87E-09
2.0E+02	1.94B-10	1.90E-09	6.222-09	9.19E-09	9.51E-09	8.528-09	4.598-09
4.0E+02	2.53E-10	1.95E-09	6.18E-09	9.13E-09	9.498-09	8.49E-09	4.205-09*
7.0E+02	3.508-10	2.06E-09	6.15E-09	9.07E-09	9.46E-09	8.47E-09	3.886-09*
1.0e+03	4.49E-10	2.17E-09	6.16E-09	9.028-09	9.44E-09	8.45E-09	3.698-09*
2.0E+03	7.69E-10	2.528-09	6.198-09	8.90E-09	9.36E-09	8.39E-09	3.408-09*
4.0z+03	1.37E-09	3.11E-09	6.298-09	8.70E-09	9.23E-09	8.32E-09	3-18 5- 09*
7.0E+03	2.18E-09	3.79E-09	6.44E-09	8.49E-09	9.05E-09	8.23E-09	3.05g-09*
1.0E+04	2.88E-09	4.33E-09	6.57E-09	8.34E-09	8.89E-09	8.16E-09	2.998-09*
2.02+04	4.61E-09	5.54E-09	6.93E-09	8.06E-09	8.48E-09	7.90E-09	2.90E-09*

Accuracy:	*	-	Possible	Error	Greater	Than	102
-	**	-	Possible	Error	Greater	Than	100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

He ⁺ Energy (eV/amu)	AO	A 1	A2	A3	84	٨5	λ6
10000.	-43.1609	1.70961	.748336	.0779426	-,109478	0550219	.00900977
20000.	-39.6126	.447496	.287036	.0983789	00499034	0233174	00975898
40000.	-37.7344	.0172991	.0327260	.0232302	.00718786	6.985132E-05	00119392
70000.	-37.0628	0628379	0317506	0103654	-,00206175	4.854519E-04	.00112569
100000.	-36.9842	0440273	0277168	0140155	-,00593012	00184524	-1.5754832-04
200000.	-37.1894	0312141	0170352	00770730	00339568	00158336	-7.883493E-04
500000.	-38.6322	298865	0952539	.0317736	,0355560	00369627	0132072

See appendix for Chebyshev fit details

$$He^{*} + H^{*} -> ((H + He^{2*}) + (H^{*} + He^{2*} + e^{-}))$$
Beam - Maxwellian
$$I_{0}^{0} + I_{0}^{0} + I_{0}^$$

I.

Electron	Capture	Cross	Sections	for
8	+ #e ⁺ -	-> H +	He ²⁺	

Energy	Velocity	Cross Section
(eV/amu)	(Cm/5)	(∈m ²)
1.8E+03	5.89E+G7	5.84E-22
2.0E+03	6.21E+07	1.558-21
4.0E+03	8.79E+07	8-84E-20
7.0E+03	1.16E+08	4.91E-19
1.0E+04	1.39E+08	1.40E-18
2.0E+04	1.96E+08	1.17E-17
4.0E+04	2.78E+08	2.46E-17
4.4E+04	2.91E+08	2.482-17
5.6E+04	3.292+08	2.35 E-1 7
7.02+04	3.68E+08	1.92E-17
1.0E+05	4.39E+08	1.2 9 E-17
2.02+05	6.21E+08	4.06E-18
2.4E+05	6.80E+08	3.0CE-18

References: 69, 71, 73, 74, 75, 76, 77, 78, 79, 80

Accuracy: E < 1x10⁴ eV/amu - factor 2; 1x10⁴ eV/amu < E < 2.2x10⁵ eV/amu - 25%

- <u>Notes:</u> (1) At energies less than 1×10^4 eV/amu the assumption was made that the electron capture cross section (σ_c) is equal to the total cross section (σ_T). σ_c : $H^+ + He^+ -> H + He^{2+}$; σ_T : $H^+ + He^+ -> [(H -> He^+) + (H^+ + He^{2+} + e^-)].$
 - (2) Data below $3x10^3$ eV/amu rely on theory of references 71, 79, and 80.
 - (2) Data below factor, a_{1}, a_{2}, a_{3} (3) Plotted is the H⁺ energy with He⁺ at rest. $E_{H^{+}}$
 - (4) The interaction energy is given by $E_{int} = \frac{-B}{1.25}$.

For a "hebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.8E+03 \text{ eV/asu}, \quad E_{max} = 2.4E+05 \text{ eV/asu}$

Chebyshev Pitting Parameters for Cross Sections

AO AI A2 A3 A4 A5 A6 A7 A8 -83.5391 3.94447 -2.70255 .0791317 -.0544615 .290337 -.133801 -.0294272 .0518279

The fit represents the above cross sections with an rms deviation of 2.4%. The maximum deviation is 3.8% at 4.02+04 eV/amu. See appendix for Chebyshev fit details.

Т

Electron Capture Rate Coefficients for $H^+ + He^+ \rightarrow H + He^{2+}$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

B+										
Tenp.	Equal	He ⁺ Temp. (eV)								
(e¥)	Temp.	200.	750.	1000.	2500.	5000.	10000.	20000.		
1.0 E+02	1.84E-19	2.17E-18	1.202-15	4.99E-15	3.22E-13	4.38E-12	4.62E-11	3.50E-10		
2.0E+02	3.92E-16	3.92E-16	5.86E-15	-2.52E-14	5.84E-13	5.73E-12	5.24E-11	3.68E-10		
4.0E+02	4.67E-14	2.52E-14	1.13E-13	1.89E-13	1.48E-12	9.25E-12	6.64E-11	4.05E-10		
7.0E+02	7.57E-13	3.78E-13	8.05E-13	1.08£-12	4.07E-12	1.69E-11	9.13E-11	4.62E-10		
1.0E+03	3.26E-12	1.63E-12	2.67E-12	3.26E-12	8.74E-12	2.81E-11	1.21E-10	5.22E-10		
2.0E+03	4.04E-11	2.02E-11	2.54E-11	2.81E-11	4.77E-11	9.59E-11	2.51E-10	7.37E-10		
4.02+03	3.33E-10	1.87E-10	2.06E-10	2.14E-10	2.71E-10	3.77E-10	6.27E-10	1.20E-09		
7.02+03	1.146-09	7.48E-10	7.79E-10	7.93E-10	8.80E-10	1.03E-09	1.32E-09	1.912-09		
1.02+04	2.02E-09	1.46E-09	1.49E-09	1.50E-09	1.59E~09	1.74E-09	2.02E-09	2.538-09		
2.02+04	3.87E-09	3.34E-09	3.35E-09	3.36E-09	3.412-09	3.49E-09	3.63E-09	3.87E-09		

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

Temp.							
(eV)	AO	A1	A2	A3	A4	A5	A6
200.	-5.56691E+01	1.03931E+01	-2.17666E+00	2.00410E-01	-1.29725E-01	-1.82527E-02	4.71659E-02
750.	-5.24322E+01	7.77856E+00	-7.52983E-01	-3.38100E-01	-3.27433E-03	-1.92121E-02	3.80958E-02
1000.	-5.15600E+01	7.11555E+00	-4.59118E-01	-4.02692E-01	-1.26409E-02	-3,27140E-03	3.15657E-02
2500.	-4.86136E+01	5.036382+00	2.33460E-01	-4.36889E-01	-7.67903E2	3,44015E-02	1.992282-02
5000.	-4.63267E+01	3.63467E+00	4.33629E-01	-3.18641E-01	-1.01089E-01	2,48311E-02	1.64483E-02
10000.	-4.39403E+01	2.34146E+00	4.31460E-01	-1.58490E-01	-8.81424E-02	-4,91624E-04	1.03754E-02
20000.	-4.16815E+01	1.25619E+00	3.21917E-01	-4.30200E-02	-5.44652E-02	-1,22828E-02	2.56368E-03
Equal Temp.	-5.56573E+01	1.11221 E+0 1	-3.07961E+00	6.630792-01	-3.65584E-01	9,91144E-02	1.99414E-02

See appendix for Chebyshev fit details.

He⁺
$$H^{+} + He^{+} -> H + He^{2+}$$

Maxwellian - Maxwellian

Electron Capture Cross Sections for

$B_2^* + B_2 \rightarrow B_2 + B_2^*$		82 ⁺ + E ·	-> H ₂ + H ⁺	$H_2^+ + He -> H_2 + He^+$		
Energy eV/anu	Cross Section	Energy eV/anu	Cross Section	Energy eV∕amu	Cross Section	
2.0E+00 4.0E+00 7.0E+00 1.0E+01 2.0E+01 1.0E+01 8.0E+01 1.0E+02 2.0E+02 8.0E+02 8.0E+02 1.0E+03 3.0E+03 3.0E+03 8.0E+03 8.0E+04 3.0E+04 5.0E+04 5.0E+04	1.22E-15 1.12E-15 1.01E-15 9.21E-16 7.83E-16 6.06E-16 5.64E-16 4.95E-16 4.95E-16 5.28E-16 5.28E-16 5.28E-16 5.26E-16 4.81E-16 3.86E-16 3.39E-16 3.39E-16 2.04E-16 1.26E-16 4.58E-17 2.72E-17	5.0E+01 7.0E+01 1.0E+02 2.0E+02 4.0E+02 7.0E+02 1.0E+02 1.0E+03 3.5E+03 5.0E+03	8.00E-16 E.36E-16 9.54E-16 1.02E-15 1.07P-15 1.09E-15 1.02E-15 8.96E-16 7.23E-16	1.22+03 2.02+03 4.02+03 7.02+03 9.02+03 1.02+04 1.52+04 2.22+04 2.42-64	1.398-18 1.502-18 1.642-18 1.73E-18 2.18E-18 2.68E-18 5.45E-18 7.26E-18 7.49E-18	
8.02+04 1.02+05	1.15E-17 6.43E-18					

 $\begin{array}{r} \underline{References:} & \mathbb{B_2^+} + \mathbb{H}_2 - 39, \ 43, \ 82, \ 208, \ 210, \ 211, \ 212, \ 213, \ 214, \ 215, \ 216, \ 217, \ 218, \ 219, \ 220 \\ \mathbb{H}_2^+ + \mathbb{H} - 3, \ 228 \\ \mathbb{H}_2^+ + \mathbb{H} - 82 \end{array}$

<u>Accuracy:</u> $B_2^+ + B_2 - 308 E < 1x10^3 eV/amu; 208 E > 1x10^3 eV/amu$ $<math>B_2^+ + B - 308 = B_2^+ + Re^- unknown$

<u>Hotes</u>: (1) At energies less than 1.5×10^3 eV/amu the cross sections were determined by measuring the slow ion current produced in the collisions. The cross section was calculated assuming that R_2^+ ions formed in ionizing collisions were negligible. Latimer et al. (Ref. 213) found the ratio of R^+/R_2^+ produced to be .024 at 7.5×10² eV/amu and increased monotonically to .2 at 25×10³ eV/amu.

(2) A proportional counter was used in many experiments at energies greater than 1×10^3 eV/amu to measure H₂ formed in the collision.

(3) It is well known that the B_2^+ electron capture cross sections are dependent on the vibrational levels of the incident B_2^+ ion. See the following set of data for the magnitude of this effect which increases as the energy decreases.

(4) Karpes et al. (Ref. 228) found the rate constants at thermal energies to be $6.4 \times 10^{-10}~{\rm cm^3/s}$ for ${\rm H_2^+}$ + H and $5 \times 10^{-10}~{\rm cm^3/s}$ for ${\rm D_2^+}$ + C.

(5) Electron capture data for ${\rm H_2}^+$ in He are very scarce. The data presented here should be used with caution.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

#2+	÷	891	Enin	•	2.02+00	eV/amu,	Ensy -	1.0E+05 eV/amu
82	٠	RÎ	Pain		5.0E+01	eV/Amu,	Entra -	5.02+03 eV/amu
H2*	+	Res	E_in	•	1.28+03	eV/amu,	Enax *	2.4E+04 eV/amu

Chebyshev Fitting Parameters for Cross Sections

#2 ⁺	+	8 ₂ :	A0 -71,4572	Al -1.8887\$	A2 -,906965	A3 -,676593	л4 -,3 88666	A5 -,0528444	A6 .0283239	A7 0386419	A8 .00767518
[¶] 2 ⁺	+	8 1	-69.2642	.0203046	153359	-,0596508	0175975	00448389	00355258	00672273	00592839
я ₂ +	+	He:	-81,0697	.916248	.310573	.0729101	120222	-,148642	.067908?		
The The	f i M	it ro Bximu	epresents um deviat:	the H_2^+ + ion is 7.	H ₂ Cross .16 st 8.2	section w: LE+04 sV/a	ith an rme au.	devistion	of 3.88.		
The The	£i Ma	it ro Bximu	epresents um devist:	the H_2^+ + ion is 0.	H Cross .2% at 7.0	section w E+02 eV/s	ith en ræs mu.	devistion	of 0.1%.		
The The	£1 M4	it re Bæimu	epresents um deviat:	the H_2^+ + ion is 4.0	Re cross D% at 8.01	section w: L+03 eV/sm	ith an rm# J.	deviation	of 2.0 1 .		

See appendix for Chebyshev fit details.

$$H_2^{+} + H_1, H_2, He -> H_2$$

Cross Section vs. Energy

Electron Capture Cross Sections for $H_2^+(v = 0, 1, 2, 3) + H_2 \rightarrow H_2$

(v = 0)		(v = 1)		((v = 2)	(v = 3)	
Energy eV/anu	Cross Section cm ²	Energy eV/amu	Cross Section	Energy eV/amu	Cross Section	Energy eV/amu	Cross Section cm ²
4.0E+00 5.0E+00 6.0E+00 7.7E+60 1.0E+01 1.5E+01 2.0E+01 4.0E+01 6.0E+01 9.0E+01 1.5E+02	7.65E-16 7.78E-16 7.90E-16 3.05E-16 8.03E-16 8.03E-16 8.03E-16 8.09E-16 8.07E-16 8.09E-16 7.86E-16 7.19E-16	4.0E+00 6.0E+00 8.0E+00 1.5E+01 2.5E+01 4.0E+01 6.0E+01 1.5E+02 2.0E+02 3.0E+02 5.0E+02	1.20E-15 1.15E-15 1.11E-15 1.05E-15 9.97E-16 9.54E-16 8.72E-16 8.09E-16 7.74E-16 7.62E-16 7.43E-16	4.0E+00 6.0E+00 7.5E+00 1.5E+01 2.5E+01 4.CE+01 7.0E+01 7.5E+01 1.0E+02 2.0E+02 5.0E+02	1.22E-15 1.14E-15 1.10E-15 1.04E-15 9.98E-16 9.56E-16 9.03E-16 8.55E-16 7.45E-16 5.97E-16	4.0E+00 7.5E+00 1.0E+01 1.5E+01 3.0E+01 6.0E+01 7.5E+01 1.5E+02 2.0E+02 4.0E+02 5.0E+02	1.10E-15 1.09E-15 1.05E-15 9.92E-16 8.95E-16 7.98E-16 7.36E-16 7.20E-16 6.75E-16 6.59E-16
3.0E+02 4.0E+02 5.0E+02	6.832-16 6.982-16 7.112-16 7.202-16						

References: 221, 222, 223, 224, 225, 226, 227, 295

Accuracy: unknown

<u>Note:</u> (1) These experimental data are taken from Campbell et al. (Ref. 221). For further information see theoretical references 222 - 227 and experimer al measurements of Liao et al. (Ref. 295).

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

{u = 0)	Emin =	4.0E+00 eV/a	BU, Emay	=	5.0E+02 eV/amu
(v = 1)	E =	4.0E+00 eV/a	BU, E	-	5.0E+02 eV/amu
(v = 2)	E_1 =	4.0E+00 eV/a	LEU, E	*	5.0E+02 eV/amu
(v = 3)	Enin =	4.0E+00 eV/a	INU, Emax	=	5.0E+02 eV/amu

Chebyshev Pitting Parameters for Cross Sections

			A 0	A1	λ2	A3	λ4	λ5	A6	A7	88
(v	•	0)	-69.6245	0593713	0380137	.0269366	.0238283	.0156238	00842422	0146446	00321688
(v		1)	-69.2068	245756	.00730004	.0108746	.0127040	.00132443	00641668	00611834	00633415
(~		2)	-69.2536	288634	0220048	0199150	2.45200E-04	0241700	0316741	0245964	0170459
{v		3)	-69.3794	283633	.0144526	.0213835	0200482	00269142	00368054	.00893694	-5.08689E-04

T.

The fit represents the v-2 cross section with an rms deviation of 0.6%. The maximum deviation is 0.9% at 2.02+02 eV/amu.

The fit represents the $\nu=1$ cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% st 2.02+02 eV/amu.

The fit represents the -2 cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 4.02+01 eV/anu.

The fit represents the ν =3 cross sec ion with an rms deviation of 0.3%. The maximum deviation is 0.7% at 7.5E+01 eV/amu.

See appendix for Chebyshev fit details.

I.

Electron Capture Cross Sections for $Be^+ + B \rightarrow Be + B^+$

Energy	Velocity	Cross Section
(eV/anu)	(Cm/S)	(cm²)
2.5E+02	2.20E+07	1.54E-17
4.0E+02	2.785+07	2. 39E-1 7
7.0E+02	3.68E+07	3.998-17
1.0E+03	4.39E+07	4.748-17
2.0E+03	6.21E+07	5.57E-17
4.0E+03	8.79E+07	9.085-17
7.0E+03	1.16E+08	1.71 8-16
1.0E+04	1.39E+0.3	2.33 E-16
2.0E+04	1.96E<08	2.423-16
4.0E+04	2.788+08	1.00B-16
7.GE+A4	3.68E+08	2.97 8 -17
1.0E+05	4.398+08	1. 298-17
2.08+05	6.21E+08	1.018-18
4.0E+05	8.785+08	7.948-20
7.0E+05	1.162+09	2.46B-21

References: 7, 22, 59, 60, 61

Accuracy: E < 600 eV/amu - unknown; E > 600 eV - 30%

<u>Hote:</u> The lowest experimental measurement was at an energy of 500 eV/amu. Data was extrapolated to 250 eV/amu by using the theoretical results of Ref. 61.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.5E+02 \text{ eV/amu}, \quad E_{max} = 7.0E+05 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0	A1	A2	A3	84	A 5	A6	٨7	78
-79.2449	-3.43445	-3.38701	953151	.0800233	.153935	198503	126958	.0492936

The fit represents the above cross sections with an rms deviation of 6.7%. The maximum deviation is 15.8% at 2.0E+05 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Electron Capture Rate Coefficients for Be⁺ + B -> Be + B⁺

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Be ⁺								
Temp.	Equa 1				fi Tesp. (eV)			
(e¥)	Temp.	10.	100.	1000.	2500.	5000.	10000.	20000.
7.0E+01	7.00E-11	1.60E-13	1.51E-10	2.97E-09	9.16E-09	1.882-08	2.75E-08	2.77 <u>F</u> -08
1.0E+02	1.74E-10	1.05E-12	1.74E-10	3.00E-09	9.202-09	1.882-08	2.75E-08	2.77E-08
2.0E+02	5.93E-10	1.89E-11	2.54E-10	3.08E-09	9.31E-09	1.892-08	2.75E-08	2.77E-08
4.0E+02	1.37E-09	1.29E-10	4.23E-10	3.25E-09	9.53E-09	1.912-08	2.75E-08	2.77E-08
7.03+02	2.50E-09	3.71E-10	6.76E-10	3.52E-09	9.862-09	1.93E-08	2.76E-08	2.77E-08
1.0E+03	3.792-09	6.26E-10	9.18E-10	3.79E-09	1.022-08	1.95E-08	2.77E-08	2.77E-08
2.0E+03	9.08E-09	1.40E-09	1.67E-09	4.76E-09	1.132-08	2.02E-C8	2.78E-08	2.76E-08
4.0E+03	1.88E-08	2.95E-09	3.25 <u>e-09</u>	6.87E-09	1.34E-08	2.15E-C8	2.81E-08	2.74E-08
7.0E+03	2.63E-08	5.83E-09	6.21E-09	1.022-08	1.63E-08	2.32E-08	2.84E-08	2.72E-08
1.0E+04	2.86E-08	9.13E-09	9.53E-09	1.34E-08	1. 58 E-08	2.46E-C8	2.86E-08	2.69E-08
2.0E+04	2.59E-08	1.88E-08	1.91E-08	2.15E-08	2,46E-08	2.75E-08	2.88E-08	2.59E-08

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 7.0E+01 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

B							
Temp.							
(eV)	04	A1	A2	A3	84	A5	A6
10.	-4.44012E+01	5.33316 E+0 0	-1.31634E+00	5.53831E-01	-1.05230E-01	-4.754812-02	-6.48771E-03
100.	-4.08648E+01	2.48428E+00	2.58050E-01	-3.12250E-02	9.54007E-04	-3.30158E-02	-2.12794E-02
1000.	-3.79160E+01	9.815928-01	3.54607E-01	2.81517E-02	-3.71282E-02	-1.958452-02	-3.45087E-03
2500.	-3.63706E+01	4.76956E-01	1.86293E-01	2.58640E-C_	-1.33869E-02	-9.40073E-03	-2.40891E-03
5000.	-3.53362E+01	1.79870E-01	7.40800E-02	1.322228-02	-3.81465E-03	-3.86405E-03	-1.31950E-03
10000.	-3.47840E+01	2.52895E-02	8.72489E-03	-3.06100E-04	-2.09262E-03	-1.259928-03	-3.740902-04
20000.	-3.48330E+01	-2.639992-02	-1.50886E-02	-6.64467E-03	-2.39705E-03	-7.47129E-04	-1.924958-04
Equal Temp.	-3.928252+01	2.95989E+00	-6.50284E-01	-6.36867E-02	-1.59695E-01	6.25401E-02	2,55537E-02

See appendix for Chebyshev fit details.

Maxwellian - Maxwellian

h-65

Electron Capture Rate Coefficients for $B + Be^+ \rightarrow Be + B^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

He ⁺							
Temp.			H En	ergy (eV/amu)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	3.19E-08	4.74E-08	2.772-08	1.09E-08	5.66E-09	6.28E-10	1.95E-11**
2.0E+00	3.23E-08	4.74E-08	2.77E-08	1.09E-08	5.66E-09	6.27E-10	1.95E-11**
4.0E+00	3.222-08	4.73E-08	2.775-08	1.09E-08	5.65E-09	6.27E-10	1.95E-11**
7.0E+00	3.228-08	4.72E-08	2.772-08	1.092-08	5.65E-09	6.27E-10	1.958-11**
1.0E+01	3.21E-08	4.71E-08	2.77E-08	1.09E-08	5.652-09	6.27E-10	1.95E-11**
7.0E+01	3.212-08	4.7CE-08	2.76E-08	1.09E-08	5.64E-09	6.27E-10	1.958-11**
4.0E+01	3.19E-08	4.682-08	2.76E-08	1.09E-08	5.63E-09	6.28E-10	1.95E-11**
7.0E+01	3.18E-08	4.65E-08	2.75E-08	1.092-08	5.622-09	6.28E-10	1.958-11**
1.0E+02	3.17E-08	4.63E-08	2.742-08	1.09E-08	5.61E-09	6.28E-10	1.95E-11**
2.0E+02	3.162-08	4.58E-08	2.735-08	1.09E-08	5.59E-09	6.29E-10	1.968-11**
4.0E+02	3.14E-08	4.51E-08	2.722-08	1.09E-08	5.562-09	6.30E-10	1.96E-11**
7.0E+02	3.122-08	4.44E-08	2.70E-08	1.09E-08	5.54E-09	6.32E-10	1.978-11**
1.0E+03	3.12E-08	4.38E-08	2.68E-08	1.09E-08	5.522-09	6.34E-10	1.988-11*
2.0E+03	3.122-08	4.24E-08	2.652-08	1.10E-08	5.50E-09	6.41E-10	2.01E-11*
4.0E+03	3.152-08	4.04E-08	2.622-08	1.11E-08	5.51E-09	6.55E-10	2.07E-11*
7.0E+03	3.17E-08	3.822-08	2.57E-08	1.132-08	5.56E-09	6.77E-10	2.17E-11*
1.0E+04	3.18E-08	3.65E-08	2.53E-08	1.15E-08	5.638-09	7.01E-10	2.26E-11*
2.0E+04	3.132-08	3.26E-08	2.37E-08	1.18E-)8	5.922-09	7.89E-10	2.54E-11*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: Por Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

B							
Energy							
(eV/amu)	¥0	71	A2	A3	84	A5	A6
10000.	-3.45301E+01	-1.16460g-02	2.95116E-03	6.60447E-03	-4.30159E-03	-3.33439E-03	-4.15571E-03
20000.	-3.392592+01	-1.548112-01	-7.898022-02	-3.039042-02	-9.78923E-03	-2.835852-03	-6.350262-04
40000.	-3.48770E+01	-5.98881E-02	-3.030312-02	-1.35966E-02	-7.00807E-03	-4.083392-03	-2.34824E-03
70000.	-3.66351E+01	2.84585E-02	2.06398E-02	1.058412-02	3.32277E-03	-4.79714E-05	-9.38437E-04
100000.	-3.79874E+01	2.72710E-03	1.558022-02	1.57294E-02	9.39045E-03	3.99108E-03	1.234312-03
200000.	-4.229572+01	7.45856E-02	5.41115E-02	3.231812-02	1.66050E-02	6.94819E-03	2.78456E-03
500000.	-4.92176E+01	9.14498E-02	6.40861E-02	3.5725 #E-02	1.57066E-02	5.13868E-03	8.468852-04

See appendix for Chebyshev fit details.

$$H + He^+ -> He + H^+$$

Beam – Maxwellian

Energy	Velocity	Cross Section
(eV/amu)	(ca/s)	(ca ²)
2 45-03	6 515-04	. (66-10
2.46-03	8.81EVV4	1.032-10
7.06-03	1,108+03	1.202-18
1.UE-02	1.372+03	1.0/8-18
4.08-02	2.78E+u>	6.662-19
1.02-01	4.392+05	4.358-19
4.08-01	8.795+05	1.09E-19
7.0E-01	1.162+06	9.938-20
1.02+00	1.398+36	5.218-20
1.32+00	1.582+06	4 - 432-20
1.52+00	1.702+06	5.702-20
3.0 2+00	2.41E+06	2.158-19
4.0E+00	2.78 5+0 5	2.428-19
7.0 2+00	3.682+06	2-658-19
1.02+01	4.39E+06	2.772-19
4.02+01	8.792+06	5.038-19
7.0E+01	1.162+07	1.136-16
1.02+02	1.392+07	1.882-18
4.02+02	2.785+07	1.162-17
7.0E+02	3.68E+07	2.462-17
1.02+03	4.398+07	3.772-17
4.0E+03	\$.79E+07	1.428-16
7.02+03	1.162+08	2.098-16
1.02+04	1.395+06	2.428-16
1.62+04	1.762+08	2.698-16
4.02+04	2.788+08	1.548-16
7.0R+04	3.708+98	6. 438-17
1 08+05	4 397-08	2 848-17
A. 02+05		2.848-17
7.00105	162.00	2.138-30
/.UE403	1.145403	1.375-29

Electron Capture Cross Sections for $\operatorname{Re}^+ + \operatorname{R}_2^- \rightarrow \operatorname{Re}^+$

References: 7, 22, 82, 91, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107

<u>Accuracy:</u> $E < 2x10^3 e^{1/amu} - unknown; E > 2x10^3 eV/amu - 208$

Notes: (1) The data between 40 - 2000 eV/amu have been interpolated

(2) The data of Moran and Conrads (Ref. 107) are essentially independent of energy in the 250 - 800 eV/amu region and are approximately a factor of 10 above the values shown. (3) The low energy data ($E < 2x10^3 eV/amu$) of Stedeford and Hasted (Ref. R2) are 1 to 2 orders of magnitude greater than the extrapolated dats.

(4) The data below $2x10^3$ eV/amu have large uncertainties

(5) In the experiments cited the He^+ metastable state population is dependent on the ion source used and the operating parameters of the source. As the metastable population increases the total cross section increases.

For a Chebyshev fit of the above cross sections it is no essary to use the following parameters. $E_{min} = 2.4E-03$ eV/amu, $E_{max} = 7.0E+05$ eV/amu

Chebyshev Fitzing Persmeters for Cross Sections

A0	A1	A2	A3	A4	A5	A6	A7	A 8
-11.9486	.720256	856412	-3.13728	-1.68226	.0267213	.0474764	3.158238-03	.164787

The fit represents the above cross sections with an rms deviation of 34.8%. The seximum deviation is 132.4% at 1.32+00 eV/amu. See appendix for Chebyshev fit details.

1

Electron Capture Cross Sections for He⁺ + He -> He + He⁺

Energy	Velocity	Cross Section
(eV/amu)	(CR/S)	(cm ²)
4 AP-02	2 785+05	3 378-15
7.0E-02	3.688+05	3 128-15
1 08-01	4 398405	2 975-15
2 00-01	6 218405	2.2/2-1J 2 467-15
A 08-01	8 79PADE	2.0JE-13 2.64E-15
7 08-01	1 168406	2.045-15
1.05-01	1.100+00	2.438-13
2.08+00	1.335700	2.312-13
2.0E+00	1.902+00	2.108-15
4.UE+UU	2.782+06	1.968-15
7.0E+00	3.082+06	1.83E-15
1.0E+01	4.392+06	1.7SE-15
2.0E+01	6.212+06	1.54E-15
4.0E+01	8.79E+06	1.39E-15
7.0E+01	1.16B+37	1.31E-15
1.0E+02	1.392+07	1.26E-15
2.0E+02	1.96E+07	1.11E-15
4.0E+02	2.78 2+07	9.87E-16
7.0E+02	3.6" 2+07	8.56B-16
1.0E+03	4.39E+07	7.922-16
2.0E+03	6.21E+07	6. 48 E-16
4.0E+03	8.79E+07	5.26E-16
7.0E+03	1,162+08	4.228-16
1.0E+04	1.392+08	3.60E-16
2.02+04	1,962+08	2.36E-16
4.0E+04	2.782+08	1.282-16
7.0E+04	3.682+08	5.588-17
1.02+05	4.39E+08	2.682-17
2.02+05	6_21E+0R	5.499-19
4.08+05	8 78F+08	A 132-19
5 20+05	1 018400	7.125-13
	1,016707	1.005-13

References: 91, 96, 97, 98, 99, 103, 104, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 390, 397

Accuracy: 20% throughout the energy range

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 4.0E-02 \text{ eV/amu}, E_{max} = 5.3E+05 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0	A1	A2	A3	۸4	A5	A6	۸7	84
-71.6915	-3.72702	-1.97026	-1.16040	605858	259050	0892322	0165873	9.757832-03

The fit represents the above cross sections with an rms deviation of 2.4%. The maximum deviation is 9.2% at 1.0E+05 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for $He^+ + He \rightarrow He + He^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Be ⁺								
Tesp.	Equal				He Temp. (eV	7)		
(eV)	Temp.	1.	100.	500.	1000.	5000.	10000.	20000.
1.0E+00	2.66E-09	2.66E-09	1.122-08	1.97E-08	2.44E-08	3.682-08	4.18E-08	4.51E-08
2.0E+00	3.45E-09	3.10E-09	1.13E-08	1.97E-08	2.44E-08	3.682-08	4.18E-08	4.51E-08
4.0E+00	4.49E-09	3.758-09	1.13E-08	1.97E-08	2.442-08	3.68E-08	4.18E-08	4.51E-08
7.02+00	5.54E-09	4.49E-09	1.15E-08	1.97E-08	2.44E-08	3.68E-08	4.182-08	4.51E-08
1.0E+01	6.30E-09	5.06E-09	1.16E-08	1.98E-08	2.44E-08	3.68E-08	4.18E-08	4.51E-08
2.0 <u>2</u> +01	8.06E-09	6.42E-09	1.19E-08	1.99E-08	2.45E-08	3.68E-08	4.186-09	4.51E-68
4.0E+01	1.03E-08	8.13E-09	1.26E-08	2.01E-08	2.47E-08	3.68E-08	4.18E-08	4.51E-08
7.0E+01	1.26E-08	9.87E-09	1,35e-08	2.05E-08	2.49E-08	3.692-08	4.182-08	4.51E-08
1.0E+02	1.432-08	1.12E-08	1.43E-08	2.08E-08	2.51E-08	3.69E-08	4.18E-08	4.512-08
2.0E+02	1.82E-08	1.44E-08	1.65E-08	2.19E-08	2.57E-08	3.71E-08	4.19E-08	4.51E-08
4.0E+02	2-28E-08	1.83E-08	1.96E-08	2.36E-08	2.69E-08	3.74E-08	4-205-08	4.51E-08
7.0E+02	2.69E-08	2.19E08	2.28E-08	2.57E-08	2.83E-08	3.78E-08	4.22E-08	4.52E-08
1.0E+03	2.96E-08	2.44E-08	2.512-08	2.74E-08	2.96E-08	3.822-08	4.24E-08	4.52E-08
2.0E+03	3.50E-08	2.96E-08	2.992-08	3.13E-08	3.27E-08	3,93E-08	4.29E-08	4.536-08
4.0E+03	4.03E-08	3.508-08	3.52E-08	3.59E-08	3.68E-08	4,11E-08	4.37E-08	4.54E-08
7.0E+03	4.37E-08	3.93E-08	3.94E-08	3.98E-08	4.03E-08	4,29E-08	4.46E-08	4.552-08
1.0E+C4	4.51E-08	4.18E-08	4.18E-08	4.21E-08	4.24E-08	4,40E-08	4.51E-08	4.54E-08
2.0E+04	4.47E-08	4.51E-08	4.51E-08	4.51E-08	4.52E-08	4,55E~08	4.542-08	4.47E-08

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

	He							
	Temp.							
	(eV)	A0	A1	A2	A3		A5	A6
	1.	-3.65091E+01	1.50347E+00	-7.73477E-02	-8.34424E-02	-7.592972-04	-3,1777 <p-03< td=""><td>2.46929E-03</td></p-03<>	2. 469 29E-03
	100.	-3.55092E+01	7.61944E-01	1.84506E-01	-6.99606E-02	-4.58282E-02	5.01278E-03	6.02365E-03
	500.	-3.49239E+01	4.30514E-01	1.666822-01	-1.76952E-03	-3.51444E-02	-1.39113E-02	1.27578E-03
	1000.	-3.46672E+01	3.07854E-01	1.38199E-01	1.53048E-02	-2.27026E-02	-1.52299E-02	-2.87864E-03
	5000.	-3.41193E+01	9.72499E-02	5.39119E-02	1.55767E-02	-2.97046E-03	-6.16891E-03	-3.80972E-03
	10000.	-3.39337E+01	3.944798-02	2.21217E-02	6.22476E-03	-1.76048E-03	-3.26193E-03	-2.269988-02
	20000.	-3.38270E+01	1,359888-03	-9.13724E-04	-2.77809E-03	-3.01978E-03	-2.177338-03	-1.251422-03
Egu	al Temp.	-3.62362E+01	1.484228+00	-1.94700E-01	-6.90443E-82	-1.94257E-02	-1.35547E-03	-2.792028-03

I.

See appendix for Chebyshev fit details.

.

 He^+ + He -> He + He^+

Maxwellian – Maxwellian

I.

Electron Capture Rate Coefficients for Be + $Be^+ \rightarrow Be + Be^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

8e ⁺							
Temp.			He E	nergy (eV/as	ເບ)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	400000.
1.0E+00	5.00F-08	4.63E-08	3.55E-08	2.05E-08	1.18E-08	3.41E-09*	3.61E-10**
2.0E+C0	5.002-08	4.63E-08	3.55E-08	2.05E-08	1.18E-08	3.40E-09*	3.62E~10**
4.0E+00	5.00E-08	4.63E-08	3.55E-08	2.05E-08	1.18E-08	3.40E-09*	3.612-10**
7.05+00	4.99E-08	4.632-08	3.55E-08	2.05E-C8	1.18E-08	3.40E-09*	3.61E-10**
1.0E+01	4.99E-08	4.63E-08	3.55E-08	2.05E-08	1.18E-08	3.40E-09*	3.61E-10**
2.0E+01	4.99E-08	4.62E-08	3.54E-08	2.052-08	1.18E-08	3.402-09*	3.61E-10**
4.CE+01	4.99E-08	4.622-08	3.54E-08	2.04E-08	1.18E-08	3.39E-09*	3.61E-10**
7.0E+01	4.98E-08	4.61E-08	3.53E-08	2.04E-08	1.18E-08	3.39E-09*	3.61E-10**
1.0E+02	4.98E-08	4.61E-08	3.53E-08	2.04E-08	1.18E-08	3.38E-09*	3.60E-10**
2.02+02	4.97E-08	4.60E-08	3.51E-08	2.03E-08	1.17E-08	3.37E-09*	3.60E-10**
4.0E+02	4.95E-08	4.53E-08	3.50E-08	2.03E-08	1.17E-08	3.36E-09*	3.60E-10**
7.0E+02	4.94E-08	4.57E-08	3.482-08	2.02E-08	1.17E-08	3.34E-09*	3.59E-10**
1.0E+03	4.93E-08	4.55E-08	3.47E-08	2.02E-08	1.18E-08	3.33E-09	3,59E-10**
2.0E+03	4.89E-08	4.52E-08	3.43E-08	2.01E-08	1.18E-08	3.31E-09	3.60E-10**
4.0E+03	4.83E-08	4.46E-08	3.382-08	2.00E-08	1.18E-08	3.30E-09	3.62E-10**
7.0E+03	4.75E-08	4.39E-08	3.322-08	1.992-08	1.19E-08	3.292-05	3.67E-10**
1.0E+04	4.68E-08	4.312-08	3.28E-08	1.982-08	1.202-08	3.30E-0S	3.722-10**
2.0E+04	4.48E-08	4.092-08	3.13E-08	1.962-08	1.22E-08	3.37E-09	3.91E-10*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}$, $F_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients									
Re Snergy										
(eV/amu)	A0	A1	A2	A3	۸4	A5	A6			
10000.	-3.36725E+01	-4.07805E-02	-2.43723P-02	-1.21532E-02	-5.34881E-03	-2.01573E-03	-5.499292-04			
20000.	-3.38300E+01	-4.556328-0.	-2.69923E-02	-1.37596E-02	-6.607832-03	-3.00454E-03	-1.252258-03			
40000.	-3.43690E+01	-5.00191E-02	-2.61460E-02	-1.10247E-02	-4.450992-03	-1.92372E-03	-9.15345E-04			
70000.	-3.543362+01	-2.00865E-02	-7.82001E-03	-2.03461E-03	-7.582652-04	-7.02792E-04	-6.07996E-04			
100000.	-3.65032E+01	1.22086E-02	1.0C798E-02	5,91914E-03	2.15183E-03	3.378492-04	-2.72081E-04			
200000.	-3.90194E+01	-1.48944E-02	8.12695E-04	5.76317E-03	5.00317E-03	2.193842-03	1.07961E-03			
400000.	-4.34614E+01	2.08264E-02	2.00251E-02	1.46660E-02	7.485242-03	3.550712-03	7.16357E-04			

See appendix for Chebyshev fit details.

1

He + He⁺
$$\rightarrow$$
 He + He⁺

Beam – Maxwellian

Electron Capture Cross Sections for He⁺ + Li -> He + Li⁺

Energy	Velocity	Cross Section
(eV/amu)	(Cm/S)	(cm ²)
6.4E+01	1.11E+07	7.80E-16
1.0E+02	1.392+07	1.53E-15
2.0E+02	1.96E+07	3.27E-15
5.0E+02	3.11E+07	5.258-15
8.0E+02	3.93E+07	5.612-15
1.0E+03	4-39E+07	5.60E-15
2.0E+03	6.21E+07	5.128-15
4.0E+03	8 - 79E+07	4.178-15
7.GE+03	1.16E+08	2.938-15
1.0E+04	1.396+68	1.768-15
2.0E+04	1.962+98	3.26E-16
2.5E+04	2.20E+08	1.338-16
3.0E+04	2.41E+08	6.37E-17
4.0E+04	2 - 78E+08	4.17E-17
5.0E+04	3.11E+08	3.42E-17
7.0E+04	3.68E+08	2.60E-17
1.0E+05	4.39E+08	2.00E-17

References: 230, 231, 232, 233, 234, 242

Accuracy: 30%

<u>Note:</u> For electron capture cross sections of Li⁺ and Li²⁺ in He see references 249, 250, 251, 254.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 6.4E+01 \text{ eV/amu}, \quad E_{max} = 1.0E+05 \text{ eV/amu}$

1 i i i

Chebyshev Pitting Parameters for Cross Sections

A0	A1	٨2	A3	λ4	٨5	A6	K 7	A8
-69.9420	-2.17479	~1.90237	.153408	.309985	.316010	.0848497	118385	140948

The fit represents the above cross sections with an rms deviation of 8.8%. The maximum deviation is 26.5% at 3.02+04 eV/amu. See appendix for Chebyshev fit details.

11

Electron Capture Rate Coefficients for Li + He⁺ -> He + Li⁺

Beam - Maxwellian Rate Coefficients (Cm³/s)

Be ⁺							
Temp.			Li Er	ergy (eV/asu	1)		
(eV)	10000.	20000.	30000.	40000.	60000.	80000.	100000.
1.0E+00	2. 44E-0 7	6.38E-08*	1.54E-08**	1.16E-08**	1.COE-08**	9.262-09**	4.39E-09**
2.0E+00	2.44E-07	6.38E-08*	1.542-08**	1.16E-08**	1.00E-08**	9.26E-09**	4.39E-09**
4.0E+00	2.43E-07	6.37E-08*	1.55E-08**	1.16E-08**	1.00E-08**	9.262-09**	4.392-09**
7.0E+00	2.43E-07	6.35E-08*	1.55E-08**	1.16E-08**	1.002-08**	9.26E-09**	4.39E-09**
1.0E+01	2.42E-07	6.35E-08*	1.55E-08**	1.16E-08**	1.00E~08**	9.262-09**	4.39E-09**
2.0E+01	2.42E-07	6.32E-08*	1.56E-08**	1.16E-08**	1.00E-08**	9.26E-09**	4.38E-09**
4.0E+01	2.40E-07	6.30E-08*	1.58E-08**	1.16E-08**	1.00E-08**	9.26E-09**	4.38E-09**
7. 7E+)1	2.39E-07	6.27E-08*	1.59E-08**	1.17E-08**	1.00E-08**	9.26E-09**	4.38E-09**
1.LE+12	2.38E-07	5.25E-08*	1.60E-08**	1.17E-08**	1.00E-08**	9.26E-09**	4.37E-09**
2.0E+02	2.36E-07	6.22E-08*	1.64E-08**	1.172-08**	1.00E-08**	9.262-09**	4.36E-09**
4.0E+02	2.34E-07	6.19E-08*	1.70E-08**	1.18E-08**	1.002-08**	9.26E-09**	4.35E-09**
7.0E+02	2.31P)7	6.19E-08*	1.77E-08*	1.19E-08**	1.00E-08**	9.262-09**	4.34E-09**
1.0E+03	2.29E-07	6.22E-08*	1.83E-08*	1.19E-08**	1.00E-08**	9.24E-09**	4.33E-09**
2.0E+03	2.21E-07	6.38E-08*	2.03E-08*	1.22E-08**	1.00E-08**	9.09E-09**	4.30E-09**
4.02+03	2.09E-07	6.77E-06*	2.36E-08*	1.31E-08**	1.01E-08**	8.59E-09**	4.26E-09**
7.0E+03	1.93E-07	7.222-08	2.78E-08*	1.48E-08*	1.01E-08**	7.97E-09**	4.22E-09**
1.0E+04	1.80E-07	7.49E-08	3.14E-08*	1.662-08*	1.01E-08**	7.54E-09**	4,18E-09**
2.0E+04	1.50E-07	7.63E-08	3.93E-08*	2.228-08*	1.08E-08**	6.91E-09**	4.13E-09**

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 10%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients										
Li											
Energy											
(eV/amu)	AO	A1	A2	A3		A5	A6				
10000.	-3.06784E+01	-1.833678-01	-1.085622-01	-5.42037E-02	-2.28601E-02	-6.741942-03	-2.908572-04				
20000.	-3.30630E+01	7.50860E-02	6.65545E-02	2.87114E-02	-2.248362-03	-1.23958E-02	-1.01177E-02				
30000.	-3.54800E+01	4.01173E-01	2.16479E-01	7.71491E-02	1.07563E-02	-8.06147E-03	-8.046222-03				
40000.	-3.62976E+01	2.188932-01	1.57718E-01	9.394412-02	4.470052-02	1.42990E-02	-8.03805E-04				
60000.	-3.68192E+01	1.63206E-02	1,409212-02	1.21589E-02	9.29880E-03	6.22735E-03	4.24079E-03				
80000.	-3.711862+01	-1.096572-01	-8.05414E-02	-4.265492-02	-1.26465E-02	3.18261E-03	7.949232-03				
100000.	-3.85227£+01	-2.71037E-02	-1.31775E-02	-4.13455E-03	-5.05274E-04	3.908602-04	4.435258-04				

See appendix for Chebyshev fit details.

Beam – Maxwellian

Electron Capture Cross Sections for Be⁺ + Be⁺ \rightarrow He + He²⁺

Energy	Velocity	Cross Section
(eV/amu)	(CB/S)	(cm ²)
1.5E+04	1.70E+08	1.956-18
2.0E+04	1.962+08	3.25E-18
3.0E+04	2.41E+G8	6.28E-18
4.02+04	2.78E+G8	9,44E-18
5.0E+04	3,11E+08	1.222-17
6.0E+04	3,40E+08	1.45E-17
7.0E+04	3,68E+08	1.64E-27
9.0E+04	4,17E+08	1.888-17
1.02+05	4.39E+08	1.908-17
1.5£+05	5,382+08	1.736-17
2.02+05	6.21E+08	1.428-17
2.3E+05	6.66E+08	1.24E-17

References: 69, 277, 278, 283, 284

Accuracy: 20%

<u>Note:</u> (1) Good agreement of the experimental data exists with the theoretical data of Ref. 284.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.5E+04 \text{ eV/amu}, E_{max} = 2.3E+05 \text{ eV/amu}$

Chebyshev Pit ing Parameters for Cross Sections

AO A1 A2 A3 A4 A5 A6 A7 A8 -78.6559 .981266 -.533866 -.0667013 .0133417 .00898626 .00154609 .00128923 -.00693562

The fit represents the above cross sections with an rms deviation of 0.3%. The maximum deviation is 0.6% at 1.0E+05 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Electron Capture Rate Coefficients for $Be^+ + Be^+ \rightarrow Be + Be^{2+}$

Haxwellian - Maxwellian Rate Coefficients (cm³/s)

Be ⁺									
Temp.	Equal	Be ⁺ Temp. (eV)							
(e¥)	Temp.	10000.	12000.	14000.	16000.	18000.	20000.	25000.	
4.0E+03	8.29E-13	2.06E-11	3.60E-11	5.61E-11	8.08E-11	1.102-10	1,43E-10	2.40E-10	
6.0E+03	9.94E-12	3.60E-11	5.61E-11	8.08E-11	1.10E-10	1.43E-10	1.79E-10	2.85E-10	
8.08+03	3.60E-11	5.61E-11	8.08E-11	1.10E-10	1.43E-10	1.792-10	2.19E-10	3.32E-10	
1.08+04	8.08E-11	8.08E-11	1.10E-10	2.43E-10	1.79E-10	2.19E-10	2,62E-10	3.81E-10	
1.22+04	1.43E-10	1.10E-10	1.43E-10	1.79E-10	2.19E-10	2.628-10	3.08E-10	4.33E-10	
1.42+04	2.19E-10	1.43E-10	1.79E-10	2.19E-10	2.62E-10	3.08E-10	3.56E-10	4.87E-10	
1.6B+04	3.085-10	1.75z-10	2.19E-10	2.62E-10	3.08E-10	3.56E-10	4.07E-10	5.42E-10	
1.82+04	4.07E-10	2.19E-10	2.628-10	3.08E-10	3.568-10	4.07E-10	4.60E-10	5.99g-10	
2.68+04	5.14E-10	2.62E-10	3.08E-10	3.56E-10	4.07E-10	4.60E-10	5.14E-10	6.58E-10	
2.25+04	6.28E-10	3.08E-10	3.56E-10	4.07E-10	4.60E-10	5.14E-10	5.71E-10	7.18E-10	
2.42+04	7.492-10	3.56E-10	4.07E-:	4.60E-10	5.142-10	5.71E-10	6.28E-10	7.80E-10	

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 4.0E+03 \text{ eV}, \quad E_{max} = 2.4E+04 \text{ eV}$

Chebyshev Fitting Parameters for Pate Coefficients

Te	emp.							
(eV)	A0	LA LA	A2	A3	۸4	A5	A6
10	000.	-4.64541E+01	1.439622+00	4.630302-02	-1.49060E-02	-2.301498-04	2.44855E-04	-4.28539E-05
12(000.	-4.57963E+01	1.22412E+00	6.31757E-02	-1.13559E-02	-6.21329E-04	1.52187E-04	1.97060E-04
14	000.	-4.52461E+01	1.05998£+00	7.171252-02	-8.34828E-03	-9.77820E-04	2.30920E-04	-9.51457E-06
16	DO0.	-4.47759E+01	9.31470E-01	7.53759E-02	-5.93773E-03	-1,188322-03	1.95011E-04	-1.893372-04
18	000.	-4.43672E+01	8.28548E-01	7.61027E-02	-4.06263E-03	-1.22968E-03	-1.526992-05	-1.37761E-04
20	000.	-4.40069E+01	7.443908-01	7.51176E-02	-2.63629E-03	-1.17745E-03	-2.47636E-04	7.54863E-05
25	DO0.	-4.326012+01	5,885522-01	7.03946E-02	-1.20370E-04	-1.13108E-03	1.84062E-04	-1.45794E-04
Equal To	emp.	-4.76973E+01	3.306792+00	-5.53811E-01	9.53225E-02	-1.30960E-02	6.76109E-04	1.60674z-04

See appendix for Chebyshev fit details.

T.

1

He⁺

Maxwellian - Maxwellian

	(Pa	rtial)	(1	otal)
8e ⁺	Energy eV/amu	Cross Section	Re ⁺ Energy eV/amu	Cross Section
	7.0E+00	3.04E-17	8.5E+00	3.39E-16
	1.0E+01	4.02E-17	1.JE+01	4.09E-16
	1.5E+01	7.57E-17	1.5E+0]	6.01E-16
	2.0E+01	2.00E-16	2.0E+01	6.99E-16
	2.5E+01	2.98E-16	4.0.:+0]	7.77E-16
	3.0E+01	3.48E-16	7.0E+01	7.802-16
	4.0E+01	4.04E-16	1.0E+02	7.66E-16
	6.0E+01	4.45E-16	2.0E+02	7.16E-16
	7.0E+01	4.55E-16	4.QE+62	6.64E-16
	1.0E+02	4.79E-16	7.0E+02	6.13E-16
	2.0E+02	4.84E-16	1.0E+03	5.75E-16
	4.0E+02	4.64E-16	2.0E+03	5.01E-16
	7.0E+02	4.38E-16	4. QE+03	4.30E-16
	1.0E+03	4.19E-16	7.0E+03	3.76E-16
	2.0E+03	3.76E-16	1.02+04	3.23E-16
	4.0E+03	3.28E-16	2.0E+04	2.03E-16
	7.0E+03	2.838-16	4.0E+04	1.01E-16
	1.024 4	2.52E-16	7.02+04	4.50E-17
	1.6E+04	2.078-16	1.02+0	2.65E-17
			1.52+05	1.33E-17
			2.0E+0	6.34E-18
			2.58+05	2.838-18
			3.02+0	1.278-18

Partial and Total Electron Capture Cross Sections for

 He^{2+} + He^{+} -> He^{+} + He^{2+}

References: 69, 288, 391, 392, 393

Accuracy: unknown

Notes: (1) In the measurements a problem arises from the mutual repulsion between the He⁺ and He²⁺. The repulsion results in scattering with some of the ions not reaching the detector which has a finite acceptance angle. These measurements are termed partial cross sections.
(2) The total cross section data are from theoretical values in Ref. 288 and 391. The theoretical data has been joined with a smooth curve between 6x10⁻³ and 10⁻³ eV/amu.
(3) For this simple one electron, resonant system, the theoretical data should be accurate to within 20%.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

Chebyshev Pitting Parameters for Cross Sections

١

1

	A0	A1	A2	A3	44	A5	76	A7	84
(Partial)	-72.2134	.725003	-1.00558	.400148	150634	0556029	.119500	118086	.0830868
(Total)	-72.8308	-7.29484	-1.54555	441776	320931	00327441	0709033	-,0333345	0595299

The f t represents the partial cross section with an rms deviation of 7.4%. The maximum deviation is 25.23 at 1.52 ± 01 eV/amu.

The fit represents the total cross section with an rms deviation of 2.8. The maximum deviation is 5.6% at 7.02+04 eV/agu.

See appendix for Chebyshev fit details.

1

I.

$$He^{2+} + He^{+} -> He^{+} + He^{2+}$$

Cross Section vs. Energy

Single Electron Capture Cross Sections for

he²⁺ + H[−] -> He⁺ + H He⁺ + H[−] -> He + H

Be ²⁴	· + #-	Be ⁺	+ 8-
Energy	Cross Section	Energy	Cross Section
e¥/aast	cm ²	eV/ami	cm ²
4.7E-01	1.828-13	4.2E+01	3.038-14
5.02-01	1.71E-13	5.0 2+ 01	2.182-14
6.6 <u>2</u> -81	1.528-13	6.0 2+0 1	1.838-14
8.0E-01	1.30E-13	7.02+01	1.66E-14
].0 Z+04	1.178-13	\$.0Z+01	1.562-14
2.0 2+00	8.90E-14	1.02+02	1.46E-14
3.8 2+8 0	7.78z-14	1.58+02	1.40 2- 14
4.8 2+6 0	7.138-14	2.)8+02	1.37 5 -14
6.02+00	6.44E-14	3.8 2+0 2	1.325-14
8.9E+06	£.81E-14 -	•• *************	1.302-14
1.82+01	3.792-14	5.9 2+ 02	1,28E-14
2.8E+01	5.31E-14	7.02+02	1.242-14
3.0E+01	5.082-14	1.02+03	1.198-14
5.0E+01	4.772-14	2.08+03	9.788-15
8.01+01	4.558-14	3.02+03	7.898-15
1.02+02	4.438-14	4.02+03	6.06E-15
2.08+02	4.128-14	5.02+03	4.402-15
4.0E+02	3.738-14	7.02+03	2.438-15
7.02-02	3.448-14	7.72+03	2.018-15
1.02+01	3.228-14		
2.08+03	2.792-14		
3 88403	7 568-14		
3.48443	A+JV# AT		

Beferences: (He⁺ + H⁻) 68, 292, 293, 394 ; (He²⁺ + H⁻) 69, 290, 291, 294

Accuracy: (He* + 8") - 20%; (He²⁺ + 5") - 40%

<u>Motes:</u> (1) In the energy region of overlap, the $He^{2+} + H^{-}$ cross sections of Termo et al (ref. 290, 291) are consistently greater than those of the Dolder and Peart group (rof. 69, 294).

(2) The measurements indicate some structure in the cross sections for both the Re^+ and Re^{2+} reactions. This oscillation has been smoothed out in the data presented here.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

 $(8e^{2+} + E^{-}) = 4.7E-01 eV/anu, P_{max} = 3.0E+03 eV/anu (8e^{+} + B^{-}) = E_{min} = 4.2E+01 eV/anu, P_{max} = 7.7E+03 eV/anu$

Chebyshev Fitting Parameters for Cross Sections

	A0	A1	A2	K3	A4	A5	A6	A7	A8
(Ne ²⁺ + R ⁻)	-61.0067	#55510	.155087	126012	.0124474	-6.601332-04	-/.307712-04	00636246	.00615254
(Re ⁺ + M ⁻)	-64.4915	959186	269411	331423	00745857	0611579	.0257220	00396428	.0113568
The fit repr The maximum	resents the deviation	• He ²⁺ + I is 0.81	t ⁻ cross () at 5.02-	ection wi Gl eV/amu	th an rms	deviation of	0.41.		
The fit repr	resents th	e Re ⁺ + H ⁻	-	iction wit	h an rms d	eviation of	0.62.		
The serious	deviation	is 1.20	at 1.02+	02 eV/					

See appendix for Chebyshev fit details.

I.

1

I.

$$He^{q+} + H^{-} -> He^{(q-1)+} + H(q=1,2)$$

Electron	Capti	nte	Cr	085	Sections	for
80	e ²⁺ +	8 -	->	Be ⁺	+ B+	

Energy	Velocity	Cross Section
(eV/anu)	(cm/s)	(cm ²)
7.0E+01	1.166+07	1.258-20
1.0E+02	1.39E+07	2.208-19
2.0E+02	1.96E÷07	3.10E-18
4.0E+02	2.78E+0'	1.90E-17
5.0E+02	3.11E+07	3.248-17
7.0E+02	3.68E+07	8.672-17
1.02+03	4.39E+07	1.876-16
2.08+03	6.21E+07	5.96E-16
4.02+03	8.79E+07	9.74E-16
7.0E+03	1.16E+08	1.188-15
1.02+04	1.392+08	1.228-15
2.08+04	1.96E+08	1.098-15
4.JE+04	2.782+08	5.28E-16
7.0E+04	3.68E+G8	1.59E-16
1.0E+05	4.392+08	5.23 8- 17
2.0E+05	6.21E+08	4.63E-18
4.0E+05	8.78L+08	2.64E-19
5.0E+05	9-82E+08	1.15E-19

References: 5, 7, 21, 22, 23, 24, 25, 57, 58

Accuracy: $He^{2+} E < 600 eV/amu - unknown; He^{2+} E > 600 eV/amu - 20%$

Notes: (1) At energies less than 2 keV/amu the results of Pite et al. (Ref. 5) and Mutt et al. (Ref. 23) diverge by as much as a factor of 10. This is believed to be due to the fact that the results reported by Pite et al.were obtained by measuring the slow ions produced in the collision, and are less reliable than those of Nutt et al at low energies. (2) No experimental data exist below 500 cV/amu. Cross sections below 500 eV/amu were taken from calculations of Ref. 57 and 58 using mullistate close coupling methods.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 7.0E+01 \text{ eV/amu}, \quad E_{max} = 5.0E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	A2	A3	۸4	A5	A6	A 7	84
-78.3976	.773499	-5.12346	125575	232331	. 261317	0479652	.189434	138708

The fit represents the above cross sections with an rms deviation of 3.9%. The maximum deviation is 7.6% at 5.0E+02 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for He²⁺ + H -> He⁺ + U⁺

Naxvellian - Maxvellian Rate Coefficients (cm³/s)

Be ²⁺								
Teep.	Equal				H Temp. (eV)			
(eV)	Temp.	10.	100.	500.	1000.	5000.	10000.	20000.
2.0E+01	6.28E-13	4.12B-14	1.22E-10	7.36E-09	2.36E-08	1.142-07	1.47E-07	1.42E-07
4.0E+01	1.C4B-11	2.09E-13	1.428-10	7.50E-09	2.38E-08	1.142-07	1.47E-07	1.42E-07
7.0E+01	6.86E-11	9.71E-13	1.74E-10	7.726-09	2.408-08	1.14E-07	1.47E-07	1.422-07
1.0E+02	2.10E-10	2.70E-12	2.10E-10	7.948-09	2.43E-08	1.14E-07	1.47E-u/	1.42E-07
2.0E+Q2	1. 49E-09	1.97E-11	3.63E-10	8.68g-09	2.51E-08	1.14E-07	1.47E-07	1.42E-07
4.0E+02	7.21E-09	1.42E-10	8.23E-10	1.025-08	2.682-08	1.15E-07	1.47E-07	1.42E-07
7.0E+02	1.922-08	6.63E-10	1.892-09	1.26E-08	2-938-48	1.16E-07	1.472-07	1.42E-07
1.0Z+03	3.18E-08	1.652-09	3.372-09	1.50E-08	3.18E-08	1.17E-07	1.47E-07	1.42E-07
2.02+03	6.80E-08	7.50E-09	1.02E-08	2.34E-08	3.99E-08	1.19E-07	1.48E-07	1.41E-07
4.02+03	1.13E-07	2.38E-08	2.68E-08	3.99 <u>e</u> -03	5.48E-08	1.25E-07	1.49E-07	1.40E-07
7.0E+03	1.43E-07	4.782-08	5.05E-Q8	6.16E-08	7.40E-08	1.31E-07],49E-07	1.392-07
1.0E+04	1,50E-07	6.83E-08	7.052-08	7.97E-08	8.982-08	1.36E-07	1.50g-07	1.37E-07
2.0E+04	1.32E-07	1.14E-07	1.15E-07	1.19E-07	1.25E-07	1.47E-07	1.492-07	1.328-07

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 2.0E+01 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

a a							
Ten	p.						
(eV) AO	A1	A2	A3	۸4	A5	76
1	04.497422+01	7.78326E+00	-1.00928E+00	-3.95746E-01	8.29111E-02	3.189522-02	5.49793E-03
10	03.94867E+01	3.767802+00	4.07631E-01	-4.05432E-01	-7.759448-02	6.09541E-02	1.07817E-02
50	03.54181E+01	1.44543E+00	4.43041E-01	-3.74033E-02	-7.53578E-02	-1.52405E-02	7.25877E-03
100	03.40218E+01	8.222622-01	3.195642-01	2.78648E-02	-3.66721E-02	-1.86208E-02	-1.77688E-03
500	03.18356E+01	1.16105E-01	5.74535 2-0 2	1.52669E-02	-1.090842-03	-3.28086E-03	-1.768342-03
1000	03.14549E+01	1.120802-02	3.75806E-03	-1.00216E-03	~2.02657E-03	-1.36406E-03	-6.16274E-04
2000	03.15643E+01	-2.69513E-02	-1.690522-02	-8.31717E-03	-3.31404E-03	-1.08242E-03	-2.944512-04
Equal Tem	p3.99202E+01	6.04131E+00	-1.99447E+00	9.395128-02	1.340812-02	-1.22695E-02	-2.34071E-02

See appendix for Chebyshev fit details.

1 I I I

1

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for $H + He^{2+} \rightarrow He^{+} + H^{+}$

Beam - Maxwellian Rate Coefficients (cm³/s)

He ²⁺										
Tesp.	H.Bnergy (eV/amu)									
(eV)	10000.	20000.	40000.	70000.	100000.	200060.	400000.			
1.0E+00	1.698-07	2.14E-07	1.46E-07	5.84E-08	2.30 5-08	2.88E-09*	2.32B-10**			
2.,E+06	1.692-07	2.14E-07	1.46E-07	5.83E-08	2.30E-08	2.87E-09*	2.32E-10**			
4.0E+00	1.69E-07	2.13E-07	1.46E-07	5. 33E-08	2.30E-08	2.87E-69*	2.32E-10**			
7.0E+00	1.698-07	2.13E-07	1.46E-07	5.33E-08	2.30E-08	2.87E-09*	2.32E-10**			
1.0E+01	1.696-07	2.13E-07	1. 46 E-07	5.82E-08	2.30E-08	2.872-09*	2.32E-10**			
2.08+01	1.69E-07	2.12E-07	1.46E-07	5.828-08	2.29E-08	2.87E-09*	2.328-10**			
4.02+01	1.69E-07	2.12E-07	1.45E-07	5.81E-08	2.29E-08	2.87E-09*	2.32E-10**			
7.0E+31	1.69E-07	2.11E-07	1.45E-07	5.80E-08	2.29E-08	2.87E-09*	2.328-10**			
1.02+02	1.682-07	2.10E-07	1.44E-07	5.79E-08	2.29E-08	2.87E-09*	2.328-10**			
2.0E+02	1.682-07	2.09 8-0 7	1.44E-07	5.77E-08	2.29E-08	2.87E-09*	2.33E-10**			
4.0E+02	1.68E-07	2.07E-07	1.428-07	5.75E-08	2.302-08	2.87E-09*	2.336-10**			
7.0E+02	1.68E-07	2.04E-07	1.41E-07	5.73E-08	2.30E-02	2.87E-09*	2.34E-10**			
1.0E+03	1.67E-07	2.03g-07	1.40E-07	5.72E-08	2.31E-08	2.87E-09*	2.35E-10**			
2.08+03	1.67E-07	1.98E-07	1.38E-07	5.71E-08	2.34E-08	2.898-09*	2.37E-1C**			
4.0E+03	1.67E-07	1,92 E-0 7	1.35E-07	5.742-08	2.4JE-08	2.94E-09	2.412-10**			
7.0E+03	1.66E-07	1.84E-07	1,32 E-0 7	5.79E-08	2.48E-08	3.022-09	2.46E-10**			
1.0E+04	1.65E-07	1.78E-07	1.292-07	5. 6 5E-08	2.56E-08	3.10 8-0 9	2.50E-10**			
2.0E+04	1.61E-07	1.62E-07	1,20E-07	5.952-08	2.79E-08	3.452-09	2.65E-10**			

Accuracy: * - Possible Error Greater Than 108 ** - Possible Error Greater Than 1908

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.08+00 \text{ eV}, \quad E_{max} = 2.08+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

Energy							
(eV/amu)	A0	A1	A2	EA		A5	A6
10000.	-3.12062E+01	-1.74693E-02	-8.09939E-03	-4.73707E-03	-3.77313E-03	-2.52573E-03	-1.15127E-03
20000.	-3.08555E+01	-1.099822-01	-5.81296E-02	-2.43325E-02	-9.22165E-03	-3.45740E-03	-1.264208-03
40000.	-3.15751E+0:	-7.970?9E-02	-4.01409E-02	-1.65010E-02	-6.97466E-03	-3.39246E-03	-1.781702-03
70000.	-3.33202E+01	3.459642-04	1.03619E-02	9.16031E-03	3.805112-03	1.91641E-04	-1.025742-03
100000.	-3.51051E+01	6.70775g-02	4.929442-02	2.76338E-02	1,12857E-02	2.98288E-03	1-234872-05
200000.	-3.92776E+01	5.41764E-02	4.43066E-02	2.883802-02	1.56821E-02	6.68430E-03	2.77948E-03
400000.	-4.431338+01	4.824482-02	3.15762E-02	1.67996E-02	7.005328-03	2.75553E-03	5.248332-04

See appendix for Chebyshev fit details.

8

Electron Capture Cross Sections for $He^{2+} + H_2 \rightarrow He^+$

Energy	Velocity	Cross Section
(eV/amu)	(c s/ s)	(cm ²)
1.4E+02	1.64E+07	3.70E-17
1.7E+02	1.81E+07	5.83E-17
2.0E+02	1.96E+07	7.31E-17
2.6E+02	2.24E+07	8.77E-17
4.0E+02	2.78E+07	1.07 E-1 0
7.0E+02	3.68E+07	1,328-16
1.0E+03	4.39E+07	1.52E-16
2.0E+03	6.21E+07	2.20E-16
4.0E+03	8.79E+07	4.12E-16
7.0E+03	1.166+08	6.412-16
1.0E+04	1.392+08	8.01E-16
2.0E+04	1.962+08	1.07E-15
4.0E+04	2.782+08	7.23E-16
7.08+04	3.68E+08	3.13E-16
1.0 2+0 5	4.39E+08	1.39 E-16
2.02+05	6.21E+08	1.46E-17
4.0E+05	8.782+08	1.02E-18
7.0 E+0 5	1.162+09	9.04E-20
1.0 2 +06	1.39E+09	1.€3 E-2 0

References: 7, 22, 23, 24, 90, 91, 92, 93, 94, 95, 101, 142

Accuracy: 201

For a Cheb/shev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.4E+02 \text{ eV/amu}, E_{max} = 1.0E+06 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0	Al	A2	A3	24	λ5	X6	A7	A8
-76.3856	-3.05275	-3.46462	-1.13751	.0656712	.340604	0614851	0248706	0398477

The fit represents the above cross sections with an rms deviation of 2.2%. The maximum deviation is 4.1% at 2.0E+03 eV/amu. See appendix for Chebyshev fit details.

Double	Electron	Capture	Cross	Sections	for
	Be ²⁺	► 8 ₂ -> 1	He + 21	8+	

Energy	Velocity	Cross Section
(eV/anu)	(CR/S)	(cm ²)
3.0E+02	2.41E+07	3.682-17
4.0E+02	2.78E+07	6.05E-17
5.6E+02	3.296+07	7.028-17
7.0E+02	3.68E+07	6.63E-17
1.0E+03	4.398+07	4.70 ₿-17
2.0E+03	6.21E+07	1.348-17
2.7E÷03	7.228+07	1.20B-1 7
4.08+03	8.79E+07	1.56E-17
7.0E+03	1.16E+08	2.75 5 -17
1.0E+04	1.39E+08	3.742-17
2.0E+04	1.96E+C8	5.51 8-1 7
2.3E+04	2.11E+08	5.71 E -17
4.02+04	2.78E+08	3. 8 4E-17
7.0E+04	3.682+08	9.91B-1 8
1.02+05	4.39E+08	3.336-18
2.02+05	6.21E+08	1.62E-19
3.7E+05	8.452+08	3.88E-21

References: 7, 22, 27, 90, 91, 92, 93, 94, 95

<u>Accuracy:</u> E < $2.5x10^3$ eV/amu - unknown; $2.5x10^3$ eV/amu < E < $1x10^5$ eV/amu - 40%; E > $1x10^5$ eV/amu - 50%

For a Cheby tit of the above cross sections it is necessary to use the following parameters. $E_{min} = 3.0E+0_{\perp} eV/amu$, $E_{max} = 3.7E+05 eV/amu$

Chebyshev Fitting Parameters for Cross Sections

AO AI A2 A3 A4 A5 A6 A7 A8 -79.5999 -3.55036 -2.20554 -1.45406 -.357248 .498461 -.146918 -.0680202 .0918861

The fit represents the above cross sections with an rms deviation of 6.8%. The maximum deviation is 12.8% at 2.0E+03 eV/amu. See appendix for Chebyshev fit details.

Energy	Velocity	Cross Section
(eV/ant)	(cm/s)	(cm ²)
2.45-04	2-15E+04	1.398-16
4.05-04	2.785+04	9.338-19
1.02-03	4.39E+04	5.958-19
4.08-03	\$.79 <u>5</u> +04	3.01 E-19
1.02-02	J.39E+05	1.908-19
4.02-02	2.78E+05	₽.188-20
1.02-01	4.39E+05	5.268-20
4.05-01	#_792+05	3.058-20
7.02-01	1.162+06	2.545-20
1.02+00	1-39E+06	2-242-20
1.62+00	1.76 2+06	2.218-20
4.02+00	2.742+06	3-66E-20
1.0E+01	4.392+06	1.078-19
4.0E+01	8.792+06	5.158-19
1.08+02	1.392+07	1.445-16
4.0E+02	2.782+07	6.50 2-1 8
1.02+03	4.39E+07	1.758-17
4.0E+03	8.79E+07	6.42E-17
1.0E+04	1.398+04	1.528-16
2.0E+04	1.96E+G4	2.722-16
4.0E+04	2.78E+08	3.932-16
7.0E+04	3,682+08	1. 895- 16
1.0 <i>2</i> +05	4,39E+04	1.112-16
4.0E+05	8.78E+08	3.942-18
7.02+05	1,162+09	3.612-19
1.02+06	1,398+09	6.99 E -20
2.02+06	1,962+09	3.338-21

References: 90, 91, 92, 94, 97, 117, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 265, 266, 282

Accuracy: E < 250 eV/amu - see notes: E > 250 eV/amu - 20%

Botes: (1) The data for energies less than 250 eV/amu have been obtained using the theoretical results of Cohen and Bardsley (Ref. 149). Prom 250 eV/amu the data have been extrapolated down to 2.5 eV/amu to join smoothly with the theoretical results.

(2) Johnson et al. (Ref. 265) have measured the rate coefficient to be $4.8 \times 10^{-14} \text{ cm}^3/\text{s}$ at a temperature of 300 K.

(3) Theoretical values of the rate coefficient of Bardeley et al. (Ref. 266) are: T=100 K, k=4.43x10⁻¹⁴ cm³/e; 300 K, $4.24x10^{-14}$ cm³/s; 600 K, $4.02x10^{-14}$ cm³/s; 1000 K, $3.79x10^{-14}$ cm³/s; 3060 K, $3.25x10^{-14}$ cm³/s.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.48-04 \text{ eV/amu}, E_{max} = 2.08+06 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0	A1	A2	A3		A5	A6	A7	AB
-83.5447	.758423	673803	-3.68088	-2.02719	148166	.0237951	~.073#396	.243993

1

1

The fit represents the above cross sections with an rms deviation of 19.9%. The maximum deviation is 52.7% at 2.0E+30 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Electron Capture Rate Coefficients for He²⁺ + He -> He⁺ + He⁺

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Ee ²⁺								
Temp.	Equal				He Tesp. (eV	')		
(eV)	Te n p.	1.	100.	500.	1000.	5000.	10000.	20000.
1.0E+00	3.05E-14	3.05E-14	5.38E-12	7.10E-11	2.122-10	2.25E-09	6.04E-09	1.55E-08
2.0E+00	4.41E-14	3.61E-14	5.46E-12	7.13E-11	2.12E-10	2.25E-09	6.04E-09	1.552-08
4.0E+00	9.66E-14	5.44E-14	5.64E-12	7.17E-11	2.138-10	25E-09	6.04E-09	1.55E-08
7.02+00	2.21E-J3	9.662-14	5.90E-12	7.24E-11	2.14E-10	2.25E-09	6.05E-09	1.55E-C8
1.0F+31	3.88E-13	1.538-13	6.17E-12	7.31E-11	2.15E-10	2.26E-09	6.05E-09	1.55E-08
2.0E+01	1.198-12	4.202-13	7.11E-12	7.54E-11	2.18E-10	2.26E-09	6.06E-09	1.55E-08
4.0E+01	3.682-12	1.24E-12	9.12E-12	8.01E-11	2.25E-10	2.27E-09	6.07E-09	1.55E-08
7.02+01	9.12E-12	3.03E-12	1.25E-11	8.74E-11	2.35E-10	2.29E-09	6.10E-09	1.55E-08
1.02+02	1.628-11	5.38E-12	1.62E-11	9.48E-11	2.45E-10	2.31E-09	6.13E-09	1.56E-G8
2.0E+02	4.948-11	1.632-11	3.11E-11	1.21E-10	2.79E-10	2.38E-09	6.21E-09	1.57E-08
4.03+02	1.50E-1U	4.96E-11	7.08E-11	1.80E-1C	3.528-10	2.51E-09	6.382-09	1.59E-08
7.0E+02	3.528-10	1.21E-10	1.508-10	2.79E-10	4.71E-10	2.71E-09	6.64E-09	1.61E-08
1.0E+03	5.982-10	2.12E-10	2.45E-10	3.91E-10	5.988-10	2.92E-09	6.91E-09	1.64E-08
2.CE+03	1.63E-09	5.98E-10	6.42E-10	8.286-10	1.08E-09	3.642-09	7.80E-09	1.742-08
4.0E+03	4.40E-09	1.632-09	1.69E-09	1.93E-09	2.25E-09	5.20E-09	9.66E-09	1.932-08
7.0E+03	9.66E-09	3.642-09	3.718-09	4.01E-09	4.40E-09	7.80E-09	1.25E-08	2.2] E-08
1.0E+04	1.55E-08	6.042-09	6.13E-09	6.47E-09	6.91E-09	1.06E-08	1.552-08	2.48E-08
2.0E+04	3.285-08	1.55E-08	1.562-38	1.59E-08	1.64E-08	2.03E-08	2.48E-08	3.28E-08

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.6E+00 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

He							
Temp.							
(eV)	1.0	74	k 2	¥3	24	λ5	λ5
1.	-5.01963E+01	6.98068E+00	4-23808E-01	-3.99615E-01	1.34075E-01	-2.045345-02	-5.31634E-03
100.	-4.61698E+01	4.09338E+00	1.251722+00	-1.334422-01	-1.61511E-01	2.9364JE-02	3.24079E-02
500.	-4,34226E+01	2.58703E+00	1.14624E+00	1.66058E-01	-1.03603E-01	-4.97857E-02	9.07394E-03
1000.	-4.20905E+01	1.98401E+00	1.00005E+00	2.44794E-01	-4.338328-02	-5.539542-02	-1.11309E-02
5000.	-3.87801E+01	8.37534E-01	5.458298-01	2.27039E-01	4.75018E-02	-1.20021E-02	-1.64614E-02
10000.	-3.72149 <u>e</u> +01	5.460628-01	3.512728-01	1.619822-01	4.682052-02	1.29171E-03	-8.13292E-03
20000.	-3.56466E+01	2.80620E-01	1.85602E-01	9.16706E-02	3.156818-02	5.20354E-03	-2.256C4E-03
Equal Temp.	-4.86572E+01	7.319072+00	4.09101E-02	-2.989912-01	1.03426E-01	-6.77656E-02	6.42732E-03

1 1 1

See appendix for Chebyshev fit details.

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for He + $\text{Be}^{2+} \rightarrow \text{Be}^{+} + \text{Be}^{+}$

Beam - Maxwellian Rate Coefficients (cn^3/s)

Be ²⁺							
Temp.			Be B	nergy (eV/am	u)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	2.50E-08	5.92E-08	8.41E-08	6.94E-08	4.872-08	1.84E-08	1.49E-G9
2.0E+00	2.15E-08	5.40E-08	8.40E-08	6.94 <u>E</u> -08	4.87E-08	1.84E-C8	1.49E-09
4.0E+00	2.11E-08	5.33E-C8	8.40E-08	6.94E-08	4.87E-08	1.84E-08	1.498-09
7.05+00	2.11E-08	5.33E-08	8.39E-08	6.93E-08	4.87E-08	1.84E-08	1.49E-CS
1.0E+01	2.11E-08	5.338-08	8.39E-08	6.93E-08	4.87E-08	1.83E-08	1.49E-09
2.0E+01	2.11E-08	5.32E-08	8.38E-08	C.92E-08	4.872-08	1.832-08	1.49E-09
4.0E+01	2.11E-08	5.31E-08	8.36E-08	6.92E-C8	4.86E-08	1.83E-08	1.49E-09
7.0E+01	2.11E-08	5.30E-08	8.34E-08	6.91E-08	4.86E-08	1.83E-08	1.49E-09
1.0E+02	2.12E-08	5.30E-08	8.358-08	6.90E-08	4.862-08	1.83E-08	1.49E-09
2.0E+02	2.132-08	5.29E-08	8.29E-08	6.88E-08	4.85E-08	1.822-38	1.49E-09
4.0E+02	2.15E-08	5.28E-08	8.23E-08	6.85E-08	4.842-08	1.82E-08	1.50E-09
7.0E+02	2.19E-08	5.27E-08	8.18E-08	6.82E-08	4.84E-08	1.81E-08	1.50E-09
1.0g+03	2.22E-08	5.286-08	8.13E-08	6.80E-08	4.832-08	1.81E-08	1.50E-09
2.0E+03	2.35E-08	5.31E-08	8.01E-08	6.74E-08	4.82E-08	1.80E-08	1.51E-09
4.0E+03	2.60E-08	5.38E-08	7.84E-08	6.66E-08	4.80E-08	1.79E-08	1.53E-09
7.0E+03	2.93E-08	5.476-08	7.63E-08	6.56E-08	4.78E-08	1.78E-08	1.56E-09
1.0E+04	3.22E-08	5.55E-08	7.47E-08	6.47E-08	4.76E-03	1.782-08	1.58E-09
2.02+04	3.96E-08	5.702-08	7.03E-08	6.19E-08	4.68E-08	1.792-08	1.67E-09

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

He Energy							
(eV/amu)	A0	A1	A2	A3	74	65	A6
10000.	-3.50304E+01	2.06181E-01	1.92296E-01	4.56411E-02	4.15838E-02	-1.64172E-02	5.89475E-03
20000.	-3.34502E+01	-1.69065E-03	4.257438-02	-4.85577E-03	1.65855E-02	-1.02931E-02	4.96346E-03
40000.	-3.267292+01	-7.16579E-02	-3.83983E-02	-1.62201E-02	-5.97032E-03	-1.96773E-03	-5.29171E-04
70000.	-3.30216E+01	-4.42089E-02	-2.40130E-02	-1.09682E-02	-4.88645E-03	-2.28859E-03	-1.09577E-03
100000.	~3.36938E+01	-1.546672-02	-7.60687E-03	-3.31747E-03	-1.90471E-03	-1.15086E-02	-7.19346E-04
200006.	-3.56481E+01	-1.62738E-02	-3.502362-03	1.52811E-03	2.39339E-03	1.00308E-03	6.342822-04
500000.	-4.0604(E+01	3.82554E-02	2.688822-02	1.51307 E-0 2	6.78931E-03	2.33434E-03	4.950762-04

See appendix for Chebyshev fit details.

He + He²⁺
$$\rightarrow$$
 He⁺ + He⁺

Beam - Maxwellian

Double Electron Capture Cross Sections for $Be^{2+} + Be \rightarrow Be + Be^{2+}$

(eV/anu) (cm/s) (cm ²) 7.0E+00 2.68E+06 4.62E-16 1.0E+01 4.39E+06 4.48E-16 2.0E+01 6.21E+06 4.10E-16 4.0E+01 8.79E+06 3.83E-16 7.0E+001 1.16E+07 3.58E-16 1.0E+01 1.16E+07 3.58E-16 1.0E+02 1.35E+07 3.44E-16 2.0E+02 1.96E+07 3.19E-16 4.0E+02 2.78E+07 2.68E-16 7.0E+02 3.66E+07 2.62E-16 1.0E+03 4.39E+07 2.62E-16 1.0E+03 4.39E+07 2.62E-16 1.0E+03 6.21E+37 2.10E-16 4.0E+03 6.21E+37 2.10E-16 1.0E+03 1.16E+08 1.46E-16 1.0E+03 1.39E+08 1.29E-16 2.0E+03 1.39E+08 1.29E-16 2.0E+04 1.39E+08 2.73E-17 1.0E+04 2.78E+08 6.08E-17 1.0E+05 4.39E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08	Energy	Velocity	Cross Section		
7.0E+00 2.68E+06 4.62E-16 1.0E+01 4.39E+06 4.48E-16 2.0E+01 6.21E+06 4.10E-16 4.0E+01 8.79E+06 3.83E-16 7.0E+02 1.16E+07 3.58E-16 1.0E+02 1.39E+07 3.44E-16 2.0E+02 1.96E+07 3.19E-16 4.0E+02 2.78E+07 2.68E-16 7.0E+02 3.66E+07 2.62E-16 1.0E+03 4.39E+07 2.44E-16 2.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+03 8.79E+07 1.73E-16 7.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 2.73E-17 1.0E+04 2.78E+08 6.08E-17 7.0E+04 3.66E+08 2.73E-17 1.0E+05 4.39E+08 9.43E-18 2.0E+05 6.21E+08 <th>(eV/amu)</th> <th>(cm/s)</th> <th colspan="3">(cm²)</th>	(eV/amu)	(cm/s)	(cm ²)		
1.0E+014.39E+064.48E-162.0E+016.21E+064.10E-164.0E+018.79E+063.83E-167.0E+011.16E+073.58E-161.0E+021.39E+073.44E-162.0E+021.96E+073.19E-164.0E+022.78E+072.62E-167.0E+034.39E+072.62E-161.0E+036.21E+372.10E-164.0E+038.79E+071.73E-167.0E+031.16E+081.46E-161.0E+041.39E+081.29E-162.0E+043.68E+082.73E-171.0E+042.78E+086.08E-177.0E+043.68E+082.73E-171.0E+054.33E+089.63E-182.0E+056.21E+086.36E-194.0E+058.78E+082.09E-20	7.0E+00	3.682+06	4.62E-16		
2.0E+016.21E+064.10E-164.0B+018.79E+063.83E-167.0E+011.16E+073.58E-161.GE+021.39E+073.44E-162.0E+021.96E+073.19E-164.0E+022.74E+072.48E-167.0E+023.66E+072.62E-161.0E+034.39E+072.44E-162.0E+036.21E+372.10E-164.0E+038.79E+071.73E-167.0E+031.16E+081.46E-161.0E+041.39E+081.29E-162.0E+043.68E+082.73E-171.0E+043.68E+082.73E-171.0E+054.39E+089.83E-182.0E+056.21E+086.36E-194.0E+058.78E+082.09E-20	1.9E+C1	4.39E+06	4.48E~16		
4.0E+018.79E+063.83E-167.0E+011.16E+073.56E-161.0E+021.39E+073.44E-162.0E+021.96E+073.19E-164.0E+022.78E+072.62E-167.0E+023.66E+072.62E-161.0E+034.39E+072.44E-162.0E+036.21E+372.10E-164.0E+031.16E+081.45E-161.0E+041.39E+081.29E-162.0E+036.21E+836.28E-177.0E+043.68E+082.73E-171.0E+041.96E+086.08E-174.0E+043.68E+082.73E-171.0E+054.39E+089.63E-182.0E+056.21E+086.36E-194.0E+058.78E+082.09E-20	2.02+01	6.21E+06	4.108-16		
7.0E+01 1.16E+07 3.58E-16 1.0E+02 1.39E+07 3.44E-16 2.0E+02 1.96E+07 3.19E-16 4.0E+02 2.78E+07 2.68E-16 7.0E+02 3.68E+07 2.62E-16 1.0E+03 4.39E+07 2.44E-16 2.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.68E-17 4.0E+04 2.78E+08 6.08E-17 1.0E+04 3.68E+08 2.73E-17 1.0E+04 3.68E+08 2.73E-17 1.0E+05 4.39E+08 9.63E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	4.0E+01	8.79E+06	3.838-16		
1.02E+02 1.33E+07 3.44E-16 2.02E+02 1.962E+07 3.19E-16 4.02E+02 2.78E+07 2.62E-16 7.02E+02 3.68E+07 2.62E-16 1.0E+03 4.33E+07 2.44E-16 2.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.68E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.33E+08 9.43E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	7.0 2+0 1	1.162+07	3.588-16		
2.0E+02 1.96E+07 3.19E-16 4.0E+02 2.78E+07 2.68E-16 7.0E+02 3.68E+07 2.62E-16 1.0E+03 4.39E+07 2.44E-16 2.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.66E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.33E+08 9.43E-18 2.0E+05 6.21E+08 6.36E-19	1.0E+02	1.39E+07	3.448-16		
4.0E+02 2.74E+07 2.64E-16 7.0E+02 3.66E+07 2.62E-16 1.0E+03 4.39E+07 2.44E-16 2.0E+03 6.21E+37 2.10E-16 4.0E+63 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+03 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.66E-17 4.0E+04 2.78E+08 6.06E-17 7.0E+04 3.66E+08 2.73E-17 1.0E+05 4.33E+08 9.43E-18 2.0E+05 6.21E+08 6.36E-19	2.9E+02	1.968+07	3.19E-16		
7.02+02 3.682+07 2.622-16 1.02+03 4.392+07 2.442-16 2.02+03 6.212+37 2.102-16 4.02+03 8.792+07 1.732-16 7.02+03 1.162+08 1.462-16 1.02+04 1.392+08 1.292-16 2.02+04 1.962+08 9.682-17 4.02+04 2.782+08 6.082-17 7.02+04 3.682+08 2.732-17 1.02+05 4.332+08 9.632-18 2.02+05 6.212+08 6.362-19 4.02+05 8.782+08 2.092-20	4.0E+02	2.78E+07	2.88E-16		
1.0E+03 4.33E+07 2.44E-16 2.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.68E-17 4.0E+04 2.78E+08 6.06E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.33E+08 9.63E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	7.0E+02	3.682+07	2.628-16		
2.0E+03 6.21E+37 2.10E-16 4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.68E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	1.0E+03	4.39E+07	2.44E-16		
4.0E+03 8.79E+07 1.73E-16 7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.66E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.66E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	2.0E+03	6.21E+J7	2.108-16		
7.0E+03 1.16E+08 1.46E-16 1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.68E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	4.0E+03	\$.79E+07	1.738-16		
1.0E+04 1.39E+08 1.29E-16 2.0E+04 1.96E+08 9.66E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.66E+08 2.73E-17 1.0E+05 4.39E+08 9.63E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	7.08+03	1.162+08	1.468-16		
2.0E+04 1.96E+08 9.68E-17 4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	1.0E+04	1.39E+0#	1.29E-16		
4.0E+04 2.78E+08 6.08E-17 7.0E+04 3.68E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	2.0E+04	1.962+08	9.68E-17		
7.0E+04 3.66E+08 2.73E-17 1.0E+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	4.0E+04	2.76E+08	6.08E-17		
1.08+05 4.39E+08 9.83E-18 2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	7.0E+04	3.682+08	2.738-17		
2.0E+05 6.21E+08 6.36E-19 4.0E+05 8.78E+08 2.09E-20	1.02+05	4.392+08	9. 83E-18		
4.0E+05 8.78E+08 2.09E-20	2.0E+05	6.21 2+08	6.36E-19		
	4.02+05	8.782+08	2.09E-20		

References: 90, 91, 92, 94, 140, 144, 145, 148, 150, 151, 152, 153, 282

Accuracy: 20% throughout the energy range

<u>Hote:</u> (1) The data below 100 eV/amu are theoretical data of reference 153 (Perguson and Moiseiwitsch).

For a Chebyshev fit of the above cross section: it is necessary to use the following parameters. $E_{min} = 7.02+00 \text{ eV/amu}, E_{max} = 4.02+05 \text{ eV/amu}$

Chebyshev fitting Parameters for Cross Sections

AO A1 A2 A3 A4 A5 A6 A7 A8 -75.3410 -3.70255 -2.16467 -1.23660 -.590825 -.179613 .0396927 .102768 .0774058

The fit represents the above cross sections with an rms deviation of 3.2%. The maximum deviation is 6.8% at 2.0E+04 eV/amu. See appendix for Chebyshev fit details.

Double Electron Capture Rate Coefficients for $Be^{2+} + Be \rightarrow Be + Be^{2+}$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Be ²⁺								
Temp.	Equal				Be Temp. (eV	3		
(eV)	Temp.	1.	100.	500.	1000.	5000.	10000.	20000.
2.0E+00	5.21E-12	5.68E-13	2.92E-09	5.58E-09	7.14E-09	1.178-08	1.38E-08	1.57E-08
4.0E+00	1.36E-10	1.94E-11	2.948-09	5.58E-09	7.15E-09	1.172-08	1.382-08	1.57E-08
7.0E+00	5.25E-10	1.36E-10	2.98E-09	5.60E-09	7.16E-09	1.172-08	1.386-08	1.578-08
1.0g+01	8.99E-10	3.228-10	3.02E-09	5.61E-09	7.16E-09	1.17E-08	1.38E-08	1.57E-08
2.0E+01	1.73E-09	9.54E-10	3.14E-09	5.65E-09	7.19g-09	1.17E-06	1.38E-08	1.57E-08
4.0E+01	2.60E-09	1.76 E-09	3.36E-09	5.732-09	7.24E-09	1.17E-08	1.382-08	1.57 E-08
7.0E+01	3.36E-09	2.45E-09	3.65E-09	5.84E-09	7.31E-09	1.17E-08	1.385-08	1.57E-08
1.0E+02	3.90E-09	2.90 2-09	3.90E-09	5.95E-09	7.38E-09	1.17 E-08	1.38E-08	1.57E-06
2.0E+02	5.12E-09	3.91E-09	4.58E-09	6.30E-09	7.60E-09	1.18E-08	1.392-08	1.57E-08
4.02+02	6.60E-09	5.]2E-09	5.578-09	6.88E-09	8.00E-09	1.192-08	1.39E-08	1.58E-08
7.05+02	8.00E-09	6.30E-09	6.60E-09	7.60E-09	8.52E-09	1.212-08	1.40%-08	1.58K-08
1.0E+03	8.97E-09	7.14E-09	7.38E-09	8.182-09	8.97E-09	1.228-08	1.41E-08	1.58E-08
2.0E+03	1.10E-08	8.97E-09	9.10E-09	9.60E-09	1.01E-08	1.272-08	1.432-08	1.60E-08
4.0E+03	1.31 E-08	1.10 2-08	1.112-08	1.14E-08	1.17E-08	1.352-08	1.48E-08	1.51E-08
7.0E+03	1.48E-08	1.27E-08	1.28E-08	1.292-08	1.31E-08	1.432-08	1.53E-08	1.64E-08
1.0E+04	1.57E-08	1.38E-08	1.38E-08	1.39 2-08	1.41E-08	1.50E-08	1.572-08	1.66E-08
2.0E+04	1.69E-08	1.57E-08	1.572-08	1.58E-08	1.58E-08	1.622-08	1.662-08	1.692-08

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{\min} = 2.02+06 \text{ eV}, \quad E_{\max} = 2.02+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

Яe							
Temp.							
(eV)	A0	A 1	٨2	A3	74	λ5	A6
1.	-4.15949E+01	4.059432+00	-1.862222+00	9.53695E-01	-4.31628E-01	1.13605E-01	1.67894E-03
100.	-3.79435E+01	9.09167E-01	1.915222-01	-7.513458-02	-3.333152-02	9.43860E-03	3.83286E-03
500,	-3.72996E+01	5.30896 <u>8</u> -01	1.95295E-01	-2.21372E-03	-3.37015E-02	-9.19923E-03	3.89947E-03
1000.	-3.70131E+01	3.90475E-01	1.688832-01	1.915422-02	-2.19861E-02	-1.21205E-02	-1.71700E-04
5000.	-3.63583E+01	1.431302-01	8.03033 2- 02	2.65227E-02	7.89255E-04	-4.749548-03	-3.10575E-03
10000.	-3.610722+01	7.576042-02	4.50781E-02	1.733882-02	2.65954E-03	-1.730292-03	-1.75170E-03
20000.	-3.59012E+01	2.917802-02	1.754292-02	6.74273E-03	9.12966E-04	-9.12778E-04	-9.71523E-04
Equal Temp.	-4.01576E+01	3.110992+00	-1.35722E+00	7.351332-01	-4.329562-01	1.86361 2-0 1	-6.65206E-02

See appendix for Chebyshev fit details.

$$He^{2+}$$
 + He -> He + He^{2+}

Maxwellian – Maxwellian

Double Electron Capture Rate Coefficients for $\exists e + Be^{2+} \rightarrow Be + Be^{2+}$

Beam - Maxwellian Rate Coefficients (cm³/s)

Bei +							
Temp.			ge ·E	nergy (eV/am	iu)		
(eV)	10000.	20000.	40000.	70000.	106000.	200000.	400000.
1.0E+0C	1.79E-08	1.90E-08	1.69E-08	1.00E-08	4.31E-09	3.95E-10*	9.212-12**
2.0E+00	1.79E-68	1.90E-08	1.69E-08	1.00E-08	4.31E-09	3.95E-10*	9.228-12**
4.0E+00	1.79E-08	1.90E-08	1.69E-08	1.00E-08	4.31E09	3.95E-10*	9.24E-12**
7.0E+00	1.792-08	1.90E-08	1.68E-08	9.99E-09	4.31E09	3.94E-10*	9.26E-12**
1.0E+01	1.79E-08	1.90E-08	1.68E-08	9.992-09	4.31E9	3.94E-10*	9.28E-12**
2.0E+01	1.79E-08	1.90E-08	1.68E-08	9.97E-09	4.30E-09	3.94E-10*	9,32E-12**
4.0E+01	1.79E-08	1.902-08	1.68E-08	9.94E-09	4.298-09	3.94E-10*	9.39E-12**
7.0E+01	1.79E~08	1.89E-08	1.67E-08	9.91E-09	4.29E-09	3.93E-10*	9.45E-12**
1.0E+02	1.79E-08	1.89E-08	1.67E-08	9.89E-09	4.28E-09	3.93E-10*	9.51E-12**
2.0E+02	1.79E-08	1.898-08	1.66E-08	9.83E-09	4.27E-09	3.93E-10*	9.65E-12**
4.0E+02	1.79E-08	1.882-08	1.65E-08	9.76E-09	4.26E-09	3.93E-10*	9.86E-12**
7.0E+02	1.79E-08	1.88E-08	1.64E-08	9.68E-09	4.268-09	3.93E-10*	1.01E-11**
1.0E+03	1.78E-08	1.872-08	1.63E-08	9.63E-09	4.262-09	3.94E-10*	1.03E-11**
2.0E+03	1.78E-08	1.862-08	1.61E-08	9.50E-09	4.28E-09	3.97E-10*	1.08E-11**
4.0E+03	1.78E-08	1.84E-08	1.58E-06	9.34E-09	4.342-09	4.06E-10*	1.17E-11**
7.0E+03	1.77E-08	1.81E-08	1.54E-08	9.20E-09	4.42E-09	4.21E-10*	1.282-11**
1.0E+04	1.76E-08	1.79E-08	1.51E-08	9.08E-09	4.492-09	4.39E-10	1.38E-11**
2.0E+04	1.74E-08	1.712-08	1.42E-08	8.74E-09	4.65E-09	5.07E-10	1.718-11**

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $B_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

		Chebyshev I	Pitting Param	eters for Rate	e Coefficients	ł	
He							
Energy							
(eV/amu)	70	71	A2	A3	84	λ5	A6
10000.	-3.568802+01	-1.04856E-02	-6.22291E-03	-3.54221E-03	-2.04547E-03	-1,06539E-03	-4,438022-04
20000.	-3.56043E+01	-3.86901E-02	-2.242478-02	-1.12950E-02	-5.530822-03	-2,66314E-03	-1-231988-03
40000.	-3.58798E+01	-6.746722-02	-3.603842-02	-1.56499E-02	-6.43318E-03	-2,742072-03	-1.24709E-03
70000.	-3.69171E+01	-5.93014E-02	-2.54553E-02	-7.53787E-03	-2.21925E-03	-1,226922-03	-8.87276E-04
100000.	-3,850342+01	2.310198-02	2.39390E-02	1.48606E-02	4.98011E-03	-1,80325E-05	-1.31207E-03
200000.	-4.32277E+01	7.431872-02	6.13383E-02	4.01508E-02	2.170452-02	9,21568E-03	3.71 392E-03
400000.	-5.05148E+01	2.45518E-01	1.320398-01	5.66724E-02	2.09008E-02	7,13076E-03	2.41652E-03

See appendix for Chebyshev fit details.

He + He²⁺
$$\rightarrow$$
 He + He²⁺

Beam – Maxwellian

Electron Capture Cross Sections for $He^{2+} + Li \rightarrow He^{+} + Li^{+}$

Energy	Velocity	Cross Section
(eV/amu)	(Ca/ 5)	(св ²)
1.0 E+0 2	1.39E+07	4.22E -15
2.0 5+0 2	1.96E+07	6.95E-15
4.0E+02	2.78E+07	9.64E-15
7.0E+02	3.68E+07	1.11E-14
1.0E+03	4.39E+07	1.158-14
2.GE+03	6.21E+07	1.14E-14
4.0E+03	8.79E+07	1.06E-14
7.0E+03	1.16E+08	9.25E-15
1.02+04	1.39E+08	7.39E-15
1.5E+04	1.70E+08	4.51E-15
2.08+04	1.962+08	2.24E-15
3.0E+04	2.412+08	6.70E-16
5.0E+04	3.11E+08	2.11B-16
7.0E+04	3.682+08	1.438-16
1.0E+05	4.392+08	9.578-17
1.52+05	5.382+08	5.7 9e-1 7
2.0E+C5	6.21E+08	3.82E-17
2.5E+05	6.94E+08	2.328-17
3.0E+05	7.61E+08	1.382-17
4.0E+05	8.78E+08	5.17E-18
5.02+05	9.822+08	2.262-18
5.9E+05	1.072+09	1.212-18

References: 230, 231, 232, 234, 241, 242, 244, 246

<u>Accuracy</u>: $E < 2x10^5$ eV/amu - 30%; $E > 2x10^5$ eV/amu - 40%

Hotes: (1) For data of the sum of the single and double (total) cross sections see Kadota et al references 243 and 245.

(2) For the electron capture cross sections for Li^+ , Li^{2+} + He see references 249, 250, 251, and 254.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.02+02 \text{ eV/amu}, \quad E_{max} = 5.92+05 \text{ eV/amu}$

ı.

Chebyshev Fitting Parameters for Cross Sections

A0	A1	A2	λ3	84	A5	X6	۸7	8
-69.9969	-3.96583 -	-2.18937	.0319758	.0613398	153069	271234	111623	.204819

1

The fit represents the above cross sections with an rms deviation of 11.0%. The maximum deviation is 22.5% at 5.0E+04 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Electron Capture Rate Coefficients for Li + He²⁺ -> He⁺ + Li⁺

Been - Maxvellian Rate Coefficients (cm³/s)

He ²⁺							
Temp.			Li E	nergy (eV/am	ы))		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	1.028-06	4.40E-07	9.71E-08	5-26E-08	4.202-08*	2.37E-08*	2.20E-09**
2.0E+00	1.022-06	4.39E-07	9.71E-08	5.26E-08	4.20E-08*	2.37E-08*	2.23E-09**
4.0E+00	1.02E-06	4.396-07	9.71E-08	5.26E-08	4.20E-08*	2.37E-08*	2.22B-09**
7.0E+00	1.02E-06	4.398-07	9.712-08	5.262-08	4.20E-08*	2.37 5-08*	2.22E-09**
1.0E+01	1.02E-06	4.39E-07	9.71E-08	5.26E-08	4.20E-08*	2.37E-08*	2.22E-09**
2.0E+01	1.022-06	4.388-07	9.71E-08	5.268-08	4.20E-08*	2.37E-08*	2.22E-09**
4.0E+01	1.02E-06	4.382-07	9.72E-08	5.26E-08	4.202-08*	2.37E-08*	2.22E-09**
7.0E+01	1.01E-06	4.37E-07	9.72E-08	5.26E-08	4.20E-08*	2.36E-08*	2.22E-09**
1.0E+02	1.01E-06	4.378-07	9.72E-08	5.26 2-08	4.202-08	2.362-08*	2.22E-09**
2.0E+92	1.00E-06	4.378-07	9.74E-08	5.262-08	4.20E-08	2.36E-08*	2.22E-09**
4.0E+02	9.93E-07	4.398-07	9.76E-08	5.26E-08	4.208-08	2.35E-08*	2.222-09**
7.0E+02	9.81E-07	4.418-07	9.81E-08	5.26E-08	4.19E-08	2.34E-08*	2.222-09**
1.0E+03	9.69E-07	4.428-07	9.862-08	5.262-08	4.198-08	2.34E-08*	2.23E-09**
2.0E+03	9.35E-07	4.45E-07	1.01E-07	5.27E-08	4.19E-08	2.33E-08*	2.24E-09**
4.0E+03	8.74E-07	4.45E-07	1.06E-07	5.292-08	4.18E-08	2.31E-08*	2.25E-09**
7.0E+03	8.03E-07	4.38E-07	1.162-07	5.36E-08	4.18E-06	2.30E-08*	2.26E-09**
1.0E+04	7.48E-07	4.292-07	1.25E-07	5.462-08	4.18E-08	2.28E-08	2.26E-09**
2.02+04	6.25E-07	3.942-07	1.48E-07	5.958-08	4.21E-08	2.25E-08	2.288-09**

Accuracy: * - Possible Error Greater Than 108 ** - Possible Error Greater Than 1008

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

		Chebyshev I	Pitting Parame	sters for Rate	Coefficient:	5	
Li							
Energy							
(eV/Amu)	A0	A1	٨2	A3	۸4	A5	A6
10000.	-2.780622+01	-1.874832-01	-1.157662-01	-5.63757E-02	-2.078642-02	-4.180922-03	1.20353 E- 03
20000.	-2.93011E+01	-2.38001E-02	-2.23600E-02	-2.23853E-02	-1.68257E-02	-8.26641E-03	-2.161462-03
40000.	-3.21294E+01	1.47297E-01	1.06505E-01	5.96604E-02	2.42461E-02	4.76111E-03	-3.24711E-03
70000.	-3.34880E+01	3.30410E-02	2.70C85E-02	2.03864E-02	1.35662E-02	7.664282-03	3.818772-03
100000.	-3.39729E+01	-1.63250E-03	3,979152-04	1.548902-03	1.480962-03	1,08056E-03	6.82015E-04
200000.	-3.51439E+01	-2.297422-02	-1.03372E-02	-3.67071E-03	-8.357262-04	-5.21814E-04	-6.93460E-05
500000.	-3.98397E+01	1.28943E-02	5.77153E-03	3.54906E-03	-1.13575E-03	6.68011E-04	-9.25001E-0:

See appendix for Chebyshev fit details.

Double Electron Capture Cross Sections for $He^{2+} + Li \rightarrow He + Li^{2+}$

Energy	Velocity	Cross Section
(eV/anu)	(Cm/S)	(cm ²)
6.1E+03	1.082+08	9.12E -18
7.0E+93	1.16E+08	1.30E-17
9.0E+03	1.322+08	2.395-17
1.02+04	1.39E+08	2.99E-17
1.5E+04	1.70E+08	4.446-17
2.0E+04	1.96E+08	4.03E-17
3.02+04	2.41E+08	2.66E-17
5.0E+04	3.11E+G8	1-42E-17
7.0E+04	3.68E+08	9.172-18
1.0E+05	4.39E+08	5.86E-18
1.5E+05	5.382+08	3.128-18
2.0E+05	6.21E+08	1.17E-18
2.5E+05	5.942+08	3.16E-19
3.0E+05	7.61E+08	1.05E-19
4.0E+05	8.78E+08	1.62E-20
5.0E+05	9.82E+08	1.03E-20

References: 231, 232, 241, 242, 244, 246

Accuracy: 30%

<u>Motes</u>: (1) In the region $(1-3x10^4 \text{ eV/amu})$ where the cross section is a maximum the experimental data fluctuates by a factor of ± 2 . We believe that the value quoted can be relied on to 30%.

(2) For data of the sum of the single and double electron capture see Kadota et al references 243 and 245.

(3) For electron capture cross sections of Li^+ , Li^{2+} + He see references 249, 250, 251, and 254.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 6.1E+03 \text{ eV/amu}, E_{max} = 5.0E+05 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0	A1	λ2	A3	84	A5	¥6	k7	A8
-81,1888	-3.55493	-2.11208	149724	232101	.216608	.275776	.0980514	.0367760

The fit represents the above cross sections with an rms deviation of 3.1%. The maximum deviation is 8.4% at 2.5E+05 eV/amu. See appendix for Chebyshev fit details.

$$He^{2+} + Li -> He + Li^{2+}$$

Cross Section vs. Energy

Double Electron Capture Rate Coefficients for $Li + Be^{2+} \rightarrow Be + Li^{2+}$

Beam - Maxwellian Rate Coefficients (cm³/s)

He ²⁺							
Tesp.			Li E	nergy (eV/as	w)		
(eV)	10000.	20000.	40060.	70000.	100000.	200060.	400000.
1.02+00	4.14E-09	7.91E-09	5.19E-09	3.37E-09	2.57E-09	7.250-10*	1.43E-11**
2.0E+00	4.14E-09	7.90E-09	5.19E-09	3.372-09	2.57E-09	7.25E-10*	1.432-11**
4.0E+00	4.13E-09	7.902-09	5.19E-09	3.37E-09	2.57E-09	7.252-10*	1.43E-11**
7.0E+00	4.122-09	7.892-09	5.192-09	3.37E-09	2.57E-09	7.24E-10*	1.432-11**
1.0E+01	4.12E-09	7.88E-09	5.198-09	3.37E-09	2.57E-09	7.232-10*	1.43E-11**
2.0E+01	4.10E-09	7.87E-09	5.192-09	3.378-09	2.57E-09	7.22E-10*	1.448-11**
4.0E+01	4.09E-09	7.85E-09	5.198-09	3.37E-09	2.57E-09	7.202-10*	1.442-11**
7.0E+01	4.08E-09	7.83E-09	5.19E-09	3.37E-09	2.57E-09	7.182-10*	1.458-11**
1.0E+02	4.07E-09	7.81E-09	5.19E-09	3.372-09	2.57E-09	7.172-10	1,45E-11**
2.0E+02	4.072-09	7.76E-09	5.198-09	3.37 2-09	2.56E-09	7.14E-10	1.47E-11**
4.0E+02	4.08E-09	7.70E-09	5.19E-09	3.37 5-09	2.56E-09	7.102-10	1.492-11**
7.0E+02	4.13E-09	7.62E-09	5.19E-09	3.382-09	2.562-09	7.07E-10	1.51E-11**
1.0E+03	4.18E-09	7.55E-09	5.19E-09	3.38E-09	2.558-09	7.05E-10	1.53E-11**
2.0E+03	4.31E-09	7.34E-09	5.198-09	3.38E-09	2.55E-09	7.038-10	1.592-11**
4.02+03	4.51E-09	6.99E-09	5.19E-09	3.39E-09	2.54E-09	7.07E-10	1.68E-11**
7.0E+03	4.68E-09	6.60E-09	5.16E-09	3.402-09	2.53E-09	7.16E-10	1.818-11**
1.0E+04	4.79E-09	6.31E-09	5.11E-09	3.40E-09	2.52E-09	7.26E-10	1.93E-11**
2.0E+04	4.95E-09	5.712-09	4.90E-09	3.40E-09	2.50E-09	7.51E-10	2.35E-11**

Accuracy: * - Possible Error Greater Than 108 ** - Possible Error Greater Than 1008

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

		Chebyshev	Pitting Param	eters for Rat	e Coefficients	ł	
Li							
Energy							
(eV/amu)	A0	A1	A2	A3	24	A5	26
10000.	-3.85237E+01	7.92423E-02	5.63215E-02	1.721182-02	-5.29456 <u>e</u> -03	-7.478192-03	-2.525812-03
20000.	-3.747022+01	-1.30340E-01	-7.61020E-02	-3.32737E-02	-9.67526E-03	-1.150412-04	2.05695E-03
40000.	-3.81678E+01	-1.43365E-02	-1.258752-02	-1.01317E-02	-6.93426E-03	-3.912762-03	-1.88591E-03
70000.	-3.901092+01	4.43065E-03	2.10527E-03	3.09061E-04	-4.545098-04	-5.21843E-04	-3.711722-04
100000.	-3.95717E+01	-1.18800E-02	-5.53013E-03	-2.04086E-03	-8.30113E-04	-4.870102-04	-3.29738E-04
200000.	-4.20984E+01	1.49204E-03	1.62234E-02	1.48608E-02	6.78142E-03	1.37283E-03	-7.46341E-04
400000.	~4.97186E+01	1.87794E-01	1.11341E-01	5.29149E-02	2.287862-02	8.254022-03	3.38953E-03

ī.

See appendix for Chebyshev fit details.

ī.

B. Electron Capture into Excited States (* denotes rate coefficient data also)

Page

Electron Capture by H ⁺	B2
$H^+ + H -> H(2s) + H^+$	B-2*
$H^+ + H -> H(2p) + H^+$	B-8*
$H^{+} + H_2 -> \dot{H}(\hat{2}s)$	B-14
$H^+ + H_2 -> H(2p)$	B-14
$H^+ + H_2 \rightarrow H(Lyman-a Total)$	B-16
$H^+ + H_2 \rightarrow H(Balmer-\alpha)$	B-18
$H^{+} + H_{2} \rightarrow H(Balmer-s) \qquad \dots \qquad \dots \qquad \dots$	B-18
$H^{*} + H_{2} \rightarrow H(38) + \cdots + H_{2} + $	B-20
$H^{*} + H_2 -> H(3p)$	B-20
$H' + H_2 -> H(3G)$	B-20
$H' + He -> H(2s) + He' \dots \dots \dots$	B-22*
H' + He -> H(2p) + He'	B-20*
$n' + ne \rightarrow n(Balmer-a) + ne' \dots \dots$	D 40+
$n^{+} + N_{0} > N(38) + N_{0}^{+}$	B-40*
$n' + ne - n(3p) + ne \dots \dots$	D-40- D-57+
$n' + ne - n(Ju) + ne + \dots + \dots + n(Ju)$	D-32- D-50
n + DI = n(25) + DI + n(25) + n(25) + DI + n(25) + n	D-30 D-50
$H^{+} + L_{1} \rightarrow H(2e) + L_{1}^{+}$	B-20 B-60
$H^{+} + L_{1} \rightarrow H(3n) + L_{1}^{+}$	B-60
$H^{+} + L_{1} \rightarrow H(3d) + L_{1}^{+}$	B-60
$\mathbf{n} \cdot \mathbf{D} = \mathbf{n} (\mathbf{J} \mathbf{u}) \cdot \mathbf{D} \mathbf{L} + \mathbf{n} (\mathbf{J} \mathbf{u}) \cdot \mathbf{D} \mathbf{L}$	D -00
Electron Capture by He ⁺	B-62
Electron Capture by He⁺	B-62 B-62
Electron Capture by He⁺	B-62 B-62 B-6 4
Electron Capture by He⁺	B-62 B-62 B-64 B-64
Electron Capture by He ⁺	B-62 B-64 B-64 B-66
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68*
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74*
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80
Electron Capture by He⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80
Electron Capture by He⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-80 B-80
Electron Capture by He⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-82 B-82
Electron Capture by He⁺ He ⁺ + H ₂ -> H(2 ¹ S + 2 ³ S)	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-82 B-82 B-82 B-82
Electron Capture by He⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-84
Electron Capture by He⁺	B-62 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-84 B-84
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-84 B-84 B-84
Electron Capture by He ⁺	B-62 B-64 B-64 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-82 B-84 B-84 B-84 B-86 B-86
Electron Capture by He⁺ He ⁺ + H ₂ -> H(2 ¹ S + 2 ³ S)	B-62 B-64 B-64 B-66 B-66 B-66 B-68 * B-74 * B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-82 B-82 B-84 B-84 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-82 B-82 B-82 B-82 B-82 B-82 B-84 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-86 B-8
Electron Capture by He ⁺ He ⁺ + H ₂ -> H(2 ¹ S + 2 ³ S)	B-62 B-64 B-66 B-66 B-66 B-66 B-68* B-74* B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-82 B-82 B-84 B-84 B-84 B-86 B-86 B-86 B-86
Electron Capture by He ⁺ He ⁺ + H ₂ -> H(2 ¹ S + 2 ³ S)	B-62 B-64 B-66 B-66 B-66 B-66 B-74* B-80 B-80 B-80 B-80 B-82 B-82 B-82 B-82 B-82 B-82 B-84 B-84 B-84 B-86 B-86 B-88 B-88

ī.

B. (Cont'd)

Riectron Capture by He ²⁺	•	•	٠	•	•	B-90
$He^{2+} + H -> He^{+}(2s) + H^{+}$				•		B-90*
$He^{2+} + H -> He^{+}(2p) + H^{+}$	-	-				B-96*
$He^{2+} + H -> He^{+}(Lyman_{-e}) + H^{+}$			-		•	B-102
$He^{2+} + H -> He^{+}(Lyman-s) + H^{+}$	-	-				B-102
$He^{2+} + H -> He^{+}(Lyman-r) + H^{+}$		-	•			B-102
$He^{2+} + H -> He^{+}(Balmer-a) + H^{+}$						B-102
$He^{2+} + H -> He^{+}(3p) + H^{+}$					•	B-104
$He^{2+} + H -> He^{+}(3s+3d) + H^{+}$						B-104
$He^{2+} + H -> He^{+}(4p) + H^{+}$						B-104
$He^{2+} + H_2 -> He^+(28)$					•	B-106
$He^{2+} + H_2 -> He^+(2p)$						B-106
$He^{2+} + H_2 -> He^+(Lyman_{-n})$				•		B-108
$He^{2+} + H_2 -> He^+(Lyman-s)$						B-108
$He^{2+} + H_2 -> He^+(Lyman-r)$					•	B-108
$He^{2+} + H_2 \rightarrow He^+(Balmer-a)$	•	-		•		B-108
$He^{2+} + H_2 -> He^+(3D)$				•		B-110
$He^{2+} + H_2 -> He^+(3s+3d)$				•	•	B-110
$He^{2+} + H_2 -> He^+(4p)$						B-110
$He^{2+} + He -> He^{+}(2s) + He^{+}$.			•			B-112*
$He^{2+} + Li -> He^{+}(2p) + Li^{+}$.						B-118
$He^{2+} + Li => He^{+}(3p) + Li^{+}$						B-118
$He^{2+} + Li -> He^{+}(4p) + Li^{+}$.	•				•	B-118
$He^{2+} + Li -> He^{+}(3s+3d) + Li^{+}$.	•	•	•	•		B-118
$He^{2+} + Li -> He^{+}(4s+4d) + Li^{+}$.	•		•			B-118
$He^{2+} + Li \rightarrow He^{+}(Lvman-a) + Li^{+}$						B-120
$He^{2+} + Li \rightarrow He^{+}(Lyman-s) + Li^{+}$		•	•	•		B-120
$He^{2+} + Li \rightarrow He^{+}(Lyman-r) + Li^{+}$				•		B-120
$He^{2+} + Li \rightarrow He^{+}(Balmer_{a}) + Li^{+}$	•	•				B-122
$He^{2+} + Li \rightarrow He^{+}(Balmer-s) + Li^{+}$	•			•		B-122
$He^{2+} + Li \rightarrow He^{+}(Balmer-r) + Li^{+}$						B-122
$He^{2+} + Li \rightarrow He^{+}(Balmer-o) + Li^{+}$	•			•		B-122

Electron Capture Cross Sections for $B^+ + B \rightarrow B(2s) + B^+$

Energy	Velocity	Cross Section
(eV/amu)	(ca/ s)	(cm ²)
2.02+03	6.21E+07	1.412-18
3.02+03	7.61E+07	2.772-18
4.0E+03	8.792+07	4.59E-18
5-0E+03	9.822+07	6.78E-18
6.0E+03	1.082+08	\$.91E-18
7.0E+03	1.168+08	1.19E-17
1.0E+04	1.39E+08	1.9\$E-17
2.08+04	1.962+08	3.65E-17
4.0E+04	2.78E+08	2.17E-17
5.0E+04	3.11E+08	1.39E-17
6.0E+04	3.40E+08	9.05B-18
7.0E+04	3.682+08	5.56E-18
1.0E+05	4.39E+08	1.93E-18
2.0E+05	6.21E+08	2,59E-19

References: 1, 11, 12, 13, 14, 15, 16, 70, 71, 72

- <u>Accuracy</u>: Energy < $3x10^3 \text{ eV/amu}$ factor 2; $3x10^3 \text{ eV/amu}$ < E < $1x10^5 \text{ eV/amu}$ 30%; E > $1x10^5 \text{ eV/amu}$ 50%
- Motes: (1) Por energies greater than 5x10³ eV/amu, the crossed beam results of references 12 and 14 are in good agreement with the data obtained using the tungsten oven E cell employed in the other experimental references.

(2) No corrections were applied for cascading but the effect is believed to be no more than 5%.

(3) Data for energies greater than 1.2×10^5 eV/amu were taken from the theoretical paper by Shakeshaft (ref. 70) who computed the cross sections using time-dependent impact parameter coupled-state equations.

(4) Cross sections in the energy range $1 \times 10^3 - 5 \times 10^3$ eV/amu rely on the experimental results of Morgan et al (ref. 15) and theoretical results of ref. 71 and 72.

(5) Cross sections for the 2s state were found by mixing the 2s and 2p states with an electric field.

For a Chebyshev fit of the above cross section it is necessary to use the following parameters. $E_{min} = 2.08+03 \text{ eV/amu}, E_{max} = 2.08+05 \text{ eV/amu}$

Chebyshey Fitting Parameters for Cross Sections

AO A1 A2 A3 A4 A5 A6 A7 A8 -80.2974 -.711716 -2.02522 -.193493 .250985 .0856986 -.0237110 -.0276091 -.00357455

The fit represents the above cross sections with an rms deviation of 1.3%. The maximum deviation is 2.4% at 7.02+04 eV/amu. See appendix for Chebyshev fit details.

 $H^{+} + H \rightarrow H(2s) + H^{+}$

Electron Capture Rate Coefficients for H⁺ + H -> H(2s) + H⁺

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

8+								
Temp.	Equal				H Temp. (eV)			
(eV)	Tesp.	500.	1000.	2000.	4000.	7000.	10000.	20000.
1.0E+02	1.86E-14	1.48E-11	9.322-11	4.11E-10	1.35E-09	2.662-09	3.50E-09	4.23E-09
2.0E+02	2.59E-12	2.51E-11	1.16E-10	4.52E-10	1.40E-09	2.70E-09	3.52E-09	4.23E-09
4.0E+02	3.83E-11	5.41E-11	1.69E-10	5.36E-10	1.50E-09	2.77E-69	3.57E-09	4.23E-09
7.0E+02	1.69E-10	1.16E-10	2.63E-10	6.70E-10	1.65E-09	2.87E-09	3.62E-09	4.22E-09
1.0E+03	3.72E-10	1.982-10	3.72E-10	8.12E-10	1.79E-09	2.96E-09	3.682-09	4.22E-09
2.0E+03	1.30E-09	5.80E-10	8.12E-10	1.30E-09	2.23E-09	3.25E-09	3.83E-09	4.20E-09
4.0E+03	2.96E-09	1.55E-09	1.79E-09	2.23E-09	2.96E-09	3.68E-09	4.05E-09	4.14E-09
7.0E+03	4.05E-09	2.80E-09	2.96E-09	3.25E-09	3.68E-09	4.052-09	4.20E-09	4.03E-09
1.0E+04	4.23E-09	3.59E-09	3.68E-09	3.83E-09	4.05E-09	4.202-09	4.238-09	3.90E-09
2.0E+J4	3.42E-09	4.228-09	4.22E-09	4.202-09	4.14E-09	4.032-09	3.90E-09	3.42E-09

Not,s; For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients												
н													
Temp.													
(eV)	y 0	A1	A2	EA	۸4	A5	A6						
500.	-4.386722+01	3.12293E+00	-1.600042-01	-3.10412E-01	-2.36074E-02	1.60083E-02	6.19524E-03						
1000.	-4.24130E+01	2.14668E+00	6.37440E-02	-2.57968E-01	~5.56388E-02	1.72468E-02	8.38626E-03						
2000.	-4.10369E+01	1.31982E+00	1.21498E-01	-1.62370E-01	-6.16572E-02	4.43261E-03	8.17248E-03						
4000.	-3.98120E+01	6.46066E-01	8.59976E-02	-8.09184E-02	-4.488322-02	-5.52064E-03	3.62665E-03						
7000.	-3.90771E+01	2.57541E-01	2.91176E-02	-4.35279E-02	-2.76600E-02	-6.63736E-03	5.07727E-04						
10000.	-3.87811E+01	9.11341E-02	-6.21649E-03	-3.19458E-02	-1.89226E-02	-5.58779E-03	-2.28503E-04						
20000.	-3.86539E+01	-7.79801E-02	-5.02818E-02	-2.49832E-02	-9.47407E-03	-2.56718E-03	-3.988102-04						
Equal Temp.	-4.60750E+01	5.50322E+00	-2.23799E+00	4.38735E-01	-2.58100E-01	1.18690E-01	-1.94375E-02						

See appendix for Chebyshev fit details.

.

I.

I.

1

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for $H + H^+ \rightarrow H(2s) + H^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

B+							
Temp.			B En	ergy (eV/amu))		
(eV)	10000.	20000.	40000.	60000.	50000.	100000.	150000.
1.02+00	2.74E-09	7.12E-09	6.01E-09*	3.07E-09*	1.47E-09**	8.48E-10**	3.212-10**
2.0E+00	2.74E-09	7.11E-09	6.00E-09*	3.07E-09*	1.47E-G9**	8.488-10**	3.21E-10**
4.0E+00	2.74E-09	7.08E-09	5.99E-09*	3.07E-09*	1.47E-09*	8.482-10**	3.21E-10**
7.0E+00	2.74E-09	7.05E-09	5.97E-09*	3.07E-09*	1.47E-09*	8.48E-10**	3.21E-10**
1.0E+01	2.73E-09	7.03E-09	5.96E-09	3.06E-09*	1.47E-09*	8.48E-10**	3.21E-10**
2.0E+01	2.73 E-09	€.97E-09	5.942-09	3.06E-09*	1.47E-09*	8.492-10**	3.218-10**
4.02+01	2.74E-09	6.89E-09	5.90 E-09	3.05E-09*	1.47E-09*	8.50E-10*	3.218-10**
7.0E+01	2.75E-09	6.81E-09	5.868-09	3.05 2-09 *	1.48E-09*	8.51E-10*	3.218-10**
1.0E+02	2.76E-09	6.75E-09	5.83E-09	3.04E-09*	1.48E-09*	8.53E-10*	3.228-10**
2.CE+02	2.82E-09	6.60E-09	5.75E-09	3.04E-09*	1.49E-09*	8.57E-10*	3.23E-10**
4.0E+02	2.95E-09	6.40E-09	5.64E-09	3.04E-09	1.51E-09*	8.662-10*	3.25E-10**
7.0E+02	3.14E-09	6.21E-09	5.528-09	3.05E-09	1.54E-09*	8.80E~10*	3.28E-10**
1.0E+03	3.30E-09	6.08E-09	5.422-09	3.05E-09	1.57E-09*	8.942-10*	3.30g-10**
2.0E+03	3.69E-09	5.77 E-09	5.14E-09	3.05E-09	1.65E-09*	9.422-10*	3.37E-10**
4.0E+03	4.10E-09	5.35E-09	4.692-09	3.00E-09	1.75E-09*	1.03E-09*	3.52E-10**
7.02+03	4.35E-09	4.90E-09	4.198-09	2.88E-09	1.826-09*	1.142-09*	3.87E-10**
1.0E+04	4.40E-09	4.57E-09	3.822-09	2.74E-09	1.84E-09	1.202-09*	4.28E-10*
2.0E+04	4.08E-09	3.80E-09	3.07E-09	2.35E-09	1.74E-09	1.262-09*	5.48E-10*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Hotes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev fitting Parameters for Rate Coefficients											
8												
Energy												
(eV/amu)	AO	A1	A2	A3	84	A5	76					
10000.	-3.91129E+01	2.48347E-01	9.68613E-02	-2.22662E-02	-5.16334E-02	-2.866242-02	-4.22512E-03					
20000.	-3.786782+01	-2.64262E-01	-1.22968E-01	-4,41549E-02	-1.579242-02	-6.00867E-03	-1,43873E-03					
40000.	-3.81878E+01	-2.65205E-01	-1,50964E-01	-6.70004E-02	-2.27907E-02	-3.96914E-03	2.12259E-03					
60000.	-3.92919E+01	-7.86994E-02	-5.90240E-02	-4.398662-02	-2.75365E-02	-1.195252-02	-2.20171E-03					
80000.	-4,05364E+01	1.089942-01	4.62123E-02	-5.384042-03	-2,37480E-02	-1.87047E-02	-8.06980E-03					
100000.	-4,15580E+01	1.824332-01	1.076662-01	3.51890E-02	-4.95054E-03	-1.53694E-02	-1.205558-02					
150000.	-4,352102+01	1.78485E-01	1,28691E-01	7.631492-02	2.78040E-02	1.49449E-02	2.43305E-03					

See appendix for Chebyshev fit details.

B-6

$$H + H^{+} - > H(2s) + H^{+}$$

Beam – Maxwellian

Electron Capture Cross Sections for $B^+ + B \rightarrow B(2p) + B^-$

Energy		Velocity	Cross Section
(eV/anu)		(CB/5)	(cm ²)
6.0E+02		3.40E+07	6.05E-18
7.0E+02		3.682+07	8.69E-18
1.0E+03		4.39E+07	1.85E-17
1.5E+03		5.38E+07	3.10E-17
2.0E+03		6.21E+07	3.05E-17
3.0E+03		7.61E+07	2.87E-17
4.0E+03		8.792+07	2.89E-17
7.0E+03		1.16E+08	3.06E-17
1.0E+04		1.39E+08	2.99E-17
2.0E+04		1.962+08	1.79E-17
3.0E+04	1	2.41E+08	1.01B-17
4.0E+04		2.78E+08 :	5.832-18
7.0E+04		3-682+08	1.46E-18
1.0E+05		4.396+08	6.18E-19
2.0E+05		6.21E+08	1.41E-19
2.42+05		6.80E+08	1.00E-19

References: 17, 18, 19, 20, 70

<u>Accuracy:</u> E < 2x10³ eV/amu - 40%; 2x10³ eV/amu < E < 3x10⁴ eV/amu - 25%; E > 3x10⁴ eV/amu - unknown

Notes: (1) Thomas in ref. 20 has applied a correction to ref. 19.
(2) All cross sections have been normalized to either the H⁺ + H₂ -> H(2p) + H₂⁺ or e⁻ + H(1s) -> e⁻ + H(2p) cross sections.
(3) Cross sections for H impact energies greater than 3x10⁴ eV/amu rely on computations of Shakeshaft (ref. 70). Data were obtained using time-dependent impact parameter coupled-state equations.
(4) The cross section (*a*₁) for capture into state i is determined by measuring the emission cross section (*a*₁) for a transition from state i to j, correcting for any branching from state i, and correcting for cascading from upper states.
(5) Cascading from upper states to the 2p state is less than 5%. Thus *a*(2p) = *a*(Lyman-*a*) emission cross section.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 6.0E+02 \text{ eV/amu}, \quad E_{max} = 2.4E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	٨2	A3	A4	A5	A6	A7	AB
-79.9812	-2.30968	-1.73621	.110265	.9489823	.217654	0576541	0617916	.0399669

The fit represents the above cross sections with an rms deviation of 2.8%. The maximum deviation is 5.8% at 2.02+04 eV/umu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for $B^+ + B \rightarrow B(2p) + B^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

•

E ⁺								
Temp.	Equa 1			H Temp. (eV)	V)			
(eV)	Temp.	50.	100.	500.	1000.	5000.	10000.	20000.
4.CE+01	5.58E-13	1.282-12	1.45E-11	5.48E-10	1.16E-09	2.88E-09	3.03E-09	2.47E-09
7.0E+01	1.45E-11	6.91E-12	3.22E-11	5.92E-10	1.19E-09	2.89E-09	3.03E-09	2.47E-09
1.0E+02	5.74E-11	1.95E-11	5.74E-11	6.36E-10	1.228-09	2.89E-09	3.03E-09	2.46E-09
2.02+02	3.33E-10	I.13E-10	1.81E-10	7.73E-10	1.32E-09	2.91E-09	3.03E-09	2.46E-09
4.02+02	8.99E-10	4.11E-10	4.58E-10	1.022-09	1.49E-09	2.93E-09	3.02E-09	2.45E-09
7.0E+02	1.492-09	8.38E-10	8.99E-10	1.32E-09	1.71E-09	2.96E-09	3.01E-09	2.43E-09
1.0E+03	1.90E-09	1.17E-09	1.228-09	1.56E-09	1.902-09	2.99E-09	3.00E-09	2.41E-09
2.0E+03	2.68E-09	1.938-09	1.96E-09	2.17g-09	2.38E-09	3.05E-09	2.95E-09	2.36E-09
4.0E+03	3.07E-09	2.70E-09	2.71E-09	2.79E-09	2.88E-09	3.06E-09	2.84E-09	2.25E-09
7.0E+03	2.84E-09	3.05E-09	3.05E-09	3.06E-09	3.07E-09	2.95E-09	2.65E-09	2.09E-09
1.0E+04	2.47E-09	3.03E-09	3.03E-09	3.02E-09	3.00E-09	2.788-09	2.47E-09	1.96E-09
2.0E+04	1.592-09	2.472-09	2.46E-09	2.44E-09	2.41E-09	2.19E-09	1.96E-09	1.59E-09

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 4.0E+01 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

	Temp.							
	(eV)	AO	Al	٨2	A3	84	A5	٨6
	50.	-4.42667E+01	3.68258E+00	-1.49113E+00	1.59924E-01	3.18208E-03	-6.21884E-02	2.01934E-02
	100.	-4.30926E+01	2.69099 5 +00	-8.96227E-01	-7.60448E-02	4.648492-02	-4.73878E-02	6.77301E-03
	500.	-4.08437E+01	9.29788E-01	-1.25719E-01	-1.89331E-01	-3.21599E-02	5.88363E-03	2.452448-03
	1900.	-4.02252E+01	5.066982-01	-5.16460E-02	-1.44926E-01	-4.91357E-02	2.77891E-03	6.06624E-03
	5000.	-3.93773E+01	-6.84093E-62	-8.56458E-02	-6.23155E-02	-2.73651E-02	-6.001222-03	5.77484E-04
	10000.	-3.942142+01	-1.657£3E-01	-1.04137E-01	-4.96524E-02	-1.771412-02	-4.106242-03	-1.51335E-04
	20000.	-3.98550E+01	-1.76608E-01	-9.99144E-02	-4.146702-02	-1.28283E-02	-2.76171E-03	-2.52981E-04
Equi	il Temp.	-4.38515E+01	3.35460E+00	-2.04640E+00	5.496692-01	-2.67503E-01	7.12101E-02	2.83428E-03

See appendix for Chebyshev fit details.

R

B-10

8-11

Electron Capture Rate Coefficients for $\underline{H} + \underline{B}^+ \rightarrow \underline{H}(2\underline{p}) + \underline{B}^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

8+							
Tesp.			E End	ergy (eV/amu))		
(eV)	10000.	20000.	40000.	60000.	80000.	100000.	200000.
1.0E+00	4.148-09	3.51E-09	1.62E-09*	7.27E-10*	4.16E-10**	2.728-10**	8.76E-11**
2.0E+00	4.13E-09	3.508-09	1.62E-09*	7.27E-10*	4.16E-10**	2.728-10**	8.76E-11**
4.02+00	4.12E-09	3.502-09	1.612-09*	7.25E-10*	4.16E-10**	2.72E-10**	8.768-11**
7.0E+00	4.11E-09	3.492-09	1.612-09*	7.282-10*	4.16E-10**	2.728-10**	8.77g-11**
1.0E+01	4.10E-09	3.49E-C9	1.612-09*	7.28E-10*	4.16E-10*	2.72E-10**	8.77g-11**
2.0E+01	4.08E-09	3.47E-09	1.61E-09	7.288-10*	4.16E-10*	2.728-10**	8.775-11**
4.0E+01	4.06E-09	3.46E-09	1.612-09	7.292-10*	4.16E-10*	2.73E-10**	8.782-11**
7.0E+01	4.03E-09	3.442-09	1.60E-09	7.308-10*	4.17E-10*	2.73E-10*	8.795-11**
1.08+02	4.002-09	3.42E-09	1.60E-09	7.31E-10*	4.17E-10*	2.73E-10*	8.798-11**
2.0E+02	3.94E-09	3.392-09	1.602-09	7.358-10*	4.19E-10*	2.75E-10*	8.815-11**
4.0E+02	3.86E-09	3.34E-09	1.608-09	7.42E-10*	4.228-10*	2.77E-10*	8.83g-11**
7.0E+02	3.77E-09	3.27E-09	1.602-09	7.538-10*	4.27E-10*	2.802-10*	8.80g-11**
1.0E+03	3.692-09	3.22E-09	1.602-09	7.64E-10*	4.32E-10*	2.82E-10*	8.718-11**
2.02+03	3.50E-09	3.05E-09	1.59E-09	7.958-10	4.49E-10*	2.928-10*	\$.40g-11**
4.0E+03	3.23E-09	2.77E-09	1.578-69	8.40E-10	4.85E-10*	3.122-10*	8.06E-11**
7.0E+03	2.93E-09	2.46E-09	1.50 <i>E-</i> 09	8.762-10	5.29E-10*	3.422-10*	8.00E-11**
1.0E+04	2.69E-09	2.25E-09	1.432-09	8.882-10	5.60E-10*	3.69E-10*	\$.18g-11**
2.0E+04	2.10E-09	1.762-09	1.238-09	8.562-10	5.99E-10	4.248-10*	9.59E-11**

Accuracy: * - Possible Error Greater Than 108 ** - Possible Error Greater Than 1008

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.02+00 \text{ eV}, \quad E_{max} = 2.02+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients										
B										
Energy										
(eV/amu)	AO	A1	A2	A3	84	A5	A6			
10000.	-3.89330E+01	-2.63479E-01	-1.46563E-01	-6.61908E-02	-2.644972-02	-9.58772E-03	-3.32633E-03			
20000.	-3,92573E+01	-2.65213E-01	-1.592042-01	-7.45512E-02	-2.592028-02	-4.409312-03	1.714438-03			
40000.	-4.05806E+01	-8,237372-02	-5.969472-02	-4.222682-02	-2.58735E-02	-1.17419E-02	-3.02153E-03			
60000.	-4.196042+01	9.708292-02	4.525992-02	7.295292-04	-1.726822-02	-1.545612-02	-7.90347E-03			
80000.	-4.301712+01	1,567352-01	9.778272-02	3.77245E-02	1.87118E-03	-9.857092-03	-9,46753E-03			
100000.	-4.38524E+01	1.718182-01	1.119132-01	5.35817E-02	1.64028E-02	-2.856612-04	-5.460802-03			
200000.	-4.63327E+01	-9.297992-03	6.37363E-03	2.658722-02	3.449372-02	2.70598E-02	1.284302-02			

See appendix for Chebyshev fit details.

 $H + H^{*} \rightarrow H(2p) + H^{*}$

Beam - Maxwellian

Electron Capture Cross Sections for

#* + H2 -> H(2s,2p)

	1(25)	2p)				
Energy	Cross Section	Energy	Cross Section			
e¥∕asu	cm ²	eV/and	cm ²			
2.0 E+0 3	2.64E-18	4.0E+03	1.992-17			
4.0E+03	5.082-18	7.02+03	2.37E-17			
7.02+03	9.242-18	1.62+04	2.64E-17			
1.02+04	1.37 E-1 7	1.42+84	2.72E-17			
2.02+04	2.692-17	2.0E+04	2.35E-17			
2-5E+84	2.798-17	4.8 2+8 4	8.74E-18			
4-02+84	2_218-17	7.02+04	3.398-18			
7.82+84	9.53E-18	1.02+05	1.75E-18			
1-02+05	4.282-18	1.5E+05).00E-18			
2.62+05	6.242-19					

Beferences: B(2s) - 13, 16, 18, 121, 122, 123, 124, 125, 326; B(2p) - 18, 122, 124, 128

Accuracy: See notes

<u>Hotes</u>; (i) Large errors are usually associated with measuring emission from excited states to obtain either electron capture, dissociative or excitation emission cross mections. The cross sections reported here are emission cross sections from electron capture collisions. The $R(2\pi)$ cross sections are determined by observing the excited H atom in an electric field which mixes the 2s state with the 2p state. The scatter of the data in the references is a factor of 2 for $R(2\pi)$ capture and 20% for R(2p). We estimate that the data presented here have a confidence level to within 50%.

(2) For the collisions in an electromagnetic field sufficient to mix the 2s and 2p, the Lyman-s emission cross section is obtained from $\sigma(2s)+\sigma(2p)$.

(3) The cross section (σ_i) for capture into state i is determined by measuring the emission cross section for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

(4) Since cascading to the 2p state is less than 5t = (2p) = (Lyman - a) emission.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

H(2s) E_{min} = 2.08+03 eV/anu, E_{mix} = 2.08+05 eV/anu H(2p) 2_{min} = 4.08+03 eV/anu, E_{max} = 1.58+05 eV/anu

Chebyshev Fitting Parameters for Cross Sections

AG	A1	32	A3	A4	д5	X6	A7	- A8

R(2s) -79.7252 -.533265 -1.56108 -.431130 .0810709 .0519074 -.0478876 -.00197365 R(2p) -78.7561 -1.60375 -.734004 .106262 .120750 -.0254921 .00605546 .0276214 .0341018

The fit represents the $\Xi(2s)$ cross section with an rms deviation of 1.3%. The maximum deviation is 2.5% at 1.0E+06 eV/amu.

The fit represents the B(2p) cross section with an rms deviation of 1.5%. The maximum deviation is 8.5% at 1.38+05 eV/emu.

See appendix for Chebyshev fit details.

T.

Bnergy	Velocity	Cross Section
(eV/amu)	(CB/S).	(cm ²)
8.2E+01	1.26E+07	7.15E-20
1.02+02	1,39E+07	1.37E-19
2.0E+02	1.96E+07	9.348-19
4.0E+02	2.78E+07	4.56E-18
7.0E+02	3.68E+07	1.208-17
1.08+03	4.39E+07	1.69E-17
1.5E+03	5.38E+07	1.97E-17
2.02+03	6.21E+07	2.118-17
3.05+03	7.61E+07	2.39E-17
4.0E+03	2.79E+07	2 .94E-1 7
7.0E+03	1.16E+08	4.30E-17
1.0E+04	1.39E+08	5.228-17
1.4E+04	1.64E+08	5.61E-17
2.02+04	1.96E+08	4.\$7E-17
4.0E+04	2.78E+08	2 .97E-17
7.0E+04	3.68E+08	1.94E-17
1.02+05	4.39E+08	1.46B-17
1.48+05	5.20E+08	1. 198-17

Line Emission Cross Sections of Electron Capture Collisions for $B^+ + B_2 \rightarrow B(Ly_6)$ Total

References: 124, 128, 187, 188, 193, 195, 197

Accuracy: 40%

<u>Hotes:</u> (1) The cross section e_i for capture into state i is determined by measuring the emission cross section (e_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states. (2) The capture cross section into excited states is measured by making use of the Doppler shift. The total $e(Ly_n)$ was determined from the total of the shifted and unshifted radiation.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 8.2E+G1 eV/amu$, $E_{max} = 1.4E+05 eV/amu$

Chebyshev Pitting Parameters for Cross Sections

AC A1 A2 A3 A4 A5 A6 A7 A8 -79.2785 2.29244 -1.84261 .243522 -.113691 .0377226 .155522 -.0201741 -.0977164

The fit represents the above cross sections with an rms deviation of 3.4%. The maximum deviation is 6.0% st 2.0E+04 eV/amu. See appendix for Chebyshev fit details.

Line Emission Cross Sections of Electron Capture Collisions for

8* +	82	->	B(Bar	։ եկ)
------	----	----	-------	--------

	(B_)	(H _p)				
Energy	Cross Section	Energy	Cross Section			
eV/anu	cm ²	e V/anu	cs ²			
5.0E+02	2.44E-19	5.0E+02	4.24E-20			
7.02+02	6.10E-19	7.0E+02	9.365-20			
1.0E+03	1.135-18	1.02+03	1.61E-19			
2.0E+C3	2.138-18	2.02+03	3.12E-19			
4.0E+03	3.11E-18	4.0E+03	4.278-19			
7.0E+03	4.17E-18	7.0E+03	4.968-19			
1.0E+04	4.95 <u>2</u> -18	1_05+04	5.17E-19			
2.05+04	7.10E-18	2., QE+04	4.822-19			
3.0E+04	\$.52E-18	4.0E+04	2.94E-19			
4.0E+04	7.683-18	7.0E+04	1.112-19			
7.62+04	3.34E-18	1.0E+05	4.45E-20			
1.0E+05	1.251-18	1.5E+05	1.74E-20			
2.02+05	1.06F-19					
4.08+05	4.172-21					

<u>Meferences:</u> $(B_{\phi}) = 131, 133, 134, 135, 136, 137, 138, 139; <math>(B_{\phi}) = 137, 138, 139$

Accuracy: See notes

<u>Notes:</u> (1) Large errors are usually associated with measuring optical emission from excited states which arise from electron capture, dissociative or excitation collisions. The cross sections reported here are for electron capture collisions resulting in Balmer-a emission (n=3->2), λ =6562.79 Å) and Balmer-g emission (n=4->2, λ =4861.33 Å). Errors arise mainly from the detector calibration which for the visible spectrum varies over many orders of magnitude. We can only estimate the error to be more then a factor of 2 for H_m.

(2) The $B_{\rm m}$ emission cross section is found from the following relation - $\sigma(B_{\rm m})$ = $\sigma(3\pi)$ + .118e(3p) + $\sigma(3d)$.

(3) Cascading from upper levels contribute no more than 5% to the measured cross sections.

(4) B_a cross sections below $3x10^3$ eV/amu were found by normalizing Hess's results (ref. 137 and 138) to other results at $3x10^3$ eV/amu.

(5) Very little data are available for Balmer- β (Hg) emission cross sections.

(6) $B_{\rm f}$ cross sections below $3\pi 10^3$ eV/amu were found by normalizing Hess's data (refs.

- 137 and 138) at 3×10^3 eV/amu to Hughes et al data (ref. 139).
- (7) No estimate is given for errors in the H_g data.
- (8) Data are svailable for capture in the 4s state (see refs. 130 and 132).

for Chebyshev fits of the above cross sections it is necessary to use the inlowing parameters.

(8 ₆) (8 ₈)	E _{min} - E _{min} -	5.02+02 eV/ 5.02+02 eV/	anu, E _{ne} Anu, E _{ne}	1x = 4.08+ 1x = 1.5g+	05 eV/amu 05 eV/amu				
			Chebyst	ev Fitting	Parameter	s for Cro	se Section	F	
	AO	Al	A2	A3		A5	A6	M 7	A8
(H _E)	-83.9403	-1.52055	-2.66829	703430	220654	.245822	.0371514	0525595	0727916
(ilg.)	-\$6.\$907	394318	-1.51191	164906	148036	.0816213	.0463644	.0309715	.00687359
The	fit repres	ents the (A	a) cross s	ection wit	h an ras d	eviation (of 2.28.		
The s	meximum de	viation is	5.1% at	2.02+04 ev	/amu.				
The .	fit repres	ents the (A) Cross s	ection wit	h an rms d	e iation	of 0.6%.		
The :	maximum de	vistion is	1.1% at	1.0E+03 eV	/amu.				
see .	appendix f	or Chebyshs	v fit dete	118.					

Electron Capture Cross Sections for

I	(33)	I	l(3p)	H (3d)		
Energy eV/anu	Cross Section cm ²	Energy eV/amu	Cross Section	Energy eV/anu	Cross Section cm ²	
1.02+03 2.02+03 4.02+03 7.02+04 1.02+04 3.22+04 4.02+04 7.02+04 1.02+04 1.02+05 2.02+05 3.02+05	3.33E-19 5.25E-19 8.67E-19 1.45E-18 2.10E-18 4.90E-18 7.21E-18 6.54E-18 2.48E-18 1.16E-18 9.99E-20 1.83E-20	2.2E+03 4.0E+03 5.9E+03 7.0E+03 1.0E+04 2.0E+04 3.2E+04 4.0E+04 1.0E+05 1.6E+05 2.0E+05 3.4E+05	1.18E-18 3.49E-18 4.19E-18 4.17E-18 3.85E-18 1.63E-18 1.63E-18 1.07E-18 2.96E-19 1.35E-19 4.76E-20 3.13E-20	1.45+03 2.65+63 4.02+03 7.05+03 1.02+04 1.12+04 2.02+94 4.02+04 1.02+05 1.45+05 2.02+05 3.02+05	4.27E-19 5.56E-19 8.89E-19 1.27E-18 1.57E-18 1.60E-18 1.04E-18 3.94E-19 3.09E-20 8.93E-21 4.39E-21 4.39E-21 2.47E-21	

$B^+ + B_2 \rightarrow B(3s, 3p, 3d) + B_2^+$

<u>Beferences</u>: B(3m) 129, 130, 131, 132, 133, 134, 135; B(3p) 122, 131, 133, 134, 136; B(3d) 131, 134, 136

Accuracy: See notes

Notes: (1) Large errors are usually associated with measuring optical emission from excited states which arise either from electron capture, dissociative, or excitation collisions. The cross sections reported here are for electron capture of the fast proton into a fast H atom. Errors arise mainly from absolute calibration of the detector which for the visible spectrum varies over orders of magnitude from blue to red. We estimate the data presented to be accurate to a factor of 2. (2) The cross section (e_i) for capture into state i is determined by measuring the emission cross section (e_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states. (3) For the n=3 levels cascading is less than 5%.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

H(3s) E_{min} = 1.0E+03 eV/amu, E_{max} = 3.0E+05 eV/amu H(3p) E_{min} = 2.2E+03 eV/amu, E_{max} = 3.4E+05 eV/amu H(3d) E_{min} = 1.4E+03 eV/amu, E_{max} = 3.0E+05 eV/amu

Chebyshev Fitting Parameters for Cross Sections

 A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8

 B(3s)
 -84.0392
 -.728083
 -2.03457
 -.860699
 .0489259
 .212089
 .0319211
 -.0748778
 -.0241098

 B(3p)
 -84.5768
 -2.73107
 -1.38696
 .326474
 .0471408
 .0427739
 -.0758510
 -.0181499
 .0430074

 B(3d)
 -86.9132
 -2.76179
 -1.74766
 .0813682
 .392354
 .101286
 .0203703
 .00824074
 -.0805033

The fit represents the H(3s) cross section with an rms deviation of 2.3%. The maximum deviation is 4.0% at 7.0E+04 eV/smu.

The fit represents the H(3p) cross section with an rms deviation of 1.3%. The maximum deviation is 2.6% at 1.6E+05 eV/amu.

The fit represents the H(3d) cross section with an rms deviation of 5.0%. The maximum deviation is 10.4% at 7.02+03 eV/emu.

See appendix for Chebyshev fit details.

Electron Capture Cross Sections for $B^+ + Be \rightarrow B(2s) + Be^+$

Energy	Velocity ·	Cross Section
(eV/amu)	(Cm/s)	(cm ²)
2.8E+03	7.358+07	5.16E-20
4.0E+03	8.79E+07	1.45E-19
7.0E+03	1,16E+08	5.91B-19
1.0E+04	1.39E+08	1.03E-18
1.4 <u>e</u> +04	1.64E+08	1.472-18
2.0E+04	1.962+08	2.44E-18
3.0E+04	2,41E+08	5.618-18
4.0E+04	2.782+08	7.742-18
5.0E+04	3.11E+08	8.08E-18
7.0E+04	3.68E+08	6.60E-18
1.0E+05	4.39E÷08	3.752-18
2.02+05	6.21E+08	4.23E-19

References: 16, 121, 125, 126, 183, 184, 189, 190, 191

Accuracy: 50%

<u>Mote:</u> (1) The $\sigma(2s)$ cross section is found by mixing the 2s state with the 2p state by an electric field.

For Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.8E+03 \text{ eV/amu}, E_{max} = 2.0E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	<u>2</u>	A3	A4	A5	٨6	A 7	AB
-83.0478	1.54023	-1.55597	364564	186200	.0423931	0198717	166625	0726702

1

The fit represents the above cross sections with an rms deviation of 2.5%. The maximum deviation is 4.2% at 5.02+04 eV/amu. See appendix for Chebyshev fit details.

 H^{+} + He -> H(2s) + He^{+}

Electron Capture Rate Coefficients for $B^+ + Be \rightarrow H(2s) + Be^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

B ⁺								
Temp.	Equa 1				He Temp. (eV	7)		
(eV)	Temp.	500.	1000.	2000.	4000.	7000.	10000.	20000.
2.0E+02	2.85E-16	3.73E-15	4.23E-14	4.60E-13	3.64E-12	1.48E-11	3.222-11	1.30E-10
4.0E+02	8.08E-14	1.07E-13	3.25E-13	1.32E-12	5.902-12	1.89E-11	3.782-11	1.402-10
7.0E+02	1.18E-12	9.32E-13	1.61E-12	3.64E-12	1.03E-11	2.58E-11	4.68E-11	1.57E-10
1.0E+03	4.16E-12	2.94E-12	4.16E-12	7.24E-12	1.58E-11	3.35E-11	5.68E-11	1.74E-10
2.0E+03	2.70E-11	1.83E-11	2.11E-11	2.70E-11	4.07E-11	6.58E-11	9.64E-11	2.35E-10
4.0E+03	1.20E-10	8.03E-11	8.55E-11	9.64E-11	1.20E-10	1.59E-10	2.03E-10	3.72E-10
7.0E+03	3.54E-10	2.43E-10	2.51E-10	2.68E-10	3.02E-10	3.54E-10	4.08E-10	5.86E-10
1.0E+04	6.20E-10	4.538-10	4.62E-10	4.80E-10	5.15E-10	5.68E-10	6.20E-10	7.81E-10
2.0E+04	1.212-09	1.04E-09	1.05E-09	1.06E-09	1.082-09	1.11E-09	1.13E-09	1.21E-03

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 2.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

He						-	
Tenp.							
(eV)	80	A 1	٨2	A3	۸4	Α5	٨6
500.	-5.155472+01	6.12867E+00	-1.10703E+00	1.835C3E-01	-6.31506E-02	-4.18133E-02	-5.16887E-03
1000.	-5.029882+01	5.12782E+00	-5.67743E-01	-2.34476E-02	-1.29792E-02	-4.58512E-02	-5.85869E-03
2000.	-4.88467E-01	4.044292+00	-9.26042E-02	-1.42687E-01	-1.51195E-02	-3.17168E-02	-6.62145E-03
4000.	-4.73254E+01	3.01860E+00	2.181232-01	-1.579678-01	-4.76884E-02	-1.64944E-02	-1.20711E-03
7000.	-4.60971E+01	2.294862+00	3.285112-01	-1.25781E-01	-6.47340E-02	-1.05302E-02	4.12821E-03
10000.	-4.53140E+01	1.88943E+00	3.36913E-01	-J.00227E-G1	-6.44137E-02	-9.37217E-03	4.93922E-C3
20000.	-4.37344E+01	1.17101E+00	2.58458E-01	-4.78379E-02	-4.40287E-02	-8.69295E-03	2.457578-03
Equal Temp.	-5.19683E+01	7.03024E+00	-1.90084E+00	5.72322E-01	-2.68910E-01	2.66381E-02	-1.15409E-02

See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for $Be + B^+ \rightarrow B(2s) + Be^+$

Beam - Maxvellian Rate Coefficients (cm^3/s)

Temp.			Be B	nergy (eV/am	u)		
(eV)	10000.	20000.	40000.	60000.	80000.	100000.	120000.
1.0E+00	1.43E-10**	4.81E-10**	2.14E-09*	2.46E-09*	2.10E-09**	1.64E-09**	1-02E-09**
2.0E+0u	1.43E-10**	4.81E-10**	2.14E-09*	2.46E-09*	2.10E-09**	1.64E-09**	1.02E-09**
4.0E+00	1.43E-10**	4.82E-10**	2.14E-09*	2.46E-09*	2.102-09**	1.64E-09**	1.02E-09**
7.02+00	1.42E-10**	4-846-10*	2.14E-09*	2.46E-09*	2.10E-09*	1.64E-09**	1.02E-09**
1.02+01	1.42E-10**	4.85E-10*	2.13E-09*	2.46E-09*	2.102-09*	1.63E-09**	1.C2E-09**
2.02+01	1.426-10**	4.882-10*	2.13E-09*	2.46E-09*	2.10E-09*	1.63E-09*	1.02E-09**
4.0E+01	1.43E-10*	4.93E-10*	2.128-09*	2.46E-09*	2.10E-09*	1.62E-09*	1.02E-09**
7.0E+01	1.44E-10*	5.002-10*	2.11E-09*	2.46E-09*	2.10E-09*	1.61E-09*	1.02E-09**
1.02+02	1.45E-10*	5.07E-10*	2.11E-09*	2.46E-09*	2.10E-09*	1.61E-09*	1.02E-09**
2.0E+02	1.492-10*	5.28E-10*	2.09E-05*	2.462-09*	2.10E-09*	1.59E-09*	1.03E-09**
4.02+02	1.592-10*	5.682-10*	2.072-09*	2.45E-09*	2.09E-09*	1.57E-09*	1.036-09*
7.0E+02	1.77E-10*	6.23E-10*	2.05E-09*	2.42E-09*	2.08E-09*	1.56E-09*	1.04E-09*
1.0E+03	1.978-10*	6.73E-10*	2.03E-09*	2.395-09*	2.06E-09*	1.542-09*	1.05E-09*
2.02+03	2.79E-10*	8.12E-10*	1.98E-09*	2.298-09*	1.99E-09*	1.51E-09*	1.06E-09*
4.02+03	4.632-10*	1.01E-09*	1.90E-09	2.128-09*	1.872-09*	1.46E-09*	1.07E-09*
7.0E+03	7.11E-10	1.192-09	1.81E-09	1.928-09*	1.722-09*	1.382-09*	1.05E-09*
1.0E+04	9.07E-10	1.298-09	1.732-09	1.78E-09*	1.59E-09*	1.312-09*	1.02E-05*
2.0E+04	1.27E-09	1.422-09	1.54E-09	1.47E-09*	1.31E-09*	1.12E09*	9.16E~10*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

8+

He Energy (eV/amu)

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients AO AI A2 A3 A4 A5

A6

10000. -4.41473E+01 1.00293E+00 5.77264E-01 1.69345E-01 -4.20278E-02 -7.82819E-02 -4.04936E-C2 20000. -4.22126E+01 5.46817E-01 2.44571E-01 2.72848E-02 -4.37757E-02 -3.23001E-02 -7.56613E-03 40000. -4.00821E+01 -1.29340E-01 -7.16121E-C2 -3.33138E-02 -1.32072E-02 -4.05181E-03 -1.23221E-03 60000. -3.98602E+01 -1.91480E-01 -1.30757E-01 -6.51877E-02 -2.04843E-02 -1.38003E-03 2.12462E-03 80000. -4.014992+01 -1.66211E-01 -1.18429E-01 -6.40569E-02 -2.40368E-02 -4.53618E-03 8.86157E-04 100000. -4.06316E+01 -1.42002E-01 -8.01346E-02 -4.14812E-02 -2.35460E-02 -9.87334E-03 -2.92063E-03 120000. -4.14146E+01 -1.03802E-02 -2.66264E-02 -3.13729E-02 -2.24983E-02 -1.04322E-02 -2.88295E-03

See appendix for Ch-byshev fit details.

$$He + H^{+} -> H(2s) + He^{+}$$

Epergy	Velocity	Cross Section	
(eV/amu)	(ca/s)	(cm ²)	
7.02+02	3. 682+ 07	2-022-20	
1.02+03	4.39E+07	4.48E-20	
2.02+03	6.21E+07	2.10E-19	
4.0E+03	8.792+07	6.83E-19	
7.0E+03	1,162+08	1.57E-18	
1.02+04	1.392+08	2.32E-18	
2.0E+04	1.962+08	3.148-18	
3.0E+04	2.41E+0#	2.88E-1P	
4.0E+94	2.7\$E+08	2.17 5-18	
7.0E+04	3.682+08	8.52E-19	
1.0E+05	4.396+08	3.938-19	
2.0E+05	6.21E+08	3.86E-20	
3.0E+05	7.61E+08	9.742-21	

References: 24, 46, 125, 163, 164, 165, 166, 183, 184, 185, 186, 187, 188, 245

Accuracy: 301

<u>Hotes</u>: (1) If cascade is neglected e (H I.y_B) = e (H 2p). Cascade contributions are less than 5%. (2) The cross sections for capture into the 2p state or Ly_B emission have large discrepancies at energies less than 1×10^4 eV/amu. These discrepancies are thought to be due to a small amount of H^O present in the H⁺ beam during measurements. The cross section for excitation of H + He -> H(2p) is approximatly 2 orders of magnitude greater than H⁺ + He -> H(2p) + He⁺.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 7.02+02 \text{ eV/amu}, \quad E_{max} = 3.02+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Section=

A0	A1	A2	A3	84	A5	λ6		A8
-86,2710	0743636	-2.70622	368010	.0743916	.0747662	.0195366	.00225497	.0337284

The fit represents the above cross sections with an rms deviation of 1.9%. The maximum deviation is 4.1% at 7.0E+04 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Cross Sections for $B^+ + Be \rightarrow B(2p) + Be^+$

Cross Section vs. Energy

Electron Capture Rate Coefficients for H^+ + Be -> H(2p) + Be⁺

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

.

8+								
Temp.	Equal				Be Temp. (eV	7}		
(eV)	Temp.	100.	1000.	2000.	4000.	7000.	10000.	20000.
4.0E+01	3.31E-18	7.92E-17	4.90E-13	2.90E-12	1.36E-11	4.11E-11	7.62E-11	1.98E-10
7.0E+01	1.22E-15	2.29E-15	6.69E-13	3.33E-12	1.45g-11	4.25E-11	7 .778-11	1.99E-1C
1.0E+62	1.36E-14	1.368-14	8.782-13	3.79E-12	1.54E-11	4.38E-11	7 .928- 11	2.00E-10
2.0E+02	2.97E-13	2.03E-13	1.79E-12	5.52E-12	1.85E-11	4.82E-11	8.41E-11	2.052-10
4.0E+02	2.38E-12	1.538-12	4.61E-12	9.89E-12	2.55E-11	5.74E-11	9.42E-11	2.13E-10
7.0E+02	9.28E-12	6.00E-12	1.128-11	1.85E-11	3.73E-11	7.18E-11	1.095-10	2.26E-10
1.0E+03	2.02E-11	1.322-11	2.02E-11	2.93E-11	5.05E-11	8.66E-11	1.24E-10	2.38E-10
2.0E+03	7.43E-11	5.16E-11	6.21E-11	7.43E-11	9.92E-11	1.37E-10	1.738-10	2.75E-10
4.0E+03	1.96E-10	1.50E-10	1.61E-10	1.73 E-10	1.96E-10	2.28E-10	2.57E-10	3.34E-10
7.0E+03	3.278-10	2.76E-10	2.83E-10	2.92E-10	3.07E-10	3.27E-10	3.45E-10	3.91E-10
1.0E+04	3.98E-10	3.57E-10	3.62E-10	3.66E-10	3.75E-10	2 . 87e-1 9	3.98E-10	4.22E-10
2.0E+04	4.33E-10	4.38E-10	4.39E-10	4.39E-10	4.392-10	4.38E-10	4.38E-10	4.33E-10

Notes: Por Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 4.0E+01 \text{ eV}, \quad E_{mex} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

He							
Temp.							
(eV)	¥0	V]	A2	A3	λ4	A5	A6
100.	-5.42320E+01	7.44291E+00	-2.035212+00	2.94202E-01	-1.85784E-01	2.90590E-02	2.43336E-02
1000.	-4.97005E+01	3.78186E+00	-7.01113E-02	-4.11509E-01	-2.83920E-02	2.87633E-02	2.44756E-03
2000.	-4.83079E+01	2.82754E+00	1.63410E-01	-3.46227E-01	-7.46954E-02	2.85450E-02	8.40255E-03
4000.	-4.69020E+01	1.95707E+00	2.50111E-01	-2.30851E-01	-9.41042E-02	9.45349E-03	1.199922-02
7000.	-4.57899E+01	1.327802+00	2.41351E-01	-1.38821E-01	-8.61534E-02	-6.49649E-03	8.83775E-03
10000.	-4.51295E+01	9.78457E-01	2.088792-01	-9.24217E-02	-7.29486E-02	-1.279858-02	5.37477E-03
20006.	-4.40453E+01	4.43773E-01	1.135372-01	-3.78696E-02	-4.20886E-02	-1.39142E-02	-2.74451E-04
Equal Temp.	-5.473972+01	8.281392+00	-2.97971E+00	8.652292-01	-5.12815E-01	1.97141E-01	-4.18393E-02

See appendix for Chebyshev fit details.

1

8-31

Electron Capture Rate Coefficients for Be + $B^+ \rightarrow B(2p) + Be^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

		Be E	inergy (eV/am	u)		
10000.	20000.	40000.	60000.	80000.	100000.	200000.
3.21E-10	6.15E-10	6.02E-10	3.75E-10	2.512-10*	1.72E-10*	2.402-11**
3.21E-10	6.15E-10	6.01E-10	3.75E-10*	2.51E-10*	1.72E-10*	2.408-11**
3.20E-10	6.14E-10	6.01E-10	3.75E-10*	2.51E-10*	1.72E-10*	2.40E-11**
3.20E-10	6.13E-10	6.00E-10	3.75E-10	2.51E-10*	i.72E-10*	2.405-11**
3.19E-10	6.12E-10	5.99E-10	3.75E-10	2.512-10*	1.72E-10*	2.40E-11**
3.18E-10	6.10E-10	5.98E-10	3.75E-10	2.51E-10*	1.71E-10*	2.40E-11**
3.18E-10	6.08E-10	5.96E-10	3.75E-10	2.512-10	1.71E-10*	2.402-11**
3.17E-10	6.05E-10	5.93E-10	3.75E-10	2.510-10	1.70E-10*	2.40E-11**
3.17E-10	6.03E-10	5.928-10	3.76E-10	2.51E-10	1.70E-10*	2.40E-11**
3.19E-10	5.99E-10	5.87E-10	3.76E-10	2.52E-10	1.69E-1.0*	2.41E-11**
3.25E-10	5.94E-10	5.81E-10	3.76E-10	2.52E-10	1.68E-10	2.43E-11**
3.35E-10	5.88E-10	5.72E-10	3.77E-10	2.528-10	1.68E-10	2.45E-11**
3.46E-10	5.822-10	5.64E-10	3.77E-10	2.53E-10	1.68E-10	2.488-11**
3.75E-10	5.648-10	5.41E-10	3.75E-10	2.53E-10	1.682-10	2.568-11*
4.13E-10	5.34E-10	5.02E-10	3.66E-10	2.52E-10	1.71E-10	2.75E-11*
4.40E-10	5.01E-10	4.58E-10	3.49E-10	2.49E-10	1.74E-10	3.04E-11*
4.50E-10	4.752-10	4.24E-10	3.31E-10	2.44E-10	1.75E-10	3.34E-11*
4.33E-10	4.12E-10	3.51E-10	2.83E-10	2.222-10	1.712-10	4.25E-11*
	10000. 3.21E-10 3.21E-10 3.20E-10 3.20E-10 3.19E-10 3.18E-10 3.18E-10 3.17E-10 3.17E-10 3.25E-10 3.35E-10 3.46E-10 3.75E-10 4.13E-10 4.40E-10 4.33E-10	10000. 20000. 3.21E-10 6.15E-10 3.21E-10 6.15E-10 3.20E-10 6.14E-10 3.20E-10 6.13E-10 3.19E-10 6.12E-10 3.18E-10 6.10E-10 3.18E-10 6.08E-10 3.17E-10 6.05E-10 3.17E-10 6.03E-10 3.19E-10 5.99E-10 3.25E-10 5.94E-10 3.46E-10 5.82E-10 3.75E-10 5.64E-10 4.13E-10 5.01E-10 4.50E-10 4.75E-10 4.33E-10 4.12E-10	Bernol 10000. 20000. 40000. 3.21E-10 6.15E-10 6.02E-10 3.21E-10 6.15E-10 6.01E-10 3.20E-10 6.14E-10 6.01E-10 3.20E-10 6.13E-10 6.00E-10 3.20E-10 6.12E-10 5.99E-10 3.19E-10 6.10E-10 5.98E-10 3.18E-10 6.08E-10 5.98E-10 3.17E-10 6.03E-10 5.93E-10 3.17E-10 6.03E-10 5.92E-16 3.19E-10 5.99E-10 5.87E-10 3.17E-10 6.03E-10 5.92E-16 3.19E-10 5.99E-10 5.87E-10 3.19E-10 5.94E-10 5.81E-10 3.19E-10 5.94E-10 5.81E-10 3.19E-10 5.84E-10 5.72E-10 3.46E-10 5.82E-10 5.64E-10 3.75E-10 5.64E-10 5.02E-10 4.13E-10 5.34E-10 5.02E-10 4.40E-10 5.01E-10 4.58E-10 4.50E-10 4.75E-10	BeEnergy (eV/am $10000.$ $20000.$ $40000.$ $60000.$ $3.21E-10$ $6.15E-10$ $6.02E-10$ $3.75E-10$ $3.21E-10$ $6.15E-10$ $6.01E-10$ $3.75E-10^*$ $3.20E-10$ $6.14E-10$ $6.01E-10$ $3.75E-10^*$ $3.20E-10$ $6.13E-10$ $6.00E-10$ $3.75E-10^*$ $3.20E-10$ $6.12E-10$ $5.99E-10$ $3.75E-10$ $3.19E-10$ $6.12E-10$ $5.99E-10$ $3.75E-10$ $3.18E-10$ $6.08E-10$ $5.98E-10$ $3.75E-10$ $3.17E-10$ $6.03E-10$ $5.93E-10$ $3.75E-10$ $3.17E-10$ $6.03E-10$ $5.92E-16$ $3.76E-10$ $3.17E-10$ $5.99E-10$ $5.87E-10$ $3.76E-10$ $3.19E-10$ $5.99E-10$ $5.87E-10$ $3.76E-10$ $3.19E-10$ $5.94E-10$ $5.81E-10$ $3.76E-10$ $3.25E-10$ $5.84E-10$ $5.72E-10$ $3.77E-10$ $3.75E-10$ $5.64E-10$ $5.72E-10$ $3.77E-10$ $3.75E-10$ $5.64E-10$ $5.02E-10$ $3.66E-10$ $4.13E-10$ $5.01E-10$ $4.58E-10$ $3.49E-10$ $4.50E-10$ $4.75E-10$ $4.24E-10$ $3.31E-10$ $4.33E-10$ $4.12E-10$ $3.51E-10$ $2.83E-10$	Be Energy (eV/amu) $10000.$ $20000.$ $40000.$ $60000.$ $80000.$ $3.21E-10$ $6.15E-10$ $6.02E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $3.21E-10$ $6.15E-10$ $6.01E-10$ $3.75E-10^{\circ}$ $2.51E-10^{\circ}$ $3.20E-10$ $6.14E-10$ $6.01E-10$ $3.75E-10^{\circ}$ $2.51E-10^{\circ}$ $3.20E-10$ $6.13E-10$ $6.00E-10$ $3.75E-10^{\circ}$ $2.51E-10^{\circ}$ $3.20E-10$ $6.13E-10$ $6.00E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $3.19E-10$ $6.12E-10$ $5.99E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $3.18E-10$ $6.08E-10$ $5.98E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $3.18E-10$ $6.08E-10$ $5.98E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $3.17E-10$ $6.03E-10$ $5.93E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $3.17E-10$ $6.03E-10$ $5.92E-10$ $3.76E-10$ $2.52E-10$ $3.17E-10$ $6.03E-10$ $5.92E-10$ $3.76E-10$ $2.52E-10$ $3.19E-10$ $5.94E-10$ $5.81E-10$ $3.76E-10$ $2.52E-10$ $3.25E-10$ $5.88E-10$ $5.72E-10$ $3.77E-10$ $2.52E-10$ $3.46E-10$ $5.82E-10$ $5.64E-10$ $3.75E-10$ $2.53E-10$ $3.75E-10$ $5.64E-10$ $5.72E-10$ $3.75E-10$ $2.52E-10$ $3.46E-10$ $5.82E-10$ $5.64E-10$ $3.75E-10$ $2.52E-10$ $3.46E-10$ $5.64E-10$ $5.72E-10$ $3.66E-10$ $2.52E-10$ $4.13E-10$ $5.01E-10$ $4.58E-10$ $3.49E-10$ <td>Be Energy (eV/amu)10000.20000.40000.60000.$80000.$100000.3.21E-106.15E-106.02E-10$3.75E-10$$2.51E-10^{\circ}$$1.72E-10^{\circ}$3.21E-106.15E-106.01E-10$3.75E-10^{\circ}$$2.51E-10^{\circ}$$1.72E-10^{\circ}$3.20E-106.14E-106.01E-10$3.75E-10^{\circ}$$2.51E-10^{\circ}$$1.72E-10^{\circ}$3.20E-106.13E-106.00E-10$3.75E-10^{\circ}$$2.51E-10^{\circ}$$1.72E-10^{\circ}$3.19E-106.12E-10$5.99E-10$$3.75E-10$$2.51E-10^{\circ}$$1.72E-10^{\circ}$3.18E-106.00E-10$3.75E-10$$2.51E-10^{\circ}$$1.71E-10^{\circ}$3.18E-106.06E-10$5.96E-10$$3.75E-10$$2.51E-10^{\circ}$$1.71E-10^{\circ}$3.17E-106.05E-10$5.92E-10$$3.75E-10$$2.51E-10^{\circ}$$1.70E-10^{\circ}$3.17E-106.03E-10$5.92E-10$$3.76E-10$$2.52E-10$$1.69E-10^{\circ}$3.17E-10$5.99E-10$$5.72E-10$$3.76E-10$$2.52E-10$$1.68E-10^{\circ}$3.25E-10$5.94E-10$$5.72E-10$$3.77E-10$$2.52E-10$$1.68E-10^{\circ}$3.35E-10$5.84E-10$$5.72E-10$$3.77E-10$$2.53E-10$$1.68E-10^{\circ}$3.46E-10$5.82E-10$$5.64E-10$$3.77E-10$$2.52E-10$$1.68E-10^{\circ}$3.75E-10$5.64E-10$$3.77E-10$$2.52E-10$$1.68E-10^{\circ}$$3.75E-10$$5.64E-10$$3.77E-10$$2.52E-10$$1.68E-10^{\circ}$$3.75E-10$$5.64E-10$$3.$</td>	Be Energy (eV/amu)10000.20000.40000.60000. $80000.$ 100000.3.21E-106.15E-106.02E-10 $3.75E-10$ $2.51E-10^{\circ}$ $1.72E-10^{\circ}$ 3.21E-106.15E-106.01E-10 $3.75E-10^{\circ}$ $2.51E-10^{\circ}$ $1.72E-10^{\circ}$ 3.20E-106.14E-106.01E-10 $3.75E-10^{\circ}$ $2.51E-10^{\circ}$ $1.72E-10^{\circ}$ 3.20E-106.13E-106.00E-10 $3.75E-10^{\circ}$ $2.51E-10^{\circ}$ $1.72E-10^{\circ}$ 3.19E-106.12E-10 $5.99E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $1.72E-10^{\circ}$ 3.18E-106.00E-10 $3.75E-10$ $2.51E-10^{\circ}$ $1.71E-10^{\circ}$ 3.18E-106.06E-10 $5.96E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $1.71E-10^{\circ}$ 3.17E-106.05E-10 $5.92E-10$ $3.75E-10$ $2.51E-10^{\circ}$ $1.70E-10^{\circ}$ 3.17E-106.03E-10 $5.92E-10$ $3.76E-10$ $2.52E-10$ $1.69E-10^{\circ}$ 3.17E-10 $5.99E-10$ $5.72E-10$ $3.76E-10$ $2.52E-10$ $1.68E-10^{\circ}$ 3.25E-10 $5.94E-10$ $5.72E-10$ $3.77E-10$ $2.52E-10$ $1.68E-10^{\circ}$ 3.35E-10 $5.84E-10$ $5.72E-10$ $3.77E-10$ $2.53E-10$ $1.68E-10^{\circ}$ 3.46E-10 $5.82E-10$ $5.64E-10$ $3.77E-10$ $2.52E-10$ $1.68E-10^{\circ}$ 3.75E-10 $5.64E-10$ $3.77E-10$ $2.52E-10$ $1.68E-10^{\circ}$ $3.75E-10$ $5.64E-10$ $3.77E-10$ $2.52E-10$ $1.68E-10^{\circ}$ $3.75E-10$ $5.64E-10$ $3.$

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients											
He												
Energy												
(eV/amu)	A0	A1	A2	A3	۸4	۸5	A6					
10000.	-4.35175E+01	1.70837E-01	8.90710E-02	3.52059 2- 03	-7.192438-02	2.562832-02	-9.06765E-03					
20000.	-4.26087E+01	-1.54555E-01	-8.94632E-02	-4.26611E-02	-1.61171E-02	-3.240652-03	7.744722-04					
40000.	-4.27112E+01	-2.07196E-01	-1.26305E-01	-5.98268E-02	-2.07064E-02	-3.396558-03	1.43741E-03					
60000.	-4.349612+01	-8.32780E-02	-6.90413E-02	-4.75586E-02	-2.57998E-02	-1.00636E-02	-1.679432-03					
80000.	-4.42403E+G1	-2.77368E-02	-2.78472E-02	-2.36213E-02	-1.56284E-02	-8.389008-03	-4.20444E-03					
100000.	-4.417542+01	-4.83485E-04	1,15859E-02	4.48823E-03	-4.64650E-03	-0.95457E-03	-5.16220E-03					
200000.	-4.86002E+0]	2.01513E-C1	1,40611E-01	7.66020E-02	3.177822-02	8.85564E-03	7.47137E-05					

See appendix for Chebyshev fit details.

Line Emission Cross Sections of Electron Capture Collisions for H^+ + He -> H(H_m) + He^+

.

Energy	Velocity	Cross Section
(eV/amu)	(Cm/S)	(c a ²)
1.3E+03	5.01E+07	5.94E-21
2.0E+03	6.21E+07	1.62E-20
4.0E+03	8.79E+07	6.73E-2G
7.0E+03	1.162+08	2.14E-19
1.0E+04	1.39E+08	4.29E-19
2.0E+04	1.96E+08	1.452-18
4.0E+04	2.782+08	2-92E-18
7.1E+04	3.702+08	1.90E-18
1.0E+05	4.396+08	1.13E-18
2.0E+05	6.21E+08	1.74E-19
3.02+05	7.61E+08	4.13E-20

References: 122, 134, 136, 136, 156, 160, 192

Accuracy: 40%

Notes: (1) H Balmer-e emission is He with k=656.3 nm.

(2) Balmer-e emission is the n=3->2 transition and is equal to $\sigma(3s)$ + .118 $\sigma(3p)$ + $\sigma(3d)$ where $\sigma(31)$ is the cross section for capture into each n=3 angular momentum state. The factor .118 is for the branching ratio of the 3p state.

(3) If the cross sections from pages B-40, B-46 and B-52 are summed using this formula then the $H_{\rm m}$ cross sections are within 10-20% of the evaluated sums.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.32+03 \text{ eV/amu}, E_{max} = 3.02+05 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

AO AI A2 A3 A4 A5 A6 A7 A8 -86.7431 1.47945 -2.26092 -.605332 .0536620 .125835 -.00401562 -.0314533 -.0205645

The fit represents the above cross sections with an rms deviation of 2.4%. The maximum deviation is 5.5% at 7.1E+04 eV/amu. See appendix for Chebyshev fit details.

Line Emission Rate Coefficients of Electron Capture Collisions for $H^+ + He^- > H(H_e) + He^+$

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

8+								
Tesp.	Equal				He Temp. (eV	")		
(eV)	Temp.	100.	500.	1000.	500G.	10090.	15600.	20006.
1.0E+02	4.62E-17	4.62E-17	4.63E-15	4.11E-14	2.61E-12	1.332-11	3.27E-11	, 5.90E-11
2.0E+02	8.39E-15	4.632-15	3.00E-14	1.07E-13	3.142-12	1.45E-11	3.45P-11	6.13E-11
4.0E+02	1.54E-13	8.75E-14	1.81E-13	3.53E-13	4.36E-12	1.728-11	3.842-11	6.61E-11
7.0E+02	8.25E-13	4.86E-13	7.01E-13	1.03E-12	€.62E-12	2.16E-11	4.46E-11	7.34E-11
1.0E+03	2.14E-12	1.27E-12	1.62E-12	2.14E-12	9.40E-12	2.64E-11	5.112-11	8.10E-11
2.0E+03	1.218-11	7.26E-12	8.18E-12	9.40E-12	2.24E-11	4.568-11	7.472-11	1.07E-10
4.0E+03	5.67E-11	3.602-11	3.798-11	4.042-11	é.25E-11	9.388-11	1.272-10	1.61E-10
7.0E+03	1.54E-10	1.08E-10	1.10E-10	1.14E-10	1.41E-10	1.758-10	2.07E-10	2.38E-10
1.0E+04	2.49E-10	1.88E-10	1.91E-10	1.942-10	2.20E-10	2. 4 9E-10	2.77E-10	3.02E-10
2.02+04	4.276-10	3.80E-10	3.81E-10	3.63 8-10	3.94E-10	4.072-10	4.18E-10	4.27E-10

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients										
He											
Temp.											
(eV)	AO	A1	A2	A3	۸4	A5	76				
100.	-5,56271E+01	7.542252+00	-1.58664E+00	3.76818F-01	-2.66300E-01	4.31633E-02	1.35706E-02				
500.	-5,354528+01	5.80636E+00	-5.23960E-01	-1.37429E-01	-6.79972E-02	-9,79835E-03	1.77516E-02				
1000.	-5.22967E+01	4.84928E+00	-6.69532E-02	-2.78274E-01	-4.61871E-02	-1.88369E-03	9.07721E-03				
5000.	-4.89693E+01	2.71099E+00	4.028942-01	-2.04786E-01	-8.92702E-02	1.65791E-03	8.93841E-03				
10000.	-4.72849E+01	1.82717E+00	3.81313E-01	-1.07442E-01	-7.83908E-02	-9.544372-03	6.43829E-03				
15000.	-4.62748E+01	1.34714E+00	3.25406E-01	-6.01114E-02	-6.20496E-02	-1.28087E-02	3.45512E-03				
20000.	-4.55796E+01	1.03752E+00	2.73271E-01	-3.47245E-02	-4.87660E-02	-1.29560E-02	1.49966E-03				
Equal Temp.	-5.48859E+01	7.46410E+00	-1.79561E+00	4.52870E-01	-3.474188-01	1.03439E-01	-8.24563E-03				

See appendix for Chebyshev fit details.

I

Line Emission Rate Coefficients of Electron Capture Collisions for He + B^+ -> $H(B_m)$ + Be^+

Beam - Maxwellian Rate Coefficients (cm³/s)

B ⁺							
Tesp.			He E	nergy (eV/am	u)		
(eV)	10000.	20000.	40000.	60000.	80000.	100000.	200000.
1.0E+00	J.96E-11*	2.84E-10*	8.07E-16*	7.33E-10*	6.23E-10*	4.958-10*	1.08E-10**
2.0E+00	5.96E-11*	2.84E-10*	8.06E-10*	7.33E-10*	6.23E-10*	4.95E-10*	1.08E-10**
4.0E+00	5.965-11*	2.83E-10*	8.03E-10*	7.33E-10*	6.23E-10*	4.942-10*	1.08E-10**
7.0E+00	5.97E-11*	2.83E-10*	8.01E-10*	7.33E-10*	6.23E-10*	4.942-10*	1.08E-10**
1.0E+01	5.98E-11*	2.83E-10*	7.992-10	7.33E-10*	6.232-10*	4.93E-10*	1.08E-10**
2.0E+01	6.01E-11*	2.822-10	7.94E-10	7.33E-10*	6.23E-10*	4.92E-10*	1.08E-10**
4.0E+01	6.08E-11*	2.82E-10	7.672-10	7.33E-10	6.23E-10*	4.90E-10*	1.07E-10**
7.0E+01	6.18E-11*	2. 82E-10	7.80E-10	7.33E-10	6.23E-10*	4.88E-10*	1.07E-10**
1.92+02	6.292-11*	2.83E-10	7.74E-10	7.33E-10	6.23E-10*	4.87E-10*	1.07E-10**
2.0E+02	6.67E-11	2.85E-10	7.60E-10	7.33E-10	6.23E-10	4.84E-10*	1.07E-10**
4.0E+02	7.45E-11	2.92E-10	7.42E-10	7.31E-10	6.21E-10	4.79E-10*	1.07E-10**
7.0E+02	8.65E-11	3.04E-10	7.24E-10	7.27E-10	6.17E-10	4.75E-10*	1.072-10**
1.0E+03	9.832-11	3.16E-10	7.11E-10	7.22E-10	6.12E-10	4.72E-10*	1.07E-10**
2.0E+03	1.36E-10	3.52E-10	6.80E-10	7.02E-10	5.97E-10	4.64E-10*	1.09E-10*
4.0E+03	2.05E-10	4.00E-10	6.43E-10	6.60E-10	5.69E-10	4.51E-10	1.12E-10*
7.0E+03	2.87E-10	4.402-10	6.04E-10	6.08E-10	5.33E-10	4.33E-10	1.17E-10*
1.0E+04	3.46E-10	4.63E-10	5.75E-10	5.68E-10	5.02E-16	4.16E-10	1.22E-10*
2.02+04	4.46E-10	4.86E-10	5.07E-10	4.79E-10	4.27E-10	3.67E-10	1.33E-10*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 10%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{\min} = 1.0E+00 \text{ eV}, \quad E_{\max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients						
fie							
Energy							
(eV/amu)	A0	Al	A2	A3	A4	A5	٨6
10000	-4 600400-01	4 718078-01	A 837768-01	0 11130P_03	-6 136908-07	-6 767238-02	-1 791068-02
20000.	-4.365072+01	2-642118-01	1.43555E-01	2.702212-02	-2.48764E-02	-2.400822-02	-7.548022-03
40000.	-4.21414E+01	-2.00867E-01	-8.98633E-02	-2.87027E-02	-8.54506E-03	-3.26747E-03	-1.21561E-03
60000.	-4.223692+01	-1.51900E-01	-1.087312-01	-5.90440E-02	-2.19357E-02	-3.21591E-03	2.30144E-03
80000.	-4.25414E+01	-i.32445E-01	-9.43661E-02	-5.17183E-02	-2.054602-02	-5.151322-03	-3.15003E-04
100000.	-4.298962+01	-1.10475E-01	-6.22264E-02	-3.20171E-02	-1.65763E-02	-7.76766E-03	-2.70010E-03
200000.	-4.58241E+01	7.16963E-02	5.83098E-02	3.321182-02	1.214598-02	1.47440E-03	-1.87694E-03

See appendix for Chebyshev fit details.

8-38

He +
$$H^{+}$$
 -> $H(H_{a})$ + He^{+}

Beam - Maxwellian

1

Electron Capture Cross Sections for $B^+ + Be \rightarrow B(3s) + Be^+$

Energy	Velocity	Cross Section
(eV/anu)	(ca/s)	(c m²)
1.25+03	4.81E+07	7.9ċe-20
2.02+03	6.21E+07	9.728-20
4.0E+03	8.79E+07	1.39E-19
7.0E+03	1.162+08	1-94E-19
1.0E+04	1.39E+08	2.59E-19
2.0E404	1.962+08	6.57E-19
4.0E+04	2.78E+08	1.65E-18
4.4E+04	2.91E+08	1.672-18
7.0E+04	3.68E+0\$	1.202-18
1.0E+05	4.392+08	7.586-19
2.9E+05	6.21E+08	1.652-19
4.0E+05	8.782+08	1.10E-20
7.0E+05	1.162+09	1.168-21
1.0E+ 5	1.39E+09	2.40E-22
1.3E+06	1.58E+09	6.65E-23

References: 20, 129, 130, 134, 154, 155, 156, 157, 158, 159, 160, 161

Accuracy: unknown

<u>Notes:</u> (1) Very few papers report absolute cross sections. The overall assessment of the data is in doubt due to the validity of the different normalization schemes.

(2) Cascade from higher states is usually neglected and can contribute up to a 5% error in the reported crozs sections.

(3) The cross section (σ_{j}) for capture into state i is determined by measuring the emission cross section (σ_{jj}) for a transition from state i to j, correcting for any branching and correcting for cascading from upper states. For Balmer- α emission from the n=3 state, the cross section $\sigma(H_{\alpha})=\sigma(3s) + .188 \sigma(3p) + \sigma(3d)$.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.2E+03 \text{ eV/amu}, E_{max} = 1.3E+06 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

¥0	A1	λ2	A3	74	A5	A6	A7	V8
-89.3963	-2.75333	-3.10976 -	952686	.352124	.248416	119805	0706000	.0607563

The fit represents the above cross sections with an rms deviation of 7.1%. The maximum deviation is 12.3% at 7.02+04 eV/amu. See appendix for Chebyshev fit details.

<u>B-41</u>

Electron Capture Rate Coefficients for $B^+ + Be \rightarrow B(3s) + Be^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

в+								
Temp.	Equal				Re Temp. (ev	7)		
(eV)	Tesp.	100.	500.	1009.	5000.	10000.	15000.	20000.
1.0E+02	1.04E-15	1.042-15	6.14E-14	3.76E-13	5.538-12	1.30E-11	2.28E-11	3.55E-11
2.0E+02	1.028-13	6.14E-14	2.92E-13	7.83E-13	6.07E-12	1.36E-11	2.37E-11	3.67E-11
4-0E+02	1.022-12	6.72E-13	1.14E-12	1.78E-12	7.172-12	1.51E-11	2.56E-11	3.90E-11
7.0E+02	2. 98E -12	2.17E-12	2.71E-12	3.388-12	8.87E-12	1.73 E- 11	2.862-11	4.26E-11
1.0E+03	4.99E-12	3.78E-12	4.328-12	4.99E-12	1.07E-11	1.97E-11	3.17E-11	4.63E-11
2.0E+03	1.23e-11	9.31E-12	9.91E-12	1.07E-11	1.77 E-11	2.91E-11	4.32E-11	5.94E-11
4.0E+03	3.44e-11	2.44E-11	2.54E-11	2.66E-11	3.72E-11	5.27E-11	6.98E-11	6.78E-11
7.0E+03	8.42E-11	5.98E-11	6.12E-11	6.29E-11	7.70E-11	9.50E-11	1.13E-10	1.30E-10
1.0E+04	1.37E-10	1.03E-10	1.042-10	1.06E-10	1.20E-10	1.372-10	1.53E-10	1.68E-1G
2.0 2+04	2.482-10	2.17E-10	2.17E-10	2.18E-10	2.26E-1C	2.34E-10	2.42E-10	2.48E-10

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Mate Coefficients						
Be							
Isap.							
(eV)	0A	A1	N2	EA	54	λ5	A6
100.	-5.37012E+01	5.517368+00	-1.26631E+00	6.41819 <u>e-</u> 01	-2.597178-01	-3.506908-02	-8.79675E-04
500.	-5.19390E+01	4.016662+00	-2.936562-01	1.47807E~01	-7.576528-02	-7.86568E-02	3.19866E-03
1000.	-5.09725E+01	3.25191E+00	1.17635 E-01	-4.41960E-03	-5.45641E-02	-6.54437E-02	-4.41120E-03
5000.	-4.89296E+01	1.94263E+00	4.86039E-01	-5,62 1018-02	-8.77510E-02	-3.17734E-02	-1.68441E-04
10000.	-4.795202+01	1.50755E+00	4.27186E-01	-3.56552E-02	-7.51944E-02	-2.470798-02	1.687072-03
15000.	-4.72456E+01	1.223388+00	3.576632-01	-2.27359E-02	-5.994258-02	-2.00776E-02	7.63417E-04
20000.	-4.66818E+01	1.00201E+00	2.996492-01	-1.363302-02	-4.72262E-02	-1.65699E-02	-1.65257E-05
Equal Temp.	-5.31267E+01	5.47937E+00	-1.36275E+00	6.93916E-01	-3.79924E-01	1.82789E-02	-3.07574E-03

See appendix for Chebyshev fit details.

<u>B-43</u>

Electron Capture Rate Coefficients for Be + $B^+ \rightarrow B(3s) + Be^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

		ße E	nergy (eV/am	(a)		
10600.	20000.	40000.	70000.	100000.	200000.	500000.
3.61E-11	1.29E-10	4.57E-10	4.40E-10	3.32E-10	1.02E-10	4,40E-12*
3.62E-11	1.29E-10	4.56E-10	4.402-10	3.32E-10	1.02B-10	4.40E-12*
3.62E-11	1.29E-10	4.55E-1C	4.402-10	3.32E-10	1.02E-10	4.40E-12*
3.638-11	1.29E-10	4.54E-10	4.40E-10	3:32E-10	1.02E-10	*.40E-12*
3.64E-11	1.29E-10	4.54E-10	4.398-10	3.31E-10	1.02E-10	4.40E-12*
3.672-11	1.302-10	4.528-10	4.39E-10	3.31E-10	1.02E-10	4.418-12*
3.722-11	1.30E-10	4.50E-10	4.38E-10	3.30E-10	1.01E-1C	4.41E-12*
3.78E-11	1.31E-10	4.47E-10	4.37E-10	3.29B-10	1.01E-10	4.418-12*
3.83E-11	1.32E-10	4.44E-10	4.36E-10	3.28E-10	1.01E-10	4. \$1e-12 *
4.01E-11	1.35E-10	4.38E-16	4.33E-10	3.26E-10	9.99E-11	4.42E-12
4.356-11	1.40E-10	4.292-10	4.30E-10	3.24E-10	9.92E-11	4.44E-12
4.86E-11	1.49E-10	4.19E-10	4.27E-10	3.21E-10	9.86E-11	4.47E-12
5.37E-11	1.57E-10	4.12E-10	4.242-10	3.19E-10	9.82E-11	4.50E-12
7.17 2- 11	1.82E-10	3.96E-10	4.14E-10	3.14E-10	9.78E-11	4.60E-12
1.086-10	2.16E-10	3.782-10	3.93E-10	3.06E-10	9.84E-11	4.81E-12
1.562-10	2.47E-10	3.598-10	3.662-10	2.938-10	1.00E-10	5.14E-12
1.93E-10	2.66E-10	3.46E-10	3.44E-10	2.82E-10	1.02E-10	5.51E-12
2.61E-10	2.90E-10	3.13E-10	2.94E-10	2.48E-10	1.06E-10	7.04E-12
	10000. 3.612-11 3.622-11 3.622-11 3.638-11 3.642-11 3.672-11 3.722-11 3.722-11 3.782-11 4.012-11 4.352-11 4.862-11 5.372-11 1.082-10 1.562-10 1.932-10 2.612-10	10600. 20000. 3.61E-11 1.29E-10 3.62E-11 1.29E-10 3.62E-11 1.29E-10 3.63E-11 1.29E-10 3.64E-11 1.29E-10 3.67E-11 1.30E-10 3.72E-11 1.30E-10 3.78E-11 1.31E-10 3.83E-11 1.32E-10 4.01E-11 1.35E-10 4.35E-11 1.40E-10 5.37E-11 1.57E-10 7.17E-11 1.82E-10 1.68E-10 2.16E-10 1.56E-10 2.47E-10 1.93E-10 2.66E-10 2.61E-10 2.90E-10	Be E 10C00. 20000. 40000. 3.61E-11 1.29E-10 4.57E-10 3.62E-11 1.29E-10 4.56E-10 3.62E-11 1.29E-10 4.55E-1C 3.63E-11 1.29E-10 4.55E-1C 3.63E-11 1.29E-10 4.54E-10 3.64E-11 1.29E-10 4.54E-10 3.67E-11 1.30E-10 4.52E-10 3.72E-11 1.30E-10 4.50E-10 3.78E-11 1.31E-10 4.47E-10 3.83E-11 1.32E-10 4.44E-10 4.01E-11 1.35E-10 4.38E-16 4.35E-11 1.40E-10 4.29E-10 4.86E-11 1.49E-10 4.19E-10 5.37E-11 1.57E-10 4.12E-10 7.17E-11 1.82E-10 3.96E-10 1.08E-10 2.16E-10 3.78E-10 1.56E-10 2.47E-10 3.59E-10 1.93E-10 2.66E-10 3.46E-10 2.61E-10 2.90E-10 3.13E-10 <td>Be Energy (eV/an10600.20000.40000.70000.3.61E-111.29E-104.57E-104.40E-103.62E-111.29E-104.56E-104.40E-103.62E-111.29E-104.55E-1C4.40E-103.63E-111.29E-104.54E-104.40E-103.64E-111.29E-104.54E-104.39E-103.67E-111.30E-104.52E-104.39E-103.72E-111.30E-104.50E-104.38E-103.78E-111.31E-104.47E-104.37E-103.83E-111.32E-104.44E-104.36E-104.01E-111.35E-104.38E-164.33E-104.35E-111.40E-104.29E-104.30E-104.86E-111.49E-104.19E-104.24E-107.17E-111.82E-103.96E-104.14E-101.68E-102.16E-103.78E-103.93E-101.56E-102.47E-103.59E-103.66E-101.93E-102.66E-103.44E-103.44E-102.61E-102.90E-103.13E-102.94E-10</td> <td>Be Energy (eV/amu)$10600.$$20000.$$40000.$$70000.$$100000.$$3.61E-11$$1.29E-10$$4.57E-10$$4.40E-10$$3.32E-10$$3.62E-11$$1.29E-10$$4.56E-10$$4.40E-10$$3.32E-10$$3.62E-11$$1.29E-10$$4.55E-1C$$4.40E-10$$3.32E-10$$3.63E-11$$1.29E-10$$4.54E-10$$4.40E-10$$3.32E-10$$3.63E-11$$1.29E-10$$4.54E-10$$4.39E-10$$3.31E-10$$3.64E-11$$1.29E-10$$4.54E-10$$4.39E-10$$3.31E-10$$3.67E-11$$1.30E-10$$4.52E-10$$4.38E-10$$3.30E-10$$3.72E-11$$1.30E-10$$4.50E-10$$4.38E-10$$3.29E-10$$3.78E-11$$1.31E-10$$4.47E-10$$4.37E-10$$3.28E-10$$3.83E-11$$1.32E-10$$4.44E-10$$4.36E-10$$3.24E-10$$4.01E-11$$1.35E-10$$4.29E-10$$4.30E-10$$3.24E-10$$4.35E-11$$1.40E-10$$4.29E-10$$4.24E-10$$3.19E-10$$4.86E-11$$1.49E-10$$4.19E-10$$4.24E-10$$3.14E-10$$5.37E-11$$1.57E-10$$4.12E-10$$4.24E-10$$3.14E-10$$1.08E-10$$2.16E-10$$3.78E-10$$3.93E-10$$3.06E-10$$1.93E-10$$2.66E-10$$3.46E-10$$3.44E-10$$2.93E-10$$1.93E-10$$2.66E-10$$3.46E-10$$3.44E-10$$2.82E-10$$2.61E-10$$2.90E-10$$3.13E-10$$2.94E-10$$2.82E-10$</td> <td>Be Energy (eV/amu$10600.$$20000.$$40000.$$70000.$$100000.$$200000.$$3.61E-11$$1.29E-10$$4.57E-10$$4.40E-10$$3.32E-10$$1.02E-10$$3.62E-11$$1.29E-10$$4.56E-10$$4.40E-10$$3.32E-10$$1.02E-10$$3.62E-11$$1.29E-10$$4.55E-1C$$4.40E-10$$3.32E-10$$1.02E-10$$3.63E-11$$1.29E-10$$4.54E-10$$4.40E-10$$3.32E-10$$1.02E-10$$3.64E-11$$1.29E-10$$4.54E-10$$4.39E-10$$3.31E-10$$1.02E-10$$3.64E-11$$1.29E-10$$4.54E-10$$4.39E-10$$3.31E-10$$1.02E-10$$3.64E-11$$1.30E-10$$4.52E-10$$4.39E-10$$3.30E-10$$1.02E-10$$3.64E-11$$1.30E-10$$4.52E-10$$4.38E-10$$3.30E-10$$1.01E-10$$3.64E-11$$1.30E-10$$4.52E-10$$4.38E-10$$3.29E-10$$1.01E-10$$3.72E-11$$1.30E-10$$4.50E-10$$4.38E-10$$3.29E-10$$1.01E-10$$3.78E-11$$1.32E-10$$4.44E-10$$4.36E-10$$3.28E-10$$9.99E-11$$4.55E-11$$1.40E-10$$4.29E-10$$4.27E-10$$3.24E-10$$9.92E-11$$4.66E-11$$1.49E-10$$4.29E-10$$4.24E-10$$3.19E-10$$9.66E-11$$5.37E-11$$1.57E-10$$4.12E-10$$4.24E-10$$3.19E-10$$9.62E-11$$7.17E-11$$1.82E-10$$3.96E-10$$4.14E-10$$3.14E-10$$9.78E-11$$1.68E-10$$2.47$</td>	Be Energy (eV/an 10600.20000.40000.70000.3.61E-111.29E-104.57E-104.40E-103.62E-111.29E-104.56E-104.40E-103.62E-111.29E-104.55E-1C4.40E-103.63E-111.29E-104.54E-104.40E-103.64E-111.29E-104.54E-104.39E-103.67E-111.30E-104.52E-104.39E-103.72E-111.30E-104.50E-104.38E-103.78E-111.31E-104.47E-104.37E-103.83E-111.32E-104.44E-104.36E-104.01E-111.35E-104.38E-164.33E-104.35E-111.40E-104.29E-104.30E-104.86E-111.49E-104.19E-104.24E-107.17E-111.82E-103.96E-104.14E-101.68E-102.16E-103.78E-103.93E-101.56E-102.47E-103.59E-103.66E-101.93E-102.66E-103.44E-103.44E-102.61E-102.90E-103.13E-102.94E-10	Be Energy (eV/amu) $10600.$ $20000.$ $40000.$ $70000.$ $100000.$ $3.61E-11$ $1.29E-10$ $4.57E-10$ $4.40E-10$ $3.32E-10$ $3.62E-11$ $1.29E-10$ $4.56E-10$ $4.40E-10$ $3.32E-10$ $3.62E-11$ $1.29E-10$ $4.55E-1C$ $4.40E-10$ $3.32E-10$ $3.63E-11$ $1.29E-10$ $4.54E-10$ $4.40E-10$ $3.32E-10$ $3.63E-11$ $1.29E-10$ $4.54E-10$ $4.39E-10$ $3.31E-10$ $3.64E-11$ $1.29E-10$ $4.54E-10$ $4.39E-10$ $3.31E-10$ $3.67E-11$ $1.30E-10$ $4.52E-10$ $4.38E-10$ $3.30E-10$ $3.72E-11$ $1.30E-10$ $4.50E-10$ $4.38E-10$ $3.29E-10$ $3.78E-11$ $1.31E-10$ $4.47E-10$ $4.37E-10$ $3.28E-10$ $3.83E-11$ $1.32E-10$ $4.44E-10$ $4.36E-10$ $3.24E-10$ $4.01E-11$ $1.35E-10$ $4.29E-10$ $4.30E-10$ $3.24E-10$ $4.35E-11$ $1.40E-10$ $4.29E-10$ $4.24E-10$ $3.19E-10$ $4.86E-11$ $1.49E-10$ $4.19E-10$ $4.24E-10$ $3.14E-10$ $5.37E-11$ $1.57E-10$ $4.12E-10$ $4.24E-10$ $3.14E-10$ $1.08E-10$ $2.16E-10$ $3.78E-10$ $3.93E-10$ $3.06E-10$ $1.93E-10$ $2.66E-10$ $3.46E-10$ $3.44E-10$ $2.93E-10$ $1.93E-10$ $2.66E-10$ $3.46E-10$ $3.44E-10$ $2.82E-10$ $2.61E-10$ $2.90E-10$ $3.13E-10$ $2.94E-10$ $2.82E-10$	Be Energy (eV/amu $10600.$ $20000.$ $40000.$ $70000.$ $100000.$ $200000.$ $3.61E-11$ $1.29E-10$ $4.57E-10$ $4.40E-10$ $3.32E-10$ $1.02E-10$ $3.62E-11$ $1.29E-10$ $4.56E-10$ $4.40E-10$ $3.32E-10$ $1.02E-10$ $3.62E-11$ $1.29E-10$ $4.55E-1C$ $4.40E-10$ $3.32E-10$ $1.02E-10$ $3.63E-11$ $1.29E-10$ $4.54E-10$ $4.40E-10$ $3.32E-10$ $1.02E-10$ $3.64E-11$ $1.29E-10$ $4.54E-10$ $4.39E-10$ $3.31E-10$ $1.02E-10$ $3.64E-11$ $1.29E-10$ $4.54E-10$ $4.39E-10$ $3.31E-10$ $1.02E-10$ $3.64E-11$ $1.30E-10$ $4.52E-10$ $4.39E-10$ $3.30E-10$ $1.02E-10$ $3.64E-11$ $1.30E-10$ $4.52E-10$ $4.38E-10$ $3.30E-10$ $1.01E-10$ $3.64E-11$ $1.30E-10$ $4.52E-10$ $4.38E-10$ $3.29E-10$ $1.01E-10$ $3.72E-11$ $1.30E-10$ $4.50E-10$ $4.38E-10$ $3.29E-10$ $1.01E-10$ $3.78E-11$ $1.32E-10$ $4.44E-10$ $4.36E-10$ $3.28E-10$ $9.99E-11$ $4.55E-11$ $1.40E-10$ $4.29E-10$ $4.27E-10$ $3.24E-10$ $9.92E-11$ $4.66E-11$ $1.49E-10$ $4.29E-10$ $4.24E-10$ $3.19E-10$ $9.66E-11$ $5.37E-11$ $1.57E-10$ $4.12E-10$ $4.24E-10$ $3.19E-10$ $9.62E-11$ $7.17E-11$ $1.82E-10$ $3.96E-10$ $4.14E-10$ $3.14E-10$ $9.78E-11$ $1.68E-10$ 2.47

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

.

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients							
Be				_			
Energy							
(eV/amu)	80	A1	A2	A3	24	A5	A6
10000.	~4.69590E+01	9.17776E-01	4.84822E-01	1.28148E-01	-3.382272-02	-5.58964E-02	~2.93167 E- 02
20000.	-4.50524E+01	3.95677E-01	1.97669E-01	3.56569E-02	-3.01554E-02	-2.88658E-02	-8.742262-03
40000.	-4.32289E+01	-1.650742-01	-7.60355E-02	-2.21081E-02	-4.24972E-03	-1.82033E-03	-1.77544E-03
70000.	-4.32620E+01	-1.48289E-01	-9.51993E-02	-4.97051E-02	-2.06125E-02	-5.329428-03	1.01964E-03
100000.	-4.377862+01	-1.05527E-01	~6.21604E-02	-3.23418E-02	-1.679J2E-02	-7.71384E-03	-2.68575E-03
200000.	-4.60232E+01	3.142832-05	2.12471E-C2	1.95060E-02	8.727402-03	1.21515E-03	-1.629898-03
500000.	-5.212812+01	1.520772-01	1.100932-01	6.67186E-02	3.41707E-02	1.4915)E-02	5.83661E-03

See appendix for Chebyshev fit details.

$$He + H^{+} -> H(3s) + He^{+}$$

Beam - Maxwellian

Electron Capture Cross Sections for $B^+ + Be \rightarrow B(3p) + Be^+$

Energy	Velocity	Cross Section
(eV/amu)	(Cm / s)	(cm ²)
1.7E+03	5.73E+07	1.35E-19
2.0E+C3	6.21E+ú7	1.48E-19
4.0E+03	8.79E+07	2.45E-19
7.0E+03	1.16E+08	3.84E-19
1.0E+04	1.39E+08	5.13E-19
2.0E+04	1.96E+08	8.57E-19
3.6E+04	2.64E+08	1.142-18
4.0E+04	2.78E+08	1.14E-18
7.02+04	3.69E+08	7.28E-19
1.0E+05	4.39E+08	3. 49 E-19
2.02+05	6.21E+08	3.95E-20
4.0E+05	8.78E+08	1.75E-21
7.0E+05	1,16E+09	1.02E-22
1.0E+06	1.39E+09	1.44E-23
1.2E+06	1.522+09	4.95E-24

References: 134, 136, 156, 157, 159, 160, 163, 164, 165, 166, 167

Accuracy: Unknown

Notes: (1) Very few papers report absolute cross sections. The overall assessment of the data is in doubt due to the validity of the different normalization schemes.

(2) Cascade from higher states is usually neglected but can contribute up to 5% error in the reported cross section measurements.

(3) The cross section (σ_i) for capture into state i is determined by measuring the emission cross section (σ_{ij}) for a transition from state i to j, correcting for cascading from upper states and correcting for any branching. For Belmer-* emission from the n=3 state the cross section $\P(B_n)=\P(3s) + .118\P(3p) + \P(3d)$.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.7E+03 \text{ eV/amu}, \quad E_{max} = 1.2E+06 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

AC A1 A2 A3 A4 A5 A6 A7 A8 -90.6049 -4.52585 -3.52507 -.678448 .325826 .143519 -.0657813 -.0500666 .0154546

The fit represents the above cross sections with an ras deviation of 1.74. The maximum deviation is 3.64 at 2.08+04 eV/amu. See appundix for Chebyshev fit details.

Electron Capture Rate Coefficients for $B^+ + Be \rightarrow B(3p) + Be^+$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

H+								
Temp.	iqua l				He Temp. (eV	73		
(eV)	Temp.	100.	500.	1000.	5000.	10000.	15000.	20000.
1.0E+02	4-48E-17	4.48E-17	1.54E-14	2.06E-13	8.41E-12	2.24E-11	3.77E-11	5.37E-11
2.0E+02	3.19E-14	1.54E-14	1.44E-13	5.85E-13	9.46E-12	2.36E-11	3.90E-11	5. 49 E-11
4.0E+02	8.46E-13	4.71E-13	9.922-13	1.85E-12	1.16E-11	2.60E-11	4.15E-11	5.75E-11
7.GE+02	3.74E-12	2.44E-12	3.29E-12	4.43E-12	1.492-11	2.96E-11	4.54E-11	6.14E-11
1.02+03	7.38E-12	5.15E-12	6.13E-12	7.38E-12	1.83E-11	3.34E-11	4.922-13	6.52E-11
2.0E+03	2.128-11	1.57E-11	1.69E-11	1.83E-11	3.02E-11	4.60E-11	6.20E-11	7.77E-11
4.02+03	5.24E-11	3.992-11	4.12E-11	4.28E-11	5.562-11	7.15E-11	8.68E-11	1.012-10
7.0E+03	9.84E-11	7.80E-11	7.93E-11	8.08E-11	9.262-11	1.07E-10	1.19E-10	1.312-10
1.0E+04	1.35E-10	1.12E-10	1.13E-1G	1.14E-10	1.24E-10	1.35E-10	1.45E-10	1.538-10
2.0E+04	1.90E-10	1.78E-10	1.78E-10	1.79E-10	1.82E-10	1.855-10	1.88E-10	1.902-10

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

		Chebyshev I	Pitting Parame	eters for Rate	e Coefficients	5	
He							
Temp.							
(eV)	Au	A1	٨2	A3	84	A5	A6
100.	-5.48603E+01	6.73175E+00	-2.33750E+90	8.57032E-01	-2.92258E-01	8.89193E-03	1.192678-02
500.	-5.235402+01	4.57847E+00	-9.34127E-01	1.52574E-01	-2.98508E-02	-5.41726E-02	1.56047E-02
1000.	-5.09960E+01	3.48139E+00	-3.33404E-01	-6.24733E-02	4.55378E-04	-3.70467E-02	2.75925E-03
5000.	-4.83469E+01	1.64909E+00	2.61394E-01	-1.05216E-01	-5.382732-02	-7.49908E-03	7.09196E-04
10000.	-4.73425E+01	1.12338E+00	2.550512-01	-5.63104E-02	-5.16563E-02	-1.13825E-02	1.38299E-03
15000.	-4.67459E+01	8.47733E-01	2.16661E-01	-3.36664E-02	-4.249298-02	-1.19700E-02	4.138662-04
20000.	-4.63234E+01	6.64850E-01	1.80257E-01	-2.17729E-02	-3.47781E-02	-1.13742E-02	-1.569342-04
Equal Temp.	-5.42194E+01	6.56075E+00	-2.45975E+00	9.87265E-01	-4.35539E-01	8.21003E-02	-9.921802-03

See appendix for Chebyshev fit details.

ī.

Maxwellian – Maxwellian

Electron Capture Rate Coefficients for $He + H^+ \rightarrow H(3p) + He^+$

Beam - Maxwellian Rate Coefficients (cm^3/s)

Temp.		He Energy (eV/amu)										
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.					
1.0E+00	7.13E-11	1.68E-10	3.166-10	2.67E-10	1.53E-10	2.45E-11	5.53E-13*					
2.0E+00	7.132-11	1.682-10	3.16E-10	2.67E-10	1.53E-10	2.45E-11	5.53E-13*					
4.0E+00	7.13 E-1 1	1.68E-10	3.158-10	2.66E-10	1.53g-10	2.45E-11	5.53E-13*					
7.0E+00	7.13E-11	1.68E-10	3.158-10	2.66E-10	1.53E-10	2.44E-11	5.53E-13*					
1.0E+01	7.13 E-1 1	1.682-10	3.14E-10	2.65E-10	1.52E-10	2.44E-11	5.53E-13*					
2.0E+01	7.15E-11	1.68E-10	3.148-10	2.64E-10	1.52E-10	2.44E-11	5.5+E-13*					
4.0E+01	7.17 E-1 1	1.68E-10	3.12E-10	2.63E-10	1.52E-10	2.43E-11	5.54E~13*					
7.0E+01	7.21E-11	1.68E-10	3.11E-10	2.62E-10	1.51E-10	2.43E-11	5.55E-13					
1.0E+02	7 .26E-1 1	1.68E-10	3.09E-10	2.61E-10	1.51E-10	2.42E-11	5.55E-13					
2.0E+02	7.41E-11	1.69E·10	3.06E-10	2.58E-10	1.50E-10	2.42E-11	5.57E-13					
4.0E+02	7.71E-11	1.712-10	3.012-10	2.54E-10	1.49E-10	2.422-11	5.61E-13					
7.02+02	8.162-11	1.74E-10	2.95E-10	2.50E-10	1.49E-10	2.42E-11	5.68E-13					
1.0E+03	8.61E-11	1.772-10	2.90E-10	2.47E-10	1.49E-10	2.43E-11	5.74E-13					
2.0E+03	1.00E-10	1.86E-10	2.79E-10	2.39E-10	1.48E-10	2.49E-11	5.97E-13					
4.0E+03	1.242-10	1.96E-10	2.63E-10	2.25E-10	1.462-10	2.632-11	6.432-13					
7.0E+03	1.512-10	2.04E-10	2.45E-10	2.08E-10	1.42E-10	2.88E-11	7.17E-13					
1.CE+04	1.70E-10	2.07E-10	2.30E-10	1.95E-10	1.38E-10	3.12E-11	8.02E-13					
2.0E+04	1.95E-10	2.03E-10	1.97E-10	1.642-10	1.24E-10	3.75E-11	1.18E-12					

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

11+

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients									
He									
Energy									
(eV/amu)	AO	A1	A2	٨3	A4	A5	٨6		
10000.	-4.61593E+01	4.69768E-01	2.55845E-01	6.75806E-02	-2.06018E-02	-3,21005E-02	-1.71678E-02		
20000.	-4.488322+01	1.053882-01	5.13750E-02	1.87880E-03	-1.77315E-02	-1.43595E-02	-5.26979E-03		
40000.	-4,39844E+01	-1.88716E-01	~1.03793E-01	-4.31001E-02	-1.44695E-02	-4.32136E-03	-8.32803E-04		
70000.	-4.43219E+01	-1.884512-01	-1.07258E-01	-4.99127E-02	-2.00817E-02	-6.25364E-03	-3.66259E-04		
160000.	-4.52889E+01	-7.00699E-02	-4.159598-02	-2.66009E-02	-1.74699E-02	-9,19908E-03	-3,00670E-03		
200000.	-4.8/156E+01	1.42634E-01	1.14850E-01	6.70C06E-02	2.67000E-02	5.120842-03	-2.83726E-03		
500000.	-5.616872+01	2.491122-01	1.78331E-01	1.05979E-01	5.28963E-02	2.251568-02	8.83834E-03		

See appendix for Chebyshev fit details.

Beam – Maxwellian

Election	Capture	Cross	Sections	for
R+	+ Re ->	H(3d)	+ He ⁺	

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(cm ²)
3.0E+C3	7.61E+07	1.166-19
4.0E+03	8.79E+07	1.36E-19
7.0E+03	1.16E+08	1.65E-19
1.0E+04	1.39E+08	1.71E-19
2.0E+04	1.96E+08	1.432-19
4.0E+04	2.782+09	8.332-20
7.0E+04	3.682+08	3.952-20
1.02+05	4.39E+08	1.53E-20
2.02+05	6.21E+00	1.44E-21
2.7E+05	7.222+08	4.00E-22
3.2E+05	7.86E+08	1.67E-22

References: 134, 136, 156, 157, 158, 159, 160

Accuracy: Unknown

<u>Notes:</u> (1) Ver<u></u> few papers report the absolute cross sections. The overall assessment of the data is in doubt due to the validity of the different normalization schemes.
(2) Cascade from higher states is usually neglected, but can contribute up to a 5% error in the reported cross section.

For a Chebyshev fit of the above cross sections it is necessar, to use the following parameters. $E_{min} = 3.0E+03 \text{ eV/amu}, E_{max} = 3.2E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A 1	A2	A 3	۸4	A5	A6	٨7	84
-90.4702	-2.39013	-1.60913	296858	0140200	-0353005	.0153108	0221875	0321765

The fit represents the above cross sections with an rms deviation of 1.9%. The maximum deviation is 3.1% at 1.0E+05 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Electron Capture Rate Coefficients for B^+ + Be -> B(3d) + Be⁺

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Temp.	Egual	He Temp. (eV)							
(eV)	Temp.	100.	500.	1000.	5000.	16000.	15000.	20000.	
2.02+02	2.41E-16	6.60E-17	3. 49 E-15	4.08E-14	3.27E-12	8.54E-12	1.242-11	1.522-11	
4.0E+02	7.71 E- 14	2.80E-14	1.01E-13	2.88E-13	4.19E-12	9.26E-12	1.29E-11	1.55 E- 11	
7.0E+02	8.89E-13	4-53E-13	7.292-13	1.15E-12	5.538-12	1.03E-11	1.36E-11	1.60E-11	
1.0E+03	2.38E-12	1.43E-12	1.84E-12	2.38E-12	6.80E-12	1.12E-11	1.43E-11	1.652-11	
2.0E+03	7.79E-12	5.85E-12	6.28E-12	6.80E-12	1.04E-11	1.372-11	1.51E-13	1.78E-11	
4.0E+03	1.482-11	1.26E-11	1.298-11	1.32E-11	1.52E-11	1.728-11	1.85E-11	1.956-11	
7.0E+03	1.94E-11	1.78E-11	1.79E-11	1.80E-31	1.90E-11	1.98E-11	2.04E-11	2.08E-11	
1.0E+04	2.10E-11	2.01E-11	2.02E-11	2.02E-11	2.06E-11	2.10E-11	2.12E-11	2.128-11	
2.02+04	2.01E-11	2.09E-11	2.09E-11	2.092-11	2.08E-11	2.05E-11	2.03E-11	2.01E-11	

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 2.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

Be							
Temp.							
(eV)	A0	A 1	A2	A3	A4	A5	A6
100.	-5.63688E+01	5.535262+00	-2.53031E+00	7.68047£-01	-2.09210E-01	3.02777E-02	8.99288E-04
500.	-5.46783E+01	4.07558E+00	-1.58318E+00	2.94914E-01	-2.76037E-02	-2.07878E-02	1.01392E-02
1000.	-5.34861E+01	3.08285E+00	-1.00328E+00	6.05624E-02	3.075282-02	-2.37156E-02	4.91264E-03
5000.	-5.080925+01	1.02925E+00	-1.15489E-01	-1.11263E-01	1.29497E-04	5.31512E-03	-1.44689E-03
10000.	-5.00260E+01	5.096125-01	-1.91665E-02	-7.344888-02	-1.56542E-02	2.568932-03	7.98864E-04
15000.	-4.968482+01	2.98178E-01	-7.68530E-03	-5.18119E-02	-1.65953E-02	-3.35169E-04	1.07168E-03
20000.	-4.94956E+01	1.81879E-01	-1.04948E-02	-3.99118E-02	-1.509202-02	-1.49095E-03	1.11348E-03
Equal Temp.	-5.538202+01	4.85397E+00	-2.35173E+00	7.57520E-01	-2.46645E-G1	5.44226E-02	-8.33810E-03

See appendix for Chebyshev fit details.

R+

Maxwellian – Maxwellian

Electron Capture Rate Coefficients for $Be + B^+ \rightarrow B(3d) + Be^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

B+							
Tesp.			Be E	inergy (eV/am	ານ)		
(eV)	10000.	20000.	40000.	60000.	80000.	100000.	200000.
1.0E+00	2.37E-11	2.80E-11	2.31E-11	1.65E-11	1.09E-11	6.71E-12*	8.94E-13**
2.0E+00	2.37E-11	2.80E-11	2.31E-11	1.65E-11	1.09E-11	6.71E-12*	8.938-13**
4.0E+00	2.37E-11	2.80E-11	2.31E-11	1.65E-11	1.09E-11	6.70E-12*	8.93E-13**
7.0E+00	2.36E-11	2.79E-11	2.30E-11	1.65E-11	1.09E-11	6.70E-12*	8.92E-13**
1.02+01	2.36E-11	2.79E-11	2.30E-11	1.65E-11	1.09E-11	6.70E-12*	8.922-13**
2.0E+01	2.3GE-11	2.78E-11	2.30E-11	1.65E-11	1.09E-11	6.69E-12	8.91E-13**
4.0E+01	2.35E-11	2.77E-11	2.298-11	1.65E-11	1.09E-11	6.68E-12	8.90E-13**
7.0E+01	2.34E-11	2.76E-11	2.28E-11	1.65E-11	1.09E-11	6.67E-12	8.89E-13*
1.vE+32	2.34E-11	2.75E-11	2.282-11	1.65E-11	1.095-11	6.67E-12	8.89E-13*
2.01+02	2.33E-11	2.73E-11	2.26E-11	1.65E-11	1.102-11	6.66E-12	8.89E-13*
4.0E+02	2.31E-11	2.70E-11	2.24E-11	1.65E-11	1.10E-11	6.68E-12	8.922-13*
7.0E+02	2.302-11	2.66E-11	2.22E-11	1.64E-11	1.10E-11	6.72E-12	8.98E-13*
1.0E+03	2.29E-11	2.63E-11	2.20E-11	1.63E-11	1.09E-11	6.76E-12	9.055-13*
2.0F+03	2.26E-11	2.55E-11	2.15E-11	1.59E-11	1.08E-11	6.90E-12	9.35E-13*
4.0E+03	2.24E-11	2.41E-11	2.05E-11	1.53E-11	1.06E-11	7.06E-12	1.01E~12*
7.0E+03	2.225-11	2.26E-11	1.925-11	1.45E-11	1.04E-11	7.19E-12	1.138-12*
1.02+04	2.18E-11	2.14E-11	1.80E-11	1.38E-11	1.01E-11	7.22E-12	1.262-12*
2.0E+04	1.98E-11	1.83E-11	1.51E-11	1.20E-11	9.268-12	7.06E-12	1.66E-12*

Accuracy: * - Fossible Error Greater Than 108 ** - Possible Error Greater Than 1008

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Fitting Parameters for Rate Coefficients								
He									
Energy									
(eV/amu)	A0	A1	A2	A3	۸4	۸5	A6		
10000.	-4.90115E+01	-6.26583E-02	-3.14715E-02	-1.74368E-02	-1.18746E-02	-8.00345E-03	-5.51328E-03		
20000.	-4.87965E+01	-1.63847E-01	-9.400392-02	4.326262-02	-1.655082-02	-4.78447E-03	-6.28354E-04		
40000,	-4.91665E+01	-1.544482-01	-9.66541E-02	-5.08695E-02	-2.30319E-02	-8.09916E-03	-1.06973E-03		
60000.	-4.97788E+01	-1.114972-01	-7.93398E-02	-4.386132-02	-1.80124E-02	-5.25241E-03	-1.28373E-03		
80000.	-5.053822+01	-4.92366E-02	-4.11913E-02	-2.647238-02	-1.188092-02	-3.952202-03	-2.081412-03		
100000.	-5.14178E+01	3.35427E-02	2.015162-02	3,56710E-04	-9.44387E-03	-8.216782-03	-3.581712-03		
200000.	-5.52583E+01	2.09996E-01	1.57946E-01	9.13682E-02	3.946698-02	1.12103E-02	-2.265558-04		

.

1

See appendix for Chebyshev fit details.

$$He + H^{+} -> H(3d) + He^{+}$$

Beam – Maxwellian

Electron Capture Cross Sections for

H⁺ + Li -> H(2s,2p) + Li⁺

H	(25)	B	(2p)
Energy	Cross Section	Energy	Cross Section
eV/anu	cm ²	eV/anu	C2-2
9.6E+02	1.09E-15	9.8E+C2	1.44E-15
1.9E+03	2.228-15	2.0E+03	2.37E-15
2.4E+03	2.528-15	2.9E+03	2.958-15
2.9E+03	2.568-15	3.42+03	3.65E-15
4.8E+03	2.06E-15	4_9E+03	2.75E-15
6.7E+03	1.39E-15	6.8E+03	2.02E-15
8.6E+03	9.00E-16	9.7E+03	1.138-15
9.58+03	7.26E-16	1.42+04	3.012-16
1.48+04	2.73E-16	1.9E+04	9.714-17
1.9E+04	1.236-16	2.42+04	3.76E-17
2.4E+04	6.208-17	2.9E+04	1.765-17
3.82+04	1.408-17	3.9E+04	3.985-10
4.9E+04	6.298-18	4.9E+04	J.218-18
5.9E+04	3.558-18	5.96+04	4.47E-19
6.8E+04	2.222-18	6.9E+04	1.948-19
8.8E+04	9.762-19	8.9E+04	4.968-20
9.8E+04	6.778-19	1.16+05	1.692-20
1.38+05	2.726-19		

References: 255, 256, 257

Accuracy: $E < 2x10^4$ eV/amu - 60%; $E > 2x10^4$ eV/amu - unknown

Botes: (1) The cross section data for energies greater than 2x10⁴ eV/amu are theoretical results of Ermolaev (ref. 257); for excitation of the Li(2p) level by protons see ref. 258.

(2) Cascading from higher states is less than 5%, thus $\sigma(2p) = \sigma(Ly_g)$.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

E(2s) E_{min} = 9.552+02 eV/amu, E_{max} = 1.32+05 eV/amu E(2p) E_{min} = 9.82+02 eV/amu, E_{max} = 1.12+05 eV/amu

Chebyshev Fitting Parameters for Cross Sections

 A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8

 \$\$(2\$)
 -73.9306
 -4.42348
 -1.68271
 .337287
 .0753407
 -.0624317
 -.0223686
 6.11347E-04
 -.00573178

 \$\$(2\$)
 -75.0922
 -5.75721
 -2.57021
 .0939967
 .255624
 -.0329880
 -.0184241
 .0249338
 .0333479

The fit represents the H(2s) cross section with an rms deviation of 0.9%. The maximum deviation is 1.7% at 4.82+04 eV/amu.

The fit represents the H(2p) cross section with an rms deviation of 3.2%. The maximum deviation is 5.5% at 1.9E+04 eV/amu.

See appendix for Chebyshev fit details.

Electron Capture Cross Sections for

(3a)		1	(3p)	(39)		
Inergy	Cross Section	Energy	Cross Section	Energy	Cross Section	
eV/anu	ca ²	eV/cau	cs ²	eV/amu	ca ²	
1.3E+03	7 .96E- 17	9.8E+62	1.286-16	3.1 2+0 3	7,475-17	
2.8E+03	9.602-17	1.55+83	1.518-16	3.9E+03	8.788-17	
2.96+03	1.238-16	2.0E+03	1.768-16	4.8E+03	9.796-17	
3.92+03	1.358-16	2.98+03	2.338-16	6.8E+03	1-962-16	
4.92+03	2.072-16	3.92+03	3.178-16	9.78+03	8.398-17	
6.82+03	3.462-16	4.98+03	3-658-16	1.38+84	4.318-17	
6.9E+03	4.432-16	6.92+03	3-458-16	5E+04	2.788-17	
7.98+03	4.558-16	8.98403	2.818-16	C.82+84	1.168-17	
8.92+03	4-298-16	9.95+83	2-478-16	2.98+84	2.97E-18	
1.68+44	3.838-16	1.58+64	1.238-16	3.98404	1.118-18	
1.52+04	1.647-16	2.02404	5,128-17	4.98444	4.458-19	
2.98+04	6.882-17	2 58484	2.188-17	7.02+84	1.448-19	
2.5E+04	3 158-17	3 87484	1 458-17		3 638-20	
1.58.04	7.974-18	3 SPACA	6 848-18	1 38405	1 208-28	
A STAGA	1 968-18	4 68184	2 268-18	1 69485	7 678-21	
6 88404	1 037-19	5 08404	1 438-10	4.38793	1.3/6-21	
8 62-04	3 609-10		6 607-10			
1 02405	3,076-17	9.0ETU9				
1.38.47	1,015-17	1.02704	3.808-17			
1,32462	8,925-20	7.92+84	1.486-17			
		1.82+03	7.256-20			
		1.32405	3.875-20			

References: 256, 257

Accuracy: \$ < 2x10⁴ eV/anu - 60%; E > 2x10⁴ eV/anu - unknown

<u>Botas:</u> (1) The cross section data for energies greater than $2\pi 10^4$ eV/anu are the theoretical results of Ermolaev (ref. 257). (2) The cross section $\{e_i\}$ for capture into state i is determined by measuring the emission cross section $\{e_{ij}\}$ for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(3a) E_{min} = 1.3E+03 eV/amu, E_{max} = 1.2E+05 eV/amu
 (3p) E_{min} = 5.8E+02 eV/amu, E_{max} = 1.2E+05 eV/amu
 (3d) E_{min} = 3.1E+03 eV/amu, E_{max} = 1.5E+05 eV/amu

Chebyshev Fitting Parameters for Cross Sections

 A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8

 (38)
 -77.4321
 -3.51092
 -2.10742
 .102860
 .543366
 -.0941225
 -.179427
 .114301
 -.00443843

 (3p)
 -77.4555
 -4.03388
 -2.19950
 .00628310
 .364180
 -.0330367
 -.0799875
 .00340643
 -.00766823

 (3d)
 -80.9668
 -4.92271
 -1.27692
 .391264
 -.0254482
 -.0874189
 .0722031
 .0109053
 -.0235328

The fit represents the (3s) cross section with an rms deviation of 6.8%. The maximum deviation is 19.4% at 4.92+0.3 eV/amu.

The fit represents the (3p) cross section with an rms deviation of 3.7%. The maximum deviation is 6.6% at J.02+04 eV/amu.

The fit represents the (3d) cross section with an rms deviation of 3.28. The maximum deviation is 6.54 at 6.92404 eV/amu.

See appendix for Chebyshev fit details.

Electron Capture Cross Sections for He⁺ + H₂ -> He($2^{1}S + 2^{3}S$)

Energy	Velocity	Cross Section		
(eV/amu)	(ca/s)	(cm ²)		
2.5E+03	6.95E+07	6.75 E-18		
3.0E+03	7.612+67	9.57E-18		
4.0E+03	8.79E+07	1.58E-17		
5.0E+03	9.82E+07	2 .18E-1 7		
7.0E+03	1.16E+G8	3.14E-17		
9.0E+03	- 1.32E+98	4.14E-17		
1.0E+04	1.39E+08	4.63E-1 7		
1.58+04	1.70E+08	6.54E-17		
2.0E+04	1.962+08	7.00E-17		
2.5E+04	2.20E+08	6.69E-17		
3.5E+04	2.60E+08	5.28E-17		
4.52+04	2.95E+08	4.03E-17		
5.02+04	3.112+08	3.52 E -17		
6.0E+04	3.40E+98	2.75E-17		
6.4E+04	3.51E+08	2.46E-17		

References: 98, 102, 196, 197, 198

Accuracy: 40%

<u>Note:</u> The cross sections are for capture into the metastable states $2^{1}S$ and $2^{3}S$.

For Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.5E+03 \text{ eV/amu}, E_{max} = 6.4E+04 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

80	ZA .	×2	A3	A4	A5	A6	▲7	A8
-76.2905	.717609	746846	0903391	1.71246E-03	.0416862	-7.59576E-04	0179523	6.07163E-03

The fit represents the above cross sections with an rms deviation of 0.53. The maximum deviation is 0.9% at 4.02+03 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Cross Sections for

$He^+ + H_2 \rightarrow He(2^1P, 3^1P)$

(2 ¹ P)	(3 ¹ P)				
Energy	Cross Section	Energy	Cross Section			
eV/anu	ca ²	eV/asu	cm ²			
1.3E+03	2.952-17	2.5E+03	2.052-18			
1.5 E+Q 3	3.028-17	3.0E+03	1.892-18			
2.0E+03	3.37 E -17	3.52+03	1.61E-18			
3.0E+03	3.672-17	4.38+03	1.452-18			
3.52+03	3.90E-17	5.0 8 +03	1.33 E-18			
4.38+03	4.128-17	5.88+03	1.28E-18			
5.0E+03	4.22E-17	6.5R+03	1.33 E-18			
5.82+03	4.19E-17	7.98+03	1.472-18			
6.5E+03	4.13E-17	\$.0E+03	1.64E-18			
7.0E+03	4.11E-17	8.5E+Q3	1.832-18			
8.0E+03	4.05E-17	9.0E+03	1.918-18			
8.5E+03	3.96E-17					
8.8E+03	3.922-17					

References: 20, 163

Accuracy: 63%

<u>Notes:</u> (1) The cross section (σ_i) for capture into state i is determined by measuring the emission cross section (σ_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states. (2) In these measurements cascade was neglected in the analysis of the cross section.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(2¹P) E_{min} = 1.32+03 eV/amu, E_{max} = 8.82+03 eV/amu

(3¹P) E_{min} = 2.5E+03 eV/amu, E_{max} = 9.0E+03 eV/amu

Chebyshev Fitting Parameters for Cross Sections

A0	A1	A2	A3	A4	A5	26	A7	AB

(2¹P) -75.7187 .173380 -.0602524 -.0334767 .00459756 .00195946 .03158847 -4.27148E-04 -.00726785 (3¹P) -81.8842 -.0794869 .196956 .0554748 -.00702131 -.0164034 -.0116162 .60548035 1.55409E-04

The fit represents the $(2^{1}P)$ cross sections with an rms deviation of 0.2%. The maximum deviation is -0.2% at 6.42+03 eV/amu.

The fit epresents the $(5^{1}P)$ cross sections with an rms deviation of 0.2%. The parimum deviation is 0.3% at 7.92+03 eV/amu.

See appendix for Chebyshev fit details.

Cross Section vs. Energy

Line Emission Cross Sections of Electron Capture Collisions for

(587.6 nm)		(667	.8 nm}	(447.1 nm)		
Energy	Cross Section	Energy	Cross Section	Energy	Cross Section	
eV/anu	ce ²	eV/anu	ca ²	eV/ami	cs²	
1.7E+01 2.0E+01 3.0E+01 5.0E+01 6.0E+01 8.2E+01 1.0E+02 2.4E+02 3.0E+02 2.4E+02 3.0E+02 3.0E+02 1.0E+03 1.6E+03 2.0E+03 5.2E+03 7.8E+03	1.12E-21 3.58E-21 7.90E-21 8.74E-21 1.26E-20 2.83E-20 7.84E-20 1.72E-19 6.40E-19 1.12E-18 1.17E-18 1.16E-18 1.02E-18 4.33E-19 7.69E-19 7.00E-19 6.93E-19 7.65E-19 8.90E-19 8.90E-19	3.7E+01 5.0E+01 6.0E+01 1.0E+02 1.5E+02 1.5E+02 2.0E+02	9.97E-22 7.92E-21 1.47E-20 4.70E-20 1.34E-19 2.70E-19 3.35E-19 3.95E-19	2.0E+01 2.5E+01 3.0E+01 5.0E+01 7.0E+01 1.0E+02 1.2E+02 1.2E+02 2.0E+02 2.0E+02 2.0E+02 2.0E+02 2.0E+02 6.0E+02 5.0E+03 1.5E+03 3.0E+13 4.0E+03 5.0E+03 5.0E+03 7.2E+03 7.2E+03	9.988-22 2.67E-21 3.75E-21 5.02E-21 6.21E-21 7.65E-21 1.00E-20 1.77E-20 6.11E-20 9.53E-20 1.30E-19 1.60E-19 1.60E-19 1.63E-19 1.63E-19 1.31E-19 1.31E-19 1.31E-19 1.31E-19 1.32E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 6.58E-20 7.2E-20 7.3E-20 7.2E-2	

He⁺ + B₂ -> He(587.6, 447.1, 667.8 nm)

References: 199, 200

Accusacy: 40%

÷.

<u>Hotes:</u> (1) Relative data of Polyakova et al (ref. 200) have been normalized to data of Isler et al (ref. 199) at 125 eV/amu.
(2) The 507.6 nm transition is the strongest He emission from He⁺ capture collisions in H₂.
(3) The 4³D -> 2³P transition is 447.1 nm, the 3³D -> 2³P transition is 507.6 nm, and the 3¹D -> 2¹P transition is 667.6 nm.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(587.6 nz) = 1.7g+01 eV/amu, = 7.82+03 eV/amu(667.8 na) $E_{\text{min}} = 3.7g+01 \text{ eV/amu}, = 2.02+02 \text{ eV/amu}$ (447.1 na) $E_{\text{min}} = 2.02+01 \text{ eV/amu}, = 2.02+02 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A7 A0 **A1** A2 A3 A4 **A6** A.R λ5 (587.6 nm) -86.6646 2.83888 -1.58217 .357959 .371758 -.133932 -.263367 .286400 -.104165 (667.8 nm) -89.3928 2.77428 -.477421 .0466864 -.123082 .139543 -.0694321 .0304386 (447.1 hm) -89.4303 1.99037 -1.26304 .473572 .362531 -.183668 -.0812802 .198425 -.197268 The fit represents the 587.6 nm cross section with an rms deviation of 4.7t. The maximum deviation is 10.8% at 3.15+C2 eV/amu. The fit represents the 667.8 nm cross section with an rms deviation of 0.0%. The maximum deviation is 0.0%. The fit represents the 447.1 nm cross section with an rms deviation of 14.7%. The maximum deviation is 42.6% at 7.12+61 eV/amu. See appendix for Chebyshev fit details.

Cross Section vs. Energy

Electron Capture Cross Sections for Be⁺ + Be \rightarrow Be(2¹S + 2³S)

Energy	Velocity	Cross Section		
(eV/and)	(Cm/s)	(cm ²)		
1.0E+01	4.392+06	1.008-19		
1.5 8+0 1	5.388+06	1.942-19		
3.0E+01	7.61E+06	7.49E-19		
5.08401	9.82E+06	1.692-18		
8.0E+01	1.24E+07	2.33B-18		
1.5E+02	1,70E+07	2.81E-18		
3.08+02	2.41E+07	2.99E-18		
6.0E+02	3.402+07	3.358-18		
1.5E+03	5.382+07	4.54 8-18		
2.5E+03	€.95E+07	6.54 <u>8</u> -18		
4.02+03	\$.79E+07	9.49E-18		
6.0E+03	1.08E+08	1.462-17		
9.02+03	1.322+08	2.40E-17		
1.08+04	1.39E+08	2.61E-17		
1.52+04	1.702+08	2.41E-17		
3.3E+04	2.50E+08	1.85E-17		
5.0E+04	3.11 8+08	1.52 5-1 7		

References: 98, 196, 197, 201, 202

Accuracy: 40%

<u>Moter</u> (1) Theoretical values of Sural et al (ref. 202) are used to extrapolate the data of Gilbody et al (ref. 98) at $5\pi 10^3$ eV/amu to those of MacVicar and Barst (ref. 201) at 55 eV/amu.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.0E+01 \text{ eV/amu}, \quad E_{max} = 5.0E+04 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A 0	A1	A2	A3	A4	A5	A 6	A7	AB
-80.6529	2.39212 -	.649912	.218666 -	468812 -	.126058	.149096	.0275996	.0661909

The fit represents the above cross sections with an rms deviation of 5.28. The maximum deviation is 12.8% at 1.52+04 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for He⁺ + He \rightarrow Se(2¹S + 2³S)

Maxwellian - Maxwellian wate Coefficients (cm³/s)

ile ⁺								
Tesp.	Equal				lic Temp. (eV	3		
(e¥)	Temp.	10.	100.	500.	1000.	50 00 .	10000.	20000.
2.05+00	9.32E-17	7.50B-14	1.052-11	4.83E-11	7.97E-11	3.80E-10	9.44 <u>2</u> -10	1.97E-09
4.0E+00	1.30E-14	1.295-13	1.98E-11	4.840-11	7.98E-11	3.80E-10	9.44E-10	1.978-09
7.0 5+0 0	1.29E-13	2.396-13	1.12B-11	4.866-11	8.002-11	3.81E-10	9.45E-10	1.972-09
1.0E+81	3.83E-13	3.838-13	1.16E-11	4.88 E-11	8.02E-11	3.81E-10	9.45E-10	1 .978-09
2.9 6+01	2.098-12	1.09E-12	1.30E-11	4.95E-11	8.68E-11	3.82E-10	9.46E-10	1.97 <u>8</u> -09
4.0E+01	7.41E-12	3.296-12	1.56E-11	5.098-11	8.19E-11	3.84E-10	5.48E-10	1.97 6-0 9
7.02+01	1.56E-11	7.41E-12	1.93E-11	5.29E-11	8.37 <i>E</i> -11	3. 87E-10	9.52E-10	1.97E09
1.0E+02	2.275-11	1.16E-11	2.276-11	5.49E-11	8.55E-11	3.90E-10	9.56E-10	1.98E-09
2.02+02	4.08E-11	2.38E-11	3.25E-11	6.13E-11	9.14E-11	3.99E-10	9.67E-10	1.98 5-09
4.0E+02	6.75E-11	4.15E-11	4.81E-11	7.36E-11	1.038-10	4.19E-10	9.918-10	2.008-09
7.0E+02	1.03E-10	6.20E-11	€.75E-11	9,14 <u>8</u> -11	1.21E-10	4.50E-10	1.03E-09	2.038-09
1.0E+03	1.40E-10	8.02E-11	8.55E-11	1.09E-10	1.408-10	4,82E-10	1.06E-09	2.05E-09
2.0E+03	2.88E-10	1.41E-10	1.462-10	1.73E-10	2.09E-10	5.92E-10	1.18E-09	2.13E-09
4.0E+03	7.07E-10	2.298-10	2.97E-10	3.33E-10	3.80E-10	8.25E-10	1.40E-09	2.27E-09
7.0E+03	1.40E-09	5.938-10	6.032-10	6.49E-10	7.078-10	1.182-09	1.708-09	2.46E-09
1.0E+04	1.97E-09	9.45E-10	9.56E-10	1.00E-09	1.068-09	1.50E-09	1.97E-09	2.628-09
2.02+04	2.98E-09	1.972-09	1.98 E-0 9	2.01E-09	2.05E-09	2.33E-09	2.628-09	2.982-09

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 2.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

ne							
Temp.							
(€V)	N0	A1	N2	A3	24	A5	76
10.	-5.C0830E+01	5.123362+00	-2.628082-01	8.407422-02	2.48250E-01	-1.23169 5- 01	-7.591162-02
100.	-4.68137E+01	2.591242+00	7,953452-01	5.35033E-02	1.896752-03	-1.71822E-02	-5.25035E-02
500.	-4.53295E+01	1.726782+00	8.434752-01	1.980732-01	-3.446768-02	3.47555E-02	-3.44800E-03
1000.	-4.469932+01	1.467702+00	7.781102-01	2.19162E-01	-2.153852-02	-5.87801E-02	-3.66707E-02
5000.	-4.243532+01	7.863472-01	4.49607E-01	1.53041E-01	5.534298-03	-2.94156E-02	-2.10243E-02
10000.	-4.10534E+01	4.262702-01	2.51921E-01	9.52564Z-02	1.328348-02	-1.03321E-02	-9.664982-03
20000,	-3.98951E+01	1.67503E-01	1.030698-01	4.324238-02	9.86815E-03	-1.829692-03	-3.51334E-03
Equal Temp.	-5.11417E+01	7.32023E+00	-2.04f15E+00	1.2483/2+00	-5.129096-01	3.38169E-02	-1.21200E-01

See appendix for Chebyshev fit details.

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for $\text{Re} + \text{He}^+ \rightarrow \text{He}(2^1\text{S} \div 2^3\text{S})$

Beam - Maxwellian Rate Coefficients (cm³/s)

Be ⁺												
Temp.	Be Energy (eV/aau)											
(eV)	10000.	15000.	20000.	25000.	30000.	35000.	40000.					
1.0 <u>2</u> +00	3.622-09**	4.10E-09**	4.292-05**	4.44E-09**	4.57 E-09* *	4.65E-09**	4.68E-09**					
2.0E+00	3.61E-J9**	4.108-09**	4.29E-09**	4.448-09**	4.57E-09**	4.65E-09**	4.68E-09**					
4.0E+00	3.61E-09**	4.10E-09**	4.29E-09**	4.44E-09**	4.57E-09**	4.65E-09**	4.68E-09**					
7.02+00	3.60E-09**	4.102-09**	4.298-09**	4.44E-09**	4.57E-09**	4.658-09**	4.68E-09**					
1.0E+01	3.592-09**	4.10E-09**	4.29E-09**	4.44E-09**	4.57E-09**	4.65E-09**	4.68E-09**					
2.0E+01	3.58E-09**	4.09E-09**	4.25E-09**	4.44E-09**	4.57E-09**	4.65E-09**	4.63E-09*`					
4.0E+01	3.57E-09**	4.09E-09**	4.29E-09**	4.442-09**	4.57E-09**	4.65E-09**	4.68E-09**					
7.0E+01	3.558-09**	4.09E-09**	4.292-09**	4.452-09**	4.57E~09**	4.658-09**	4.68E-09**					
1.0E+02	3.53E-09**	4.092-09**	4.29E-09**	4.452-09**	4.57E-09**	4.65E-09**	4.68E-09**					
2.0E+02	3.50E-09**	4.08E-09**	4.29E-09	4.45E-09**	4.57E-09**	4.65E-09**	4.68E-09**					
4.0E+02	3.452-09**	4.08E-09**	4.29E-09**	4.452-09**	4.57E-09**	4.64E-09**	4.67E-09**					
7.0E+02	3.40E-09**	4.07E-09**	4.298-09**	4.45E-09**	4.57E-09**	4.64E-09**	4.64E-09**					
1.0E+03	3.37E-09**	4.06E-09**	4.29E-09**	4.45E-09**	4.57E-09**	4.64E-09**	4.58E-09**					
2.0E+03	3.31E-09**	4.03E-09**	4.292-09**	4.45E-09**	4.56E-09**	4.57E-09**	4.30E-09**					
4.0E+03	3.28E-09*	3.99E-09**	4.28E-09**	4.43E-09**	4.478-09**	4.32E-09**	3.86E-09**					
7.0E+03	3.30E-09*	3.93E-09**	4.23E-09**	4.34E-09**	4.25E-09**	3.96E-09**	3.45E-09**					
1.02+04	3.348-09*	3.892-09**	4,14E-09**	4.18E-09**	4.02E-09**	3.672-09**	3.18E-09**					
2.0E+04	3.432-09*	3.71E-09*	3.77E-09**	3.65E-09**	3 .40e-09**	3.07E-09**	2.682-09**					

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

	Chebyshev Pitting Parameters for Rate Coefficients									
۶e										
Energy										
(eV/amu)	¥0	A1	A2	A3	A4	A5	A 6			
10000.	-3.89516E+01	-4.512442-02	1.69953E-03	1.65062E-02	1.06870E-02	2.64417E-03	-1.07811g-G3			
15000.	-3.86669E+01	-3.54627E-02	-2.267532-02	-1.21671E-02	-5.34610E-03	-1.80140E-03	-7.78336E-04			
20000.	-3.85671E+01	-3.279092-02	-2.82327E-02	-2.24375E-02	-1.53665E-02	~8.81047E-03	-4.39280E-03			
25000.	~3.851582+01	-5.09890E-02	-4.36393E-02	-3.40163E-02	-2.27913E-02	-1.259672-02	~5.50588E-03			
3000.	-3.84991E+01	-8.72591E-02	-7.04596E-02	-4.87052E-02	-2.79930E-02	-1.24934E-02	-2.97299E-03			
35)00.	-3.85280E+01	-1.398912-01	-1.06634E-01	-6.390542-02	-2.79358E-02	-6.05892E-03	3.51648E-03			
46.000.	~3.86U81E+01	-2.17036E-01	-1.488052-01	-7.02850E-02	-1.44258E-02	8.74155E-03	8.88909E-03			

Ser appendix for Chebyshev fit details.

Beam – Maxwellian

Electron Capture Cross Sections for $Be^+ + Be \rightarrow Be(2^{1}P) + Be^+$

Energy	Velocity	Cross Section
(eV/amu)	(CR/S)	(c s ²)
1.3E+03	4.91E+07	1.25E-18
2.0E+03	6.21E+07	1.18E-18
3.0E+03	7.61E+07	1.07E-18
5.0E+03	9.82E+07	9.00E-19
8.0E+03	1.24E+08	7.67E-19
1.0E+04	1.392+08	7.03E-19
2.02+04	1.962+08	5.178-19
4.0E+04	2.782+08	3.528-19
7.0E+04	3.682+08	2.298-19
1.0E+05	4.392+08	1.46E-19
1.5E+05	5.38E+ú8	4.86E-20
2.02+05	6.21E+08	1.60E-20
2.52+05	6.94E+08	6.01E-21

References: 163, 203

Accuracy: Unknown

<u>Notes:</u> (1) Data between 1.2 - 9x10³ eV/amu were never published in a referred journal.
 (2) Cross sections between 9x10³ and 1x10⁵ eV/amu were obtained by interpolation between the low and high energy data.
 (3) For energies less than 1x10⁵ eV/amu the cross sections measured by Hippler et al (ref. 203) diverge from the data presented here.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 1.3E+03 \text{ eV/amu}, E_{max} = 2.5E+05 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

80	A1	A2	A 3	۸4	A5	X6	A7	84
-85.5425	-2.19593	936988	450041	224752	0551700	.0123849	.0330118	.0293219

The fit represents the above cross sections with an rms deviation of 1.0%. The maximum deviation is 2.0% at 7.0E+04 eV/amu. See appendix for Chebyshev fit details.

I.

 $He^{+} + He -> He(2'P) + He^{+}$

Electron Capture Rate Coefficients for He⁺ + He \rightarrow He(2¹P) + He⁺

```
Maxwellian - Maxwellian Rate Coefficients (cm<sup>3</sup>/s)
```

8e ⁺					•	•					
Temp.	Equal		He Temp. (eV)								
(eV)	Temp.	500.	1000.	2000.	4000.	7000.	10000.	20000.			
4.0E+02	3.80E-13	7.28E-13	4.54E-12	1.72E-11	3.90E-11	5.752-11	6.77E-11	8.29E-11			
7.0E+02	4.54E-12	2.64F-12	8.03E-12	2.11E-11	4.15E-11	5.87E-11	6.85E-11	8.32E-11			
1.02+03	1.19E-li	5.642-12	1.192-11	2.48E-11	4.382-11	5.998-11	6.922-11	8.34E-11			
2.0E+03	3.542-11	1.852-11	2.48E-11	3.54E-11	5.03E-11	6.36E-11	7.15E-11	8.42E-11			
4.0E+03	5.99E-11	3.985-11	4.38E-11	5.032-11	5.992-11	6.92E-11	7.52E-11	8.56E-11			
7.0E+03	7.525-11	5.79E-11	5.998-11	6.36E-11	6.922-11	7.52E-11	7.95E-11	8.73E-11			
1.02+C4	8.266 11	6.80E-11	6.92E-11	7.15E-11	7.52E-11	7.95E-11	8.26E-11	2.87E-11			
2.0E+04	9.16E-11	8.30E-11	8.34E-11	8.42E-11	8.568-11	8.732-11	8.872-11	9.]6E-11			

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{\text{Bin}} = 4.0E+02 \text{ eV}, \quad E_{\text{Ban}} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

lle							
Temp.							
(eY)	A0	Å1	A2	A 3	84	A5	26
500.	-4.992952+01	2.33819E+00	-6.50090E-01	4.21924E-02	3.49426E-02	-1.24395E-02	-1.11193E-04
1060.	-4.88301E+01	1.49821E+00	-2.72937E-01	-4.129138-02	2.79783E-02	-2.24988E-03	-2.38793E-03
2000.	-4.78893E+01	8.38347E-01	-5.35952E-02	-4.83802E-02	7.583422-03	3.249012-03	-2.419722-04
4000.	-4.71958E+01	4.15561E-01	2.60934E-02	-2.42784E-02	-3.229928-03	1.67069E-03	3.02996E-04
7000.	-4.68029E+01	2.17494E-01	3.41131E-02	-8.30328E-03	-3.82190E-03	-5.16068E~05	2.237428-04
10000.	-4.66140E+01	1.381478-01	2.86268E-02	-2.78051E-03	-2.76127E-03	-4.385422-04	5.636342-05
20000.	-4.C3524E+01	4.94719E-02	1.41098E-02	5.11657E-04	-9.99744E-04	-2.34546E-04	-2.76502E-04
Equal Temp.	-4.94385E+01	2.39001E+00	-1.04807E+00	3.37080E-01	-8.594972-02	1.50447E-02	~2.446812-03

See appendix for Chebyshev fit details.

$$He^+$$
 + $He -> He(2'P)$ + He^+

Maxwellian - Maxwellian

I.

1

Electron Capture Rate Coefficients for $Be + Be^+ \rightarrow Be(2^1P) + Be^+$

Beam - Maxvellian Rate Coefficients (cm³/s)

Be ⁺											
Temp.	He Energy (eV/amu)										
(eV)	10000.	20000.	40000.	60000.	80000.	100000.	126000.				
1.02+00	9.76E-11	1.022-10*	9.78E~11*	8.77E-11*	7.60E-11*	6.40E-11*	4.282-11**				
2.UE+00	9.76e-11	1.C2E-10	9.78E-11*	\$.77E-11*	7.608-11*	6.40E-11*	4.286-11**				
4.0E+00	9.76E-11	1.022-10	9.77 8- 11*	8.77E-11*	7.60E-11*	6.40 2 -11*	4.28E-11**				
7.0E+00	9.76E-11	1.022-10	9.77E-11*	8.77E-11*	7.602-11*	6.392-11*	4.28E-11**				
1.0E+01	9.76E-11	1.01E-10	9.77E-11*	8.77E-11*	7.60E-11*	6.39E-11*	4-286-11**				
2.0E+01	9.768-11	1.01 <u>e</u> -10	9.77E-11*	€.77E-11-	7.60E-11*	6.38E-11*	4.28E-11**				
4.02+01	9.76E-11	1.01g-1C	9.76E-11*	8.77E-11*	7.60E-11*	6.36E-11*	4-29E-11*				
7.0E+01	9.75E-11	1.01E-10	9.75E-11	8.77E-11*	7.60E-11*	6.35E-11*	4.29E-11*				
1.78+02	9.75E-11	1.01E-1G	9.75E-11	8.77E-11*	7.60E-11*	6.33E-11*	4.29E-11*				
2.0E+02	9.75E-11	1.018-10	9.74E-11	8.77E-11	7.602-11*	6.30E-11*	4.29E-11*				
4.02+02	9.74E-11	1.01E-10	9.72E-11	8.77E-11	7.602-11*	6.26E-11*	4.30E-11*				
7.0E+02	9.73E-11	1.01E-10	9.70 E-11	8.772-11	7.60E-11*	6.21E-11*	4.31E-11*				
1.0E+03	¥.72E-11	1.01E-10	9.68E-11	8.76E-11	7.60E-11*	6.18E-11*	4.32E-11*				
2.0E+03	9.702-11	1.01E-10	9.64E-11	8.748-11	7.58E-11*	6.10E-11*	4.34E-11*				
4.02+03	9.68E-11	1.0CE-10	9.582-11	8.682-11	7.502-11	5.992-11*	4.36E-11*				
7.02+03	9.63E-11	9.96E-11	9.51E-11	8.59E-11	7.3 8e- 11	5.882-11*	4.36E-11*				
1.0E+04	9.59E-11	9.902-11	9.432-11	8.502-11	7.26E-11	5.80g-11*	4.35E-11*				
2.0E+04	9.52E-11	9.71E-11	9.18E-11	\$.18E-11	6.92E-11	5.566-11*	4.27E-11*				

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}$, $E_{max} = 2.0E+04 \text{ eV}$

.

	Chebyshev Pitting Parameters for Rate Coefficients								
He									
Energy									
(eV/amu)	AÚ	Al	A2	A3	84	A5	86		
10000.	-4.613238+01	-1.015402-02	-5,73295 8- 03	-2.509998-03	-8.40721E-04	-1.268672-04	1.76279 2-0 4		
20000.	-4.60412E+01	-1.63968E-02	-9.478958-03	-4.780552-03	-2.35744E-03	-1.14505E-03	-5.315942-04		
40000.	-4.612538+01	-2.31383E-02	-1.33331E-02	-6.62458E-03	-3.189022-03	-1.536898-03	-7.595342-04		
60000.	-4.633752+01	-2.16963E-02	-1.67017E-02	-1.07850E-02	-5.66807g-03	-2.33604E-03	-7.64767E-04		
80000.	-4.66323E+01	-2.96500E-02	-2.313262-02	-1.47960E-02	-7.40205E-03	-2.579538-03	-2.971328-04		
100000.	-4.70209E+01	-5.973142-02	-2.79167E-02	-9.52672E-03	-2.960022-03	-1.17463E-03	-6.065128-04		
120000.	-4.773852+01	5.70178E-03	-3.34664E-04	-4.37679E-03	-4.62136g-03	-2.708872-03	-7.41640E-04		

ı.

See appendix for Chebyshev fit details.

8-78

I.

He + He⁺
$$\rightarrow$$
 He(2¹P) + He⁺

Electron Capture Cross Sections for

 $Be^+ + Be \rightarrow Be(3^1S, 3^1P, 3^1D) + de^+$

(3 ¹ 5)		(3	1 2]	(3 ¹ D)		
Energy	Cross Section	Energy	Cross Section	Shergy	Cross Section	
eV/anu	CR ⁴	eV/amu	CR ⁴	eV/and	CR ⁴	
2.5 2+0 3	2-17E-19	7.5E+02	2.342-19	2.48+43	5.388-19	
3.02+03	2.928-19	1.02+03	2.53E-19	2.5 E+# 3	4.912-19	
3.82+0:	1.942-19	1.58+03	3,372-19	3.0E+03	⁻ .422-19	
5.62+63	2.132-19	2.98+83	6,16E-19	3.5E+03	6.642-19	
7.6E+83	2.792-19	2.5 2+0 3	7.918-19	4.02.03	7.76E-19	
8.02+63	3.30E-19	2.6 2+6 3	7.962-19	5.0E+V3	8.93E-19	
1.02+84	4.938-19	3.02+03	7.34E-19	6.0E+93	9.23E-19	
1.5E+04	8-44E-19	3.5E+03	6.285-19	7.0E+03	9,138-19	
2.0E+04	1.132-18	5.0E+03	5.002-19	1.02+84	8.178-19	
2.58+04	1.272-18	6.52+03	4.728-19	1.52+#4	6.28E-19	
3.5E+04	1.382-18	8.0E+03	5.032-19	2. 02+ 74	4.69E-19	
4.0E+64	1.405-18	1.0 2+04	5.972-19	2.52+64	3.482-19	
		1.3E+64	8.632-19	3.95+84	2.502-19	
		1.5E+04	1.322-16	3.7E+04	1.412-19	
		2.92+94	1.442-16			
		2.22+04	1.45E-18			
		2.5E+04	1,402-18			
		3.9 2+ 04	1.242-18			
		3.5Z+04	1.022-18			
		3.8E+04	8.69E-19			

<u>References:</u> $3^{1}s - 204; 3^{1}P - 20, 204, 205, 206; 3^{1}D - 20, 204, 206$

Accuracy: 401

<u>Hotas</u>: (1) The quoted accuracy is only an estimate. The disagreement between the data sets is an Jarge as a factor of 2 or more. (2) The cross section (s_1) for capture into state i is determined by measuring the emission cross section (s_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascar ng from upper states.

For Chabyshev fits of the above cross sections it is necessary to use the following parameters.

(3 ¹ 5)	E _{min} -	2.52+03 eV/amu,	E	4.02+04 eV/amu
(312)	Sain -	7.52+02 eV/amu,	Epaz +	3.8E+04 eV/amu
(3 ¹ D)	Sain -	2.0E+03 eV/amu,	Emax -	3.7E+04 eV/amu

Chebyshev Pitting Parameters for Cross Sections

	A0	Al	A2	A3	A4	A5	A6	A7	A8
(3 ¹ 5)	-84.2567	1.14450	.0774864	248351	.00546389	.0475617	-6.688312-04	0125101	-00445413
(3 ¹ P)	-83.9443	.784951	124752	.0431348	173909	262303	.0929503	.0083688	0630716
(3 ¹ 0)	-84.3847	485772	595547	0904580	.0360540	0805642	.0223178	00673603	0137040

The fit represents the $(3^{1}S)$ cross section with an rms deviation of 1.2%. The maximum deviation is 1.9% at 8.02+03 -5V/amu.

The fit represents the $(3^{1}P)$ cross section with an rms deviation of 3.7%. The maximum deviation is 9.7% at 5.52.03 eV/amu.

The fit represents the $(3^{2}D)$ cross section with an rms deviation of 1.0%. The maximum deviation is -2.5% at 3.02(03 eV/amu.

See appendix for Chebyshev fit details.

Electron Capture Cross Sections for

$Be^+ + Be \rightarrow Be(3^3S, 3^3P, 3^3D) + Be^+$

(3 ³ 5)		(3	37)	(3 ³ D)		
Energy	Cross Section	Energy	CIOSE Section	Energy	Cross Section	
e¥/anu	cm ²	eV/and	cs ²	e¥∕anc	cm ²	
eV/agu 5.02+03 7.02+03 5.02+03 1.02+04 1.52+04 2.02+04 2.52+04 3.02+04	cm* 4.522-19 4.652-19 5.872-19 5.872-19 6.642-19 1.252-18 1.932-18 2.682-18 3.062-18	2.52+02 3.62+02 4.02+02 5.02+02 1.02+03 2.02+03 2.52+03 3.62+03 3.62+03 6.02+03 5.52+03 3.52+04 4.42+03 5.52+04 2.52+04 2.52+04 3.62+64 3.72+04	cm ⁴ 2.058-13 2.022-19 2.012-19 2.332-19 3.038-19 3.038-19 6.162-19 6.162-19 6.362-19 6.362-19 6.312-19 6.362-19 7.154-19 8.352-19 9.992-19 9.112-14 1.258-18 1.312-18	eV/am: 2.5E+02 3.5E+02 5.0E+02 9.0E+02 9.0E+02 1.0E+03 1.4E+03 1.7E+03 2.5E+03 3.4E+03 3.4E+03 3.4E+03 3.4E+03 3.4E+03 3.4E+03 5.5E+03 5.5E+03 6.5E+03 7.1E+03 7.7E+03	CR ⁴ 1.342-18 1.078-18 0.578-19 0.948-19 9.438-19 1.358-18 1.088-18 7.988-19 6.618-19 7.278-19 8.508-19 0.128-19 0.508-19 0.548-19 6.698-19 7.038-19 9.528-19	
				0.5E+03 1.0E+04 1.2E+04 1.5E+04 1.7E+04	9.90E-19 9.53E-19 0.46E-19 6.73E-19 5.33E-19	
				2.28+04 2.98+04 3.88+04	3.49E-19 2.34E-19 1.63E-19	

<u>Heferences:</u> $(3^3s) = 20, 206; (3^3r) = 20, 204, 205, 206; (3^3p) = 20, 204, 205, 206$

ACCULACY: 404

<u>motors</u>: (1) The quoted accuracy is only an estimate. The disagreement between the data sets is as large as a factor of 2 or more. (2) The cross section (e_i) for capture into state i is determined by measuring the emission cross section (e_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(3 ³ 8)	E _{pia} -	5.0£+03 eV/anu,	E ₈₈₂ -	3.05+04 eV/amu
(3 ³ #)	E _{sia} -	2.55+02 eV/amu,	Enez *	3.7 5+04 eV/amu
(3 ³ D)	Luia -	2.55+02 eV/amu,	E	3.85+04 eV/amu

Chebyshev fitting Parameters for Cross Sections

	AG	Al	A2	A3		A5	A6	A7	AB
(3 ³ 5)	-82.7952	1.05996	.146880	0978993	6162972	.00664821	0131980	0124651	00414755
(3 ³ p)	-84-1155	. 979750	132417	.00802795	.121042	129354	0123880	.0827080	~.0303641
(3 ³ D)	-83.6477	\$41000	315720	312650	0741395	00902084	.0814994	.122383	0655599
The fit represents the (3^3S) cross section with an rms deviation of 0.0%. The maximum deviation is 0.0% at 6.02+03 eV/amu. The fit represents the (3^3P) cross section with an rms deviation of 5.3%. The maximum deviation is 9.0% at 3.02+03 eV/amu. The fit represents the (3^3D) cross section with an rms deviation of 11.0%. The maximum deviation is 23.9% at 2.52+03 eV/amu.									

I.

See appendix for Chebyshev fit details.

1

 $He^{+} + He -> He(3^{3}S, 3^{3}P, 3^{3}D) + He^{+}$

	(4 ¹ 5)	(4	1 P }	(4 ¹ D)		
Energy	Cross Section	Rergy	Cros Section	litergy	Cross Section	
eV/anu	cz.2	ev/ana	cm ²	eV/ame	ca ²	
6.2E+02	\$.66E-21	1.05+#3	8.652-20	2.58+02	7.248-28	
7.38+02	1.118-20	1,1BK 03	6.69E-20	3.05+02	5.38x-20	
9.4E+82	1.295-20	1.2E+03	5.338-24	3.56+02	1.038-19	
1.02+03	1.305-20	1.36+03	4.822-20	4.18+02	\$.76 2-2 8	
1.2E+03	1.138-20	1.38+03	4.838-20	5.05+02	5.108-20	
1.38+03	3.368-28	1,4 E+0 3	5.172-20	6-2 5+6 2	3.558-2G	
1.4 E+ 03	1.168-20	1.6Z+03	6.048-20	7.25+02	3,9*5-20	
1.5E+03	1.338-20	1. 82+0 3	7.458-28	\$.1 5+0 2	≠ .6E -20	
1.62+03	1.65E-20	2,2E+03	9.50E-20	9.15+02	+.145-29	
1.82+03	2.328-20	2.6 E+0 3	1.168-29	1.02+03	7.602-26	
2 .0E+0 3	2.872-20	3,22+03	1.418-19	1.12+03	7.865-28	
2.3 E+8 3	3.628-20	3,62+03	1.61E-19	1.3 E+0 3	7.945-28	
2. 62+8 3	3.372-20	3. 92+0 3	1.638-19	1. 65+0 3	0.07E-20	
2.78+83	3.938-20	4,32+03	1.618-19	1.95+03	8.232-28	
3.02+03	3.838-20	4.9E+03	1.528-19	2.12+03	0.65Z-20	
3.22+03	3.728-20	5.4E+03	1.528-15	2.28+03	1.04E-19	
3.72+03	3.622-29	6,4 2+0 3	1.648-19	2.42+63	1.162-19	
4.12+03	3.692-20	7.58+03	1.062-19	2.5E+03	1.165-19	
4.92+63	4.028-20	0,6 2+0 3	2.328-19	2.75+83	1.105-19	
6.5E+03	5.10E-2J	1.02+04	2.908-19	2.9E+03	8.9 <u>5</u> 2-28	
7.92+03	6.198-20	1.18+04	3.308-19	3.8E+83	7.138-29	
9.62+03	7.73 E-20	1.32+04	4.298-19	3.12+03	6.368-20	
1.20+04	1,002-19	1.6 E+6 4	5.018-19	3.3E+03	6.242-28	
1.42+04	1.398-19	1,82+04	5.808-19	3.5 2+ 43	6.40E-29	
1.62+04	1.742-19	2.02+84	f.962-19	3.78+03	7.918-20	
1.98+04	2.022-19	2.42+04	5.832-19	3.98+03	0.142-20	
2.22+04	2.201-19	2.82+04	5.208-19	4.12+03	9.542-28	
2.82+04	2.298-19	3.25+04	4,48E-19	4,4 E+0 3	1.188-19	
3.32+04	2.258-19	3.72+04	3.788-19	4.8E+03	1.42E-19	
3.82+04	2.142-19	3.98+04	3.538-19	5.62+03	1.718-19	
				7.0E+03	2.116-19	
				8.3E+03	2.428-19	
				9.72+03	2.758-19	
				1.22+04	3.128-19	
				2.02+04	2,738-19	
				3.02+04	8.42E-20	
				3.82+04	4.338-28	

Electron Captur. Cross Sections for Be⁺ + Be -> Be(4¹S,4¹P,4¹D) + He⁺

<u>Beferences:</u> (4¹8) - 20, 204, 205, 206, 207; (4¹P) - 20, 166, 204, 205; (4¹D) - 28, 166, 284, 205, 206

Accuracy: 401

<u>Moter:</u> (1) The quoted accuracy is only an estimate. The disagreement between the data sets is as large as a factor of 2 or more.

(2) The cross section (a_j) for capture into state i is determined by measuring the emission cross section (a_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(415)	E _{nin} -	6.28+02 eV/amu,	5	3.01+04 eV/amu
(4 ¹ 7)	Enia -	1.02+03 eV/amu,	£	3.9 <i>%+</i> 04 eV/amu
(4 ¹ D)	E _{min} =	2.5E+02 eV/amu,	Enex -	3.82+04 eV/amu

Chebyshev Fitting Parameters for Crows Sections

	80	AI	A2	A3	84	A5	A6	A7	8.
(415)	-84.9247	1.69591	.01#8804	-,0955575	0923400	127347	00167808	.149767	0939805
(4 ¹ P)	-86.2453	1.12538	147764	-,263207	-,0637178	168724	.168441	.00791441	024095)
(4 ¹ D)	-87.4670	.304065	224271	683543	287424	118320	-,0306248	.229919	141272
The f	it represen	ts the (4	S) cross	section wit	h an cms de	viation of	8.51,		
The a	eximum devi	ation is	17.4% at	7.38+02 eV/	amu.				
The f	it represen	ts the (d	P) cross	section wit	h an spe de	viation of	3.51.		
The m	azimum devi	ation is	7.1% at	2.6E+03 eV/	amu.				
The f	it represen	ts the (4	D) cross	section wit	h an rais de	viation of	16.5%.		
The s	aximum devi	ation 18	37.61 at	3.38+03 eV/					

See oppendix for Chehyshev fit details.

Cross Section vs. Energy

	(4 ³ 5)	(4	37}	(4 ³ D)			(4 ³ D)	
Dergy	Crows Section	Energy	Cross Section	Energy	Cross Section			
e¥/2000	ca²	eV/ame	a ²	e∀/amu	ez ²			
3.78+(2	3.998-20	2.5E+02	3-058-20	2.5E+02	2.848-15			
4.02+62	3.256-20	3.0E+02	2.385-20	3.0E+02	3.39E-19			
5.0E40.	2.076-20	4.05+62	1./05-20	3.52+02	3.028-13			
7 82-12	3 867-30	5.05002	1.025-20	4 38483	1,305-17			
7.78487	1.588-26	5 68482	1.957-78	4.47+87	2.518-14			
8.62+82	3.448-20	5.72+02	3.005-20	5.72+02	2.062-19			
9.78+02	3.178-29	6.32+82	4.538-20	6.82+02	1.768-19			
1.18+-3	3.882-28	6.78+02	3.978-20	7.7E+02	1 .6E-19			
1.38+03	3.308-20	7.55+82	3.378-20	\$.1x+02	1.718-19			
1.58+03	4.128-20	8.3E+02	2.958-20	8.92+02				
1.72+03	4.942-20	9.28+82	2.725-20	9.9 <u>2</u> +02	2.338-19			
2.02+03	6.91E-20	1.02+03	2.645-20	1.12+03	2.688-19			
2.4E+03	6.91E-20	1.12+03	2.058-20	1.22+63	2.09E-19			
2.62+03	7.80E-20	1.42+03	3.048-20	1.32+03	2.895-19			
3.02003	6.90E-20	1.75+03	4.838-20	1.52403	2.648-17			
3.66403	6.346-20	2.92493	0.20E-20	1./2703	2.208-17			
5.52483	1 612-16	2.35703	9.795-20	2.05403	1.036-17			
7.68483	1.897-19	3 68463	1 428-19	2.68+01	1 158-19			
9.72+41	1.488-19	3.58+07	9.518-20	2.92+03	1.218-19			
1.22+04	1.962-19	4.02+03	8.498-20	3.28+83	1.202-19			
1.58+84	2.738-19	4.72+03	7.048-20	3.42+03	1.238-19			
1.72+04	3.882-19	4.62+03	7.762-20	3.82+03	1.378-19			
2.12+04	5.528-19	5,25+03	0.09E-20	4.4E+03	1.608-19			
2.6E+04	7.13E-19	6,32+83	9.53E-20	5.1 z+0 3	1.918-19			
3.0E+04	8.285-19	0.02+03	1.288-19	6.12+03	2.308-19			
3.4 2+0 4	8.61E-19	1,42+04	1.882-19	7.3E+03	2,77 <u>E</u> -19			
3.72+04	\$.65E-19	2.0E+84	2.47 E -19	0.4z+03	3.088-19			
		2.72+04	3.26E-19	9.88+03	3.282-19			
		3.3E+04	3.878-19	1.1z+04	3.248-19			
		3. 82+04	4.07 2-19	1.32+04	2.968-19			
				t.4E+04	2.838-19			
				1.62404	2.27E-17 1 70e-10			
				· . VE404	1,705-17			
				1.07484	1.67#-18			
				3.42+04	6.18E-20			
				3.92+04	6.628-20			

Electron Capture Cross Sections for $Be^+ + Be^- > Be(4^3S, 4^3P, 4^3D) + Be^+$

<u>Beferences:</u> $(4^3s) = 20$, 166, 204, 205, 206, 207; $(4^3p) = 20$, 166, 204, 205, 207; $(4^3D) = 20$, 166, 204, 205, 206, 207

Accuracy: 481

<u>Hotes</u>; (1) The quoted accuracy is only an estimate. The disagreement between the data sets is as large as a factor of 2 or more.

(2) The cross section $\{a_j\}$ for cepture into state i is determined by measuring the emission cross section $\{a_{jj}\}$ for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(4 ³ 5)	R _{min} =	3.7 2+0 2 eV/amu,	5	3.75+04 eV/amu
(4 ³ P)	R _{min} =	2.5\$+02 eV/amu,	Share -	3.75+04 eV/amu
(4 ³ D)	R _{min} •	2.5£+02 eV/amu,	Enes .	3.8g+04 eV/amu

Chebrahev Fitting Parameters for Cross Sections

		AO	A1	A2	A3	84	A5	A6	٨7	AB
(431	F) -8	7.3205	1.78746	. 468525	0126958	.0197677	212447	6.154025-64	0153550	.0609384
(431) -8	7.9948	1.50655	.179990	0510960	.136680	-,148566	0170060	0293030	.130037
(430) -8	6.1432	506204	0953983	353322	207541	.0157713	.0723366	. 167609	197508
The	fit r	epresen	ts the (4 ³	8) cross se	ction with	an cas de	vistion of	9.91.		
The	maxim	um devi	ation is	20.9% et 1,	32+03 eV/a	м,				
7he	fit r	epresen	ts the (4 3	P) cross se	ction with	an zas de	vistion of	19.8%.		
The		um devi	ation is	45.51 at 5.	38+02 eV/a	W.				
The	fit r	ep:esen	ts the (4^3)	D) cross se	ction with	an sas de	vistion of	11.3%.		
The	mexim	um devi	ation is	34 <i>.8</i> % at 3,	08+02 eV/a	ω.				

i.

See appendix for Chebyshev fit details.

T.

$$He^{+} + He -> He(4^{3}S, 4^{3}P, 4^{3}D) + He^{+}$$

B--87

Line Emission Cross Sections of Electron Capture Collisions for

Be⁺ + Li -> Be{58,4,53.7) + Li⁺

(5	i8.4 nm)	(53.7 nm)				
Energy	Cross Section	Energy	Cross Section			
eV/amu	св ²	eV/amu	ca ²			
5 0E+02	1.542-16	5.0E+02	1.292-18			
0E+03	2.45E-16	8.45+02	4.50E-18			
1.3E+03	2.635-16	1.0E+03	6.81E-18			
1.5E+03	2.682-16	1.52+03	1.05E-17			
2.0E+03	2.872-16	2.05+03	1.47E-17			
2.5E+03	3.31E-16	2.5E+03	2.06E-17			
3.0E+03	4.382-16	3.0E+03	2.532-17			
3.52+03	5.02E-16	3.55+03	3.98E-17			
4.02+03	5.212-16	4.02+03	4.53E-17			
4.58+03	5.38E-16	4.55+03	4.77E-17			
5.0E+03	5.53E-16	5.0E+03	4.80E-17			

References: 267

Accuracy: Unknown

<u>Note:</u> (1) The $3p \ ^{1}p^{0} - 1s^{2} \ ^{1}s$ transition gives rise to the 53.7 nm line with the 58.4 line radiation coming from the $2p \ ^{1}p^{0} - 1s^{2} \ ^{1}s$ transition.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(58.4 nm) $E_{min} = 5.02+02 \text{ eV/amu}, E_{max} = 5.02+03 \text{ eV/amu}$ (53.7 nm) $E_{min} = 5.02+02 \text{ eV/amu}, E_{max} = 5.02+03 \text{ eV/amu}$

Chebyshev Pitting Parameters for Cross Sections

A0	A1	A2	A3	A4	A5	A6	K7	A8

(58.4 nm) -70.6362 -.107414 .390900 .106996 -.435807 .414268 -.355868 .226467 -.0503910 (53.7 nm) -78.5786 2.06788 -.344623 .0776140 .0263737 -.246781 .172594 -.0296915 .0520900

The fit represents the 58.4 nm cross section with an rms deviation of 1.3%. The maximum deviation is 2.6% at 2.5E+03~eV/amu.

The fit represents the 53.7 nm cross section with an rms deviation of 0.6%. The maximum deviation is 1.4% at 4.0E+03 eV/amu.

See appendix for Chebyshev fit details.

I I

1

I.

Electron Capture Cross Sections for $\text{He}^{2+} + \text{H} \rightarrow \text{He}^+(2s) + \text{H}^+$

Energy	Velocity	Cross Section
(eV/amu)	(cn /s)	(cm ²)
2.32+01	6.662+06	1.01g-23
4.CE+01	8.792+06	1.93E-22
7.0E+01	1.16E+07	2.96E-21
1.0E+02	1.39E+07	1.64E-20
2.02+02	1.96E+G7	5.15E-19
4.0E+02	2.782+07	5.71E-18
7.0E+02	3.682+07	2.19E-17
1.02+03	4.392+07	3.928-17
2.0E+03	6.21E-97	9.06E-17
4.0E+03	8.792+07	1.352-16
7.0E+03	1.162+08	1.57 E-16
1.0E+04	1,39E+08	1.63E-16
2.0E+04	1.962+05	1.40E-16
4.0E+04	2.782+08	6.73E-17
7.02+04	3.68E+08	1.95E-17
1.02+05	4.392+08	7.15 E-18
2.02+05	6.212+08	6.072-19
4.0E+05	8.782+08	3.70E-20
7.02+05	1.162+09	3.232-21
1.02+06	1.392+09	6.01E-22
2.02+06	1.962+09	1.56E-23
2.52+06	2.192+09	4.77E-24

References: 21, 24, 25, 56, 57, 168, 169, 170, 171, 172, 173

- Accuracy: $E < 1.5x10^3 \text{ eV/amu} \text{unknown}$; $1.5x10^3 \text{ eV/amu} < E < 1.2x10^5 \text{ eV/amu} 40t$; $E > 1.2x10^5 \text{ eV/amu} 40t$; $E > 1.2x10^5 \text{ eV/amu} \text{unknown}$
- <u>Notes</u>: (1) Data for energies lass than 1.5×10^3 eV/amu and greater than 1.2×10^5 eV/amu are theoretical data.

(2) The $He^+(2s)$ population is obtained by quenching in an electric field and measuring the additional 30.4 nm photons observed.

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.32+01 \text{ eV/amu}, \quad E_{max} = 2.52+06 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

A0	A1	A2	A3	A4	A5	A6	A7	84
-89.4268	438776 -	8.73454	.130314 -	.0101210	.0343355	.227699 -	.188121	130396

The fit represents the above cross sections with an rms deviation of 8.28. The maximum deviation is 19.6% at 2.02+06 eV/amu. See appendix for Chebyshev fit details.

I.

Electron Capture Rate Coefficients for He²⁺ + H -> He⁺(2s) + H⁺

Marvellian - Marvellian Rate Coefficients (cm³/s)

äe ²⁺								
Tesp.	Equal				B Temp. (eV)			
(eV)	Tenp.	10.	100.	500.	1900.	5000.	10000.	20000.
7.0E+80	2.97E-16	1.49E-15	2.81E-11	1.302-09	3.62E-09	1.53E-08	1.93E-08	1.84E-08
1.02+01	2.082-15	2.082-15	2.885-11	1.302-09	3.63E-09	1.532-08	1.532-08	1.842-08
2.0E+01	8.242-14	5.56E-15	3.11E-11	1.312-09	3.64E-09	1.532-08	1.93E-08	1.84E-08
4.0E+01	2.04E-12	2.59E-14	3.60E-11	1.332-09	3.66E-09	1.532-08	1.932-08	1.842-08
7.02+01	1.702-11	1.33E-13	4.42E-11	1.37 E-09	3.69E-09	1.532-08	1.932-08	1.84E-08
1.62+02	5.342-11	4.248-13	5.34E-11	1.402-09	3.73E-09	1.53E-08	1.93E-08	1.842-08
2.0Z+02	3.272-10	4.252-12	9.04E-11	1.512-09	3.842-G9	1.53E-08	1.93E-08	1.84E-08
4.02+02	1.298-09	3.60E-11	1.932-10	1.742-09	4.07E-09	1.542-08	1.932-08	1.84E-08
7.02+02	3.03E-09	1.58E-10	4.04E-10	2.092-09	4.41E-09	1.55E-08	1.93E-08	1.84E-08
1.0E+03	4.75E-09	3.576-10	6.67E-10	2.44E-09	4.75E-09	1.562-08	1.942-08	1.84E-08
2.0E+03	9.492-09	1.338-09	1.742-09	3.612-09	5.81E~09	1.602-08	1.94E-08	1.83E-08
4.02+03	1.53E-08	3.66E-09	4.072-09	5.81E-09	7.77E-09	1.668-08	1.95E-08	1.822-08
7.0E+03	1.88E-08	6.87E-09	7.21E-09	8.662-09	1.03E-08	1.742-08	1.96E-08	1.80E-08
1.0E+04	1.962-08	9.522-09	9.802-09	1.10E-08	1.232-08	1.81E-08	1.962-08	1.78E-08
2.0E+04	1.71E-08	1.532-08	1.54E-08	1.60E-08	1.66E-08	1.932-08	1.952-08	1.71E-08

Hotes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 7.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients

Teap.							
(eV)	A0	Al	A2	A3	24	A5	A6
10.	-5.09308E+01	8.876172+00	-8.39518E-01	-8.53899E-01	3.05164E-01	4.68396E-02	-6.900012-02
100.	-4.33040E+01	3.45156E+00	6.25707E-01	-3.522718-01	-1.41060E-01	4.763652-02	2.50861E-02
500.	-3.92464E+01	1.264132+00	4.89137E-01	2.19874E-02	-7.43310E-02	-3.138176-02	1.629052-03
1000.	-3.79446E+01	7.26279E-01	3.335932-01	6.06574E-02	-2.842792-02	-2.454342-02	-6.72865E-03
5000.	-3.58707E+01	1.022832-01	5.59105E-02	1.82827E-02	7.91325E-04	-3.18886E-03	-2.27033E-03
10000.	-3.55175 2 +01	7.32263E-03	2.24624E-03	-1.322492-03	-2.19045E-03	-1.61111E-03	-8.215612-04
20000.	-3.56488E+01	-2.681202-02	-1.78967E-02	-9.56011E-03	-4.192492-03	-1.52887E-03	-4.564942-04
Equal Temp.	-4.738862+01	8.61752E+00	-3.148512+00	4.07425E-01	9.024642-03	-8.824512-02	3.10401E-02

See appendix for Chebyshev fit details.

8

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for $H + He^{2+} \rightarrow He^{+}(2s) + H^{+}$

Bern - Nazvellian Bate Coefficients (cm³/s)

Be ²⁺							
Temp.				ergy (eV/and	a)		
(e¥)	10000.	20000.	48808.	70000.	190000.	200000.	506000.
1.0 2+00	2.26E-08	2.75 E-08	1.87 2-08	7.16 2-09	3.14 2-09	3.77E-10	1.37 E-1 1
2.0E+80	2.262-08	2.74E-08	1.87 2-0 4	7.16 2-09	3.14E-09	3.77E-10	1.372-11
4.8E+08	2 .262-08	2.745-88	1. 862-68	7.162-89	3.142-09	3.77E-18	1.37 E -11
7.0E+00	2.26E-08	2.74E-08	1.862-08	7.15E-09	3,14 E-0 9	3.77 2 -10	1.37 5- 11
1.02+01	2.265-08	2.74 2-08	1.862-00	7.15E-09	3.13 E-09	3.77 8-1 0	1.37 E-1 1
2.62+01	2.26 2-0 0	2.735-08	1.868-08	7.15E-09	3,132-09	3.77 z -18	1.37E-11
4.02+01	2.258-08	2.725-88	1.95 E-08	?.14 E-69	3.138-09	3.762-10	1.37E-11
7.07+01	2.252-08	2.71E-08	1.05 E-08	7.13 E-09	3,13 2-09	3.76 E -10	1.37 5 -11
1.01 02	2.25 E-08	2.70 2-08	1-84E-08	7.13E-89	3.128-09	3.762-10	1.37 E -11
2.0E+82	2.242-08	2.69E-08	1.83E-08	7.122-09	3.128-09	°6 ₽~ 10	1.302-11
4.0E+02	2.23E-08	2.66E-08	1.81P-08	7.11 E-09	3.128-09	3.76E-10	1.382-11
7.0E+02	2.23 2-08	2.63E-08	1.8vg-08	7.102-09	3.12E-09	3.77 5-10	1.382-11
1.0E+03	2.228-08	2-61E-08	1.785-08	7.10 2-09	3.128-09	3.782-10	1.30E-11
2.0E+03	2.21E-08	2.55E-08	1.75E-08	7.11 2-09	3.142-09	3.81E-10	1.392-11
4.02+63	2.202-08	2.47E-08	1.722-08	7.18 2-09	3.192-09	3.87E-10	1.41E-11
7.0 2+0 3	2.192-08	2.38E-08	1.672-08	7.282-09	3.27E-09	3.992-10	1.44E-11
1.0Z+04	2.17 2-08	2.30E-08	1.642-08	7.37 2-09	3.352-09	4.11g~10	1.47 E -11
2.02+04	2.11E-08	2.09g-08	1.532-08	7.54E-09	3.612-09	4.58E-10	1.57 E -11

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.05+00 \text{ eV}$, $E_{max} = 2.02+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

H Energy								
(eV/asu)	A0	A1	A2	A3	84	85	λ6	
10000.	-3.524538+01	-2.72966E-02	-1.25046E-02	-5.94386E-03	-3.93360E-03	-2.52788E-03	-1.152262-03	
20000.	-3.495502+01	-1.07234E-01	-5.74126E-02	-2.460772-02	-9.61541E-03	-3.681998-03	-1.335528-03	
40000.	-3.56977E+01	-8.133072-02	-4.02505E-02	-1.59626E-02	-6.46672E-03	-3.09676E-03	-1.648278-03	
7000C.	-3.749542+01	1.588922-02	1.66995E-02	1.04165E-02	3.588412-03	-1.143832-04	-1.185692-03	
100000.	-3.91164E+01	4.26359E-02	3.67186E-02	2.356878-02	1.101562-02	3.704482-03	6.549328-04	
200000.	-4.33336E+01	5.991778-02	4.728822-62	2.997398-02	1.607652-02	6.77381E-03	2.807292-03	
500000.	-4.99733E+01	4.335622-02	3,102362-02	1.830538-02	8.978458-03	3.668582-03	1.279652-03	

See appendix for Chebyshev fit details.

I.

Beam - Maxwellian

Electron Capture Cross Sections for $Be^{2+} + B \rightarrow Be^{+}(2p) + B^{+}$

Energy	Velocity	Cross Section
(e¥/aau)	(CE/S)	(c a ²)
3.0E+02	2.418+07	2.558-17
4.02+72	2.782+97	4.122-17
5.82+02	3.118+07	5.942-17
7.0 5+0 2	3. 682+6 7	1. \$4e-16
9.0E+02	4.17 E+0 7	1.6i 2-16
1.82+63	4.39E+07	1.912-16
1.52+03	5.38 E+0 7	3.442-16
2.9 2+0 3	6.212+07	4.71E-16
2.58+83	6.95 2+0 7	5.682-16
3.02+03	7.61E+07	6.57 E -16
4.0E+03	8.79E+07	7. 80E-1 6
5.9E+03	9_62E+07	8,638-16
7.02+03	1.162+88	9.318-16
9.02+03	1.322+68	9.398-16
1.5E+04	1.702+08	8.73E-16
2.02+04	1.962+08	7.12E-16
2.52+64	2.202+08	5.35E-16
3.0E+04	2.412+08	3. 89E -16
4.0E+04	2.78E+08	2.138-16
5.02+04	3.112+08	1.192-16
6.02+04	3.402+08	7.182-17
8.0E+04	3.935+08	3.128-17
1.0E+05	4.39E+0 8	1.362-17
1.5E+05	5.38E+08	3.328-18
2.02+05	6.212+08	1.242-18
2.5E+05	6.945+08	6.062-19
3.02+05	7.612+08	3.488-19
4.02+05	8.782+08	1.812-14
5.72+05	1 052+09	1.018-19

References: 169, 170, 172, 173, 174, 175, 176

Accuracy: 1 < E < 1X10⁴ eV/amu - 208

<u>Note</u>; (1) References 172 and 173 (Ciric et al.) are the only experimental results. Other data are theoretical data which in the energy region of overlap agree well with experiment.

For a Chebyshiv fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 3.0E+02 \text{ eV/amu}, \quad E_{max} = 5.7E+05 \text{ eV/amu}$

Unebyshev Fitting Parameters for Cross Sections

AO	A1	A2	A3	84	A5	A6	٨7	A8
-76.4723 -	2.98918	-3.20835	.0657861	. 450590	.217258	.0371010	0738139	0123768

The fit represents the above cross sections with an rms deviation of 2.8%. The maximum deviation is 5.3% at $9.02{+}03$ eV/amu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for $\text{He}^{2+} + \text{H} \rightarrow \text{He}^+(2p) + \text{H}^+$

.

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Be ²⁺	,											
Tesp.	Equal				H Temp. (eV)							
(eV)	Temp.	100.	500.	1000.	5000.	10000.	15000.	20000.				
1.0E+02	2.98E-10	2.98E-10	7.398-09	2.06E-08	8.702-08	1.03E-07	9.738-08	8.77E-08				
2.0E+02	1.72E-09	4.98 <u>8</u> -10	8.00E-09	2.12E-08	8.72E-08	1.03E-07	9.72E-08	8.77E-08				
4.08+02	6.763-09	1.03E-09	9.26E-09	2.26B-C8	8.76E-08	1.03E-07	9.71E-08	8.76E-08				
7.0E+02	1.65 <u>8-08</u>	2.11E-09	1.128-08	2.46E-08	8.82E-08	1.03E-07	9.70E-08	8.74E-08				
1.0E+03	2.65E-08	3.48E-09	1.328-08	2.65E-08	8.87E-08	1.03E-07	9.69 2-08	8.738-08				
2.08+03	5.46E-08	9.26E-09	1.998-08	3.29E-08	9.06E-08	1.03E-07	9.64E-08	8.68E-08				
4.0E+03	8.68E-08	2.26E-08	3.296-08	4.45E-08	9.36E- G 8	1.02E-07	9.55E-Q8	8.58 <u>2-08</u>				
7.0E+03	1.028-07	4 12E-08	4.982-08	5.928-08	9.71E-08	1.02E-07	9.41E-08	8.44E-08				
1.05+04	1.01 <u>8</u> -07	5.65E-08	6.33E-08	7.08E-08	9.96E-08	1.01E-07	9.27 E-08	\$.30E-08				
2.02+04	7.83 2-08	8.76E-08	9.06E-C8	9.362-08	1.032-07	9.73E-08	8.785-08	7.83E-08				

Hotes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

H							
Temp.							
(eV)	A 0	A1	A2	A3	A4	A5	A6
100.	-3.80891E+61	3.04269E+00	-5.036922-02	-2.14921E-01	7.02 489E-0 3	1.33936E-02	-3.513238-03
500.	-3.53407E+01	1,334222+00	2.37587 8-0 1	-8.16883E-02	-4.11875E-02	4.97820E-04	3.606558-03
1000.	-3.42278E+01	7.87638E-01	2.022708-01	-2.328598-02	-3.105888-02	-7.161582-03	1.052238-03
5000.	-3.23931E+01	8.584422-02	2.79245E-02	-7.64042E-04	-5.281802-03	-2.736258-03	-8.72863E-04
10000.	-3.22047E+01	-1,79017E-02	-1.279328-02	-7.35687E~03	-3.35962£ 33	-1.20009E-03	-3.4400/2-04
15000.	-3.23427E+01	-4.112902-02	-2.23406B-02	-9.19084E-03	-3.13037 E-0 3	-9.49262E-04	-2.088012-04
20000.	-3.255582+01	-4.63175E-02	-2.453 88-02	-9.65926E-03	-2.984328-03	-7.43123E-04	-1.577912-04
Equal Temp.	-3.61487E+01	2.77246E+00	-1.050208+00	7.78393E-03	-2.497812-02	4.65115E-03	2.177782-03

See appendix for Chebyshev fit details.

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for $H + He^{2+} \rightarrow He^+(2p) + H^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

Be ²⁺							
Temp.			H En	ergy (eV/amu	1)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	1.282-07	1.402-07	5.91E-C8	1.69E-08	5.97E-09	7.71E-10**	1.23E-10**
2.0E+00	1.286-07	1.40E-07	5.91E-08	1.69E-03	5.982-09	7.70E-10**	1.23E-10**
4.0E+00	1.28E-07	1.40E-07	5.91E-08	1.692-08	5.982-09	7.70E~10**	1.232-10**
7.0E+00	1.28E-07	1.39E-07	5.918-08	1.692-08	5.988-09	7.71E-10**	1.23E-10**
1.0E+01	1.292-07	1.39E-07	5.90E-08	1.69E-08	5.98E-09	7.71E-10**	1.238-10**
2.0E+01	1.29E-07	1.39E-07	5.90E-08	1.69E-18	5.98E-09	7.778-10**	1.23E-10**
4.0E+01	1.29E-07	1.39E-07	5.89E-08	1.69E-08	5.998-09	7.71E-10**	1.238-10**
7.0E+01	1.296-07	1.39E-07	5.89E-08	1.69E-08	5.99E-09	7.728-10*	1.238-10**
1.0E+02	1.29E-07	1.38E-07	5.88E-08	1.692-08	6.00E-09	7.722-10*	1.23E-10**
2.0E+02	1.292-07	1.38E-07	5.88E-08	1.69E-08	6.02E-09	7.73E-10*	1.238-10**
4.0E+02	1.286-07	1.372-07	5.87E-08	1.70E-08	6.05E-09	7.75E-10*	1.23E-10**
7.0E+02	1.28E-07	1.36E-07	5.87E-08	1.71E-08	6.09E-09	7.77E-10*	1.238-10**
1.0E+03	1.282-07	1.346-07	5.87E-08	1./1E-08	6.14E-09	7.80E-10*	1.237-10**
2.0E+03	1.28E-07	1.31E-07	5.892-08	1.74E-08	6.28E-09	7.882-10*	1.23P-10**
4.0E+03	1.26E-07	1.25E-07	5.93E-08	1.78E-08	6.53E-09	8.03E-10*	1.21E-10**
7.0E+03	1.22E-07	1.182-07	5.95E-08	1.85E-08	6.88E-09	8.27E-10*	1.188-10**
1.0E+04	1.19E-07	1.13E-07	5.93E-08	1.922-08	7.222-09	8.52E-10*	1.14E-10**
2.0E+04	1.10E-07	9.85E-08	5.73E-08	2.12E-08	8.38E-09	9.47E-10*	1.062-10**

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Greater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{\min} = 1.02+00 \text{ eV}, \quad E_{\max} = 2.02+04 \text{ eV}$

	Chebyshev Fitting Parameters for Rate Coefficients									
H										
Energy										
(eV/amu)	A0	A1	A2	A3	A4	A5	A6			
10000.	-3.178822+01	-4.92276E-02	-3.82539E-02	-2.433932-02	-1.22728E-02	-4.547852-03	-7.792392-04			
20000.	-3,17232E+01	-1.30716E-01	-B.13104E-02	-4.04778E-02	-1.578092-02	-3.98767E-03	3.36890E-05			
40000.	-3.32955E+01	-5.40047E-03	-1.99166E-03	-4.45358E-03	-6.278912-03	-5.14199E-03	-2.924102-03			
70000.	-3.570282+01	8.028482-02	5.54250E-02	3.03851E-02	1.330902-02	4.49405E-03	7.72971E-04			
100000.	-3.77338E+01	1.19799E-01	7.98553E-02	4.24318E-02	1.81018E-02	6.30836E-03	2.00635E-03			
200000.	-4.18916E+01	6.78830E-02	4.789772-02	2.81571E-02	1.45668E-02	6.26534E-03	2.69138E-03			
500000.	-4.56871E+01	-4.63255E-02	-3.727262-02	-2.45372E-02	-1.26363E-02	-4.189592-03	7,180962-04			

See appendix for Chebyshev fit details.

t

$$H + He^{2+} -> He^{+}(2p) + H^{+}$$

Beam - Maxwellian

Line Emission Cross Sections of Electron Capture Collisions for

(Ly_)		(Ly _B)		(Ly ₇)		(B _m)	
Energy	Cross Section	Energy	Cross Section	Energy	Cross Section	Energy	Cross Section
eV/anu	cm ²	eV/ABU	ca ²	eV/anu	cm2	eV/amu	CB ²
1.22+03	2.68E-16	1.62+93	6.37E-18	4.82+03	2.39E-18	2.8E+03	1.99E-17
1.5E+03	3.212-16	2.2E+03	1.30E-17	5.0E+03	2.45E~18	2.9E+03	2.03E-17
2.2E+03	4.90E-16	2.9E+03	1.93E-17	5.7E+03	2.75E-18	3.6E+03	2.36E-17
2.9E+03	6.35E-16	3,6E+03	2.18E-17	6.4E+03	3.08E-18	4.3E+03	2.73E-17
3.6E+03	7.49E-16	4.3E+03	2.328-17	7.2E+03	3.48E-18	5.05+03	3.17E-17
4.3E+03	8.30E~16	5.08+03	2.392-17	7.9E+03	3.96E-18	5.7E+03	3.708-17
5.0E+03	8.82E-16	5.7E+03	2.47E-17	8.6E+03	4.47E-18	6.5E+03	4.22E-17
5.7E+03	9.11E-16	6.5E+03	2.54E-17	9.1E+03	4.89E-18	7.28+03	4.70E-17
6.5E+03	9.31E-16	7.2E+03	2.64E-17	9.3E+03	5.08E-18	7.9E+03	5.03E-17
7.2E+03	9.50E-16	7.9E+03	2.75E-17	1.0E+04	5.84E-18	8.6E+03	5.24E-17
7.9E+03	9.59E-16	8.6E+03	2.87E-17			9.3E+03	5.35E-17
8.6E+03	9.73E-16	9.38+03	3.04E-17			1.0E+04	5.40E-17
9.32+03	9.872-16	1.0E+04	3.242-17				
1.0E+04	9.91E-16						

He²⁺ + H -> He⁺(Lys,Lys,Lyy,Hs) + H⁺

Beferences; 173

Accuracy: 30%

<u>Hotes:</u> (1) Transition wavelengths are: Lyman-a - (2p->ls) 30.4 nm; Lyman-β - (3p->ls) 25.6 nm; Lyman-y - (4p->ls) 24.3 nm; Balmer-a - (n=3->2) 164 nm. (2) The Balmer-β emission cannot be measured since the transition has the same wave length as the Lyman-s radiation.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

(LY .)	E _{min} -	1.2E+03 eV/amu,	Emax =	1.0g+04 eV/amu
(Ly _g)	E _{min} =	1.6E+03 eV/amu,	Emax -	1.0E+04 eV/amu
(LY7)	E _{min} -	4.8E+03 eV/amu,	Emax .	1.0E+04 eV/amu
(B _B)	E _{min} =	2.82+03 eV/amu,	Emex -	1.0g+04 eV/amu

Chebyshev Fitting Parameters for Cross Sections

	AŬ	A1	A2	A3		A5	٨6	A7	A8
(Ly _e)	-70.0765	.658545	176878	00575199	.0163374	.00346973	~.00221833	00217295	-4.61984E-04
(Ly _p)	-77.0977	.692364	245444	.142376	-,00794442	0119412	.0163687	00929968	.00446139
(Ly _y)	-80,3639	.441485	.0512890	.00405517	9.452942-04	.00161819	.00182462	-4.78184E-04	-6.34056E-04
(8 ₈)	-75.8681	.546644	0142448	0516937	-,0137147	.00553121	.00525928	00130955	9.09970E-05

The fit represents the (Ly₀) cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 7.9E+03 eV/amu. The fit represents the (Ly₀) cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 8.6E+03 eV/amu. The fit represents the (Ly₀) cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 8.6E+03 eV/amu. The fit represents the (H₀) cross section with an rms deviation of 0.1%. The fit represents the (H₀) cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 6.6E+03 eV/amu.

See appendix for Chebyshev fit details.

Electron Capture Cross Sections for

	(3p)	(34	i+3d)	(4p)		
Energy eV/amu	Cross Section cm ²	eV/ans	Cross Section cm ²	Energy eV/anu	Cross Section cm ²	
1.6E+03	7.71E-18	2.5 £ ≪03	1.78E-17	5.05+03	2.492-18	
2.02+03	1. 46 E-17	3.0E+03	1.872-17	5.5E+03	2.738-18	
2.5E+03	2.09E-17	3.5E403	2.01E-17	6.0E+03	2.99E-18	
3.0E+03	2.408-17	4.0E+03	2.238-17	7.0E+03	3.568-18	
3.5E+03	2.632-17	4.5E+03	2.51E-17	8.9E+93	4.228-18	
4.0E+03	2.83E-17	5.02+03	2.81E-17	9.02+03	4.965-18	
4.5E+03	2.97E-17	6.0E+03	3.49E-17	1.9E+64	6.038-18	
5.5E+03	3.202-17	7.0E+03	4.15E-17			
6.02+03	3.298-17	8.0E+03	4.63E-17			
7.0E+03	3.43E-17	9.0E+03	4.89E-17			
8.02+03	3.57 E-17	1.02+04	4.97E-17			
9.02+03	3.672-17					
1.02+04	3.74E-17					

He²⁺ + H -> He⁺(3p,3z+3d,4p) + H⁺

References: 172, 173

Accucacy: 301

<u>Hotes:</u> (1) The 3s and 3d states could not be determined separately due to the degeneracy of states in He⁺.

(2) Capture into the ground state is negligible at low energies for a B target.

(3) The cross section (s_j) for capture into state i is determined by measuring the emission cross section (s_{ij}) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

Chebyshev Fitting Parameters for Cross Sections											
	0A	Al	A2	A3	44	A5	A6	A7	AB		
(3p)	-76.6256	.667773	257128	.115045	0496129	.0142615	9.03999E-04	00746439	.00421196		
(3s+3d)	-76.1346	.575824	.0291040	0715718	3133196	.00539953	00104695	.00377347	00137059		
(4y)	-80.2658	. 432003	.0343796	.00725815	.00469173	.00296970	.00163023				

I

The fit represents the (3p) cross section with an rms deviation of 0.1%. The maximum deviation is 0.3% at 4.55+03 eV/amu. The fit represents the (3s+3d) cross section with an rms deviation of 0.3%. The maximum deviation is 0.1% at 4.05+03 eV/amu. The fit represents the (4p) cross section with an rms deviation of 0.0%. The maximum deviation is 0.0%

See appendix for Chebyshev fit details.

<u>B-105</u>

Electron Capture Cross Sections for

He²⁺ + H₂ -> He⁺(2s,2p)

: [*] (2p)	Be	r (2s)
Cross Section	Energy	Cross Section
c ∎ ²	eV/anu	cm ²
4.90E-17	2.0E+03	7.99E-18
5.94E-17	3.GE+03	1.978-17
8_22E-17	4.0E+03	3.33E-17
1.35E-16	5.0E+03	4.56E-17
2.15E-16	5.5B+03	5.12E-17
3.16E-16	6.08++J	5.76E-17
4.792-16	7.0E+C3	7.468-17
6.18E-16	7.5B+03	8.86E-17
7.08E-16	8,02+03	9.88E-17
	9.0E+03	1.172-16
	1.02+04	1,28E-16
	1.5E+04	1.37E-16
	<pre>(2p) Cross Section cm² 4.90E-17 5.94E-17 6.22E-17 1.35E-16 2.15E-16 3.16E-16 4.79E-16 6.18E-16 7.08E-16</pre>	Y (2p) He Cross Section Energy cm ² eV/amu 4.90E-17 2.0E+03 5.94E-17 3.0E+03 6.22E-17 4.0E+03 1.35E-16 5.0E+03 2.15E-16 5.5E+03 3.16E-16 6.0E**3 4.79E-16 7.0E+03 6.18E-16 9.0E+03 9.0E+03 1.0E+04 1.5E+04 1.5E+04

References: He⁺(2s) - 56, 165, 177; He⁺(2p) - 172, 173

Accuracy: He*(2s) - 60%; He*(2p) - 30%

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

 $Be^+(2p) = E_{min} = 1.2E+03 eV/amu, = E_{max} = 1.0E+04 eJ/amu = Ee^+(2s) = E_{min} = 2.0E+03 eV/amu, = E_{max} = 2.0E+04 eV/amu$

Chebyshev Pitting Parameters for Cross Sections

	AO	Al	A2	A 3	λ4	A5	26	A7	Aŝ
Be ⁺ (2p)	-72.5057	1.39004	.0296375	0736032	0100517	.0209333	.0217835	00206200	00793171
He ⁺ (2s)	-75.1849	1.42417	425662	0917408	0265286	.0447348	.0526597		

I.

The fit represents the $\text{He}^+(2p)$ cross section with an rms deviation of 0.0%. The maximum deviation is 0.0%

The fit represents the He $^+(28)$ cross section with an rms deviation of 2.4%. The maximum deviation is 4.6% at 1.3E+04 eV/smu.

See appendix for Chebyshev fit details.

1

<u>8-107</u>

Line Emission Cross Sections of Electron Capture Collisions for

Lya			# <u>e</u>		Lyg	Lr,		
Exergy e%/aitu	Cross Section cm ²	Energy e∀/amu	Cross Section cm ²	Ebergy eV/ann	Cross Section cm ²	Energy eV/ane	Cross Section cm ²	
1.3E+63	4.82E-17	2.58+03	6.445-18	1.72+83	1.778-18	5.0E+03	4.938-19	
1.5E+03	5-62E-17	2.9E+83	7. 442-18	2.25+83	2.522-18	5.7E+03	7.568-19	
2.22+83	9.212-17	3.62+03	9.f3E-10	2.92+83	3.752-18	6.5E+03	1.158-18	
2.9E+03	1.372-16	4.35+63	1.185-17	3.6E+03	5.182-18	7.2E+03	1.772-18	
3.6E+03	1.568-16	5.62+63	1.442-17	4.3 2+ 43	6.942-18	7.9E+83	2.328-18	
4.32+83	2.588-16	5.72+03	1.752-17	5.02+83	8.795-18	a.62+63	2.68E-18	
5.8E+03	3.25E-16	6.4 2+ 83	2.10E-17	5.7E+83	1.062-17	9.32+03	2.942-18	
5.7E+03	3-946-16	7.2E+83	2.482-17	6.4Z+03	1.242-17	1.82+84	3.15E-10	
6.5E+03	4.59E-16	7.9E+03	2.892-17	7.22+83	1.428-17			
7.22+03	5.242-16	8.6E+83	3.238-17	7.9E+03	1.518-17			
7.9E+43	5.84E-16	3.3E+63	3.492-17	3.62+93	1.558-17			
8.6E+83	6.56E-16	1.8E+04	3.658-17	9.35+03	1.56E-17			
9.3E+83	7.36z-16			1.62+84	1.528-17			
1.0E+04	8-06E-16							

He²⁺ + H₂ -> He⁺(Ly_e, Ly_B, Ly₁, H_e)

References: 173

Accuracy: 30%

Botes: 1) Transition wavelengths are: Lyman-s (2p->ls) 30.4 mb; Lyman-s (3p->ls) 25.6 ms; /yman-y (4p->ls) 24.3 ms; Balmer-s (Rs, n=3->2) 164 mm. (2) The Balmer-s radiation cannot be measured since the transition has the same wave length as the Lyman-s radiation.

for thebyshev fits of the above cross sections it is necessary to use the following parameters.

Chebyshev Fitting Parapeters for Cross Sections

AG	A 1	A2	A3	A4	A5	A6	▲7	A8
----	------------	----	----	----	----	-----------	----	----

(Ly₀) -72.3892 1.45574 .0140540 -.0435817 .00709587 .08345598 .6136342 -.00698786 -.80272340 (H₀) -77.4506 .904442 .0279735 -.0253175 -.0268277 -.00920018 .00430881 -.60254262 .00325846 (Ly₀) -79.3598 1.17675 -.116050 -.0780599 -.0348000 -.0102977 .0150173 -.0123659 .0116818 (Ly₇) -82.1736 .953689 -.126724 -.0689492 .0127445 .0372528 -.0256612 .00533416

The fit represents the Ly cross section with an rEZ deviation of 0.3%. The maximum deviation is 0.6% at $3.62{\times}03$ eV/amu.

The fit represents the H $_{\rm e}$ cross section with an rms deviation of 0.18. The maximum deviation is 0.28 at 7.12+03 eV/amu.

The fit represents the Lyg cross section with an rms deviation of 0.4%. The maximum deviation is 0.78 at 0.62+03 eV/asu.

The fit represents the Ly cross section with an rms deviation of 0.0%. The maximum deviation is 0.0%. See appendix for Chebyshev fit details.

I.

I.

8-109

Electron Capture Cross Sections for

Be²⁺ + H₂ -> Be⁺(3p,3s+3d,4p)

	(Jp)	(34	;+3d)	((4 p)
Ene rgy e4/aau	Cross Section cm ²	Energy eV/anu-	Cross Section cm ²	ev/amu	Cross Section Cm ²
2.5E+03	6.782-18	1.92+63	1.962-18	5.02+03	5.788-19
3.02+83	7.05E-18	2.32+03	2.645-18	5.85+03	9.102-19
3.5E+03	9-242-18	3. 82+6 3	4.598-18	6.5E+03	1.398-18
4.3E+03	1.17E-17	3.52+03	6.182-18	7.3E+03	2.105-18
5.0E+03	1.452-17	4.32+03	7.728-18	8.8E+03	2.822-18
5.82+03	1.752-17	5.02+63	9.582-18	8.5£÷03	3.382-18
6.5E+03	2.058-17	5.82+03	1.17#-17	9.32+63	3.642-18
7.38+03	2.35E-17	6.58+03	1.3.8-17	1.9E+94	3.842-18
8.02+03	2.658-17	7.3E+03	1.568-17		
8.5E+03	2.962-17	8.82+03	1.68E-17		
9.32+03	3.258-17	8.5E+63	1.755-17		
1.05+42	3.542-17	9.3E+03	1.785-17		
		1.0E+04	1.715-17		

Beferences: 173

Accuracy: 301

Hote: (1) The 3s and 3d states could not be determined separately due to the degeneracy of states in He⁺.
 (2) The cross section for capture into state i is determined by measuring the emission cross section (a_j) for a transition from state i to j, correcting for any branching from state i and correcting for cascading from upper states.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

Chebyshev Fitting Parameters for Cross Sections

	A0	A1	A2	A3	A4	A5	A6	87	- 1
--	----	----	----	----	----	----	----	----	-----

 (3p)
 -77.5134
 .877384
 .0236181
 -.0330936
 .0119138
 -.00648625
 .00667714
 -.00553227
 .00234918

 (3s+3d)
 -78.9402
 1.10256
 -.166612
 -.0123653
 -.0567272
 -.00713119
 .00939783
 4.306178-04
 -.00609836

 (4p)
 -81.8167
 .938271
 -.145543
 -.0608582
 .0111762
 .0174494
 -.00474599
 -.00803524

The fit represents the 3p cross section with an rms deviation of 0.1%. The maximum deviation is 0.1% at 7.9E+0.3 eV/amu.

The fit represents the 3n+3d cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 8.62+03 eV/amu.

The fit represents the 4p cross section with an rms deviation of 0.00. The maximum deviation is 0.00.

See appendix for Chebyshev fit details.

Electron Capture Cross Sections for $Be^{2+} + Be \rightarrow Be^{+}(2s) + He^{+}$

Bnergy	Velocity	Cross Section
(eV/amu)	(cm/s)	(c m ²)
2.0E+03	6.212+07	2.79E-18
3.0E+03	7.61E+07	3.30E-18
4.0E+03	8.73E+07	4.04E-18
5.0E+03	9.82E+07	5.32B-18
7.0E+03	1.162+08	9.18E-18
9.0E+03	1.328+08	1.37 E-1 7
1.0E+94	1.39E+08	1-62E-17
1.5E+04	1.7CB+08	3.04E-17
2.02+04	1.96E+08	3.75 6-17
2.5E+04	2.20B+08	3 .908- 17
3.0E+04	2.41E+08	3.84E-17
4.0E+04	2.781+08	3.36 E -17
6.0E+04	3.40E+04	2.21B-17
8.0E+04	3.93E+08	1.40E-1 7
1.0E+05	4.39E+68	8.652-18
1.5E+05	5.38E+08	2.83E-18
2.0E+05	6.21E+08	1.262-18
2.5E+05	6.94E+08	6.87E-19
3.0 2+05	7.61E+08	4.108-19
4.0E+05	8.78E+08	1.752-19
4.7E+05	9.52E+08	1.272-19

References: 56, 145, 177, 178, 179, 180, 181, 182

Accuracy: $E < 2x10^4$ eV/amu - 50%; $E > 2x10^4$ eV/amu - unknown

<u>Botesr</u> (1) Experimental data (ref. 56, 145, 177) extends only to 2x10⁴ eV/amu. In the energy region of overlap (7x10³ eV/amu-2x19⁴ eV/amu) between experimental data and theoretical data (ref. 178, 180, 181) the theoretical data is greater than experimental by 1.5-2.5 orders of magnitude. Data above 2x10⁴ eV/amu should pe used with caution. (2) No experimental data exists for He²⁺ + He -> He⁺(2p).

For a Chebyshev fit of the above cross sections it is necessary to use the following parameters. $E_{min} = 2.0E+03 \text{ eV/amu}, \quad E_{max} = 4.7E+05 \text{ eV/amu}$

Chebyshev Fitting Parameters for Cross Sections

AG	A1	A2	A3	84	A5	A6	A7	X8
-80.4752	-1.31324	-2.07504	281865	.383911	5.87536E-03	0220039	.0340012	0262370

The fit represents the above cross sections with an rms deviation of 2.7%. The maximum deviation is 5.6% at 4.0 E+05 eV/amu. See appendix for Chebyshev fit details.

Electron Capture Rate Coefficients for He²⁺ + He -> He⁺(2s) : __+

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Be ²⁺								
Temp.	Equal				He Temp. (eV	7)		
(eV)	Tesp.	500.	1900.	2000.	4000.	7000.	10000.	20000.
7.0E+02	1.96E-12	7.88E-13	5.128-12	2.78E-11	1.11E-10	3.08E-10	5.88E-10	1.84E-09
1.0E+03	1.01E-11	2.81E-12	1.01E-11	3.76E-11	1.27E-10	3.32E-10	6.20E-10	1.882-09
2.0E+03	7.73E-11	2.20E-11	3.76E-11	7.73E-11	1.86E-10	4.20E-10	7.31E-10	2.02E-09
4.0E+03	3.32E-10	1.01g-10	1.27E-10	1.86E-10	3.32E-10	6.20E-10	9.702-10	2.28E-09
7.0E+03	9.702-10	2.92E-10	3.32E-10	4.20E-10	6_20E-10	9.79E-10	1.35E-09	2.65E-09
1.0E+04	1.75E-09	5.672-10	6.20E-10	7.31E-10	9.70E-10	1.35E-09	1.75E-09	3.01E-09
2.0E+04	4.01E-09	1.82E-09	1.88E-09	2.02E-09	2.28E-09	2.65E-09	3.01E-09	4.01E-09

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 7.0E+02 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Fitting Parameters for Rate Coefficients

Be							
Temp.							
(eV)	A0	A1	A2	A3	λ4	A5	A6
500.	-4.71093E+01	3.78408E+CO	-4,25226E-01	1.09485E-01	-1.88308E-02	-2.18471E-02	1.64914E-03
1000.	-4.59288E+01	2.965062+00	-6.94375E-02	4.01519E-03	-9.10887E-03	-1.53339E-02	-4.97257E-04
2000.	-4.46311E+01	2.18675E+00	1.67647E-01	-3.86105E-02	-1.57224E-02	-6.51960E-03	-3.71278E-04
4000.	-4.32631E+01	1.54495E+00	2.39004E-01	-3.13418E-02	-1.96927E-02	-2.77831E-03	6.46638E-04
7000.	-4.20414E+01	1.09232E+00	2.10178E-01	-1.36333E-02	-1.49539E-02	-2.16792E-03	5.397458-04
10000.	-4.12037E+01	8.21778E-01	1.74596E-01	-3.48824E-03	-1.10046E-02	-2.36544E-03	-2.58516E-04
20000.	-3.96301E+01	3.84302E-01	9.69796E-02	5.67825E-03	-3.92022E-03	-1,53584E-03	-5.161222-04
Equal Temp.	-4.490852+01	3.65780E+00	-6.02220E-01	1.33794E-01	-9.85265E-02	2.12708E-02	8.09123E-01

See appendix for Chebyshev fit details.

$$He^{2+}$$
 + $He -> He^{+}(2s)$ + He^{+}

Maxwellian - Maxwellian

Electron Capture Rate Coefficients for He + $\text{He}^{2+} \rightarrow \text{He}^+(2s) + \text{He}^+$

Beam - Maxwellian Rate Coefficients (cm^3/s)

Be ²⁺							
Tesp.			Be E	nergy (eV/am	(21)		
(eV)	10000.	20000.	40000.	60000.	80000.	100000.	200000.
1.02+00	2.25E-09	7.35E-09	9.33E-09	7.51E-09	5.50E-09*	3.80E-09*	7.83E-10**
2.0E+00	2.25E-09	7.36E-09	9.32E-09	7.51E-09	5.50E-09*	3.80E-09*	7.83E-10**
4.0E+00	2.25E-09	7.35E-09	9.32E-09	7.512-09	5. 49E-09 *	3.80E-09*	7.83E-10**
7.0E+00	2.256-09	7.35E-09	9.31E-09	7.51E-09	5.49E-09	3.798-09*	7.838-10**
1.02+01	2.258-09	7.34E-09	9.31E-09	7.50E-09	5.49E-09	3.79E-09*	7.83E-10**
2.0E+01	2.26E-09	7.33E-09	9.30E-09	7.50 e-09	5.498-09	3.79E-09*	7.83E-10**
4.0E+01	2.26E-09	7.328-09	9.29E-09	7.49E-09	5.48E-09	3.79E-09*	7.83E-10**
7.0E+01	2.27E-09	7.31E-09	9.27E-09	7.48E-09	5.48E-09	3.78E-09*	7.83E-10**
1.0E+02	2.28E-09	7.30E-09	9.262-09	7.47E-09	5.47E-09	3.78E-09	7.83E-10*
2.0E+02	2.318-09	7.28E-09	9.23E-09	7.45E-09	5.46E-09	3.78E-09	7.84E-10*
4.0E+02	2.37E-09	7.26E-09	9.19E-09	7.43E-09	5.45E-09	3.77E-09	7.85E-10*
7.0E+02	2.45E-09	7.23E-09	9.14E-09	7.40E-09	5.43E-09	3.76E-09	7.87E-10*
1.0E+03	2.54E-09	7.22E-09	9.10E-09	7.38E-09	5.42E-09	3.76E-09	7.88E-10*
2.0E+03	2.798-09	7.17E-09	8.99E-09	7.32E-09	5.40E-09	3.76E-09	7.938-10*
4.0E+03	3.20E-09	7.11E-09	8.81E-09	7.23E-09	5.36E-09	3.76E-09	8.02E-10*
7.0E+03	3.682-09	7.05E-09	8.57E-09	7.11E-09	5.31E-09	3.77E-09	8.15E-10*
1.0E+04	4.06E-09	7.01E-09	8.35E-09	6.98E-09	5.25E-09	3.77E-09	8.29E-10*
2.0E+04	4.94E-09	6,91E-09	7.72E-09	6.58E-09	5.08E-09	3.75E-09	8.76E-10*

Accuracy: * - Possible Error Greater Than 10% ** - Possible Error Creater Than 100%

Notes: For Chebyshev fits of the above rate coefficients it is necessary to use the following parameters. $E_{min} = 1.0E+00 \text{ eV}, \quad E_{max} = 2.0E+04 \text{ eV}$

Chebyshev Pitting Parameters for Rate Coefficients													
Яe													
Energy													
(eV/amu)	A0	Al	A2	A3	84	A5	A 6						
10000.	-3.94248E+01	3.34599E-01	1.94015E-01	6.868062-02	4.956942-03	-9.99564E-03	-6.10649E-03						
20000.	-3.74937E+01	-2.786452-02	-1.11501E-02	-3.098622-05	-9,335852-04	8.712202-06	1.095502-04						
40000.	-3.70648E+01	-6.95474E-02	-4.17914E-02	-2.130448-02	-9.81107E-03	-3.95679E-03	-1.20270E-03						
60000.	-3.74705E+01	-4.74430E-02	-2.81261E-02	-1.48208E-02	-7.60963E-03	-3.68669E-03	-1.563032-03						
80000.	-3.80745E+01	-2.90089E-02	-1.587632-02	-8.00256E-03	-4.24777E-03	-2.176378-03	-8.77601E-04						
100000.	-3.87879E+01	-5.76796E-03	1.27600E-04	8.95128E-04	~2.39349E-04	-7.732948-04	-5.694528-04						
200000.	-4.18939E+01	3.77781E-02	2.64380E-02	1.531652-02	7.526592-03	3.09706E-03	1.14409E-03						

See appendix for Chebyshev fit details.

He +
$$He^{2+}$$
 -> $He^{+}(2s)$ + He^{+}

Beam – Maxwellian

Ш

Electron Capture Cross Sections for

He²⁺ + Li -> He⁺(2p,3p,4p,3s+3d,4s+4d) + Li⁺

(2p) (3p) (3s+3d) (46+4d) (4p) Emergy Cross Section Emergy Cross Section Emergy Cross Section Emergy Cross Section Emergy Cross Section ca² cm² cm² eV/anu eV/anu cm² e¥/ant eV/am **c**² eV/anu 5.6E+02 4.96E-15 3.706-16 1.3E+03 2.99E-16 3.54E-16 3.82+03 6.028-15 1.1E+04 3.8E+01 9.778-16 2.718-16 7.1E+02 4.562-15 1.5E+04 1.5E+03 5.0E+03 5.31E-13 5.0E+03 1.392-15 2.0E+04 1.972-16 9.12+02 4.20E-15 2.0E+03 4.298-16 7.0E+03 4.17E-15 6.0E+03 1.51E-15 3 02-04 1.15E-16 5.90E-17 1.58+03 3.55E-15 3.23E-15 3 07+03 5.308-16 1.0E+04 1.5E+04 2.64E-15 9.31E-16 7.02+01 1 508-15 6.08E-16 3.8E+04 2.02+03 4.0E+03 1.0E+04 1.282-15 6.27E-16 3.0E+03 2.828-15 6.0E+03 7.51E-16 2.02+04 3.602-16 1.58+04 1.508-16 5.0E+03 2.242-15 7.0E+03 8.00g-16 2.5E+04 2.0E+04 3.38E-16 7.0E+03 1.68E-15 8.65+01 8.36E-16 7.94E-16 2-5E+84 1 02+64 7.398-17 1.898-16 2.192-17 1.0E+04 9.508-16 1.02+04 3.0E+04 1.182-16 3.8E+04 .5E+04 3.538-16 1.55+04 4.72E-16 3.7E+04 6.50E-17 2.0Z+04 1.452-16 2.92+04 2.34E-16 2.5E+04 5.49E-17 2.52+04 9.898-17 1.772-17 3.02+04 3.0E+04 4.398-17 3.2E+04 1.002-17 3.8E+04 1.448-17

References: 240, 243, 245, 259, 262, 263, 264

Accuracy: unknown

Hotes: (1) Cross sections into excited states are determined by measuring the emission from the state and subtracting cascade transitions from higher states and making corrections for the branching ratios.
(2) It is believed that the data are accurate to within 60%.
(3) References 263 and 264 contain theoretical data that were not included in compiling the present data.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

	A0	A1	A2	A3	24	A5	26	₩7	A8
(2p)	-72.5775	\$54328	132073	-,0636576	0301663				
(3p)	-69.3960	-2.53366	-1.15152	477709	109491	0224733	0359280	0364469	0124596
(4p)	-71.9553	-1.18550	-1.26810	417040	0333091	.0822485	.0142456	.00155260	.00317940
(3s+3d)	-69.5364	-2.77071	724373	0299068	.0383153	0274998	0511074	.0199350	0465182
(4s+4d)	-70.4843	-1.40194	666629	.0919477	.0166653	00399733	0199710	.0194456	00484478

The fit represents the above cross sections with an rms deviation of 0.0%. The maximum deviation is 0.0%. The fit represents the above cross sections with an rms deviation of 0.8%. The maximum deviation is 1.5% at 3.0E+04 eV/amu. The fit represents the above cross sections with an rms deviation of 1.2%. The maximum deviation is 2.7% at 1.5E+04 eV/amu. The fit represents the above cross sections with an rms deviation of 0.0%. The maximum deviation is 0.0%. The fit represents the above cross sections with an rms deviation of 1.1%. The fit represents the above cross sections with an rms deviation of 1.1%.

See appendix for Chebyshev fit details.

9-119

8-119

Line Emission Cross Sections of Electron Capture Collisions for

	Ly _e)	([-Ya)	(1	y,)
Energy	Cross Section	Energy	Cross Section	Energy	Cross Section
eV/anu	cs ²	eV/amu	ca ²	eV/amu	cm ²
8.18-01	4.72E-16	8.3E-01	3.712-16	1.3E+03	2.55E-16
1.02+00	4.83E-16], OE+00	4.42E-16	1.5E+03	3.01E-16
1.5E+00	5.53E-16	1,5 2+00	6.232-16	2.0E+03	3.77E-16
2.0E+00	7.302-16	2,0E+60	7.78E-16	3,0E+03	4.69E-16
2.5 2+0 0	9.40E-16	3,02+80	8.83E-16	4.0E+0 3	5.318-16
3. 82+0 0	1.128-15	4,0E+60	8,422-16	6.4E+03	6.25E-16
4.0E+00	1.262-15	5,0E+00	7,65E-16	8.0E+03	6.89E-16
6.0 <u>5</u> +90	1.286-15	6_0 5+0 0	7.028-16	9.1E+0 3	6.94E-16
8.0E+60	1.212-15	8_0E+99	5,998-16	1.0 Z+ 04	6.74E-16
1.0 2+ 01	1.132-15	1.0 E+0 1	5.328-16	1,5E+84	4.062-16
1.3 2+0 1	1.04E-15	1.4E+01	4.438-16	2.0E+64	2.022-16
5.4E+02	7.232-15	5.4E+02	4.68E-15	2.5E+04	8.81E-17
8.0E+02	7.35E-15	7.8E+62	4.04E-15	3.0 E+04	4.00E-17
1.02+03	7.30E-15	9.0E+02	3.598-15	3.5E+04	1 .982- 17
1.5E+03	7.318-15	9.9E+02	3.428-15		
2.0E+03	7.276-15	1.52+03	2.938-15		
3.0E+03	7.07¢-15	2.02+03	2.758-15		
5.02+05	6.778-15	3.02+03	2.672-15		
6.9E+03	5.678-15	4.0E+03	2.638-15		
1.02+04	4.10E-15	5.02+03	2.51E-15		
1.52+04	2.048-15	7.0E+03	2.032-15		
2.02+04	1.002-15	9.0E+03	1.498-15		
3.0E+04	3.398-16	1.0E+04	1.296-15		
3.82+04	1.792-16	1.58+04	5.978-16		
	,	2.0E+04	3.022-16		
		3.02+04	6.528-17		
		3.8E+G4	2.202-17		

 $Be^{2+} + Li \rightarrow Be^{+}(Ly_{e}, Ly_{\beta}, Ly_{\gamma}) + Li^{+}$

References: 240, 243, 245, 259, 262

Accuracy: unknown

<u>Hotes:</u> (1) On purpose, no attempt has been made to extrapolate the data between the low and high energy regions.

(2) The emission cross section is defined as the photon emission from state n1 with no correction for cascading from higher states.

For Chabyshev fits of the above cross sections it is necessary to use the following parameters.

(Ly _e)	Emin -	8.1E-01 eV/amu,	Emax "	3.8E+04 eV/amu
(Ly ₅)	E _{min} -	8.32-01 eV/amu,	E _{max} =	3.82+04 eV/amu
(Ly ₇)	Spin -	1,3E+03 eV/amu,	Enax *	3.82+04 eV/amu

Chebysnev Fitting Parameters for Cross Sections

	AŬ	A1	A2	A3	24	A5	26	A7	A8
(Ly _e)	-68.3492	.342390	-1.29878	802770	377264	.0373709	-,0758138	0906659	.102062
(Lyg)	-69.8158	370103	-1.48217	-1.03893	360773	.0694862	330382	0604033	.195831
(LyT)	-72.2366	-1.16996	-1.25436	404927	0551144	-0691596	.0107803	0171457	0103497

The fit represents the (Ly₀) cross section with an rms deviation of 3.3%. The maximum deviation is 6.3% at 2.02+00 eV/amu. The fit represents the (Ly₀) cross section with an rms deviation of 4.6%. The maximum deviation is 7.3% at 1.42+01 eV/amu. The fit represents the (Ly₇) cross section with an rms deviation of 1.4%. The maximum deviation is 2.7% at 1.52+04 eV/amu.

$$He^{2+} + Li -> He^{+}(Ly_{e}, Ly_{e}, Ly_{e}) + Li^{+}$$

Cross Section vs. Energy

Line Emission Cross Sections of Electron Capture Collisions for

	(H)		(8g.)	(1	Ly }	(84	.)
Energy eV/amu	Cross Section	Energy eV∕anu	Cross Section	Energy eV/anu	Cross Section cm ²	Energy eV/anu	Cross Section cm ²
3.9E+63	9.198-15	3.82+03	7.87E-16	5.0£+03	2.26E-16	5.02+03	1.19E-16
5.1E+03	8.03E-15	5.1E+03	1.05E-15	6.0E+03	3.192-16	6.0E+03	1.242-16
6.1E+03	7.23E-15	6.0E+03	1.10E-15	7.1E+03	3.60E-16	8.1E+03	1.322-16
7.12+03	6.55E-15	7.1E+03	1.11E-15	8.62+03	3.66E-16	1-02+04	1.382-16
8.12+03	5.732-15	1.0E+04	9.79E-16	1.0E+04	3.412-16	1.5E+04	1.292-16
1.02+04	4.07E-15	1.52+04	5.20E-16	1.5E+04	2.33E-16	2.05+04	8.23E-17
1.52+84	1,492-15	2.02+04	2,71E-16	2.0E+04	1.46E-16	2.58+04	3.5#E-17
2.0E+04	6.022-16	3.02+04	9.35E-17	2.52+94	7.35E-17	3.32+04	2.308~17
2.5E+04	2.602-16	3.8E+04	5.04E-17	3.0E+04	4.61E-17	3.82+04	1.59E-17
3.0E+04	1.93E-16			3.8E+04	2.998-17		
3.7 2+04	4.36E-17						

```
\operatorname{He}^{2+} + Li \rightarrow \operatorname{Se}^{+}(\operatorname{H}_{e},\operatorname{H}_{g},\operatorname{H}_{g},\operatorname{H}_{g}) + Li<sup>+</sup>
```

References: 240, 243, 245, 262

Accuracy: 601

<u>Notes</u>: (1) The emission cross section is defined as the photon emission from state nl with no corrections for cascading i.e. Balmer- = emission cross section is the emission of photons in the 3 ->2 transition at λ =164 nm which does not include any other transitions.

(2) The probable accuracy of the data is estimated at 60%.

For Chebyshev fits of the above cross sections it is necessary to use the following parameters.

Chebyshev Pitting Parameters for Cross Sections

	A0	A1	A2	K3	٨4	λ5	λ6	¥7	A8
(H _E)	-68.6366	-2.68265	765389	0308549	.0354272	.00127287	.0359553	.0365120	.0161142
(B _B)	-71.6392	-1.46157	677621	.0638841	.0375648	.00465953	00918230	.0189071	.0164169
(R _y)	-72.9366	-1,14183	554068	.105201	.0358399	.0591287	00855619	0336544	0423521
(B ₄)	-74.4125	995923	511481	0119520	.159667	.0670561	0432569	0655825	0724875

The fit represents the (H₀) cross section with an rms deviation of 0.6%. The maximum deviation is 1.0% at 2.02+04 eV/amu. The fit represents the (H₀) cross section with an rms deviation of 0.0%. The maximum deviation is 0.0%. The fit represents the (H₀) cross section with an rms deviation of 0.5%. The maximum deviation is 1.1% at 8.02+03 eV/amu. The fit represents the (H₀) cross section with an rms deviation of 0.0%. The maximum deviation is 0.0%.

See appendix for Chebyshev fit details.

B-122

B-123

C. Cross Sections for Excitation and Spectral Line Emission (* denotes rate coefficient data also)

Page

H + H -> H(2s)	C-2
-> H(2p)	C-2
-4 H(3s)	C-4
-> H(3p)	C-4
-> H(3d)	C-4
\rightarrow H(Balmer _a)	C-4
$H + H_2 \rightarrow H(2s)$ (projectile)	C-6
-> H(2p) [projectile]	C-6
\rightarrow (2s) [target]	C-6
\rightarrow (2p) [target]	C-6
\rightarrow (Lyman=)	C~8
\rightarrow (Dynamed) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	C-10
-> H(3p+3d)	C_{-10}
\rightarrow H(Balmorn.)	C_{-12}
\rightarrow H(Ae)	C = 12
$\sim n(48)$	C-14
$= n(4p+4\alpha) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	C~14
\rightarrow h(Balmer- β)	C-14
	0.10
$H(28) + H_2 -> H(Lyman-a)$	C-10
-> H(35)	C-18
\rightarrow H(Balmer-a) \ldots \ldots	C-18
$H(2s) + He \rightarrow H(Lyman-\alpha) \dots \dots \dots \dots$	C-20
$-> H(3s) \dots \dots \dots \dots \dots$	C-22
$ \begin{array}{cccc} -> & H(3s) & \ldots & \ldots & \ldots & \ldots \\ -> & H(Balmer_{a}) & \ldots & \ldots & \ldots & \ldots \\ \end{array} $	C-22 C-22
$ \begin{array}{c} -> H(3s) \\ -> H(Balmer-a) \\ \end{array} $	C-22 C-22
$\begin{array}{c} -> H(3s) & . & . & . & . & . & . & . & . & . & $	C-22 C-22 C-24*
$\begin{array}{c} -> H(3s) & \dots & \dots & \dots \\ -> H(Balmer_{\alpha}) & \dots & \dots & \dots \\ H + He & -> H(Lyman_{\alpha}) & \dots & \dots & \dots \\ -> H(2s) & \dots & \dots & \dots & \dots \\ \end{array}$	C-22 C-22 C-24* C-30
$\begin{array}{c} -> H(3s) & \dots & \dots & \dots & \dots \\ -> H(Balmer_{a}) & \dots & \dots & \dots & \dots \\ H + He & -> H(Lyman_{a}) & \dots & \dots & \dots & \dots \\ -> H(2s) & \dots & \dots & \dots & \dots & \dots \\ -> H(2p) & \dots & \dots & \dots & \dots & \dots \end{array}$	C-22 C-22 C-24* C-30 C-30
$\begin{array}{c} -> H(3s) & \dots & \dots & \dots & \dots \\ -> H(Balmer_{a}) & \dots & \dots & \dots & \dots \\ H + He & -> H(Lyman_{a}) & \dots & \dots & \dots & \dots \\ -> H(2s) & \dots & \dots & \dots & \dots & \dots \\ -> H(2p) & \dots & \dots & \dots & \dots & \dots \\ -> H(3s) & \dots & \dots & \dots & \dots & \dots \end{array}$	C-22 C-22 C-24* C-30 C-30 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-24* C-30 C-30 C-32 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-24* C-30 C-30 C-32 C-32 C-32 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-24* C-30 C-30 C-32 C-32 C-32 C-32 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-24* C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-34 C-34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-34 C-34 C-36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-34 C-34 C-36 C-36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-34 C-34 C-36 C-36 C-38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-24* C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-34 C-34 C-36 C-38 C-38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-24* C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-32 C-34 C-36 C-36 C-38 C-38 C-38 C-38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-32 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-32 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-32 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-32 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-22 C-22 C-30 C-30 C-30 C-32 C-32 C-32 C-32 C-32 C-32 C-32 C-32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-24* C-30 C-30 C-32 C-34 C-36 C-38 C-38 C-38 C-40 C-40 C-40 C-42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-22 C-24* C-30 C-30 C-30 C-32 C-34 C-36 C-38 C-38 C-38 C-40 C-40 C-42 C-42 C-42
$ \begin{array}{c} -> H(3s) \\ -> H(Balmer_{a}) \\ + He \\ -> H(Lyman_{a}) \\ -> H(2s) \\ -> H(2s) \\ -> H(2p) \\ -> H(3s) \\ -> H(3s) \\ -> H(3c) \\ -> H(3c) \\ -> H(3d) \\ -> H(3d) \\ -> H(3d) \\ -> H(Balmer_{a}) \\ -> H(Balmer_{a}) \\ -> H(Balmer_{a}) \\ -> H(4s) \\ -> H(4s) \\ -> H(4s) \\ -> He(3^{3}P) \\ -> He(3^{3}D) \\ -> He(4^{1}S) \\ -> He(4^{3}S) \\ -> He(4^{3}P) \\ -> He(4$	C-22 C-24* C-30 C-30 C-30 C-32 C-34 C-36 C-38 C-38 C-38 C-38 C-40 C-40 C-42 C-22 C-2

C. (Cont'd)

-

$H^+ + H -> H(2s) \dots \dots \dots \dots \dots \dots \dots \dots$	C-44
$-> H(2p) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$	C-44*
-> H(n=2)	C-48
> H(n=3)	C-48
-> H(n=4)	C-48
$H^{+} + H_2 \rightarrow H^{+} + H(2s) + H \dots$	C-50
$-> H^+ + H(2p) + H \dots$	C-50
$-> H^+ + H(3p) + H$	C-52
$->$ H(Lyman- α)	C-54
\rightarrow H(Balmer-a) \ldots	C-56
\rightarrow H(Balmer-s)	C-56
-> H(Balmer-r)	C-56
-> H ₂ (Lyman-Band)	C-58
-> H ₂ (Lyman-Band)	C-58
$H^+ + He -> He(2^{1}S) \dots \dots \dots \dots \dots \dots \dots \dots$	C-60*
-> He(2 ¹ P)	C-60*
-> He(2 ¹ S + 2 ¹ P)	C-60
-> He(3 ¹ S)	C-66
-> He(3 ¹ P)	C-66
-> He(3 ¹ D)	C-66
-> He(4 ¹ S)	C-68
-> He(4 ¹ P)	C-68
-> He(4 ¹ D)	C-68
-> v.u.v.(20-140 nm)	C-70
-> v.u.v.(20-140 nm)	C-70
-> v.u.v.(20-140 nm)	C-70 C-72
$He^{+} + H \rightarrow H(n=2) + H(n=2)$	C-70 C-72 C-74
$He^{+} + H \rightarrow H(n=2) + H(n=2) + H(2s)	C-70 C-72 C-74 C-74*
$He^{+} + H -> H(n=2)$	C-70 C-72 C-74 C-74*
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-82
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-80 C-80 C-82 C-82 C-82
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-84
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-84 C-84
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-84 C-84 C-84
$He^{+} + H \longrightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-84 C-84 C-84
$He^{+} + H \rightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-84 C-84 C-84 C-86 C-88
$He^{+} + H \rightarrow H(n=2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-82 C-84 C-84 C-86 C-88 C-88 C-88
$He^{+} + H = H(n=2) + H(n=2) + H(2s)	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-82 C-84 C-84 C-84 C-86 C-88 C-88 C-88 C-90
$\begin{array}{rcl} & -> \ v.u.v.(20-140 \ nm) & . & . & . & . & . & . & . & . & . & $	C-70 C-72 C-74 C-74* C-78 C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-82 C-82 C-84 C-84 C-86 C-88 C-88 C-90 C-90
$He^{+} + H = > H(n=2) + \dots + H(n=2) + H(2s) + \dots + H(2s) + H(2s) + \dots + H(2p) + \dots + H(2s) + \dots + He^{-1}(2s) + He^{-1}$	C-70 C-72 C-74 C-74* C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-82 C-82 C-84 C-84 C-86 C-88 C-88 C-90 C-90 C-92
$He^{+} + H = > H(n=2) + (20-140 \text{ nm}) + (20-$	C-70 C-72 C-74 C-74* C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-82 C-84 C-84 C-84 C-86 C-88 C-90 C-90 C-92 C-92 C-92
$He^{+} + H = > H(n=2) + H(n=2) + H(2e) + H(2$	C-70 C-72 C-74 C-74* C-78 C-80 C-80 C-80 C-82 C-82 C-84 C-84 C-84 C-86 C-88 C-90 C-90 C-92 C-92 C-92
$He^{+} + H = > H(n=2) + H(n=2) + H(2g) + H(2$	C-70 C-72 C-74 C-74* C-78 C-78 C-80 C-80 C-80 C-82 C-82 C-82 C-82 C-82 C-82 C-84 C-84 C-84 C-86 C-88 C-90 C-90 C-92 C-92 C-92 C-92 C-92 C-94
$He^{+} + H = > H(n=2)$	C-70 C-72 C-74 $C-74 \times$ C-78 C-78 C-80 C-80 C-82 C-82 C-82 C-82 C-84 C-84 C-86 C-88 C-90 C-90 C-92 C-92 C-92 C-94 C-94

-

C. (Cont'd)

Hot + Ho -> Ho(Als)	[target]				C_96
he + he -> he(4.5)	(target)	• • •	•••	• • •	C-96
	(target)	• • •	• •	• • •	C-96
	(target)	• • •	•••	• • •	C-90
$-2 \text{ He}(4^{-3})$	(target)	• • •	• •	• • •	
$-7 \operatorname{Re}(4^{\circ}\mathrm{P})$	(target)	• • •	• •	• • •	
-> He(4°D)	[target]		••	• • •	C-98
-> He'(n=2) [project	liej	•••	• • •	C-100
-> He.(N=3	s) [project	.11e j	•••	• • •	C-102
					C 104
$ne + n_2 - 2 n(Dalme)$	L-aj • • •	• • •	•••	• • •	C = 104
-> n(naimei	L-B) · · ·	• • •	•••	• • •	C-104
Ho + Ho -> Ho(215)					C-106
$= \frac{1}{10} = \frac{1}{10$	• • • • •	• • •	•••	• • •	C = 100
$\rightarrow He(2P)$	• • • • •	• • •	•••	• • •	C = 100
$\rightarrow Ho(2 D)$	• • • • •	• • •	• •	• • •	C = 100
$\rightarrow \text{ne}(3^{\circ}\text{D})$	• • • • •	• • •	• •	• • •	C = 100
	• • • • •	• • •	•••	•••	C = 108
-> He(3 ³ D)	• • • • •	· • •	•••	• • •	C-108
-> He(4*S)	• • • • •	• • •	•••	• • •	C-110
\rightarrow He(4 ¹ P)	• • • • •	• • •	•••	• • •	C-110
-> He(4 ³ S)	• • • • •	• • •	••	• • •	C-112
\rightarrow He(4 ³ P)	• • • • •		••	• • •	C-112
-> He(2s ²	^L S)	• • •	•••	• • •	C-114
-> He(2s2p	³ P)	• • •	••		C-114
-> He(2p ²]	D)		• •		C-114
-> He(2s2p	¹ P)		•••	• • •	C-114
-> He ⁻ (1s2s	$3^{2^{2}}S)$		•••		C-114
•					
He ²⁺ + H -> H(2s)			• •	• • •	C-116
-> H(2p)			• •	• • •	C-116
	_				
$He(2^{3}S) + He(1^{1}S)$	-> He(3 ¹ P)	+ He	•••	• • •	C-118
	-> $He(3^{3}P)$	+ Ke	• •	• • •	C-120
	-> He(4 ³ S)	+ He	• •	• • •	C-122
	-> He(4 ³ D)	+ He	• •		C-122
	-> He`+ He	(4 ³ S)	• •		C-124
	-> He + He	(4 ³ D)	• •	• • •	C-124
_					
H ⁺ + Li(2s) -> Li(2p)		•••		C-126
-> Li(670.8 nm)	• • •	•••	• • •	C-126
He' + Li(2s) -> Li	(670.8 nm)	• • •	•••	• • •	C-128
-					. .
He'' + Li(2s, -> L	i(2p)		• •	• • •	C-130
> L	i(670.8 nm)	• •		C-130

$H + H -> H(2s, 2p) + H(\Sigma)$

H(28)
----	----	---

H(2p)

Energy (eV/aunu)	Cross Section (Cm ²)	Energy (eV/amu)	Cross Section (cm²)
2.0E+03	8.03E-18	4.0E+03	1.62E-17
3.0E+03	9.80E-18	5.0E+03	2.29E-17
4.0E+03	1.15E-17	6.0E+03	2.44E-17
5.0E+03	1.29E-17	7.0E+03	2.47E-17
6.0E+03	1.43E-17	8.0E+03	2.41E-17
7.0E+03	1.51E-17	9.0E+03	2.35E-17
8.0E+03	1.56E-17	1.0E+04	2.28E-1 !
9.0E+03	1.59E-17	1.5E+04	1.92E-17
1.0E+04	1.60E-17	2.0E+04	1.58E-17
1.5E+04	1.37E-17	3.0E+04	1.17E-17
2.0E+04	1.04E-17		
3.0E+04	6.64E-18		
4.0E+04	4.65E-18		
5.02+04	3.48E-18		
6.0E+04	2.74E-18		
7.0E+04	2.282-18		
8.0E+04	2.02E-18		
9.0E+04	1.84E-18		

<u>References:</u> 15, 592, 593, 594, 595, 596, 597, 598

Accuracy: Unknown

<u>Notes:</u> (1) The symbol $H(\Sigma)$ denotes that the target atom may be left in any (excited) state after the collision. (2) All theoretical treatments of the H + H excitation cross sections are in serious disagreement with experiment and with each other, both in absolute magnitude and energy dependence. For various theoretical treatments see Flannery (Ref. 594 - four state impact parameter method), McLaughlin and Bell (Ref. 595 - close coupling exchange), Shingal et al. (Ref. 596 - four state semiclassical impact parameter), and Khurana et al. (Ref. 597 - 2nd Born approximation and also distorted wave Born).

Chebyshev Fitting Parameters for Cross Sections

	A0	A1	A2	A3	A4	A5	A06
H(2s)	-79.1098	784062	651723	.0462865	.114234	00.187654	0114391
H(2p)	-77.1082	256046	232311	.0701782	0315673	.0229762	.00612383

The fit represents the H(2s) cross section with an rms deviation of 1.2%. The maximum deviation is 2.8% at 2.0E+04 eV/amu.

The fit represents the H(2p) cross section with an rms deviation of 0.3%. The maximum deviation is 0.6% at 6.0E+03 eV/amu.

Excitation and Spectral Line Emission Cross Sections for

$H + H \rightarrow H(3s, 3p, 3d) + H(r)$ -> Balmer-a emission

н(з	5)	н(:	3p)	H(J	a)	He	2
Energy	0 (cm²)	Energy		Energy	0 (cm ²)		0 (cm ²)
(ev/appu)	(CML)	(ev/auro)	(CHI)	(ev/amu)	(Car)	(ev/aunu)	(CM)
1. Æ+03	1.68E-18	1.0E+03	7.24E-19	1.0E+03	2.53E-20	1.0E+03	1.87E-18
2.0E+03	6.73E-18	2.0E+03	5.76E-18	2.0E+03	3.22E-19	2.0E+03	8.27E-18
4.0E+03	1.22E-17	4.0E+03	1.45E-17	4.0E+03	1.14E-18	4.0E+03	1.45E-17
7.0E+03	8.59E-18	6.9E+03	1.63E-17	6.0E+03	1.39E-18	7.0E+03	1.20E-17
1.0E+04	6.47E-18	7.0E+03	1.59E-17	7.0E+03	1.38E-18	1.0E+04	9.34E-18
2.0E+04	3.48E-18	1.0E+04	1.34E-17	1.0E+04	1.18E-18	2.0E+04	5.05E-18
4.0E+04	1.76E-18	2.0E+04	7.42E-18	2.0E+04	6.78E-19	4.0E+04	2.68E-18
7.0E+04	1.07E-18	4.0E+04	4.27E-18	4.0E+04	4.11E-19	7.0E+04	1.71E-18
1.0E+05	7.69E-19	7.0E+04	3.11E-18	7.0E+04	2.99E-19	1.0E+05	1.32E-18
2.0E+05	4.08E-19	1.0E+05	2.55E-18	1.0E+05	2.44E-19	2.0E+05	7.60E-19
4.0E+05	2.11E-19	2.0E+05	1.61E-18	2.0E+05	1.50E-19	4.0E+05	3.978-19
7.0E+05	1.20E-19	4.0E+05	9.296-19	4.0E+05	8.23E-20	7 .0E+0 5	2.32E-19
1.0E+06	8.72E-20	7.0E+05	5.57E-19	7.0E+05	4.91E-20	1.0E+06	1.65E-19
		1.0E+06	4.00E-19	1.0E+06	3.56E-20		

Reference: 598

Accuracy: Unknown

<u>Motes:</u> (1) We are not aware of any experimental data for the excitation of the n = 3 levels of H by H impact. (2) The data shown are obtained from McLaughlin and Bell (Ref. 598) using first order exchange theory. They also calculated these excitation cross sections using the first Born approximation. Below 10^5 eV/amu the Born calculations are as much as a factor of 5 below the data obtained from the exchange theory. These data are placed here to provide an insight as to the magnitude and energy dependence of the n = 3 excitation cross sections. (3) The H_a emission cross section is given by $H_{\alpha} = \sigma(3s) + 0.118 \sigma(3p) + \sigma(3d)$. (4) The symbol Σ denotes that the target atom may be left in any state.

Chebyshev Fitting Parameters for Cross Sections

	H(38) H(3p) H(3d) Ha	E _{min} ≈ 1 Emin ≈ 1 Emin ≈ 1 Emin ≈ 1 Emin ≈ 1	.0E+03 eV/ .0E+03 eV/ .0E+03 eV/ .0E+03 eV/ .0E+03 eV/	amu, E, amu, E, amu, E, amu, E,	max = 1.06 max = 1.06 max = 1.06 max = 1.06 max = 1.06	2+06 eV/amu 2+06 eV/amu 2+06 eV/amu +06 eV/aumu	
	AO	A1	A2	A3	A4	A5	A6
H(3s) H(3p) H(3d) Ha	-82.5799 -81.2005 -86.3820 -81.7586	-2.05302 954175 612848 -1.76650	908967 -1.20328 -1.47849 933877	.534101 .638574 .754596 .519497	249917 328341 362929 .264797	.0520636 .0263311 .0428931 .0406777	.0418468 .0719202 .0876543 .0464266

The fit represents the H(3s) cross section with an rms deviation of 4.2%. The maximum deviation is 6.2% at 2.0E+03 eV/amu. The fit represents the H(3p) cross section with an rms deviation of 2.0%. The maximum deviation is 2.9% at 2.0E+05 eV/amu. The fit represents the H(3d) cross section with an rms deviation of 2.6%. The maximum deviation is 4.6% at 2.0E+04 eV/amu. The fit represents the Ha cross section with an rms deviation of 1.6%. The maximum deviation is 2.2% at 2.0E+03 eV/amu.

	Pro	isctile	Excitation	and	Target	Dissociative	Excitation	Cross	Sections	fo
--	-----	---------	------------	-----	--------	--------------	------------	-------	----------	----

$H + H_2 -> H(2s, 2p) + \Sigma H_2$ -> x H + H(2s,2p) + H

H(28)[proj.]		H(2p)[proj.]		H(2s)[targ.]		H(2p)[targ.]	
Energy (eV/aaau)	о (Сщ ²)	Energy (eV/amu)	о (Cm²)	Energy (eV/amu)	्र (CMR ²)	Energy (eV/amu)	σ (CBN ²)
2.0E+03	5.56E-18	5.0E+03	4.13E-17	5.0E+03	2.78E-18	5.0E+03	6.90E-18
3.0E+03	6.69E-18	6.0E+03	3.53E-17	6.0E+03	3.26E-18	6.0E+03	8.60E-18
4.0E+03	7.622-18	7.0E+03	3.11E-17	7.0E+03	3.57E-18	7.0E+03	9.97E8
5.0E+03	8.47E-18	8.0E+03	2.79E-17	8.0E+03	3.75E-18	8.0E+03	1.12E-17
6.0E+03	9.19E-18	9.0E+03	2.61E-17	9.0E+03	3.81E-18	9.0E+03	1.22E-17
7.0E+03	9.90E-18	1.0E+04	2.49E-17	1.0E+04	3.86E-18	1.0E+04	1.32E-17
8.0E+03	1.05E-17	1.5E+04	2.40E-17	1.32+04	3.88E-18	1.3E+04	1.39E-17
9.0E+03	1.11E-17	2.0E+04	2.08E-17	1.5E+04	3.83E-18	1.56+04	1.37E-17
1.02+04	1.16E-17	2.5E+04	1.78E-17	2.0E+04	3.68E-18	2.0E+04	1.16E-17
1.52+04	1.32E-17			2.5E+04	3.53E-18	2.5E+04	9.03E-18
2.02+04	1.20E-17						
2.5E+04	9.84E-18						

<u>References:</u> 124, 592

Accuracy: Unknown

<u>Notes:</u> (1) H is considered the projectile and H_2 the target. (2) The symbol Σ denotes all states in which the products are left. (3) The n=2->1 transition is at wavelength 121.57nm.

Chebyshev Fitting Parameters for Cross Sections

	H(2s) H(2p) H(2s) H(2p)	proj. proj. targ. targ.	Emin Emin Emin Emin Emin	= 2.0E+03 = 5.0E+03 = 5.0E+03 = 5.0E+03	eV/amu, eV/amu, eV/amu, eV/amu,	E _{max} = Emax = Emax = Emax =	2.5E+04 2.5E+04 2.5E+04 2.5E+04 2.5E+04	eV/amu eV/amu eV/amu eV/amu
		A0	A1	A2	A3	24	A 5	A6
H(2s)	proj.	-78.5298	.381193	153241	0981960	0354361	00839689	.00756242
H(2p)	proj.	-76.3640	378165	.0409330	0624299	0180012	.0197844	.0125324
8(2s)	targ.	-80.3831	.0903819	109415	.0282363	00676568	.000903034	. 20303522
H(2p)	targ.	-78.2178	.158165	269341	0251991	.00457227	.00145158	00685275

The fit represents the H(2s) proj. cross section with an rms deviation of 0.5%. The maximum deviation is 0.8% at 1.0E+04 eV/amu.

The fit represents the H(2p) proj. cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 8.0E+03 eV/amu.

The fit represents the H(2s) targ. cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 9.0E+03 eV/amu.

The fit represents the H(2p) targ. cross section with an rms deviation of 0.4%. The maximum deviation is 0.7% at 1.3E+04 eV/amu.

Total	Spectral	Line	Delesion	Cross	Sections	for
TOCAL	opectiai	PTHE	CHIESTON	UIU88	SECCIÓNS	101

H + H₂ -> H(Lyman-a)

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(c # ²)
1.56+03	5.38E+07	7.17E-17
2.0E+03	6.212+07	6.67E-17
3.0E+03	7.61E+07	5.98E-17
4.0E+03	8.792+07	5.388-17
5.0E+03	9.822+07	4.918-17
6.02+03	1.08E+08	4.508-17
7.0E+03	1.16E+08	4.228-17
8.0E+03	1.24E+08	4.04E-17
9.0E+03	1.322+08	3.928-17
1.02+04	1-392+08	3.80E-17
1.58+04	1.706+08	3.48E-17
2.0E+04	1.962+08	3.20E-17
2.52+04	2.202+08	2.97E-17
3.0E+04	2.419+08	2.812-17
4.02+04	2-782+08	2-528-17
5-02+04	3 118+08	2.282-17
6.02+04	3 402+08	2.158-17
7.02+04	3 685+08	2 06F-17
8 05+05	3.036100	1 988-17
	J.JJETUO A 178409	
7.VGTV7 1 APAAS		
1.05403	4.J9E+U8	1.005/
1.36403	2.016+08	1.//6~1/

References: 124, 194, 333

Accuracy: Unknown

<u>Mote:</u> The total spectral line emission includes radiation from excitation of the H projectile and the dissociative excitation of the H_2 target.

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 1.5E+03 \text{ eV/amu}, E_{max} = 1.3E+05 \text{ eV/amu}$

AO	A1	A2	A3	84	A5	A6
-75.7615	720784	.0118250	.00540110	00257496	.0252003	00232715

The fit represents the above cross section with an rms deviation of 1.2% The maximum deviation is 2.4% at 2.0E+03 = V/amu.

Excitation Cross Sections for

 $H + H_2 -> H(3s) + H_2$ -> H(3p+3d) + H_2

H(3s)

H(3p+3d)

Energy (eV/amu)	Cross Section (um²)	Energy (eV/amu)	Cross Section* (Cm ²)
2.0E+02	i.84E-18	2.0E+02	5.72E-18
4.0E+02	4.61E-18	4.0E+02	1.01E-17
6.4E+02	5.66E-18	7.0E+02	1.25E-17
7.0E+02	5.61E-18	1.UE+03	1.35E-17
1.0E+03	4.95E-18	1.5E+03	1.28E-17
1.5E+03	3.53E-18	2.0E+03	1.17E-17
2.0E+03	2.96E-18	3.0E+03	8.66E-18
4.0E+03	2.43E-18	4.0E+03	6.34E-18
5.0E+03	2.36E-18	7.0E+03	3.91E-18
7.0E+03	2.46E-18	1.0E+04	3.64E-18
1.0E+04	3.21E-18	1.5E+04	3.13E-18
1.5E+04	4.07E-18	2.0E+04	2.13E-18
2.0E+04	4.41E-18	4.0E+04	1.29E-18
2.3E+04	4.50E-18	7.0E+04	1.17E-18
2.5E+04	4.46E-18	1.0E+05	1.16E-18
4.0E+04	3.598-18		
7.0E+04	2.86E-18	* see notes	(3) and (4)
1.0E+05	2.73E-18		(-,

References: 133, 500, 601

Accuracy: Unknown

<u>Notes:</u> (1) Because of its much longer lifetime, the 3s excitation is resolvable in the Balmer- α emission. (2) The 3s cross section represents that for excitation of the H projectile only. (3) The cross section labelled H(3p + 3d) is determined by subtracting $\sigma(3s)$ from the total Balmer- α emission cross section, and therefore represents $\sigma(3d) + 0.12 \ c(3p)$ because of branching ratios. (4) For energies above 2 keV/amu, the H(3p + 3d) cross section represents excitation of the projectile only. At lower energies, contributions from dissociative excitation of H₂ target molecules are included. Comparison of the data suggests that these contributions are small.

Chebyshev Fitting Parameters for Cross Sections

	H(3s) H(3p+3d)	E _{min} = 2 E _{min} = 2	.0E+02 eV, .0E+02 eV,	/amu, /amu,	E _{max} = 1.0 E _{max} = 1.0)E+05 eV/amu)E+05 eV/amu	
	AO	A1	A2	A3	A4	A5	A6
H(38) H(3p+3d)	-80.5534 -80.1203	0150679 -1.13376	145036 496856	.109627 .359704	341180 .00520846	.113781 0168457	.131159 .0653151

The fit represents the H(3s) cross section with an rms deviation of 3.2%. The maximum deviation is 7.0% at 4.0E+04 eV/amu.

The fit represents the H(3p+3d) cross surtion with an rms deviation of 7.1%. The maximum deviation is 14.5% at 7.0E+03 eV/amu.

Total Spectral Line Emission Cross Sections for

 $H + H_2 \rightarrow (Balmer-\alpha)$

(H + H ₂)	H ₂ (1	targ.)	H (proj.)		
o (cm²)	Energy (eV/amu)	σ (cm²)	Energy (eV/amu)	σ (CM²)	
1.988-19	2.0E+03	1.90E-18	2.0E+03	1.58E-17	
6.35E-19	3.0E+03	1.87E-18	3.0E+03	1.142-17	
1.67E-18	4.0E+03	1.90E-18	4.0E+03	9.06E-18	
4.93E-18	5.0E+03	1.95E-18	5.0E+C3	7.61E-18	
7.692-18	6.0E+03	2.02E-18	6.0E+03	6.83E-18	
1.47E-17	7.0E+03	2.11E-18	7.0E+03	6.54E-18	
1.80E-17	8.0E+03	2.24E-18	7.5E+03	6.52E-18	
1.842-17	9.0E+03	2.37E-18	8.0E+03	6.62E-18	
1.82E-17	1.0E+04	2.54E-18	9.0E+03	6.88E-18	
1.758-17	1.5E+04	2.94E-18	1.0E+04	7.04E-18	
1.56E-17	2.0E+04	3.15E-18	1.5E+04	7.11E-18	
1.10E-17	2.3E+04	3.18E-18	2.0E+04	6.69P-18	
8.76E-18	3.0E+04	2.89E-18	3.0E+04	5.39E-18	
8.69E-18	4.0E+04	2.30E-18	4.0E+04	4.73E-18	
9.54E-18	5.0E+04	1.93E-18	5.0E+04	4.43E-18	
1.01E-17	6.0E+04	1.63E-18	6.0E+04	4.25E-18	
9.84E-18	7.0E+04	1.41E-18	7.0E+04	4.20E-18	
7.14E-18	8.0E+04	1.24E-18	8.0E+04	4.18E-18	
5.26E-18	9.0E+04	1.11E-18	9.0E+04	4.17E-18	
4.61E-18	1.0E+05	1.01E-18	1.0E+05	4.17E-18	
	$(B + H_2)$ σ (Cm^2) 1.98E-19 6.35E-19 1.67E-18 4.93E-18 7.69E-18 1.47E-17 1.80E-17 1.82E-17 1.75E-17 1.56E-17 1.10E-17 8.76E-18 8.69E-18 9.54E-18 7.14E-18 5.26E-18 4.61E-18	$\begin{array}{cccc} (B + H_2) & H_2 & (1) \\ \hline o & Energy \\ (cm^2) & (eV/amu) \\ \hline 1.98E-19 & 2.0E+03 \\ 6.35E-19 & 3.0E+03 \\ 1.67E-18 & 4.0E+03 \\ 4.93E-18 & 5.0E+03 \\ 7.69E-18 & 6.0E+03 \\ 1.47E-17 & 7.0E+03 \\ 1.80E-17 & 8.0E+03 \\ 1.82E-17 & 1.0E+04 \\ 1.75E-17 & 1.5E+04 \\ 1.56E-17 & 2.0E+04 \\ 1.56E-17 & 2.0E+04 \\ 1.56E-18 & 3.0E+04 \\ 8.69E-18 & 4.0E+04 \\ 8.69E-18 & 4.0E+04 \\ 9.54E-18 & 5.0E+04 \\ 1.01E-17 & 6.0E+04 \\ 9.84E-18 & 7.0E+04 \\ 7.14E-18 & 8.0E+04 \\ 5.26E-18 & 9.0E+04 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

References: 133, 500, 601

Accuracy: Unknown

<u>Motes:</u> (1) The total Balmer- α emission cross section H α is equal to the sum of the emission from the projectile (H_{P α}) and the target (H_{T α}). (2) Balmer- α radiation is from the n=3->n=2 transition in H with λ = 656.28nm.

Chebyshev Fitting Parameters for Cross Sections

	Total H ₂ H	E _{min} = E _{min} = E _{min} =	5.0E+01 2.0E+03 2.0E+03	eV/amu, eV/amu, eV/amu,	E _{max} = E _{max} = E _{max} =	1.0E 1.0E 1.0E	2+05 eV/ann 2+05 eV/ann 2+05 eV/ann	tu tu tu
	AO	A 1	A2	A3		A4	A 5	A6
Total	-79.7992	•953923	-1.39409	.663856	262	B06 9114	0749405	.0516520
H H	-79.0077	627859	.128139	0950362	.077	2477	.0565053	0596124

The fit represents the Total cross section with an rms deviation of 7.0%. The maximum deviation is 13.6% at 7.0E+03 = eV/amu.

The fit represents the H_2 cross section with an rms deviation of 1.4%. The maximum deviation is 3.0% at 4.0E+04 eV/amu.

The fit represents the H cross section with an rms deviation of 1.9%. The maximum deviation is 3.4% at 3.0E+03 eV/amu.

ī.

See appendix for Chebyshev fit details.

1

L

$H + H_2 \rightarrow H(4s, 4p+4d)$ -> H(Balmer-B)

H(46)		H(4p	+4d)	H(Balmer-ß)		
Energy (eV/amu)	σ (CM2 ²)	Energy (eV/anu)	о (С181 ²)	Energy (eV/anau)	<i>о</i> (СШ2 ²)	
2.0E+02 3.0E+02 4.0E+02 5.0E+02 6.0E+02 7.0E+02 8.0E+02 9.0E+02 1.0E+03	2.69E-19 5.20E-19 8.30E-19 1.01E-18 1.11E-18 1.12E-18 1.10E-18 1.66E-18 1.02E-18	2.0E+02 3.3E+02 4.0E+02 5.0E+02 6.0E+02 7.0E+02 8.0E+02 9.0E+02 1.2E+03	9.25E-19 1.50E-18 1.91E-18 2.20E-18 2.40E-18 2.54E-18 2.66E-18 2.76E-18 2.86E-18 2.86E-18	6.0E+01 7.0E+01 1.0E+02 1.5E+02 2.0E+02 4.0E+02 7.0E+02 1.0E+03 1.5E+03	3.13E-20 5.98E-20 2.19E-19 7.33E-19 1.24E-18 2.67E-18 3.66E-18 3.90E-18 3.95E-18	
2.02+03 2.55+03	8.382-19 7.482-19 6.67E-19	1.5E+03 1.5E+03 2.0E+03 2.5E+03	2.99E-18 2.98E-18 2.84E-18 2.64E-18	2.5E+03 2.5E+03	3.37E-18	

References: 600, 601

Accuracy: Unknown

<u>Hotes:</u> (1) The cross sections include excitation of the projectile H, dissociative excitation of the target H₂, and H Balmer- β line emission from both projectile and target. (2) The Balmer- β radiation has a wavelength of 486.13nm, and corresponds to the n=4->n=2 transition in H.

Chebyshev Fitting Parameters for cross Sections

H(4 H(4 H(1	is) Ip+4d) Balmer-β}	Emin Emin Emin = Min =	2.0E+02 2.0E+02 6.0E+01	αV/amu, eV/amu, eV/amu,	E _{max} = E ^{max} = E _{max} =	2.5E+03 e 2.5E+03 e 2.5E+03 e	V/amu V/amu V/amu
	AO	A1	A2	A3	A4	A5	A 6
H(48) H(4p+4d) H(Balmer-Ø	-83.7360 -81.4782 -82.9678	.403599 .513746 2.14325	495244 253426 -1.06498	.0926298 .0120434 .222304	.0476553 0154708 0396703	0421657 0014600 0277369	.00996875 7 .00795248 .0217573

The fit represents the H(4s) cross section with an rms deviation of 0.4%. The maximum deviation is 1.1% at 5.0E+02 eV/amu.

The fit represents the H(4p+4d) cross section with an rms deviation of 0.3%. The maximum deviation is 0.4% at 4.0E+02 eV/amu.

The fit represents the $H(Balmer-\theta)$ cross section with an rms deviation of 1.6%. The maximum deviation, is 2.5% at 1.0E+02 eV/amu.

Total Spectral Line Emission Cross Sections for

H(28)) + K ₂	> H	i(Lyman-a)
-------	--------------------	-----	------------

Energy	Velocity	Cross Section
(ev/annu)	(Cm/s)	(Cm ⁻)
7.0E+03	1.16E+08	1.46E-16
8.0E+03	1.24E+0º	1.49E-16
9.0E+03	1.32E+08	1.5CE-16
1.0E+04	1.39E+08	1.49E-16
1.1E+04	1.46E+08	1.48E-16
1.2E+04	1.52E+08	1.46E-16
1.3E+04	1.58E+0B	1.43E-16
1.4E+04	1.642+08	1.41E-16
1.5E+04	1.70E+08	1.38E-16
1.6E+04	1.76E+08	1.34E-16
1.7E+04	1.81E+08	1.31E-16
1.8E+04	1.862+08	1.27E-16
1.9E+04	1,91E+08	1.23E-16
2.05+04	1.96E+08	1.20E-15
2.1E+04	2.01E+08	1.16E-16
2.2E+04	2.06E+08	1.13E-16
2.3E+04	2.11E+08	10E-16
2.4E+04	2-15E+08	1.07E-16
2.5E+04	2.20E+08	1.04E-16
3 68+04	2 245+09	1.02E-16
6 · VL · V7	21276100	1.050-10

<u>References:</u> 333, 692

Accuracy: 60%

<u>Notes:</u> (1) These data include emission from excitation of the projectile H and from the dissociative excitation of H_2 . (2) Lyman- α emission occurs at a wavelength of 121.57nm.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} -	7.02+03	eV/amu,	e _{max} =	2.6E+04	eV/amu	
A0	A1	A2	A3	A4		A5	A6
-73.1370	183791	0767839	.00130611	.00262	379 .00	284123	-8.70436E-05

The fit represents the above cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 1.3E+04 eV/amu.

 $H(2s) + H_2 -> Ly_{\alpha}$

Excitation and Spectral Line Emission Cross Sections for

 $H(2s) + H_2 \rightarrow H(3s)$ -> $H(Balmer-\alpha)$

H(Balmer-a)

(36)H

Energy (eV/amu)	Cross Section	Energy (eV/ami)	Cross Section
(cv) and)	(0)		(01)
5.0E+03	2.27E-17	5.0E+03	1.58E-17
6.0E+03	2.298-17	6.0E+03	1.60E-17
8.0E+03	2.31E-17	8.0E+03	1.642-17
1.0E+04	2.32E-17	9.0E+03	1.65E-17
1.2E+04	2.33E-17	1.0E+04	1.64E-17
1.4E+04	2.31E-17	1,2E+04	1.60E-17
1.6E+04	2.22E-17	1.4E+04	1.53E-17
1.8E+04	2.062-17	1.6E+04	1.45E-17
2.0E+04	1.88E-17	1.8E+04	1.362-17
2.2E+04	1.75E-17	2.0E+04	1.28E-17
2.4E+04	1.66E-17	2.2E+64	1.21E-17
2.6E+04	1.58E-17	2.4E+04	1.15E-17
		2.6E+04	1.10E-17

Reference: 691

Accuracy: 50%

<u>Motes:</u> (1) The Balmer- α cross sections are determined by measuring the emission at $\lambda = 656.28$ mm from the n = 3 states of H and are related to the level excitation cross sections as follows: $\sigma(H_2) = \sigma(3s) + 0.118 \sigma(3p) + \sigma(3d)$. The factor 0.118 arises from the branching ratio for decay of the 3p state. (2) The $\sigma(3s)$ have been corrected for cascading.

Chebyshev Fitting Parameters for Cross Sections

1	H(Balmer-a) H(3s)	E _{min} E _{min}	= 5.0E+ = 5.0E+	03 eV/amu, 03 eV/amu,	E _{max} E _{max}	= 2.6E+04 = 2.6E+04	eV/amu eV/amu
	A0	Al	A2	¥3	74	A5	A 6
H(Belmer-a) -76.8150	162721	109854	0325036	.0085463	.0165529	.00525437
H(3s)	-77.5541	175436	-,101810	00744771	.0115273	,00202386	-7.458892-05

The fit represents the H(Balmer-c' cross section with an rms deviation of 0.5%. The maximum deviation is 1.0% at 2.0E+04 eV/amu.

The fit represents the H(3s) cross section with an rms deviation of 0.1%. The maximum deviation is 0.1% at 1.02+04 eV/amu.

	Spectral	Line Emission	Cross	Sections	for
		H(2s) + He ->	▶ H(Lywna	m-a)	
Energy		Velocit	Y		Cross Section
(eV/amu))	(CM/5)			(CM ²)
1.0E+04	•	1.39E+0	8		1.86E-17
1.1E+04	6	1.46E+0	8		1.75E-17
1.2E+04	5	1.52E+0	8		1.65E-17
1.3E+04	\$	1.58E+0	8		1.56E-17
1.4E+04	ţ.	1.645+0	8		1.48E-17
1.5E+04	4	1.70E+0	8		1.46E-17
1.6E+04	4	1.76E+0	8		1.43E-17
1.72+04	•	1.81E+0	8		1.41E-17
1.8E+04	4	1.86E+0	8		1.37E-17
1.9E+04	4	1.91E+C	8		1.32E-17
2.0E+04	4	1,96E+0	8		1.28E-17
2.1E+04	4	2.01E+0	8		1.24E-17
2.2E+04	4	2.06E+0	8		1.228-17
2.3E+04	4	2.11E+C	8		1.20E-17
2.42+04	4	2.15E+0	8		1.196-17
2.5E+04	4	2.20E+0	8		1.19E-17
	-		-		

1.198-17 1.19E-17 1.18E-17

Releience; J	33	
--------------	----	--

2.5E+04 2.6E+04

Accuracy: 80%

Note: The H L/man-a radiation is at a wavelength of 121.57mm.

Chebyshev Fitting Parameters for Cross Sections

2.24E+08

 $E_{min} = 1.0E+04 eV/amu, E_{max} = 2.6E+04 eV/amu$

A0	A1	A 2	A3	A4	A5	A6
-77.5542	232829	.0249886	-,00284785	.0873114	.0106037	00679600

The fit represents the above cross section with an rms deviation of 0.5%. The maximum deviation is 1.2% at 1.4E+04 eV/amu.

Excitation and Spectral Line Emission Cross Sections For

H(2s) + He -> H(3s) \rightarrow H(Balmer-a)

H	1(38)	H(Balmer-a)			
Energy (eV/amu)	Cross Section (Cm ²)	Energy (eV/amu)	Cross Section (cm²)		
5.02+03	7.05E-18	5.0E+03	1.15E-17		
6.0E+03	6.62E-18	6.0E+03	1.11E-17		
8.0E+03	5.95E-18	8.0E+03	1.04E-17		
1.0E+04	5.53E-18	1.0E+04	9.86E-18		
1.2E+C4	5.21E-18	1.26+04	9.35E-18		
1.4E+04	5.05E-18	1.4E+04	8.97E-18		
1.6E+04	4.95E-18	1.6E+04	8.66E-18		
1.8E+04	4.83E-18	1.8E+04	8.376-18		
2.0E+04	4.67E-18	2.0E+04	8.13E-18		
2.22+04	4.446-18	2.2E+04	7.87E-18		
2.42+04	4.23E-18	2.4E+04	7.64E-18		
2.6E+04	4.07E-18	2.6E+04	7.42E-18		

Reference: 691

Accuracy: 50%

<u>Notes:</u> (1) The Balmer-a emission cross section is given by o(3s) + 0.118 o(3p)+ o(3d). The factor 0.118 is to correct for the branching ratio of the 3p state. (2) The o(3s) has been corrected for cascading. (3) The Balmer-a radiation is at a wavelength of 656.28nm.

Chebyshev fitting Parameters for Cross Sections

F 1	l(3s) H(Balmer-a)	e _m E _m	in = 5.09 in = 5.08	2+03 eV/amm 2+03 eV/amm 2+03 eV/amm	u, E _{max} u, E _{max}	= 2.6E+0 = 2.6E+0	4 eV/amu 4 eV/amu
	AO	A1	A2	A3	A4	A5	A6
H(Js) H(Balmer-c	-79.5230 x) -78.4151	258972 218179	7.15363E-04 0140659	0165922 2.10927 E- 05	0141266 00210701	-2.93267g-04 00118313	.00594856 3.35892 8- 04

The fit represents the H(3s) cross section with an rms deviation of 0.3%. The maximum deviation is 0.5% at 8.0E+03 eV/amu.

The fit represents the $H(Balmer-\alpha)$ cross section with an rms deviation of 0.1%. The maximum deviation is 0.1% at 8.0E+03 eV/amu.

> 1 1

Spectral Line Emission Cross Sections for

H + He -> H(Lyman-a)

Energy	Velocity	Cross Section
(eV/amu)	(cma/s)	(cm ²)
3.0E+01	7.61E+06	1.01E-17
4.0E+01	8.79E+06	2.41E-17
7.0E+01	1.16E+07	4.35E-17
1.0E+02	1.39E+07	5.23E-17
2.0E+02	1.96E+07	6.65E-17
4.0E+02	2.78E+07	6.96E-17
7.0E+02	2.68E+07	6.90E-17
1.0E+03	4.39E+07	6.58E-17
2.0E+03	6.21E+07	5.61E-17
7.0E+03	1.16E+08	2.63E-17
1.0E+04	1.39E+08	1.958-17
2.0E+04	1.96E+08	1.00E-17
4.GE+04	2.78E+08	4.40E-18
7.02+04	3.68E+08	1.90E-18
9.0E+04	4.17E+08	1.26E-18

<u>References:</u> 46, 639, 643, 644, 645, 651

Accuracy: 80%

<u>Hote:</u> The Lyman- α emission at 121.6nm includes small contributions due to cascade from the n = 3 and higher levels.

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 3.0E+01 \text{ eV/amu}, E_{max} = 9.0E+04 \text{ eV/amu}$

AO	A1	A2	A3	A4	A5	A 6
-77.2423	-1.27625	-1.33104	.105602	131109	.0901017	0744630

The fit represents the above cross sections with an rms deviation of 3.8%. The maximum deviation is 5.8% at 3.02+01 eV/amu.

1 I

Spectral Line Emission Rate Coefficients for

$H + He \rightarrow H(Lyman-a)$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

8								
Temp.	Equa 1			He	Temp. (eV)			
(●♥)	Temp.	10.	100.	500.	1000.	5000.	10000.	20000.
1.0E+01	4.37E-11*	4.37E-11*	3.03E-10	1.10E-09	1.64E-09	2.86E-09	3.02E-09	2.85E-09
2.0E+01	1.86g-10*	1.56E-10*	4.13E-10	I.15E-09	1.67E-09	2.872-09	3.02E-09	2.85E-09
4.0E+01	4.64E-10	3.86E-10	6.06E-10	I.26E-09	1.74E-^9	2.872-09	3.02E-09	2.85E-09
5.0E+01	6.92E-10	5.84E-10	7.71E-10	1.35E-09	1.80E-09	2.88E-09	3.02E-09	2.858-09
8.0E+C1	8.80E-10	7.52E-10	9.14E-10	1.44E-09	1.85E-09	2.89E-09	3.02E-09	2.84E-09
1.0E+02	1.04E-09	8.97E-10	1.04E-09	1.51E-09	1.91E-09	2.89E-09	3.02E-09	2.84E-09
2.0E+02	1.61E-09	1.4JE-09	1.518-09	1.84E-09	2.13E-09	2.928-09	3.018-09	2.832-09
4.0E+02	2.22E-09	2.03E-09	2.08E-09	2.26E-09	2.44E-09	2.96E-09	3.01E-09	2.81E-09
6.9E+02	2.55E-09	2.38E-09	2.41E-09	2.53E-09	2.64E-09	2.99E-09	3.00E-09	2.80E-09
8.0E+02	2.74E-09	2.608-09	2.62E-09	2.69E-09	2.77E-09	3.00E-09	2.99E-09	2.78E-09
1.0E+03	2.865-09	2.74E-09	2.75E-09	2.81E-09	2.86E-09	3.01E-09	2.98E-09	2.76E-09
2.0E+03	3.02E-09	3.00E-09	3.00E-C9	3.01E-09	3.01E-09	2.99 £-0 9	2.90E-09	2.67E-09
4.0E+03	- 85E-09	94E-09	2.94E-U9	2.93E-09	2.92E-09	2.8JE-09	2.71E-09	2.50E-09
6.0 2 +03	2.62E-09	2.762-09	2.76E-09	2.75E-09	2.74E-09	2.64E-09	2.548-09	2.348-09
8.0g+03	2.42E-09	2.58E-09	2.58E-09	2.578-09	2.56E-09	2.47E-09	2.382-09	2.20E-09
1.0E+04	2.24E-09	2.42E-09	2.41E-09	2.41E-09	2.40E-09	2.328-09	2.24E-09	2.08 2 -09
1.52+04	1.88E-09	2.08E-09	2.08E-09	2.07E-09	2.07E-09	2.01E-09	1.94E-09	1.82E-09
2.02+04	1.61 E- 09	1.822-09	1.822-09	1.81E-09	1.81E-09	1.762-09	1.7 1E-09	1.61E-09

Accuracy:	*	-	Possible	Error	Greater	Than	10%
	ŧ	-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+01 eV, E_{max} = 2.0E+04 eV

He Teen							
(•V)	AO	A1	A2	A3	A4	A5	A 5
10.	-41.0408	1.73612	-1.00696	.107279	0576945	.0226348	00478217
100.	-41.0379	1.03224	535100	134058	.0352264	002150L4	00222457
500.	-40.2599	· 4 10395	247167	176225	.00337909	.0177532	00518248
1000.	-35.9551	.185465	185562	151177	0159001	.0155346	-1.77904E-04
5000.	-39.4938	156752	142409	0847522	0277793	00101284	.00283315
10000.	-39.4782	210389	141402	0704827	0240167	00386296	8.94493 E -04
20000.	- 19 . 60 96	218997	135741	0627840	0213979	00486653	-4.40643E-04
Equal Temp	-41.7630	1.51588	-1.06969	.147565	0861736	.0380393	0145355

See appendix for Chebyshev fit details.

Spectral Line Emission Rate Coefficients for

He + H \rightarrow He + H(Lyman- α)

Beam - Maxwellian Rate Coefficients (cm³/s)

8							
Temp.			He En	ergy (eV/amu)	l		
(●♥)	10000.	20000.	30000.	40000.	50000.	6000u.	70000.
1.02+00	2.682-09	1.96E-09	1-49E-09	1.22E-09	9.78E-10	8.15E-10	6.98E-10
2.02+00	2.68E-09	1.96E-09	1.49E-09	1.22E-09	9.78E-10	8.15E-10	6.98E-10
4.0E+00	2.68E-09	1.96E-09	1.49E-09	1.22E-09	9.78E-10	8.15E-10	6.98E-10
7.0E+00	2.68E-09	1.96E-09	1.49E-09	1.22E-09	9.78E-10	8.15E-10	6.97E-10
1.0E+01	2.682-09	1.96E-09	1-498-00	1.22E-09	9.78E-10	8.15E-10	6.97E-10
2.0E+01	2.68E-09	1.96E-09	1.49E-09	1.22E-09	9.78E-10	8.15E-10	6.97E-10
4.0E-01	2.68E-09	1.95E-09	1.49E-09	1.22E-09	9.78E-10	8.15E-10	6.97E-10
7.0E+01	2.67E-09	1.95E-09	1.49E-09	1.212-09	9.78E-10	8.15E-10	6.96E-10
1.0E+02	2.67E-09	1.93E-09	1.49E-09	1.21E-09	9.79E-10	8.15E-10	6.96E-10
2.0E+02	2.66E-09	1.94E-09	1.49F-09	1.21E-09	9.80E-10	8.16E-10	6.95E-10
4.0E+02	2.64E-09	1.932-09	1.492-09	1.20E-09	9.81E-10	8.17E-10	6.90E-10
7.0E+02	2.612-09	1.922-09	1.492-09	1.20E-09	9.81E-10	6.17E-10	6.74E-10
1.0E+03	2.585-09	1.91E-09	1.48E-09	1.202-09	9.80E-10	8.13E-10	6.58E-10
2.0E+03	2.49E-09	1.68E-09	1.47E-09	1.192-09	9.73E-10	7.92E-19	6.18E-10*
4.0E+03	2.32E-09	1.81E-09	1.442-09	1.16E-09	9.43E-10	7.53E-10*	5.81E-10*
7.0E+03	2.12E-09	1.70E-09	1.37E-09	1.11E-09	8.98E-10	7.15E+10*	5.59E-10*
1.0E+04	1.96E-09	1.59E-09	1.30E-09	1.06E-09	8.60E-10*	6.90E-10'	5.47E-10*
2.0E+04	1.53E-09	1.292-09	1.08E-09*	9.04E-10*	7.54E-10*	6.26E-10'	5.18E-10*

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 100%

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$ He Energy (eV/##u) A0 A1 A2 A3 A4 A5 **A6** -39.6987 -.197802 10000. -.134319 -.0723203 -.0304433 -.00974030 -.00251684 -40.2569 -.138429 -.0956246 -.0310565 20000. -.0581643 -.0136698 -.00449523 30000. -40.7530 -.0951522 -.0755129 -.0512811 -.0288118 -.0130297 -.00477600 -.0957055 -.0426726 40000. -41.1570 -.0666225 -.0248045 -.0119141 -.00390059 2.458518-06 50000. -41.5800 -.0821883 -.0654040 -.0420679 -.0203976 -.00620683 60000. -41.9647 -.0972904 -.0701222 -.0364437 -.0102495 .00215119 .00335803

-.0176390

.00996598

.0106575 -8.59901E-05

-.0746309

See appendix for Chebyshev fit details.

1 1

-.139674

70000.

-42.3333

H + He -> H(Lyman_)
H + He -> H(2s, 2p)

H(28)

H(2p)

Energy (eV/amu)	Cross Section (cm ²)	Energy (eV/amu)	Cross Section (cm²)
6.0E+01	1.43E-18	?.0E+01	1.87E-18
7.0E+01	1.81E-18	4.0E+01	2.36E-17
1.0E+02	3.042-18	7.0E+01	4.33E-17
2.05+02	6.70E-18	1.0E+02	5.22E-17
4.0E+02	1.102-17	2.0E+02	6.08E-17
7.0E+02	1.298-17	4.0E+02	6.30E-17
8.6E+02	1.31E-17	7.02+02	6.112-17
1.02+03	1.308-17	1.02+03	5.81E-1/
2.0E+03	1.106-17	2.0E+03	5.162-17
4.06+03	8.412-18	4.0E+03	3.73E-17
7.02+03	6.54E-18	7.0E+03	2.586-17
1.0E+04	5.51E-18	1.0E+04	1.95E-17
2.05+04	4.158-18	2.0E+04	1.01E-17
4.02+04	3.64E-18	4.0E+04	5.166-18
7.02+04	2.67E - 18	7.0E+04	4.528-18
1.0E+05	2.04E-18	1.02+05	4_41E_18
1.4E+05	1.59E-18	1.00/05	41410-10

References: 46, 639, 640, 641, 642, 643, 644, 645, 646, 648, 650

Accuracy: 50%

,

Notes: (1) Excitation of an excited state is found by measuring the emission from that state and correcting for cascades into that state. (2) The 2s state cross sections are found from the electric-field-induced transition (2s -> 2p -> 1s). (3) If cascading is neglected the Lyman- α emission cross sections are equal to the 2p excitation cross sections.

Chebyshev Fitting Parameters for Cross Sections

	H(2 s) H(2p)	E _{min} = Emin =	6.0E+01 2.0E+01	eV/aanu, eV/aanu,	Erax = max =	1.4E+05 eV/amu 1.0E+05 eV/amu	1
	A0	14	A2	A3	٨4	٨5	A6
H(28) H(2p)	-80.0462 -77.4567	212389 447338	93317 -1.40980	6 .333291 .577607	0922211 164863	0813910 .291318	.00473762 0758830
The f. The m	it representarismum dev	nts the viation i	Н(2в) cro в 4.3% al	ss se ction t 1.0E+05	with an eV/amu.	rms deviation	of 2.28.

The fit represents the H(2p) cross section with an rms deviation of 3.8%. The maximum dc..ation is 6.9% at 4.02+04 eV/amu.

I.

H + He -> H(3s,3p,3d) -> H(3p+3d)

H(38)		H(3	Bp)	H(3d)		H(3p+3d)	
Energy	0	Snergy	0	Energy	0	Energy	0
(eV/amu)	(CM ²)	(eV/amu)	(cm²)	(eV/amu)	(Cm²)	(eV/amei)	(CM ²)
1.5E+02	1.008-18	5.0E+03	2.41E-18	1.0E+04	1.20E-18	1.5 E+02	2.54E-18
2.08+02	1.84E-18	5.5E+03	2.338-18	1.3E+04	1.05E-18	2.0E+02	3.28E-18
4.0E+02	4.18E-18	6.0E+03	2.25E-18	1.5E+04	8.64E-19	3.0E+02	4.24E-18
6.CE+02	4.64E-18	7.0E+03	2.08E-18	?.0E+04	5.96E-19	4.0E+02	4.41E-18
7.0E+02	4.57E-18	8.0E+03	1.94E-18	2.5E+04	4.88E-19	5.0E+02	4.33E-18
1.02+03	3.998-18	9.0E+03	1.822-18	3.0E+04	4.48E-19	6.0E+02	4.26E-18
2.02+03	2.74E-18	1.5E+04	1.38E-18	3.5E-04	4.41E-19	7.02+02	4.17E-18
4.0E+03	1.90E-18	2.0E+04	1.15E-18			8.0E+02	4.08E-18
7.02+03	1.46E-18	2 5E+04	1.02E-18			9.0E+02	4.02E-18
1.02+04	1.26E-18	3.0E+04	9.31E-19			1.02+03	3.958-18
2.06+04	9.398-19	3.5E+04	8.755-19			1.52+03	3.70E-18
3.5E+04	7.98E-19	4.0E+04	8.40E-19			2.0E+03	3.50E-18
						2.5E+03	3.36E-18

References: 500, 601, 645

Accuracy: See notes

Botes: (1) The excitation cross section is found by measuring the emission cross section from that state and correcting for cascade from measurements or using known transition probabilities. (2) Excitation cross sections are often inaccurate due to problems with the absolute calibration of the photon detector.

Chebyshev Fitting Parameters for Cross Sections

	H(3s) H(3p) H(3d) H(3p+3d)	Emin * Emin = Emin = Emin = Emir =	1.5E+02 e 5.0E+03 e 1.0E+04 e 1.5E+02 e	V/auntu, I V/auntu, I V/auntu, I V/auntu, I	2 max = 3.5 2 max = 4.0 2 max = 3.5 2 max = 2.5 2 max = 2.5	E+04 eV/amu E+04 eV/amu E+04 eV/ຂາມ E+03 eV/amu	
	CA	A1	٨2	A3	۸4	A.5	A6
B(3s)	-81.8143	503310	548175	.379377	131005	.0123345	.0265299
Я(Зр)	-82.1981	551194	.00275721	.0217903	,00543228	.00224727	00356334
H(3d)	-83,6281	558730	.0544644	.0648205	~,0102011	00660745	.00511818
H(3p+3d)	-80.3437	.0712330	198300	.0790347	0161614	00946588	.0121131

The fit represents the H(3s) cross section with an rms deviation of 0.5%. The maximum deviation is 1.1% at 1.0E+03 eV/amu.

The fit represents the H(3p) closs section with an rms deviation of 0.2%. The maximum deviation is 0.5% at 2.0E+04 eV/amu.

The fit represents the H(3d) cross section with an rms deviation of 0.0%. The maximum deviation is 0.3% at 2.02+04 eV/amu.

The fit represents the H(3p+3d) cross section with an rms deviation of 0.3%. The maximum deviation is 0.7% at 5.0E+02 eV/amu.

See appendix for Chebyshev fit details.

П

1 1 1

Spectral Line Emission Cross Sections for

H + He -> H(Balmer-a, Balmer-B)

H(Balmer-a)

H(Balmer-0)

Energy	Cross Section	Energy	Cross Section
(e ⁿ /amu)	(CM ²)	(eV/amu)	(Cm²)
3.0E+01	5.358-20	4.0E+01	2.198-20
4.02+01	2.738-19	7.0E+01	8.58E-20
7.02+01	9.03E-19	1.0E+02	1.51E-19
1.0E+02	1.362-18	1.5E+02	4.00E-19
1.5E+02	3.47E-18	2.0€+02	7,19E-19
2.0E+02	5.11E-18	4.02+02	1.88E-18
4.0E+02	8.998-18	7.0E+02	2-28E-18
5.02+02	9.148-18	1.9E+03	2-17E-18
7.02+02	8-778-18	2. JE+03	1.738-18
1.02+03	7-86E-18	2.5E+07	1.608-18
2.02+03	6.22E-1	0.30.00	10000 10
4.02+03	4.55E-18		
7.02+03	3.35E-18		
1.02+04	2 72P-19		
2.02+04	1 642-19		
3 08+04	1 30P 10		
J. VETV4	1,376-10		
3.36709	1,336-19		

References: 500, 601

Accuracy: 50%

<u>Hotes:</u> (1) The Balmer- α wavelength is 656.3nm and the Balmer- β wavelength is 486.1nm. (2) These cross sections are for the total line emission including caseade contributions and branching corrections. Balmer- α cross sections are the sum of $\sigma(3s) + 0.118 \ \sigma(3p) + \sigma(4D)$ where the factor 0.118 is the fraction of the 3p state decaying by Balmer- α radiation. Balmer- β emission cross sections are for the n=4->2 transitions with the branching ratio of the 4s to 3p transition being 0.584.

Chebyshev Fitting Parameters for Cross Sections

H(Bal me r-a)	Emin	-	3.0E+01	eV∕amu,	E.a.v		3.5E+04	eV/anu
H(Ralmer-β)	Emin	*	4.0E+01	ev∕amu,	Emax	Ŧ	2.5E+03	eV/amu

	A0	A1	A2	A3	٨4	A5	A6
H(Balmer-a)	-81.8706	.929497	-1.66225	.554407	0518605	.00374127	0418064
H(Balmer-#)	-84.3982	2.15229	976804	0709114	.119448	.0571307	0675516

The fit represents the H(Balmer- α) cross section with an rms deviation of 13.9%. The maximum deviation is 35.9% at 1.0E+02 eV/amu.

The fit represents the H(Balmer-A) cross section with an rms deviation of 3.6%. The maximum deviation is 8.7% at 1.0E+02 eV/amu.

. C-36

Excitation Cross Sections for

H + Be -> H(4s, 4p+4d)

H(4s)

H(4p+4d)

ſ

1

Energy (ev/aru)	Cross Section (cm²)	Energy (eV/amu)	Cross Section (cm ²)
1.56+02	1.30E-19	1.5E+02	3.07E-19
2.0E+02	2.60E-19	2.0E+02	5.35e-19
3.02+02	4.77E-19	3.0E+02	1.06E-18
4.0E+02	6.758-19	4.06+02	1.30E-18
5.0E+02	8.105-19	5.06+02	1.37E-18
6.0E+02	8.78E-19	6.0E+02	1.382-18
6.4E+02	8.796-19	7.06+02	1.37E-18
7.02+02	8.72E-19	8.0E+02	1.356-18
8.0E+02	8.40E-19	9.0E+02	1.338-18
9.08+02	7 .99E -19	1.0E+03	1.31E-18
1.0E+03	7.56E-19	1.5E+03	1.23E-18
1.58+03	6.062-19	2.0E+03	1.19E-18
2.0E+03	5.212-19	2.5E+03	1.16E-18
2.52+03	4.628-19		

Reference: 601

Accuracy: 50%

<u>Hotes:</u> (1) As far as we are aware only one measurement has been made of the n = 4 excited state formation. Thus, the stated accuracy only includes accountable errors. (2) These data have ignored any cascade contributions.

Chebyshev Fitting Parameters for Cross Sections

	H(48) H(4p+4d)	Emin Emin	1.50+02 1.50+02	eV/annu, eV/annu,	E _{max} = E _{max} =	2.58+03 eV 2.58+03 ≘V	/amu /amu
	AO	A 1	٨2	A3	A4	A5	A6
A(46)	-84.5175	. 519837	602123	. 107056	.0399676	.004711:4	0330016
H(4p+4d)	-83.0777	.537485	440970	.159743	00409905	0305454	.0217549

The fit represents the H(4s) cross section with an rms deviation of 0.7%. The maximum deviation is 1.3% at 2.02+03 eV/amu.

The fit represents the H(4p+4d) cross section with an rms deviation of 0.6%. The maximum deviation is 1.1% at 1.52+03 eV/amu.

i.

$H + He -> He(3^{1}P, 3^{3}P, 3^{3}D)$

He(3¹P)

He(3³P)

He(3³D)

Energy	0 (m²)	Energy	0	Energy	0
(ev//mu)	(Cm)	(ev/anu)	(CM)	(ev/amu)	(CH)
1.02+04	5.60E-20	1.02+04	9.67E-19	1.0E+04	1.60E-19
1.3E+04	1.16E-19	1.3E+04	1.16E-18	1.3E+04	2.19E-19
1.58+04	1.792-19	1.5E+04	1.18 E-1 8	1.4E+04	2.37E-19
1.8E+04	2.198-19	1.8E+04	1.04E-18	1.5E+04	2.32E-19
2.02+04	2.53E~19	2.QE+04	8.64E-19	1.8E+04	1.95E-19
2.3E+04	2.83E-19	2.3E+04	7 .19e-19	2.02+04	1.62E-19
2.58+04	3.14E-19	2.5E+04	5.938-19	2.3E+04	1.37E-19
2.8E+04	3.46E-19	2.82+04	4.92E-19	2.52+04	1.17E-19
3.0E+04	3.75E-19	3.0E+04	4.07E-19	2.8E+04	1.00E-19
3.32+04	4.01E-19	3.3E+04	3.33E-19	3.02+04	8.62E-20
3.5E+04	4.298-19	3.5E+04	2.72E-19	3.3E+04	7.57E-20
				3.5E+04	6.86E-20

References: 166, 678, 683, 684

Accuracy: Unknows

Notes: (1) Only one absolute measurement of cross sections for excitation of these states has been made. See: Van Eck et al. (Ref. 678). These data have been corrected in the review papers of de Heer (Ref. 166) and Thomas (Ref. 684). The corrected values are probably too low by a factor of 2-3.

Chebyshev Fitting Parameters for Cross Sections

	He(3 ¹ P) He(3 ³ P) He(3 ³ D)	E _{min} = E _{min} = E _{min} =	1.0E+04 1.0E+04 1.0E+04	eV/amu, eV/amu, eV/amu,	E _{max} = 3.5 E _{max} = 3.5 E _{max} = 3.5	E+04 eV/amu E+04 eV/amu E+04 eV/amu	
	AO	A1	A2	A3	۸4	۸5	A 6
He(3 ¹ P)	-86.1894	.957985	222479	.0796768	00575983	0194864	.0121076
He(3 ³ P)	-83.6070	654163	317139	.0375222	-3.813142-04	0176396	.00667369
He(3 ³ D)	-86.8654	503446	290764	.103755	00276954	0224516	.0247251

The fit represents the $He(3^{3}P)$ cross section with an rms deviation of C.3%. The maximum deviation is 0.6% at 1.8E+04 eV/amu. The fit represents the $He(3^{3}P)$ cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 2.0E+04 eV/amu. The fit represents the $He(3^{3}D)$ cross section with an rms deviation of 0.4%. The maximum deviation is 0.8% at 1.8E+04 eV/amu.

1 1

$H + He -> He(4^{1}S, 4^{1}P, 4^{1}D)$

He(4 ¹ S)		He (1 ¹ P)	He(4 ¹ D)	
Energy	0	Energy	0	Energy	0
(eV/amu)	(cm ²)	(ev/amu)	(C#*)	(eV/amu)	(c#*)
1.0E+04	2.87E-19	1.02+04	6.19E-20	1.02+04	5.34E-20
1.58+04	3.64E-19	1.3E+04	1.30E-19	1.5E+04	8.41E-20
2.06+04	4.092-19	1.5E+04	1.92E-19	2.0E+04	9.12 E -20
2.5E+04	4.348-19	2.05+04	3.03E-19	2.5E+04	8.01E-20
3.0E+04	4.34E-19	2.5g+04	3.80E-19	3.0E+04	7.68E-20
3.56+04	4.27E-19	3.0E+04	4.485-19	3.0E+04	7.72E-20
4.05+04	4.082-19	3.5E+04	5.13E-19	3.7E+04	8.87E-20
4.52+04	3.882-19			4.0E+04	8.79E-20
5.0E+04	3.682-19			4.5E+04	8.51E-20
5.5E+04	3.51E-19			5.0E+04	8.488-20
6.0E+04	3.33E-19			5.5E+04	8.24E-20
6.5E+04	3.10E-19			6.0E+04	7.83E-20
7.02+04	2.815-19			6.5E+04	7.27 E -20
7.5E+04	2.488-19			7.0e+04	6.66E-20
8.02+04	2.202-19			7.5 5+04	6.28E-20
8.5E+04	1.97E-19			8.0E+04	6.00E-20
9.0E+04	1.80E-19			8.5E+04	5.81E-20
9.5E+04	1.692-19			9.0E+04	5.62E-20
1.0£+05	1.61E-19	-		9.56+04	5.47E-20
				1.0E+05	5.34E-20

<u>Rejerences:</u> 166, 677, 678, 679, 684

 $\frac{Accuracy:}{E} \geq 2x10^3 \text{ eV/amu} - 403$ $E < 2x10^3 \text{ eV/amu} - \text{Unknown}$

Botes: (1) The data have been obtained by measuring the line emissions for the following transitions: (a) $4^{1}S \rightarrow 2^{2}P$, 504.7nm, (b) $4^{2}D \rightarrow 2^{2}P$, 492.2nm, (c) $4^{2}P \rightarrow 2^{2}S$, 396.5nm. (2) The cross section data have been corrected for cascades using known transition probabilities. (3) The corrected data of Van Eck et al. (Ref. 678) - (see corrections of de Heer Ref. 166 and Thomas Ref. 684) have been normalized to the data of Blair et al. (Ref. 677) at $2x10^{3}$ eV/amu for the $4^{2}S$ and $4^{2}D$ states.

Chebyshev Fitting Parametars for Cross Sections

He(4 ¹ S)	Ento	*	1.0E+04	eV/amu,	E _{may} =	1.02+05	eV/amu	
%e(4¹₽)	Enin	-	1.02+04	eV/amu,	Emax -	3.52+04	eV/annu	
He(4 ¹ D)	Emin	=	1.0E+04	eV/amu,	Emax =	1.02+05	eV/aquu	

 A0
 A1
 A2
 A3
 A4
 A5
 A6

 He(4¹8)
 -85.2953
 -.236370
 -.375570
 -.0526312
 1.43777E-04
 -.00898368
 .0314058

 He(4¹P)
 -85.8813
 .991657
 -.212955
 .0558510
 -.00900116
 .00987058
 -.00878102

 He(4¹D)
 -88.1942
 -.0703862
 -.233023
 .0274405
 -.0616908
 .0587687
 .0287005

The fit represents the He(4¹S) cross section with an rms deviation of 1.7%. The maximum deviation is 2.7% at 5.0E+04 eV/amu. The fit represents the He(4¹P) cross section with an rms deviation of 0.1%. The maximum deviation is 5.0% at 1.2E+04 eV/amu. The fit represents the He(4²D) cross section with an rms deviation of 3.1%. The maximum deviation is 5.3% at 2.9E+04 eV/amu.

 $H + He -> He(4^{3}S, 4^{3}P, 4^{3}D)$

He(4 ³ S)		He	(4 ³ P)	He	He(4 ³ D)	
Energy	. 0	Energy		Energy	σ	
(eV/amu)	(CR ²)	(eV/amu)	(CTR ²)	(eV/amu)	(Cm²)	
1.0E+04	3.69E-19	1.0E+04	8.78E-19	1.0E+04	1.59E-19	
1.52+04	8.38E-19	1.2E+04	1.08E-18	1.5E+04	2.06E-19	
2.0E+04	1.00E-18	1.4E+04	1.15E-18	2.02+04	1.71E-19	
3.0E+04	8.70E-19	1.5E+04	1.15E-18	2.52+04	1.33E-19	
4.0E+04	5.43E-19	2.0E+04	8.82E-19	3.UE+04	9.92E-20	
5.0E+04	3.56E-19	2.5E+04	6.05E-19	3.5E+04	8.03E-20	
6.9E+04	2.48E-19	3.0E+04	4.1JE-19	4.0E+04	6.71F-20	
7.02+04	1.79E-19	3.5E+04	3.00E-19	5.0E+04	5.21E-20	
8.0E+04	1.25E-19		• -	6.0E+04	4.36E-20	
9.0E+04	9.92E-20			7.0E+04	3.80E-20	
1.02+05	8.506-20			8.0E+04	3.38E-20	
				9.0E+04	3.05E-20	
				1.0E+05	2.80E-20	

<u>References:</u> 166, 677, 678, 684 <u>Accuracy:</u> E > 2x10³ eV/amu - 40% E < 2x10³ eV/amu - Unknown

<u>Botes:</u> (1) The data have been obtained by measuring the line emissions for the following transitions: (a) $4^{3}S \rightarrow 2^{3}P$, 471.3nm, (b) $4^{3}P \rightarrow 2^{3}S$, 318.3nm, (c) $4^{3}D \rightarrow 2^{3}F$, 447.1nm. (2) The cross section data have been corrected for cascading using known transition probabilities. (3) The corrected data of Van Eck et al. (Ref. 678) - (see corrections of de Heer Ref. 166 and Thomas, Ref. 684) have been normalized to the data of Blair et al. (Ref. 677) at 2x10³ eV/amu for the $4^{1}S$ and $4^{1}D$ states.

Chebyshev Fitting Parameters for Cruss Sections

	He(4 ³ 8)	E _{min} =	1.0E+04	eV/amu,	E _{max} =	1.0E+05 eV/aut	เน
	He(4 ³ P)	E _{min} =	1.0E+04	eV/amu,	E _{max} =	3.5E+04 eV/aut	เบ
	He(4 ³ D)	E _{min} =	1.0E+04	eV,'amu,	E _{max} =	1.0E+05 eV/aut	เน
	AO	A1	A2	A3	۸4	A5	AG
He (4 ³ S)	-84.9236	910048	757778	.164455	.0260068	-7.508782-04	.00468518
He (4 ³ P)	-83.6191	587215	319615	.0516334	.0108396	00145124	.00476885
He (4 ² D)	-87.8723	-1.03617	177049	.184100	0530501	0167810	.0122418

The fit represents the $Ho(4^{3}S)$ cross section with an rms deviation of 2.2%. The maximum deviation is 2.6% at 8.0E+04 eV/amu.

The fit represents the $He(4^{3}P)$ cross section with an rms deviation of 0.2%. The maximum deviation is 0.5% at 1.4E+04 eV/amu.

The fit represents the $He(4^{3}D)$ cross section with an rms deviation of 0.6%. The maximum deviation is 1.1% at 2.0F!04 eV/amu.

1 1

 $H^{+} + H -> H^{+} + H(2s, 2p)$

8(28)

H(2p)

Energy	Cross Section	Energy	Cross Section
(eV/amu)	(Cm²)	(eV/amu)	(CM ²)
5.0E+03	5.42E-18	5.0E+02	2.43E-18
6.0E+03	5.38E-18	6.0E+02	8.902-18
7.0E+03	5.36E-18	7.0E+02	1.64E-17
8.0E+03	5.406-18	8.0E+02	2.03E-17
9.0E+03	5-438-18	9.0E+02	2.258-17
1.0E+04	5.542-18	1.0E+03	2.4JE-17
1.2E+04	5.87E-18	1.5E+03	2.73E-17
1.5E+04	8.62E-18	2.05+03	2.80E-17
2.0E+04	1.04E-17	3.02+03	2.91E-17
2.56+04	1-066-17	4.06+03	2.97E-17
		5.0E+03	3. 32E-17
		6.0E+03	3.06E-17
		7.0E+03	2.98E-17
		8.0E+03	2.78E-17
		9.0E+03	2.56E-17
		1.0E+04	2.40E-17
		1.12+04	2.35E-17
		1.5E+04	2.8 E~17
		2.0E+04	3.658-17
		3.0E+04	5.502-17

References: H(2s) 12, 14 H(2p) 14, 17, 712

Accuracy: H(2s) - Unknown H(2p) - 40%

<u>Hotes:</u> (1) Since the cascading into the 2p state is less than 5%, the cross section for excitation of the 2p state is essentially the same as Lyman- α emission cross section. The 2p data has not been corrected for cascading. (2) The two sets of data for the 2s state differ by a factor of 2 to 3.

Chebyshev Fitting Parameters for Cross Sections

	H(2s)	E _{min} =	5.0E+03	eV/amu, i	max = 2.5e	+04 eV/aam	2
	H(2p)	E _{min} =	5.0E+02	eV/amu, i	max = 3.0e	+04 eV/aam	2
	AO	A1	A2	A3	A4	A5	A 6
H(25)	-78,9900	.401365	.0930849	90759638	0649979	.00791412	.0468211
H(2p)	-76,6674	.854989	357230	.529756	161903	.168930	~.136550
The fit The may	: represen (imum dev	its the iation i	H(2s) cro Is 4.8% at	ss section 1.2E+04 e	with an rms V/amu.	deviation	of 2.3%.

The fit represents the H(2p) cross section with an rms deviation of 3.7%. The maximum deviation is 6.3% at 1.1E+04 = V/amu.

<u>9</u>5

Excitation Pate Coefficients for

$H^* + H -> H^* + H(2p)$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Temp.	Equal				Н Текар.	(e ¹⁷)		
(97)	Temp.	500.	750.	1000.	1250.	5700.	10000.	20000.
5.0E+02	1.16E-09	1.16E-09	1.392-09	1.50E-09	1.75E-09	3.338-09	4.11E-09*	3.43E-09#
7.52+02	1.58E-09	1.398-09	1.582-09	1.75E-09	1.908-09	3.418-09	4.11E-09*	3.41E-09#
1.05+03	1.905-09	1.58E-09	1.75E-09	1.905-09	2.038-09	3.48E-09	4.11E-09*	3.39E-09#
1.32+03	2.16E-09	1.758-09	1.908-09	2.03E-09	2.16E-09	3.55E-09	4.11E-09*	3.36E-098
1.5E+03	2-38E-09	1.908-09	2.03E-09	2.16E-09	2.27E-09	3.618-094	4.11E-09*	3.342-09#
1.82+03	2.596-09	2.03E-09	2.16K-09	2.27E-09	2.382-09	3.57E-09*	4.10g-09"	3.312-03#
2.02+03	2.805-09	2.168-09	2.278-09	2.388-09	2.492-09	3.73E-09*	4.10E-09*	3.29E-09#
3.92+03	3.468-09	2.592-09	2.702-09	2.808-09	2.892-09	3.91E-09*	4.06E-09*	3.202-09#
4.0E+03	3.91E-09*	2.99E-09	3.08E-09	3.178-09	3.25E-09	4-03E-09*	4.002-09*	3.11E-09#
5.05+03	4.09E-09*	3.33E-09	3-412-09	3.442-09	3.558-09	4.092-09*	3.932-09#	3.02E-09#
6.02+05	4-102-09*	3.61E-09*	3.678-09*	3.73E-09*	3.78E-09*	4.11E-09*	3.852-09#	2.94E-09#
7.02+03	4.008-09*	3.832-09"	3.872-09*	3.912-09*	3.948-09*	4.10E-09*	3.76E-09#	2.852-09#
0.0E+03	3.858-094	3.988-09*	4.00E-094	4.038-09*	4.052-09*	4.06E-09*	3.672-034	2.77E-094
9.0E+03	3.67E-09#	4.07E-09*	4.08E-09*	4.092-09*	4.108-09*	4.00E-79*	3.58E-09#	2.70E-09#
1.02+04	3.482-098	4.11E-09*	4.115-09*	4.11E-09*	4.11E-09*	3.932-09#	3.488-09#	2.622-098
1.22+04	3.11E-09#	4.088-09*	4.07E-09*	4.06E-09*	4.05E-09*	3.76E-09#	3.298-09#	2.48E-09#
1.5E+04	2.622-098	3.892-09#	3.87E-094	3.858-094	3.832-098	3.482-094	3.028-09#	2.292-09#
2.02+04	2.02E-09#	3.43E-09#	3-412-09#	3.392-091	3.36E-09#	3.022-09#	2.625-094	2.028-094

Accuracy:	*	-	Possible	Error	Greater	Than	10%
-		-	Possible	Error	Greater	Than	100%

B

Chebyshev Fitting Parameters for Cross Sections

 $E_{\min} = 5.0E+02 eV,$ E_{max} = 2.0E+04 eV ii i Temp. A0 (¶¥) **A**1 **A**2 A3 λ4 A5 λ6 500. -39.7100 .00981582 .631450 -.153568 -.0909606 -.0319929 2.01118E-04 750. -39.5923 .543848 -.128283 -.0971754 -.0299354 .00227565 .00859152 1000. -39.4997 .476362 -.113723 -.0995434 -.0201721 .00377301 .00746751 1250. -39.4237 .421755 -.105533 -.0997854 -.0264000 .00472594 .00647274 5000. -38.9001 .0101105 -.108849 -.0609619 -.0111639 .00213021 .00143014 10000. -.187122 -.105864 -38.8452 -.0371107 -.00678512 2.662712-04 5.369638-04 1.56753E-04 20000. -39.3124 -.240533 -.0956162 -.0251663 -.00414891 -1.62169E-04 .353158 -.421145 -.103566 -3.86751E-04 Equal Temp. -39.7457 .272186 -.00215307

See appendix for Chebyshev fit details.

 $H^* + H -> H^* + H(n=2,3,4)$

H(n=3)

H(n=2)

H (n=4)

Energy	0	Energy	0	Energy	0
(eV/amu)	(Cm ²)	(eV/amu)	(CM ²)	(eV/amu)	(cm²)
1.56+04	3.43E-17	1.5E+04	1.098-17	2.5E+04	7.69E-18
2.0E+04	5.22E-17	2.0E+04	1.29E-17	3.0E+04	8.68E-19
2.58+04	6.642-17	2.5E+04	1.538-17	4.0E+04	1.02E-17
3.0E+04	7.89E-17	3.0E+04	1.80E-17	5.0E+04	1.128-17
4.0E+04	9.59E-17	4.0E+04	2.33E-17	6.0E+04	1.188-17
5.0E+04	1.05E-16	5.0E+C4	2.54E-17	7.02+04	1.19E-17
5.5E+04	1.07E-16	6.0E+04	2.51E-17	8.0E+04	1.182-17
6.0E+04	1.07E-16	7.0E+04	2.42E-17	9.0E+04	1.14E-17
7.0E+04	1.03E-16	8.0E+04	2.32E-17	1.0E+05	1.102-17
8.0E+04	9.72E-17	9.02+04	2.21E-17	1.58+05	9.06E-18
9.0E+04	9.288-17	1.0E+05	2.148-17	2.0E+0	7.69E-18
1.02+05	8.90E-17	1.5E+05	1.70E-17	_	
1.5E+05	7.48E-17	2.0E+05	1.36E-17		
2.08+05	6.53E-17				

References: 709, 710, 711

Accuracy: 40%

<u>Hotes:</u> (1) These cross sections were determined by measuring the energy loss of the incident proton beam after passing through an H target. The energy resolution was not sufficient to separate the nl levels. (2) To obtain absolute cross sections the results were normalized to the Born approximation of Bates and Griffing (Ref. 711) at 200 keV.

Chebyshev Fitting Parameters for Cross Sections

	H(n=2) H(n=3) H(n=4)) Emin = Emin = Emin =	1.5E+94 1.5E+04 2.5E+04	eV/amu, eV/amu, eV/amu,	Emax = Emax = Emax =	2.0E+05 eV/amu 2.0E+05 eV/amu 2.0E+05 eV/amu	
	AO	A1	A2	A3	۸4	۸5	A6
H(n=2) H(n=3) H(n=4)	-74.4276 -77.2728 -78.4118	.262934 .149236 00702352	326115 351549 213691	.0616937 0157777 .00801652	.029312 .05716 .018254	2900255599 270247442 31 -8:70179 E-04	0190829 0161701 00538651

The fit represents the H(n=2) cross section with an rms deviation of 0.5%. The maximum deviation is 0.9% at 8.0E+04 eV/amu. The fit represents the H(n=3) cross section with an rms deviation of 1.2%. The maximum deviation is 1.5% at 7.0E+04 eV/amu. The fit represents the H(n=4) cross section with an rms deviation of 0.2%. The maximum deviation is 0.2% at 5.0E+04 eV/amu.

Dissociative Excitation Cross Sections for

$H^* + H_2 -> H^* + H(2r, 2p) + H$

H(28)

H(2p)

Energy (eV/amu)	Cross Section (cm²)	Energy (eV/amu)	Cross Section (cm²)	
5.0E+03	1.32E-18	4.0E+03	6.36E-18	
7.0E+03	3.596-18	7.0E+03	1.84E-17	
1.02+04	4.70E-18	1.0E+04	2.76E-17	
1.52+04	5.73E-18	1.58+04	3.12E-17	
2.0E+04	6.38E-18	2.0E+04	2.96E-17	
4.02+04	7.69E-18	4.0E+04	2-14E-17	
7.0E+04	8.005-18	7.0E+04	1.48E-17	
1.0E+05	7.882-18	1.02+05	1,21E-17	
1.52+05	7.04E-18	1.58+05	9.238-18	
2.0E+05	6.23E-18	2.0E+05	7-428-18	
4.02+05	4.182-18	4.02+05	4.34E-18	
7.02+05	2.758-18	7-02+05	2.812-18	
1.0E+06	2.002-18	1.0E+06	2.142-18	

References: 122, 124, 128, 649

Accuracy: 50%

1

Botes: (1) The 2s cross section has been measured by field-induced emission of Lyman- α radiation (2s -> 2p -> 1s). If cascade is neglected, this is equal to the cross section for H(2s) formation. (?) The 2p cross section was determined by measuring the Lyman- α emission. If cascade is neglected, this is equal to the cross section for H(2p) formation.

Chebyshev Fitting Parameters for Cross Sections

H(2s)	Emin	=	5.0E+03	eV/amu,	Emay =	1.0E+06	eV/amu
H(2p)	Emin	=	4.02+03	eV/amu,	Emax =	1.0E+06	eV/amu

	AO	A1	A2	A 3	λ4	A5	A6
H(2=)	-80.1116	0216909	735933	.117161	0952706	.0960395	0678792
H(2p)	-78.5492	910686	758592	.347330	131263	.0249389	.0249642

The fit represents the H(2s) cross section with an rms deviation of 3.1%. The maximum deviation is 5.9% at 1.0E+04 eV/amu.

The fit represents the H(2p) cross section with an rms deviation of 1.6%. The maximum deviation is 2.5% at 7.0E+03 eV/amu.

Dissociative Excitation Cross Sections for

$H^* + H_2 \rightarrow H^* + H(3p) + H$

Energy	Velocity	Cross Section
(eV/anu)	(CE/S)	(C # [*])
1.58+04	1.702+08	1.998-18
1.68+04	1.765+08	2.145-18
1.7E+G4	1.81E+08	2.252-18
1.96+04	1.862+08	2.342-18
1.9E+04	1.91E+08	2.382-18
2.06+04	1.967- 58	2.395-18
2.12+04	2. GIE+08	2.362-18
2.28+04	2.06E+08	2.312-18
2.3E+04	2.11E+08	2.245-18
2.42+04	2.158+08	2.16E-18
2.58+04	2 . 208+08	2-07E-18
2-62+04	2-24E+08	1.958-18
2.78+04	2.282+08	1.81E-18
2.85+04	2.322+08	1.658-18
2.92+04	2-378+08	1.452-18
3.08+04	2.412+08	1.202-18

Reference: 122

Accuracy: 304

Note: The	CTOSS	section	s for	H(3p)	formation	deduced	from	emiss	ion
measurements	on	the (un	ubstant	iated)	assumption	that	cascade	#Ay	be
neglected.									

Chebyshev Fitting Parameters for Cross Sections

E_{min} = 1.5E+04 eV/amu, E_{max} = 3.0E+04 eV/amu A0 A1 A2 A3 A4 A5 A6 -81.5559 -.198605 -.205491 -.0404366 -.0225806 -.0130785 -.00450361

1 I

ı.

The fit represents the above cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 2.72+04 eV/amu.

Spectral Line Emission Cross Sections for

$H^* + H_2 \rightarrow H(Lyman-\alpha)$

Energy	Velocity	Cross Section
(eV/amu)	(C R /S) [^]	(C m²)
5.08+02	3.118+07	6.56E-18
7.0E+02	3.68E+07	9.30E-18
1.02+03	4.39E+07	1.31E-17
1.58+03	5.38E+07	1.86E-17
2.05+03	6.21E+07	2.358-17
4.06+03	8.79E+07	3.74E-17
7.0E+03	1.162+08	4.988-17
1.02+04	1.392+08	5-682-17
1.58+04	1.702+08	6.17E-17
2.08+04	1.962+08	5.508-17
4.08+04	2.786+08	2.788-17
7.08+04	3.682+08	1.778-17
1 02+05	A. 35P+09	1-408-17
1.42+05	5.202+08	1.202-17

References: 188, 194, 195, 676

Accuracy: 50%

<u>Hote:</u> Cross sections correspond to 121.57nm emission resulting from dissociative excitation of B_2 by proton impact.

Chebyshev Pitting Parameters for Cross Sections

Emin = 5.0E+02 eV/amu, Emax = 1.4E+05 eV/amu

A0	A1	A2	A3	*4	A5	A 6
-76.9471	. 268573	911806	0361054	. 132508	.0899171	00698679

The fit represents the above cross section with an rms deviation of 4.5%. The maximum deviation is 10.4% at 4.02+04 eV/amu.

See appendix for Chebyshev fit details.

1 1 1

 $H^* + H_2 \rightarrow Ly_{\alpha}$ Target

Spectral Line Emission Cross Sections for

$H^* + H_2 \rightarrow H(Balmer-\alpha, Balmer-\beta, Balmer-\gamma)$

Ha

Hg

HY

Energy	0	Energy	σ	Energy	0
(eV/amu)	(Cm²)	(eV/annu)	(Cm²)	(eV/amu)	(cm²)
1.5E+03	2.09E-19	5.0E+03	1.75E-19	1.0E+04	1.00E-19
2.0E+03	2.70E-19	6.0E+03	2.37E-19	1.4E+04	1.09E-19
4.0E+03	5-80E-19	7.0E+03	2.98E-19	1.5E+04	1.08C-19
7.0E+03	1.51E-18	8.0E+03	3.53E-19	2.0%+04	9.91E-20
1.0E+04	2.24E-18	9.0E+03	3.95E-19	3.0E+04	7.64E-20
1.5E+04	2.62E-18	1.0E+04	4.28E-19	4.0E+04	6.00E-20
2.0E+04	2.44E-18	1.5E+04	4.70E-19	5.0E+04	4.93E-20
4.0E+04	1.55€-18	2.0E+04	4.22E-19	6.0E+04	4.21E-20
7.02+04	9.062-19	3.0E+04	3.00E-19	7.0E+04	3.59E-20
1.0E+05	6.50E-19	4.0E+04	2.29E-19	8.0E+04	3.29E-20
1.56+05	4.57E-19	5.0E+04	1.88E-19	9.0E+04	2.96E-20
2.0E+05	3.57E-19	6.0E+04	1.59E-19	1.0E+05	2.70E-20
4.0E+05	1.966-19	7.0E+04	1.37E-19	1.5E+05	1.87E-20
7.0E+05	1.20E-19	8.0E-04	1.21E-19	2.0E+05	1.46E-20
1.0E+06	8.90E-20	9.0E+04	1.08E-19	3.0E+05	1.02E-20
		1.0E+05	9.78E-20	4.0E+05	7.97E-21
		1.5E+05	6.72E-20	5.0E+05	6.52E-21
		2.0E+05	5.18E-20	6.0E+05	5.57E-21
		3.0E+05	3.60E-20	7.0E+05	4.88E-21
		4.0E+05	2.75E-20	8.0E+05	4.38E-21
		5.CE+05	2.25E-20	9.0E+05	3.988-21
		6.0E+05	1.90E-20	1.0E+06	3.65E-21
		7.0E+05	1.66E-20		
		8.02+05	1.46E-20		
		9.0E+05	1.32E-20		
		1.0E+06	1.198-20		

References: 133, 139, 655

Accuracy: 50%

Botes: (1) The data correspond to Balmer-series emission resulting from dissociative excitation of H₂, and have been normalized in the high energy region to data of Edwards and Thomas (Ref. 655). (2) Differences in magnitudes of the reported cross sections for each transition are due to differences in calibration between the experimental systems. (3) The wavelengths are as follows: H_{α} = 656.28nm; H_{β} =486.13nm; H_{γ} =434.05nm.

Chebyshev Fitting Parameters for Cross Sections

	H _a Hg H _Y	E _{min} = E _{min} = E _{min} =	1.5E+03 6.0E+03 1.0E+04	eV/amu, eV/amu, eV/amu,	E _{max} = 1.0 E _{max} = 1.0 E _{max} = 1.0	DE+U6 eV/amu E+O6 eV/amu E+O6 eV/amu	1
	AO	A1	A2	A3	A 4	A5	A6
Ha	-84.6647	627902	-1.28581	.366073	.150564	204615	.0536705
Hg	-87.6626	-1.78903	434179	.278457	129747	.0301375	.0113784
Hy	-90.3588	-1.79519	.168084	.119053	0545231	.0225899	00228634
The The	fit repr maximum	esents the deviation	H _a cross is 12.3%	section at 4.0E+03	with an rms B eV/amu.	deviation	of 5.4%.
The	fit repr	esents the	He CIOBB	section	with an rms	deviation	of 1.4%.

The maximum deviation is 3.1% at 4.02+04 eV/amu. The fit represents the Hy cross section with an rms deviation of 0.4%. The maximum deviation is 0.8% at 5.02+04 eV/amu.

 $H^* + H_2 \rightarrow H_{\alpha}, H_{\beta}, H_{\gamma}$

H⁺ + H₂ ~> H⁺ + H₂*

418.0nm Band

Energy	Cross Section	Energy	Cross Section
(ev/amu)	(CM ⁻)	(ev/amu)	(cm=)
7.0E+03	2.17E-18	1.5E+05	8.06E-21
8.0E+03	2.31E-18	2.0E+05	6.25 E -21
9.0E+03	2.44E-18	2.5E+05	5.06E-21
1.06+04	2.56E-18	3.0E+05	4.21E-21
1.5E+04	3.00E-18	3.5E+05	3.62E-21
2.02+04	3.30E-18	4.0E+05	3.17E-21
3.0E+04	3.695-18	5.0E+05	2.54E-21
4.0E+04	3.84E-18	5.0E+05	2.11E-21
5.0E+04	3.87E-18	7.0E+05	1.81E-21
6.0E+04	3.83E-18	8.0E+05	1.59E-21
7.02+04	3.76E-18	9.0E+05	1.39E-21
8.0E+04	3.67E-18		
9.0E+04	3.55E-18		
1.02+05	3.422-18		
1.3E+05	3.016-18	-	

References: 194, 654

Accuracy: 50%

<u>HO_L</u> The 160.6mm Band is the Lyman band of H₂ [B ${}^{1}\Sigma_{u}^{+} \rightarrow X {}^{1}\Sigma_{g}^{+}$, (4,11), (5,12) and (6,13)]. The 418.0mm Band of H₂ is for the transitions [3d ${}^{1}\pi_{g} \rightarrow 2\rho {}^{1}\Sigma_{u}^{+}$ (1,0)].

Chebyshev Fitting Parameters for Cross Sections

160.6	1100	Emin	*	7.0E+03	eV∕amu,	E_av	Ŧ	1.3E+05	eV/amau
418.0	nn	Emin	=	1.5e+05	eV∕anau,	Emax	s .	9.0E+05	eV/amu

 A0
 A1
 A2
 A3
 A4
 A5
 A6

 160.6
 nm
 -80.5464
 .194014
 -.181339
 -.0301739
 -.00212964
 3.138082-04
 -.00210888

 418.0
 nm
 -94.2526
 -.881302
 -.0131335
 .00371515
 -.00433338
 -6.456022-04
 -.00195489

1

The fit represents the 160.6nm emission cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 2.0E+04 eV/amu. The fit represents the 418.0nm emission cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 7.0E+05 eV/amu.

See appendix for Chebyshev fit details.

1

H^{*} + He -> H^{*} + $He^{*}(2^{1}S, 2^{1}P)$ H^{*} + $He^{*}(2^{1}S + 2^{1}P)$

He(2¹S)

He(2¹P)

 $He(2^{1}S + 2^{1}P)$

Energy	Ø	Energy	σ	Energy	0
(eV/amu)	(CM ²)	(eV/ameu)	(cm²)	(eV/amu)	(CM ²)
2.56+04	3.79E-18	2.3E+04	2.00E-18	2.3E+04	5.38E-18
3.0 E+04	4.52E-18	2.5E+04	2.44E-18	3.0E+04	7.52E-18
3.5E+04	5.28E-18	3.0E+04	3.44E-18	4.0E+04	1.12E-17
4.0E+04	6.05E-18	3.5E+04	4.61E-18	5.0E+04	1.47e-17
4.5E+04	6.68E-18	4.0E+04	5.76E-18	6.0E+04	1.50e-17
5.0E+04	6.87E-18	4.5E+04	6.91E-18	7.0E+04	1.488-17
5.5E+04	6.59E-18	5.0E+04	7.65E-18	8.0E+04	1.55e-17
6.0E+04	6.22E-18	5.5E+04	7.96E-18	9.0E+04	1.71E-17
7.0E+04	5.33E-18	6.0E+04	8.395-18	1.0E+05	1.79e-17
8.02+04	4.94E-18	7.0E+04	9.39E-18	1.3E+05	1.62E-17
9.0E+04	5.16E-18	8.0E+04	1.08E-17		
1.0E+05	5.43E-18	9.0E+04	1.23E-17		
		1.0E+05	1.36E-17		
		1.22+05	1.43E-17		
		1.5E+05	1.35E-17		
		2.0E+05	1.21E-17		
		2.5E+05	1.10E-17		
		3.0E+05	1.01E-17		
		3.5E+05	9.32E-18		
		4.0E+05	8.71E-18		
		5.0E+05	7.80E-18		
		6.0E+05	6.91E-18		
		7.0E+05	6.31E-18		
		8.0E+05	5.88E-18		
		9.0E+05	5.52E-18		
		1.02+06	5.238-18		

<u>References:</u> 665, 680, 681, 682

<u>Accuracy:</u> $E < 1.5 \times 10^5 eV/amu - 50%$ $E > 1.5 \times 10^5 eV/amu - 30%$

Hote: For angular distributions see Park et al. (Ref. 681), and Kvale et al. (Ref. 665).

Chebyshev Fitting Parameters for Cross Sections

	He*(2 ¹ 8) He*(2 ¹ P) He*(2 ¹ S	+ 2 ¹ P)	E _{min} = E _{min} = E _{min} =	2.5E+04 2.3E+04 2.3E+04	eV/aumu, eV/aumu, eV/aumu,	E _{max} E _{max} E _{max}	= 1.0E+05 = 1.0E+06 = 1.3E+05	eV/amu eV/amu eV/amu
		A0	A1	A2	A3	A4	A5	A6
He*(2 ¹ 8) He*(2 ¹ P) He*(2 ¹ S +	2 ¹ P)	-79.6082 -79.1761 -77.9705	.117213 .318296 .598490	178720 694295 190056	.0616470 .161212 .0136746	.0764221 .0240083 .00624072	.00195913 00395403 0619807	0273944 0285411 0440015

The fit represents the He*(2^{1} S) cross section with an rms deviation of 0.5%. The maximum deviation is 0.7% at 8.0E+04 eV/amu. The fit represents the He*(2^{1} P) cross section with an rms deviation of 3.7%. The maximum deviation is 8.4% at 7.0E+04 eV/amu. The fit represents the He*(2^{1} S + 2^{1} P) cross section with an rms deviation of 1.6%. The maximum deviation is 2.0% at 7.0E+04 eV/amu.

See appendix for Chebyshev fit details.

I.

1 1

Excitation Rate Coefficients for

 $He + H' -> H' + He^{+}(2^{1}S)$

Beam - Maxwellian Rate Coefficients (cm³/s)

Le Emergy (eV/amu) Teen (eV) 10000. 40000. 50000. 60000. 70000. 80000. 1070. J. 1.098-09 1.19E-09# 1-01+00 1.688-09 2.135-09 1.96E-09 1.942-09 2.11E-09 2.02+00 1.092-09 1.682-09 2.13E-09 2.11E-09 1.96E-09 1.95E-09 1.182-09# 4.08+00 1.098-09 1.68E-09 2.138-09 2.118-09 1.968-09 1.958-09 1.102-090 7.02+00 1.09E-09 1.682-09 2.12E-09 2.11E-09 1.962-09 1.95E-09 1.102-094 1.02+01 1.098-09 1.642-09 2.128-09 2.11E-09 1.96E-09 1.95E-09 1.178-098 1.682-09 1.16E-09# 2.02+01 1.092-09 1.962-09 2.12E-09 2.11E-09 1.97E-09 4.0E+01 1.098-09 1.68E-09 2.11E-09 2.11E-09 1.97E-09 1.962-09 1.15E-09# 1.095-09 1.68E-09 1.97E-09 1.97E-09 1.148-09# 7.08+01 2.10E-09 2.102-09 1.01+02 1.098-09 1.682-09 2-092-09 2.102-09 1.982-09 1.982-09 1.13E-09# 2.02+02 1.07E-09 1.682-09 2.082-09 2.092-09 1.998-09 2.002-09 1.118-098 4.02+02 1.048-09 1.68E-09 2.048-09 2.07E-09 2.00E-09 2.COE-09 1.07E-098 7.0E+02 1.042-09* 1.67E-09 2-002-09 2.06E-09 1.95E-09 2.01E-09 1.04E-098 1.02+03 1.052-09* 1.66E-09 1.972-09 2.00P-09 1.892-09* 1.022-098 2.048-09 2.0E+03 1.102-09* 1.61E-09 1.892-09 1.972-09 1.918-09 1.71E-09* 9.77E-10# 1.17E-09* 1.75E-09 1.488-09* 4.02+03 1.55E-09 1.798-09* 1.698-09* 9.292-10# I.56E-09* 1.45E-09* 1.282-09* 7.02+03 1.238-09* 1.478-09 1.578-09* 8.75E-10# 1.05+04 1.232-09* 1.38E-09* 1.438-09* 1.392-09* 1.292-09* 1.15E-09* 9.27E-10# 2.0E+04 1.15E-09* 1.158-09* 1.122-09* 1.06E-09* 9.832-108 8.928-108 7.022-104

11

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

AO	AI	A2	A3	24	A5	A 6
-41.2314	.0438795	.0359901	.0113183	01031772	0298761	0164179
-40.5478	126080	0918486	0530702	0226281	00730499	00342970
-40.2209	240437	148107	0719185	0283797	00898769	-8.65703E-04
-40.231/	246864	171734	0935161	0372433	00687580	.00536462
-40.3601	241292	189416	108326	0372244	.00170975	.0115451
-40.4485	303064	213746	0974470	0150843	.0124774	.00596267
-41.3985	220781	0969877	0320398	0136188	00923349	00565966
	A0 -41.2314 -40.5478 -40.2209 -40.231/ -40.3601 -40.4485 -41.3985	A0 A1 -41.2314 .0438795 -40.5478 126080 -40.2209 260437 -40.231/ 246864 -40.3601 241292 -40.4485 303064 -41.3985 220781	A0 AI A2 -41.2314 .0438795 .0359901 -40.5478 126080 0918486 -40.2209 240437 148187 -40.231r 246864 171734 -40.3601 241292 189416 -40.4485 303064 213746 -61.3985 220781 0969877	AO AI A2 A3 -41.2314 .0438795 .0359901 .0113103 -40.5476 126080 0918486 0530702 -40.2209 240437 148187 0719185 -40.2317 246864 171734 0935161 -40.3601 241292 189416 108326 -40.4485 303064 213746 0974470 -41.3985 220781 0969877 0320398	A0 AI A2 A3 A4 -41.2314 .0438795 .0359901 .0113183 01631772 -40.5476 126080 0918486 0530702 0226281 -40.2209 240437 148187 01719185 0283797 -40.2317 246864 171734 0915161 0372433 -40.3601 241292 189416 108326 0372244 -40.4485 303064 213746 0974470 0150643 -41.3985 220781 0969877 0320398 0136188	A0 A1 A2 A3 A4 A5 -41.2314 .0438795 .0359901 .0113183 01831772 0298761 -40.5476 126083 0918486 0530702 0226281 00730499 -40.2209 240437 148187 0719185 0281797 00898769 -40.2317 246864 171734 0935161 0372433 00687580 -40.3601 241292 189416 108326 0372244 .00170975 -40.4485 303064 213746 0974470 0150643 .0124774 -41.3985 220781 0969877 0320398 0136188 00923349

See appendix for Chebyshev fit details.

Excitation Rate Coefficients for

 $He + H^* -> H^* + He^*(2^1P)$

Beam - Maxwellian Rate Coefficients (cm³/s)

R								
Temp.	He Energy (eV/am)							
(9 8)	30000.	40000.	€0000.	80900.	100000.	200000.	400000.	
1.02+00	8.28E-10	1.60g-09	2.86E-09	4.24E-09	5.97E-09	7.52E-09	7.65E-09	
2:0 2+0 0	8.28E-10	1.602-09	2.86E-09	4.242-09	5.96E-09	7.522-09	7.65E-09	
4.0E+00	8.292-10	1.60E-09	2.862-09	4.242-09	5.96E-09	7.51E-09	7.65E-09	
7.02+00	8.298-10	1.602-09	2-86E-09	4.252-09	5.96E-09	7.512-09	7.65E-09	
1.02+01	8.30E-10	1.60E-09	2.86E-09	4.25E-09	5.95E-09	7.51E-09	7.65E-09	
2.05+01	0.32E-10	1.60E-09	2.86E-09	4.25E-09	5.34E-09	7.51E-09	7.65E-09	
4.02+01	8.36R-10	1.61E-09	2.862-09	4.25E-09	5.93E-09	7.51E-09	7.65E-09	
7.02+01	8.41E-10	1.61E-09	2.87E-09	4.26E-09	5.922-09	7.51E-09	7.65E-03	
1.02+02	8.47E-10	1.61E-09	2-872-09	4.27E-09	5.91E-09	7.51E-09	7.652-09	
2.02+02	8.60E-10	1.632-09	2.892-09	4.28E-09	5.89E-09	7.51E-09	7.65E-09	
4.02+02	8.602-10	1.652-09	2.928-09	4.32E-09	5.07E-09	7.50E-09	7.65E-09	
7.02+02	9.14 R -10	1.672-09	2.96E-09	4.36E-09	5.842-09	7.51E-09	7.658-09	
1.0E+03	9.528-10	1.69E-09	2.99E-09	4.41E-09	5.822-09	7.50E-09	7.65E-09	
2.05+03	1.072-09	1.78E-09	3.12E-09	4.51E-09	5.77E-09	7.502-09	7.65E-09	
4.0E+03	1.302-09	1.97E-09	3.33E-09	4.63E-09	5.732-09	7.482-09	7.652-09	
7.02+03	1.63E-09	2.282-09	3.58E-09	4.75E-09	5.70E-09	7.452-07	7.64E-09	
1.0E+04	1.938-09	2.572-09	3.78E-09	4.85E-09	5.698-09	7.412-09	7.63E-09	
2.02+04	2.79E-09	3.32E-09	4-298-09	5.092-09	5.74E-09	7.272-09	7.602-09	

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev fitting Parameters for Rate Coefficients

E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV

He Energy							
(dV/amu)	A 0	A1	A2	A3	٨4	A5	A6
30000.	-41.2504	.486127	.299576	.120300	.0302620	00574350	00993827
40000.	-40.1898	.273759	.101714	.0905572	.0322161	.00429196	00603203
60000.	-39.1561	.162678	.0999502	,0424831	.00981070	00141938	00247916
80000.	-38.4598	.0783748	.0416546	.0129989	.00102165	-5.19012E-04	6.568792-04
100000.	-37.9111	0245928	00529346	.00275039	.00343274	.00202306	8.64146E-04
200000.	-37.4242	0102727	~.00738113	00402593	00285436	00141545	-4.70357E-04
400000.	-37,3788	00169868	00156122		-8.18521E-04	-4.46724E-04	-1.48377E-04

T

I.

$$H_{\theta} + H^* -> H^* + He(2'P)$$

$H^* + He -> H^* + He^*(3^1S, 3^1P, 3^1D)$

Be*(3¹S)

Be*(3¹P)

He*(3¹D)

Energy	0	Energy	0	Energy	0
(eV/amu)	(cm²)	(eV/amu)	(cm²)	(eV/amu)	(cm²)
5.0E+03	6.81E-20	2.0E+03	7.412-21	3.5E+03	4.51E-20
6.0E+03	1.08E-19	4.02+03	4.38E-20	4.0E+03	6.18E-20
7.0E+03	1.65E-19	7.0E+03	1.90E-19	7.0E+03	3.118-19
8.06+03	2.268-19	1.02+04	5.04E-19	1.0E+04	3.908-19
9.02+03	2.96E-19	1.5E+04	1.04E-18	1-5E+04	4.30E-19
1.02+04	3.658-19	2.0E+04	1.25E-18	2.0E+04	3.74E-19
1.56+04	6.83E-19	2.7E+04	1.21E-18	2.8E+04	2.83E-19
2.6E+04	9.53E-19	4.0E+04	1.56E-18	4.0E+04	3.57E-19
3.0E+04	1.30E-18	7.0E+04	2.50E-18	5.5E+04	3.82E-19
4.02+04	1.436-18	1.02+05	3.05E-18	7.0E+04	3.47E-19
5.02+04	1.396-18	1.3E+05	3.27E-18	1.02+05	2.68E-19
6.0E+04	1-298-18	2.0E+05	3.13E-18	1.52+05	2.02E-19
7.02+04	1.21E-18	4.02+05	2.358-18		
8.0E+04	1.126-18	7.02+05	1.67E-18		
9.02+04	1.03E-18	1.02+06	1.30E-18		
1.02+05	9.63E-19				
1.56+05	6.92E-19				
2.08+05	5.07E-19				
2.58+05	3.91E-19				

References: 680, 685, 686, 687, 688, 689, 690

Accuracy: 40%

Hotes: Hone

Chebyshev Fitting Parameters for Cross Sections

	He*(3 ¹ S) He*(3 ¹ P) He*(3 ¹ D)	E _{min} = E _{min} = E _{min} =	5.0E+03 2.0E+03 3.5E+03	eV/amu, eV/amu, eV/amu,	E _{max} = E _{max} = E _{max} =	2.5E+05 eV/a 1.0E+06 eV/a 1.5E+05 eV/a	Santa Santa Secto
	A0	A1	λ2	A3		A5	A6
He*(3 ¹ S)	-84.4433	.775561	-1.05948	.110960	.0219972	00305073	00996704
He*(31P)	-84-5124	2.50529	-1.63211	.133239	0277337	0862483	.168352
He*(3 ¹ D)	-85.9726	.503209	748814	.283442	187874	0352298	.123942

The fit represents the $He^{(3^1S)}$ cross section with an rms deviation of 1.6%. The maximum deviation is 3.9% at 6.0E+03 eV/amu.

The fit represents the $He^{3^{1}P}$ cross section with an rms deviation of 9.8%. The maximum deviation is 18.7% at 2.7E+04 eV/amu.

The fit represents the He*($3^{1}D$) cross section with an rms deviation of 6.2%. The maximum deviation is 13.9% at 2.8E+04 eV/amu.

See appendix for Chebyshev fit details.

T.

C-67

$H^{*} + He -> H^{*} + He^{*}(4^{1}S, 4^{1}P, 4^{1}D)$

He*(4¹P)

 $Be^{+}(4^{1}D)$

Energy	0	Energy	0	Energy	σ
(ev/amu)	(cm²)	(eV/amu)	(c=²)	(eV/amu)	(cm²)
1.02+03	2.09E-22	1.02+04	1.19E-19	2.0E+03	2.21E-21
2.08+03	1.64E-21	1.5E+04	2.63E-19	4.0E+03	7.14 E -21
3.0E+03	2 .98E -21	2.08+04	3.19E-19	7.0C+03	7.63E-20
4.05+03	2.02E-21	3.02+04	3.618-19	1.0E+04	1.522-19
4.58+03	1.70E-21	4.0E+04	4.49E-19	1.3E+04	1.79 5 -19
7.06+03	3.94E-20	5.0E+04	5.72 E -19	2.0E+04	1.188-19
1.0E+04	8.882-20	6.0E+04	6.92E-19	2.6E+04	1.05e-19
1.56+04	1.34E-19	7.0E+04	7.73E-19	4.0E+04	1.30g-19
2.02+04	2.158-19	8.0E+04	8.43E-19	5.78+04	1.38E-19
4.0E+04	4.948-19	9.0E+04	9.14E-19	7.0E+04	1.31g-19
4.4E+04	5.15E-19	1.0E+05	9.72E-19	1.02+05	1.072-19
7.0E+04	4.01E-19	1.3E+05	1.062-18	1.56+05	7.172-20
1.02+05	2.87E-19	1.52+05	1.05E-18	2.05+05	5.12E-20
1.52+05	1.93E-19	2.0E+05	1.00E-18	4.0E+05	2.42E-20
2.0E+05	1-41E-19	3.0E+05	8.79E-19	4.02+05	2.428-20
4.02+05	6.74E-20	4.02+05	7.84E-19	7.0E+05	1.342-20
7.02+05	3.94E-20	5.0E+05	6.81E-19	1.02+06	9.00E-21
1.02+06	2.692-20	6.0E+05	6.07E-19		
		7.02+05	5.46E-19		
		8.0E+05	5.00E-19		
		9.06+05	4.50E-19		
		1.0E+06	4.00E-19		

<u>References:</u> 680, 685, 686, 687, 688, 689, 690

Accuracy: 40%

Notes: None

1

Chebyshev Pitting Parameters for Cross Sections

	He*(4 ¹ 8) He*(4 ¹ P) He*(4 ¹ D)	Emin = Emin = Emin =	1.02+03 1.02+04 2.02+03	eV/anu, eV/anu, eV/anu,	E _{max} = 1.0 E _{max} = 1.0 E _{max} = 1.0	E+06 eV/aanu E+06 eV/aanu E+06 eV/aanu	
	AO	A1	A2	A3	۸4	A5	A6
He*(4 ¹ 8) He*(4 ¹ P) He*(4 ¹ D)	-90.7744 -84.4673 -90.3972	2.47036 .568)66 .468672	-2.37315 658688 -1.92730	112038 0606377 .452357	.549272 .0615161 7.32888E-04	0385738 .0857392 125659	264616 0897306 .290353

The fit represents the He*(4^1 S) cross section with an rms deviation of 60.6%. The maximum deviation is 217.9% at 4.5E+03 eV/amu.

The fit represents the $He^{+}(4^{1}P)$ cross section with an rms deviation of 2.4%. The maximum deviation is 4.9% at 3.0E+04 eV/amu.

The fit represents the He*(4^{3} D) cross section with an rms deviation of 25.2%. The maximum deviation is 50.7% at 2.6E+04 eV/amu.

I.

Total Vacuum Ultraviolet Emission Cross Sections for

H^* + He -> v.u.v. (λ = 20-140nma)

Energy	Velocity	Cross Section
(eV/amu)	(Cm/5)	(Cm²)
4.2E+03	9.00E+07	1.05E-18
5.0E+03	9.822+07	1.25E-18
6.0E+03	1.08E+08	1.49E-18
7.0E+03	1.16E+08	1.70E-18
8.0E+03	1.24E+08	1.89E-18
9.0 E+ 03	1.32E+08	2.058-18
1.0E+04	1.39E+68	2.20E -18
1.5E+04	1.70E+08	2.73E-18
2.0E+04	1.96E+08	3.00E-18
3.0E+04	2.41E+08	3.21E-18
4.0E+04	2.78E+08	3.30E-18
5.0E+04	3.11E+08	3.33E-18
6.0E+04	3.402+08	3.34E-18
7.0E+04	3.68E+08	3.32E-18
8-0E+04	3.93E+08	3.31E-18
9.0E+04	4.17E+08	3.28E-18
1.0g+05	4.39E+08	3.25E-18
1.5E+05	5.38E+08	3.14E-18

Reference: 654

Accuracy: 40%

I

<u>Mote:</u> Values shown in the graph correspond to values of measured cross sections for v.u.v. emission which have been corrected for the photoelectric yield integrated over the wavelength range of sensitivity of the detector (approx. 20-140 nm).

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 4.2E+03 eV/amu, E_{max} = 1.5E+05 eV/amu$

A0	A 1	₩2	A3	٨4	A5	Aó
-81.1574	.502834	275390	.0508166	.00293296	00661360	.00122541

The fit represents the above cross section with an rms deviation of 0.5%. The maximum deviation is 0.5% at 3.0E+04 eV/amu.

I.

$He^{+} + H -> H(n=2)$

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(cm ²)
3.8E+03	8.56E+07	5.98E-17
4.0E+03	8.79E+07	6.01E-17
5.0E+03	9.82E+07	6.07E-17
6.0E+03	1.08E+08	6.13E-17
7.0E+03	1.16E+08	6.16E-17
8.0E+03	1.24E+08	6.19E-17
9.CE+03	1.32E+08	6.18E-17
1.0E+04	1.39E+08	6.17E-17
1.52+04	1.70E+08	6.17E-17
2-0E+04	1.96E+08	6.27E-17
3.0E+04	2.41E+08	6.59E-17
4.0E+04	2.78E+08	7.52E-17
5-0E+04	3.11E+08	8.962-17
5,2E+04	3.17E+08	9.30E-17

Reference: 716

Accuracy: 50%

<u>Note:</u> These data were obtained by measuring the energy loss of the He^+ ion after collision. The resolution of the energy-loss spectrometer was not sufficient to resolve the 2s and 2p states.

Chebyshev	Fitting	Parameters	for	Cross	Sections

	E _{min} ≠	3.8E+03	eV/amu,	E _{max} *	5.22+04	eV/amu
AO	A 1	A2	A3	A4	A5	A6
-74.4909	.160714	.0943278	.0580551	.0178172	.00276895	-4.72682E-04

The fit represents the above cross section with an rms deviation of 0.3%. The maximum deviation is 0.5% at 3.0E+04 = V/amu.

I.

$He^{+} + H -> He^{+} + H(2s, 2p)$

H(28)

H(2p)

Energy	Cross Section	Energy	Cross Section
(eV/amau)	(C m ²)	(eV/anu)	(CM ²)
1.5E+03	1.04E-17	1.3E+02	9.03E-18
2.0E+03	6.59E-18	1.5E+02	1.36E-17
2.8E+03	4.60E-18	2.0E+02	2.18E-17
3.0E+03	4.61E-18	3.0E+02	2.95E-17
4.0E+03	7.95E-18	4.0E+02	3.228-17
4.7E+03	1.12E-17	5.0E+02	3.39E-17
5.0E+03	1.116-17	6.0E+02	3.51E-17
6.0E+03	5.828-18	7.0E+02	3.60E-17
6.6E+03	4.51E-18	8.0E+02	3.66E-17
		9.0E+02	3.728-17
		1.0E+03	3.75E-17
		1.5E+03	3.85E-17
		2.0E+03	3.90E-17
		3.0E+03	3.96E-17
		4.0E+03	3.98E-17
		5.0E+03	4.02E-17
		6.0E+03	4.04E-17
		7.0E+03	4.07E-17
		8.0E+03	4.U7E-17
		9.0E+03	4.08E-17
		9.6E+03	4.08E-17

References: 701, 712, 715

Accuracy: 30%

<u>Note:</u> The data for the excitation of the 2p state are (within the experimental error) the same as the Lyman- α emission cross section.

Chebyshev Fitting Parameters for Cross Sections

H(28)	Emin	-	1.5E+03	eV/amu,	E_av	=	6.6E+03	ev/anu
H(2p)	Emin	#	1.3E+02	eV/amu,	Emax	=	9.6E+03	eV/amu

	AO	A J	A2	A 3	A4	A5	٨6
H(2s) H(2p)	-78.9847 -76.1170	124567 .522520	.114965 318078	358545 .179576	199857 0921414	.0455819	0220305

The fit represents the H(2s) cross section with an rms deviation of 10.1%. The maximum deviation is 25.2% at 6.0E+03 eV/amu.

The fit represents the H(2p) cross section with an rms deviation of 0.5%. The maximum deviation is 0.8% at 1.5E+03 eV/amu.

I.

C-75

Excitation Rate Coefficients for

$He^{+} + H -> He^{+} + H(2p)$

Maxwellian - Maxwellian Rate Coefficients (Cm³/s)

H e								
Temp.	Equal					8 Temp. (#	V)	
(47)	Tump.	100.	200.	500.	1000.	5000.	10000.	20000.
1.02+02	3.27E-10-	3.272-10*	6.34E-10	1.248-09	1.88E-09	2.52E-09*	1.572-098	7.49E-10#
2.05+02	6.98E-10	4.12E-10	6.982-10	1.282-09	1.90E-09	2.52E-09*	1.562-09#	7.48E-10#
3.02+02	9.74E-10	4.91E-10	7.59E-10	1.31E-09	1.93 2-0 9	2.51E-09*	1.56E-09#	7.47E-10#
4.0E+02	1.202-09	5.65E-10	8.17E-10	1.)5E-09	1.96E-09	2.51E-09*	1.568-09#	7.462-108
5.05+02	1.398-09	6.34E-10	8.72E-10	1.39E-09	1.962-09	2.502-09*	1.558-098	7.452-108
6.0E+02	1.56E-09	6.98E-10	9.24E-10	1.42E-09	2.01 2-09	2.508-09*	1.55E-09#	7.447-108
7.02+02	1.712-09	7.592-10	9.74E-10	1.46E-09	2.03E-09	2.49E-09*	1.548-098	7.432-108
8.0E+02	1.852-09	8.17E-10	1.02 E-09	1.49E-09	2.05E-09	2.49E-09*	1.54g-090	7.422-108
9.0E+02	1.982-09	8.72E-10	1.07 E-09	1.53E-09	2.082-09	2.48E-09*	1.542-09#	7.412-108
1.0E+03	2.102-09	9.24E-10	1.11E-09	1.56E-09	2.10 2-09	2.47E-09*	1.532-09#	7.40g-10#
2.0E+03	2.76£-09*	1.35E-09	1.492-09	1.85E-09	2.31E-09	2.42E-09*	1.502-09#	7.292-104
4.0E+03	2.53E-09*	1.96E-09	2.05 E-09	2.31E-09	2.61E-09	2.312-09#	1.44E-09#	7.082-108
6.0E+03	1.992-098	2.382-09	2.45E-09	2.61E-09	2.76 2-09 *	2.20E-09#	1.38g-09#	6.882-105
8.0g.+03	1.578-098	2.65E-09	2.682-09	2.76E-09*	2.81E-09*	2.092-09#	1.32-098	6.692-10#
1.02+04	1.278-09#	2.78E-09*	2.79E-09*	2.01E-09*	2.79E-09*	1.392-098	1.272-094	6.51E-10#
1.22+04	1.042-09#	2.828-09*	2.81E-09*	2.79E-09*	2.73E-09*	1.902-098	1.222-098	6.34E-108
1.52+04	8.10E-10#	2.75E-09*	2.74E-09*	2.682-09*	2.58E-09*	1.76E-09#	1.15g-09#	6.09E-10#
2.02+04	5.71E-10#	2.51E-09*	2.49E-09*	2.422-09*	2.31 E-09#	1.572-094	1.04E-09#	5.71E-104

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

Emin = 1.0E+02 eV, Emax = 2.0E+04 eV

E							
Temp.							
(eV)	A0	A1	A2	A3	A4	A5	A6
100.	-41,3676	1.16527	103922	132163	0348422	0167981	00105673
200.	-40,8770	.821004	0109340	127376	~.0485804	0120056	7.630582-04
500.	-40,2738	.442909	.00923768	0979147	0519441	0112276	.00362652
1000.	-39,8495	.107131	0287907	0768304	0399746	00851390	.00286700
5000.	-39,8387	195041	104140	0404533	0115750	00220721	-2.40196E-06
10000.	-40.7661	170203	0865943	0313220	00824330	00148203	-7.885732-05
20000.	-42,1667	113121	0579411	0213073	00503215	00116246	-1.360852-04
Equal Temp.	-41.3902	.353784	066154	123235	.00687538	.0519228	00558678

I.

See appendix for Chebyshev fit details

C-76

Spectral Line Emission Cross Sections for

 $He^* + H_2 \rightarrow H(Lyman-\alpha, Lyman-\beta)$

H(Lyman-a)

H(Lyman~8)

Energy (eV/amu)	Cross Section (Cm²)	Energy (eV/amu)	Cross Section (CM ²)
7.7E+00	4.33E-18	1.2E+01	1.06E-18
8.0E+00	5.16E-18	1.5E+01	2.156-18
1.0E+01	1.058-17	2.0E+01	3.68E-18
2.0E+01	3.398-17	3.0E+01	5.82E-18
4.0E+01	5.51E-17	4.0E+01	7.07E-18
7.0E+01	6.19E-17	5.0E+01	7.81E-18
1.02+02	6.01E-17	6.0E+01	8.21E-18
2.02+02	4.57E-17	7.0E+01	8.57E-18
4.0E+02	3.56E-17	0.0E+01	8.64E-18
7.02+02	3.20E-17	9.0E+01	8.56E-18
1.0E+03	3.13E-17	1.0E+02	8.46E-18
2.0E+03	3.358-17	1.5E+02	7.67E-18
4.02+03	4.45E-17	2.0E+02	6.78E-18
5.02+03	4.61E-17		
7.0E+03	4.53E-17		
7.4E+03	4.488-17		

References: 188, 195, 199, 700

Accuracy: 404

<u>Hotes:</u> (1) The Lyman- α transition is at 121.57nm and the Lyman- β transition is at 102.57nm. (2) Data on polarization of emissions may be found in Isler and Wathan (Ref. 199) and Young et al. (Ref. 700).

Chebyshev Pitting Parameters for Cross Sections

	H(Lyman-e) H(Lyman-e)	E _{min} = E _{min} =	7.7E+00 1.2E+01	eV/aamu, eV/aamu,	E _{max} = E _{max} =	7.4E+03 e 2.0E+02 e	V/amu V/amu
	A0	A1	A2	A3	۸4	A 5	A6
H(Lyman-	a) -76.0522	.584543	527735	.587085	202654	0240480	0420581
H(Lyman-	a) -79.7592	.790251	524833	.114100	0482761	.0226572	00698738

The fit represents the $H(Lyman_{\sigma})$ cross section with an rms deviation of 2.5%. The maximum deviation is 3.5% at 7.7E+00 eV/amu.

The fit represents the H(Lyman-s) cross section with an raw deviation of 0.5%. The maximum deviation is 1.0% at 6.0E+01 eV/amu.

1

See appendix for Chebyshev fit details.

I.

C-79

Spectral Line Emission Cross Sections for

He⁺ + H₂ -> H(Balmer-a,Balmer-B)

 $H(Balmer-\alpha)$

H(Balmer-ß)

Energy (eV/amu)	Cross Section (CM ²)	Energy (eV/āmu)	Cross Section (cm ²)
• • • ••		••••	
1.0E+01	8.816-19	1.5E+01	2.00E-19
2.08+01	4.792-18	2.062+01	5-606-19
4.0E+01	7.18E-18	4.0E+01	1.338-18
7.0E+01	6.36E-18	5.0E+01	1.412-18
1.0E+02	5.168-18	7.0E+01	1.346-18
2.00+02	3.09E-18	1.0E+02	1-102-18
4.02+02	2.262-18	2.0E+02	5.502-19
7.0E+02	1.99E-18	4.02+02	3.478-19
1.02+03	1.930-18	7.0E+02	2.986-19
2.08+03	2.12E-18	1.0E+03	3-128-19
4.02+03	3.002-18	2.02+03	3.912-19
?.0E+03	3.392-18	4.0E+03	5.56P-19
1.00+04	3.298-18	5.06+03	5.782-19
		7.05+03	5.28E-19
		8.0E+03	4.83E-19

References: 166, 199, 461, 464, 693, 694, 695

Accuracy: Unknown

Notes: (1) The Balmer-a emission i; from the n=3->2 transition (656.28nm). (2) The Balmer-s emission is from the n=4->2 transition (486.13nm). (3) Data on polarization of emissions may be found in Isler and Mathan (Refs. 199 and 694).

Chebyshev Fitting Parameters for Cross Sections

H(Balmer-a)	E_in	=	1.0 E+0 1	eV/amu,	Emay		1.0E+04	eV/annu
H(Balmer-\$)	Emin	-	1.52+01	ev∕amu,	Emax	3	8.0E+03	eV/amu

	AO	A1	A2	K3	λ4	A5	A 6
H(Balmer-a)	-80.7189	.0329782	173449	.608331	365301	.0179138	0168644
H(Balmer-#)	-84.1448	135846	0820835	.566238	436982	00523445	0131479

The fit represents the H{Balmer-a} cross section with an rms deviation of 2.2%. The maximum deviation is 4.5% at 2.0E+02 eV/amu.

The fit represents the $X(Balmer-\beta)$ cross section with an rms deviation of 2.9%. The maximum deviation is 4.9% at 4.0E+01 eV/amu.

(L.

See append: . for Chebyshev fit details.

1 I

1

C-81

Dissociative Excitation Cross Sections for

 $He^{*} + P_{2} \rightarrow He^{*} + H(2s, 2p) + H(\Sigma)$

H(28)

H(2p)

Energy	Cross Section	Energy	Cross Section
(ev/amu)	(Cm ²)	(eV/amu)	(cm²)
1.4E+03	4.92E-18	1.3E+01	2.11E-17
1.52+03	4.93E-18	2.0E+01	3.628-17
1.7E+03	4.932-18	4.0E+01	5.59E-17
2.00+03	4.92E-18	6.0E+01	5.810-17
2.5E+03	4.93E-18	7.0E+01	5.80E-17
3.0E+03	4.91E-18	1.0E+02	5.61E-17
3.5E+03	4-93E-18	2.0E+02	4.75E-17
4.02+03	••91E-18	4.0E+02	3.75E-17
4.5E+03	4.91E-18	7.0E+02	3.31E-17
5.0E+03	4.91E-18	1.0E+03	3.24E-17
5.5E+03	4.918-18	2.0E+03	3.32E-17
6.0E+03	4.918-18	4.0E+03	3.73E-17
6.4E+03	4.92E-18	5.0E+03	3.81E-17
		7.0E+03	3.75E-17
		7.4E+03	3.728-17

References: 183, 195, 700, 701

Accuracy: Within a factor of 2

<u>Hotes:</u> (1) The excitation cross sections for H(2s) and H(2p) are determined by the field-induced emission of Lyman- α (2s -> 2p -> 1s), and by Lyman- α emission (2p -> 1s), respectively. If cascade can be neglected, these are equal to the cross sections for the formation of the H(2s) and H(2p) states. (2) The notation H(Σ) designates all possible states for the other fragment (unspecified).

Chebyshev Fitting Parameters for Cross Sections

	H(2e) H(2p)	Emin = Emin =	1.4E+03 1.3E+01	eV/aanu, l eV/aanu, l	max = 6.41 max = 7.41	2+03 eV/annu 2+03 eV/annu	
	AO	AI	A 2	A3	A4	A5	A6
H(2s)	-79.7066	00160282	1.58249E-05	7.609778-04	2.449652-04	6.183382-04	
#(2p)	-75.6225	.00962025	178354	.293814	-,115895	0206130	~.00983973

The fit represents the H(2s) cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 3.0E+03 eV/amu.

The fit represents the H(2p) cross section with an rms deviation of 0.8%. The maximum deviation is 0.9% at 7.0E+01 eV/amu.

 $He^+ + H_2 \rightarrow He^+ + H(2s,2p) + H(\Sigma)$

Dissociative Excitation Cross Sections for

$He^* + H_2 -> He^* + H(3s, 3p) + H(\Sigma)$

H(3p)

ïZnergy (eV/amu)	Cross Section (Cm ²)	Energy (eV/amu)	Cross Section (Cm²)
2.5E+03	2.16E-19	2.5E+03	2.36E-18
3.0E+03	2.28E-19	3.0E+03	2.29E-18
3.5E+03	2.34E-19	3.5E+03	2.32E-18
4.0E+03	2.37E-19	4.0E+03	2.41E-1B
4.5E+03	2.37E-19	4.5E+03	2.55E-18
5.0E+03	2.35E-19	5.0E+03	2.70E-18
5.5E+93	2.33E-19	5.5E+03	2.77E-18
6.0E+03	2.28E-19	6.0E+03	2.76E-18
7.0E+03	2.19E-19	7.0E+03	2.56E-18
		7.6E+03	2.29E-18

References: 183, 702

Accuracy: 50%

Hotes: (1) The H(3s) and H(3p) cross sections are deduced from spectralline emission measurements on the (unsubstantiated) assumption that cascade can be neglected. (2) The notation $H(\Sigma)$ designates all possible states for the other fragment (unspecified).

Chebyshev Fitting Parameters for Cross Sections

	Н(38) Н(3р)	E _{min} * Emin *	= 2.5E+03 = 2.5E+03	eV/amu, eV/amu,	E _{max} = 7 E _{max} = 7	7.0E+03 eV/ar 7.6E+03 eV/ar	nu nu
	AO	A 1	A2	AJ	74	A5	A 6
B(3=)	-85.8579	.00631068	0437007	-2.235382-05	-1.27246E-04	5.585212-04	6.28175E-04
H(3p)	-81.0948	.0512586	0390305	0692130	0155312	.00341300	-5.63877 <u>F</u> -04
The	fit repres	sonts the	ม(โต) กา	rose section	with an	rms deviation	of 0.1*

The maximum deviation is 0.2% at 5.0E+03 eV/amu.

The fit represents the H(3p) cross section with an rms deviation of 0.3%. The maximum deviation is 0.5% at 6.0E+03 eV/amu.

Projectile Excitation Cross Sections for

$He^{+} + H_{2} -> He^{+}(2s) + H_{2}$

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(C m ²)
2.5E+03	6.95E+07	1.38E-20
3.0E+03	7.61E+07	2.18E-20
3.50+03	8.226+07	3.25E-20
4.0E+03	8.79E+07	4.58E-20
4.5E+03	9.32E+07	6.18E-20
5.0E+03	9.82E+07	8.10E-20
5.5E+03	1.03E+08	1.04E-19
6.GE+03	1.08E+08	1.30E-19
7.0E+03	1.16E+08	1.926-19
7.6E+03	1.21E+08	2.31E-19

Reference: 706

Accuracy: Factor of 2

Notes: None

		Cheby	shev Fitting	<u>Parameters</u>	for Cros	<u>s Sections</u>	
		^E mi	n = 2.5E+0	} eV∕amu,	E _{max} = 7	.6E+03 eV/amu	ı
	AO	A 1	A2	A3	A4	A 5	A6
	-88.6255	1.42095	00467445	00728965	00322271	00472755	-3.43794E-05
The The	e fit repr e maximum	cesents deviatio	the above c n is 0.1%	ross section at 6.0E+03 (with an eV/amu.	rms deviation	of 0.1%.

Excitation	Cross	Sections	for
------------	-------	----------	-----

 $He^{+} + He -> He^{+} + He^{+}(2^{1}S, 2^{1}P)$

He*(2¹S)

He*(2¹P)

Energy (eV/ammu)	Cross Section (Cm ²)	Energy (eV/annu)	Cross Section (Cm ²)
7.0E+03	2.98E-18	6.0E+03	9.41E-18
8.0E+03	2.41E-18	7.0E+03	7.31E-18
9.0E+03	2.03E-18	1.0E+04	4.60E-18
1.0E+04	1.76E-18	1.5E+04	2.90E-18
1.5E+04	1.09E-18	2.0E+04	2.52E-18
2.0E+04	9.398-19	4.0E+04	4.97E-18
2.5E+04	1.096-18	7.0E+04	9.22E-18
3.0E+04	1.412-18	1.0E+05	1.08E-17
		1.5E+05	1.13E-17
		2.5E+05	1.07E-17

References: 203, 684, 697, 699, 704, 705, 707, 717

Accuracy: 40%

<u>Hotes:</u> (1) For relative cross sections see Refs. 697, 705, and 707. (2) For cross sections $He^{+}(1s) + He(1s^{2})^{1}S \rightarrow He^{+}(1s) + He(1s2p)^{1}$, ³P see Bordenave-Hontesquieu et al. (Ref. 704). (3) See Thomas (Ref. 684) for more details.

Chebyshev Fitting Parameters for Cross Sections

He*(2 ¹ S)	Emin	Ŧ	7.0E+03	eV/amu,	Emay	=	3.0E+04	eV/amu
He*(2 ¹ P)	Emin	=	6.0E+03	eV∕annu,	Emax	=	2.52+05	eV/amu

	AO	Al	A2	A3	A4	A 5	A6
He*(2 ¹ S)	~82.0676	438515	.304992	.0789808	.0643720	0146204	00639777
He*(2 ¹ P)	-79.0520	.385720	.388654	432765	00474225	.126047	0106668

The fit represents the $He^{(2^1S)}$ cross section with an rms deviation of 0.0%. The maximum deviation is 0.0% at 1.02+04 eV/amu.

The fit represents the $He^{(2^1P)}$ cross section with an rms deviation of 3.4%. The maximum deviation is 5.8% at 2.02+04 eV/amu.

 $He^+ + He -> He^+ + He(2^{1}S, 2^{1}P)$

 $He^{+} + He^{-} + He^{+} (2^{3}S, 2^{3}P)$

He*(2'S)

He*(2³P)

Energy (eV/amu)	Cross Section (CM ²)	Energy (eV/amu)	Cross Section (Cm²)
6.42+03	2.82E-18	6.55+03	4.49 E-18
7.0E+03	3.22E-18	7.0E'03	5.918-18
8.0E+03	3.922-18	A. 02+03	8.72E-18
9.02+03	4-57E-18	8.4E+01	9-11E-18
1.0E+04	5.07E-18	9.0E+03	8.196-18
1.52+04	5-816-18	1.0E+04	5.458-18
2.02+04	4.77E-18	1.5E+04	3.23E-18
2.52+04	3.38E-18	2.0E+04	2.53E-18
3.02+04	2.20E-18	2.5E+04	2.01E-18
		3.0E+04	1,185-18
		3.2E+04	1.002-18

References: 617, 684, 697, 699, 704, 708, 717

<u>Accuracy:</u> $E < 7.5x10^3$ eV/amu - 75% $E > 7.5x10^3$ eV/amu - 40%

Hotes: (1) For relative cross sections at lower energies see Bordenave-Montesquieu et al. (Ref. 704) and Dworetsky et al. (708). (2) For cross sections: $He^{*}(1s) + He^{*}(1s) -> He^{*}(1s) + He(1s2p)^{1}$, ³P see Ref. 704. (3) For more details see Thomas (Ref. 684).

Chebyshev Fitting Parameters for Cross Sections

He*(2 ³ S)	Emin	z	6.4E+03	eV/amau,	Emay	Ŧ	3.0E+04	eV/amu
He*(2³P)	Emin	=	6.5E+03	eV/a∎u,	Emax	=	3.22+04	eV/amu

	A0	A 1	A2	¥3	¥1	A 5	A 6
9e*(2 ³ 8)	-80.2166	0867600	430158	0323601	.00266805	00483153	.00172788
He*(2 ³ P)	-80.5638	697275	226853	.0854789	228846	.0840160	.0168192

The fit represents the He*(2^{3} S) cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 1.0E+04 eV/amu.

The fit represents the He*(2^{3} P) cross section with an rms deviation of 6.8%. The maximum deviation is 14.1% at 1.0E+04 eV/amu.

$He^* + He -> He^* + He^*(3^1S, 3^1P, 3^1D)$

 $He^{+}(3^{1}P)$

He*(3¹S)

He*(3¹D)

ī.

Energy	0	Energy	σ	Energy	0
(eV/amu)	(C m ²)	(eV/anu)	(Cm²)	(eV/amu)	(Cm²)
3.02+03	2.96E-19	1.8E+03	4.840-19	2.5E+03	3.98E-19
3.5E+03	2.78E-19	2.0E+03	5.24E-19	3.0E+03	5.16E-19
3.72+03	2.75E-19	3.5E+03	6.61E-19	4.0E+03	8.25E-19
4.0E+03	2.93E-19	4.0E+03	6.50E-19	5.0E+03	1.02E-18
4.52+03	3.33E-19	5.0E+03	6.28E-19	6.0E+03	1.04E-18
5.06+03	3.64E-19	7.0E+03	8.19E-19	7.0E+03	1.03E-18
5.52+03	3.83E-19	9.02+03	9.18E-19	7.6E+03	1.02E-18
6.0E+03	3.98E-19	1.0E+04	9.04E-19		
7.0E+03	4.03E-19	1.58+04	6.73E-19		
8.02+03	4.02E-19	2.0E+04	5-62E-19		
		4.0E+04	1.49E-18		
		7.0E+04	2.34E-18		
		1.0E+05	2.81E-18		
		1.52+05	3.07E-18		
		2.0E+05	3.14E-18		
		3.0E+05	2.90E-18		

References: 204, 696, 697, 698, 705, 708

Accuracy: 30%

<u>Hotes:</u> (1) For relative cross sections at lower energies see Refs. 697, 705, and 708. (2) For more details see Ref. 684. (3) Acceptable polynomial fits were not possible for the $He^{+}(3^{1}P)$ data.

Chebyshev Fitting Parameters for Cross Sections

	A0	A1	A2	K3	A4	A5	A6
$He^{(3^1S)}$	-85.0346	.210040	00809700	0618979	.0267187	.00449587)121214
$He^{+}(3^{1}D)$	-83.4873	.491131	174973	0770949	.0308684	.00651934	0.1951236

The fit represents the $\text{He}^{+}(3^{1}\text{S})$ cross section with an rms deviation of 0.6%. The maximum deviation is 1.2% at 3.72+03 eV/amu.

No fit to $He^{\pm}(3^{1}P)$ data.

The fit represents the $He^{+}(3^{1}D)$ cross section with an rms deviation of 0.0%. The maximum deviation is 0.0% at 0.0E+00 eV/amu.

$He^{+} + He^{-} = He^{+} + He^{+}(3^{3}S, 3^{3}P, 3^{3}D)$

He*(3 ³ S)		He*	(3 ³ P)	He*(3 ³ D)	
Energy	o	Energy	σ	Energy	o
(eV/amu)	(CM ²)	(eV/amu)	(Cm²)	(eV/amu)	(cm²)
2.5E+03	6.21E-19	2.5E+02	2.05E-19	2.5E+02	1.49E-18
3.0E+03	5.84E-19	3.2E+02	1.89E-19	3.7E+02	1.232-18
3.5E+03	5.93E-19	4.0E+02	2.19E-19	4.0E+02	1.24E-18
4.02+03	6.58E-19	7.0E+02	3.28E-19	6.0E+02	1.44E-18
4.5E+03	7.44E-19	7.4E+02	3.30E-19	7.0E+02	1.35E-18
5.0E+33	8.49E-19	1.02+03	1.93E-19	1.0E+03	9.74E-19
5.5E+03	9.21E-19	1.1E+03	1.78E-19	1.5E+03	7.92E-19
6.0E+03	9.87E-19	1.5E+03	3.17E-19	2.0E+03	9.07E-19
7.0E+03	1.05E-18	2.0E+03	4.30E-19	3.0E+03	7.59E-19
7.7E+03	1.082-18	3.7E+03	5.78E-19	4.0E+03	9.50E-19
		4.0E+03	5.65E-19	6.0E+03	1.47E-18
		5.0E+03	5.12E-19	7.0E+03	1.302-18
		7.0E+03	6.98E-19	1.0E+04	3.73E-19
		1.0E+04	9.85E-19	2.02+04	3.36E-19
		1.2E+04	1.07E-18	4.0E+04	1.35E-19
		2.0E+04	8.19E-19		
		4.0E+64	4.05E-19		

References: 204, 696, 697, 705, 707, 708

Accuracy: Unknown

<u>Hotes:</u> (1) Relative cross sections may be found in Refs. 697, 705, 707, and 708. (2) Accuracies reported in Refs. 204 and 696 are: systematic error < 10%; random error < 5% on each; however, results differ by a factor of 2 at some energies common to both experiments. (3) Acceptable polynomial fits to the He*($3^{2}P$) and He*($3^{2}D$) data were not possible.

Chebyshev Fitting Parameters for Cross Sections

He*(3^3 S) E_{mpin} = 2.5E+03 eV/amu, E_{max} = 7.7E+03 eV/amu

 A0
 A1
 A2
 A3
 A4
 A5
 A6

 He*(3³S)
 -83.4063
 .336147
 .0620301
 -.0763959
 -.00323136
 .0169475
 -.00192645

The fit represents the $He^{(3^3S)}$ cross section with an rms deviation of 0.3%. The maximum deviation is 0.5% at 4.5E+03 eV/amu.

No fit to $He^{+}(3^{3}P)$ data.

No fit to He*(3³D) data.

Re^* + He -> He^* + He*(4¹S, 4¹P, 4¹D)

He*	(4'S)
-----	-------

 $He^{+}(4^{1}P)$

He* $(4^{1}D)$

Energy	σ	Energy	ø	Energy	0
(eV/amu)	(caii ²)	(eV/amu)	(Cm²)	(eV/amu)	(C10 ²)
5.06+01	7.34E-21	3.0E+03	2.03E-19	2.5E+02	8.39E-20
5.8E+U2	6.87E-21	3.5E+03	2.63E-19	3.0E+02	9.35E-20
7.02+02	8.28E-21	4.0E+03	2.93E-19	3.5E+02	9.18E-20
1.0E+03	1.49E-20	4.5E+03	3.07E-19	4.0E+02	8.22E-20
1.2E+03	1.81E-20	5.0E+03	2.95E-19	5.0E+02	6.48E-20
1.5E+03	1.72E-20	5.5E+03	2.70E-19	6.0E+02	5.93E-20
2.0E+03	3.22E-20	6.0E+03	2.44E-19	7.0E+02	5.92E-20
2.7E+03	4.40E-20	6.6E+03	2.35E-19	1.0E+03	6.79E-20
3.5E+03	4.21E-20	7.02+03	2.43E-19	1.5E+03	6.27E-20
4.0E+03	4.27E-20	8.0E+03	2.82E-19	2.0E+03	7.15E-20
5.0E+03	4.92E-20	9.0E+03	3.12E-19	3.0E+03	1.03E-19
6.0E+03	6.04E-20	1.0E+04	3.19E-19	4.0E+03	1.55E-19
7.0E+03	6.582-20	1.5E+04	2.60E-19	7.0E+03	4.10E-19
1.0E+04	9.658-20	2.0E+04	2.11E-19	8.5E+03	4.92E-19
1.3E+04	1.17E-19			1.0E+04	4.31E-19
2.0E+04	9.49E-20			1.5£+04	2.02E-19
4.0E+04	2.37E-19			2.0E+04	1.21E-19
7.0E+04	2.99E-19			2.3E+04	1.16E-19
1.0E+05	2.82E-19			3.0E+04	1.36E-19
2.0E+05	1.958-19			4.0E+04	1.74E-19
3.0E+05	1.41E-19			5.5E+04	1.90E-19
				7.0E+04	1.82E-19
				1.0E+05	1.51E-19
				1.5E+05	1.10E-19
				2.0E+05	8.42E-20
				3.0E+05	5.94E-20
References:	204, 696, 698,	703, 705			

Accuracy: Unknown

<u>Hotes:</u> (1) Relative cross sections may be found in Ref. 705. (2) Accuracies reported in Refs. 204 and 696 are: systematic error < 10%; random error < 5% on each; however, results differ by a factor of 2 at some energies common to both experiments. (3) Acceptable polynomial fits to the He*(4¹D) data were not possible.

Chebyshev Fitting Parameters for Cross Sections

He*(4 ¹ S)	Emin	=	5.0E+02	eV/antu,	Emax	=	3.02+05	ev/amu
He*(4 ¹ P)	e _{min}	=	3.0E+03	eV∕amu,	Emax	-	2.0E+04	eV/amu

	AO	AI	A2	A3	A 4	A5	A 6
He*(4 ¹ S)	-88.4744	1.72074	628284	185014	137545	0287794	.0855418
He*(4 ¹ P)	-85.6466	-,0488093	-,204458	0516457	0853529	,120960	.0910818

The fit represents the He*(4^{1} S) cross section with an rms deviation of 13.5%. The maximum deviation is 38.5% at 2.0E+04 eV/amu.

The fit represents the $He^{4}(4^{3}P)$ cross section with an rms deviation of 3.0%. The maximum deviation is 5.1% at 1.0E+04 eV/amu.

No fit to He*(4¹D) data.

 $He^{+} + He -> He^{+} + He(4'S,4'P,4'D)$

$He^{+} + He -> He^{+} + He^{+}(4^{3}S, 4^{3}P, 4^{3}D)$

He*(4³S)

He*(4³P)

He*(4³D)

Energy	o	Energy	Ø	Energy	ø
(eV/amu)	(Cm²)	(eV/amu)	(Cn2 ²)	(eV/amu)	(CBL ²)
1.2E+03	2.24E-20	2.5E+02	2.15E-20	2.5E+02	2.91E-19
1.8E+03	4.12E-20	3.3E+02	2.30E-20	3.6E+02	3.48E-19
2.0E+03	3.93E-20	4.0E+02	2.13E-20	4.0E+02	3.37E-19
2.4E+03	3.38E-20	4.7E+02	1.96E-20	6.0E+02	1.96E-19
3.6E+03	7. 03E-20	7.0E+02	2.97E-20	7.0E+02	1.82E-19
4.0E+03	6.50E-20	1.0E+03	2.06E-20	9.5E+02	2.06E-19
5.2E+03	4.84E-20	1.5E+03	2.63E-20	1.0E+03	2.05E-19
7.0E+03	6.87E-20	2.0E+03	3.87E-20	1.5E+03	1.59E-19
1.0E+04	1.28E-19	4.0E+03	1.15E-19	2.0E+03	1.36E-19
1.5E+04	1.96E-19	4.5E+03	1.17E-19	2.2E+03	1.33E-19
2.0E+04	2.54E-19	5.5E+03	1.13E-17	3.0E+03	1.53E-19
2.6E+04	2.25E-19	7.0E+03	1.24E-1!	3.7E+03	1.50E-19
		1.9E+04	1.84E-17	4.0E+03	1.54E-19
		1.5E+04	2.60E-19	7.0E+03	3.55E-19
		2.0E+04	2.06E-19	8.0E+03	3.73E-19
		2.7E+04	1.41E-19	1.0E+04	3.40E-19
		3.2E+04	1.70E-19	2.0E+04	1.57E-19
		3.7E+04	1.41E-19	3.5E+04	6.48E-20

References: 204, 696, 703, 705, 708

Accuracy: Unknown

Notes: (1) Relative cross sections may be found in Refs. 705 and 708. (2) Accuracies reported in Refs. 204 and 696 are: systematic error < 10%; random error < 5% on each; however, results differ by a factor of 2 at some energies common to both experiments. (3) Acceptable polynomial fits to these data were not possible.

Chebyshev Fitting Parameters for Cross Sections

No fits to the cross sections.

Т

1

1

He⁺ + He -> He⁺(n=2) * He

Energy	Velocity	Cross Section
(eV/amu)	(Cm/6)	(Cm ²)
1.0E+03	4.39E+07	3.84E-18
1.7E+03	5.73E+07	8.16E-18
2.0E+03	6.21E+07	7.62E-18
3.0E+03	7.61E+07	5.30E-18
4.0E+03	8.79E+07	4.35 <u>5</u> -18
5.0E+03	9.826+07	3.805-18
6.0E+03	1.082+08	3.43E-18
7.GE+03	1.16E+08	3.165-18
8.05+03	1.24E+08	2.96E-18
9.0E+03	1.32E+08	2.80E-18
1.0E+04	1.392+68	2.68E-18
2.0E+04	1.962+08	2.30E-18
2.5E+04	2.20E+08	2.11E-18
3.0E+04	2.41E+08	1.91E-18
4.02+04	2.78E+08	1.556-18

References: 699, 704, 705, 713, 714

Accuracy: E < 70%

<u>Notes:</u> (1) See Ref. 705 for relative cross sections for excitation of He^{*} 2²P. (2) For combined excitation of target and projectile see Ref. 714.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	1.0E+03	eV∕amu,	E _{max} ≖	4.0E+04	eV/aanu
٨٥	A1	A2	A3	A4	A5	A6
-80 4224	698320	116751	.174729	194669	.0663496	0346561

The fit represents the above cross section with an rms deviation of 1.4%. The maximum deviation is 2.7% at $3.0E+03 \, \text{eV/amu}$.

 $He^+ + He -> He^+(n=2) + He$
Projectile Excitation Cross Sections for

He' + He -> He'(n=3) + He

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(Cm ²)
7.4E+03	1.19E+08	2.938-19
8.0E+03	1.24E+08	4.13E-19
9.0E+03	1.322+08	6.76E-19
1.02+04	1.396+08	8.88E-19
1.5E+04	1.70E+08	1.66E-18
2.0E+04	1-96E+08	2.43E-18
2.5E+04	2.20E+09	3.548-18

References: 705, 713

Accuracy: Unknown

<u>Hote:</u> Ref. 705 gives relative cross sections for excitation of $3^{2}P$ level.

Chebyshev Pitting Parameters for Cross Sections

1	e _{min}	E	7.4E+03	eV∕amu,	E _{max}	×	2.5E+04	eV/annu		
AO		A1		A2	A3		۸4	А	.5	٨6
-82.4466	1	.12	862 -	.190981	.12448	3	020253	4		

The fit represents the above cross section with an rms deviation of 1.4%. The maximum deviation is 2.9% at $8.0E+G_3$ eV/amu.

 $He^+ + He -> He^+(n=3) + He$

Spectral Line Emission Cross Sections for

He + H₂ -> H(Balmer-a,Balmer-B)

H(Balmer-a)

H(Balmer-8)

Energy (eV/amu)	Cross Section (CM ²)	Energy (eV/annu)	Cross Section (Cm ²)
		• • •	
1.5E+02	6.77E-19	1.2E+02	6.93E-20
2.0E+02	7.82E-19	1.5E+02	1.34E-19
3.0E+02	9.61E-19	2.0E+02	2.18E-19
4.0E+02	1.08E-18	3.0E+02	3.34E-19
5.0E+92	1.18E-18	4.0E+02	4.11E-19
.6.0E+02	1.26E-18	5.0E+02	4.56E-19
7.0E+02	1.342-18	6.0E+02	4.85E-19
8.0E+02	1.40E-18	7.0E+02	5.07E-19
9.0E+02	1.45E-18	8.0E+02	5.258-19
1.0E+03	1.51E-18	9.0E+02	5.35E-19
2.0E+03	1.80E-18	1.0E+03	5.44E-19
3.0E+03	1.89E-18	1.3E+03	5.528-19
4.0E+03	1.89E-18	2.0E+03	5.478-19
5.0E+03	1.842-18	3.0E+03	5.24E-19
6.0E+03	1.76E-18	4.0E+03	4.978-19
7.0€+03	1.65E-18	5.0E+03	4.75E-19
7.6E+03	1.58E-18	6.0E+03	4.54E-19
		7.0E+03	36E-19
		8.0E+03	4.20E-19

Reference: 461

1

Accuracy: Unknown

Botes: (1) The hydrogen Balmer line emission results from dissociative excitation of H₂. (2) The Balmer-a emission is the n=3->2 transition (656.28nm). (3) The Balmer- β emission is the n=4->2 transition (486.13nm).

Chebyshev Fitting Parameters for Cross Sections

H	(Balmer-α) (Balmer-β)	⁸ min E _{min}	= 1.5 = 1.2	E+02 eV/an E+J2 eV/an	iu, E _{mai} iu, E _{mai}	k = 7.6E+ k = 8.0E+	03 eV/amu 03 eV/amu
	A0	Al	A2	A3	84	A5	A6
H(Balmer-a)	-82.3960	. 472324	197315	0438413	0176366	00308248	5.34250E-05
H(Balmer-B)	-85.1264	.678943	561863	-162560	0716643	.0321037	0158573

The fit represents the H(Balmer-a) cross section with an rms deviation of 0.3%. The maximum deviation is 0.5% at 2.0E+02 eV/amu.

The fit represents the $H(Ba)mer-\beta$) cross section with an rms deviation of 0.9%. The maximum deviation is 1.4% at 2.0E+02 eV/amu.

He + He -> $He(2^{1}S, 2^{1}P)$

He(2¹S)

 $He(2^{1}P)$

Energy	Cross Section	Energy	Cross Section
(eV/annu)	(C111 ²)	(eV/amu)	(CB1 ²)
1.6E+01	1.00E-19	1.3E+01	4.836-18
2.0E+01	6.25E-19	1.5E+01	7.85E-18
2.5E+01	1.17E-18	2.0E+01	1.52E-17
3.0E+01	1.52E-18	2.5E+01	2.39E-17
3.5E+01	1.73E-18	3.0E+01	3.03E-17
4.0E+01	1.90E-18	3.5E+01	3.59E-17
4.5E+01	2.07E-18	4.0E+01	4.05E-17
5.0E+01	2.20E-18	5.06+01	4.70E-17
5.5E+01	2.33E-18	6.0E-01	5.25E-17
6.0E+01	2.44E-18	7.0E+01	5.62E-17
7.0E+01	2.65E-18	8.0E+01	5.95E-17
7.4E+01	2.72E-18	9.0E+01	6-19E-17
		1.0E+02	6.39E-17
		1.5E+02	7.24E-17

<u>References:</u> 719, 721, 722

Accuracy: Unknown

<u>Notes:</u> (1) The data for $2^{1}S$ state are theoretical data of Olson et al. (Ref. 721). The $2^{1}P$ state data are the experimental data of Kempter et al. (Ref. 719) and are approximately a factor of 2 greater than those of Olson et al. (2) The experimental data were determined by measuring emission line intensities and correcting for branching ratios using known transition probabilities. With He, cascading contributions should be less than 3%.

Chebyshev Fitting Parameters for Cross Sections

	He(2 ¹ S) He(2 ¹ P)	E _{min} [≠] Emin [≠]	1.6E+01 1.3E+01	eV/amu, eV/amu,	E _{max} = E _{max} =	7.4E+01 eV/ 1.5E+02 eV/	amu amu
	AO	A 1	A2	A3	A4	A5	A6
He(2 ¹ S)	-82.7427	1.30331	579333	.299739	133372	.0473667	0142447
He(2 ¹ P)	-76.1505	1.23531	420131	.116081	0158137	00167796	0033629

The fit represents the $He(2^1S)$ cross section with an rms deviation of 0.5%. The maximum deviation is 0.9% at 2.5E+01 eV/amu.

The fit represents the $He(2^{i}P)$ cross section with an rms deviation of 1.2%. The maximum deviation is 3.0% at 2.0E+01 eV/amu.

He + He -> He(2'S,2'P)

Excitation Cross Section for

He + He \rightarrow He($3^{1}P, 3^{1}D, 3^{3}P, 3^{3}D$)

He (3ºP)	He (3 ¹ D)		He(3 ³ P)		He(3 ³ D)	
Energy (eV/amu)	o (CM ²)	Energy (eV/amu)	ہ (دھ ؟)	Energy (eV/awu)	о (СМ ²)	Energy (eV/amu)	о (ст²)
2.5E+02	2.27E-18	2.5E+01	1.12E-19	2.5E+01	1.49E-19	2.5E+01	1.67E-19
3.0E+02	2.12E-18	3.0e+01	2.23E-19	4.0E+01	9.97E-19	3.0E+01	4.68E-19
4.0E+02	1.93E-18	4.0E+01	5.21E-19	7.0 E+ 01	2.458-18	4.0E+01	1.09E-18
5.02+02	1.832-18	5.0E+01	9.01E-19	1.0E+02	2.68E-18	5.06+01	1.55E-18
6.0E+02	1.77E-18	6.0E+01	1.33E-18	2.0E+02	2.20E-18	6.0E+01	1.98E-18
7.0E+02	1.76E-18	7.0E+01	1.71E-18	4.0E+02	1.58E-18	7.0E+01	2.39E-18
8.0E+02	1.76E-18	8.0E+01	1.928-18	7.0E+02	1.35E-18	8.0E+01	2.682-18
9.0E+02	1.762-18	9.0E+01	1.81E-18	1.0E+03	1.47E-18	9.0E+01	2.80E-18
1.0E+03	1.77E-18	1.0E+02	1.74E-18	1.2E+03	1.64E-18	1.02+02	2.77E-18
1.2E+03	1.80E-18	1.1E+02 1.5E+02	1.74E-18 2.31E-18			1.5E+02	2.44E-18

References: 718, 719, 723

Accuracy: Unknown

<u>Hote:</u> The recommended data for $3^{3}P$ state have been interpolated between the data of Kimura et al. (Ref. 718) ($E > 2.5 \times 10^{2}$ eV/amu) and the low-energy data of Kempter et al. (Ref. 719). This extrapolation is uncertain due to different energy dependencies.

Chebyshev Fitting Parameters for Cross Sections

	He(3 ¹ P) He(3 ¹ D) He(3 ³ P) He(3 ³ D)	E _{min} Emin E _{min} E _{min}	= 2.5E+0 = 2.5E+0 = 2.5E+0 = 2.5E+0	2 eV/amu, 1 eV/amu, 1 eV/amu, 1 eV/amu,	E _{max} = Emax = E <mark>sax =</mark> E _{max} =	1.2E+03 1.5E+02 1.2E+03 1.5E+02	eV/aanu eV/aanu eV/aanu eV/aanu
	AO	AI	A2	A3		A5	A 6
He() ¹ P)	-81.5965	116911	.0573167	8.08164E-04	00364047	6.11763E-05	.00187028
Re() ¹ D)	-83,4302	1.37998	506774	.0626383	.0986308	.0721865	3.46628E-04
He(3 ³ P)	-82.5431	.625566	782070	-545218	100346	.0310014	.00459533
He(3 ³ D)	-82.5242	1,15604	602651	.117602	0538056	.0673126	. 02 30997

The fit represents the $He(3^{1}P)$ cross section with an rms deviation of 0.1%. The maximum deviation is 0.3% at 6.0E+02 eV/amu.

The fit represents the $He(3^{3}D)$ cross section with an rms deviation of 1.9%. The maximum deviation is 2.8% at 9.0E+01 eV/amu. The fit represents the $He(3^{3}P)$ cross section with an rms deviation of 0.7%. The maximum deviation is 1.1% at 1.0E+02 eV/amu.

The fit represents the He($3^{3}D$) cross section with an rms deviation of 0.1%. The maximum deviation is 0.3% at 9.0E+01 eV/amu.

1

He + He -> $He(4^{1}S, 4^{1}P)$

Se (4	He(4 ¹ S)		He(4 ¹ S) cont.		\$ ¹ P)
Energy	o	Energy	o	Energy	o
(eV/amu)	(cm²)	(eV/amu)	(C100²)	(eV/autu)	(cm²)
1.7E+01	2.00E-20	5.0E+03	2.96E-19	5.0E+03	3.65E-19
2.0€+01	2.98E-20	6.0E+03	3.37E-19	5.5E+03	3.88E-19
3.08+01	9.53E-20	7.0E+03	3.78E-19	6.0E+03	4.06E-19
4.0E+01	2.37E-19	8.0E+03	4.11E-19	7.0E+03	4.23E-19
5.0E+01	4.71E-19	9.0E+03	4.40E-19	8.0E+03	4.06E-19
6.0E+01	7.06E-19	1.0E+04	4.61E-19	9.0E+03	3.85E-19
7.0E+01	8.91E-19	1.5E+04	5.11E-19	1.0E+04	3.60E-19
7.9E+01	1.05E-18	2.0E+04	4.72E-19	1.5E+04	2.61E-19
9.0E+01	1.19E-18	2.5E+04	4.22E-19	2.0E+04	1.88E-19
1.0E+02	1.33E-18			2.4E+04	1.50E-19
1.5E+02	1.90E-18				
1.8E+02	2.158-18				

References: 703, 719, 723

Accuracy: Unknown

<u>Hote:</u> The $4^{I}S$ data in the low and high energy ranges are plotted individually to indicate the problems involved in comparing and interpolating between low and high energy data. Use these data with caution.

Chebyshev Fitting Parameters for Cross Sections

	He(4 ¹ S) He(4 ¹ S) He(4 ¹ P)	E _{min} = E _{min} = E _{min} =	1.7E+01 5.0E+03 5.0E+03	eV/amu, eV/amu, eV/amu,	E _{max} = 1 E _{max} = 2 E _{max} = 2	.8E+02 eV/a 2.5E+04 eV/a 2.4E+04 eV/a	umu Umu Umu
	AO	A1	A2	A3	A4	A5	A6
He(4 ¹ 8)	-85.2188	2.41501	487597	0727179	.111514	~.00381501	0352846
He(4 ¹ S)	-84.6731	.196616	160691	0239012	.00732614	.00447306	.00338388
$He(4^1D)$	-85.4091	479796	191704	.0341683	0126641	.00116120	.00977808

The fit represents the $He(4^{i}S)$ cross section with an rms deviation of 1.2%. The maximum deviation is 2.3% at 4.0E+01 eV/amu.

The fit represents the He(4 1 S) cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 7.1E+03 eV/amu.

The fit represents the $He(4^{3}F)$ cross section with an rms deviation of 0.3%. The maximum deviation is 0.6% at 8.02+03 eV/amu.

He + He -> He(4'S, 4'P)

EXCILATION CROSS Sections IC	xcitation	Cross	Sections	fo
------------------------------	-----------	-------	----------	----

He + He -> $He(4^{3}S, 4^{3}P)$

He (He(4 ³ S)		He(4 ³ S) cont.		1 ³ P)
Energy (eV/amu)	0 (cm²)	Energy (eV/amu)	0 (Cm ²)	Energy (eV/amu)	ح (cm²)
2.4E+01	2.53E-?0	5.0E+03	4.37E-19	2.5E+02	2.78E-18
2.5E+01	2.90E-20	5.5E+03	4.47E-19	4.0E+^2	1.38E-18
3.0E+01	5.97E-20	6.0E+03	4.66E-19	7.0E+02	8.79E-19
3.5E+01	1.07E-19	7.0E+03	4.90E-19	1.0E+03	8.23E-19
4.0E+01	1.59E-19	8.0E+03	5.296-19	2.0E+03	7.68E-19
4.5E+01	2.08E-19	9.0E+03	5.47E-19	4.0E+03	7.14E-19
5.0E+01	2.62E-19	1.0E+04	5.14E-19	7.0E+03	7.07E-19
5.5E+01	3.15E-19	1.1E+04	4.88E-19	1.0E+04	5.627-19
£.0E+01	3.65E-19	1.5E+04	5.30E-19	1.5E+04	3.11E-19
7.0E+01	4.61E-19	2.0E+04	6.12E-19	2.0E+04	1.95E-19
8.0E+01	5.43E-19	2.5E+04	6.77E-19		
8.8E+01	5.95E-19				

References: 703, 718, 719, 720, 723

Accuracy: Unknown

<u>Mote:</u> No attem . has been made to interpolate between the low and high energy data for the $4^{2}S$ state. Use these data with caution.

Chebyshev Fitting Parameters for Cross Sections

He(4 ³ S)	Emin	=	2.4E+01	ev∕amu,	Emax	æ	8.8E+01	eV/amu
He(4 ³ S)	Emin	=	5.0E+03	eV∕amu,	Emax	-2	2.5E+04	eV/amu
H€(4³P)	Emin	=	2.5E+02	eV/amu,	Emax	=	2.0E+04	eV/amu

 A0
 A1
 A2
 A3
 A4
 A5
 A6

 He(4³S)
 -86.5334
 1.57661
 -.301332
 .0231287
 .0147011
 -.0218801
 .0103488

 He(4³S)
 -84.1641
 .186801
 .0274621
 .0565092
 -.00857002
 -.0283410
 .0102453

 He(4³P)
 -83.4554
 -.954640
 -.0267074
 -.366176
 -.0251284
 -.0183797
 .0210686

The fit represents the $He(4^{3}S)$ cross section with an rms deviation of 0.4%. The maximum deviation is 1.0% at 4.5E+01 eV/amu.

The fit represents the $He(4^{3}S)$ cross section with an rms deviation of 2.1%. The maximum deviation is 3.6% at 1.1E+04 eV/amu.

The fit represents the $He(4^{3}P)$ cross section with an rms deviation of 3.5%. The maximum deviation is 6.2% at 4.0E+03 eV/amu.

Excitation and Ion-Pair Production Cross Sections for

He + He -> Autoionizing States

2 8 ²	¹ S	2825	³ Р	2p ²	D	252	p ¹ P	He"()	1525 ²) ² S
Energy (eV/asu)	σ (ເໝ²)	Energy (eV/amu)	σ {⊂₽²}	Energy (eV/amu)	0 (⊂∎²)	Energy (eV/amu)	σ (cm²)	Energy (eV/_mu)	<i>∂</i> (cm²)
2.5E+03	6.83E-20	2.5E+03	1.72E-20	2.5E+03	2.01E-19	2.5E+G3	1.13E-19	3.7E+03	2.45E-19
3.0E+03	8.84E-20	3.0E+03	2.04E-20	3.0E+03	2.55E-19	3.0E+03	1.52E-19	4.0E+03	2.60E-19
4.0E+03	1.32E-19	4.0E+03	2.70E-20	4.0E+03	3.57E-19	4.0E+03	2.27E-19	5.0E+03	3.05E-19
5.0E+03	1.80E-19	5.0E+03	3.37E-20	5.0E+03	4.42E-19	5.9E+03	2.91E-19	6.0E+03	3.43E-19
6.0E+03	2.28E-19	3. CE+03	4.01E 20	6.0E+03	5.18E-19	6.0E+03	3.48E-19	7.0E+03	3.76E-19
7.0E+03	2.82E-19	7.0E+03	4.74E-20	7.0E+03	5.74E-19	7.0E+03	4.05E-19	7.7E+03	3.83E-19
0.0E+03	3.37E-19	8.0E+03	5.42E-20	8.0E+03	6.16E-19	8.0E+03	4.53E-19	8.0E+03	3.80E-19
9.0E+03	3.90E-19	1.0E+03	6.16E-20	9.0E+03	6.49E-19	9.0E+03	5.05E-19	9.0E+03	3.41E-19
1.0E+04	4.33E-19	.0E+04	6.96E-20	1.05.04	6.72E-19	1.0E+04	5.49E-19	1.0E+04	2.8CE-19
1.4E+04	5.20E-19	1.5E+04	1.30E-19	1.2E+04	6.89E-19	1.3E+04	6.18E-19	1.5E+04	8.30E-20
1.52+04	5.19E-19	2.0E+04	2.51E-19	1.5E+04	5.58E-19	1.5E+04	5.922-19	2.0E+0.	3.76E-20
2.0E+04	4.54E-19	3.0E+04	4.28E-19	2.9E+04	3.42E-19	2.0E+04	4.02E-19	3.0E+04	2.22E-20
3.0E+04	3.31E-19	3.5E+04	4.92E-19	3.0E+04	1.57E-19	3.0E+04	3.30E-19	3.5E+04	1.99E-20
3.52+04	2.86E-19			3.5E+04	1.228-19	3.5E+04	2.89E-19		

<u>References</u>, 124, 725, 726

Accuracy: Unknown

Note: The 1s2s² ²S state is the autodetaching state of He⁻.

Chebyshev Fitting Parameters for Cross Sections

	25 ² 1 252p ³ 2p ² 1 252p ¹ He ⁻ (152	S P D 28 ²) ² S	E _{min} = E _{min} = E _{min} = E _{min} = E _{min} =	2.5E+03 2.5E+03 2.5E+03 2.5E+03 3.7E+03	eV/amu, eV/amu, eV/amu, eV/amu, eV/amu,	E _{max} E _{max} E _{max} E _{max} E _{max}	= 3.5E+(= 3.5E+(= 3.5E+(= 3.5E+ = 3.5E+(04 eV/amu 04 eV/amu 04 eV/amu 04 eV/amu 04 eV/amu
		A0	A 1	A2	K 3	84	A 5	A 6
2# ²	1 S	-85.8524	799247	526341	114359	.0439092	.0371210	00499344
2 s 2p	³ P	-87.8698	1.74012	.165859	0382066	0794670	0352277	.0132924
2p ²	¹ D	-85.2799	217724	729656	0810841	.0662609	.0581753	.00536077
2#2p	19	-85.2994	.497649	530222	0630469	.0249202	.0444313	-5.43766E-04
He"(1#2# ²) ² S	-87.4403	-1.52170	498463	.350749	.157944	0929551	0455722

The fit represents the $2s^2$ 'S cross section with an rms deviation of 1.1%. The maximum deviation is 2.2% at 2.0E+04 eV/amu.

The fit represents the 2s2p ³P cross section with an rms deviation of 2.4%. The maximum deviation is 5.2% at 1.5E+04 eV/amu.

The fit represents the $2p^{2-1}D$ cross section with an rms deviation of 2.0%. The maximum deviation is 3.6% at 2.0E+04 eV/amu.

The fit represents the $2\pi^2p^{-1}P$ cross section with an rms deviation of 1.8%. The maximum deviation is 3.7% at 2.0E+04 eV/amu.

The fit represents the $\text{He}^{-}(1828^2)^{7}$ S cross section with an rms deviation of 1.9%. The maximum deviation is 3.4% at 1.5E+04 #V/amu.

 $He^{2^{+}} + H \rightarrow H(2s, 2p)$

8(28)

H(2p)

Energy	Cross Section	Energy	Cross Section
(ev/amu)	(CM ⁻)	(ev/amu)	(Cm ⁻)
2.5E+04	1.41E-16	2.5E+04	1.68E-16
3.0E+04	1.16E-16	3.0E+04	1.75E-16
4.0E+04	8.70E-17	4.0E+04	1.84E-16
5.0E+04	6.97E-17	5.0E+04	1.928-16
6.0E+04	5.77E-17	6.0E+04	1.97E-16
7.0E+04	4.98E-17	7.0E+04	2.01E-16
8.0E+04	4.37E-17	8.0E+04	2.05E-16
9.0E+04	3.86E-17	9.0E+04	2.06E-16
1.0E+05	3.50E-17	1.0E+05	2.08E-16
1.52+05	2.35E-17	1.5E+05	2.07E-16
2.0E+05	1.79E-17	2.0E+05	1.97E-16
3.0E+05	1.22E-17	3.0E+05	1.69E-16
4.0E+05	9.42E-18	4.0E+05	1.45E-16
5.0E+05	7.75E-18	5.0E+05	1.31E-16
5.6E+05	7.06E-18	5.4E+05	1.29E-16

Reference: 174

Accuracy: Unknown

<u>Hote:</u> The curves are results of theoretical calculations for the excitation of H(1s) by He^{2^*} inpact. Ref. 174 compares the results of calculations using alternative basis sets together with a full explanation of the estimated accuracy at different He^{2^*} energies.

Chebyshev Fitting Parameters for Cross Sections

	Н(2в)	E _{min} ª	2.5E+04	eV/amu,	E _{max} =	5.6E+05	eV/amu
	Н(2р)	E _{min} ≇	2.5E+04	eV/amu,	E _{max} =	5.4E+05	eV/amu
	AO	A1	A2	A3	A4	A5	A6
n(25)	-76.0595	-1.50152	.0300296	.00522842	.0029631	2 -4.05	387E 04.00159517
H(2p)	-72.5902	122617	~.180664	0249549	.0157733		39456 .00499314

The fit represents H(2s) cross section with an rms deviation of 0.2%. The maximum deviation is 0.5% at 6.0E+04 eV/amu.

The fit represents $H(2\rho)$ cross section with an rms deviation of 0.2%. The maximum deviation is 0.3% at 4.0E+04 eV/amu.

He²⁺ + H -> H(2s,2p)

Projectile Excitation Cross Sections for

$He(2^{3}S) + He(1^{1}S) -> He(3^{1}P) + He$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(C1R ²)
5.0E+01	9.82E+06	3.44E-18
6.02+01	1.08E+07	4.55E-18
7.0E+01	1.16E+07	5.27E-18
8.0E+01	1.24E+07	5.66E-18
9.0E+01	1.32E+07	5.84E-18
1.0E+02	1.39E+07	5.93E-18
1.5E+02	1.70E+J7	4.63E-18
2.0E+02	1.96E+07	3.94E-18
2.5E+02	2.20E+07	4.44E-18
3.0E+02	2.41E+07	5.57E-18
4.0E+02	2.78E+07	6.82E-18
5.0E+02	3.11E+07	6.97E-18
6.0E+02	3.40E+07	6.76E-18
7.0E+02	3.68E+07	6.35E-18
8.0E+02	3.93E+07	5.88E-18
9.0E+02	4.17E+07	5.35E-18
1.0E+03	4.39E+07	4.80E-18
1.2E+03	4.81E+07	3.50E-18

<u>References:</u> 728, 729

Accuracy: Unknown

Notes: (1) Results from Ref. 728 correspond to projectile emission measurements and no corrections were made for contamination of metastable atomic beam with ground state atoms. Results have been normalized by the authors to previous results on excitation. (2) Experimental details of Ref. 729 are unknown.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	5.0E+01 e	eV∕amu,	E _{max} =	1.22+03 6	eV∕amu
AO	A1	λ2	A3	٨4	A5	6 A6
-79,7131	.0521928	176441	0874202	20346	.0710	365 .0424143

The fit represents the above cross section with an rms deviation of 4.9%. The maximum deviation is 10.5% at 2.0E+02 eV/amu.

.

1

1

Projectile Excitation Cross Sections for

$He(2^{3}S) + He(1^{1}S) -> He(3^{3}P) + He$

Energy	Velocity	Cross Section
(eV/amu)	(cma/s)	(Cm ²)
3.56+01	8.22E+06	3.51E-17
4.0E+01	8.79E+06	4.07E-17
5.0E+01	9.82E+06	5.05E-17
6.0E+01	1.08E+07	5.96E-17
7.0E+01	1.16E+07	6.67E-17
8.02+01	1.24E+07	7.23E-17
9.0E+01	1.32E+07	7.70E-17
1.0E+02	1.39E+07	8.11E-17
1.5E+02	1.70E+07	9.36E-17
2.0E+02	1.96E+07	9.94E-17
2.5E+02	2.20E+07	1.02E-16
3.0E+02	2.41E+07	1.03E-16
4.0E+02	2.78E+07	1.02E-16
5.0E+02	3.116+37	1.00E-16
6.0E+02	3.40F+07	9.93E-17
7.0E+02	3.68E+07	9.82E-17
8.0E+02	3.93E+07	9.68E-17
9.02+02	4.17E+07	9.49E-17
1.0E+03	4.39E+07	9.35E-17
1.3E+03	5.01E+07	8.48E-17

References: 728, 729

Accuracy: Unknown

Motes: (1) Results from Ref. 728 correspond to projectile emission measurements and no corrections were made for contamination of metastable atomic beam with ground state atoms. (2) Results have been normalized by the authors to previous results on excitation. (3) Experimental details of Ref. 729 are unknown.

Chebyshev Fitting Parameters for Cross Sections

E_{min} ** 3.5E+01 eV/aanu, E_{max} ** 1.3E+03 eV/aanu A0 A1 A2 A3 A4 A5 A6

-74.2632 .399374 -.300481 .0525981 -.0111543 -.00859422 -.00474980

The fit represents the above cross section with an rms deviation of 0.4%. The maximum deviation is 0.8% at $5.0E+01 \approx V/amu$.

Projectile Excitation Cross Sections for

$He(2^{3}S) + He(1^{1}S) -> He(4^{3}S, 4^{3}D) + He$

He(4³S)

 $He(4^{3}D)$

Energy (eV/amu)	Cross ((Secti	on	Energy (eV/amu)	(Cross ((Section
7.0E+01	-	1.1	17E-18		6.0E+01		6.	96E-18
8.0E+01		9.4	19E-19		7.0E+01		7.	98E-18
9.0E+01		8.	39E-19		8.0E+01		9.	02E-18
1.0E+02		7.0	31E-19		9.0E+01		9.	94E-18
1.5E+02		1.	22E-18		1.05+02		1.	07E-17
2.0E+02		1.0	52E-18		1.5E+02		1.	36E-17
3.0E+02		1.9	99E-18		2.0E+02		1.	49E-17
1.0E+04		2.	70E-18		2.5E+02		1.	52E-17
1.5E+04		2.	16E-18		3.0E+02		1.	42E-17
2.0E+04		1.	76E-18		4.0E+02		1.	16E-17
2.5E+04		1.4	49E-18		5.0E+02		1.	05E-17
2.7E+04		1.	39E-18		6.0E+02		1.	09E-17
					7.0E+02		1.	16E-17
					8.0E+02		1.	21E-17
					9.0E+02		1.	26e-17
					1.0E+03		1.	29E-17
					1.5E+03		. i.	39e-17
					2.0E+03		1.	39E-17
					3.0E+03		1.	33E-17
					4.0E+03		1.	22E-17
					5.0E+03		1.	11E-17
					6.0E+03		1.	00E-17
					7.0E+03		9.	02E-18
					8.CE+03		8.	13E-18
					9.0E+03		7.	36E-18
					1.0E+04		6.	61 E-18
					1.5E+04		3.	87E-18
					2.0E+04		2.	28E-18
					2.5E+04		1.	41E-18
	717	7 2 0	710	730				

<u>References:</u> 727, 728, 729, 730

Accuracy: Unknown

I.

Hotes: (1) Results from Ref. 728 correspond to projectile emission cross sections and no correction was made for contamination of metastable atomic beam with ground state atoms. (2) Results have been normalized by the authors to previous results on excitation. (3) Experimental details of Ref. 729 are unknown. (4, Dotted curve for 4^{3} S excitation between .3 and 10 keV/amu represents an interpolation between the data of Ref. 727 and Ref. 729, and has a large uncertainty.

Chebyshev Fitting Parameters for Cross Sections

	He (He (4 ³ 8) 4 ³ C)	E _{min} = E _{min} =	7.0E+01 6.0E+01	i eV/aumu leV/aumu	, E _{ma}	x = 2.5 x = 2.5	7E+04 e 5E+04 es	V/amu //amu	
		A0	A 1	A2	£3	A4	A 5	A 6	▲7	A8
Hæ(4 Hæ(4	3) (D)	-81.7091 -78.8400	.309903 637167	473244 719668	0741860 186552	-0175929 198706	112721 .0689624	.0812889 .0116222	0416811 0618008	.0437011 .0358345
The The	fit max	repres imum de	ents th eviation	e He(4 ³ S is 7.0) Cross A at 1.0	section OE+02 eV	with an //amu.	rms dev	iation (of 2.6%.

The fit represents the $He(4^{3}D)$ cross section with an rms deviation of 3.7%. The maximum deviation is 9.8% at 5.0E+02 eV/amu.

Target	Excitation	Crosss	Sections	for
He(2 ³ S)	+ He(1 ¹ S)	-> He	+ He(4 ³ 5,4	D)

He(4³S)

He(4³D)

Energy (eV/assu)	Cross Section (Cm²)	Energy (eV/amu)	Cross Section (cm ²)
5.0E+02	6.41E-18	5.0E+03	1.17E-17
6.0E+03	7.20E-18	6.0E+03	1.39E-17
7.02+03	7.72E-18	7.0E+03	1.48E-17
8.02+03	7.92E-18	7.5E+03	1.49E-17
9.02+03	8.01E-18	8.0E+03	1.47E-17
1.02+04	7.89E-18	9.0E+03	1.38E-17
1.58+04	5.87E-18	1.0E+04	1.22E-17
2.0E+04	3.35E-18	1.2E+04	6.16E-18
2.50+04	1.50E-18	1.5E+04	3.51E-18
		2.0E+04	1.74E-18
		2.3E+04	1.28E-18

References: 727, 730

Accuracy: 40%

He

<u>Hote:</u> Data are for excitation of the ground state He target atom by the metastable $He(2^{3}S)$ projectile atom.

Chebyshev Fitting Parameters for Cross Sections

		ile He	+ He(4 ³ S) + He(4 ³ D)	E _{min} E _{min}	= 5.0E+ = 5.0E+	⊦03 eV/aa ⊧03 eV/aa	nu, E _m nu, E _m	ax * 2 ax = 2	.5E+04 eV .3E+04 eV	/amu /amu
			0A	A1	٨2	A 3	λ4	A 5	λ6	
He Re	• 7 • 8	le(4 ³ S) le(4 ³ D)	-79.6926 -79.4099	631297 -1.23537	445191 423173	0910388 .177825	0216050 .0609486	0046789 0537149	00 .00182955 0270941) L

The fit represents He + He $(4^{3}S)$ cross section with an rws deviation of 0.2%. The maximum deviation is 0.4% at 8.0E+03 eV/amu.

The fit represents He + He(4^{3} D) cross section with an rms deviation of 4.4%. The maximum deviation is 10.7% at 1.2E+04 eV/amu.

See appendix for Chebyshev fit details.

B* + Li(2s) -> H* + Li(2p) -> H* + Li(670.8nm)

Li(2p)

Li(670.8mm)

Energy (eV/amu)	Cross Section (Cm ²)	Energy (eV/annu)	Cross Section (cm²)
5.0E+02	9.56E-16	2.0E+03	2.97E-15
7.0E+02	1-20E-15	2.5E+03	3.352-15
1.02+03	1.50E-15	3.06+03	3.698-15
1.52+03	1.916-15	4.0E+03	4.04E-15
2.0E+03	2.25E-15	5.0E+03	4.27E-15
4.0E+03	3.06E-15	6.0E+03	4.438-15
7.0E+03	3.62E-15	7.0E+03	4.53E-15
1.02+04	3.96E-15	8.0E+03	4.60E-15
1.3E+04	3.992-15	9.0E+03	4.658-15
2.0E+04	3.88E-15	1.0E+04	4.69E-15
4.0E+04	2.38E-15	1.5E+04	4.73E-15
7.02+04	1.42E-15	2.0E+04	4.55E-15
1.0E+05	1.032-15		
1.38+05	8.17E-16		

References: Li(2p); 257, 285 Li(670.8nm) emission; 258, 732, 734

Accuracy: Unknown

<u>Hotes:</u> (1) The ground state of Li is the 2s state. (2) The resonance line of Li is the $2p \rightarrow 2s$ transition at a wavelength of 670.8nm. (3) Myers et al. (Ref. 734) have also measured emission cross sections for this reaction in the energy region 100-1500 eV/amu. Their results are more than an order of magnitude lower than the recommended data in the energy overlap region.

Chebyshev Fitting Parameters for Cross Sections

	Li(2p))	Emin =	5.0E+02	eV/annu,	E _{max} =	1.3E+05	eV/anau
	L ¹ (67)	0.8 mm.)	Emin =	2.0E+03	eV/annu,	E _{max} =	2.0E+04	eV/anau
		AO	A1	A2	A3	A4	A5	A 6
L1(2p)	5 nm)	-67.9437	00943077	745522	112088	.0453106	.0512593	.0155081
L1(670.0		-66.2671	.208208	0976231	.00780915	00712239	00227550	.0010€925

The fit represents Li(2p) cross section with an rms deviation of 1.9%. The maximum deviation is 3.6% at 4.02+04 eV/amu.

The fit represents Li(670.8 nm) cross section with an rms deviation of 0.3%. The maximum deviation is 0.4% at 2.52 ± 03 eV/amu.

:

Total Spectral Line Emission Cross Sections for

He' + Li(2s) -> He' + Li(670.8nm)

Energy	Velocity	Cross Section
(eV/anu)	(Cm/s)	(Call ²)
5.0E+02	3.116+07	5.58E-16
6.0E+02	3.40E+07	6.558-16
7.02+02	3.68E+07	7.48E-16
8.02+02	3.93E+07	8.43E-16
9.0E+02	4.17E+07	9.33E-16
1.02+03	4.39E+07	1.03E-15
1.52+03	5.38E+07	1.47E-15
2.0E+03	6.21E+C7	1.93E-15
2.58+03	6.95E+67	2.438-15
3.02+03	7.61E+07	2.90E-15
4.02+03	8.79E+07	3.39E-15
4.5E+03	9.32E+07	3.51E-15
5.0E+03	9.82E+07	3.52E-15

--

References: 267, 732, 734

Accuracy: Unknown

_

<u>Notes:</u> (1) The 2p -> 2s transition at 670.8nm is the resonance transition of Li. (2) The emission cross section includes cascading into the 2p state from the upper levels. (3) As far as we are aware no data for the cross sections for the 2p state excitation exist. (4) Myers et al. (Ref. 734) obtained data for the emission cross sections in the energy range 50-375 eV/amu. Their measurements are an order of magnitude less than the recommended data at 400 eV/amu.

Clebyshev Fitting Parameters for Cross Sections

	E _{min} * S	0 €+ 02 eV/a	amu, E _{max}	к = 5,0E+()3 eV/aunu	
AO	A1	A2	A3	۸4	۸5	A6
-68.2494	.976730	0528574	0520709	0299645	00494558	.00671922

The fit represents the above cross section with an rms deviation of 0.5%. The maximum deviation is 0.8% at $2.0E+03 \, \text{eV/amu}$.

1 1

Excitation and Spectral Line Emission Cross Sections for

He²⁺ + Li(2s) -> He²⁺ + Li(2p) -> He²⁺ + Li(670.8/m)

Li ()	2p)	Li(2p)	(cent.)	Li(670.8mm)		
Energy	٥	Energy	σ	Energy	0	
(eV/amu)	(c.x²)	(eV/amu)	(cm²)	(eV/amu)	(cm²)	
1.4E+02	3.90E-17	3.8E+03	2.79E-15	3.7E+03	2.92E-15	
2.0E+02	6.43E-17	4.06+03	2.94E-15	4.0E+03	3.13E-15	
3.0E+02	1.11E-16	7.0E+03	4.93E-15	7.0E+03	5.21E-15	
4.0E+02	1.62E-16	1.0E+04	6.57E-15	1.0E+04	6.96E-15	
5.0E+02	2.18E-16	2.02+04	7.93E-15	1.5E+04	6.45E-15	
6.0E+02	2.73E-16	2.6E+04	8.12E-15	2.0E+04	9.07E-15	
7.0E+02	3.28E-16	4.05+04	7.50E-15	2.62+04	9.21E-15	
8.0E+02	3.84E-16	7.0E+04	6.04E-15	4.0E+04	8.69E-15	
9.0E+C2	4.36E-16	1.0E+05	5.10E-15	7.0E+04	6.94E-15	
1.0E+03	4.90E-16	2.0E+05	3.25E-15	1.0E+05	5.81E-15	
1.56+03	7.52E-16	4.0E+05	1.82E-15	1.5E+05	4.70E-15	
2.0E+03	9.89E-16	7.0E+05	1.09E-15			
		1.02+06	7.68E-16			
		2.05+06	3.93E-16			
		2.78+06	2.95E-16			

References: Li(2p); 731, 733, 735 Li(670.8nm) emission; 259, 733, 735

Accuracy: Unknown

<u>Hotes:</u> (1) The 2p -> 2s is the resonance transition of Li with $\lambda = 670.8 \text{ mm}$. (2) No attempt has been made to join the low energy data of Barrett and Leventhal (Ref. 259) to the data of Kadota et al. (Ref. 733). (3) The data of Kadota et al. have been extended to 2.5x10⁶ eV/amu using the theoretical data of Ermolaev et al. (Ref. 731).

Chebyshev Fitting Parameters for Cross Sections

	Li Li Li	(2p) (2p) (670.8	n#)	e _{min} = e _{min} = e _{min} = min	1.4E+02 3.8E+03 3.7E+03	eV/amu, eV/amu eV/amu,	E _{max} = E _{max} = E _{max} =	2.0E+03 2.7E+06 1.5E+05	eV/annu eV/annu eV/annu
			AC	AI	ħ2	A3	A4	A5	A6
L1(2p)			-72.1632	1.62490	0826001	0110092	.00206946	.00278599	00427450
L1(2p)			-67.5365	-1.31752	867548	.198289	0106036	.00118819	.0110240
L1(670		nøt) -	-65.6114	.210669	460211	.0351576	.0336529	00874795	.00505234

The fit represents Li(2p) excitation cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 4.0E+02 eV/amu.

The fit represents Li(2p) cross section with an rms deviation of 1.1%. The maximum deviation is 2.3% at 7.08+03 eV/amu.

The fit represents Li(670.8 nm) cross section with an rms deviation of 0.4%. The maximum deviation is 0.5% at 7.0E+04 eV/amu.

it i

D. Cross Sections for Ionization and Production of Charged Particles (* denotes rate coefficient data also)

Page

H + H ₂ -> Total Slow Positive Ion Production	D-2
-> Total Slow Electron Production	D-2
-> H + H ₂ ⁺ + e	D-4
$H^{+} + H \rightarrow H^{+} + H^{+} + e$	D-6*
$H^+ + H^> H_2^+ + e$	D-12
H ⁺ + H ₂ -> Total Slow Electron Production	D-14
$-> H^+ + H_2 + e$	D-16
-> Total Production of H_2^+	D-16
-> Total Production of H ⁺ · · · · · · · · ·	D-16
when we black and the	D 10+
H' + He -> Electrons and H	D-10"
	D-24*
\sim (n + ne ²) Or (n + ne ² + e)	D-24*
$=> 11^{-1} + 10^{-1} + 20^{-1} + 10^{-21} + 10^{-1}$	D 34+
\rightarrow (H ⁻ + He ⁻) or (H ⁻ + He ⁻ + 2e)	D-34*
$u_{\alpha}(2 c) + u \rightarrow u_{\alpha} + u_{1}^{\dagger} + \alpha$	D-42
$ne(2^{-5}) + n^{-2} ne + n + e^{-1} ne^{-1} $	D-42 D-42
$\sum (H_0 + H_1^{\dagger} + 0) = (H_0 H_1^{\dagger} + 0)$	D-42 D-42
-2 (ne + n + e) of (nen n e) \ldots	0-42
$H_{0}(2^{3}C) + H_{-} > H_{0} + H^{+} + 0$	D~44
$-\Sigma U e U^{\dagger} + e$	D-44
$= 2 \operatorname{Hen} + e + \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots$	D-44 D-44
	D-34
$He(2^{3}S) + H_{2} \rightarrow Total Ionization$	D-46
-> Rearrangement Ionization	D-46
$He(2^{1}S) + H_{2} \rightarrow Total Ionization \dots$	D-48
-> Rearrangement Ionization	D-48
$H^{+} + He^{+} -> (H^{+} + He^{2+} + e) $	D-50*
-> (H ⁺ + He ²⁺ + e) or (H ^o · He ²⁺) · · · ·	D-50*
• • • • • • • • • • • • • • • • • • • •	
$He^{+} + He^{+} -> (He^{+} + He^{2+} + e) $	D-58*
-> (He + He ²⁺) or (He ⁺ + He ²⁺ + e) \cdot .	D -58 *
He + H_2 -> Total Slow Positive Ion Production .	D-64
-> Total Slow Electron Production	D-64
-> He + H ₂ ' + e	D-66
-> Total H' Production	D-66
He I He I Mehal Class Depinion top Durchushing	
He + He -> TOTAL SLOW POSITIVE ION PRODUCTION	D-08
-> TOTAL SIOW ELECTRON PRODUCTION	1-20
-> He + He' + e , , , , , , , , , , , , , , , , , ,	
-> H8 + He" + Ze	0-70

D. (Cont'd)

$He^{+} + H -> He^{+} + H^{+} + e \dots \dots \dots \dots \dots \dots \dots \dots$	D-72*
$He^+ + H_2 \rightarrow Total Slow Positive Ion Production$	D-76
-> Total Slow Electron Production	D-76
$IIe^{+} + H_{2} \rightarrow (He + H_{2}^{+}) \text{ or } (He^{+} + H_{2}^{+} + e) \dots$	D78
-> Total H ⁺ Production	D-78
-> He ⁺ + H ⁺ + H ⁺ + 2e	D-78
He ⁺ + He -> Total Slow Positive Ion PrcJuction	D-80*
-> Total Slow Electron Production	D-80*
-> He ⁺ + He ⁺ + e	D-90*
-> He ⁺ + He ²⁺ + 2e	D-90*
$He^{2+} + H -> He^{2+} + H^+ + e \dots \dots \dots \dots \dots \dots$	D-96*
$He^{2+} + H_2 \rightarrow Total Slow Positive Ion Production$	D-100
-> Total Slow Electron Production	D-100
-> Total H ⁺ Production	D-102
-> H ⁺ Production by Ionization Collisions	D-102
\rightarrow Total H ₂ ⁺ Production	D-102
\rightarrow H ₂ ⁺ Production by Single-Ionization .	D-102
He^{2+} + He -> Total Slow Positive Ion Production	D-104*
-> Total Slow Electron Production	D-104*
-> He ²⁺ + He ⁺ + e	D-114*
-> He ²⁺ + He ²⁺ + 2e	D-114*
H ⁺ + Li -> H ⁺ + Li ⁺ + e	D-122*
$He^+ + Li -> He^+ + Li^+ + e$	D-126
$He^{2+} + I_{i} \rightarrow He^{2+} + I_{i}^{+} + e$	D-1289

Cross Sections for Slcw Positive-Ion and Electron Production in Collisions of Hydrogen Atoms with Molecular Hydrogen

> H + H₂ -> Total Slow Positive Ion Prod. $H + H_2 \rightarrow$ Total Slow Electron Prod.

Slow	Positive	Ion Production	Electron	Production
I	Energy	Cross Section	Energy	Cross Section
()	eV/anu)	(Cm ²)	(eV/ami)	(cm²)
4	.0E+01	5.518-19	8.02+01	2.832-19
7	.0e+01	1.652-18	1.0E+02	5.71 E -19
1	.0E+02	2.51E-18	2.02+02	2.65E-18
2	.05+02	3.372-18	4.0E+02	9.67E-18
3	.0E+02	3.17E-18	7.0E+02	2.38E-17
4	.0E+02	3.262-18	1.0E+03	3 .98e-17
7	.0E+02	4.73E-18	2.0E+03	9.33E-17
1	.0E+03	7.282-13	3.0E+03	1.24E-16
2	.0%+03	1.978-17	4.06+03	1.298-16
- 4	.0E+03	5.062-17	5.0E+03	1.328-16
1	.OE+04	1.278-16	7.0 2 +03	1.50E-16
2	.CE+04	1.752-16	1.0E+04	2.00E-16
- 4	.0E+04	1.60F-16	2.02+04	2.90E-16
1	.0E+05	1.15 - 6	3.0E+04	3.082-16
2	.0e+05	8.1427	4.02+04	2 .98e -16
- 4	.0E+05	5.028-17	7.0E+04	2.56E-16
			1.0E+05	2.265-16
			2.0E+05	1.58E-16
			4.0E+05	1.02E-16

References: 28, 30, 143, 287, 315, 323, 324

Accuracy: 20%

<u>Hotes:</u> (1) The slow positive charge formation cross section is the sum of the ionization cross section and the electron capture cross section. $\sigma^* = \sigma_1$ (H₂) + e) + σ_{0-1} (H⁺ + H₂⁺). The dissociative ionization cross section (H + H₂ -> H + H⁺ + H + e) is only 2-5% of the H₂⁺ formation cross section in this energy range. (2) At low energies most of the H₂⁺ arises from electron capture collisions. (3) The electron production cross section is the sum of ionization and the electron loss or stripping cross section $\sigma' = \sigma_1 (H_2' + e) + \sigma_{01} (H' + e)$.

Chebyshev Fitting Parameters for Cross Sections

	Posi Elec	ltive Toni Strons	e E _{min} E _{min}	= 4.02+0 = 8.02+0	D1 eV/amu, D1 eV/amu,	E _{max} - E _{max} -	4.02+05 4.02+05	eV/amu eV/amu
		AO	A1	A2	A3	A4	A5	A6
POB.	ions	-77.2533	2.45645	972849	533057	-,0537388	.365771	154454

The fit represents the Positive Ions cross section with an rms deviation of 6.7%. The maximum deviation is 14.9% at 7.02+01 eV/amm.

The fit represents the Electrons cross section with an rms deviation of 8.5%. The maximum deviation is 17.8% at 7.02+03 eV/amu.

Ť.

D-3

Ionization Cross Sections for

 $H + H_{2} -> H + H_{2}^{+} + e$

Energy	Velocity	Cross Section		
(eV/JMMu)	(Cm/ \$)	(Cm ²)		
2.06+02	1.96E+07	4.04E-19		
4.0E+02	2.78E+07	1.426-18		
7.02+02	3.68E+07	3.32E-18		
1.0E+03	4.39E+07	5.48g-18		
2.0E+03	6.21E+07	1.49E-17		
4.0E+03	8.79E+07	3.716-17		
7.0E+03	1.16E+08	6.72E-17		
1.02+04	1.39E+08	9.30E-17		
2.08+04	1.96E+08	1.458-16		
2.8E+04	2.32E+08	1.546-16		
4.06+04	2.78E+08	1.468-16		
7.02+04	3.682+08	1.23E-16		
1.02+05	4.396+08	1.08E-16		
2.02+05	6.21E+08	8.13E-17		
4.0E+05	8.782+08	4.99E-1 7		

References: 28, 30, 143, 308, 315, 323, 325

Accuracy: 30%

<u>Botes:</u> (1) The ionization cross section is determined from either of two relations: $\sigma_1 = \sigma - \sigma_{01}$ or $\sigma_1 = \sigma^* - \sigma_{0-1}$, where σ is the cross section for formation of electrons, σ_{01} is the loss or stripping cross section, σ^* is the cross section for slow ion formation, and σ_{0-1} is the electron capture cross section. (2) There is considerable scatter in the data among the various investigators.

Chebyshev Fitting Parameters for Cross Sections

E_{min} = 2.0E+02 eV/amu, E_{max} = 4.0E+05 eV/amu A0 A1 A2 A3 A4 A5 A6 -77.1205 2.47663 -1.43551 -.126243 .100447 .0662120 -.0477593

The fit represents the above CrOBB section with an rms deviation of 2.7%. The maximum deviation is 4.1% at 7.0E+04 eV/amu.

See appendix for Chebyshev fit details.

1

D-5

 $H + H_2 -> H + H_2^+ + e$
Ionization Cross Sections for

 $H^{+} + H -> H^{+} + H^{+} + e$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/ອ)	(CR ²)
9.4E+03	1.356+08	1.62E-17
1.JE+04	1.39E+08	1.846-17
1.5E+04	1.70E+98	4.21E-17
2.0E+04	1.96E+08	7.20E-17
3.0E+04	2.41E+08	1.218-16
4.0E+C4	2.78E+08	1.396-16
4.58+04	2.95E+08	1.41E-16
5.05+04	3.11E+08	1.40E-16
6.0E+04	3.40E+08	1.37E-15
7.02+04	3-682+08	1.30E-16
8.02+64	3.93E+08	1.238-16
9.02+04	4,177+08	1.16F-16
1.02+05	4.39E+08	1 108-16
1 52+05	5 388+08	8.728-17
2 08+05	5 21FA00	7 14P-17
3 05+05	7 (18+00	/.146-1/ 6 1/8 17
3.02+03	7.016408	3+146-17 4 048 17
4.06705	8./8E+08	4.046~1/
1.02+05	1.168+09	2.548-17
1.08+00	1.376+09	1.886-1/
1.52+06	1.70E+09	1.34E-17

<u>References:</u> 4, 261, 335, 336, 337, 338, 339, 340, 341, 342, 383, 586 <u>Accuracy:</u> E > 4x10⁴ eV/amu - 25% E < 4x10⁴ eV/amu - Unknown

<u>Botes:</u> (1) Data above $4\times10^4 \text{ eV/assu}$ are the recommended data of Rudd, et al. (Ref. 335). Below this energy, the recent data of Shah et al. (Ref. 336) indicate a marked departure from the evaluated data of Rudd. The data plotted here in the low energy range are the recent results of Shah et al. (Ref. 336). (2) For a hydrogen atom target, the cross sections $f_{0,c}$ slow electron production (σ) are equal to the ionization cross sections (σ_1) . For slow ion production (σ) the cross sections are the sum of the electron capture cross sections (σ_{01}) and the ionization cross sections at high energies $\sigma^2 = \sigma_1^2$.

Chebyshev Fitting Parameters for Cross Sections

	e _{min} -	9 .4E +03	eV/amı,	^E max =	1.5E+06 e	V/amu
AO	A1	A2	A3	A4	A5	A6
-75.5053	409785	~,996553	.355360	049000	0349984	.0437825

The fit represents the above cross section with an rms deviation of 1.7%. The maximum deviation is 2.7% at 4.0E+05 eV/amu.

See appendix for Chebyshev fit details.

П

Ionization Rate Coefficients for

H + H -> H + H + e

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

B+								
Temp.	Equal				H' Te	вр. (еV)		
(eV)	Temp.	1000.	2000.	4000.	7000.	10000.	15000.	20000.
1.0E+03	9.60E-11#	9.60E-11#	5.16E-10#	2.35E-09*	6.44E-09*	1.08E-08	1.74E-08	2.25E-08
1.5E+03	5.16E-10#	2.59E-10#	8.64E-10#	2.96E-09*	7.18E-09	1.16E-08	1.792-08	2.30E-08
Z-02+03	1.29E-09*	5.16E-10#	1.29E-09*	3.61E-09*	7.92E-09	1.23E-08	1.65E-08	2.34E-08
2.5E+03	2.35E-09*	8.64E-10#	1.7 92-09*	4.29E-09*	8.66E-09	1.295-08	1.91E-08	2.30E-08
3.0E+03	3.61E-09*	1.29E-09*	2.35E-09*	4.99E-09*	9.40E-09	1.36E-08	1.96E-08	2.42E-08
3.32+03	4.992-09*	1.792-09*	2.96 -09	5.71E-09*	1.01E-03	1.43E-08	2.01E-08	2.462-08
4.0E+03	6.44E-09*	2.35E-09*	3.61. 9*	6.44E-09*	1.08E-08	1.49E-08	2.06E-08	2.50E-08
4.5E+03	7.92E-09	2.96E-09*	4.29E-63*	7.18E-09	16E-08	1.56E-08	2-11E-08	2.54E-08
5.0E+03	9.40E-09	3.61E-09*	4.99E-09*	7.92≌∽09	1.23E-08	1.62E-08	2.16E-08	2.58E-C8
5.5E+03	1.085-08	4.29E-09*	j.71E-09*	8.668-09	1.29E-06	1.682-08	2.212-08	2.61E-08
6.0E+03	1.238-08	4.99E-09*	6.44E-09*	9.40E-09	1.36E-08	1.74E-08	2.258-08	2.65E-08
8.0E+03	1.742-08	7.92E-09	9.40E-09	1.23E-08	1.62E-08	1.96E-08	Z.42E-08	2.78E-08
1.0E+04	2.158-08	1.08E-08	1.23E-08	1.49E-08	1.85E-08	2.16E-08	2.58E-08	2.90E-08
1.22+04	2.505-08	1.36E-08	1.49E-08	1.74E-08	2.06E-08	2.34E-08	2.722-08	3.01E-08
1-42+04	2.78g-08	1.62E-08	1.74E-08	1.96E-08	2.25E-08	2.50E-08	2.84E-08	3.10E-C8
1.6E+04	3.01E-08	1.85E-08	1.962-08	2.15E-08	2.42E-00	2.65E-08	2.958-08	3.19E-08
1.8E+04	3.19E-08	2.06E-08	2.16E-08	2.34E-08	2.58E-08	2.78E-08	3.06E-00	3.27E-08
2.0E+04	3.358-08	2.25E-08	2.34E-08	2.50E-08	2.728-08	2.90E-08	3-15E-08	3.352-08

Accuracy: * - Possible Error Greater Than 10% 5 - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+03 eV, E_{max} = 2.0E+04 eV

R							
Temp.							
(eV)	A 0	A 1	A2	A 3	84	A5	A6
1000.	-40.0051	2,76605	344647	0369496	.00899170	-3.564719E-04	4.0649998-04
2000.	-38.7629	1.97055	100798	0656769	.0461132	.00211656	-1.279077E-04
4000.	-37.4352	1,22903	.0356592	0490361	00390032	.00203472	2.0114228-04
7000.	-36.4087	.743427	.0691035	0248017	00589077	5.652350E-04	3.380127E-04
10000.	-35.0193	,594234	.0663753	0124429	00494956	-1.095647E-04	2.357336E-04
15000.	-35.2398	.301656	.0518339	00363904	00313907	-4.112259E-04	8.8634782-05
20000.	-34,8966	.198907	.0391475	-5.009334E-04	00198385	-3.886616E-04	1.1596122-05
Equal Ter	sp38.7626	2,01265	736000	.106667	0206816	.00733904	00185096

1 I.

D--9

Ionization Rate Coefficients for

$H + H^{+} -> H^{+} + H^{+} + e$

Beam - Maxwellian Rate Coefficients (cm³/s)

н+							
Temp.				8	Energy (eV/a	B1#3)	
(eV)	10000.	20000.	40000.	70000.	100000.	206060.	500000.
1.05+00	2.56E~09	1.41E-08	3.86E-08	4.78E-08	4.83E-08	1.43E-08	3.305-08
2.02+00	2.56E-09	1.41E-08	3.86E-08	4.78E-08	4.83E-08	4-43E-08	3.30E-08
4.02+00	2.53E-09	1.41E-08	3.85E-08	4.78E-08	4.83E-08	4-43E-08	3.30E-08
7.02+00	2.478-09	1.41E-08	3.85E-08	4.78E-08	4.83E-08	4-43E-08	3.30E-08
1.0E+01	2.40E-09	1.41E-08	3.85E-08	4.78E-08	4.83E-08	4-43E-08	3.302-08
2.0E+01	2.27E-09*	1.41E-08	3.85 <u>2-08</u>	4.77E-08	4.83E-08	4.43E-08	3.302-08
4.0E+01	2.19E-09*	1.41E-05	3.84E-08	4.77E-08	4,83E-08	4.43E-08	3.30 2-08
7.02+01	2.182-09*	1.41E-08	3.842-08	4.77E-08	4.83E-08	4.43E-08	3.30E-08
1.02+02	2.22E-09*	1.42E-08	3.832-08	4.77E-08	4.83E-08	4-43E-08	3.30E-08
2.02+02	Z.42E-09*	1.442-08	3.022-00	4.772-08	4.82E-08	4-43E-08	3.30E-08
4.0E+02	2.88E-09*	1.492-08	3.01E-08	4.76E-08	4.82E-01	4-47E-08	3.30E-08
7.02+02	3.58E-09*	1.56E-08	3.792-08	4.75E-08	4.01E-08	4-422-08	3.30E-08
1.02+03	4.258-09*	1.63E-08	3.77E-08	4.73E-08	4.81E-0P	4.412-08	3.30E-08
2.0E+03	6.40E-09	1.01E-08	3.74E-08	4.69E-08	4.79E-08	4-40E-08	3.30E-08
4.02+03	1.02E-08	2.092-08	3.71E-09	4.62E-08	4.75E-08	4.38E-08	3.30E-08
7.0E+03	1.49E-08	2.40E-08	3.70E-08	4.52E-08	4.70E-08	4.36E-08	3.29E-08
1.02+04	1.862-08	2.64E-08	3.722-08	4.45E-08	4.64E-08	4.33E-08	3.298-09
2.0E+04	2.73E-00	3.16E-08	3.822-08	4.31E-08	4.47E-08	4.26E-C8	3.29E-08

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

H							
Energy							
(eV/amu)	AO	A1	A2	A 3	24	A5	n6
10000.	-38.2968	1.12152	-644681	. 100717	100166	0395957	.00265964
20000.	-35.7290	.356274	. 202092	.0620743	00276894	0115918	00410154
40000.	-34.1679	0162401	3.2463632-04	.00754856	.00728055	.00420183	.00124748
70000.	-33.7606	0400418	0258461	0120904	00336001	2.5485925-04	9,6610752-04
100000.	-33.7204	0256605	0180094	0107132	00535053	00208862	-4,645604E-04
200000.	-33.8801	0146171	00902218	00477874	-,00229897	-9.8287622-04	-3.658987E-04
500000.	-34.4565	-7.9138232-04	-5.7105952-04	-3.4862542-04	-1.8200288-04	-8.154704E-05	-3,512063 E-0 5

Associati	ve	Detachment	Cross	Sections	for	

Energy	Velocity	Cross Section
(eV/amu)	(Cm/ 8)	(cm²)
2.0E-03	6.21E+04	5.128-14
4.0E-03	8.79E+04	2.23E-14
7.0E-03	1.16E+05	1.36E-14
1.02-02	1.39E+05	1.08E-14
2.0E-02	1.962+05	6.77E-15
4.02-02	2.78E+05	3.772-15
7.0E-02	3.68E+U5	2.19E-15
1.02-01	4.39E+05	1.55E-15
2.0E-01	6.21E+05	8.79E-16
4.0E-01	8.79E+35	4.962-16
7.0E-01	1.16E+06	3.25E-16
1.02+00	1.39E+06	2.32E-16
2.0E+00	1.962+06	1.27E-16
4.0E+00	2,78E+06	5-13E-17
7.0E+00	3.68E+06	2.37E-17

References: 417, 418, 419

Accuracy: 30%

i.

<u>Hotes:</u> (1) The theoretical data of (Ref. 417) are within a few percent of the experimental data of (Ref. 418). (2) Measurements of $D^* + D^- -> D_2^* +$ e are consistently 30-50% below those for H^{*} + H^{*}. At energies greater than 1 eV/amu the fluctuations in the data mask this difference.

Chebyshev Fitting Parameters for Cross Sections

	Emin	¥	2.08-03	ev/a	nu, E _{max}	*	7.0E+00	eV/amu	
AO		A 1		A2	A 3		A 4	A 5	A6
-68.6095	-3.6	5349	0 .15	3293	-0.133084	0	284174	0787410	.0439445

The fit represents the above cross section with an rms deviation of 2.2%. The maximum deviation is 3.4% at 7.0P-03 eV/amu.

1 1 1

Total	Slow	Electron	Production	Cross	Sections	for

$H^+ + H_2 \rightarrow \epsilon e$

(cm/s)	(Cm ²)
	1 445 18
5.0E+02 3.11E+07	1*440-10
7.0E+02 3.68E+07	2.158-18
1.0E+03 4.39E+07	3.328-18
2.0E+03 6.21E+07	7 .85E-18
4.0E+03 8.79E+07	1.84E-17
7.0E+03 1.16E+08	3.67E-17
1.02+04 1.392+08	5.66E-17
2.0E+04 1.96E+08	1.18E-16
4.0E+04 2.78E+08	1.96E-16
6.5E+04 3.54E+08	2.19E-16
7.0E+04 3.68E+08	2.19E-16
1.0E+05 4.39E+08	1.96E-16
2.0E+05 6.21E+08	1.33E-16
4.02+05 8.782+08	7.96E-17
7.0E+05 1.16E+09	5.08E-17
1.02+06 1.392+09	3.74E-17
2.0E+06 1.96E+09	2.07E-17
4.0E+06 2.77E+09	1.15E-17
5.0E+06 3.09E+09	9.50E-18

References: 30, 36, 42, 45, 89, 217, 315, 335, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 366

Accuracy: 25%

Hotes: (1) The data are the recommended data of Rudd et al. (Ref. 335). See this reference for an analytical fit to the data at low and high energies. (2) The slow electron production cross sections are the sum of four reactions: (a) $H' + H_2 -> H' + H_2' + e$ (pure ionization); (b) -> H' +H + H' + e (ionization with dissociation); (c) -> H' + H' + e (double ionization); (d) -> H + 2H' + e (electron capture with ionization).

Chebyshev Fitting Parameters for Cross Sections

Emin = 5.0E+02 eV/amu, Emax = 5.0E+06 eV/amu

A0 A1 A2 A3 24 A5 A6 -76.9159 .969378 -1.91735 -.0245092 .313763 -.000351145 -.0992103

The fit represents the above cross section with an rms deviation of 3.1%. The maximum deviation is 6.2% at 2.0E+05 eV/amu.

4

See appendix for Chebyshev fit details.

Cross Sections for the Formation of Positive Ious in Collisions of R^* with R_2

 $H^* + H_2 \rightarrow H^* + H_2^* + e$ (Single Ionization) $H^* + H_2 \rightarrow$ Total Production of H_2^* (or Total Ion Formation) $H^* + H_2 \rightarrow$ Total Production of H^*

Single lonization H₂ Production **N*** Production Energy Cross Section (eV/amu) (cm²) Energy Cross Section (eV/amu) (cm²) Energy Cross Section (ev/amu) (eV/amu) { **(C** m ⁴) 1.23E-17 8.23E-16 5.02+03 6.0E+03 5.02+03 3.71E-17 6.0E+03 7.02+03 1.78E-17 7.0E+03 8.37E-16 4.93E-17 1.06+04 2.63E-17 1.0E+04 8-032-16 7.0E+03 6.118-17 1.58+04 4-248-17 2.02+04 6.09E-16 8.0£+03 7.258-17 2.02+04 6.238-17 4.0E+04 4.13E-16 9.08+03 8.298-17 3.0E+04 1.30E-16 7.0E+04 2.93E-16 1.02+04 9.16E-17 4.0E+04 1.838-16 2.32E-16 1.56+04 1.0E+05 1.17E-16 6.02+04 1.75E-16 1.76+04 2.20E-16 1.58+05 1.20E-16 2.00+05 1.43E-16 2.02+04 7.02+04 2.17E-16 1.17E-16 4.0E+05 7.0E+05 2.5E+04 1.02+05 2.042-16 8.69E-17 1.028-16 1.52+05 1.742-16 5.51**E**-17 3.0E+04 8.36E-17 1.0E+06 4.05E-17 3.58+04 7.038-17 2.02+05 1.44E-16 8.712-17 4.02+05 1.5E+06 2.85E-17 4.0E+04 6.03E-17 7.02+05 5.548-17 2.0E+G6 2.24E-17 4.5E+04 5.248-17 1.06+06 4-07E-17 3.02+06 1-56E-17 5.0E+04 4.62E-17 2.02+06 1-37E-17 2.248-17 3.58+06 3.06+06 1.57E-17 3.52+06 1.37E-17 3.82+06 1.238-17 30, 36, 40, 89, 315, 346, 348, 350, 353, 354, 356, 360, 361, 362, 363, 364, 365, 366 <u>References:</u>

Accuracy: 30%

Hotes: (1) The interaction of H' with H_2 to produce H_2^* ions may follow one of **EXCES:** (1) The interaction of H with H₂ to produce H₂ ions may follow one of two pathways: (a) H' + H₂ -> H' + H₂' + e, single ionization; (b) H' + H₂ -> H + H₂', electron capture. Pive reactions are involved in the production of H' ions; (c) H' + H₂' -> H' + H + H' + e, dissociative ionization; (d) -> H' + H' + H' + 2e, double ionization; (e) -> H + H + H', electron capture with dissociation; (f) -> H + H' + H' + e, transfer ionization; (g) -> H' + 2H', double electron capture. (2) At energies less than 150 keV/amu the total charge production cross sections (o_t) are dominated by electron capture. (3) Within the experimental error the total charge production cross section is the same as the total cross section for producing H_2° . (4) Above 150 keV the single ionization cross section. (reaction a) is the dominant process to form positive charges or H_2^* . (5) Cross sections are available for the double ionization (Ref. 36, 348, 356, 360, 365) (reaction c). However there are large discrepancies and these data are not included here. The cross sections are at least an order of magnitude smaller than the single ionization cross sections.

Chebyshev Fitting Parameters for Cross Sections

	81;	ng. Ion.	Emin -	5.0e+03	eV/aanu,	E _{max} =	3.82+06	eV/amu
	H2*	Prod.	Emin -	6.0e+03	eV/aanu,	E _{max} =	3.52+06	eV/amu
	ਸ*	Prod.	Emin -	5.0e+03	eV/aanu,	E _{max} =	5.02+04	eV/amu
		AO	A1	A2	A3		A	5 A6
Sing.	Ion	-75.4752	100192	-1,35816	.230586	.187780	157087	.0102380
H ₂	Prod.	-72.9773	-2.12495	-,260502	.0542968	0279667	.022105	9G0372930
H	Prod.	-74.4647	.0986066	-,525436	.00183837	.0396132	.012104	100373826

The fit represents the Single Ion. cross section with an rms deviation of 7.1%. The maximum deviation is 17.3% at 2.02+04 eV/amu. The fit represents the H_2° Prod. cross section with an rms deviation of 0.4%.

The maximum deviation is 0.7% at 2.02+05 eV/amu. The fit represente the H Prod. cross section with an rms deviation of 0.6%. The maximum deviation is 1.2% at 3.02+04 eV/amu.

See appendix for Chebyshev fit details.

Ť.

Slow Negative Charge Production Cross Sections for

H' + He -> electrons and H⁻

Energy	Velocity	Cross Section
(eV/agan)	(cm /s)	(Cm ²
4.4E+02	2.916+07	9.65E-20
5.0E+02	3.116+07	1.16E-19
7 .0E+02	3.685+07	1.92E-19
1.0E+03	4.39E+07	3.288-19
2.0E+03	6.21E+07	9.40E-19
4.0E+03	8.79E+07	2.73E-18
7.0E+03	1.16E+08	6.358-18
1.0E+C4	1.396+08	1.098-17
2.0E+U4	1.96E+08	2.96E-17
4.0E+04	2.78E+08	6.68E-17
7.02+04	3.685+08	9.07E-17
1.02+05	4.396+08	9.286-17
2.0E+05	6.212+08	6.86E-17
4.0E+05	8.782+08	4.248-17
7.02+05	1.166+04	2.778-17
1-02+06	1.398+09	2-09E-17
1.58+06	1.550.05	1.538-17
2 08+06	1 965409	1,356-17
A OP+06	3 778+00	5 70F-18
		0./76-10
J. VETVO	3.0361 33	2-036-19

References: 40, 83, 89, 315, 335, 347, 353, 354, 355, 357, 358, 359, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380

Accuracy: $E > 4x10^4$ eV/amu - 20% $E < 4x10^4$ eV/amu - Unknown - see note (1)

<u>Hotes:</u> (1) These data are the recommended data of Rudd et al. (Ref. 335). The data below 4×10^4 eV/amu are strongly weighted by the experimental results of Rudd et al. (Ref. 83) taken in 1983. Several investigators have investigated the low energy region, all of them reporting crcss sections higher than the recommended data. (2) Reactions that produce slow negative charges are: (a) H' + He -> H' + He' + e, single ionization; (b) H' + He -> H' + He^{2'} + 2e, double ionization; (c) H' + He -> H + He' -> H' + He' + e, capture with ionization or transfer ionization; (d) H' + He -> H' + He^{2'} double electron capture.

Chebyshev Fitting Parameters for Cross Sections

	2 _{min}	= 4.42+02	eV/amu,	E _{max} *	5.0E+06	eV/amu
AO	A 1	A2	A3	A4	A5	A 6
-79.6795	2.14499	-2.18192	146158	. 362843	.0528127	123316

The fit represents the above cross section with an rms deviation of 4.4%. The maximum deviation is 7.3% at 2.02+04 eV/amu.

 $H^+ + He -> electrons + H^-$

Slow Negative Charge Production Rate Coefficients for

H⁺ + He -> electrons and H⁻

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Temp.	Equal	He Temp. (eV)									
(•V)	Temp.	10.	750.	1000.	1250.	5000.	15000.	20000-			
1.05+02	3.508-13#	1.618-13#	3.94E-12*	6.17E-12*	8.83E-12*	1.02E-10	3.79E-10	1.39E-09			
7.52+02	4.86E-11	3.10E-11	4.86E-11	5.54E-11	6.26E-11	2.24E-10	5.88E-10	1.74E-09			
1.02+03	8.71E-11	5.57E-11	7.85E-11	8.71E-11	9.61E-11	2.84E-10	6.79E-10	1.87E-09			
1.3E+Q3	1.37E-10	8.742-11	1.16E-10	1.26E-10	1.37E-10	3.50E-10	7.76E-10	2.02E-09			
1.5E+03	1.97E-10	1.26E-10	1.60E-10	1.72E-10	1.04E-10	4.23E-10	8.75Z-10	2.16E-09			
1.6E+03	2.69E-10	1.72E-10	2.11E-10	2.24E-10	2.39E-10	5.02E-10	9.87E-10	2.31E-09			
2.05+03	3.50E-10	2.25E-10	2.69E-10	2.84E-10	3.00E-13	5.88E-10	1.10E-09	2.47E-09			
3.0E+03	7.75E-10	5.03E-10	5.66E-10	5.88E-10	6.10E-10	9.87E-10	1.60E-09	3.11E09			
4.0E+03	1.348-09	8.80E-10	9.59E-10	9.87E-10	1.01E-09	1.47E-09	2.16E-09	3.78E-09			
5.0E+03	2.038-09	1.34E-09	1.44E-09	1.47E-09	1.50E-09	2.02E-09	2.78E-09	4.48E-09			
6.02+03	2.78E-09	1.882-09	1.982-09	2.02E-09	2.05E-09	2.62E-09	3.44E-09	5.20E-09			
7.02+03	3.61£-09	2.47E-09	2.58E-09	2.62E-09	2.66E-09	3.27E-09	4.13E-09	5.93E-09			
8.0E+03	4.482-09	3.11E-09	3.238-09	3.27E-09	3.31E-09	3.95E-09	4.84E-09	6.66E-09			
9.0E+03	5.382-09	3.78E-09	3.91E-09	3.95E-09	3.99E-09	4.66E-09	5.56E-09	7.40E-09			
1.02+04	6.30E-09	4.46E-09	4.61E-09	4.66E-09	4.70E-09	5.38E-09	6.30E-09	8.13E-09			
1.2E+04	8.13E-09	5.93E-09	6.07E-09	6.11E-09	6.16E-09	6.85E-09	7.76E-09	9.57E-09			
1.5E+04	1.09E-06	8.13E-09	8.27E-09	F.J1E-09	8.36E-09	9.04E-09	9.92E-09	1.17E-08			
2.0E+04	1.48E-08	1.17E-08	1.18E-08	1.18E-08	1.19E-08	1.252-08	1.33E-08	1.48E-08			

Accuracy:	*	-	Possible	Error	Greater	Than	104
-		-	Possible	Error	Greater	Than	100%

H

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+02 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

He Temp. (eV)		AO	A1	- A2	A 3	A4	A5	٨6
10.		-46.5650	5.49971	475864	.0795255	103842	.0146906	5.7014998-04
750.		-44.8867	4.19397	. 198206	-,184815	01.4624	00795734	.00438872
.000.		-44.5760	3.97780	.272829	192799	0215899	00569587	.00394217
1250.		-44.3093	3.79820	.326679	193047	0272627	00347223	.00358121
5000.		-42.1265	2.50907	.515276	0994986	0616701	00469874	.00584793
10000.		-40.7163	1.83020	.481655	-,0331261	0467863	0183645	.00768600
20000.		- 39.1385	1.18831	.377951	.0154712	0231939	0206727	.00437997
Equal Te	mip.	-45.6407	5.29550	441276	.00871718	0927904	.0101600	.00309937

Slow Negative Charge Production Rate Coefficients for

He + H' -> electrons and H⁻

Beam - Maxwellian Rate Coefficients (cm³/s)

H.							
Temp.				He Energ	y (eV/annu)		
(eV)	10000.	20000.	40000.	70000.	100000.	150000.	200000.
1.02+00	1.51E-09	5.59E-09	1.84E-08	3.11E-08	4.07E-08	4.18E-08	4.26E-08
2.02+00	1.512-09	5.80E-09	1.852-08	3.32E-08	4.07E-08	4.18E-08	4.26E-08
4.0E+00	1.52E-09	5.81E-09	1.85E-08	3.33E-%d	4.07E-08	4.18E-08	4.26E-08
7.0E+00	1.52E-09	5.81E-09	1.85E-08	3.32E-)8	4.07E-08	4.18E-08	4.26E-08
1.0E+01	1.526-09	5.81E-09	1.85E-08	3.32E-08	4.06E-08	4.18E-08	4.26E-08
2.0E+01	1.53E-09	5.81E-09	1-84E-08	3.322-08	4.06E-08	4.18E-08	4.25E-08
4.0E+01	1.54E-09	5.82E-09	1.84E-08	3.31E-08	4.05E-08	4.18E-08	4.25E-08
7.0E+01	1.56E-09	5.85E-09	1.84E-08	3.31E-08	4.05E-08	4.18E-08	4.25E-08
1.0E+02	1.58E-09	5.87E-09	1.836-08	3.30E-08	4.04E-08	4.18E-08	4.25E-08
2.0E+02	1.65E-09	5.97E-09	1.83E-08	3.30E-08	4.02E-08	4.18E-08	4.24E-08
4.0E+02	1.80E-09	6.175-09	1.84E-08	3.28E-08	4.01E-08	4.18E-08	4.23E-08
7.0E+02	2.03E-09	6.48E-09	1.85E-08	3.28E-08	3.99E-08	4.18E-08	4.22E-08
1.0E+C3	2.26E-09	6.80E-09	1.87E-08	3.27E-08	3.97E-08	4.18E-08	4.22E-08
2.0E+03	3.04E-09	7.83E-09	1.922-08	3.27E-08	3.93E-08	4.18E-08	4.208-08
4.0E+03	4.66E-09	9.70E-09	2.04E-08	3.26E-08	3.872-08	4.17E-08	4.17E-08
7.0E+03	7.06E-09	1.21E-08	2.19E-08	3.25E-08	3.82E-08	4.13E-08	4.148-08
1.0E+04	9.37E-09	1.43E-08	2.31E-08	3.25E-08	3.77E-08	4.09E-08	4.11E-08
2.0E+04	1.592-08	1.98E-08	2.628-08	3.29E-08	3.69E-08	3.98E-08	4.02E-08

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

He Energy							
(eV/Amu)	A0	A1	A2	A3	λ4	A5	A6
10000.	-39.3816	1.02698	.576534	.188719	4-4259712-05	0355917	0198253
20000.	-37.3350	.517958	. 301257	. 123942	.00937576	0100372	0129438
40000.	-35.4715	.129405	.0937138	.0477169	.0118588	-4.888201E-04	003254337E-03
70000.	-34.4703	.00355792	0123483	.0153783	00669156	.00817185	00392000
100000.	-34.0898	0436120	0204578	00631264	-9.902555E-04	3.7000602-04	5.4215208-04
150000.	-33.9953	0150052	0121264	00832720	00470324	00198547	-3.3644082-04
200000.	-33.9705	0219825	0119088	00528740	00226756	00102041	-4.501627E-04

See appendix for Chebyshev fit details.

i.

.

He + H^+ -> electrons + H^-

Г Т.

Ionization and Total He' Production Cross Sections for

 H^* + He -> H^* + He^* + e $H^* + He \rightarrow (H + He^*)$ or $(H^* + He^* + e)$

Ioni	zation	Total He [*]	Production		
Energy (eV/amu)	Cross Section (Cm ²)	Energy (e∛/ammu)	Cross Section (CM ²)		
1.0E+04 1.5E+04 2.0E+04 3.0E+04 4.0E+04 7.0E+04 9.0E+04 1.0E+05 1.5E+05 2.0E+05 1.0E+05 1.0E+06 1.5E+06 2.0E+06 3.0E+06	2.04E-17 3.49E-17 4.94E-17 6.61E-17 7.37E-17 8.28E-17 8.42E-17 8.38E-17 7.65E-17 6.69E-17 4.26E-17 2.82E-17 2.82E-17 1.61E-17 1.29E-17 8.92E-18 6.71E-18	5.0E+03 7.0E+C3 1.0E+04 2.0E+04 2.3E+04 4.0E+04 7.0E+04 1.0E+05 2.0E+05 4.0E+05 1.0E+06 1.5E+06 2.0E+06 4.0E+06 5.0E+06	3.82E-17 7.64E-17 1.33E-16 2.39E-16 2.43E-16 1.58E-16 1.22E-16 7.14E-17 4.27E-17 2.84E-17 2.84E-17 1.61E-17 1.29E-17 6.75E-18 5.31E-18		
5.0E+06	5.32E-18				

83, 87, 89, 315, 353, 354, 359, 368, 371, 372, 375, 376, 381, 382, 383, 384, 385, 386, 387, 388 References:

Accuracy: 30%

<u>Hotes:</u> (1) The total cross section for slow He^{*} ion production is the sum of the electron capture cross (H^{*} + He -> H + He^{*}) and the ionization cross section (H^{*} + He -> H^{*} + H^{*} + e). (2) The cross section for production of He^{2*} is two orders of magnitude less than that for He^{*} and contributes a negligible amount to the slow ion formation. (3) At energies less than 2 x 10⁵ eV/amu the electron capture cross section is the dominant reaction in producing slow ions. Above this energy the cross section for He formation is the same as the ionization cross section to form He⁺. (4) For cross sections invriving the formation of slow He^{2*} see the following set of data.

Chebyshev	Fitting	Parameters	for	Cross	Sections

Ioniza	tion	E _{min} =	1.0e+04	eV/amu,	е _{тах}	= 5.0E+00	5 eV/amu
Tot.	He' Prod.		5.0e+03	eV/amu,	Е _{тах}	= 5.0E+00	5 eV/amu
	AO	A 1	A2	A 3	A4	A5	A 6
Ionization	-76.3648	074453	884552	.221106	0292448	0234184	0152807
Tot. He ⁺ Prod.	-75.4062	-1.41315	923745	.441895	193224	00636635	.0315740

The fit represents the Ionization cross section with an rms deviation of 1.6%. The maximum deviation is 2. at 7.02+04 eV/amu.

The fit represents the Tot. He' Prod. cross section with an rms deviation of 1.3%. The maximum deviation is 1.7% at 1.0E+04 eV/amu,

Ionization Rate Coefficients for

H' + He -> H' + He' + e

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

8.								
Tesp.	Equal			A	le Temp. (eV)		
(●♥)	Temp.	5000.	6000.	7000.	8000.	10000.	15000.	20000.
1.0E+03	4.07E-12#	1.33E-10#	2.07E-10#	2.99E-10#	4.08E-10#	6.69E-10#	1.518-09-	2.50E-09*
1.5E+03	5.51E-11#	2.99E-100	4.08E-10#	5.31E-10#	6.69E-10#	9.78E-10#	1.898-09*	2-922-09*
2.0E+03	2.072-108	5.31E-10#	6.69E-100	6.182-100	9.78E-100	1.32E-09#	2.30E-09*	3.35E-09*
2.5E+03	4.682-108	8.18E-10¢	9.78E-10#	1.15E-090	1.32E-09#	1.702-09*	2.71E-09*	3.77E-09*
3.0E+03	8.16E-10#	1.15E-09#	1.32E-09#	1.51E-09*	1.70E-09*	2.09E-09*	3.13E-09*	4.20E-09*
3.5E+03	1.248-098	1.51E-09*	1.702-09*	1.892-09*	2.09E+C9*	2.50E-09*	3.56E-09*	4.62E-09*
4.0E+03	1.70E-09*	1.892-09*	2-098-09*	2.30E-09*	2.50E-69*	2.92E-09*	3.998-09*	5.052-09*
4.5E+03	2.20E-09*	2.30E-09*	2.50E-09*	2.71E-09*	2.92E-09*	3.35E-09*	4.41E-09*	5.47E-09*
5.0E+03	2.712-09*	2.71E-09*	2.92E-09*	3.132-09*	3.35E-09*	3,77E-09*	4.842-09*	5.892-09*
5.5E+03	3.242-03*	3.13E-09*	3.35E-09*	3.56E-09"	3.77E-09*	4.26E-09*	5.26E-09*	6.30E-09*
6.02+03	3.77E-09*	3.56E-09*	3.77E-09*	3.998-091	4-20E-09*	4.62E-09*	5.68E-09*	6.72E-09*
8.0E+03	5.892-09*	5.26E-09*	5.472-09*	5.688-09*	5.89E-09*	6.30E-09*	7.328-09	8.292-09
1.0E+04	7-912-09	6.92E-09*	7.128-03*	7.32E-09	7.52E-09	7.91E-09	8.87E-09	9.798-09
1.22+04	9.79E-09	8.482-09	8.68E-09	8.07E-09	9.06E-09	5.43E-09	1.03E-08	1.12E-08
1.4E+04	1.15E-08	9.97E-09	1.012-08	1-032-08	1.05E-08	1.085-08	1.17E-08	1.258-08
1.6E+04	1.312-08	1.14E-C8	1-152-08	1.175-08	1.192-08	1.22E-08	1.302-08	1.37E-08
1.6E+04	1.462-08	1.278-08	1.282-08	1.305-08	1.31E-08	1.342-08	1.422-08	1.49E-08
2.0E+04	1.60E-08	1.39E-08	1.4CE-08	1-422-08	1.432-38	1.46E-08	1.53E-00	1.602-08

Accuracy:	-	Possible	Error	Greater	Than	10%
-	-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

		E _{min} =	1.0E+03	ev, E _{má}	17. ⁼ 2.06	2+04 eV	
He							
Temp.							
(eV)	A 0	A1	¥2	A3	A4	A5	A6
5000.	-40.3451	2.34883	-,257537	0218607	.0131131	00170960	-2.721338-04
6000.	-40.0282	2.14145	186832	0325594	.0117041	-7.73826E-04	-3.91919E-04
7000.	-39.7552	1.96806	132538	0385303	.00991961	-1,95606E-05	-4.64455E-04
8000.	-39.5164	1.82079	090163	50415350	.00805275	5.255452-04	-4.72996E-04
10000.	-39.1156	1.58360	0298040	0424986	.00463640	.00112196	-3.85570E-04
15000.	-38.3952	1.19717	.045588	70345519	00101950	,00132410	-2.81314E-05
20000.	- 37.8995	.951741	.074448	70255952	00350613	8.715912-04	-4.39401E-05
Equal Temp	41.9272	3.86757	-1.06890	.261511	0564975	.00926855	00119300

Ionization Rate Coefficients for

He + H' -> He' + H' + e

Beam - Maxwellian Rate Coefficients (cm^3/s)

H +							
Temp.				He Ene:	rgy (eV/amu)		
(eV)	10000.	20000.	46660.	70000.	100000.	200000.	500000.
1.0E+00	1.45E-09*	9.69E-09	2.05E-08	3.04E-08	3.68E-08	4.15E-08	3.552-00
2.0E+00	1.47E-09*	9.68E-09	2.05E-08	3.04E-09	3.68E-08	4.15E-08	3.55E-00
4.0E+00	1.49E-09*	9.67E-09	2.05E-08	3.04E-08	3.68E-08	4.15E-08	3.55E-08
7.02+00	1.52E-09*	9.66E-09	2.05E-08	3.04E-08	3.60E-08	4.15E-00	3.55E-08
1.0E+01	1.54E-09*	9.66E-09	2.04E-08	3.04E-08	3.682-08	4.15E-08	3.55E-08
2.02+01	1.60E-C9*	9.65E-09	2.04E-08	3.04E-08	3.682-08	4.15E-08	3.55E-08
4.0E+01	I.682-09-	9.64E-09	2.04E-08	3.04E-08	3.67E-08	4.15E-08	3.55E-08
7.02+01	1.7?E-09*	9.64E-09	2.04E-08	3.04E-08	3.672-08	4.15E-08	3.55E-08
1.0E+02	1.85E-09*	9.652-09	2.04E-08	3.04E-08	3.67E-08	4.15E-08	3.55E-08
2.0E+02	2.08E-09*	9.71E-09	2.04E-08	3.04E-08	3.66E-08	4.14E-08	3.55E-08
4.02+02	2.45E-09*	9.85E-09	2.052-08	3.042-08	3.66E-08	4.13E-08	3.55E-08
7.02+02	2.91E-09*	1.01E-06	2.06E-08	3.04E-08	3.65E-08	4.13E-08	3.542-08
1.0E+03	3.332-09*	1.03E-68	2.06E-08	3.04E-08	3.65E-08	4.12E-08	3.55E-08
2.0E+03	4.532-09*	1.102-08	2.09E-08	3.05E-08	3.63E-08	4.11E-08	3.55 E-08
4.0E+03	6.51E-09*	1.23E-08	2.15E-08	3.67 E-08	3.622-08	4.082-08	3.55E-00
7.0£+03	8.99E-09	1.42E-08	2.25E-08	3.09E-08	3.60E-08	4.05E-08	3.54E-08
1.0E+04	1.122-08	1.58E-08	2.34E-08	3.11E-08	3.59E-08	4.02E-08	3.54E-08
2.0E+04	1.70E-08	2.04E-08	2.59E-C8	3.18E-08	3.55E-00	3.9 4E-08	3.53E-08

Accuracy:	-	Possible	Error	Greater	Than	10%
	-	Possible	Error	Greater	Than	100

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

He Energy (eV/Amu)	A 0	A1	A2	A3	۸4	A5	٨6
10000.	-39.1279	1.16505	.469737	.0813519	0228287	0182847	00258180
20000.	-36.5805	.205887	.190126	.0869452	.0237093	4.34865E-04	-3.87920E-03
40000.	-35.3193	.0816359	.0597659	.0332395	.0137513	.00383099	1.22161E-04
70000.	-34.6011	.0145540	.0116645	.00621244	.00251084	6.93786E-04	4.47956E-04
100000.	-34.2559	0155100	00743994	00254453	-6.97240E-04	-1.61490E-04	2.33078E-05
200000.	-34.0175	0200973	0118588	00502167	00256996	-9.87558E-04	-2.324028-04
500000.	-34.3105	00181505	00131097	-8.28718E-04	-5.05268E-04	-2.95214E-04	-1.014342-04

I.

See appendix for Chebyshev fit details

 $He + H^{+} -> He^{+} + H^{+} + e$

Total He. Production Rate Coefficients for

H^{*} + He -> (H + He^{*}) or (H^{*} + He^{*} + e)

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Temp.	Equal			Re	Temp.	(eV)		
(44)	Temp.	1000.	2000.	4000-	700C.	10000.	15000.	20000.
1. CE+ 03	3.32E~10#	3.32E-10#	6.71E-10#	1-60E-09#	3.78E-09*	6.26E-09*	1.06E-08*	1.492-08
1.5E+03	1.39E-09#	1.13E-09#	1.68E-09#	3-022-09	5.41E-09*	8.00E-09*	1.24E-08	1.65E-CO
2.02+03	3.02E-09*	2.32E-09*	3.02E-09*	4.56E-09*	7.12E-09*	9.77E-09*	1.41E-08	1.012-08
2.5E+03	4.90E-09*	3.78E-09*	4.58E-09*	6-26E-09*	8.882-09*	1.152-08	1.57E-08	1.96 2-08
3.02+03	7.12E-09*	5.41E-09*	6.26E-09*	8.00E-09*	1.06E-08*	1.32E-08	1.73g-06	2.10E-08
3.58+03	9.33 E- 09*	7.128-09*	8.00E-09*	9.77E-09*	1.24E-08	1.492-08	1.8 02-08	2.24E-08
4.0E+03	1.15E-00	8.95E-09*	9.772-C3*	1-156-08	1.41E-08	1.652-08	2.03 5-0 8	2.372-08
4.5E+03	1.37E-06	1.06E-08"	1.152-08	1.322-08	1.57E-08	1.812-08	2.17E-08	2.49E-08
5.0E+03	1.57E-08	1.242-08	1.322-98	1-492-08	1.732-08	1.962-00	2.30E-G8	2.61 E-08
5.52+03	1.77E-06	1.412-00	1.492-08	1-652-08	1.88 2 -08	2.10E-00	2.43E-08	2.722-08
6.GE+03	1.96E-08	1.57E-08	1-652-68	1-81E-38	2.03E-08	2.248-08	2.558-08	2.632-08
8.02+03	2.612-08	2.172-08	2.24E-08	2.37E-08	2.558-08	2.722-08	2.90E-CO	3.20E-08
1.02+04	3.122-08	2.67E-08	2.722-08	2.832-08	2.982-08	3.12E-08	3.328-08	3.51E-08
1.22+04	3.51E-08	3.07E-08	3-122-08	3.20E-C8	3.32E-08	3.442-08	3.612-00	3.76E-08
1.42+04	3.822-08	3.40E-08	3.44E-08	3.51E-08	3.61 2-0 8	3.70E-08	3.84E-08	3.97E-08
1.62+04	4.062-08	3.67E-08	3.702-08	3.76E-08).84E-08	3.922-08	4.04E-08	4.14E-C8
1.82+04	1.25E-08	3.902-08	3.92E-08	3.97E-08	4.042-08	4.10E-08	4.19E-08	4.28E-08
2.0E+04	4.402-08	4.08E-08	4.10E-08	4.14E-08	4.19E-08	4.25E-08	4.33%-08	4.40E-08

Accuracy:	-	Possible	Error	Greater	Than	101
-	-	Possible	Error	Greater	Than	100%

8+

Chebyshev Fitting Parameters for Rate Coefficients

Emin = 1.0E+03 eV, Emax = 2.0E+04 eV

Re Temp. (eV)	20	21	27	A3		44	26
(,		~	~~	~ ~ ~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1000.	- 17.7759	2.35765	526776	.0461542	00599557	.00186274	5.618922-05
2000.	-37.3613	2.05214	369347	.00372548	. 00360397	3.228962-04	1.92742E-07
4000.	-36.7649	1.63391	227162	0328342	.00799982	4-62850E-04	-3.572042-04
7000.	-36.1737	1.24696	108095	0449948	.00515942	.00147386	-4.77249E-04
10600.	-35.7678	.998971	0496155	0432215	.00174125	.00180493	-2.033268-04
15000.	-35.3020	.734516	00387920	0346346	00171864	.00144013	-1.440868-05
20000.	-34.9844	.566598	.0150211	0267530	00313077	.00108401	2.076742-04
Equal Temp.	-37.4591	2.34257	631509	.0945062	0203712	-00642863	-,0G134327

1

See appendix for Chebyshev fit details

I.

Total		He'	Pro	duct i	on	R	ate	Coef	fic	ien	ts	fo	۶r
He	+	H,	>	(Heʻ	+	H)	or	(H e'	+	н.	٠	e}	
Beam	-	Max	well	ian	Ra	te	Coe	ffici	ent	s	((5)

H+							
Temp.				He Ene	rgy (eV/am	u)	
(Va)	10000.	20000.	40000.	70000-	100000.	200000.	500000.
1.0E+00	1.84E-08	4.68E-08	6.02E-08	5.8CE-08	5.36E-08	4.44E-08	3.56E-08
2.02+00	1.84E-C8	4.68E-08	6.01E-08	5.8CE-08	5.36E-08	4.44E-08	3.56E-08
4.0E+00	1.842-08	4.67E-08	5.02E-08	5.80E-08	5.36E-08	4.44E-08	3.55E-08
7.02+00	1.838-08	4.668-08	6.01E-00	5.896-08	5.36E-08	4.44E-08	3.56E-08
1.0E+01	1.93E-00	4.662-08	6.01E-08	5.80E-08	5.36E-08	4_44E-08	3.56E-08
2.0E+01	1.83E-08	4.642-08	6.00E-08	5.802-08	5.36E-08	4. 44E-08	3.56E-08
4.02+01	1.635-08	4.62E-08	5.992-08	5.792-08	5.36E-08	4.44E-08	3.56E-00
7.0E+01	1.83E-C8	4.602-08	5.98E-08	5.792-08	5.35E-08	442-08	3.56E-08
1.02+02	1.84E-38	4-598-08	5.97E-08	5.798-08	5.35E-08	4.44E-08	3.56E-08
2.02+02	1.87 2-08	4.55g-08	5.948-08	5.782-08	5.352-08	4.44E-08	3.56E-08
4.0E+02	1.958-00	4.51E-08	5.91E-08	5.77E-08	5.35E-08	4.43E-00).56E-08
7.02+02	2.07E-08	4.482-08	5.87E-08	5.75E-08	5.34E-08	4.442-08	3.56E-08
1.02+03	2.10E-08	4.46E-08	5.85E-08	5.742-08	5.34E-08	4.442-09	3.56E-08
2.0E+03	2.51E-08	4-442-08	5.76E-08	5.71E-08	5.328-08	4.442-08	3.562-08
4.02+03	3.002-08	4.47E-08	5.62E-08	5.64E-C8	5.30E-08	4.44E-08	3.562-06
7.0E+03	3.502-04	4.56E-08	5.46E-08	5.54E-08	5.258-08	4.44E-08	3.56E-08
1.02+04	3.868-08	4.64E-08	5.35E-08	5.45E-08	5.21E-08	4.44E-08).56E-08
2.02.04	4.53E-08	4.852-08	5.16E-08	5.21g08	5.05E-08	4.42E-08	3.56E-08

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.02+00 eV, E_{max} = 2.02+04 eV

He Energy (eV/amu)	A 0	A 1	A2	A3	84	٨5	26
10000.	-35.1311	.412681	.228676	.0583838	0173875	0216039	00620616
20000.	-33.7784	00396664	.0221013	.0208873	.00921146	.00114081	00146388
40000.	-33.3338	065#860	0346993	0127985	00242907	.00117581	.00179130
70000.	-33.3704	0391288	0249648	0133215	00605125	00211349	-2.49745E-04
100000.	-33.5061	0193669	0135261	00817621	00432298	00189118	-6.09453E-04
200000.	-33.8626	-6.29120E-04	-9.61867E-04	-9.42621E-04	-7.21387E-04	-4.478882-04	-2.11633E-04
500000.	-34.3009	-7.64617E-04	-4.54422E-04	-2.24604E-04	-1.49745E-04	-1.31679E-04	-5.405138-05

See	appendix	for	Chebyshev	fit	details
-----	----------	-----	-----------	-----	---------

÷

Ionization and Total He²⁺ Production Cross Sections for

 H^* + He -> H^{*} + He^{2*} + 2e H^{*} + He -> (H⁻ + He^{2*}) or (H^{*} + He^{2*} + 2e)

Total He²⁺ Production Ionization Cross Section (cm²) Cross Section Energy Energy (eV/amu) (eV/amu) 2.02+04 1.40E-19 1.0E+04 4.97E-19 3.0E+04 4.46E-19 1.5E+04 9.856-19 5.68E-19 2.0E+04 4.0E+04 1.492-18 2.17E-18 6.0E+04 9.69E-19 3.0E+04 1.07E-18 8.0E+04 4.0E+04 2.38E-18 5.0E+04 2.41E-18 1.0E+05 9.958-19 2.30E-18 1.5E+05 7.42E-19 7.0E+04 2.0E+05 5.59E-19 1.0E+05 1.80E-18 3.02+05 3.67E-15 1.5E+05 1.04E-18 4.0E+05 2.52E-19 2.0E+05 6.71E-19

References:	83, 376,	87, 381	89, , 38	315, 2, 38	353, 3, 38	354, 4, 38	359, 5, 38	368, 6, 38	371, 7, 381	372, B	375,

1.38E-19

9.63E-20

7.49E-20

4.958-20

3.72E-20

2.46E-20

1.85E-20

1.46E-20

Accuracy: 20%

6.0E+05

8.0E+05

1.0E+06

1.5E+06

2.02+06

3.0E+06

4.02+06

5.02+06

<u>Hetes:</u> (1) The total cross section for producing slow He^{2+} ions is the sum of the druble ionization cross section $(H^* + He -> H^* + He^{2+} + 2e)$ and the electron capture cross section $(H^* + He -> H^- + He^{2+})$. (2) At emergies less than $3x10^5 \text{ eV/amu}$ the production of He^{2+} is dominated by double electron capture collisions. (3) For cross sections involving the formation of He* see the preceding set of data.

3.0E+05

4.0E+05

7.0E+05

1.0E+06

1.5E+06

2.0E+06

4.0E+06

5.0E+06

3.83E-19

2.528-19

1.148-19

4.98E-20

3.74E-20

1.86E-20

1.48E-20

Chebyshev Fitting Parameters for Cross Sections

Ionization	Prod.	Emin =	2.0E+04	eV/amu,	E _{max} *	5.0E+06 eV	/amu
Tot. He ²⁺		Emin =	1.0E+04	eV/amu,	E _{max} *	5.0E+06 eV/	/amu
	AO	A 1	A2	A3	A4	A5	A6
Ionization	-86.8125	-1.69704	988419	.579481	140358	0229323	00915691
Tot. He ²⁺ Prod.	-85.7168	-2.26739	987093	.602380	075979	1104008	.0149516

The fit represents the Ionization cross section with an rms deviation of 2.5%. The maximum deviation is 4.3% at $4.0E+04 \, \text{eV/amu}$.

The fit represents the Tot. He²⁺ Prod. cross section with an rms deviation of 2.7%. The maximum deviation is 4.8% at 2.00+05 eV/amu.

I.

Double Ionization Rate Coefficients for

 $He + H' -> He^{2*} + H' + 2e$

Beam - Maxwellian Rate Coefficients (cm^3/s)

н*									
Temp.	He Energy (eV/auku)								
(eV)	20060.	40000.	60000.	80000.	100000.	200000.	500000.		
1.02+00	1.42E-11*	1.85E-10	3.29E-10	4.20E-10	4.37E-10	3.47E-10	1.78E-10		
2.0E+00	1.44E-11*	1.85E-10	3.29E-10	4.20E-10	4.37E-10	3.47E-10	1.78E-10		
4.0E+00	1.46E-11*	1.85E-10	3.29E-10	4.19E-10	4.36E-10	3.47E-10	1.78E-10		
7.0E+00	1.49E-11*	1.85E-10	3.29E-10	4.19E-13	4.36E-10	3.47E-10	1.78E-10		
1.0E+01	1.520-11*	1.85E-10	3.28E-10	4.19E-10	4.36E-10	3.47E-10	1.78E-10		
2.0E+01	1.58E-11*	1.85E-10	3.28E-10	4.18E-10	4.36E-10	3.47E-10	1.78E-10		
4.0E+01	1.68E-11*	1.85E-10	3.27E-10	4.17E-10	4.35E-10	3.47E-10	1.78E-10		
7.0E+01	1.80E-11*	1.85E-10	3.27E-10	4.16E-10	4.34E-10	3.47E-10	1.78E-10		
1.0E+02	1.90E-11*	1.85E-10	3.26E-10	4.15E-10	4.34E-10	3.47E-10	1.78E-10		
2.0E+02	2.20E-11*	1.85E-10	3.26E-10	4.13E-10	4.32E-10	3.47E-10	1.78E-10		
4.0E+02	2.70E-11*	1.87E-10	3.25E-10	4.10E-10	4.31E-10	3.46E-10	1.78E-10		
7.0E+02	3.348-11*	1.89E-10	3.25E-10	4.07E-10	4.28E-10	3.47E-10	1.78e-10		
1.0E+03	3.90E-11*	1.92E-10	3.25E-10	4.04E-10	4.26E-10	3.46E-10	1.78E-10		
2.0E+03	5.50E-11*	2.00E-10	3.24E-10	3.97E-10	4.19E-10	3.46E-10	1.78E-10		
4.0E+03	8.11E-11*	2.15E-10	3.23E-10	3.85E-10	4.08E-10	3.45E-10	1.78E-10		
7.0E+03	1.13E-10	2.32E-10	3.21E-10	3.73E-10	3.94E-10	3.42E-10	1.79E-10		
1.0E+04	1.40E-10	2.44E-10	3.20E-10	3.64E-10	3.83E-10	3.39E-10	1.79E-10		
2.0E+04	2.03E-10	2.71E-10	3.18E-10	3.45E-10	3.58E-10	3.28E-10	1.80E-10		

Accuracy: • - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

		E _m	in = 1.0	E+00 eV,	E _{max} =	2.0E+04 eV	
He							
(eV/amu)	A0	A 1	A2	A3	A4	A5	A 6
20000.	-48.1754	1.30300	.485174	, 0480600	0457483	0219390	-7.65210 E- 04
40000.	-44.6402	.155683	.100721	.0406747	.90551141	00485389	00420546
60000.	-43.6938	.0163921	00478529	00179360	00131646	-1.05431E-04	8.93568E-04
80000.	-43.2865	0824386	0435066	-,0165975	00387115	5.14172E-04	1.18040E-03
100000.	-43.1958	0767199	0463123	0215537	00727208	-9.94415E-04	8.20812E-04
200000.	-43.5811	0170301	0127181	00866682	00530410	00270153	-1,19855E-03
500000.	-44.8971	.00488974	.00333081	,00168204	5.29597E-04	-3.67440E-06	-7,7215 (E-05

See appendix for Chebyshev fit details

1

5-16

I

Total He²⁺ Production Rate Coefficients for

8+

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

1

Temp.	Equal				He Temp.	(eV)		
(●♥)	Temp.	500G.	7500.	10000.	12500.	15000.	17500.	20000.
7.5E+02	7.68E-15#	2.03E-12#	6.81E-12#	1.47E-11#	2.53E-11#	3.80E-11*	5.22E-11*	6.75E-11*
1.0£+03	1.04E-13#	3.55E-12#	9.61E-12#	1.87E-11¢	3.01E-11#	4.35E-11*	5.82E-11*	7.38E-11*
1.3E+03	5.03E-13#	5.59E-12#	1.29E-11#	2.302-11#	3.53E-11*	4-92E-11*	6.44E-11*	6.03E-11*
1.52+03	1.45E-12#	8.15E-12#	1.65E-11#	2.77E-11#	4.07E-11*	5.52E-11*	7.07E-11*	0.68E-11*
1.8E+03	3.12E-12#	1,12E-11#	2.08E-11#	3.27E-11#	4.63E-11*	6.12E-11*	7.70E-11*	9.33E-11*
2.02+03	5.59E-12#	1.47E-11#	2.53E-11#	3.80E-11*	5.22E-11*	6.75E-11*	8.35E-11*	1.70E-10*
3.0E+03	2.30E-11#	3.27E-11#	4.63E-11*	6.12E-11*	7.70E-11*	9.33E-11*	1.10E-10*	1.27E-10*
4.0E+03	4.92E-11*	5.52E-11*	7.07E-11*	8.68E-11*	1.03E-10*	1.20E+10*	1.37E-10*	1.54E-10*
5.0E+03	8.03E-11*	8.03E-11*	9.66E-11*	1.13E-10*	1.30E-10*	1.47E-10*	1.63E-10*	1.90E-10*
6.0E+03	1.13E-10*	1.07E-10*	1.73E-10*	1.40E-10*	1.57E-10*	1.73E-10*	1.89E-10*	2.05E-10
7.02+03	1.47E-10*	1.33E-10*	1.50E-10*	1.672-10*	1.83E-10*	1.99E-10	2.14E-10	2.30E-10
8. 0E+03	1.80E-10*	1.60E-10*	1.76E-10*	1.92E-10*	2.08E-10	2.24E-10	2.38E-10	2.53E-10
9.0E+03	2.11E-10	1.86E-10"	2.02E-10	2.18E-10	2.33E-10	2.47E-10	2.51E-10	2.75E-10
1.02+04	2.41E-10	2.11E-10	2.27E-10	2.41E-10	2.56E-10	2.70E-10	2.83E-10	2.96E-10
1.22+04	2.96E-10	2.59E-10	2.72E-10	2.86E-10	2.99E-10	3.12E-10	3.24E-10	3.35E-10
1.5E+04	J.66E-10	3.21E-10	3.33E-10	3.44E-10	3.55E-10	3.66E-10	3.76E-10	3.86E-10
2.0E+04	4-50E-10	4.04E-10	4.12E-10	4.21E-10	4.29E-10	4.36E-10	4.44E-10	4.50E-10

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 100%

Chebyshev Fitting Parameters for Rate Coefficients

		Emin	= 7.58+	02 eV,	E _{max} =	2.0E+04 eV	
80							
Temp.							
(eV)	A 0	A1	A2	A 3	A4	A5	A 6
5000.	-47.9855	2.71190	299562	0631734	.0152650	00140966	-4.924252-04
7500.	-47.0952	2.12886	119977	0784054	.90701306	-00151172	-6.61029E-04
10000.	-46,4732	1.74892	0292041	0751534	3.232382-04	.00245385E-03	-3.15620E-04
12500.	-46.0040	1.47944	.0203814	0667770	00376242	.00232506	5.559772-05
15000.	-45.6322	1.27684	.0496457	0501142	00655132	.00195763	1.43604E-04
17500.	-45.3276	1.11063	.0651645	0499554	00809607	.00145805	3.73270E-04
20000.	-45.0718	.991107	.0746366	0430706	00880789	.00106692	2.57551E-04
Equal Temp.	-50.6204	5.07900	-1.59808	. 393560	101018	.0175307	-,00147330

Total He^{2*} Production Rate Coefficients for He + H^{*} -> (He^{2*} + H^{*}) + (He^{2*} + H^{*} + 2e)

Beam - Maxwellian Rate Coefficients (cm³/s)

Temp.				He	Energy (eV	/amu)	
(e V)	10000.	20000.	40000.	70000.	100000.	150000.	200000.
1.02+()	3.56E-11*	2.92E-10	6.61E-10	0.44E-10	7.90E-10	5.59E-10	4.172-10
2.32+30	3.60E-11*	2.92E-10	6.61E-10	8.445-10	7.89E-10	5.59E-10	4.17E-10
4.0E+00	3.67E-11*	2.92E-10	6.60E-10	8.432-10	7.89E-10	5.59E-10	4.17E-10
7.0E+00	3.74E-11*	2.92E-1G	6.60E-10	8.43E-10	7.88E-10	5.59E-10	4.17E-10
1.0E+01	3.80E-11*	2.91E-10	6.60E-10	8.42E-10	7.00E-10	5.59E-10	4.17E-10
2.0E+01	3.96E-11*	2-91E-10	6.59E-19	8.41E-10	7.06E-1C	5.59E-10	4.17E-10
4.0E+01	4.20E-11*	2.915-10	6.59E-10	8.39E-10	7.85E-10	5.59E-10	4.17E-10
7.02+01	4.49E-11*	2.91E-10	6.58E-10	8.37E-10	7.032-10	5.58E-10	4.17E-10
1.02+02	4.73E-11*	2.92E-10	6.58E-10	0.36E-10	7.81E-10	5.58E-10	4.18E-10
2.02+02	5.41E-11*	2.95E-10	6.57E-10	8.32E-10	7.78E-10	5.5#E-10	4.18E-10
4.08+02	6.55E-11*	3.01E-10	6.56E-10	8.26E-10	7.72E-10	5.57E-10	4.19E-10
7.02+02	8.03E-11*	3.10E-10	6.55E-10	0.20E-10	7.66E-10	5.57E-10	4.19E-10
1.02+03	9.37E-11*	3.16E~10	6.53E-10	8.15E-10	7.62E-10	5.57E-10	4-20E-10
2.0E+03	1.33 E-10 *	3.43E-1C	6.50E-10	9.00E-10	7.48E-10	5.56E-10	4.22E-10
4.0E+03	1.99E-10	3.04E-10	6.46E-10	7.73E-10	7.26E-10	5.54E-10	4-242-10
7.0E+03	2.77E-10	4.32E-10	6.41E-10	7.40E-10	6.98E-10	5.49E-10	4.27E-10
1.0E+04	3.39E-10	4.69E-10	6.36E-10	7.12E-10	6.74E-10	5.428-10	4.28E-10
2.0E+04	4.75E-10	5.41E~10	6.21E-10	6.47E-10	6.14E-10	5.17 E- 10	4.24E-10
Accuracy	y: + - Po	ossible E	rror Grea	ter Than	10%		

- Possible Error Greater Than 100%

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

He. Energy (eV/atu) A0 **A1 A**2 **A**3 λ4 A5 **X6** .480627 .0489252 10000. -46.3757 1.27650 -.0511164 ...0308841 -.00542828 20000. -43.5984 .264368 .158736 40000. -42.3060 -.0238894 -.0325884 .0549494 .00162732 -.00969406 -,00629046 -.00280784 -.00102524 -4.84730E-04 -.00618733 70000. -41.9087 -.101626 -.0604596 100000. -42.0360 -.0958542 -.0558944 -.0289603 -.0112319 -.00285512 3.95976E-04 -.0108604 -.0266235 -.00350631 -4.830592-04 150000. -42.6352 -.0233424 -.0167110 -.0116669 -.00760143 -.00419389 200000. -43.1811 .0113231 .00418441 -8.730512-04 -.00251835 -.00215399 -.00181500 -.00136312

See appendix for Chebyshev fit details

8+

D--41
Penning, Associative, and Total Ionization Cross Sections for

Total I	on. (TI)	Penn. I	on. (PI)	Assoc.	Ion. (AI)
Energy (eV/amu)	σ	Energy (eV/amu)	0 (CM ²)	Energy (eV/annu)	ۍ (cm ²)
(,	()	(,		(,	
2.0E-02	7 .93E -15	1.8E-02	6.02E-15	1.9E-02	1.8CE-15
2.5E-02	7.35E-15	2.0E-02	5.89E-15	2.0E-02	1.77E-15
3.0E-02	6.89E-15	3.0E-02	5.34E-15	2.5E-02	1.51E-15
4.0E-02	6.19E-15	4.0E-02	4.93E-15	3.0E-02	1.29E-15
6.0E-02	5.16E-15	6.0E-02	4.29E-15	4.0E-02	9.78E-16
8.0E-02	4.51E-15	8.0E-02	3.83E 15	6.0E-02	5.79E-16
1.0E-01	4.02E-15	1.0E-01	3.47E-15	8.0E-02	3.75E-16
1.3E-01	3.49E-15	1.3E-01	3.11E-15	1.0E-01	2.60E-16
				1.3E-01	1.802-16

<u>References:</u> 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431. 432, 433

Accuracy: 100%

<u>Notes:</u> (1) The total ionization of H by low energy $He(2^{1}S)$ is the sum of Penning ionization $He(2^{1}S) + H \rightarrow He + H^{*} + e$ and associative ionization $He(2^{1}S) + H \rightarrow$ > HeH^{*} + e. (2) All data have been normalized to theory at an interaction energy of 0.04 eV. (3) Total ionization is sometimes referred to as chemionization. (4) The energy of the $2^{1}S$ state is 20.61 eV with a lifetime of 2×10^{-2} sec.

Chebyshev Fitting Parameters for Cross Sections

	Tota Penn Asso	1] .] 	ion. ion. ion.	(TI) (PI) (AI)	E _{min} E _{min} E _{min}	= =	2.02-(1.8E-(1.9E-()2)2)2	eV/amu, eV/amu, eV/amu,	E E E m	ax ax ax	= 1.3E- = 1.3E- = 1.3E-)1)1)1	eV/annu eV/annu eV/annu
				AO	A 1		A2		A 3	A4		A 5		A 6
Total	Ion.	(TI)	-65	.7017	409875		0288546	. 00	0799090	.0005260	85	00141698	.00	0701497
Penn.	Ion.	(PI)	-66	.0843	332960	-,	0347058	.00	142222	.0027242	15	.00118710		00264732
Аввос	. Ion.	(AI)	-69	.9529	-1,18775		135804	.02	32877	.0173897	,	.00454102	.00	0920812
The The	fit re maximum	pre n c	sents Jeviat	the ion	(TI) C 18 0.2%	ros at	s sect 3.0E-	ion 02	with eV/amu.	an rme	d	eviation	of	0.1%.
The The	fit re maximum	pre 1 c	sents Jeviat	the ion	(PI) C is 0.1%	ros at	s sect 6.0E-	ion D2	with eV/amu,	an rms	d	eviation	of	0.1%.
.				• 1										0.30

The fit represents the (AI) cross section with an rms deviation of 0.3%. The maximum deviation is 0.4% at 3.0E-02 eV/amu.

1 1

1

I.

Penning, Associative, and Total Ionization Cross Sections for

Total	Ion. (Ťi)	Penn. Io	n. (PI)	Assoc.	Ion. (AI)
Energy	a	Energy	o	Energy	σ
(eV/amu)	(cm²)	(eV/amu)	(cm ²)	(eV/amu)	(CM ²)
1.3E-02	4.26E-15	1-2E-02	2.95E-15	1-2E-02	1.348-15
1 .5E-0 2	4.12E-15	1.5E-02	2.80E-15	1.5E-02	1.25E-15
2.0E-02	3.84E-15	2.08-02	2.618-15	2.0E-02	1.130-15
4.0E-0 2	3.058-15	4.0E-02	2.20E-15	4-0E-02	8.08E-16
6. 0E-0 2	2.55E-15	6.0E-02	1.958-15	6.0E-02	6.14E-16
8.0 E-0 2	2.24E-15	8.0E-02	1.77 E-1 5	8.02-02	4.90E-16
1.0E-01	2.02E-15	1.0E-01	1.618-15	1.0E-01	3.99E-16
1 .5e-0 1	1.64E-15	1.56-01	1.36E-15	1.5E-01	2.67E-16
2.0E-01	1.402-15	2.0E-01	1.192-15	2.0E-01	1.95E-16
4.9E-01	9.79E-16	3.0E-01	9.77E-16	4.02-01	9.18E-17
6.02-01	7.72E-16	5-0E-01	7.58E-16	6.0E-01	5.988-17
8.02-01	6.31E-16	7.0E-01	6.13E-16	8.0E-01	4.54E-17
1.0E+00	5.25E-16	1.0E+00	4.888-16	1.02+00	3.692-17
1.52+00	3.92E-16	1.52+00	3.878-16	1.52+00	2.53E-17
2.0E+00	3.44E-16	2.0E+00	3.36E-16	2.0E+00	1.938-17
4.0E+00	2.54E-16	4.0E+00	2.492-16	4.0E+00	9.51E-18
6.0E+00	2.13E-16	6.0E+00	2.10E-16	6.0E+00	6.122-18
8.0E+00	1.89E-16	8.02+00	1.862-16	8.0E+00	4.11E-18
1.0E+01	1.71E-16	1.0E+01	1.71E-16	1.0E+01	2.17E-18
1.3 E+ 01	1.53E-16	1.3E+C1	1.51E-16	1.3E+01	9.08E-19
References: 420 430	, 421, 422, , 431, 432,	423, 424, 423 433	, 425, 426,	427, 428,	429,

Accuracy: 100%

<u>Hotes:</u> (1) The total ionization of H by low energy metastable $He(2^{3}S)$ is the sum of the cross section for Penning ionization $o_{PI} - He(2^{3}S) + H -> He + H^{*} +$ e and associative ionization $o_{AI} - He(2^{3}S) + H -> HeH^{*} + e$. (2) Much of the data have been taken such that the entire metastable beam is in the $2^{3}S$ state. Measurements have shown that the ratio of singlet to triplet states in ion beams is approximately 0.1. This assumption results in an error well within the experimental errors. (3) Total ionization is also referred to as chemionization. (4) The energy level of the $2^{3}S$ is 19.82 eV with a lifetime of 7900 sec.

Chebyshev Fitting Parameters for Cross Sections

	Total Penn. Assoc	i Ion Ion Ion	- (TI) - (PI) M. (AI)	Emin = Emin = Emin =	1.3E-02 1.2E-02 1.2E-02	eV/amu, eV/amu, eV/amu,	e _{max} e _{max} e _{max}	= 1.3E+0 = 1.3E+0 = 1.3E+0	l eV/amu l eV/amu l eV/amu l eV/amu
			AC	AI	A2	A3	۸4	A5	A6
TOLAI	Ion.	(T I)	-69.3748	-1.75540	0509031	.106912	.0109231	0140956	0257512
Penn.	Ion.	(PI)	-69.6823	-1.55608	10772A	.0932212	.0140800	9224249	0110671
Assoc	Ion.	(AI)	-74,3566	-3.45306	466805	0590)36	211902	-,116545	0298545
The The	fit re	epres un de	ents the	(TI) Cr is 4.75	OSB Sect	ion with	an rms	deviation	of 1.9%.
The	fit r	PDTPR	ents the	(PL) Cr	OBB BECT	ion with	an rmg	deviation	of 0.9%.
The	maximu	m de	viation	18 1.5%	at 1.5E+	00 eV/am	1.		
The	fit r	epres	ents the	(AI) CI	OSS Sect	ion with	an rms	deviation	of 3.2%.
The	max i mu	mi de	viation	18 8.6%	at 4.0E+	00 eV/am	u.		

I.

Total, Penning, and Rearrangement lonization Cross Sections for $\operatorname{Re}(2^{3}S) \rightarrow \operatorname{H}_{2} \rightarrow$ Ion Formation

Total	Ionization (TI)	Rearrangement	Ionization (RI)
Energy	Cross Section	Energy	Cross Section
(eV/amu)) (cm²)	(eV/amu)	(cm²)
2.0E-02	f.19E-17	3.0E-02	1.12E-17
3.0E-02	1.02E-16	4.0E-02	1.22E-17
4.0E-02	1.458-16	5.0E-02	1.37E-17
5.0E-02	1.89E-16	6.0E-02	1.55E-17
6.0E-02	2.36E-16	7.0E-02	1.74E-17
7.0E-0%	2-84E-16	8.0E-02	1.92E-17
8.0E-02	3-34E-16	9.0E-02	2.062-17
9.0E-02	3.862-16	1.0E-01	2.198-17
1.02-01	4.398-16	1.5E-01	2.798-17
1.58-01	7.21E-16	2.0E-01	3.35E-17
1.7E-01	8.04E-16	3.0E-01	4.47E-17
		4.0E-01	5.55E-17
		5.0E-01	6.58E-17
		6.0E-01	7.62E-17
		7.0E-01	8.70E-17
		7.5E-01	9.18 E -17

<u>References:</u>	412,	421,	433,	434,	435,	436,	437,	438,	439,	440,	441
	442,	443,	444,	445,	446,	447,	448,	449,	450,	451,	452
	453,	454,	455,	456							

Accuracy: Unknown

Hotes: (1) The measurement of metastable helium in H_2 is very difficult and the experimental results are inconsistent. Therefore the data should not be taken as absolute. The total ionization cross sections at thermal energies which are plotted at 0.03 eV/amu vary by a factor of six among eight measurements in glow discharges, flowing afterglow and merged beams. (2) The processes to form ions are: (a) Penning ionization (PI), He(2³S) + H₂ -> He + $H^{2^{\circ}}$ + e; (b) associative ionization (AI) He(2³S) + H₂ -> HeH⁺ + e; (c) dissociative ionization (DI) He(2³S) + H₂ -> He + H⁺ + H + e; (d) Rearrangement ionization (RI) He(2³S) + H₂ -> HeH⁺ + H + e; (e) Ion pair production (IPP) He(2³S) + H₂ -> He + H⁺ + H⁻. The sum of these processes is know as total ionization or chemionization; (3) Note that the total ionization is the same as Penning ionization within the experimental errors; (4) The energy level of the 2³S is 19.82 eV with a lifetime of 7900 Bec.

Chebyshev Fitting Parameters for Cross Sections

Total Ion. (1 Rearrang. Ion	'I) (RI)	E _{min} = E _{min} =	2.0E-02 3.0E-02	eV/aµmu, eV/aµmu,	E _{max} = E _{max} =	1.7E-01 7.5E-01	eV/amu eV/amu
	AO	AI	A2	A3	A4	A5	A 6
Total Ion. (TI) Rearrang. Ion. (RI)	-72.0362 -76.1234	1.29388 1.06951	00614640 .0610251	00560072 000279924	00984080 .0164987	0 059566 0 0176903	00475204
The fit represents The maximum devia	s the (1 tion is	[]) cros: 0.3% at	<pre>B section 5.0E-02</pre>	with an eV/amu.	rms devia	tion of	0.2%.
The fit represents The maximum devia	the (J	RI) cros 0.9% at	s section 6,0E-02	with an eV/amu.	rms devia	tion of	0.5%.

L

Total, Penning, and Rearrangement Ionization Cross Sections for $He(2^{1}S) + H_{2} \rightarrow Ion$ Formation

Total	Ioniza	tion	(TI)		Rea	rrange	men:t	Ioniz	ation	(RI)
Energy	7 Cr	085	Section	n		Energ	gy	Cross	Sect	ion
(eV/amu	i)	(Cm '	')			(eV/an	nu)	(0	7A1 ²)	
2.8E-02	2	9.97	5-17			3.0E-0	02	1.1	19E-17	
3.0E-02	2	1.116	2-16			4.0E-0	02	1.4	17E-17	
3.5E-02	2	1.358	2-16			5.0E-0	02	1.6	59E-17	
4.0E-02	2	1.588	5-16			6.0E-0	02	1.9	90E-17	
5.0E-02	2	2.04	E-16			7.0E-0	02	2.0)8E-17	
6.0E-02	2	2.50	E-16			8.0E-0	02	2.2	26E-17	
7.0E-02	2	2.948	Z-16			9.0E-0	02	2.4	11E-17	
8.0E-02	2	3.40	E-16			1.0E-0	D1	2.5	51E-17	
9.0E-02	?	3.77	e-16			1.1E-0	01	2.5	55e-17	
1.0E-01	L	4.071	E-16			1.5E-0	01	2.1	19E-17	
1.5E-01	L	5.00	E-16			2.0E-0	01	1.6	33E-17	
1.8E-01	L	5.391	E-16			2.5E-0	01	1.5	57E-17	
						3.0E-0	01	1.3	38e-17	
						4.0E-0	01	1.3	12E-17	
						5.0E-0	01	9.6	51E-18	
						6.0E-	01	8.3	38E-18	
						7.0E-	01	7.4	47E-18	
						7.5E-0	01	7.	2E-18	
Deferences 413	421	433	A7A	435	416	A 3 7	85A	PEN	440	441
ALL ALL	, 421, AA3	AAA	4J4, AA5	AA6	430,	AAQ	4JO, AAQ	457,	440,	441,
442	, 454,	455,	456	440,	44/,	440,	447,	чJU,	4711	732,

Accuracy: Caknown

Notes: (1) The measurement of metastable helium in H_2 is very difficult and the results are inconsistent. Therefore, the data should not be taken as absolute. (2) The processes to form ions are: (a) Penning ionization (PI) $He(2^{1}S) + H_2 \rightarrow He + H_2^{+} + e$; (b) Associative ionization (AI) $He(2^{1}S) + H_2 \rightarrow$ $HeH_2^{+} + e$; (c) Dissociative ionization (DI) $He(2^{1}S) + H_2 \rightarrow$ He + H⁺ + H + e; (d) Rearrangement ionization (RI) $He(2^{1}S) + H_2 \rightarrow$ HeH⁺ + H + e; (e) Ion pair production (IPP) $He(2^{1}S) + H_2 \rightarrow$ He + H⁺ + H⁺. The cum of these processes is known as total ionization or chemionization. (3) Note that the Penning ionization and the total ionization are the same within experimental errors; (4) The energy of the 2¹S state is 20.61 eV with a lifetime of $2x10^{-2}$ sec.

Chebyshev Pitting Parameters for Cross Sections

Total Ion. (T	I)	E _{min}	= 2.8E-0	2 eV/amu,	E _{max}	= 1.8E	C−01 eV/amu
Rearrang. Ion.	(RI)	E _{min}	= 3.0E-0	2 eV/amu,	E _{max}	= 7.5E	−01 eV/amu
	A0	A 1	A2	A3	24	A5	٨6
Total Ion, (TI)	-71.7445	.851023	128729	0202443	.00116383	.0124597	000179356
Rearrang, Ion, (RI)	-77.6786	311173	434644	.0826330	.0502759	0400365	0150564
The fit represen The maximum devi	ts the lation	(TI) cros is 0.6% at	s section t 7.02-02	n with an eV/amu.	ı rms dev	iation	of 0.3%.

The fit represents the (RI) cross section with an rms deviation of 2.1%. The maximum deviation is 2.9% at 7.0E-02 eV/amu.

 $He(2'S) + H_2 \rightarrow Ion$ Formation

Ionization and He^{2*} Production Cross Sections for $\text{H}^* + \text{He}^* \to (\text{H}^* + \text{He}^{2*} + \text{e}) \ (\sigma_1)$ $\text{H}^* + \text{He}^* \to (\text{H}' + \text{He}^{2*} + \text{e}) \ \text{or} \ (\text{H}^0 + \text{He}^{2*}) \ (\sigma_{\text{He}}^{2*})$

Ionization

He²⁺ Production

Energy	Cross Section	Energy	Cross Section
(eV/amu)	(CB ²)	(eV/amu)	(cm ²)
2.05+04	4-20E-19	3.78+03	9.25E-20
2.5E+04	7.50E-19	4.0E+03	1.08E-19
3.0E+04	1.18E-18	5.0E+03	1.62E-19
3.5E+04	1.67E-18	6.0E+03	2.41E-19
4.0E+04	2.218-18	7.0E+03	3.55E-19
4.5E+04	2.80E-18	8.0E+03	5.35E-19
5.0E+04	3.428-18	9.0E+03	7.92E-19
6.0E+04	4.69E-18	1.0E+04	1.12E-18
7.0E+04	5.92E-18	1.5E+04	4.31E-18
8.0E+04	6.98E-18	2.0E+04	9.33E-18
9.0E+04	8.00E-18	2.5E+04	1.44E-17
1.02+05	8.97E-18	3.0E+04	1.89E-17
1.5E+05	1.09E-17	4.0E+04	2.52E-17
2.02+05	1.01E-17	4.5E+04	2.71E-17
3.02+05	7.74E-18	5.0E+04	2.86E-17
4.0E+05	6.36E-18	6.0E+04	2.96E-17
5.0E+05	5.19E-18	7.0E+04	2.93E-17
		9.0E+04	2.81E-17
		9.0E+04	2.64E-17
		1.0E+05	2.42E-17
		1.5E+05	1.75E-17
		2.0E+05	1.36E-17
		3.0E+05	8.97E-18
		4.0E+05	6.56E-18
		5.0E+05	5.12E-18

References: 69, 73, 75, 76, 77, 81, 278, 279, 458

Accuracy: Ionization - 60% He^{2*} Production - 30%

Notes: (1) The production of He^{2^+} arises from two processes: (a) Charge exchange (H + He⁺ -> H + He^{2^+}) and (b) Ionization (H⁺ + He⁺ -> H⁺ + He^{2^+} + e). (2) At energies less than approximately 2.0 - 3.0×10^5 eV/amu the charge exchange process is dominant. Above this energy the ionization reaction dominates.

Chebyshev Fitting Parameters for Cross Sections

Ionization He ²⁺ Production		on oduction	E _{min} ≖ E _{min} =	2.0E+04 3.7E+03	2.0E+04 eV/amu, E 3.7E+03 eV/amu, E t		5.0E+05 eV 5.0E+05 eV	eV/a.u eV/aum.		
		A0	AI	A2	A3	A4	A5	A6		
Ioni	zation	-80.4308	1.24048	890202	.00345922	.0570045	.0193037	00746147		
He 2.	Production	-80.5893	2.10007	-1-81896	00398887	.325128	125749	00793823		
The	fit represe	ents the I	onization	CT085 5	ection with	an rmø	deviton	of 1.1%.		
The	maximum de	viation is	2.1% at	3.06+05	eV∕⊷umu.					

The fit represents the He^{24} Production cross section with an rms deviation of 3.2%. The maximum deviation is 6.2% at 3.7E+03 eV/amu.

for Ionization Rate Coefficients

¢, + Не²⁺ + Н[•] î •н + He

(cm³/5) Rate Coefficients - Maxwellian Beam

		20000.	
•H	Temp.	(eV)	

Temp.				He [†] Ener	rgy (eV∕amu	~	
(eV)	20000.	40000-	60000.	80000.	100000	200000.	500000.
1.0E+00	4,256-11*	6.14E-10	1.60E-09	2.70E-09	3.89E-09	6.27E-09	2.55E-09#
2.0E+00	4.30E-11*	6.14E-10	1.60E-09	2.74E-09	3.93E-09	6.27E-09	2.55E-09#
4.0E+00	4.37E-11*	6.14E-10	1.59E-09	2.74E-09	3.936-09	6.27E-09	2.55E~09#
7.0E+00	4.46E-11*	6.14E-10	1.59E-09	2.74E-09	3.93E-09	6.27E-09	2.55E~09#
1.0E+01	4.52E-11*	6.15E-10	1.59E-09	2.74E-09	3.93E-09	6.26E-09	2.55E-09#
2.0E+01	4.70E-11*	6.16E-10	1.60E-09	2.74E-09	3.92E-09	6.26E-09	2.55E-09#
4.0E+01	4.98E-11*	6.18E-10	1.60E-09	2.74E-09	3.92E-09	6.25E-09	2.55E~09#
7.0E+01	5.30E-11*	6.21E-10	1.60E-09	2.756-09	3.91E-09	6.25E-09	2.54E~09#
1.0E+02	5.57E-11*	6.24E-10	1.60E-09	2.75E-09	3.91E-09	6.24E-09	2.54E-09#
2.0E+02	6.36E-11*	6.35E-10	1.61E-09	2.76E-09	3.90E-09	6.23E-09	2.54E~09#
4.0E+02	7.68E-11*	6.56E-10	1.63E-09	2,785-09	3.89E-09	6.21E-09	2.54E~09#
7.0E+02	9.48E-11*	6.87E-10	1.67E-09	2.81E-09	3.89E-09	6.19E-09	2.54E-09#
1.0E+03	1.12E-10*	7.17E-10	1.70E-09	2.83E-09	3.895-09	6.18E-09	2.54E~09#
2.0E+03	1.69E-10*	8.17E-10	1.80E-09	2.89E-09	3.91E-09	6.13E-09	2.53E-09#
4.0E+03	2.88E-1C	1.01E-09	1.98E-09	3,01E-09	3.96E-09	6.05E-09	2.52E~09#
7.0E+03	4.80E-10	1.27E-09	2.22E-09	3.17E-09	4.02E-09	5.95E-09	2.51E~09#
1.0E+04	6.80E-10	1.51E-09	2.42E-09	3,30E-09	4.07E-09	5.86E-09	2.49E~09#
2.0E+04	1.346-09	2.16E-09	2.93E-09	3.62E-09	4.21E-09	5 .60E-0 9	2.44E-09#

10% 1001 Than Than Greater Greater Error Error Possible
Possible Accuracy:

for Rate Coefficients Chebyshev Fitting Parameters

		Emii	n = 1.0E	+00 eV,	E _{max =} 2.	.0E+04 eV	
He ⁺ Energy (eV/amu)	D V	AI	A2	Ę¥	¥4	A5	A6
20000.	-45,6943	1.57907	.710583	.175768	00705451	0284130	2116[10'-
40000.	-41.8177	-512347	,311944	.126340	1188120.	00849678	-,00968659
60000.	-40.2324	.239693	026621.	.0561005	.0168871	-,00195984	00376827
80700.	- 39.3054	.111744	.0654773	0331289	400699774	.00254954	- ,0022200
100000.	- 38.6923	: 607220.	.0195810.	.0149078	.002/1427	.00119878	-,00147599
200000.	-37.8257	0418823	0244902	0123875	00550012	-,00208690	-5.2765828-04
500000.	- 39.5936	0146717	51:21600	00524336	-,00267631	00119132	-1.070685E-04

See appendix for Chebyshev fit details

500000.

 $He^{+} + H^{+} -> He^{2+} + H^{+} + e$

He²⁺ Production Rate Coefficients for

 $H^{*} + He^{*} -> (H^{*} + He^{2*} + e) \text{ or } (H + He^{2*})$

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

в+								
Temp.	Equal				He ⁺ Tem	(eV)		
(₽₹)	Temp.	1000.	2000.	4000.	7000-	10000.	15000.	20000.
3.0E+02	1.95E-15¢	4.34E-14#	3.74E-130	3.02E-12#	1.65E-11*	4.93E-11	1.62E-10	3.47E-10
5.0E+02	9.77E-14#	2.70E-13#	1.04E-12#	5.228-12*	2.30E-11*	6.23E-11	1.87E-10	3.83E-10
7.0E+02	5.748-130	8.33E-130	2.21E-12#	8.32E-12*	3.11E-11*	7.71E-11	2-14E-10	4.29E0
9.0E+02	1.70E-12#	1.862-12#	4.02E-12*	1.25E-11*	4.08E-11	9.39E-11	2.42E-10	4.59E-10
1.0E+03	2.59E-12#	2.59E-12#	5.22E-12*	1.51E-11*	4.64E-11	1.03E-10	2.57E-10	4.78E-10
1.3E+03	5.08E-12*	5.22E-12*	9.26E-12*	2.30E-11*	6.23E-11	1.20E-10	2.97E-10	5.29E-10
1.5E+03	1.19E-11*	9.26E-12-	1.51E-11*	3.34E-11	8.11E-11	1.56E-10	3.39E-10	5.82E-10
1.8E+03	2.08E-11*	1.51E-11*	2.30E-11*	4.64E-11	1.032-10	I.67E-10	3.83E-10	6.36E-10
2.0E+03	3.34E-11	2.30E-11*	3.34E-11	6.23E-11	1.28E-1G	2.21E-10	4.30E-10	6.92E-10
4.0E+03	2.97E-10	1.87E-10	2.21E-10	2.97E-10	4.30E-10	5.82E-10	8.68E-10	1.18E-09
6.0E+03	8.08E-10	5.29E-10	5.02E-10	6.92E-10	8.682-10	1.05E-09	1.38E-09	1.72E-09
8.0E+03	1.45E-09	9.92E-10	1.052-09	1.18E-09	1.38E-09	1.50E-09	1.92 E- 09	2.25E-09
1.0E+04	2.128-39	1.51E-09	1.50E-09	1.72E-09	1.92E-09	2.122-09	2.45E-09	2.77E-09
1.22+04	2.77E-09	2.05E-09	2.128-09	2.25E-09	2.45E-09	2.65E-09	2.96E-09	3.27E-09
1.4E+04	3.38E-09	2.58E-09	2.65E-09	2.77E-09	2.96E-09	3.14E-09	3.44E-09	3.728-09
1.62+04	3.94E-09	3.08E-09	3.14E-09	3.27E-09	3.44E-09	3.61E-09	3.89E-09	4.15E-09
1.0E+04	4.44E-09	3.56E-09	3.61E-09	3.72E-09	3. 89E- 09	4.04E-09	4.30E-09	4.54E-09
2.02+04	4.89E-09	3.99E-09	4.042-09	4.15E-09	4.302-09	4.44E-09	4-67E-09	4.89E-09

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

		E _{min} =	3.0E+02	ev, E _{mas}	K = 2.0E	+04 eV	
ile ⁺							
Temp.							
(● ♥)	04	A1	¥5	¥3	84	A5	A6
1000.	-48.8313	5.03309	599670	148905	0411485	.0351803	.00376259
2000.	-47.5113	4.87892	205206	261148	00849826	.0291992	-3.7336702-04
4000.	-45.9304	3.85019	.0664286	260544	0126575	.0232481	-0.7703502-04
7000.	-44.4276	2.96296	. 192841	194959	0273665	.0145816	.00158914
10000.	-43.3804	2.38527	,238913	143127	0334989	,00836597	.00280697
15000.	-42.1743	1.76515	,255545	0670174	0337594	.00196449	.00271327
20000.	-41, 1491	1,37656	. 243899	0536124	0298721	00120071	.00208341
Equa: Temp.	-49.5753	7.04496	-1.51108	.221849	184942	.102821	0193609

$$H^{*} + He^{*} -> (H^{*} + He^{2*} + e)$$
 or $(H + He^{2*})$

for
Coefficients
Rate
Product ion
He ²⁺

(H + + e) or (He²⁺ •н + He' + H' -> (He²*

(cm³/s) Coefficients Rate Maxwellian ī Beam

÷

Temp.			He	Energy	(eV/amu)		
(eV)	10000.	20000.	40000.	70306.	100000.	200000.	500000
1.0E+00	1.56E-10	1.83E-09	6.99E~09	1.08E-08	1.06E-08	8.45E-09	2.51E-09
2.0E+00	1.56E-10	1.83E-09	6.995-09	1.08E-08	1.06E-08	8.45E-09	2.51E-09
4.0E+00	1.57E-10	1.83E-09	6.99E-09	1.08E-08	1.06E-08	8.44E-09	2.51E-09
7.02+00	1.57E-10	1.82E-09	6.98E-09	1.08E-08	1.06E-08	8.44E-09	2.51E-09
1.06+01	1.58E-10	1.82E-09	6.98E~09	1.086-08	1.06E-08	8.44E-09	2.52E-09
2.02+01	1.61E-10	1.83E-09	6.98E~09	1.07E-08	1.06E-08	8.44E-09	2.52E-09
4.0E+01	1.66E-10	1.83E-09	6.97E-09	1.07E-08	1.06E-08	8.44£-09	2.52E-09
7.0E+0ì	1.74E-10	1.85E-09	6.97E-09	1.07E-08	1.06E-08	8.43E-09	2.52E-09
1.0£+02	1.83E-10	1.86E-09	6.97E-09	1.07E-08	1.06E-08	8.43E-09	2.52E-09
2.0E+02	2.12E-10	1.92E-09	6.97E-09	1.07E-08	1.06E-08	8.42E-09	2.52E-09
4.06+02	2.73E-10	2.02E-09	6.99E-09	1.06E-08	1.06E-08	8.41E-09	2.52E-09
7.0E+02	3.69E-10	2.18E-09	7.01E-09	1.06E-08	1.06E-08	8.40E-09	2.53E-09
1.02+03	4.69E-10	2.32E-09	7.03E-09	1.05E-08	1.06E-08	8.40E-09	2.53E-09
2.0E+03	8.12E-10	2.76E-09	7.11E-09	1,03E-08	1.05E-08	8.37E-09	2.53E-09
4.0E+03	1.49E-09	3.47E-09	7.24E-09	1.00E-08	1.03E-08	8.33E-09	2.54E-09
7.0E+03	2.42E-09	4.298-09	7.40E-09	9,668-09	1.00E-08	8.292-09	2.55E-09
1.0E+04	3.24E-09	4.92E-09	7.52E-09	9.41E-09	9.77E-09	8.24E-09	2.56E-09
2.0E+04	5.23E-09	6.295-09	7.81E-09	8.92E-09	9.18E-09	8.01E-09	2.58E-09

and of

---- -100 -

> 101 Than Than Greater Greater Error Error - Possible - Possible • # Accuracy:

for Rate Coefficients Parameters Fitting Chebyshev

٩V

2.0E+04

R

Emax

e۷,

1.0E+00

Ħ

Emin

He [†] inergy eV/amu)	04	41	A2	(v		88	A6
0000.	-42.9783	1.71856	.769214	.0945643	105175	0612282	-1.2827058-04
.0000	- 39. 5695	. 556768	. JO3458	.0843952	0122473	0224883	16661600'-
.0000.	-37.5112	.0421662	.0299866	9291110.	012995300.	-2.171997E-04	-6.745161E-04
.0000	-36.7855	-,0761446	0461124	019610	00417912	.00142605	.00141346
.00000	-36.7766	0515173	0368252	0201855	00804421	00154056	1.214410E-04
.00000	-37.2003	C177798	0110528	-,00629544	12055500	1019100	00100#21
00000	- 39.5894	.0104222	.00514715	06846100.	3.63A925E-04	-8.415182E-06	-5.5208578-05

See appendix for Chebyshev fit details.

$$He^{+} + H^{+} -> (He^{2+} + H^{+} + e) \text{ or } (He^{2+} + H)$$

Ionization and He²⁺ Production Cross Sections for He^{*} + He^{*} -> (He^{*} + He^{2*} + e) (σ_{i}) He' + He' -> (He + He²) or (He' + He²+ e) (o_{He}^{2}) He²⁺ Production Ionization Cross Section Cross Section Energy Energy (eV/aniu) (**cm**²) (**c**m²) (eV/ame) 6.35E-19 1.0E+04 5.9E+03 3.46E-18 1.58+04 1.72E-18 6.0E+03 3.67E-18 2.06+04 3.12E-19 7.0E+03 4.94E-18 2.5E+04 4.756-18 8.02+03 6.38E-18 6.72E-18 9.0E+03 7.84E-18 3.02+04 3.5E+04 8.798-18 1.0E+04 9.34E-18 4-0E+04 1.088-17 1.58+04 1.558-17 4.5E+04 1.32E-17 2.0E+04 1.98E-17 2.25E-17 5.0E+04 1.56E-17 2.5E+04 5.5E+04 1.816-17 3.0E+04 2.50E-17 5.8E+04 1.99E-17 2.69E-17 3.5E+04 4.0E+04 2.82E-17 4.5E+04 2.94E-17 5.0E+04 3.00E-17 5.5E+04 3.028-17

References: 69, 277, 457

Accuracy: $\sigma_1 - \text{Factor of 2}$ $\sigma_{\text{He}}^2 - 50$

<u>Notes:</u> (1) The production of He^{2*} arises from two processes: (a) Charge exchange (He^{*} + He^{*} -> He + He^{2*}); (b) Ionization (He^{*} + He^{*} -> He^{*} + He^{2*} + e). (2) At energies less than 2.0 - 3.0x10⁵ eV/amu the charge exchange reaction dominates. (3) The incident He^{*} energy in eV/amu is plotted vs. the stationary He^{*} target.

6.0E+04

6.7E+04

3.03E-17

2.988-17

Chebyshev Fitting Parameters for Cross Sections

	Ionia He ^{2*}	ration Prod.	E _{stin} = E _{stin} ≃	1.0E+04 5.9E+03	eV/anu, eV/anu,	E _{max} = E _{max} =	5.8 5.7	8E+04 eV/aan 1E+04 eV/aan	iu iu
		AO	A 1	A2	A3	A	4	A5	A 6
loniza He ^{2*} P	tion rod.	-80.1208 -77.5761	1.69568 1.04465	114597 328288	.0198330 .0385209	00494 00883	221 D58	.00648764 0130928	.00123081 .00201232
The fi The ma	it repi aximum	resents th deviation	he Ioniza is 1.0	tion cro 1 at 4.0E	ss section C+04 eV/amu	with a 1,	n in in	s deviation	of 0.5%.
The fi	it repi	resents t	he He ¹⁴ I	rod. cro	ss section	with a	n rmi	s deviation	0. 0.5%.

The maximum deviation is 1.2% at 5.9E+03 eV/amu.

Single Ionization Rate Coefficients for

He' + He' -> He' + He²⁺ + e

Beam - Maxwellian Rate Coefficients (cm³/s)

Be ⁺							
Temp.				He' Ener	:gy (eV/aanau)	
(eV)	10000.	20000.	30000.	40000.	50000.	52000.	55000.
1.02+00	4.50E-11*	5.85E-10	1.62E-09	2.966-09	4.85E-09	5.18E-09	5.62E-09
2.02+00	4.538-11*	6.12E-10	1.62E-09	3.00E-09	4.85E-09	5.250-09	5.89E-09
4.0E+00	4.59E-11*	6.13E-10	1.62E-09	3.002-09	4.85E-09	5.25E-09	5.90E-09
7.0E+00	4.65E-11*	6.13E-10	1.62E-09	3.00E-09	4.85E-09	5.25€-09	5.90E-09
1.0E+01	4.69E-11*	6.13E-10	1.62E-09	3.00E-09	4.85E-09	5.25e-09	5.90E-09
2.0E+01	4.82E-11*	6.13E-10	1.62E-09	3.01E-09	4.85E-09	5.26E-09	5.91E-09
4.0E+01	5.00E-11*	6.14E-10	1.62E-09	3.01E-09	4.85E-09	5.26E-09	5.90E-09
7.0E+01	5.22E-11*	6.15E-10	1.62E-09	3.01E-09	4.85E-09	5.26E-09	5.81E-09
1.0E+02	5.39E-11*	6.16E-10	1.62E-09	3.02E-09	4.86E-09	5.27E-09	5.67E-09
2.0E+02	5.89E-11*	6.21 E -10	1.63E-09	3.03E-09	4.87E-09	5.24E-09	5.20E-09*
4.0E+02	6.68E-11*	6.31E-10	1.64E-09	3.066-09	4.84E-09	5.05E-09	4.60E-09*
7.0E+02	7.70E-11*	6.46E-10	1.67E-09	3.09E-09	4.68E-09	4.70E-09*	4.10E-09*
1.0E+03	8.64E-11*	6.62E-10	1.69E-09	3.12E-09	4.49E-09*	4.40E-09*	3.79E-09*
2.0E+03	1-15E-10*	7.16E-10	1.76E-09	3.186-09	3.93E-09*	3.75E-09*	3.24E-09*
4.0E+03	1.71E-10*	8.25E-10	1.91E-09	3.11E-09	3.28E-09*	3.10E-09*	2.74E-09#
7.0E+03	2.60E-10*	9.89E-10	2.04E-09	2.86E-09*	2.75E-09*	2.62E-09#	2.36E-09#
1.0E+04	3.57E-10	1.14E-09	2.07E-09*	2.625-09*	2.44E-09#	2.33E-09#	2.132-09#
2.02+04	6.89E-10	1.42E-09*	1.95E-09*	2.09E-09*	1.88E-09#	1.81E-09#	1.69E-09#

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV

fie ⁺							
Energy							
(øV/amu)	A0	A1	A2	X 3	A 4	A5	A6
10000.	-46,1185	1.19034	. 579487	.183843	.0279875	00786851	00843904
20000.	-42.0417	.344208	.209457	.102371	.0130005	00449377	0168872
30000.	-40.3424	.114393	.0591680	.00327201	0215154	0232829	0142410
40000.	- 19, 3369	0868409	0958221	0743825	0480228	0161228	-1.5577448-05
50000.	-38.7358	388572	250357	102423	00799043	. 0201351	.00955123
\$2000.	-38.6794	462899	271231	0815350	.00845828	.0221265	-7.913020E-04
55000.	-38.6693	588564	267081	0118366	.0203911	00168518	0171873

See appendix for Chebyshev fit details.

Beam – Maxwellian


```
He<sup>2+</sup> Production Rate Coefficients for
```

 $He^{+} + He^{+} -> (He^{+} + He^{2+} + e)$ or $(He^{+} + He^{2+})$

Beam - Maxwellian Rate Coefficients (cm³/s)

He'							
Temp.				He [*] Ener	rgy (eV/amu	1)	
(eV)	10000.	20000.	30000.	40000.	50000.	60007.	65000.
1.0E+00	1.30E-09	3.89E-09	5.71E-09	7.84E-09	9.32E-09	1.03E-08	1.06E-08
2.0E+00	1.30E-09	3.89E-09	5.99E-09	7.93E-09	9.32E-09	1.03E-08	1.06E-08
4.0E+00	1.30E-09	3.896-09	6.01E-09	7.83E-09	9.32E-09	1.03E-08	1.06E-08
7.0E+00	1.29E-09	3.88E-09	6.01E-09	7.83E-09	9.31E-09	1.03E-08	1.06E-08
1.0E+01	1.29 E- 09	3.88E-09	6.01E-09	7.84E-09	9.31E-09	1,03E-08	1.06E-08
2.0E+01	1.29E-09	3.88E-09	6.01E-09	7.84E-03	9.31E-09	1.03E-08	1.05E-08
4.0E+01	1.29E-09	3.88E-09	6.01E-09	7.84E-09	9.31E-09	1.03E-08	1.02E-08
7.0E+01	1.30E-09	3.88E-09	6.01E-09	7.84E-09	9.31E-09	1.03E-08	9.57E-09*
1.0E+02	1.30E-09	3.88E-09	6.01E-09	7.84E-09	9.31E-09	1.03E-08	9.11E-09*
2.0E+02	1.31E-09	3.88E-09	6.02E-09	7.85E-09	9.30E-09	1.03E-08	8.19E-09*
4.0E+02	1.33E-09	3.89E-09	6.03E-09	7.85E-09	9.30E-09	9.99E-09	7.34E-09*
7.0E+02	1.36E-09	3.905-09	6.04E-09	7.86E-09	9.29E-09	9.46E-09	6.76E-09*
1.0E+03	1.39E-09	3.92E-09	6.06E-09	7.87E-09	9.288-09	9.00E-09*	6.44E-09*
2.0E+03	1.49E-09	3.98E-09	б.10Е-09	7.89E-09	9.11E-09	7.96E-09*	5.87E-09*
4.0E+03	1.70E-09	4.11E-09	6.20E-09	7.87E-09	8.50E-09	6.90E-09*	5.36E-09*
7.0E+03	1.99E-09	4.31E~09	6.30E-09	7.63E-09	7.66E-09*	6.10E-09*	4.95E-09#
1.0E+04	2.26E-09	4.50E-09	6.32E-09	7.29E-09*	7.02E-09*	5.60E-09*	4.67E-09#
2.0E+04	3.05E-09	4.89E-09	6.01E-09*	6.26E-09*	5.71E-09*	4.67E-09#	4.08E-09#

Accuracy:	*	-	Possible	Error	Greater	Than	10%
	#	-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

He ⁺							
Energy							
(eV/amu)	A 0	A1	A2	A 3	A4	A5	A 6
10000.	-40.5559	. 324800	.215507	.101128	.0305437	.00225930	00348358
20000.	-38.6393	.0830639	.0600817	.0314309	.0105748	.00101472	00206469
30000.	-37.8497	.0259326	00436636	00382678	G161047	-,00327000	00929120
40000.	-37.3876	0574256	0510653	0409152	0269282	-,0144190	00522979
50000.	-37.1678	166608	125810	0745545	0317364	-,00593417	.00489997
60000.	-37.1929	348477	-,198373	0604564	.00910326	.0165438	4.816223E-04
65000.	-37.4160	490762	135825	.0331097	.00708503	0235912	00325326

See appendix for Chebyshev fit details

$$He^{+} + He^{+} -> (He^{+} + He^{2+} + e)$$
 or $(He + He^{2+})$

Cross	Sections	for	Proch	ncting	510	I CINS	and	Electrons	for
	He	+ + +	ł ₂ ->	r slo	w ion	6 (o ⁺)			
	He	: + I	12 ->	Σ slo	w ele	ctrons	(c ⁻))	
(0	•••					((o ⁻)		
Energy (eV/anu)	Cross Se í Can ²	ctio)	n		Enei (eV/a	:Gy mu)	Ci	coss Section (cm²)	жı
7.6E+02	3.28E-	17			1.2	:+00		2.30E-20	
8.0E+02	3.458-	17			1.3	:+00		2.00E-19	
1.0E+03	4.21E-	17			1.4	2+00		5.36E-19	
2.0E+03	6.90E-	17			1.5	:+00		4.86E-19	
4.0E+03	1.02E-	16			1.7	:+00		4.08E-19	
6.0E+03	1.26E-	16			2.01	2+00		8.65E-19	
8.0E+03	1.46E-	16			2.5	E+00		2.36E-18	
1.0E+04	1.63E-	16			3.0	E+00		3.97E-18	
2.0E+04	2.17E-	16			4.0	2+00		6.94E-18	
4.0E+04	2.54E-	16			5.0	2+00		1.026-17	
6.0E+04	2.50E-	16			6.0	3+00		1.35E-17	
8.05+04	2.356-	16			7.0	2+00		1.75E-17	
1.0E+05	2.18E-	16			8.0	2+00		2.07E-17	
2.0E+05	1.438-	16			9.0	2+00		2.31E-17	
2.56+05	1.1/8-	16			1.0	5+01		2.4/8-1/	
					4.0	5+01		5.528-17	
					1.0	10+3		/.1/E-1/	
					1.0	5702		8.926-1/	
					9.0	2102		1.905-10	
					1.0	5TUZ		1.//E-10	
					1.0	5403		2.006-10	
					7.0	5703 P403		J.006-10	
					1.0	5703 7104		3.336-10	
					1.0	5709 F104		3.116+10 A A6P-14	
					7 0	2+04		4 150-10	
					1.0	2+05		3.665-16	
					2.5	2+05		2.06E-16	
ences: o -	143, 459,	463							

Refere o⁻ - 143, 460

Accuracy: o' - 20% σ² - 1.0 eV/amu to 12 eV/amu - 20% 12 eV/amu to 3.7x10⁴ eV/amu - Unknown 3.7x10⁴ eV/amu to 2.5x10⁴ eV/amu - 20%

Hotes: (1) Note the small resonance at 1.4 eV/amu results from metastable Ke. (2) The cross section σ is defined as the sum of cross sections for all processes producing slow singly-charged ions plus twice the cross section for producing doubly-charged slow ions. Similarly the σ cross section is defined as the cross Section for ionization plus the cross section for electron loss or stripping. In those reactions where electron capture is important, the σ cross section is the sum of the ionization cross section and the electron capture cross section.

			Chebys	shev	Pittin	Parameter	s for C	ross Sections	ł
		σ*	Emin	٠	7.6E+02	eV/amu,	E _{max =}	2.5E+05 eV/a	108U
		0~	₽ _{min}	•	1.22+00	eV/amu,	E _{max} -	2.5 5 +05 eV/a	BUL ICI
	AO		AI		A2	A3		A 5	A6
0'	-73.4532		742441		556022	126285	03715	99 .0218408	.000323040
σ*	-75.1363	3.0	03724	-1	1.67952	,577117	60197	4 . 234746	168549
The The	fit repre maximum	esent devi	ation	e o 18	Cross	Bection wit 8.02+04 e	th an rmte vV/apmu₊	deviation of	of 0.3%.
The The	fit repre maximum	devi	ation	e <i>o</i> is	cross 286.3%	section wit at 1.22+00	th an rm≪ eV/annu.	deviation o	of 52.2%.
See	appendix	for	Cheby	rsha	v fit d	etails.			

Ionization and H' Production Cross Sections for

He + H_2 -> He + H_2 + e He + $H_2 \rightarrow \Sigma H^*$

Ionization	(H ₂ * Production)	H [*] (Production)					
Energy	Cross Section	Energy	Cross Section				
(eV/amu)	(c m ²)	(ev/amu)	(Cma ²)				
7.4E+02	1.64E-17	7.4E+02	2.17E-17				
8.0E+02	1.75E-17	8.0E+02	2.19E-17				
9.0E+02	1.93E-17	9.0E+02	2.23E-17				
1.0E+03	2.1]E-17	1.0E+03	2.28E-17				
1.5E+03	2.97E-17	1.5E+03	2.528-17				
2.0E+03	3.81E-17	2.0E+03	2.78E-17				
3.0E+03	5.24E-17	3.0E+03	3.32E-17				
4.0E+03	6.55E-17	4.0E+03	3.69E-17				
5.0E+03	7.72E-17	4.3E+03	3,74E-17				
6.0E+03	8.71E-17	5.0E+03	3.67E-17				
7.0E+03	9.55E-17	6.0E+03	3.55E-17				
8.0E+03	1.032-16	7.0E+03	3.528-17				
9.0E+03	1.10E-16	8.0E+03	3.55E-17				
1.0E+04	1.15E-16	9.0E+03	3.68E-17				
1.2E+04	1.24E-16	1.0E+04	3.87E-17				
		1.1E+04	4.20E-17				

References: 459, 461, 462, 463, 464

Accuracy: Unknown

Notes: (1) The data of Refs. 461, 462, 463, and 464 are approximately a factor of 2-3 less than that of Ref. 459 for the production of H ions. The data presented follows closely the results of Ref. 459.

Chebyshev Fitting Parameters for Cross Sections

		H ₂ ' Prod. H' Prod.	E _{mi} E _{mi}	n = 7.4E n = 7.4E	+02 eV/am :+02 eV/am	u, E _{max} iu, E _{max}	= 1.2E+04 = 1.1E+04	l eV/amu 4 eV/amu
		AO	AI	A2	A3	A4	A5	A 6
н2 ⁺ Н*	Prod. Prod.	-75.1222 -76.0878	1.03496 .319638	0748886 0448970	0222039 0183961	00237843 .0505953	000779509 .0349869	.000954515 000131466

The fit represents the H_2^+ cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 1.5E+03 eV/amu.

The fit represents the H cross section with an rms deviation of 1.0%. The maximum deviation is J.8% at 6.0E+03 eV/amu.

Electron and Slow Positive Ion Production Cross Sections for

He + He -> Σ slow electrons (σ^-) He + He $\rightarrow \Sigma$ slow igns (o')

	o*	o" (Lower	Energy)	o" (Higher	Energy)
Energy	ø	Energy	c	Energy	٥
(eV/amu)	(cm²)	(eV/amu)	{ cm ² }	(ev/amu)	(cm ²)
5.0E+03	4.45E-17	2.7E+01	2.56E-20	3.7E+04	2.47E-16
6.0E+03	j.23e-17	3.0E+01	1-34E-19	4.0E+04	2.50E-16
7.0E+03	5.88E-17	3.5E+01	3.31E-19	5.0E+04	2.50E-16
8.02+03	5.49E-17	4.0E+01	4-86E-19	6.0E+04	2.47E-16
9.0E+03	7.07E-17	5.0E+01	7.66E-19	7.0E+04	2.43E-16
1.0E+04	7.55E-17	6.0E+01	1.06E-18	8.02+04	2.398-16
1.5E+04	9.74E-17	7.0E+01	1.33e-10	9.0E+04	2.338-16
2.02+04	1.10E-16	8.0E+01	1.61E-18	1.02+05	2.258-16
3.0E+04	1.23E-16	9.0E+01	1.88E-18	1.58+05	1.91 E -16
4.02+04	1.28E-16	1.0E+02	2.16E-18	2.02+05	1.670-16
5.0E+04	1.29E-16	1-58+02	3.52E-10	2.5E+05	1.43E-16
6.0E+04	1.282-16	2-0E+02	4.77E-18		
7.02+04	1.26E-16	2.5E+02	5.89E-18		
8.0E+04	1.228-16	3.0E+02	6.96E-18		
9.0E+04	1.19E-16				
1.02+05	1.16 2-16				
1.5E+05	9.91E-17				
2.02+05	8. 49E -17				
2.58+05	7.44E-17				

References: 143, 403, 462, 463, 472, 473, 474, 475

Accuracy: Unknown

.

<u>Hotes:</u> (1) The processes to form slow positive ions and electrons are: (a) He + He -> He⁺ + He + e, electron loss; (b) He + He -> He⁺ + He⁺ + 2e (electron loss with target ionization); (c) He + He -> He + He⁺ + e, single ionization; (d) He + He -> He + He²⁺ + 2e, double ionization; (e) He + He -> He⁺ + He⁺, electron capture. (2) Cross sections for slow positive ion formation (σ^{+}) are the sum of reactions o(b) + o(c) + o(d) + o(e). (3) For electrons, (o) is the sum of o(a) + o(c) + o(c) + o(d) + o(c)2o(b) + o(c) + 2o(d). For higher energies o(e) is very small and thus o' is approximately equal to the sum of the single and double ionization cross sections. (4) No attempt has been made to interpolate brtween the high-energy σ and the low-energy data (E < 300 eV/amu).

Chebyshev Fitting Parameters for Cross Sections

		0 0 0	(lower (Higher	E _{min} E) E _{min} E) E _{min}	= 5.0E1 = 2.7E1 = 3.7E+	+03 eV/aunu, ⊧01 eV/aunu, 04 eV/aunu,	E _{max} = E _{max} = E _{max} =	2.5E+05 3.0E+02 2.5E+05	eV/aaau eV/aaau eV/aaau
			AO	A 1	A2	A 3	K4	A5	A 6
0.			-74.0092	. 259096	395285	00216683	.00569771	00263905	.00150961
o-	(10wr	E)	-02.5433	2.19805	641453	. 385156	256300	.170524	106115
o-	(Higher	E)	-72.2261	269539	0908126	000390444	000723589	-,00319421	00598024

The fit represents the o' cross section with an rms deviation of 0.4%. The maximum deviation is 0.9% at 1.0E+04 eV/amu. The fit represents the σ (lower E) cross section with an rms deviation of 6.3%. The maximum deviation is 10.0% at 4.0E+01 eV/amu. The fit represents the σ^- (Higher E) cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 8.0E+04 eV/amu.

Single and Double Ionization Cross Sections for

He + He -> He + He^{*} + e He + He -> He + He^{2*} + 2e

Single	Ionization	Double	Ionization
Energy (eV/amu)	Cross Section (CHE ²)	Energy (eV/amu)	Cross Section (Cm ²)
1.22+04	8.26E-17	1.3E+04	9.93E-19
1.5E+04	1.03E-16	1.5E+C4	1.40E~18
2.0E+04	1.32E-16	2.0E+04	2.14E-18
2.5E+04	1.58E-16	2.5E+04	2.69E~18
3.0E+04	1.80E-16	3.0E+04	3.156~18
3.5E+04	1.99E-16	3.5E+04	3.596~18
4.0E+04	2.13E-16	4.02+04	4.03E~18
4.5E+04	2.25E-16	4.5E+04	4.44E-18

<u>References:</u> 462, 463

Accuracy: Unknown

<u>Notes:</u> None

Chebyshev Fitting Parameters for Cross Sections

	Sing Doub	le le	lon. Ion.	Ê _{min} E _{min}	3	1.2E+04 1.3E+04	eV/aumu, eV/aumu,	E _{max} Emax	-	4.5E 4.5E	2+04 eV/aan 2+04 eV/aan	nu mu	
			AO	A1		A2	N 3		۸4		A5		A6
Single Double	Ion. Ion.	-72 -81	.9678 .1695	.503766 .703077		.0453017 .106105	00416573 .0433845	002 011	2866(1510(03 0	.00135469 .00236396	.0005 002	26378 33450
The fit The may	: repr kimum	esei dev	nts t viatio	he Singl n is O.	.e 21	Ion. cro at 3.0E+	ss section 04 eV/amu.	with	an	r RS	deviation	of	0.1%.
The fit The max	t rep cimum	rese dev	nts i viation	the Doub n is 0.	le 14	Ion. cro at 3.0E+	088 Section 04 eV/amu.	with	an	rms	deviation	n of	0.1%.

1 1

See appendix for Chebyshev fit details.

-

He' + H -> He' + H' + e

Energy	Velocity	Cross Section
(eV/amu)	(C#:/S)	(Cm ²)
6.3E+03	1.10E+08	1.28E-17
7.0E+03	1.16E+08	1.47E-17
8.0E+03	1.24E+08	1.75E-17
9.0E+03	1.32E+08	2.07E-17
1.02+04	1.39E+08	2.458-17
1.52+04	1.70E+08	4.80E-17
2.0E+04	1.962+08	8.07E-17
3.06+04	2.41E+03	1.46E-16
4.0E+04	2.782+08	1.988-16
5.0E+04	3.11E+08	2.16E-16
6.0E+04	3.406+08	2.18E-16
7.02+04	3.68E+08	2.10E-16
8.0E+04	3-938+00	2.00E-16
9.02+04	4.172+08	1.918-16
1.02+05	4.396+08	1.78E-16
1-56+05	5.386+08	1.366-16
2 02+05	5.21E+08	1.102-16
3 05+05	7 618+08	8 04P_17
A 05+05	9 798409	6 A1P_17
5 02405	0.705-00	5 36P-17
5 00+05	1 095400	J.J.C-17 A 56F-17
7 08+05	1 168400	4.30E-17
9 05+05	1.106707	2 618-17
9 08+05	1.228+00	3.016-1/
	1.326+09	J.206-1/ 2 048 17
2.05406	1.396709	2.946-17
	1.962+09	1.396-17
3.02+00	2.402+09	1.096-17
4.UETUO	2.778+09	8.316-18
J.UE+U6	3.09E+09	6./48-18
6.UE+06	3.392+09	5.76E-18
7.0E+06	3.658+09	4.97E-18
8.02+06	3.90 e +09	4. 39E-18

References: 564, 565, 566

Accuracy: Unknown

<u>Notes:</u> (1) As far as we know no published experimental data exist. The data plotted are theoretical results. (2) For energies less than 10^5 eV/amu the data of Ref. 566 has been plotted. The classical Monte Carlo calculations have been quite accurate in predicting similar collisional processes where experimental data is available for comparison. (3) For energies greater than 10^5 eV/amu data of Ref. 565 is plotted. These calculations are Born approximations which should be good at these high energies. At lower energies the cross sections are much higher than those given in Ref. 566.

	Chebyshev	<u>Fitting Parameters for Cross Sections</u>				
	E _{min} =	6.3E+03 eV/am	u, E _{max}	= 8.0E+06	eV/amu	
AO	A1	A2	A3	A4	٨5	A6
-76.1808	896422	-1.40016	.494799	0137803	135113	.110603

The fit represents the above cross section with an rms deviation of 3.2%. The maximum deviation is 6.7% at 1.5E+04 eV/amu.

1

Ionization Rate Coefficients for

H + He' -> H' + He' + e

Beam - Maxwellian Rate Coefficients (cm^3/s)

He ⁺								
Temp.				H Ener	H Energy (eV/amu)			
(eV)	10000.	20000.	40000-	70000.	100000.	200000.	500000.	
1.0E+00	3.41E-09	1.58E-08	5.49E-08	7.72E-08	7.82E-08	6.83E-08	5.26E-08	
2.0E+00	3.41E-09	1.58E-08	5.49E-08	7.71E-08	7.82E-08	6.83E-08	5.26E-08	
4.06+00	3.41E-09	1.58E-08	5.48E-08	7.71E-08	7.82E-08	6.83E-08	5.26E-08	
7.0 E+00	3.42E-09	1.58E-08	5.48E-08	7.71E-08	7.82E-08	6.83E-08	5.26E-08	
1.0E+01	3.43E-09	1.58E-08	5.47E-08	7.71E-08	7.82E-08	6.83E-08	5.26E-08	
2.0E+01	3.45E-09	1.58E-08	5.46E-08	7.71E-08	7.82E-08	6.83E-08	5.26E-08	
4.0E+01	3.49E-09	1.59E-08	5.45E-08	7.71E-08	7.82E-08	6.83E-08	5.26E-08	
7.0E+01	3.55E-09	1.60E-08	5.43E-08	7.70E-08	7.82E-08	6.83E-08	5.26E-08	
1.0E+02	3.61E-09	1.61E-08	5.43E-08	7.70E-08	7.82E-08	6 ,83E-08	5.26E-08	
2.0E+02	3.81E-09	1.64E-08	5.416-08	7.69E-08	7.81E-08	6.83E-08	5.26E-08	
4.0£+02	4.20E-09	1.72E-08	5.40E-08	7.67E-08	7.81E-08	6.82E-08	5.26E-08	
7.0E+02	4.84E-09	1.832-08	5.39E-08	7.65E-08	7.79E-08	6.82E-08	5.25E-08	
1.0E+03	5.52E-09	1.93E-08	5.39E-08	7.62E-08	7.77E-08	6.82E-08	5.25E-08	
2.0E+03	7.93E-09	2.25E-08	5.41E-08	7.52E-08	7.72E-08	6 .816-08	5.25 E-0 8	
4.0E+03	1.29E-08	2.76E-08	5.46E-08	7.34E-08	7.62E-08	6.802-08	5.24E-08	
7.0E+03	1.97E-08	3.34E-08	5.55€~08	7.14E-08	7.48E-08	6.78E-08	5.23E-08	
1.0E+04	2.56E-08	3.78E-08	5.63E-08	6.99E-08	7.35E-08	6.752-08	5.23E-08	
2.0E+04	3.99E-08	4.76E-08	5.86E-08	6.73E-08	7.03E-08	6.66E-08	5.21E-08	

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV$

Ħ							
Energy							
(eV/amu)	80	A1	A2	A3	84	A 5	A6
10000.	-37.6259	1.12300	.601815	.164371	0334027	0580916	0243672
20000.	~35.3341	.489469	.271922	.0807229	00815166	0204035	00815012
40000.	-33.4270	.0164455	.02281157	.0149114	.00585597	.00147262	-3.367767E-06
70000.	-32.8194	0548059	0346997	0154134	00335201	,00137249	.00185552
100000.	-32.7709	0377570	0264510	0142784	00575226	00155112	-3.572900E-05
200000.	-33.0075	00828099	00567988	00349931	00201522	00104778	-4.638534E-04
500000.	-33.5256	00412902	00205167	-6.187466E-04	-2.150041E-04	-7.937795 E- 05	-1.2717172-04

Cross Sections for the Production of Slow Positive Ions and Electrons for He^+ Passing Through H_2

He' + H₂ $\rightarrow \Sigma$ Slow Ions o' $\rightarrow \Sigma$ Electrons o^{-}

Slow	Ions o'	Electrons o					
Energy	Cross Section	Energy	Cross Section				
(eV/annu)	(Cm²)	(ev/annu)	(Cm²)				
7.5E+02	1.28E-16	2.5E+03	4.19E-17				
8.0E+02	1.24E-16	3.0E+03	4.59E-17				
1.0E+03	1.15E-16	4.0E+03	5.36E-17				
1.3E+03	1.11E-16	7.0E+03	7.38E-17				
1.5E+03	1.14E-16	1.0E+04	9.896-17				
2.0E+03	1.34E-16	1.5E+04	1.52E-16				
4.0E+03	2.66E-16	2.02+04	2.01E-16				
7.0E+03	3.72E-16	4.0E+04	3.30E-16				
1.0E+64	4.20E-16	6.0E+04	3.61E-16				
1.5E+04	4.65E-16	7.0E+04	3.63E-16				
2.0E+04	4.92E-16	1.0E+05	3.36E-16				
3.0E+04	5.08E-16	1.5E+05	2.84E-16				
4.0E+04	5.03E-16	2.0E+05	2.46E-16				
7.0E+04	4.11E-16	4.0E+05	1.67L-16				
1.0E+05	3.41E-16	5.0E+05	1.46E-16				
1.5E+05	2.70E-16						
2.0E+05	2.29E-16						
4.0E+05	1.46E-16						
5.0E+05	1.24E-16						

<u>References:</u> 96, 104, 105, 353, 355, 364, 462, 463, 478, 479, 480, 481

Accuracy: 50%

<u>Hotes:</u> (1) The reactions that produce slow ions and electrons as reaction products are: (a) He^{*} + H₂ -> He^{*} + H₂^{*} + e, single ionization; (b) He^{*} + H₂ -> He + H₂^{*}, single capture; (c) He^{*} + H₂ -> He^{*} + H^{*} + H + e, dissociative ionization; (d) He^{*} + H₂ -> He^{*} + H^{*} + H^{*} + Ze, double ionization; (e) He^{*} + H₂ -> He + H^{*} + H, dissociative electron capture; (f) He^{*} + H₂ -> He + H^{*} + H^{*} + e, electron capture with ionization. σ^* is equal to the sum $\sigma(a) + \sigma(b) + \sigma(c) + 2\sigma(d) + \sigma(e) + 2\sigma(f)$. σ^* is equal to $\sigma(a) + \sigma(c) + 2\sigma(d) + \sigma(f)$. (2) For energies less than 10⁵ eV/amu the electron capture cross sections to form H₂^{*} dominate the σ^* cross sections. (3) the σ^* cross sections of Ref. 355 are not plotted below 2.5 x 10³ eV/amu due to the small energy dependence of the cross sections.

Chebyshev Fitting Parameters for Cross Sections

Slow	Ions	o*	Emin	#	7.5e+02	eV/amu,	Emax	÷	5.00+05	e∀/aumu
Elect :	rons	o	Emin	æ	2.5E+03	eV∕amu,	Emax	Ŧ	5.0E+05	eV/amu

	A0	A1	A2	A3	A4	A5	A6
Slow Tons	· -72.1635	.175055	-,713665	133412	.172753	0619895	.0345550
Electrons	σ ⁻ -73.0711	.770468	649678	176586	.134550	.0300410	~.0402778

The fit represents the σ' cross section with an rms deviation of 3.2%. The maximum deviation is 5.5% at 2.0E+03 eV/amu.

The fit represents the σ^2 cross section with an rms deviation of 0.7%. The maximum deviation is 1.6% at 1.0E+04 eV/amu.

1 I.

See appendix for Chebyshev fit details.

1 1

L.
Cross Sections for the Formation of H_2^+ , H^+ , and for Double Ionization for He⁺ in H_2

$$Be^{*} + H_{2} \rightarrow Be^{*} + H_{2}^{*} + e \{\sigma(H_{2}^{*})\}$$
$$Be^{*} + H_{2} \rightarrow \Sigma H^{*} [\sigma(H^{*})]$$

 $He^* + H_2 \rightarrow He^* + H^* + H^* + 2e$ (Double Ionization)

H_2^* Production		H* P1	oduction	Double	Ionization
Energy (eV/amu)	Cross Section (CM ²)	Energy (eV/amu)	Cross Section (CM ²)	Energy (eV/amu)	Cross Section (Cm ²)
7.3E+02	3.08E-17	7.4E+02	9.39E-17	2.5E+04	4.77E-18
8.02+02	3.23E-17	8.0€+02	8.99E-17	3.0E+04	4.53E-18
1.0E+03	3.55' -17	9.0E+02	8.45 5 -17	4.0E+04	3.68E-18
1.5E+03	4-4517	1.02+03	8.00E-17	5.0E+04	2.86E-18
2.02+03	5.45E-17	1.5E+03	6.92E-17	6.0E+04	2.31E-18
4.0E+03	1.04E-16	2.0E+03	6.71E-17	7.0 2+04	1.92E-18
7.02+03	1.84E~16	2.5E+03	6.65E-17	8.0E+04	1.52E-18
1.0E+04	2.83E~16	3.0E+03	6.70E-17	9.0E+04	1.40E-18
1.5E+04	3.96E-16	4.0E+03	6.932-17	1.0E+05	1.2?E-18
2.0E+04	4.21E-16	5.0E+03	7.50E-17	1.5E+05	6.79E-19
4.0E+04	3.932-16	6.0E+03	8.29E-17	2.0E+05	4.23E-19
7.02+04	3.37E~16	7.02+03	9.05E-17	3.0E+05	2.26E-19
1.02+05	2.83E-16	8.0E+03	1.02E-16	4.0E+05	1.42E-19
1.5E+05	2.22E-16	8.6E+03	1.05E-16	5.0E+05	1.00E-19
2.02+05	1.86E-16	9.0E+03	1.04E-16	6.0E+05	7.31E-20
4.0E+05	1.252-16	1.0E+04	9.64E-17	7.0E+05	5.832-20
7.02+05	9.17E-17	1.2E+04	8.49E-17	8.0E+05	4.73E-20
8.02+05	8.51E-17			9.0E+05	4.09E-20

References: 360, 365, 462, 463, 481, 482

Accuracy: $\sigma(H_2^+) = 20$ $\sigma(H^+) = Unknown$ $\sigma(Double Ion.) = 20$

<u>Hotes:</u> (1) H_2^* is formed from ionization of H_2 by He^* and from electron capture collisions. (2) H^* is formed from dissociative ionization, $He^* + H_2 \rightarrow He^* + H^* + H + e$; from double ionization, $He^* + H_2 \rightarrow He^* + H^* + H^* + H^* + 2e$; and from transfer ionization, $He^* + H_2 \rightarrow He + H^* + H^* + e$.

Chebyshev Fitting Parameters for Cross Sections

	H ₂ * Prod. H* Prod. Double Ion.	E _{min} = E _{min} = E _{min} =	7.3E+02 7.4E+02 2.5E+04	eV/amu, eV/amu, eV/amu,	E _{max} = E _{max} = E _{niax} =	8.0E+05 1.2E+04 9.0E+05	eV/amu eV/amu eV/amu
	AQ.	A1	A2	۲ ۸	A4	A5	λ6
N1 ⁺ Prod.	-73.3806	.501056	-1.00967	0679372	.247157	0416476	0640838
H ⁺ Frod.	-74.0875	.0639707	.162049	0778454	6615354	0437939	0172413
Double Ion	84.0918 -	2.48636	206129	.0854195	00909082	.0148658	00608471

The fit represents the H_2^* Prod. cross section with an rms deviation of 3.7%. The maximum deviation is 9.0% at 4.02+04 eV/amu.

The fit represents the H Prod. cross section with an rms deviation of 1.3%. The maximum deviation is 5.7% at 1.02+04 eV/amu.

The fit represents the Double Ion. $cr^{a=}$ section with an rms deviation of 1.1%. The maximum deviation (a 2.5% at 2.05+05 eV/amu.

1 I

See appendix for Chebyshev fit details.

Cross Sections for Production of Slow Positive Charges (σ^*) and Slow Electrons (σ^*) for He^{*} Passing Through He.

$$\mathbf{He}^* + \mathbf{He} \rightarrow \sigma^*, \sigma^-$$

 $He^* + He^-(c^*)$

He + He (o)

Energy	Cross Section	Energy	Cross Section
(eV/ams)	(cm²)	(eV/4mu)	(CH ²)
2.50+03	6.13E-16	2.55+03	1.402-17
4.02+03	5-83E-16	4.0E+03	2.158-17
7.02+03	5.05E-16	7.0E+03	3.372-17
1,02+04	4-492-16	1.02+04	4.468-17
2.02+04	3,492-16	2.02+04	7.568-17
4.02+04	2.682-16	4.02+04	1.192-16
7.02+04	2.122-16	7.02+04	1.592-16
1.02+05	1,842-16	1.02+05	1.812-16
2.02+05	1.305-16	1.12+05	1.835-16
4.06+05	7.582-17	2.02+05	1.518-16
7.02+05	4,722-17	4.02+05	9.778-17
1.02+05	3.532-17	5.02+05	8.392-17
2.02+06	1,942-17		
2.82+06	1.452-17		

References: 96, 104, 105, 355, 364, 388, 463, 472, 478, 479, 480, 487, 493, 497, 498, 499, 500, 579

Accuracy: E > 3-4x10⁴eV/amu - 204 E < 3-4x10⁴eV/amu Unknown

Notes: (1) σ^* and σ^- are the sum of the cross sections for processes producing slow ions and electrons, respectively. (2) The reaction channels contributing to these processes are (a) single electron capture; (b) single and double ionization of the target stom; (c) single capture plus ionization of the target; (d) capture into the continuum; (e) electron loss; (f) electron loss plus ionization of the target. For He^{*} 4 He collisions, processes (c, d and f) are believed to contribute a factor of ten less than the other processes especially at low energies. (3) For He^{*} energies less than 10⁵ eV/amu, the low-energy σ^* data of Refs. 104, 105, 355, 364, 463, 480, 487, 498, and 500 are not included in the present compilation. These data are questionable since the cross sections are only slightly dependent on energy. (4) For low energies the σ^* cross sections are dominated by single electron capture collisions.

Chebyshey Fitting Parameters for Cross Sections

A0 A1 A2 A3 A4 A5 A6 He^{*} + He (σ^*) -73.0794 -1.87553 -.368452 -.0292343 .0164797 .0394079 -.00613696 He^{*} + He (σ^*) -74.6255 1.02842 -.609151 -.175413 -.00862801 .0447902 .0224536 The fit represents the He^{*} + He (σ^*) cross section with an rms deviation of 1.5%. The fit represents the He^{*} + He (σ^*) cross section with an rms deviation of 1.5%. The fit represents the He^{*} + He (σ^*) cross section with an rms deviation of 1.5%. The fit represents the He^{*} + He (σ^*) cross section with an rms deviation of 1.5%. The maximum deviation is 2.5% at 2.0E+05 eV/amu.

See appendix for Chubyshev fit details.

Ionization Rate Coefficients for

81e* + 13e -> o*

Haxwellian - Haxwellian Rate Coefficients (cm^3/s)

Temp.	Squa1				lie To	mp. (a9)		
(4 7)	Temp.	5060.	6000.	500 0.	10000.	12000.	15000.	20000.
1.02+03	8.49E-10#	1.732-084	2.128-08*	2.7 82-06*	3.305-08*	3.712-08*	4.208-09*	4.76E-08*
1.5 2+0 3	3.932-098	1.932-08*	2.308-00*	2. • 2E-08*	3-41 E-08 *	3-81E-08*	4.262-08°	4.81E-06*
2.02+03	8,302-096	2.122-06*	2.478-00"	3.068-08*	3.528-04*	3.892-08*	4.33 2-08 *	4.852-08*
2.55+03	1.292-06#	2.302-08*	2.63E-00*	3.102-08"	3.622-08*	3.972-08*	4.392-08*	4.902-08*
3.0E+03	1.732-084	2.478-08*	2.7 02-00*	3.30E-08*	3.71E-08*	4-052-08*	4.452-08*	4.94E-08*
3.58+03	2,122-08*	2.632-08*	2.922-06*	3.41E-08*	3.612-08*	4-132-08*	4.51E-08-	4.96E-08*
4.0E+03	2,478-08*	2.78E-08*	3.062-04*	3.522-08*	3.895-08*	4.206-08.	4.562-08*	5.02 2-08
4.5E+03	2.782-00*	2.922-08*	3-102-06*	3.628-08*	3.975-08*	4-262-08*	4.622-08*	5.06E-08
5.0E+03	3.062-08*	3.062-08*	3.302-00*	3.71E-08*	4.052-08*	4.338-08*	4.672-08*	5.09E-08
5.52+03	3.305-08*	3.10E-08*	3.412-08*	3.012-00*	4.132-08*	4-392-084	4.72E-084	5.13E-08
6.0E+03	3.528-00*	3.300-08*	3.522-06*	3.892-06*	4.202-08*	4-452-00*	4.76E-08*	5.16E-08
8.0E+03	4.202-06*	3.71E-00*	3.892-00*	4.20E-08*	4-452-08*	4.67E-08*	4.94E-08*	5.292-08
1.05+04	4.672-08*	4.05E-08*	4.202-00*	4.45E-08*	4.672-08-	4.85E-08*	5.092-08	5.408-08
1.25+04	5.028-06	4.338-00*	4.452-00*	4.672-08*	4.852-08*	5.022-08	5.232-08	5.512-08
1.42+04	5.292-08	4.56E-08*	4.672-04*	4.852-08*	5.028-08	5.16E-06	5.35E-08	5.602-08
1.62+04	5.518-98	4.762-08*	4.852-041	5.022-08	5.16 2-08	5.292-08	5.468-08	5.69E-08
1.8E+04	5,692-06	4.94E-08*	5.022-06	5.16E-08	5.292-08	5.402-08	5.568-08	5.77E-08
2.0E+04	5.842-08	5.09E-06	5.162-04	5.292-08	5.402-08	5-512-08	5.65 E-08	5.042-08

Accuracy: • - Possible Error Greater Than 10% • - Possible Error Greater Than 10%

Re⁺

Chebyshev Pitting Parameters for Rate Coefficients

Emin = 1.02+03 eV, Emax = 2.02+04 eV

- No							
Temp.							
(4 V)	a0	A1	A2	A3	A4	A5	A6
5000.	-34.6840	-561425	.00846562	0219365	-2.03 9967E-0 4	.00120158	-1.3258022-05
600°.	-34,4871	.460985	.0203888	0170479	00123903	8.950819E-04	7.412002E-05
2000.	-34.2085	. 331032	.0296262	0101056	00187431	4.167700E-04	1.213301E-04
10000.	-34.01##	-252140	.03102#	00582488	00180584	1.394312E-04	1.072709E-04
12000.	-33.0797	.200089	.0296230	00316385	00155179	-8,216817E-06	8.115795E-05
15000.	-33,7274	.149363	.0266925	-8.769851E-04	00114057	-1.026825E-04	4.607838E-05
20000.	-33.5570	. 101222	.0215477	7.8091612-04	-6.5257568-04	-1,2787728-04	1.2163168-05
Equal Temp.	-26,1071	1.93272	683257	.177855	0338898	-00493571	-5.499191 2- 04

. . .

1

1

200	accend	íx f	or (Thehye	hev	f (* (lot A	i 1 a .	
			~				•			

Ionization Rate Coefficients for

$Be + Be^+ \rightarrow a^+$

Beam - Maxwellian Rate Coefficients (cm³/s)

Be*							
Temp.				Be	Energy (e	eV/amu)	
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	6.24 <u>E-08</u>	6.86E-08	7.45g-08	7.79E-08	8.08E-08	8.07E~08	6.16E-08
2.05+00	6.24E-08	6.86E-08	7.44E-08	7 .79e-08	8.082-08	8.07E~08	6.16E-08
4.0E+00	6.24E-08	6.862-08	7.44E-08	7.79E-08	8.082-08	8.076-08	6.16E-08
7.02+00	6.242-08	6.86E-08	7.44E-08	7.79E08	8.08E-08	8.07E-98	6.16E-08
1.0E+01	6.24E-08	6.86E-08	7.44E-08	7.79E-08	8.082-08	8.07E-08	6.16E-08
2.02+01	6.232-08	6.868-08	7.44E-08	7.79E-08	8.08E-08	8.07E-08	6.16E-08
4.0E+01	6.232-08	6.858-08	7.44E-08	7.79E-08	8.08E-08	8.07E-08	6.16E-08
7.02+01	6.23E-08	6.85E-08	7.44E-08	7.79E-08	8.082-08	8.06E-08	6.16E-08
1.0E+02	6.238-08	6.85E-08	7.44E-08	7.79E-08	8.07E-08	8.06E-08	6.16E-08
2.02+02	6.23E-08	6.85E-08	7.44E-08	7.798-08	8.07E-08	8.052-08	6.16E-08
4.02+02	6.232-08	6.85E-08	7.44E-08	7.79E-08	8.07E-08	8.052-08	6.16E-08
7.06+02	6.23E-08	6.85E-08	7.44E-08	7.902-08	8.06E-08	8.04E-08	6.16E-08
1.02+03	6.232-08	6.86E-08	7.432-08	7.30E-08	8.06E-08	8.03E-08	6.16E-08
2.06+03	6.23E-08	6.862-08	7.432-08	7.80E-08	8-058-08	8.01E-08	6.16E-08
4.0E+03	6.21E-08	6.87E-08	7.43E-08	7.81E-08	8.04E-08	7.98E-08	6.16E-08
7.02+03	6.192-08	6.88E-08	7.438-08	7.81E-08	8.022-08	7.95E-08	6.16E-08
1.02+04	6.192-08	6.88E-08	7.43E-08	7.81E-08	8.01E-08	7.93E-08	6.16E-08
2.02+04	6.28E-08	6.90E-08	7.44E-08	7.82E-08	7.99E-08	7.87E-08	6.162-08

Chebyshev Fitting Parameters for Rate Coefficients

Emin = 1.02+00 eV, Emax = 2.02+04 eV

lie Energy (eV/anu)	AO	A1	A2	A3	**	A5	AG
10000.	-33.1826	-8.4470882-04	4.3799 86E -04	.00153621	.00196721	-00191297	.00165579
20000.	-32.9886	.00246657	.00200537	.00110670	3-1420968-04	-7.069038E-05	-9.257167E-05
40000.	-32.9276	-7.0879432-04	1.614074E-04	4.5880802-04	3.529485E-04	1.8367108-04	9.7552638-05
70000.	-32.7333	.00154471	7.1276628-04	1.3365128-04	-9.9320128-05	-1.2532448-04	-7.595796E-05
100000.	-32.6686	00490652	00228784	-7.2242998-04	-1.31302JE-04	-2.878208E-05	1.350276R-05
200000.	-32.6778	0107031	00545996	00203612	-5.5713638-04	-8.9960618-05	1.7395838-05
500000.	-33.2050	-2.6498542-04	-1.9082288-04	-1.1964802-04	-6.7191158-05	-3.770261E-05	-2.551690E-05

See appendix for Chebyshev fit details.

Т

D--84

٠

Beam – Maxwellian

He + He⁺ -> σ^+

Ionization Rate Coefficients for

He' + He -> o'

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

He ⁺								
Temp.	Equa l				He Temp.	(eV)		
(eV)	Temp.	5000.	6000.	8000.	10000.	12000.	15000.	20000.
1.0E+03	2.40E-11#	7.15E-10*	9.55E-10*	1.46E-09'	1.99E-09*	2.54E-09	3.39E-09	4.87E-09
1.5E+03	1.23E-10#	8.33E-10*	1.038-09*	1.39E-09*	2.13E-09*	2.682-09	3.54E-09	5.02E-09
2.0E+03	2.86E-10#	9.55E-10*	1.20E-09*	1.73E-09*	2.27E-09*	2.82E-09	3.68E-09	5.17E-09
2.5E+03	4.89E-10*	1.08E-09*	1.33E-09*	1.86E-09*	2.40E-09	2.978-09	3.83E-09	5.32E-09
3.0E+03	7.15E-10*	1.202-09*	1.46E-09*	1.998-09"	2.54E-09	3.11E-09	3.98E-09	5.48E-09
3.5E+03	9.55E-10*	1.33E-09*	1.59E-09*	2.13E-09"	2.66E-09	3.25E-09	4.12E-09	5.63E-09
4.0E+03	1.20E-09*	1.46E-09*	1.73E-09*	Ż.27E-09•	2.82E-09	3.398-09	4.27E-09	5.78E-09
4.5E+03	1.46E-09*	1.59E-09*	1.86E-09*	2.40E-09	2.97E-09	3.54E-C9	4.42E-09	5.93E-09
5.0E+03	1.73E-09*	1.73E-09*	1.99E-09*	2.54E-09	3.11E-09	3.68E-09	4.57E-09	6.09E-09
5.5E+03	1.99E-09*	1.86E-09*	2.13E-09*	2.68E-09	3.25E-09	3.83E-09	4.72E-09	6.24E-09
6.0E+03	2.27E-09*	1.99E-09*	2.27E-09*	2.82E-09	3.39E-09	3.98E-09	4.07E-09	6.40E-09
6.0E+03	3.39E-09	2.542-09	2.822-09	3.39E-09	3.98E-09	4.57E-09	5.48E-09	7.02E-09
1.CE+04	4.57E-09	3.11E-09	3.39E-09	3.98E-09	4.57E-09	5.17E-09	6.09E-09	7.64E-09
1.22+04	5.78E-09	3.68E-09	3.98E-09	4.57E-09	5.17E-09	5.78E-09	6.71E-09	0.27E-^9
1.4E+04	7.02E-09	4.27E-09	4.57E-09	5.17E-09	5.78E-09	6.40E-09	7.33E-09	8.91E-09
1.6E+04	8.27E-09	4.87E-09	5.17E-09	5.78E-09	6.40E-09	7.J2E-09	7.96E-09	9.54E-09
1.8E+04	9.54E-09	5.48E-09	5.78E-09	6.40E-09	7.02E-09	7.64E-09	8.59E-09	1.02E-08
2.0E+04	1.08E-08	6.09E-09	6.40E-09	7.02E-03	7.64E-09	8.27E-79	9.22E-09	1.08E-08

Accuracy: • - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+03 eV, E_{max} = 2.0E+04 eV

He Topo								
(eV)		A0	A1	A2	A 3	24	A5	A6
5000.		-43.2457	1.08015		00960777	00225681	.00426467	-3.707387E-05
6000.		- 39. 9198	. 955399	. \$445	00462863	00297856	1.6569172-04	3.639382E-05
8000.		-39.4021	.792041	.145020	.00249323	00313214	-2.249516E-04	6.938838E-05
10000.		- 30. 9951	.665607	.138788	.00682158	00268049	-4.285723E-04	4.5580852-05
12000.		- 38.6575	.580936	.130790	.00942419	00211989	-5.139889E-04	1.3124458-05
15000.		-38.2374	.488850	.118758	.0114760	00136912	-5.313647E-04	-2.8763522-05
20000.		- 37.6842	. 386897	.101410	.0124848	-5.096408E-04	-4.6581202-04	-7.0146822-05
Equal	Temp.	-41.6708	2.88394	522363	.167306	0405614	.00499358	-2.4029618-04

See appendix for Chebyshev fit details.

Ionization Rate Coefficients

for

He + He[°] -> *o*⁻

Beam - Maxwellian Rate Coefficients (cm³/s)

He [°] Temp. (eV)	10000.	20000.	40000.	He 70000.	Energy 100000.	(eV/מווע) 200000.	400000.
1.0E+00	8.99E-09	3.51E-09	2.12E-08	5.885-08	8.736-08	9.38E-08	8.59E-08
2.0E+00	7.46E-09	9.85E-09	2.88E-08	5.91E-08	8.45E-08	9.38E-08	8.58E-08
4.0E+00	6.44E-09	1.40E-08	3.24E-08	5.84E-08	8.03E-08	9.38E-08	8.58E-08
7.0E+00	6.22E-09	1.486-08	3.30E-08	5.84E-08	7.95E-08	9.37E-08	8.586-08
1.0E+01	6.20E-09	1.48E-08	3.30E-08	5.84E-08	7.94E-08	9.37E-08	8.58E-08
2.0E+01	6.20E-09	1.48E-08	3.30E-08	5.84E-08	7.94E-08	9.37E-08	8.58E-08
4.0E+01	6.21E-09	1.48E-08	3.30E-08	5.84E-08	7.94E-08	9.37E-08	8.58E-08
7.0E+01	6.22E-09	1.49E-08	3.30E-08	5.84E-08	7.94E-08	9.36E-08	8.58E-08
1.0E+02	6.23E-09	1.49E-08	3.30E-08	5.84E-08	7.93E-08	9.36E-08	8.58E-08
2.0E+02	6.26E-09	1.49E-08	3.30E-08	5.84E-08	7.93E-00	9.35E-08	8.58E-08
4.0E+02	6.33E-09	1.49E-08	3.31E-08	5.84E-08	7.92E-08	9.34E-08	8.58E-08
7.0E+02	6.43E-09	1.50E-08	3.31E-08	5.84E-08	7.91E-08	9.33E-08	8.58E-08
1.0E+03	6.53E-09	1.51E-08	3.32E-08	5.84E-08	7,906-08	9.32E-08	8.57E-08
2.0E+03	6.87E-09	1.55E-08	3.35E-08	5.86E-08	7,87E-08	9.30E-08	8.57E-08
4,0E+03	7.56E-09	1.62E-08	3.41E-08	5.89E-08	7.83E-08	9.27E-08	8.56E-08
7.0E+03	8.57E-09	1.72E-08	3.50E-08	5.94E-08	7.79E-08	9.22E-08	8.51E-08
1.0E+04	9.57E-09	1.82E-08	3.56E-08	5.99E-08	7.74E-08	9.20E-08	8.39E-08
2.0E+04	1.29E-08	2.15E-08	3.87E-08	6.11E-08	7.66E-08	9.135-08	7.91E-08

Chebyshev Fitting Parameters for Rate Coefficients

	A6	1.885647E-04	0465049	0123581	00136315	-, 30200726	1.6400982-05	00293363
2.0E+04 eV	А5	03417899	.103860	.0325305	.00124894	60146373	-7.8151252-05	30589724
E _{max} =	ŶŶ	.0720550	142577	17289610	.002818290	.00750636	-5.329708E-04	00943770
)E.00 eV,	£ K	.0286627	.296885	1871660.	.00553446	0198832	00204888	0140215
nin = 1.0	A2	.271251	223651	0600577	.0143042	.0165590	00566531	0170066
ພື	Al	.152586	. 498745	.168467	7369110.	0457164	0113032	0211742
	0.1	-37.3767	-36.2921	-34.5146	-33.2915	-32.6810	-32.3792	- 32.5635
	He Eneryy (eV/amu)	19003.	20000.	40000.	70000.	100000.	200000.	400000

See appendix for Chebyshev fit details.

He + He⁺ $\rightarrow \sigma^{-}$

Single and Double Ionization Cross Sections for He' in He

Rie* + kie -> Rie* + Hie* + e -> Rie* + Rie^{2*} + 2e

8e*	+ He' + e	He* + He ² * + 2e			
Energy (eV/aau)	Cross Section {Cm ² }	Energy (eV/amu)	Cross Section (cm ²)		
1.22+04	4.09E-16	1.22+04	2.16E-18		
2.0E+04	3.07E-16	2.02+04	3.882-18		
4.02+04	2.198-16	4.02+04	7.76E-18		
6.0E+04 8.0E+04	1.802-16 1.542-16	6.0E+04 6.0E+04	9.74E-18 9.08E-18		
1.06+05	1.368-16 1.088-16	1.02+05	7.698-18 4.958-18		
2.0E+05 3.0E+05	9.12E-17 7.02E-17	2.0E+05 3.0E+05	3.32E-18 1.81E-18		
4.0E+05 6.0E+05	5.85E-17 4.53E-17	4.02+05 6.02+05	1.19 E-18 7.14 E-19		
7.8E+05	3.826-17	7.5E+05	5.60E-19		

References: 388, 462, 463, 494, 495, 496

Accuracy: 20%

-

 \overline{v}_{i}

and the second second

<u>Hote:</u> At lower energies the formation of He' is dominated by single electron capture.

Chebyshev Fitting Parameters for Cross Sections

	ile' + ile' 118' + ile ²	+ e + 2e	E _{min} = E _{min} =	1.22+04 1.22+04	eV/annu, eV/annu,	E _{max} = E _{max} =	7.80+05 7.50+05	ev/anni ev/anni	
		AO	A1	A2	A3	24	λ5	A6	
Re ⁺ Be ⁺	• iie ⁺ • iie ⁺ • e • iie ⁺ • 2e	-73.1564 -80.9940	-1.17268 809711	0534400 972278	00 896 703 .157207	.0130892 .149794	0030344 0339390	0 .000546481 0320888	
The The	fit repre maximum	esents the deviation	ne He' + 18 0.3%	He [*] + e c at 1.0E	ross secti 05 eV/amu.	on with	an me o	leviation of	0.2%.
The The	fit repre maximum	sents th deviation	e He' + 1 16 3.3%	He ^{2•} + 2e at 3.0E4	cross sect 04 eV/amu	ion with	an rws (deviation of	2.0%.

See appendix for Chebyshev fit details.

D--90

Single Ionization Rate Coefficients for

He + He' -> He' + He' + e

Beam - Maxwellian Rate Coefficients (Cm³/s)

He [*]							
Temp.					He Ener	∵gy (eV/annu	}
(eV)	15000.	20000.	40000.	70000.	100090.	200000.	500000.
1.0E+00	6.07E-08	6.03E-08	6.08E-08	6.08E-98	5.97E-08	5.66E-08	4.996-08
2.0E+00	6.08E-08	6.03E-08	6.08E-08	6.08E-08	5.97E-08	5.66E-08	4.995-08
4.0E+00	6.08E-08	6.03E-08	6.08E-08	6.08E-08	5.97E-08	5.66E-08	4.995-08
7.0E+00	6.08E-08	6.03E-08	6.08E-08	6.08E-08	5.97E-08	5.66E-08	4.99E-08
1.0E+01	6.08E-08	6.03E-08	6.08E-08	6.08E-08	5.97E-08	5.663-08	4.99E-08
2.0E+01	6.08E-08	6.03E-08	6.08E-08	6.08E-G8	5.97E-08	5.66E-08	4.99E-08
4.0E+01	6.08E-08	6.03E-08	6.08E-08	6.08E-08	5.97 E-08	5.66E-08	4.99E-78
7.0E+01	6.08E-08	6.03E-08	6.02E-08	6.08E-08	5.97E-08	5.66E-08	4.99E-08
1.0E+02	6.082-08	6.04E-08	6.08E-08	6-08E-08	5.97E-08	5.66E-08	4.99E-08
2.0E+02	6.06E-08	6.04E-08	6.082-08	6.08E-08	5.97e-08	5.66E-08	4.99e-08
4.0E+02	5.71E-08	6.04E-08	6.0-E-08	6.08E-08	5.97E-08	5.66E-08	4.992-08
7.0E+02	5.65E-08	6.04E-98	6.09E-08	6.08E-08	5.97E-08	5.66E-08	4.99E-08
1.0E+03	5.45E-08*	6.04E-08	6.08E-08	6.08E-08	5.97E-08	5.66E-08	4.99E-08
2.0E+03	5.05E-08*	5.96E-08	6.09E-08	6.08E-08	5.97E-08	5.65E-08	4.99E-C8
4.0E+03	4.73E-08*	5.73 E-08	6.09E-08	6.07E-08	5.97E-08	5.65E-08	4.99E-08
7.0E+03	4.598-08*	5.49E-08	6.08E-08	6.07E-08	5.96E-08	5.648-08	4.99E-08
1.02+04	4.55E-08*	5.36E-08*	6.07E-08	6.06E-08	5.96E-08	5.64E-08	4.992-08
2.02+04	4.61E-08*	5.18 5-08 *	5.98E-08	6.03E-08	5.95 E-0 8	5.63E-08	4.99E-08

-

Accuracy:	*	-	Possible	Error	Greater	Than	10%
		-	Possible	Eiror	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+90 eV, E_{max} = 2.0E+94 eV

A O	A 1	A2	A 3	A4	A 5	٨.*
-33.4287	158108	0677688	.0633240	.0303214	.0168471	-,00235247
-33.3167	0613195	0440891	0209720	00324850	.00492917	.00599209
-33.2337	00382566	00347023	00301869	00227878	00145508	-3.331803E-04
-33.2330	00284092	00208988	00125435	-6.089006E-04	-2.360207E-04	-6.0708402-05
-33.2684	00150867	-9.658744E-04	-5.35351E-04	-2.92897E-04	-1.57790E-04	-6.49004E-05
-33.3763	00257819	00151167	-4.93380E-04	-2.11497E-04	5.23848E-05	-7.734772-06
-33.6268	-2.540598-04	-1-033722-04	-1.19077E-04	-7.062378-05	-4.19110E G5	-3.05576E-05
	A0 - 33. 4287 - 33. 3167 - 33. 2337 - 33. 2330 - 33. 2684 - 33. 3763 - 33. 6269	A0 A1 -33.4287 158108 -33.3167 0613195 -33.2337 00382566 -33.2330 00284092 -33.2684 00150867 -33.3763 00257819 -33.6268 -2.54059E-04	A0 A1 A2 -33.4287 156108 0677688 -33.3167 0613195 0440891 -33.2337 00382566 00347023 -33.2330 00284092 u0208988 -33.2684 00150867 -9.658744E-04 -33.3763 00257819 00151167 -33.6267 -2.54059E-04 -1.83372E-04	A0 A1 A2 A3 -33.4287 158108 0677688 .0633240 -33.3167 0613195 0440891 0209720 -33.2337 00382566 00347023 00301869 -33.2330 00284092 u0208988 00125435 -33.2684 00150867 -9.658744E-04 -5.35351E-04 -33.3763 00257819 00151167 -4.933080E-04 -33.6268 -2.54059E-04 -1.63372E-04 -1.19077E-04	A0 A1 A2 A3 A4 -33.4287 158108 0677688 .0633240 .0303214 -33.3167 0613195 0440891 0209720 00324850 -33.2337 00382566 00347023 00301869 00227878 -33.2330 00284092 u0208988 00125435 -6.089006E-04 -33.2684 00150867 -9.658744E-04 -5.35351E-04 -2.92897E-04 -33.3763 00257819 00151167 -4.933080E-04 -2.11497E-04 -33.6268 -2.54059E-04 -1.83372E-04 -1.19077E-04 -7.06237E-05	A0 A1 A2 A3 A6 A5 -33.4287 158108 0677688 .0633240 .0303214 .0168471 -33.3167 0613195 0440891 0209720 00324850 .00492917 -33.2337 00382566 00347023 00301869 00227878 00145508 -33.2330 00284092 00208988 00125435 -6.089006E-04 -2.360207E-04 -33.2684 00150867 -9.658744E-04 -5.35351E-04 -2.92897E-04 -1.57790E-04 -33.3763 00257819 00151167 -4.933080E-04 -2.11497E-04 5.23848E-05 -33.6267 -2.54059E-04 -1.83372E-04 -1.19077E-04 -7.06237E-05 -4.19110E G5

See appendix for Chebyshev fit details

Double Ionization Rate Coefficients for

He + He' -> He' + He² + e

Beam - Maxwellian Rate Coefficients (cm^3/s)

Temp.				ile Ener	rony (eV/annu))	
(eV)	15000.	29000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	4.90E-10	7.62E-10	2.15E-09	3.45E-09	3.38E-09	2.06E-09	8.82E-10
2.0E+00	4.88E-10	7.62E-10	2.15E-09	3.458-09	3.38E-09	2.06E-09	8.82E-10
4.0E+00	4.88E-10	7.62E-10	2.15E-09	3.45E-09	3.386-09	2.06E-09	8.82E-10
7.0E+00	4.88E-10	7.62E-10	2.15E-09	3.45E-09	3.38R-09	2.06E-09	8.82E-10
1.0E+01	4.68E-10	7.622-10	2.15E-C9	3.45E-09	3.37E-09	2.06E-09	8.82E-10
2.0E+01	4.88E-10	7.62E-10	2.15E-09	3.45E-09	3.37E-09	2.06E-09	'8.82E-10
4.0E+01	4.88E-10	7.63E-10	2.158-09	3.45E-09	3.37E-09	2.06E-09	8.82E-10
7.0E+01	4 88E-10	7.64E-10	2.15E-09	3.45E-09	3.37E-09	2.06E-09	8.82E-10
1.0E+02	4.89E-10	7.64E-10	2.15E-09	3.45E-09	3.37E-09	2.06E-09	8.82E-10
2.0E+02	4.89E-10	7.67E-10	2.14E-09	3.45E-09	3.36E-09	2.06E-09	8.82E-10
4.02+02	4.86E-10	7.72E-10	2.14E-09	3.458-09	3.36E-09	2.06E-09	8.82E-10
7.0E+02	4.81E-10	7 .81e -10	2.14E-09	3.45E-09	3.358-09	2.06E-09	8.828-10
1.0E+03	4.80E-10	7.89E-10	2.14E-09	3.44E-09	3.35E-09	2.06E-09	8.82E-10
2.0E+03	4.91E-10+	8.12E~10	2.16E-09	3.420-09	3.33E-09	2.06E-09	8.82E-10
4.02+03	5.35e-10*	8.60E-10	2.19E-09	3.388-09	3.30E-09	2.06E-09	8.82E-10
7.0E+03	6.13E-10*	9.36E-10	2.22E-09	3.32E-09	3.27E-09	2.06E-09	8.83E-10
1.0E+04	6.93E-10	1.01E-09	2.25E-09	3.262-09	3.23E-09	2.06E-09	3.83E-10
2.02+04	9.42E-10	1.25 6 -09	2.32E-09	3.12E-09	3.12E-09	2.05E-09	8.85E-10

Accuracy:	*	-	Possible	Error	Greater	Than	10%
_		-	Possible	Error	Greater	Than	100*

÷

.

Be*

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV

He Toose							
tourgy	10			• •		- 6	
	A 0	A *	A 2	A)	~*	A)	AC
15000.	-42.6506	.210697	.170191	.107504	.0517361	.0113452	00599787
20000.	-41.7921	,173873	.119280	.0639172	.0267485	.00833917	.00105484
40000.	-39.8862	.0257832	.0218619	.0122377	.00362207	-2.357242-04	-9.668772-04
70000.	-39.0084	772 033،-	0251731	0147490	00625255	00143355	2.7953288-04
100000.	- 39.0462	0279022	G171564	00916918	00454775	00203€57	-7.514507E-04
200000.	-40.0019	00189800	-6.330432-04	-1.627922-04	-2.09259E-04	-7.95723E-05	-1.427982-04
500000.	-41.6965	9,433192-04	7.291428-04	4.970942-04	2.96459E-04	1.502048-04	6.26450E-05

ī

See appendix for Chebyshev fit details.

$$He + He' -> He' + He^{2+} + 2e$$

Ionization	Cross	Sections	for
I MIL Gal I MI	CIU55	SECTIONS	101

$He^{2*} + H -> He^{2*} + H^* + e$

Energy	Velocity	Cross Section
(eV/amu)	(CR /S)	(C m ²)
3.1E+C4	2.452+08	2.31E-16
4.0E+04	2.782+08	3.39E-16
5. @E+04	3.11E+08	4.05E-16
6.0E+04	3.40E+08	4.29E-16
7.0E+04	3.68E+08	4.22E-16
8.0E+04	3.93E+08	4.07E-15
9.0E+C4	4.17E+08	3.908-16
1.0E+05	4.396+08	3.778-16
1.5E+05	5.38E+08	3.04E-16
2.0E+05	6.21E+08	2.53E-16
3.0E+05	7.61E+08	1.905-16
4.0E+05	8.78E+08	1.53E-16
5.0E+05	9.82E+08	1.282-16
5.58+05	1.03E+09	1.188-16

References: 506, 507, 508, 509, 510, 522, 512, 653

Accuracy: 30%

<u>Hotes:</u> (1) As far as we are aware only one experimental measurement has been reported (Ref. 510). Above 100 keV/amu the theoretical results of Crothers and McCann (Ref. 507) are within 10% of the experimental results. At energies less than 100 keV/amu the theoretical data (Refs. 506, 507, 508, 509, 511, 512) vary by as much as an order of magnitude.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	3.1E+G4 eV	/amu,	E = 5.5	bE+05 eV/aµaru	
AO	A 1	A2	A3	A4	A 5	A 6
-71.9027	471110	344985	.128260	0459423	.00932704	.00279820

The fit represents the above cross section with an rms deviation of 0.5%. The maximum deviation is 0.8% at 9.0E+04 eV/amu.

1

See appendix for Chebyshev fit details.

ī.

T.

Ionization Rate Coefficients for

H + He²⁺ -> H' + He²⁺ + e

Beam - Maxwellian Race Coefficients (cm³/s)

He ²⁺							
Temp.				Hi Energy (eV/amu)			
(e¥)	35000.	40000-	60000.	80000.	100000.	200000.	500000.
1.0E+00	7.216-08	9-41E-08	1-46E-07	1.60E-07	1.66E-07	1.57E-07	1.26E-07
2.0E+00	7.21E-08	9.40E-08	1.46e-07	1.60E-07	1.66E-07	1.57E-07	1.26E-07
4.0E+00	7.21E-08	9.40E-08	1.468-07	1.60E-07	1.66E-07	1.57 E-0 7	1.26E-07
7.0E+00	7.21E-08	9.39E-08	1.46E-07	1.60E-07	1.66E-07	1.57E-07	1.26E-07
1.0E+01	7.21E-08	9.39E-08	1.462-07	1.60E-07	1.65E-07	1.57E-07	1.26E-07
2.0E+01	7.218-08	9.38E~08	1.46E-07	1.60E-07	1.65E-07	1.57E-07	1.26E-07
4.0E+01	7.22E-08	9.37E-08	1.46E-07	1.60E-07	1.65P-07	1.57E-07	1.268-07
7.0E+01	7.22E-08	9-358-08	1.45e-07	1.60E-07	1.65E-07	1.57E-07	1.26E-07
1.0E+02	7.23E-08	9.35e-00	1.458-07	1.60E-07	1.65E-07	1.57E-07	1.26E-07
2.0E+02	7.19E-08	9.33E-08	1.45e-07	1.60E-07	1.65E-07	1.57E-C7	1.26E-07
4.0E+02	7.01E-08	9.31E-08	1.45E-07	1.60E-07	1.65E-07	1.57E-07	1.26E-07
7.02+02	6.80E-08	9-29E-08	1.44E-07	1.60E-07	1.65E-07	1.57E-07	1.26E-07
1.02+03	6.67E-08*	9.25E-08	1.44E-07	1.59E-07	1.65E-07	1.57E-07	1.25E-07
2.0E+03	6.54E-08*	9.10E-08	1.43E-07	1.59E-07	1.64E-07	1.57E-07	1.24E-07
4.02+03	6.66E-08*	8.965-08	1.428-07	1.591 07	1.64E-v7	1.57E-07	1.18 E-0 7
7.0E+03	6.96E-08*	8.96E-08	1.402-07	1.58⊾ 7	1.63E-0?	1.56E-07	1.10E-07*
1.02+04	7.26E-08*	9.04E-08*	1.386-07	1.56E-07	1.62E-07	1.56E-07	1.04E-07*
2.0E+04	8.06E-08*	9.43E-08*	1.34E-07	1.53E-07	1.60E-07	1.56E-07	9.36E-08*

Accuracy:	*	-	Possible	Error	Greater	Than	10%
-		-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

E_{Min} = 1.0E+00 eV, E_{Max} = 2.0E+04 eV

8							
Energy							
(eV/amu)	80	A1	A2	A 3	24	A5	26
35000.	- 32. 9985	.00549401	.0364412	.0474517	.0313047	.00563515	00840841
40000.	-32.3844	0158075	6.875202-04	.00939742	.0108456	.00801907	.00326444
60000.	-31.5217	0331826	0190037	00885517	00343877	-9.09107E-04	9.566752-05
80000.	-31.3145	0148657	0105289	00656864	00357109	00159023	-5.080652-04
100000.	-31.2432	0124344	00696173	00342119	00172670	-9.033358-04	-4.398162-04
200000.	-31.3365	00345476	00195517	- 3,10531 E-04	-3.44995E-04	-1-212048-04	-2.21966E-05
500000.	-31.8962	105965	0779255	0443668	0153954	-4.905802-04	.00568340

See appendix for Chebyshev fit details.

I.

Cross Sections for the Production of Slow Positive Ions and Electrons for ${\rm He}^{2+}$ Collicing with ${\rm H}_2$ Molecules

 He^{2*} + H_2 -> Σ (H_2^* and H^* Prod.) σ^* -> Σ Electrons σ^-

 $He^{2*} + H_2 (o^*)$

 $He^{2*} + H_2 (\sigma^{-})$

Energy (eV/mm)	Cross Section	Energy (eV/ann)	Cross Section
()	()	(,,	(/
2.02+03	3.82E-15	2.5E+03	9.158-17
4.06+03	6.17 E -16	4.0E+03	7.805-17
7.0E+03	8.79E-16	5.0E+03	7.528-17
1.CE+04	1.11E-15	7.06+03	8.358-17
1.56+04	1.37E-15	1.05+04	1.185-16
2.02+04	1-472-15	1.58+04	2.128-16
2.38+04	1.498-15	2.06+04	3.176-16
4.06+04	1.282-15	4.06+04	6.196-16
7.05+04	9.83E-16	7.02+04	7.008-16
1.02+05	7.90E-16	1.02+05	6.978-16
1.56+05	6.21E-16	1.58+05	6.01E-16
2.08+05	5.158-16	2.05+05	4-948-16
3.05+05	4-016-16	4-08+05	2-518-16
		5.0E+05	1.902-16

References: 95, 143, 144, 346, 479, 532, 533, 534

ACCULACY: 254

-41

1

Botes: (1; The seven reactions producing slow ions and electrons are: (a) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^{2^*}$ + H_2^* + e (single ionization), (b) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^{2^*}$ + H^* + H + H + e (disecciative ionization), (c) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^{2^*}$ + H^* + H^* + 2e (double ionization), (d) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^{4^*}$ + H^* + H^* + 2e (double ionization), (d) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^{4^*}$ + H^* + H^* + 2e (double ionization), (d) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^*$ + H_2^* + $\operatorname{H}_2 \to \operatorname{He}^*$ + H^* + R + R + 2e (double ionization), (d) He^{2^*} + $\operatorname{H}_2 \to \operatorname{He}^*$ + H_2^* + H_2^* -> He^* + H^* + R + R + 2e (double electron capture), (e) He^{2^*} + H_2^* -> He^* + H^* + R + R + R + 2e (double electron capture), (e) He^{2^*} + H_2^* -> He^* + H + R + R + 2e (electron capture with ionization), (g) He^{2^*} + H_2^* -> He^* + H + R + R + 2e (electron capture with ionization), (g) He^{2^*} + H_2^* -> He^* + H + R + R + R + 2e (double electron capture). (2) Afrosimov et al. (Ref. 95) have made a detailed study of these reactions in the energy region 2.3x10^* to 2.5x10⁶ eV/amu. (3) The cross section for slow electron production (o^{*}) is the sum of $\sigma(a) + \sigma(b) + 2\sigma(c) + \sigma(f)$. (4) The cross section for slow positive ion production is the sum of $\sigma(a) + \sigma(b) + 2\sigma(c) + \sigma(b) + 2\sigma(c) + \sigma(b) + 2\sigma(c) + \sigma(c)$.

Chebyshev Fitting Parameters for Cross Sections

AO A1 A2 A3 A4 A5 A6

He²* + H₂ {σ^{*}} -69.8186 .0111387 -.631977 .0179570 .C939313 -.00776735 -.0310932 He²* + H₂ {σ^{*}} ..72.0755 .794419 -.668306 -.447465 .196243 -.000576099 -.0629005

The fit represents the (σ^*) cross section with an rms deviation of 1.3%. The maximum deviation is 3.0% at 4.0E+04 eV/amu.

The fit represents the (σ^2) cross section with an rms deviation of 3.2%. The maximum deviation is 5.8% at 7.02+04 eV/amu.

See appendix for Chebyshev fit details.

(Curve Total H ₂	A) • Prod.	(Curve Single Ion.	B) B2 [*] Prod.	(Curve Total	C) F Prod.	(Curve Ion. H	e D) Prod.
Energy (eV/aau)	а (ся ²)	Energy (eV/amu)	o (cm²)	Energy (eV/amu)	<i>o</i> (cm²)	Energy (eV/amu)	а (см²)
2.1E+03	9.68E-17	2.5E+03	9.97E-18	2. 3E+03	2.17E-16	2.3E+03	1.66E-16
7,02+03	6.30E-10	1.0E+04	5.30E-17	7.0E+03	1.91E-16	7.0E+03	1.128-16
1.0E+04	7.92E-16	1.52+04	1.368-16	1.0E+04	2.15E-16	1.02+04	1.298-16
1.5E+04	9.002-16	2.02+04	2.908-16	1.5E+04	2.51E-16	1.5E+04	1.60E-16
2.02+04	9-95E-16	3.02+04	1.502-15	2. CE+04	2.86E-16	2.0E+04	1.79E-16
3.0E+04	1.482-15	4.0E+04	3.20E-15	4.0E+04	4.53E-16	2.5E+04	1.90E-16
4.02+04	3.182-15	8.4E+94	5.19E-15	7.0E+04	6.35E-16	4.0E+04	1.76E-16
7.(+2+04	5.07E-15	1.02+05	5.188-15	8.0E+04	6.43E-16	7.0E+04	1.362-16
8.42+04	5.21E-15	1.52+05	4.77E-15	1.02+05	6.32E-16	1.0E+05	1.062-16
1.0E+05	5.188-15	2.0E+05	4.26E-15	1.58-05	5.59E-16	1.52+05	7.51E-17
1.52+05	4.808-15	4.02+05	2.978-15	2.08+05	4.87E-16	2.02+05	5./08-17
2.02+05	4.298-15	5.48+05	2.50E-15	4. 0E+05	3.20E-16	4.0E+05	2.33E-17
4.02+05	2.974-15	•••••		4.62+05	2.92E-16	6.0E+05	1.50E-17
5.4E+05	2.508-15						

Hotes: (1) The seven reactions producing reaction products I_1^* and H_2^* are: (a) $He^{2*} + H_2 -> He^{2*} + H_2^* + e$, single ionization; (b) $He^{2*} + H_2 -> He^{2*} + H^* + H + e$, dissociative ionization; (c) $He^{2*} + H_2 -> He^{2*} + H^* + H^* + H + e$, dissociative ionization; (c) $He^{2*} + H_2 -> He^{2*} + H^* + H^* + 2e$, double ionization; (d) $He^{2*} + H_2 -> He^* + H_2^*$, electron capture; (e) $He^{2*} - H_2 -> He^* + H^* + H^* + H$, dissociative electron capture; (f) $He^{2*} + H_2 -> He^* + H^* + H^* + e$, electron capture with ionization; (g) $He^{2*} + H_2 -> He + h^* + H^*$, double electron capture. (2) Afrosimov et al. (Ref. 96) have made detailed studies of these reactions. (3) Shown as curve A is the total cross section for producing H_2^* and is the sum of o(a) and o(d). (4) Curve B is the single ionization cross section for producing H_2^* and is the sum of $H_2^{**} - \sigma(a)$. (5) Curve C is the total cross section for producing H* and is the sum $H_2^{*\prime}$ $\sigma(a)$. (5) Curve C is the total cross section for producing H and is the sum of $\sigma(b) + 2\sigma(c) + \sigma(e) + 2\sigma(f)$. (6) Curve D is the cross section for producing H' by ionization collisions, $\sigma(b) + 2\sigma(c)$.

Chebyshev Fitting Parameters for Cross Sections

		Curve Curve Curve Curve		A B C D		gmin Gmin Gmin Gmin Gmin	1 1 1	-	2. 2. 2. 2.	104 584 384 384	+03 +03 +03		eV, eV, eV, eV,	/ 20 / 20 / 20 / 20	มน, มน, มน, มน,		1	ma jma jma ma	ж ж ж х х	¥ ≈ 7 ₽	5. 5. 4. 6.	4e1 1e1 6e1 0e1	05 05 05	eV eV eV eV	/amu /amu /amu /amu	, 			
				A0				A	1				A2					43	•			A 4			A!	5		A	5
Curve			68	.8	91	1	. 6	36	97		_	. 76	82	85			16	104	8	_	. 11	11	62		2068	844		.05452	83
Curve	9	-	70	.9	500	i 3	. 2	131	48		-1	.17	03	8			65	029	2		. 30	75	13		189	249		2082	18
Curve	ē	-	71	.4	299) [–]	. 4	107	648	1		. 25	77	36		~.	32	120	B		.04	119	B22		0784	488	1	.02529	54
Curve	2) –	74	.14	148	- 1	.9	84	730		-	. 62	267	97		-,	21	733	15		.16	367	83		0134	1584	\$	02634	02
The The	fit Max	rep	re	501 10v	i.e	th	e	Ci 1 B	urv 23	e . 31	A	CT At	051 1	B . 0	sec F+0	cti 14	.on	\ //s	vit:	h	an	rm	B (jev i a	atio	n	of	12.0%.	
The	fit Hax	rep	re	Eer	it e	th	•	C.	יע אני ונ	. 91	B	CT Bt	051 2	в . О	600 1.+0	ti 4	.on	5/ 8	/it) mmu.	h	an	rm	6 0	dev i /	ntio	n	of	12.7%.	
The	fit	rep	16	581	ite	th	•	Ĉ	urv	e 34	Ċ.	cr	0 8/	5	5ec	cti	ion	1	1tl	h	ân	rm	5 (devi	atio	n	of	2.3%.	
The The	fit Max	rep	re: C	50) 50) 30 v	ia ia	tion tion	•	C is	.د urv 4.		ວິ	Cr	081 7.	B OE	580 +04	cti	ev, .or 9V,	ian 1 am	vitl Vitl	h .	an	rm	6 (dev i a	atio	n	of	5.24.	

See appendix for Chebyslev fit details.

Crocs Sections for the Production of H^{*} and H₂^{*} Ions for He^{2*} Incident On H₂

$He^{2*} + H_2 \rightarrow \sigma(H^*)$ -> o(H2*)

References: 95, 346, 553

Accuracy: 254

 $He^{2+} + H_{2} -> \sigma(H^{+}), \sigma(h_{2}^{+})$

	He'' + (He -> o ⁻	
He ²⁺	+ He (o [*])	He ²⁺ +	He (o ⁺)
Energy (eV/amu)	Cross Section (Cm ²)	Energy (eV/amu)	Closs Section (Cm ²)
9.0E+03	3.72E-16	5.0E+03	1.59E-18
1.0E+04	4.03E-16	7.0E+03	4.68E-18
1.5E+04	5.30E-16	1.0E+04	1.29E-17
2.0E+04	5.87E-16	1.5E+04	3.07E-17
3.0E+04	6.03E-16	2.0E+04	5.11E-17
4.0E+04	5.91E-16	4.0E+04	1.30E-16
7.0E+04	4.98E-16	7.0E+04	2.20E-16
1.0E+05	4.198-16	1.0E+05	2.74E-16
1.5E+05	3.292-16	1.36+05	2.88E-16
2.0E+05	2.73E-16	1.5E+05	2.84E-16
4.0E+05	1.702-16	2.0E+05	2.518-16
7.0E+05	1.14E-16	4.0E+05	1.62E-16
1.0E+06	8.54E-17	7.0E+05	1.06E-16
1.5E+06	6.10E-17	1.0E+06	7.96E-17
2.0E+06	4.748-17	1.5E+06	5.57E-17
2.9E+06	3.41E-17	2.0E+06	4.31E-17
	_	2.8E+06	3.29E-17

Cross Sections for the Production of Slow Positive Ions and Electrons for ${\rm He}^{2+}$ Ions Interacting with He.

He²⁺ + He -> o⁺

References: 143, 144, 148, 375, 381, 382, 479, 495, 532, 534, 537, 538, 539, 540

<u>Accuracy:</u> o' - 30% o" - 50%

Notes: (1) The reactions occurring when He^{2^*} reacts with He are: (a) $He^{2^*} + He \rightarrow He + He^{2^*}$, double electron capture; (b) $He^{2^*} + He \rightarrow He^* + He^*$, single electron capture; (c) $He^{2^*} + He \rightarrow He^{2^*} + He^{2^*} + 2e$, double ionization; (d) $He^{2^*} + He \rightarrow He^{2^*} + He^* + e$, single ionization; (e) $He^{2^*} + He \rightarrow He^* + He^{2^*} + e$, single capture with single ionization. The cross sections for slow electron production σ^* is $2\sigma(c) + \sigma(d) + \sigma(e)$. The cross sections for slow ion production σ^* is $\sigma(a) + \sigma(b) + \sigma(c) + \sigma(d) + \sigma(e)$. (2) For energies less than 10^5 eV/amu electron capture dominates overionization.

Chebyshev Fitting Parameters for Cross Sections

	0* 0-	E _{min} = E _{min} =	9.0E+03 5.0E+03	eV∕amu, eV∕amu,	E _{max} = E _{max} =	2.9E+06 eV 2.8E+06 eV	//amu //amu
	AO	A1	A2	A3	A4	A5	A6
0'	-72.3312	-1.34390	519938	.150932	0442699	00102101	.00498217
0	-75.4418	1.18618	-1.77854	.310230	.0670546	.0236438	0500356

The fit represents the σ° cross section with an rms deviation of 0.6%. The maximum deviation is 1.3% at 3.0E+04 eV/anu.

The fit represents the σ^2 cross section with an rms deviation of 2.9%. The maximum deviation is 5.1% at 7.0E+03 eV/amu.

See appendix for Chebyshev fit details.

Slow Positive Jon Production Rate Coefficients for

 He^{2*} + $\text{He} \rightarrow o^*$

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

Temp.	5000.	6000					
			8000.	10000.	12000.	15000.	20000.
012-098	2.40E-09#	3.68E-09#	6.95E-09#	1.09E-06#	1.53E-08#	2.22E-08#	3.37E-08*
86E-09#	3.01E-09#	4.42E-09#	7.89E-09#	1.20E-08#	1.64E-00#	2.33E-08*	3.48E-08*
01E-09#	3.68E-09#	5.22E-09#	8.86E-09#	1.31E-08#	1.75E-08#	2.45E-08*	3.59E-08*
42E-09#	4.42E-09#	5.C5E-09#	9.86E-09#	1.428-088	1.87E-084	2.57E-09*	3.70E-08*
06E-09#	5.228-09#	6.952-09#	1.095-084	1-53E-08#	1.998-084	2.68E-04*	3.81E-08*
89E-09#	6.06E-09#	7.895-09#	1.20E-08#	1.64E-08#	2.10E-08#	2.80E-08-	3.922-08*
64E-08#	9.862-098	1,202-084	1.64E-08#	2.10E-08#	2.57E-08*	3.25E-08*	4.35E-08*
57E-08*	1.42E-08#	1.64E-08#	2.19E-08#	2.57E-08*	3.03E-08*	3.70E-08*	4.76E-08*
48E-08*	1.07E-00#	2.102-08#	2.57E-08*	3.03E-08*	3.482-08*	4.14E-08*	5.15E-08*
352-08*	2.33E-08*	2.572-08"	3.03E-08*	3.48E~08*	3.922-08*	4.55E-08*	5.53E-08*
15E-08*	2.60E-08*	3.03E-08*	3.4AE-08*	3.92E-08*	4.35E-08*	4.95E-08*	5.89E-08*
89E-08"	3.26E-08*	3.48E-08*	3.32E-08*	4.35E-08*	4.76E-08*	5.34E-08*	5.24E-08*
57E-08*	3.70E-08*	3.922-08*	4.35E-G8*	4.76E-08*	5.15E-08*	5.71E-08*	6.57E-08*
	012-098 012-098 012-098 052-098 092-098 642-008 572-08* 482-08* 152-08* 152-08* 992-08* 572-08*	01E-098 2.40E-098 06E-098 3.01E-098 01E-038 3.66E-098 42E-098 4.42E-098 06E-098 5.22E-098 06E-098 6.06E-098 64E-008 9.86E-098 64E-008 1.42E-008 48E-00* 1.67E-008 35E-00* 2.80E-08* 15E-00* 3.26E-08* 57E-08* 3.70E-08*	01E-09# 2.40E-09# 3.68E-09# 06E-09# 3.01E-09# 4.42E-09# 01E-09# 3.66E-09# 5.22E-09# 42E-09# 4.42E-09# 5.22E-09# 42E-09# 4.42E-09# 5.22E-09# 66E-09# 5.22E-09# 6.95E-09# 69E-09# 5.22E-09# 6.95E-09# 69E-09# 5.22E-09# 1.20E-08# 69E-09# 5.22E-09# 1.20E-08# 64E-08# 9.86E-09# 1.20E-08# 57E-08* 1.42E-08# 1.64E-08# 48E-08* 1.87E-08# 2.57E-08* 15E-08* 2.60E-38* 3.03E-08* 69E-08* 3.26E-08* 3.48E-08* 57E-08* 3.70E-38* 3.92E-08*	OIE-09# 2.40E-09# 3.68E-09# 6.95E-09# 06E-09# 3.01E-09# 4.42E-09# 7.89E-09# 01E-03# 3.66E-09# 5.22E-09# 8.86E-09# 02E-03# 3.66E-09# 5.22E-09# 8.86E-09# 02E-03# 4.42E-09# 5.22E-09# 8.86E-09# 04E-09# 5.22E-09# 6.95E-09# 1.09F-08# 04E-09# 5.22E-09# 6.95E-09# 1.09F-08# 04E-09# 5.22E-09# 6.95E-09# 1.02F-08# 04E-09# 5.22E-09# 1.09F-08# 1.02F-08# 04E-09# 5.22E-09# 1.20E-08# 1.64E-08# 57E-08* 1.42E-08# 1.64E-08# 2.10E-08# 57E-08* 1.42E-08# 2.57E-08* 3.03E-08* 35E-08* 2.33E-08* 2.57E-08* 3.03E-08* 15E-08* 2.60E-08* 3.48E-08* 3.92E-08* 57E-08* 3.26E-08* 3.92E-08* 4.35E-68*	01E-090 2.40E-090 3.68E-090 6.95E-090 1.09E-080 06E-090 3.01E-090 4.42E-090 7.89E-090 1.20E-080 01E-030 3.66E-090 5.22E-090 8.86E-090 1.31E-080 02E-030 4.42E-090 5.22E-090 8.86E-090 1.42E-080 06E-090 5.22E-090 6.95E-090 1.42E-080 06E-090 1.42E-080 06E-090 5.22E-091 6.95E-091 1.09E-084 1.53E-080 06E-090 5.22E-091 1.09E-084 1.53E-080 06E-090 5.22E-091 1.09E-084 1.64E-083 06E-090 5.22E-091 1.20E-084 1.64E-083 05E-081 1.64E-083 2.10E-084 2.57E-084 64E-081 1.64E-083 2.10E-084 2.57E-084 35E-081 1.42E-083 3.03E-084 3.03E-084 35E-081 1.64E-083 3.03E-084 3.64E-084 35E-081 2.60E-381 3.03E-084 3.03E-084 35E-082 3.03E-084 3.03E-084 3.92E-084 35E-082 3.26E-083 3.92E-084 3.35E-084	01E-09# 2.40E-09# 3.68E-09# 6.95E-09# 1.09E-06# 1.53E-08# 06E-09# 3.01E-09# 4.42E-09# 7.89E-09# 1.20E-08# 1.64E-08# 01E-09# 3.66E-09# 5.22E-09# 8.86E-09# 1.31E-08# 1.64E-08# 01E-09# 4.42E-09# 5.22E-09# 8.86E-09# 1.42E-08# 1.87E-08# 02E-09# 4.42E-09# 5.22E-09# 1.09F-08# 1.53E-08# 1.97E-08# 02E-09# 5.22E-09# 6.95E-09# 1.09F-08# 1.53E-08# 1.97E-08# 02E-09# 5.22E-09# 6.95E-09# 1.09F-08# 1.53E-08# 1.97E-08# 05E-09# 5.22E-09# 1.09F-08# 1.53E-08# 1.97E-08# 05E-09# 5.22E-09# 1.09F-08# 1.53E-08# 1.97E-08# 05E-09# 5.22E-09# 1.20E-08# 1.64E-08# 2.10E-08# 2.57E-08* 64E-00# 9.86E-09# 1.20E-08# 2.57E-08* 3.03E-08* 3.03E-08* 3.03E-08* 3.03E-08* 3.03E-08* 3.03E-08* 3.03E-08* 3.92E-08* 3.92E-08* 3.92E-08* 4.35E-08* 4.35E-08* <	01E-099 2.40E-099 3.68E-099 6.95E-099 1.09E-068 1.53E-086 2.22E-088 06E-099 3.01E-098 4.42E-099 7.89E-099 1.20E-088 1.64E-088 2.33E-08* 01E-098 3.66E-098 5.22E-098 8.86E-098 1.31E-088 1.64E-088 2.45E-08* 42E-099 4.42E-099 5.65E-098 9.86E-098 1.42E-088 1.87E-088 2.57E-08* 60E-098 5.22E-094 6.95E-098 1.09F-084 1.53E-084 2.57E-08* 60E-099 5.22E-094 6.95E-098 1.09F-084 1.53E-084 2.57E-08* 60E-099 5.22E-094 6.95E-098 1.09F-084 1.53E-084 2.57E-08* 60E-094 5.22E-094 1.20E-084 1.53E-084 2.57E-08* 3.25E-08* 64E-084 9.86E-094 1.20E-084 2.10E-084 2.57E-08* 3.03E-08* 3.70E-08* 57E-08* 1.42E-084 1.64E-084 2.57E-08* 3.03E-08* 3.70E-08* 3.70E-08* 57E-08* 1.42E-084 2.57E-08* 3.03E-08* 3.48E-08* 3.92E-08* 4.55E-08* 57E

Accuracy:	*	-	Possible	Error	Greater	Than	101
	#	-	Possible	Error	Greater	Than	100%

Re²+

Chebyshev Fitting Parameters for Rate Coefficients

		E _{mir}	n = 3.5E+03	eV, E	max = 2.0E+	04 eV	
He							
Temp.							
(eV)	A0	A1	A2	EA.	۸4	A5	¥6
5000.	-36.8434	1.38333	0598328	0157120	.00186832	1.83603E-04	6.05353E-05
6000.	-36.4161	1.19746	0301418	0151798	9.78250E-04	1.15735E-04	-3.58181E-05
8000.	-35.7440	.928769	.00411079	0126285	1.55066E-04	2.07816E-04	1.379062-04
10000.	-35.2350	.745842	.0204872	00979258	-3.75639E-04	2.385602-04	-3.336822-05
12000.	-34.8337	.615060	.0278881	00727889	-6.44358E-C4	-3.66627E-05	4.09092E-05
15000.	-34.3648	.477864	.0321621	00474753	-6.7069CE-04	1.260912-04	-4.230942-05
20000.	-33.8047	.336327	.0310835E-02	00214049	-6.33145E-04	-5.04160E-05	-1.09705E-04
Equal Temp.	-36.4417	2.02992	399477	.0593303	00723537	5.77470E-04	-3.035272-05

See appendix for Chebyshev fit details.

ï

- · · ·

T.

Slow Positive Ion Production Rate Coefficients for

He + He²⁺ -> o⁺

Beam - Maxwellian Rate Coefficients (cm³/s)

He ²⁺								
Tecap.					He	Enera	v (eV/amu)	
(eV)	10000.	20000.	40000.	70	000.	100000.	200000.	500000.
1.02+00	5.60E-08	1.15E-07	1.64E-07	1.8	3E-07	1.84E-07	1.692-07	1.42E-07
2.02+00	5.602-08	1.15e-07	1.64E-07	1.8	3e-0?	1.848-07	1.70E-07	1.42E-07
4.0E+00	5.602-08	1.15E-07	1.64E-07	1.8	3e-07	1.84E-67	1.70E-07	1.42E-07
7.02+00	5.60E-08	1.15e-07	1.642-07	1.8	3E-07	1.84E-07	1.70E-07	1.426-07
1.0E+01	5.602-08	1.158-07	1.64E-0;	1.8	3E-07	1.84E-07	1.70E-07	1.428-07
2.0E+01	5.60E-08	1.158-07	1.64E-07	1.8	3E-07	1.84E-07	1.70E-07	1.42E-07
4.02+01	5.55E-08	1.15E-07	1.64E-07	1.8	3E-07	1.84E-07	1.706-07	1.42E-07
7.0E+01	5.42E-09	1.15E-97	1.64E-07	1.8	3E-07	1.842-07	1.70E-07	1.428-07
1.02+02	5.29E-08	1.15E-07	1.64E-07	1.8	3E-07	1.84E-07	1.70E-07	1.428-07
2.0E+02	4.998-08*	1.15E-07	1.63E-07	1.8	3E-07	1.84E-07	1.70E-07	1.42E-07
4.0E+32	4.752-08*	1.14E-07	1.63E-07	1.8	2E-07	1.84E-07	1.69E-07	1.42E-07
7.02+02	4.67E-08*	1.14E-07	1.63E-07	1.8	2E-07	1.83E-07	1.69E-07	1.428-07
1.0E+03	4.68E-08*	1.14E-07	1.632-07	1.8	2E-07	1.83E-07	1.698-07	1.428-07
2.02+03	4.90E-08*	1.142-07	1.62E-07	1.8	2E-07	1.83E-07	1.692-07	1.42E-07
4.0E+03	5.40E-08*	1.15E-07	1.62E-07	1.6	1E-07	1.832-07	1.698-07	1.42E-07
7.0E+03	6.06E-08*	1.15E-07	1.61E-07	1.8	0E-07	1.82E-07	1.69E-07	1.428-07
1.02+04	6.62E-08*	1.16E-07	1.602-07	1.8	GE-07	1.82E-07	1.696-07	1.422-07
2.02+04	8.14E-08*	1.208-07	1.59E-07	1.7	BE-07	1.806-07	1.69E-07	1.42E-07
100	t Door	ible Serer	Crostor	10	105			
Accusacy:	PUSS	ible Prior	Greater	Than	1005			
	- russ	TOTE PERME	arcaret	* 1 I CI I I	100.0			

Chebyshev Fitting Parameters for Rate Coefficients

		E _{mir}	= 1.0E+0	0 ∈J, E _{ma}	x = 2.0E+0)4 eV	
He Energy (eV/amu)	ÂŬ	Al	A2	A3	84	A5	Jń
10000.	-33.3528	.088838	.145456	. 115375	.0287771	0197504	00975561
20000.	-31.9485	.00733646	.0104567	.00658353	.00508869	.00265079	.00155039
40000.	-31.2633	-,0136989	00614936	00195506	-5.61861E-04	-2.03312E-04	-6.594348-05
70000.	-31.6470	0112913	005929 /	00253976	00106355	- 4.844578-04	-2.293258-04
100000.	-31.0255	00737792	00415937	00198048	-9.12562E-04	-4. J1500E-04	-1.811832-04
200900.	-31.1826	00191451	~.00125764	-4.52646E-04	-2.53650E-04	2.305958-05	-3.75081g-05
500000.	-31.5305	-2.567262-04	-1.78746E-04	-1.04195E-04	-5.27594E-05	-2.69854E-05	-1.632932-05

See appendix for Chebyshev fit details

He + He²⁺ $\rightarrow \sigma^+$

Slow Electron Production Rate Coefficients for

 He^{2+} + $He \rightarrow o^{-}$

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

Temp.	Equal				He Temp.	(eV)		
(●♥)	Temp.	5000 -	6000.	8000 .	10000.	12000.	15000.	20000.
1.5 8+ 03].17E~12#	6.45E-11#	1.11E-10*	2.47E-10*	4.442-10*	6.99E-10	1.10E-09	2.24E-09
2.0E+03	6.07E-120	8.57E-11*	1.3\$E-10*	2.91E-10*	5.02E-10*	7.72E-10	1.28E-09	2.36E-09
2.5E+03	2.11E-11#	1.11F-10"	1.71E-10*	3.38E-10*	5.64E-10*	8.40g-10	1.37E-09	2.482-09
3.02+03	4.68E-11#	1.392-10*	2.07E-10*	3.89E-10*	6.30E-10*	9.27E-10	1.47E-09	2.61E-09
3.52+03	8.57E-11*	1.718-10*	2.47E-10*	4.44E-10*	6.99E-10	1.01E-09	1.57E-09	2.73E-09
4.0E+03	1.392~10*	2.07E-10*	2.91E-10"	5.02E-10*	7.72E-10	1-10E-09	1.68E-09	2.86E-09
4.5E+03	2.07E-10*	2.47E-10*	3.38E-10*	5.64E-10*	8.48E-10	1.18E-09	1.78E-09	3.008-09
5.02+03	2.91E~10*	2.91E-10*	3.89E-10*	6.30E-10*	9.27E-10	1-28E-09	1.89E-09	3.13E-09
5.5E+03	3.892~10*	3.38E-10*	4.44E-10*	6.99E-10	1.01E-09	1.37E-09	2.00E-09	3.272-09
6.0E+03	5.02E-10*	3.89E-10"	5.02E-10*	7.72E-10	1 10E-09	1.47E-09	2.12E-09	3.41E-09
8.0E+03	1.108-09	6.30E-10*	7.72E-10	1.102-09	1.47E-09	1.892-09	2.61E-09	3.998-09
1.02+04	1.698-09	9.27E-10	1.10E-09	1.472-09	1.892-09	2.36E-09	3.13E-09	4.602-09
1.22+04	2.862-09	1.28E-09	1.47E-09	1.892-09	2.36E-09	2.86E-09	3.692-09	5.24E-09
1.42+04	3.998-09	1.68E-09	1.892-09	2.36E-09	2.86E-09	3.41E-09	4.29E-09	5.918-09
1.62+04	5.24E-09	2.12E-09	2.362-09	2.86E-09	3.41E-09	3.992-09	4.928-09	6.60E-09
1.82+04	6.60E-09	2.61E-09	2.86E-09	3.412-69	3.998-09	4.60E-09	5.57E-09	7.32E-09
2.02+04	8.06E-09	3.13E-09	3.41E-09	3.99E-09	4.60E-09	5.24E-09	6.25E-09	8.06E-09
Accurac	·v· + _ (oggible i	Prrot Gree	ater Than	108			

Accuracy: • - Possible Error Greater Than 10% • - Possible Error Greater Than 10%

Be²+

Chebyshev Fitting Parameters for Rate Coefficients

		E _{min}	= 1.5E+03 eV,		E _{max} ≠ 2.0E+04 eV			
He								
Temp.								
(@∀}	AO	A1	A2	A3	24	A5	A6	
5000.	43.3317	1.97188	.145899	0314858	00292157	9.87310E-04	6.59233 E -05	
6000.	-42.7445	1.73787	.165098	0242892	00406700	7.29676E-04	1.10519g-04	
6000.	-41.8072	1.40305	.177579	0125933	00472104	2.21088E-04	1.439822-04	
10000.	-41.0752	1.17389	.175396	00453799	00443211	-1.26246E-04	1.20206E-04	
12000.	-40.4766	1.00680	. 167979	0.55303E-04	00385784	-3.27458E-04	8.438932-05	
15000.	-39.7464	.826618	.154121	.00577291	00294670	-4.58815E-04	3.466332-05	
20000.	-38.8140	.631795	.131790	.00946407	00174398	-4.77146E-04	-1.70125E-05	
Equal Temp	-44.6706	4.27088	685712	.139921	0311302	.00607534	-8.513322-04	

Т

I.

See appendix for Chebyshev fit details.

Slow Electron Production Rate Coefficients for

file + file²⁺ -> o⁻

Beam - Maxwellian Rate Coefficients (cm³/s)

He ²⁺							
Temp.					Be	Energy (eV/annu)	
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	1.66e-09	1.046-08	6.65E-08	3.41E-08	5.31E-08	1.566-07	1.34E-07
2.0E+00	1.60E-09	1.00E-08	4.88E-08	6.09E-08	9.79E-08	1.56E-07	1.34E-07
4.02+00	1.78E-09	1.006-08	3.86E-08	7.70E-08	1.18 .07	1.56g-07	1.34E-07
7.02+00	1.79E-09	1.00E-08	3.63E-08	8.04E-08	1.20E-07	1.56E-07	1.34E-07
1.0E+01	1.78E-09	1.00E-08	3.61E-08	8.07E-08	1.20E-07	1.56E-07	1.34E-07
2.0E+01	1.788-09	1.00E-08	3.608-08	8.07E-08	1.20E-07	1.56E-07	1.34E-07
4.0E+01	1.79E-09	1.00E-08	3.60E-08	8.07E-08	1.20E-07	1.56E-07	1.34E-07
7.0E+01	1.792-09	1.002-08	3.60E-08	8.07E-08	1.202-07	1.56E-07	1.346-07
1.02+02	1.802-09	1.000-08	3.60E-08	8.062-08	1.206-07	1.56E-07	1.348-07
2.02+02	1.832-09	1.002-08	3.60E-08	8.06E-08	1-202-07	1.56E-07	1.346-07
4.0E+02	1.90E-09	1.01E-08	3.60E-08	8.06E-08	1.202-07	1.56E-07	1.346-07
7.08+02	2.01E-09	1.03E-08	3.612-08	8.06E-08	1-19E-07	1.55E-07	1.342-07
1.02+03	2.13E-09	1.04E-08	3.628-08	8.06E-08	1.19E-07	1.55E-07	1.346-07
2.02+03	2.51E-09	1.09E-08	3.67E-08	8.09E-08	1.19E-07	1.55E-07	1.342-07
4.02+03	3.27E-09	1.20E-08	3.79E-08	8.16E-08	1.198-07	1.558-07	1.34E-07
7.02+03	4.44E-09	1.37E-08	3.97E-08	8.285-08	1.196-07	1.54E-07	1.34E-07
1.02+04	5.638-09	1.54E-08	4.142-08	8.38E-08	1.192-07	1.54E-07	1.348-07
2.0E+04	9.85E-09	2.08E-08	4.70E-08	8.692-08	1.19E-07	1.52E-07	1.34E-07

Chebyshev Fitting Parameters for Rate Coefficients

		Emi	n = 1.0E+0	0 eV, E	max = 2.0E	104 eV	
He Energy							
(eV/amu)	A 0	AL	A2	¥3	24	A5	A 6
10000.	- 39.6384	.794564	. 318341	.275468	0163980	.0386510	0302765
20000.	-36.5385	.251533	.168617	.0914015	.0423640	.00564777	.00225396
40000.	-33.9830	0965962	.217818	- 2655465	.0766555	0163273	5.779742-04
70000.	-32.8790	.252448	174234	159512	0904273	.0541651	0228943
100000.	-32.0888	.196302	176198	-140458	0957365	.0592874	0318816
200000.	-31.3593	00872687	00490003	00214295	-9.762242-04	-3.395912-04	-1.982448-04
500000.	-31.6465	-3.564812-04	-2.64796E-04	-1.777092-04	-1.07797E-04	-6.25087E-05	-4.020422-05

See appendix for Chebyshev fit details.

Single and Double Ionization Cross Sections for H_k^{2*} + He Collisions

 $He^{2^{+}} + He \rightarrow He^{2^{+}} + He^{+} + e$ $He^{2^{+}} + He \rightarrow He^{2^{+}} + He^{2^{+}} + 2e$

Single	Ionization	Double	Ionization
Energy	Cross Section	Energy	Cross Section
(ev/amu)	(<i>c</i> m ²)	(eV/amu)	(cn ²)
1.5E+03	2.72E-18	1.4E+04	4.43E-19
2.0E+03	2.85E-18	1.5E+04	4.70E-19
4.0E+03	3.41E-18	2.0E+04	6.21E-19
7.0E+03	4.73E-18	4.02+04	1.32E-18
1.0E+04	5.96E-18	7.0E+04	2.76E-18
1.58+04	8.1.2-18	1.02+05	6.06E-18
2.02+04	1.10E-17	1.4E+05	7.60E-18
4.0E+04	2.928-17	1.5E+05	7.50E-18
7.0E+04	1.28E-16	2.0E+05	6.65E-18
1.02+05	1.858-16	4.0E+05	3.01E-18
1.52+05	2.09E-16	7.02+05	1.27E-18
2.0E+05	2.052-16	1.0E+06	7.13E-19
4.02+05	1.502-16	1.52+06	3.518-19
7.02+05	1.03E-16	2.02+06	2.53E-19
1.02+06	8.17E-17	2.7E+06	2-06E-19
1.52+06	6.10E-17		
2.02+06	4.97E-17		
2.4E+06	4.46E-17		

References: 148, 282, 381, 382, 383, 384, 387, 537, 538, 540

Accuracy: o(He⁺) - 30% o(He²⁺) - 50%

<u>Hote:</u> The data of DuBois (Ref. 538) supercede earlier results (Ref. 282) due to recalibration of the slow recoil ion detector. These corrected data are consistent with those of Afrosimov et al. (Ref. 148), which define the low-energy behavior of the cross section.

Chebyshev Fitting Parameters for Cross Sections

o(He')	Emin	-	1.5E+03	eV∕amu,	Emax	t	2.42+06	eV/amau
o(He²+)	Emin	-	1.42+04	eV/amu_	Emax	=	2.7 E+06	eV/amu

	A0	A1	٨2	A 3	n4	A5	A6
oʻile*)	-76.5996	1.88840	913101	705245	. 237700	.295143	101724
o(He⁴* }	~82,9537	-,441854	-1.49781	.0576939	•413751	0249295	0956323

The fit represents the $o(He^*)$ cross section with an rms deviation of 15.4%. The maximum deviation is 44.5% at 4.02+04 eV/amu.

The fit represents the $\sigma(\text{He}^{2*})$ cross section with an rms deviation of 8.4%. The maximum deviation is 18.4% at 7.02+04 eV/amu.

Single Ionization Rate Coefficients for

He²⁺ + He -> He²⁺ + He⁺ + e

#e²+

Maxwellian - Maxwellian Rate Coefficients (cm³/s)

Temp.	Equal			He Temp.	(eV)			
(V)	Tem:	1000.	2000.	4000.	7000.	10000.	15000.	20000.
1.05+03	2.02E-11#	2.028-11#	5.26E-11#	1.2.'E-10*	2.21E-10*	3.23E-10	5.15E-10	7.50E-10
1.52+03	5.262-11#	3.578-11#	6.99E-11*	1.362-10*	2.382-10*	3.41E-10	5.362-10	7.76E-10
2.0E+03	8.72E-11*	5.268-11#	8.72E-11*	1.55E-10*	2.54E-10*	3.598-10	5.58g-10	8.04E-10
2.5E+03	1.21E-10*	6.99E-11*	1.04E-10*	1.71E-10*	2.71E-10*	3.778-10	5.80E-10	0.31E 10
3.0E+03	1.552-10*	8.72E-11*	1.21E-10*	1. 89E -10*	2.88E-10	3.96E-10	6.03E-10	8.60E-10
3.5E+03	1.88E-10*	1.04E-10*	1.38E-10*	2.04E-10*	3.06E-10	4.15E-10	6.26E-10	8.89E-10
4.0E+03	2.21E-10*	1.2.E-10*	1.55E-10*	2.21E-10*	3.23E-10	4.34E-10	6.50E-10	9.19E-10
4.5E+03	2.54E-10*	1.362-10*	1.71E-10*	2.38E-10*	3.41E-10	4.54E-10	6.74E-10	9.50E-10
5.0E+03	2.002-10	1.55E-10*	1.88E-10*	2.54E-10*	3.59E-10	4.74E-10	6.99E-10	9,81E-10
5.5E+03	3.23E-10	1.71E0*	2.04E-10*	2.71E-10*	3.772-10	4.94E-10	7.24E-10	1.01E-09
6.02+03	3.59E-10	1.88E-10*	2.21 E-10*	2.00E-10	3.96E-10	5.15E-10	7.50E-10	1.05E-09
8.0E+03	5.15E-10	2.548-10*	2.88E-10	3.59E-10	4.74E-10	6.03E-10	8.60E-10	1.19E-09
1.02+04	6.59E-10	3.23E-10	3.59E-10	4.34E-10	5.58E-10	6.99E-10	9.81E-10	1.34E-09
1.2E+04	9.19E-10	3.96E-10	4.34E-10	5.152-19	6.50E-10	8.04E-10	1.11E-09	1.51E-09
1.42+04	1.1 9E-0 3	4.74E-10	5.15E-10	6.03E-10	7.50E-10	9.19E-10	1.26E-09	1.692-09
1.68+04	1.51E-09	5.58E-10	6.03E-10	6.99E-10	8.60E-10	1.058-09	1.422-09	1.908-09
1.62+04	1.90E-09	6.50E-10	6.99E-10	8.04E-10	9.81E-10	1.195-09	1.60E09	2.12E-09
2.0E+04	2.36 8- 09	7.50E-10	9.04E-10	9.19E-10	1.11E-09	1.34E-09	1.79E-09	2.36E-09

Accuracy:	*	•	Possible	Error	Greater	Than	10%
-	#	-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+03 eV, E_{max} = 2.0E+04 eV

1

A0	A1	A2	A3	A4	А5	A 6
-45.5517	1.76637	0538507	.0411721	.0121873	00162780	4.71335E-04
-44,8184	1.34639	.0940426	.0160336	.0100615	7.61162E-04	-5,259 96E-06
-43.9954	.993020	,171815	.0181703	.00532378	.00150693	1.33413E-04
-43.2344	.780722	.188817	.0272646	.00407424	.00107015	2.333422-04
-42.6662	.678316	.186986	.0320032	.00435983	7.842182-04	1.422772-04
-41.8920	. 588941	.178679	.0346782	.00461614	3.94516E-04	-9,31127E-05
-41 2236	.538493	.169263	.0338729	. 00410893	1.072212-05	-2,35709E-04
-44.3188	2,21934	-,0710730	.154144	0123650	.00522272	00149471
	A0 -45.5517 -44.0184 -43.9954 -43.2344 -42.6662 -41.8920 -41.236 -41.236	A0 A1 -45.5517 1.76637 -44.0184 1.34639 -43.9954 .993020 -43.2344 .760722 -42.6662 .678316 -41.0920 .580941 -41.2326 .530493 -44.3188 2.21934	A0 A1 A2 -45.5517 1.76637 0538507 -44.0184 1.34639 .0940426 -43.9954 .993020 .171815 -43.2344 .780722 .188817 -42.6662 .678316 .186986 -41.236 .586941 .178679 -41.2236 .53493 .169263 -44.3188 2.21934 0710730	A0 A1 A2 A3 -45.5517 1.76637 0538507 .0411721 -44.6184 1.34639 .0940425 .0160336 -43.9954 .993020 .171815 .0181703 -43.2344 .760722 .186817 .0272646 -42.6662 .678316 .186986 .0320032 -41.8920 .586941 .178679 .0346782 -41 2236 .536493 .169263 .0330729 -44,3188 2.21934 0710730 .154144	A0 A1 A2 A3 A4 -45.5517 1.76637 0538507 .0411721 .0121873 -44.6184 1.34639 .0940426 .0160336 .0100615 -43.9954 .993020 .171815 .0181703 .00532378 -43.2344 .780722 .188817 .0272646 .00407424 +42.6662 .678316 .186986 .0320032 .00435983 -41.8920 .586941 .178679 .0346782 .00461614 -41.236 .536493 .169263 .0338729 .00410893 -44.3188 2.21934 0710730 .154144 0123650	A0 A1 A2 A3 A4 A5 -45.5517 1.76637 0538507 .0411721 .0121873 00162780 -44.6184 1.34639 .0940426 .0160336 .0100615 7.61162E-04 -43.9954 .993020 .171815 .0181703 .00532378 .00150693 -42.6662 .678316 .186986 .0320032 .00435983 7.84218E-04 -41.8920 .580941 .178679 .0346782 .00410893 1.8722E-05 -44.3188 2.21934 .0710730 .154144 0123650 .00522272

See appendix for Chebyshev fit details.

I.

$$He^{2+} + He -> He^{2+} + He^{+} + e$$

Single Ionization Rate Coefficients for

He + He²⁺ -> He⁺ + He²⁺ + e

Becan - Maxwellian Rate Coefficients (cm^3/s)

He ²⁺							
Temp.				He Ene	erqy (eV/and	NU }	
(eV)	10000.	20000.	40000.	70000.	100000.	200000-	500000.
1.0E+00	7.33E-11	1.69E-10	9.57E-09	1.61E-08	7.23E-08	1.27E-07	1.27E-07
2. UE+00	3.50E-10	9.12E-10	9.31E-09	3.37E-08	8.37E-08	1.27E-07	1.27E-07
4.0E+00	6.77E-10	1.78E-09	8.43E-09	4.44E-08	8.29E-08	1.27E-07	1.27E-07
7.0E+00	8.03E-10	2.10E-09	8.17E-09	4.66E-08	8.17E-08	1.27E-07	1.27E-07
1.0E+01	8.25E-10	2.16E-09	8.16E-09	4.68E-08	8.13E-0F	1.27E-07	1.27E-07
2.0E+01	8.30E-10	2.17E-09	8.18E-09	4.67E-08	8.10E-08	1.27E-07	1.27E-07
4.0E+01	8.31E-10	2.18E-09	8.22E-09	4.66E-08	8.09E-08	1.27E-07	1.27E-07
7.05+01	8.33E-10	2.18E-09	8.26E-09	4.64E-08	8.08E-08	1.27E-07	1.27E-07
1.0E+02	8.352-10	2.19E-09	8.30E-09	4.63E-08	8.08E-08	1.27E-07	1.27E-07
2.0E+02	8.40E-10	2.20E-09	8.40E-09	4.61E-08	8.06E-08	1.27E-07	1.27E-07
4.0E+02	8.50E-10	2.23E-09	8.57E-09	4.59E-08	8.04E-08	1.27E-07	1.27E-07
7.0E+02	8.65E-10	2.28E-09	8.79E-09	4.57E-08	8.01E-08	1.27E-07	1.27E-07
1.0E+03	8.80E-10	2.32E-09	9.01E-09	4.56E-08	8.00E-08	1.26E-07	1.27E-07
2.0E+03	9.34E-10	2.46E-09	9.68E-09	4.56E-08	7.97E-08	1.26E-07	1.27E-07
4.0E+03	1.05E-09	2.73E-09	1.102-08	4.61E-08	7.95E-08	1.26E-07	1.27E-07
7.0E+03	1.26E-09	3.20E-09	1.30E-08	4.71E-08	7.94E-08	1.25E-07	1.27E-07
1.0E+04	1.50E-09	3.78E-09	1.48E-08	4.81E-08	7.94E-08	1.24E-07	1.27E-07
2.0E+04	2.65E-09	6.33E-09	2.04E-08	5.15E-08	7.99E-08	1.23E-07	1.27E-07

Chebyshev Fitting Parameters for Rame Coefficients

		^e mi	n = 1.0E+0	0 eV, E	max = 2.0E	+04 eV	
He Inergy (eV/amu)	AO	A1	A2	A3	۸4	A5	A 6
10000.	-42.0879	1.05416	278168	.571603	178692	.163417	0427310
20000.	-40.2103	1.05217	325687	.576861	203701	.175474	0514200
40000.	-36.7712	.292755	.267604	.0744621	.0454617	.00691932	0124274
70000.	-34.0338	.300282	207 456	.207032	108795	.0715453	0312105
190000.	-32.6844	.00402251	01773 96	.0232129	0175932	.0185648	0137519
200000.	-31.7707	0135888	00673208	00257568	-7.31948E-04	-2.50136E-04	-2.836462-05
500000.	-31.7621	-4.22604E-04	-3.26343E-04	-2.33365E-04	-1.51845E-04	-9.21105E-05	-5.836702-05

ī.

See appendix for Chebyshev fit details.

D-120

Double Ionization Rate Coefficients for

He + He²* -> He²* + He²* + e

Beam - Maxwellian Rate Coefficients (cm³/s)

He ²⁺							
Temp.			He Ene	ergy (eV/aua	u)		
(eV)	15000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	9.358-11	1.13E-10	1.86E-10	1.74E-09	1.73E-09	4.13E-09	2.09E-09
2.02+00	8.197-11	1.21E-10	3.04E-10	1.26E-09	2.498-09	4.13E-09	2.09E-03
4.0E+00	8.0° E-11	1.22E-10	3.59E-10	1.05E-09	2.65E-C9	4.13E-09	2.09E-09
7.0E+00	8.′0E-11	1.22E-10	3.67E-10	1.02E-09	2.65E-09	4.13E-09	2.09E-09
1.0E+01	8.01E-11	1.22E-10	3.67E-10	1.02E-09	2.65E-09	4.12E-09	2.09E-09
2.0E+01	7.98E-11	1.22E-10	3.67E-10	1.02E-09	2.65E-09	4.12E-09	2.09E-09
4.0E+01	7.81E-11	1.22E-10	3.68E-10	1.02E-09	2.64E-09	4.12E-09	2.09E-09
7.0E+01	7.50E-11	1.23E-10	3.68E-10	1.02E-09	2.63E-09	4.11E-09	2.09E-09
1.02+02	7.258-11*	1.23E-10	3.69E-10	1.03E-09	2.63E-09	4.11E-09	2.09E-09
2.0E+02	6.79E-11*	1.23E-10	3.70E-10	1.03E-09	2.62E-09	4.10E-09	2.10E-09
4.0E+02	6.47E-11*	1.24E-10	3.73E-10	1.04E-09	2.60E-09	4.09E-09	2.10E-09
7.0E+02	6.39g-11*	1.26E-10	3.76E-10	1.06E-09	2.59E-09	4.08E-09	2.10E-09
1.0E+03	6.45E-11*	1.27E-10	3.79E-10	1.07E-09	2.58E-09	4.07E-09	2.1CE-09
2.0E+03	6-87E-11*	1.30E-10	3.90E-10	1.11E-09	2.56E-09	4.05E-09	2.10E-09
4.0E+03	7.87g-11*	1.37E-10	4.10E-10	1,18E-09	2.56E-09	4.01E-09	2.10E-09
7.0E+03	9.41E-11*	1.52E-10	4.43E-10	1.26E-09	2.56E-09	3.97E-09	2.10E-09
1. 36+04	1.10E-10*	1.69E-10	4.78E-10	1.34E-09	2.58E-09	3.94E-09	2.10E-09
2.08+04	1.66E-10*	2.34E-10	6.12E-10	1.54E-09	2.62E-09	3.84E-09	2.10E-09

Accuracy:	*	-	Possible	Error	Greater	Than	10%
_		-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV

He Energy (eV/amu)	RO	A1	A2	A3	A4	A5	A 6
15000.	-46.3312	. 153224	.279715	.156829	.0725151	.0242560	.00705852
20000.	-45.4317	.231432	.136160	.105908	.0379291	.0289022	.00177492
40000.	-43.4356	.345707	0276535	.185072	0448587	.0604026	0183190
70000.	-41.0648	.0136654	.223879	0488164	.0714513	0272212	.00599819
100000.	-39.6220	.0822767	0834305	.0811386	0492265	.0386945	0239545
200000.	-38.6471	0288702	0153708	00€34634	00248827	-8.914438-04	-4.33357E-04
500000.	- 39.9659	.00135586	8.97190E-04	4.16825E-04	1.052922-04	-2.866252-05	-6.553202-05

H' + Li -> H' + Li' + e							
	Velocity	Cross Section					
(ea/gmm)		(Cm)					
2.5E+04	2.205+08	1.20E-15					
4.0E+C4	2.78E+08	7.56E-16					
7.0E+04	3.68E+08	4.49E−16					
1.0E+05	4.39E+08	3.226-16					
1.58+05	5.38E+08	2.24E-16					
2.0E+05	6.21E+08	1.73E-16					
4.0E+05	8.78E+08	9.48E-17					
7.0E+05	1.16E+09	5.79E-17					
1.02+06	1.39E+09	4.21E-17					
1.5E+06	1.70E+09	2.98E-17					
2.0E+06	1.96E+09	2.36E-17					
2.3E+06	2.10E+09	2.12E-17					

References: 232, 234, 737, 738

Accuracy: 30%

<u>Note:</u> Cross sections for double ionization and electron transfer ionization may be found in Ref. 234.

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 2.5E+04 \text{ eV/assu}, E_{max} = 2.3E+06 \text{ eV/assu}$

AO	Al	A2	A3	۸4	λ5	A6
-72.8380	-2.01716	.0360083	00414961	.00683897	.00418712	.00222666

The fit represents the above cross faction with an rms deviation of 0.2%. The maximum deviation is 0.4% at $1.0E+06 \, \text{eV/amu}$.

ī.

See appendix for Chebyshev fit details.

Cross Sections for the Ionization of Li by Proton Impact

 $H^{+} + Li -> H^{+} + Li^{+} + e$

Ionization Rate Coefficients for

Li + H* -> Li* + H* + e

Beam - Kaxwellian Rate Coefficients $(cm^3/6)$

В,							
Temp.				Li Ene	rgy (eV/am	u)	
(eV)	25000.	30000.	40000-	70000.	100000.	200000.	500000.
1.0E+00	1.328-07*	2.41E-07	2.10 5-0 7	1.658-07	1.41E-07	1.07E-07	7.65E-08
2.02+00	1.32E-07•	2.41E-07	2.10E-07	1.65E-07	1.41 E-0 7	1.07 E-0 7	7.65E-08
4.02+00	1.322-07*	2.41E-07	2.108-07	1.65E-07	1.41E-07	1.07E-07	7.652-08
7.02+00	1.328-07*	2.41E-07	2.10E-07	1-65E-07	1.41E-07	1.07E-07	7.65E-08
1.02+01	1.32E-07*	2.41E-07	2.10E-07	1.65E-07	1.41E-07	1.07E-07	7.65E-08
2.0E+01	1.322-07*	2.41E-07	2.10E-07	1.65E-07	1-41E-07	1.07E-07	7.65E-08
4.02+01	1.32E-07*	2.41E-07	2.10E-07	1.65E-07	1.412-07	1.07E-07	7.65E-08
7.0E+01	1.328-07*	2.402-07	2.10E-07	1.65E-07	1-42E-07	1.07E-07	7.65E-08
1.06+02	1.328-07*	2.372-07	2.102-07	1.65E-07	1.42E-07	1.07E-07	7.65 2-0 8
2.02+02	1.32E-07*	2.26E-07	2.19E-07	1.65E-07	1-412-07	1.08 2-0 7	7.65e-08
4.0E+02	1.328-07*	2.07E-07*	2.10E-07	1.65E-07	1-42E-07	1.07E-07	7.65e-08
7.0E+02	1.320-07*	1.91E-07*	2.08e-07	1.65E-07	1.428-07	1.08E-07	7.64E-08
1.0E+03	1.328-07*	1.81E-07•	2.05E-07	1.652-07	1.42E-07	1.08E-07	7.65e-08
2.02+03	1,33 E-07 *	1.668-07*	1.92E-07	1.65E-07	1-428-07	1.08E-07	7 .65e-08
4.02+03	1.338-07*	1.54E-07*	1.75E-07*	1.645-07	1-428-07	1.08E-07	7.642-08
7.0E+03	1.34E-07+	1.47E-07*	1.638-07*	1.59E-07	1.41E-07	1.08E-07	7.64E-08
1.02+04	1.35E-07*	1.442-07*	1.552-07*	1.552-07	1.40E-07	1.088-07	7.64E-08
2.0E+04	1.362-07*	1.395-07*	1.44E-07*	1.432-07	1.358-07	1.07E-07	7.632-08

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

Emin = 1.0E+00 eV, Emax = 2.0E+04 eV

1

LI Energy							
(eV/amu)	AC	AI	A2	A)	A4	A5	A6
25000.	-31.6698	.0118975	.00739492	,00353790	.00119300	1.9359308-04	-1.1492632-04
30000.	-30.8686	300540	- 102767	.0265566	.03755728	4.406779E-04	0128332
40000.	-30,9410	164365	104616	0390710	,00300641	.0148191	.00812484
70000.	-31.2792	0415852	0337922	0234716	0135033	00508597	00106044
100000.	-31.5530	0108539	0102585	-,00887341	00653162	00400398	00213914
200000.	-32.0915	3.788109E-04	-1.517981E-04	-3.574076E-04	-3.4356178-04	-2.3664332-04	-1.024141E-04
500000.	-32.7738	-8.3889202-04	-5.417499E-04	-3.069308E-04	-2.0759538-04	-1.5986182-04	-6.1456418-05

See appendix for Chebyshev fit details

I.

 $Li + H^{+} -> Li^{+} + H^{+} + e$

Cross Sections for the Ionization of Li by He Ions.

Be' + Li -> Be' + Li' + e

Energy	Velocity	Cross Section
(eV/amu)	(CM/S)	(cm ²)
8.22+03	1-26E+0B	1.67E-15
9.0E+03	1.32E+08	1.662-15
1.02+04	1.39E+08	1.65E-15
1.52+04	1.70E+08	1.5 3e-15
2.0E+04	1.96E+08	1.38E-15
2.5E+04	2.20E+08	1.17E-15
3.0E+04	2.41E+08	9.31E-16
3.4E+04	2.56E+08	7 .58 E-16

References: 232, 739

Accuracy: Unknown

I.

Hotes: (1) The theoretical cross section of Tiwary et al. (Ref. 739) continues to increase at energies less than 10^4 eV/amu. (2) The experimental data of DuBois (Ref. 232) indicate a maximum in the cross section at 10^4 eV/amu.

	Chebyshev	Fitting	Parameters	for Cross	Sections	
	E _{min} ≖	8.2E+03	eV∕amu,	E _{max} = 3.	4E+04 eV/a	R LJ
0A	A1	A2	A3	84	A5	A6
-68.5495	358317	141101	0391361	00786217	.00262636	.00278367

The fit represents the above cross section with an rms deviation of 0.0%. The maximum deviation is 0.1% at 2.5E+04~eV/amu.

C	cross Sect.	ions for Ion	ization of	Li by	He ^{2*} Ions
		He ²⁺ + Li ->	He ² + Li	' + e	
Energy		Veloc	i ty		Cross Section
(eV/amu)		(CBR/	5)		(cm²)
6.6E+03		1.138	;+08		5.628-16
7.0E+03		1.156	+08		6.858-16
1.0E+04		1.398	+08		1.426-15
1.52+04		1.706	:+08		2.77E-15
2.0E+04		1.968	+08		3.80E-15
2.4E+04		2.156	+08		4.06E-15
4.0E+04		2.788	+08		3.02E-15
7.0E+04		3.68	:+08		1.86E-15
1.0E+05		4.398	:+08		1.35e-15
1.5E+05		5.388	:+08		9.43E-16
2.0E+05		6.216	\$+08		7.36e-16
4.0E+05		8.78	2+08		4.01E-16
7.0E+05		1.168	(+09		2.51E-16
1.0E+06		1.396	6+09		1.84E-16
1.52+06		1.70	C+09		1.28E-16

References: 232, 234, 264, 731, 735, 737 Accuracy: $E > 2x10^4$ eV/amu - 30% $E < 2x10^4$ eV/amu - Unknown

<u>Hotes:</u> (1) The theoretical data of Shipsey, et al. (Ref. 264) have been used to extend the experimental data below $2x10^4$ eV/amu. At higher energies the theoretical data of this paper are approximately 50% below the experimental data. (2) See Shah, et al. (Ref. 234) for double ionization and transfer ionization.

Chebyshev Fitting Parameters for Cross Sections

E_{min} = 6.6E+03 eV/amu, E_{max} = 1.5E+06 eV/amu A0 A1 A2 A3 A4 A5 A6 -69.7410 -1.20403 -.864397 .480069 -.171618 -.0181494 .0678290

The fit represents the above cross sections with an rms deviation of 3.8%. The maximum deviation is 6.5% at 4.0E+04 eV/amu.

1

1

1

I.

1

 $He^{2+} + Li -> He^{2+} + Li^{+} + e$

D-130

Ionization Rate Coef. cients for

Li + He²* -> Li* + He²* + e

Beam - Maxwellian Rate Coefficients (cm³/s)

He ²⁺							
Temp.				Li Ene	ergy (ev/anno	սյ	
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	1.97E-07	7.45E-07	8.39E-07	6.84E-07	5.93E-07	4.57E-07	3.27€-07
2.0E+09	1.97E-07	7.≴5E-07	8.39E-07	6.84E-07	5.93E-07	4.57E-07	3.27E-07
4.02+00	1.97E-07	7.44E-07	8.38E-07	6.04E-07	5-93E-07	4.57E-07	3.27E-07
7.0E+00	1.97E-07	7.44 e -07	8.38E-07	6.84E-07	5.93E-07	4.57E-07	3.27E-07
1.0E+01	1.97 E-0 7	7.43E-07	8.38E-07	6.83E-07	5.93E-07	4.57E-07	3.27E-07
2.0E+01	1.97E-J7	7.42E-07	8.37E-07	6.83E-07	5.938-07	4.57E-07	3.27E-07
4.0E+01	1.972-07	7.40E-07	8.37E-07	6.83E-07	5.93E-07	4.57E-07	3.27E~07
7.0E+01	1.98E-07	7.39E-07	8.36E-07	6.83E-07	5.93E-C7	4.57E-07	3.27e-07
1.0E+02	1.98E-07	7.38E-07	8.36E-07	6.83E-07	5.938-07	4.57E-07	3.27E-07
2.0E+02	2.01E-07	7.35E-07	8.34E-07	6.836-07	5.93E-07	4.57E-07	3.27E-07
4.02+02	2.06E-07	7.32E-07	8.32E-07	6.83E-07	5.93E-07	4.57E-07	3.27E-07
7.0 2+02	2.13F-07	7.28E-07	8.30E-07	6.83E-07	5.93E-07	4.57E-07	3.27E-07
1.0E+03	2.20E-07	7.23E-07	8.28E-07	6.83E-07	5.93E-07	4.57E-07	3.27 2-0 7
2.02+03	2.44E-07	7.12E-07	8.23E-07	6.82i -07	5.93E-07	4.57E-07	3.27E-07
4.0E+03	2.87E-07	6.95E-07	8.15E-07	6.82E-07	5.93E-07	4.57E-07	3.27 e-0 7
7.0E+03	3.38E-07	6.81E-07	8.03E-07	6.81E-07	5.93E-07	4.568-07	3.27€-07
1.0E+04	3.77E07	6.72E-07	7.89E-07	6.79E-07	5.93E-07	4.56E-07	3.27E-07
2.08+04	4.63E-07	6.57E-07	7.528-07	6.72E-07	5.926-07	4.56E-07	3.27E-07

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV

Li							
Energy							
(eV/Asu)	A0	A1	A2	A 3	A4	λ5	λ6
10000.	-30.4517	. 363146	.218568	.0797986	. 10504386	0143333	0104786
20000.	-28.2941	0576610	-,0273357	00812937	3 6160032-04	.00260866	.00171889
40000.	-28.0291	0386370	0241107	0131556	00664902	00299352	00102071
70000.	-28.3978	00517514	0035645#	00231958	00145198	-8.4873032-04	-4.8708462-04
100000.	-28.6764	-3.6611892-04	-4.106187E-04	-3.730240E-04	-2.606518E-04	-1,714793E-04	-7.710836g-05
200000.	-29.1978	-8.8147312-04	-6.105531E-04	-1.205126E-04	-7.2857318-05	1.0634448-04	7.216290g-06
500000.	-29,8691	-1.603658E-04	-9.779805E-05	-3.8254552-05	-5.5645098-06	2.9626542-06	-4.029762E-07

Т

$$Li + He^{2+} -> Li^{+} + He^{2+} + e$$

Beam – Maxwellian

1.1

I.

E. Projectile Electron Loss or Stripping Cross Sections (* denotes rate coefficient data also)

$H + H -> H^+ + H + e$	•			•	÷		•	•	•		E-2
$H(2s) + H(1s) -> H^+ + H +$	е					•	•	•	•	•	E-4
$H + H_2 -> H^+ + H_2 + e$.	•	•		•	•	•	•	•	•	•	E-6
$H(2s) + H_2 -> H^+ + H_2 + e$				•	•	•	•		•	•	E-8
$H + He -> H^+ + He + e$.	•	•		•	•	•	•	•	•	•	E-10*
$H(2s) + He -> H^+ + He + e$	•	•	•	•	e	•	٠	•	•	•	E-14
$He + H -> He^+ + H + e$.	•	•	•								E-16
$He + H_2 -> He^+ + H_2 + e$.	•	•		•		•	•	•		•	E-18
He + H_2 -> He ²⁺ + H_2 + 2e	•	•									E-18
$He^* + H_2 \rightarrow He \text{ or } He^+$.		•		•					•	•	E-20

Page

 $He^* + H_2 \rightarrow He \text{ or}$ $He^* + H_2^- -> He^+ + H_2 + e \dots \dots \dots \dots$ E-20 E-20 E-22* $He + He -> He^{2+} + He + 2e \dots \dots$ E-22 $He^+ + H -> He^{2+} + H + e \dots E - 28$ $He^+ + H_2 -> He^{2+} + H_2 + e \dots E-30$ $He^+ + He -> He^{2+} + He + e ... E-32*$

Projectile Electron Loss or Stripping Cross Sections for

$H + H \rightarrow H^{+} + H + e$

Energy	Velocity	Cross Section
(eV/aunu)	(Cma/s)	(CTA ²)
1.2E+03	4.81E+07	2.89E-18
2.0E+03	6.21E+07	1.50E-17
4.0E+03	8.79E+07	3.65E-17
6.0E+03	1.08E+08	5.228-17
7.0E+03	1.16E+08	5.87E-17
1.0E+04	1.39E+08	7.68E-17
1.5E+04	1.70E+08	1.07E-16
2.0E+04	1.96E+08	1.26E-16
4.0E+04	2.78E+08	9.64E-17
7.0E+04	3.68E+08	7.35E-17
1.0E+05	4.39E+08	5.988-17
1.5E+05	5.38E+08	4.49E-17
2.02+05	6.21E+08	3.57E-17
4.0E+05	8.78E+08	1.96E-17
7.0E+05	1.16E+09	1.27E-17
1.0E+06	1.39E+09	9.67E-18
1.5E+06	1.702+09	7.08E-18
2.0E+06	1.96E+09	5.76E-18
3.5E+06	2.59E+09	3.88E-18

References: 33, 34, 209, 296, 297, 298, 299, 300, 301

Accuracy: 20%

<u>Note:</u> To our knowledge there are no known experimental ionization cross sections for H interacting with H atoms.

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 1.2E+03 \text{ eV/amu}, E_{max} = 3.5E+06 \text{ eV/amu}$

A 0	A1	A2	A 3	A4	A5	A6
-77.1794	451408	-1.51760	.543975	0355154	,00258954	0750900

The fit represents the above cross section with an rms deviation of 8.0%. The maximum deviation is 10.3% at 7.0E+03 eV/amu.

H + H -> H^{*} + H + e

B-3

Projectile Electron Loss or Stripping Cross Sections for

$H(2s) + H(1s) -> H^{+} + H + e$

Energy	Velocity	Cross Section
(eV/amu)	(Cma/s)	(c m ²)
5.0E+03	9.82E+07	2.24E-16
6.0E+03	1.08E+08	2.39E-16
7.0E+03	1.16E+08	2.51E-16
8.0E+03	1.24E+08	2.62E-16
9.06+03	1.32E+08	2.69E-16
1.0E+04	1.39E+08	2.75E-16
1.5E+04	1.70E+08	2.95E-16
2.0E+04	1.96E+08	2.94E-16
3.02+04	2.412+08	2.60E-16
4.0E+04	2.78E+08	2.29E-16
5.0E+04	3.11E+08	2.10E-16
6.0E+04	3.40E+08	1.99E~16
7.0E+04	3.68E+08	1.91E-16
8.0E+04	3-93E+08	1.64E-16
9.0E+04	4.17E+08	1.79E-16
1.0E+05	4.392+08	1.74E-16

References: 33, 285, 302

Accuracy: Unknown

<u>Note:</u> The experimental data of Hill, et al. (Ref. 33) have been extrapolated from 20 keV/amu to 100 keV/amu using the theoretical data of Abrines and Percival (Ref. 235), and Prasad and Unnikrishnan (Ref. 302). In the energy range of overlap the experimental and theoretical data agree to within 25%.

Chebyshev Fitting Farameters for Cross Sections

	E _{ain} =	5.0E+03	eV∕amu,	e _{max} =	1.0E+05 eV/	amu
AO	A1	A2	A3	A4	A 5	A6
-72.0121	164818	174972	.0460650	,029340 1	00879104	~.0113468

The fit represents the above cross section with an rms deviation of 0.4%. The maximum deviation is 0.5% at 4.0E+04 eV/amu.

E-5

$H + H_2 -> H^* + H_2 + e$						
Energy	Velocity	Cross Section				
(eV/amu)	(CM/S)	(CM*)				
6.0E+01	1.08E+07	1.17E-19				
7.0E+01	1.16E+07	1.51E-19				
1.0E+02	1.39E+07	5.24E-19				
1.56+02	1.70E+07	1.37E-18				
2.0E+02	1.96E+07	2.39E-18				
4.0E+02	2.78E+07	8.32E-18				
7.0E+02	3.68E+07	2.09E-17				
1.0E+03	4.39E+07	3.37E-17				
1.5E+03	5.38E+07	5.08E-17				
2.0E+03	6.21E+07	6.36E-17				
4.0E+03	8.79E+07	8.63E-17				
7.0 E+0 3	1.162+08	9.09E-17				
1.02+04	1.392+08	9.21E-17				
1.58+04	1.70E+08	1.06E-16				
2.0E+04	1.96E+08	1.36E-16				
4.02+04	2.78E+08	1.548-16				
7.3E+04	3.75E+08	1.348-16				
1.0E+05	4.39E+08	1.106-16				
1.5E+05	5.38e+08	8.61E-17				
2.0E+05	6.21E+08	7.04E-17				
4.02+05	8.78E+08	4.20E-17				
7.0E+05	1.16E+09	2.63E-17				
1.0E+06	1.395+09	1.91E-17				
1.52+06	1.70E+09	1.30E-17				
2.0E+06	1.96E+09	9.74E-18				
4.0E+06	2.77E+09	4.60E-18				
7 .0E+06	3.65E+09	2.46E-18				
1.0E+07	4.36E+09	1.652-18				
1.5E+07	5.32E+09	1.02E-18				
2 OE+07	6.11E+09	7.34E-19				

<u>References:</u>	26,	27,	28, 29), 31,	33,	37,	45,	47,	49,	51,	143,	269,	270,
	296,	298	, 299,	301,	303,	. 304	1, 30	05,	306,	307,	308,	310,	313,
	315,	316	, 321										

Accuracy: 30%

<u>Note:</u> Many Investigators have been involved in these measurements. Consequently there is large scatter in the data, but most of the measurements are within the quoted accuracy of 30%.

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 6.0E+01 \text{ eV/aunu}, E_{maix} = 2.0E+07 \text{ eV/aunu}$ A0 A1 A2 A7 A4 A5 A6 -79.0892 .346403 -3.04496 .508490 -.0758661 .108006 .00593450

The fit represents the above cross section with an rms deviation of 10.7%. The maximum deviation is 29.8% at 1.02+04 eV/amu.

See appendix for Chebyshev fit details.

Projectile Electron Loss or Stripping Cross Sections for

E-7

Projectile E	lectron	Loss	or	Stripping	Cross	Sections	for
--------------	---------	------	----	-----------	-------	----------	-----

$H(26) + H_2 -> H^* + H_2 + e$

Energy	Velocity	Cross Section
(eV/amu)	(Cm /s)	(cm²)
5.0E+92	3.11E+07	6.14E-17
7.0E+02	3.68E+07	1.09E-16
1.0E+03	4.39E+07	1.90E-16
1.5E+03	5.38E+07	2.89E-16
2.0E+03	6.21E+07	3.33E-16
4.0E+03	8.79E+07	4.058-16
7.0E+03	1.16E+08	4.36E-16
1.0E+04	1.392+08	4.50E-16
1.5E+04	1.70E+08	4.63E-16
2.0E+04	1.96E+08	4.765-16
4.0E+04	2.785+08	4.00E-16
7.02+04	3.682+08	3.00E-16
1.02+05	4.392+08	2.48E-16
1.52+05	5.38E+08	1.95E-16
2.0E+05	6.21E+08	1-59E-16
4.02+05	8.78E+08	9.56E-17
5.02+05	9.82E+08	8.13E-17

References: 27, 33, 306, 326, 327, 328, 329, 331, 332

Accuracy: 50%

<u>Note:</u> Due to the uncertainties in measuring the H(28) metastable fraction, the errors in measuring the cross sections may be large.

Chebyshev Fitting Parameters for Cross Sections

I	s _{min} = 5.0)E+02 eV/a	mu, E _m	uax ≖ 5.0)E+05 eV/am	U
AO	A1	٨2	A 3	٨4	85	A6
-72.3651	0686522	939077	.160670	0746703	.0714502	00310738

The fit represents the above cross section with an rms deviation of 3.2%. The maximum deviation is 7.0% at 7.0E+02 eV/amu.

I.

E-9

Projectile	Electron Loss or Stripping	Cross	Sections for
	H + He -> H + He +	e	
Energy	Velocity		Cross Section
(ev/amu)	(Cm/S)		(cm*)
5.0E+01	9.82E+06		2.25E-19
7.0E+01	1.16E+07		5.27E19
1.0E+02	1.39E+07		1.08E-18
2.02+02	1.968+07		3.40E-18
4.0E+J2	2.78E+07		9.54E-18
7.0E+02	3,68€+07		2.06E-17
1.0E+03	4.39E+0 7		3.3ie-17
2.02+03	6.21E+07		6.83E-17
4.02+03	8.79E+07		1.07E-16
7.0 E+03	1.16E+08		1 .29E-16
1.00+04	I.39E+08		1.33E-16
2.0E+04	1.962+08		1.302-16
4.0E+04	2.78E+08		1.21e-16
7.0E+04	3.68E+08		1.05E-16
1.06+05	4.39E+08		8.77 E -17
2.0E+05	6.21E+08		5.41E-17
4.02+05	8.78E+08		3.12E-17
7 .02+05	1.16£+09		1.91E-17
1 .02+06	1.39E+09		1 .38 E- <u>1</u> 7
2.0e+06	1.96E+C9		7 .20e -18
4 - OE+06	2.77E+09		3.68e-18
7 .0e+05	3.65E+09		2.13E-18
1.0 2 +07	4.36E+09		1.492-18
2.0 e +07	6.11E+09		7.31E-19

<u>References:</u> 26, 27, 28, 29, 47, 49, 51, 103, 268, 269, 270, 286, 287 296, 299, 300, 303, 307, 309, 313, 314, 316, 317, 318, 319, 320, 321, 322

Accuracy: 15%

Notes: None

Chebyshev Fitting Parameters for Cross Sections

1	² min ²	5.0E+01 eV	//aanu,	e _{max} =	2.0E+07 ev	//amu
AO	A 1	A2	A3	A4	A5	A6
-79.0638	.107432	-2.86460	.477451	.0989948	0319510	0136705

The fit represents the above cross section with an rms deviation of 4.7%. The maximum deviation is 9.9% at 2.0E+04 eV/amu.

1

E-11

Projectile Electron Loss or Stripping Rate Coefficients for

 $H + He -> H^+ + He + e$

Maxwellian - Maxwellian Rate Coefficients (Cm³/s)

	Prove 1				Ba 64			
(emp.	Edaer		100	600	1000	mp. (wv)	10000	~
(44)	TEMP.	ιυ.	100.	500.	1000.	5000.	10000.	20000.
1.0E+01	7.25E-13#	2.29E-13#	6.10E-12*	1.09E-10	3.69E-10	3.81E-09	7.66E-09	1.30E-08
2.02+01	2.538-12*	1.86E-12*	1.102-11	1.25E-10	3.94E-10	3.84E-09	7.69E-09	1.30E-08
4.0E+01	1.40E-11	9.69E-12	2.48E-11	1.60E-10	4.47E-10	3.91E-09	7.74E-09	1.30E-08
6.0E+01	3.35E-11	2.28E-11	4.34E-11	1.90E-10	5.01E-10	3.98E-09	7.80E-09	1.312-08
8.0E+01	6.03E-11	4.08E-11	6.64E-11	2.40E-10	5.58E-10	4.05E-09	7.85E-09	1.31E-08
1.0E+02	9.38E-11	6.33E-11	9.38E-11	2.84E-10	6.1 6E-1 ð	4.12E-09	7.9CE-09	1.31E-08
2.0E+0Z	3.44E-10	2.35E-10	2.84E-10	5.43E-10	9.27E-10	4.46E-09	8.16E-09	1.33E-08
4-02+02	1.098-09	7.76E-10	8.47E-10	1.10E-09	1.62E-09	5.12E-09	8-67E-09	1.36E-08
6.0E+02	1.97E-09	1.45E-09	1.53E-09	1.88E-09	2.34E-09	5.76E-09	9.15E-09	1.40E-08
8.0E+02	2.88E-09	2.162-09	Z.25E-09	2.61E-09	3.06E-09	66E-09	9.62E-09	1.43E-08
1.0E+03	3.77E-09	2.89E-09	2.97E-09	3.33E-09	3.77E-09	6.95E-09	1.01E-08	1.46E-08
2.02+03	7.64E-09	6.22E-09	6.29E-09	6.58E-09	6.95E-09	9.50E-09	1.21 E-08	1.60E-08
4.0E+03	1.30E-08	1.11E-08	1.12E-03	1.14E-08	1.16E-08	1.34E-08	1.53E-08	1.03E-08
6.0E+03	1.66E-08	1.46E-08	1.46E-08	1.482-08	1.492-08	1.632-08	1.78E-08	2.03E-08
8.02+03	1.93E-08	5.72E-08	1.728-08	1.73E-08	1.75E-08	1.86E-08	1.98g-08	2.192-08
1.0E+04	2.15E-08	1.93E-08	1.94E-08	1.952-08	1-962-08	2.05E-08	2.15E-08	2.338-08
1.5E+04	2.558-08	2.33E-08	2.335-08	2.34E-08	2.35E-08	2.41E-08	2.48E-08	2.61E-08
2.0E+04	2.812-08	Z.61E-08	2.61E-08	2.61E-08	2.62E-03	2.66E-06	2.71E-08	2.81E-08

Accuracy:		-	Possible	Error	Greater	Than	101
-	#	-	Possible	Error	Greater	Than	100%

Chebyshev Fitting Parameters for Rate Coefficients

		E _{min} =	1.0E+01	eV,	E _{max} = 2.	0E+04 eV	
Re Teso.							
(•V)	80	AL	A2	A3	A4	A5	86
10.	-44.0257	5.73463	-1.21932	.0247503	0292957	.0619373	0219438
100.	-42.5585	4.48698	446257	330879	.0963671	.0257805	0137058
500.	-40.6373	3.03270	.121804	344684	.00515230	.0559208	00813570
1000.	-39.6384	2.34972	.269827	258791	0440918	.0450062	.00550612
5000.	-37.3658	1.00814	.315318	0289392	0543988	00704923	.00822057
10000.	-36.5490	.622335	.247753	.0221122	0295150	0130702	4.392519E-04
20000.	-35.8634	. 357047	. 168697	.0373094	00809424	00961802	00307060
Equal Temp.	-43.5995	5.66872	-1,35443	.109372	0570829	.0766441	0349995

٠,

See appendix for Chebyshev fit details.

I.

Projectile Electron Loss or Stripping Cross Sections for

$H(2s) + He \rightarrow H^{+} + He + e$

Energy	Velocity	Cross Section
(eV/aunu)	(cm/s)	(cm ²)
5.0E+02	3.11E+07	3.08E-17
7.0E+02	3.68E+07	8.29E-17
1.0E+03	4.39E+07	1.37E-16
1.5E+03	5.38E+07	1.94E-16
2,0E+03	6.21E+07	2.396-16
4.0E+03	8.79E+07	3.28E-16
7.0E+03	1.16E+08	3.42E-16
1.0E+04	1.39E+08	3.425-16
1.5E+04	1.706+08	3.32E-16
2.02+04	1.96E+08	3.07E-16
4.0E+04	2.78E+08	2.23E-16
7.02+04	3.68E+08	1.61E-16
1.0E+05	4.39E+08	1.26E-16
1.5E+05	5.38E+08	9.97E-17
2.0E+05	6.21E+08	8.785-17
4.06+05	8.785+08	6-97E-17
5.0E+05	9.6°E+08	6.72E-17

References: 29, 324, 326, 327, 329, 332

Accuracy: 504

.

<u>Note:</u> Due to the uncertainties in measuring the H(2s) metastable fraction the errors in measuring the cross section may be large. For energies less than 1 keV/amu the data should by used with caution.

Chebyshev Fitting Parameters for Cross Sections

E _{min}	, ≖	5.0E+0	2 eV/amu,	E _{max}	= 5.0E	+05 eV/aunu	
AO		Al	A2	٨3	А4	A5	A6
-73.2008	0	752112	927667	.363861	034914	.08236627	0565338

The fit represents the above cross section with an rms deviation of 2.6%. The maximum deviation is 4.8% at 1.5E+03 eV/amu.

 $H(2s) + He -> H^{+} + He + e$

Projectile	Electron	Loss	or	Stripping	Cross	Sections	for

He + H -> He⁺ + H + e

Energy	Velocity	Cross Section
(eV/amu)	(CHK/S)	(<i>c</i> m ²)
5.0E+04	3.11E+08	1.56E-16
6.0E+04	3-40E+08	1.42E-16
. 7.0E+04	3.68E+08	1.31E-16
8.0E+04	3.93E+08	1.23E-16
9.0E+04	4.17E+08	1.15E-16
1.0E+05	4.39E+08	1.09E-16
1.56+05	5.38E+08	8.49E-17
2-06+05	6-21E+08	6.87E-17
3.0E+05	7.61E+08	4.80E-17
4-02+05	8.78E+08	3.68E-17
5.00+05	9.825+08	2.93E-17
6.06105	1.08E+09	2.44E-17
7-02+05	1.16E+09	2.07E-17
8-02+05	1.24E+09	1.85E-17
9.02+05	1.126+09	1.65E-17
1 05+05	1 395+09	1.05E-17
1.2E+06	1.526+09	1.23E-17

	References:	301,	398
--	-------------	------	-----

Accuracy: 15%

Notes: None

Chebyshev Fitting Parameters for Cross Sections

E _{min}	£	5.0E+04	t eV/amu,	E _{max}	=	1.2E+06	eV/amu	
AO		A 1	A2	A3		84	A5	A6
-75.0809	-1	.28466	136342	.022920	.01	44810 -	.00700300	00377068

1

The fit represents the above cross section with an rms deviation of 0.4%. The maximum deviation is 1.3% at 7.0E+05 eV/amu.

 $He + H -> He^{+} + H + e$

Single and Double Projectile Electron Loss or Stripping Cross Sections for

He + H₂ -> He^{*} + H₂ + e σ_{01} He + H₂ -> He^{2*} + H₂ + 2e σ_{02}

 (σ_{01})

 (σ_{02})

Energy	Cross Section	Energy	Cross Section (cm ²)
(eV/amu)	(cm ²)	(eV/amu)	
5.0E+02	9.96E-19	5.0E+04	2.59E-18
7.0E+02	2.13E-18	6.0E+04	3.14E-18
1.0E+03	4.68E-18	7.0C+04	3.51E-18
1.5E+03	9.24E-18	8.9E+04	3.78E-18
2.0E+03	1.33E-17	9.0E+04	3.98E-18
4.0E+03	2.73E-17	1.0E+05	4.07E-18
7.0E+03	4.26E-17	1.2E+05	4.10E-18
1.0F+04	5.33E-17	1.5E+05	3.93E-18
1.52+04 2.02+04 4.02+04 1.52+05 1.52+05 2.02+05 4.02+05 7.02+05 1.52+05	6.75E-17 7.93E-17 1.11E-16 1.27E-16 1.23E-16 1.08E-16 9.38E-17 6.08E-17 4.01E-17 3.00E-17	2.0E+05 3.0E+05 4.0E+05 5.0E+05 6.0E+05 7.0E+05 8.0E+05	3.932-18 3.46E-18 2.44E-16 1.75E-18 1.31E-18 1.09E-18 9.38E-19 8.21E-19

References: (Single Stripping) 94, 97, 99, 102, 103, 143, 198, 301, 316, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409 (Double Stripping) 400, 405

Accuracy: $c_{01} = 15$ $\sigma_{02} = Unknown$

<u>Motes:</u> (1) The stripping cross sections are measured in two ways: (a) by the attenuation of the He beam in the H_2 gas cell; (b) by the formation of He^{*}. The attenuation method gives the sum of the single and double stripping cross sections. Since the double-stripping cross section is at least a factor of 30 less than that for single-stripping, the two methods give the same cross sections within the measurement errors. (2) The data for double stripping do not permit an error evaluation.

Chebyshev Fitting Parameters for Cross Sections

	001 002	E _{min} ^r E _{min} ≠	5.0E+02 5.0E+04	eV/amu, eV/amu,	E _{max} = E _{max} =	1.0E+06 eV/a 8.0E+05 eV/a	intu Intu
	AO	A 1	A2	A3	A4	A 5	A6
001 002	-76,5793 -81,3267	1.58478 669570	-1.39956 425168	.0531448 .0911177	0845579 -0266527	.0891012	.0231543 00546826
The The	fit repre maximum	esents th deviation	e 7 ₀₁ cros is 5.4%	s section at 7.0E+02	with an ev/amu.	rms deviation	n of 2.5%.
The The	fit repre maximum	esents th deviation	is 1.8%	s section at 5.0E+05	with an eV/amu.	rms deviation	of 0.7%.
See	appendix	for Cheb	yshev fit	details,			

Total Metastable Destruction, Electron Stripping, and De-excitation Cross Sections for

oŢ		0	0•1	Ø0+0		
Energy	c	Energy	0	Energy	0	
(eV/amu)	(cm²)	(eV/amu)	(cm²)	(eV/amu)	(cm²)	
1-8E+03	3.72E-16	2.5E+63	2.34E-16	6.3E+03	2.09E-16	
2.0E+03	3.94E-16	4.0E+03	3.81E-16	1.0E+03	2.09E-16	
4.0E+03	6.162-16	7.0E+03	5.41E-16	1.0E+04	2.01E-16	
7.0E+03	7.49E-16	8.6E+03	5.53E-16	1.5E+04	1.77E-16	
8.4E+03	7.63E-16	1.0E+04	5.488-16	2.0E+04	1.52E-16	
1.02+04	7.54E-16	1.5E+04	4.88E-16	4.0E+04	8.20E-17	
1.5E+04	6.69E-16	2.0E+04	4.43E-16	7.0E+04	3.66E-17	
2.0E+04	5.98E-16	4.0E+04	3.38E-16	1.0E+05	1.84E-17	
4.0E+04	4.32E-16	7.0E+04	2.66E-16	1.20+05	11E-17	
7-02+04	3.13E-16	1.02+05	2.23E-16			
1.0E+05	2.49E-16	1.3E+05	1.90E-16			
1.20+05	2.26E-16					

References: 102, 198, 402, 408, 410, 411, 412, 413, 414, 415, 416

Accuracy: 50%

Botes: (1) Tawara (Ref. 102) has listed the excited state lifetimes for He as: (a) $2^{1}P = 5.6 \times 10^{-10}$ sec; (b) $2^{1}P = 1.05 \times 10^{-7}$ sec; (c) $2^{1}S = 0.14$ sec; (d) $2^{3}S = 16^{3}$ sec. (2) $\sigma_{T} = \sigma_{0+1} + \sigma_{0+0}$. (3) Benton, et al. (Ref. 412) found the total destruction cross sections of the triplet metastable state to be $6.0 \times 10^{-16} \text{cm}^2$ at thermal energies. Por electron stripping cross sections of other excited states see Pedersen (Ref. 414).

Chebyshev Fitting Parameters for Cross Sections

oT	E _{min} •	1.82+03	eV/amu,	E _{max} =	1.2E+05	eV/amau
00-1	Emin =	2.5€+03	eV/amu,	Emax =	1.3 E +05	eV/amu
<i>0</i> 0•0	emin =	6.3 E+O 3	eV∕amu,	Emax =	1.22+05	eV/annu

	A0	A1	A2	A3	A4	A5	A6
o _t	-70.7481	310880	437383	.0856563	.022.775	0286798	.0139816
ø0•1	-71.3457	218099	407518	.142300	0331160	0270893	.0189680
0.00	-74-1810	-1.38382	434191	0390903	00312428	00143317	000970525

The fit represents the σ_T cross section with an rms deviation of 0.6%. The maximum deviation is 0.6% at 1.82+03 eV/amu.

The fit represents the σ_{0+1} cross section with an rms deviation of 0.5%. The maximum deviation is 0.9% at 1.5E+04 eV/amu.

The fit represents the ω_{0+0} cross section with an rms deviation of 0.0%. The maximum deviation is 0.1% at 7.02+04 eV/amu.

Single and Double Projectile Electron Loss or Stripping Cross Sections for

He	÷	He	->	Re	÷	He	+	e	(001)	
He	+	He	->	He ²⁺	+	He	+	26	e (002)	,

	vi
Energy Cross Section (eV/amu) (cm ²)	Energy Cross Section (eV/amu) (cm²)
5. $0E+01$ 1. $19E-19$ 7. $0E+01$ 2. $30E-19$ 1. $0E+02$ 3. $40E-19$ 1. $5E+02$ 4. $19E-13$ 2. $0E+02$ 4. $37E-18$ 7. $0E+02$ 1. $37E-18$ 1. $0E+03$ 5. $79E-18$ 1. $5E+03$ 1. $07E-17$ 2. $0E+03$ 1. $64E-17$ 4. $0E+03$ 3. $77E-17$ 7. $0E+03$ 3. $77E-17$ 1. $5E+04$ 8. $16E-17$ 1. $5E+04$ 8. $16E-17$ 2. $0E+04$ 4. $08E-16$ 7. $0E+05$ 9. $31E-17$ 1. $5E+05$ 8. $37E-17$ 2. $0E+05$ 4. $89E-17$ 3. $0E+05$ 4. $89E-17$ 3. $0E+05$ 4. $89E-17$	5.0E+04 3.92E-18 7.0E+04 5.00E-18 1.0E+05 5.85E-18 1.5E+05 5.04E-18 2.0E+05 3.83E-18 4.0E+05 1.72E-18 7.0E+05 8.71E-19 1.0E+06 5.50E-19

References: o_{01} 97, 99, 103, 198, 304, 316, 399, 400, 401, 404, 405, 407,
408, 410, 465, 466, 467, 468, 469, 470, 471 o_{02} 94, 400, 401, 405, 470, 471

<u>Hote:</u> Most of the data have been taken for a mixed beam of ground state and metastable states of incident He.

Chebyshev Fitting Parameters for Cross Sections

 $\sigma_{01} = E_{min} = 5.0E+01 eV/amu, E_{max} = 5.0E+05 eV/amu$ $<math>\sigma_{02} = E_{min} = 5.0E+04 eV/amu, E_{max} = 1.0E+06 eV/amu$

	A0	AI	A2	A3	<u>^</u> 4	A5	A6
σ ₀₁	-78.6347	3.20546	-1.37570	359168	. 188553	0115646	0973845

°02 -81.2673 -1.09626 -.438191 .146687 -.0102958 -.0324691 .0197680

The fit represents the σ_{01} cross section with an rms deviation of 10.2%. The maximum deviation is 32.7% at 2.02+02 eV/amu.

The fit represents the σ_{02} cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 2.0E+05 eV/amu.

Single Projectile Electron Loss or Stripping Rate Coefficients for

He + He -> He' + He + e

Maxwellian - Maxwellian Rate Coefficients (cm^3/s)

Be								
Teep.	Equal			He Tes	ф. (eV)			
(eV)	Temp.	10.	100.	500.	1000.	5000.	10000.	20000.
1.0E+01	2.56E-16#	2.568-16#	9.95E-13*	1.53E-11	5.98E-11	1.13E-09	2.96E-09	6.52E-09
2.0E+01	3.55E-14#	6.78E-15#	1.19E-12*	1-50E-11	6.13E-11	1.14E-09	2.968-09	6-528-09
4.0E+01	4.658-134	9.72E-14#	1.598-12*	1.70E-11	6.34E-11	1.14E-09	2.97E-09	6.53E-09
6.0E+01	1.198-12*	3.17E-130	2.07E-12*	1.83E-11	6.59E-11	1.158-09	2.98E-09	6.54E-09
\$.0E+01	2.02E-12*	6.30E-13*	2.46E-12*	1.96E-11	6.85E-11	1.16E-09	2.98E-09	6.54E-J9
1.02+02	2.932-12*	9.958-13*	2.93E-12*	2.10E-11	7.10E-11	1.17E-09	2.99E-09	6.55E-09
2.02+02	9.612-12	3.17E-12*	5.75E-12	2.852-11	8.46E-11	1.20E-09	3.032-09	6.58E-09
4.0E+02	3.73E-11	1.01E-11	1.47E-11	4.74E-11	1.15E-10	1.27E-09	3.10E-09	6.65E-09
6.0E-02	8.46E-11	2.17E-11	2.85E-11	7.10E-11	1.572-10	1.34E-09	3.18E-05	6.72E-09
0.02-02	1.50E-10	3.83E-11	4.74E-11	9.93E-11	1.88E-10	1.41E-09	3.25E-09	6.78E-09
1.02+03	2.31E-10	5.982-11	7.10E-11	1.32E-10	2.31 2- 10	1.48E-09	3.32E-09	6.85E-09
2.0E+03	7.94E-10	2.33E-10	2.535-10	3.50E-10	4.87E-10	1.85E-09	3.698-09	7.182-09
4.02+03	2.21E-09	7.97E-10	8.27E-10	9.60E-16	1.13E-09	2.58E-09	4.42E-G3	7.83E-09
6.0E+03	3.692-09	1.49E-09	1.52E-09	1.67E-09	1.85E-09	3.32E-09	5.13E-09	8.47E-09
6.0E+03	5.13E-09	2.22E-09	2.25E-09	2.40E-09	2.58E-09	4.06E-09	5.83E-09	9.085-09
1.02+04	6.52E-09	2.962-09	2.99E-09	3.14E-09	3.32E-09	4.778-09	6.52E-09	9.69E-09
1.52+04	9.692-09	4.78E-09	4.81E-09	4.95E-09	5.13E-09	6.52E-09	8.15E-09	1.11E-06
2.02+04	1.252-08	6.52E-09	6.55E-09	6.68E-09	6.85E-09	8.15E-09	9.69E-09	1.252-08

Accuracy:	-	Possible	Error	Greater	Than	10%
	-	Possible	Error	Greater	Than	100\$

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+01 eV, E_{max} = 2.0E+04 eV

He							
Temp.							
(eV)	80	A1	A2	A3	24	A5	A 6
10.	-51.7583	8.06294	-1.24558	. 480900	345667	-00168045	.0989086
100.	-47.7268	4.71689	.727833	356780	134711	.0403620	.0326103
500.	-45.2262	3.19352	.872249	155633	153319	.00295441	.0304174
1000.	-43.7465	2.41883	.806189	0302189	122890	0208521	.0205933
5000.	-40.0684	.892003	.435779	.111572	00729485	0179737	00576743
10000.	-38.6577	.504603	.274535	.0948463	.0137433	00755328	00472901
20000.	-37.3817	.261777	.152417	.6618891	.0157868	5.991028-04	00183208
Equal Temp.	-49.6803	7.93762	~1.58981	.635046	579197	. 290394	0450460

See -	appendix	for	Chebyshev	fit	detai	ls.
-------	----------	-----	-----------	-----	-------	-----

Single Projectile Electron Loss or Stripping Rate Coefficients for

He + He -> He' + He + e

.

Beam - Maxwellian Rate Coefficients (cm^3/s)

8e				No Spor			
(eV)	10000.	20000.	40000.	70 0 00.	1000 00 .	200000.	500000.
1.0E+00	8-89E-09	2.37E-08	3.000-308	3.68E-08	4.09E-08	4.60E-08	2.05E-08#
2.0E+00	9.34E-09	1.90E-08	3.00E-08	3.57E-08	4.09E-08	4.59E-08	2.05E-08#
4.0E+00	9.36E-09	1.81E-08	3.00E-08	3.67E-08	4.09E-08	4.60E-08	2.05E-08#
7.0E+00	9.35E-09	1.81E-08	3.006-08	3.67E-08	4.09E-08	4.60E-08	2.05E-08#
1.0E+01	9.35E-09	1.81E-08	3.002-08	3.67E-08	4.09E-08	4.59E-08	2.058-08
2.0E+01	9.35E-09	1.81E-08	2.998-08	3.67E-08	4.09E-08	4.59E-08	2.05E-08#
4.0E+01	9.35E-09	1.81E-08	2.99E-08	3.67E-08	4.09E-08	4.59E-08	2.05E-08
7.0E+01	9.35E-09	1.81E-08	2.99E-08	3.67E-08	4.09E-08	4.59E-08	2.05E-08
1.0E+02	9.36E-09	1.80E-08	2.996-08	3.67E-08	4.09E-08	4.59E-08	2.058-08#
2.0E+02	9.38E-09	1.80E-08	2.98E-08	3.67E-08	4.09E-08	4.59E-08	2.05E-08
4.0E+02	9.43E-09	1.812-08	2.97E-08	3.67E-08	4.09E-08	4.598-08	2.04E-084
7.0E+02	9.51E-09	1.81E-08	2.97E-08	3.67E-08	4.08E-08	4.58E-08	2.04E-08
1.0E+03	9.60E-09	1.81E-08	2.96E-08	3.67E-08	4.08E-08	4.58E-08	2.04E-08#
2.0E+03	9.91E-09	1.83E-08	2.95E-08	3.67E-08	4.08E-08	4.57E-08	2.03E-08
4.0E+03	1.052-08	1.86E-08	2.958-08	3.67E-08	4.08E-08	4.57E-08	2.02E-08#
7.0E+03	1.14E-08	1.91E-08	2.956-08	3.68E-08	4.08E-08	4.55E-08	2.012-08
1.0E+04	1.22E-08	1.96E-08	2.95E-08	3.68E-08	4.08E-08	4.55E-08	2.00E-08#
2.0E+04	1.46E-08	2.11E-08	2.98E-08	3.69E-08	4.08E-08	4.52E-08	1.98E-08

Accuracy: * - Possible Error Greater Than 10% # - Possible Error Greater Than 10%

Chebyshev Fitting Parameters for Rate Coefficients

E_{min} = 1.0E+00 eV, E_{max} = 2.0E+04 eV

He Energy (eV/amu)	AO	Al	A2	A3	A4	۸5	A 6
10000.	-36.8050	.170883	.101708	.0672106	.0156617	.0105796	00356384
20000.	-35.5374	0131879	.0937563	0235657	.0434438	0195503	.0142528
40000.	~34.6583	00778924	6.32056E-04	.00349830	.00265169	.00125371	4.62226E-04
70000.	-34.2378	9.38356E-04	.00134041	9.62664E-04	4-31072E-04	6.92929E-05	-2.31386E-05
100000.	-34.0260	-6.943322-04	3.474892-05	2.894158-04	5.86603E-05	-2.083492-05	-8.090432-05
200000.	-33,7994	00708522	00341665	00168503	-3.16686E-04	-3.04255E-04	1.044962-04
500000.	-35.4225	0144815	00746534	00291476	-9.54856E-04	-2.930452-04	-9.76578E-05

.

See appendix for Chebyshev fit details.

Beam – Maxwellian

Electron Projectile Loss or Stripping Cross Sections for

$He' + H -> He^{2+} + H + e$

Energy (eV/amu)	Velocity (cm/s)	Cross Section (CTM ²)				
1.2E+04	1.52E+08	1.66E-19				
1.5E+04	1.70E+08	4.71E-19				
2.0E+04	1.96E+08	1.15E-18				
4.0E+04	2.78E+08	7.03E-18				
7.0E+04	3,68E+08	1.11E-17				
1.0E+05	4.39E+08	1.04E-17				
1.5E+05	5.38E+08	9.34E-18				
2.0E+05	6.21E+0B	8.17E-18				
4.0E+05	8,78E+0B	5.26E-18				
7.0E+05	1.16E+09	3.63E-18				
9.0E+05	1.32E+09	3.04E-18				

References: 301, 476

Accuracy: 20%

Notes: None

	Chebyshev	<u> Fitting</u>	Paramete	ers for	Crobs	Section	<u>16</u>
ı	^e min = 1	L.2E+04 eV	/ a mu ,	E _{max} =	9.0E+0	5 ev/au	mu
20	λ1	λ2	EA	٨4		λ5	A6
-80.7839	1.04755	-1.36971	.441034	029276	40!	527228	.0184479

The fit represents the above cross section with an rms deviation of 4.3% The maximum devation is 8.7% at 2.0E+04 eV/amu.

T.

Projectile	Electron	Loss or	Stripping	Cross	Sections	for
	He	+ H ₂ ->	He ²⁺ + H ₂	+ e		
Energy		Veloci	ty		Cross S	ection
(eV/amu)		(cm/s	5)		(Cm²)	
5.0E+03		9.8261	+07		1.29E-	19
7.0E+03		1.16E	08		1.99E-	19
1.0E+04		1.39E+	08		3.25E-	19
1 5E+04		1.70E+	08		6.18E-	19
2.0E+04		1.96E4	-08		1.06E-	18
4.0E+04		2.78E+	-08		5.77E-	18
7.0E+04		3.68E+	+08		1.45E-	17
1.0E+05		4.39E	+08		2.02E-	17
1.32+05		5.01E	-08		2.16E-	17
1.50+05		5.38E4	+08		2.16E-	17
2.0E+05		6.21E	+08		1.85E-	17
4.0E+05		8.78E+	+08		1.13E-	17
7.06+05		1.16E+	+09		7.81E-	18
9.50+05		1.35E	+09		6.29E-	18

 References:
 94, 96, 97, 100, 101, 296, 301, 464, 476, 478

 Accuracy:
 $E < 3x10^4$ eV/amu - 40%

 $E > 3x10^4$ eV/amu - 20%

Notes: None

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	5.0E+03	eV/amu,	^E max [≖]	9.5E+05	eV/amu
AO	A1	A2	A3	A4	A5	٨6
-80.9631	2.17474	-1.29222	291348	. 317779	.0620566	0993825

The fit represents the above cross section with an rms deviation of 2.3%. The maximum deviation is 5.1% at 2.0E+04 eV/amu.

Cross	Sections	for P	rojectile	Electro	n Loss	or	Stripping	for
		He	Passing	Through	Helium			

$He^{+} + He -> He^{2+} + He + e$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(C# ²)
3.56+03	8.226+07	2.63E-19
4.0E+03	8.79E+07	3.68E-19
7.0E+03	1.16E+08	1.02E-18
1.0E+04	1.39E+08	1.64E-18
1.5E+04	1.70E+08	2.74E-18
2.0E+94	1.96E+08	3.87E-18
4.0E+04	2.78E+08	8.89E-18
7.0E+04	3.68E+08	1.67E-17
1.02+05	4.39E+08	2.14E-17
1.56+05	5.38E+08	2.35E-17
1.76+05	5.73E+08	2.36E-17
2.0E+05	6.21E+08	2.34E-17
4.0e+05	8.78E+08	1.69E-17
7.02+05	1.16E+09	1.07E-17
1.06+06	1.39E+09	7.73E-18
1.5E+06	1.70E+09	5.218-18
2.02+06	1.96E+09	3.912-18
4.0E+06	2.77E+09	1.98E-18

<u>References:</u> 94, 96, 97, 101, 296, 375, 471, 477, 480, 481, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493

ACCULACY: 20%

Notes: None

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	3.5E+03	eV/amu,	^E max *	4.0E+06	eV/amu
AO	A 1	A2	A3	A4	A5	A6
-80.4254	.937124	-1.62973	.00297670	.154841	.0696031	0892584

The fit represents the above cross section with an rms deviation of 1.6%. The maximum deviation is 3.5% at 4.0E+04 eV/amu.

See appendix for Chebyshev fit details.

1

Projectile Electron Loss or Stripping Rate Coefficients for

He + He' -> He²⁺ + He + e

Beam - Maxwellian Rate Coefficients (cm^3/s)

He							
Temp.				He Energy	(eV/ammu)		
(eV)	10000.	20000.	40000.	70000.	100000.	200000.	500000.
1.0E+00	2.93E-10	1.202-09	8.75E-10	4.39E-09	1.06E-08	1.455-08	1.38E08
2.0E+00	2.386-10	8.92E-10	1.82E-09	5.65E-09	9.90E-09	1.45E-08	1.38E-08
4.0E+00	2.28E-10	7.71E-10	2. 39E-09	5.99E-09	9.37E-09	1.45E-08	1.38E-08
7.0E+00	2.28E-10	7.60E-10	2.47E-09	6.09E-09	9.37E-09	1-45E-08	1.38E-08
1.0E+01	2.28E-10	7.61E-10	2.47E-09	6.12E-09	9.38E-09	1.45E-08	1.38E-08
2.0E+01	2.28E-10	7.61E-10	2.47E-09	6.13E-09	9.38E-09	1.45E-08	1.38E-08
4.0E+01	2.28E-10	7.622-10	2.47E-09	6.12E-09	9.38E-09	1.45E-08	1.38E-08
7.0E+01	2.29E-10	7.63E-10	2.47E-09	6.12E-09	9.37E-09	1.45E-08	1.38E-08
1.0E+02	2.30E-10	7.64E-10	2.47E-09	6.12E-09	9.366-09	1.45E-08	1.38E-08
2.02+02	2.32E-10	7.67E-10	2.48E-09	6.11E-09	9.35E-09	1.45E-08	1.38E-C8
4.0E+02	2.36E-10	7.74E-10	2.49E-09	6.10E-09	9.34E-09	1.458-08	1.38E-08
7.02+02	2.43E-10	7.85E-10	2.50E-09	6.10E-09	9.32E-09	1.44E-08	1.38E-08
1.0E+03	2.50E-10	7.96E-10	2.528-03	6.11E-09	9.31E-09	1.442-08	1.38E-08
2.0E+03	2.72E-10	8.32E-10	2.57E-09	6.13E-09	9.29E-09	1.44E-08	1.382-08
4.0E+03	3.19E-10	9.058-10	2.68E-09	6.19E-09	9.29E-09	1.43E-08	1.38E-08
7.0E+03	3.92E-10	1.02E-09	2.836-09	6.28E-09	9.30E-09	1.42E-08	1.38E-08
1.0E+04	4.70E-10	1.13E-09	2.99E-09	6.38E-09	9.32E-09	1.42E-08	1.382-08
2.0E+04	7.54E-10	1.528-09	3.46E-09	6.67E-09	9.41E-09	1.40E-09	1.38E-08

Chebyshev Fitting Parameters for Rate Coefficients

 $E_{min} = 1.0E+00 \text{ eV}, E_{max} = 2.0E+04 \text{ eV}$

A0	Al	A2	A3	24	A5	A 6
-43.8442	. 378813	.344057	. 105569	.0867559	00821300	.0129056
-41.5896	. 123902	.270872	.0115805	.0887436	0161519	.0126729
-19.7835	.385155	145042	- 223297	0998296	.0753339	0326980
-37.8827	.110612	0493705	.070:363	0309008	.0252250	0129206
-36.9382	0374325	.0312796	0188116	.0166130	00628486	.00207752
-36.1132	0149846	00760145	00280029	-8.61479E-04	-1.69493E-04	-3.201428-05
-36.1937	-5.707 992- 04	-4.55366E-04	-3.44110E-04	-2.36175E-04	-1.47246E-04	-9.1937662-05
	A0 -43.8442 -41.5896 -39.7835 -37.8827 -36.9382 -36.1132 -36.1132	A0 A1 -43.8442 .376813 -41.5896 .123902 -39.7835 .365155 -37.8827 .110612 -36.9382 0374325 -36.1132 0149848 -36.1937 -5.707992-04	A0 A1 A2 -43.8442 .378813 .344057 -41.5896 .123902 .270872 -39.7835 .365155 145042 -37.8827 .110612 0493705 -36.9382 0374325 .0312796 -36.1132 0149846 00760145 -36.1937 -5.70799E-04 -4.55366E-04	A0 A1 A2 A3 -43.8442 .378013 .344057 .105569 -41.5096 .123902 .270872 .0115805 -19.7635 .365155 145042 .223297 -37.8627 .110612 0493705 .0701363 -36.9382 0374325 .0312796 0188116 -36.1132 0149846 00760145 00280029 -36.1937 -5.707992-04 -4.553662-04 -3.441102-04	A0 A1 A2 A3 A4 -43.8442 .378813 .344057 .105569 .0867559 -41.5896 .123902 .270872 .0115805 .0887436 -19.7835 .385155 145042 .223297 0998296 -37.8827 .110512 0493705 .0701363 0309008 -36.9382 0374325 .0312796 0188116 .0166138 -36.1132 0149848 00760145 00280029 -8.614792-04 -36.1937 -5.707992E-04 -4.55366E-04 -3.44110E-04 -2.36175E-04	A0 A1 A2 A3 A4 A5 -43.8442 .378813 .344057 .105569 .0867559 00821300 -41.5896 .123902 .270872 .0115805 .0887436 0161519 -19.7815 .365155 145042 .223297 0998296 .0753339 -37.8827 .110612 0493705 .0701363 0309008 .0252250 -36.9382 0374325 .0312796 0188116 .0166130 00628486 -36.1132 0149848 00760145 00280029 -8.614792-04 -1.694932-04 -36.1937 -5.707992E-04 -4.55366E-04 -3.44110E-04 -2.36175E-04 -1.47246E-04

I.

F. Electron Detachment Cross Sections

Page

H ⁻ + H -> H + H + e	•	•	•		•	•	•	•	F-2
-> (H + H + e) or	(H	+	H-)	•	•		•	•	F-2
$-> H^+ + H + 2e$	•	•	•	• •	•	•	•	•	F-4
$H^- + H^+ -> H + H^+ + 2e$.	•	•	•	•••	•	•	•	•	F-6
$H^- + H_2 -> H + H_2 + e$.	•	•	•		•	•	•	•	F-8
$-> H^+ + H_2 + 2e$.	•	•	•	• •	•	•	•	•	F-10
$H^- + He -> H + He + e$.	•	•	•	• •	•	•	•	•	F-12
$-> H^+ + He + 2e$.	٠	•	•	•••	•	•	•	•	F-14
$He^{-} + H -> He + H + e$.	•	•	•		•		•		F-16
$He^{-} + H_{2} -> He + H_{2} + e$.			•		•	•	•	•	F-18
-> He ⁺ + H ₂ + 2e			•		•		•	•	F-18
$He^- + He -> He + He^- + e$	•							•	F-20
-> He ⁺ + .le + 2e	•	•	•	••	•	٠	•	•	F-20
$Li^{-} + H_{2} -> Li + H_{2} + e$.		•	•	•••	•	•	•		F-22
-> Li ⁺ + H ₂ + 2e	•		•						F-22
Li ⁻ + He -> Li + He + e	•		•					•	F-24
-> Li ⁺ + He + 2e	•	•		• •				•	F-24

I I

Cross Section for Single Electron Detachment and Total H² Formation from H⁻ on H

H⁺ + H -> H + H + e H⁻ + H -> (H + H + e) or (H + H⁻) [Total H Prod.]

8 + H + e

Total H Prod.

Energy	Cross Section	Energy	Cross Section
(21/2001)	(CM	(E 4 / cant)	
1.1E+02	8.652-16	6.0E+01	6.64E-15
2.0E+02	1.286-15	7.0E+01	6.75E-15
4.0E+02	1.44E-15	1.0E+02	6.79E-15
7.0E+02	1.39E-15	1.5E+02	6 -482 -15
1.0E+03	1.328-15	2.0E+02	6.11E-15
1.5€+03	1.19E-15	4.0E+02	4.928-15
2.0E+03	1.11E-15	7.0E+02	3.836-15
4.0E+03	1.01E-15	1.0E+03	3.136~15
7.0E+03	9.758-16	1.58+03	2.456-15
1.02+04	8.72E-16	2.0E+03	2.03E-15
1.52+04	7 .18E -16	4.0E+03	1.268-15
2.0E+04	6.26E-16	7.0E+03	1.01E-15
4.0E+04	4.25 2-16	1.05+04	B.74E-16
7.0€+04	2.90E-16	1.56+04	7.18 2 -16
1.02+05	2.218-16	2.06+04	6.26E-16
1.5E+05	1.61E-16	4.0E+04	4.252-16
2.0E+05	1.27E-16	7,0E+04	2.90E-16
4.02+05	7. 04E-1 7	1.02+05	2.21E-16
7.0E+05	4.24E-17	1,5E+05	1.61E-16
1.02+06	2.99E-17	2,0E+05	1.272-16
1.5E+06	2.09E-17	4.0E+05	7.04E-17
2.0E+06	1.59E-17	7,0E+05	4.24E -17
4.0E+06	8.23E-18	1,0 e +06	2.99E-17
		1,5E+06	2.092-17
		2.0E+06	1.598-17
		4.0e+06	8.236-18

References: 162, 281, 301, 395, 524, 525, 554, 555

Accuracy: 30%

1

1

<u>Note</u>. Data for total H^0 formation represent the <u>sum of the cross sections</u> for collisional detachment and charge exchange. The charge exchange contribution is negligible at energies above 10 keV/amu.

Chebyshev Fitting Parameters for Cross Sections

H + H	+	е	Emin	•	1.1E+02	eV∕amu,	Emay		4.02+06	eV/auntu
Total	H	Prod.	e min	=	6,0 C +01	eV/antu,	Emax	=	4.0E+06	eV/anau

AO A1 A2 A3 A4 A5 A6

H + H + e -72.0699 -2.47924 -.936325 .0886530 .0175392 .0545278 -.0645320 Total H Prod. -70.7835 -3.41032 -.545568 .00370195 -.0606176 .0839778 .00626877

The fit represents H + H + e cross section with an rms deviation of 2.74. The maximum deviation is 5.4% at 2.0E+03 eV/amu.

The fit represents Total H Prod. cross section with an raw deviation of 3.7%. The maximum deviation is 12.4% at 4.02+0.3 eV/amu.

H ⁻ + H -> H ⁺ + H + 2e					
Energy	Velocity	Cross Section			
(eV/amu)	(CRA/S)	(C m ²)			
1.9E+03	5.89E+07	3.11E-18			
2.0E+03	6.21E+07	3.57E-18			
4.0E+03	8.79E+07	9.35E-18			
7.0E+03	1.16E+08	1.50E-17			
1.0E+04	1.39E+08	1.77E-17			
1.56+04	1.70E+08	1.87E-17			
2.0E+04	1.96E+08	1.85E-17			
4.0E+04	2.78E+08	1.43E-17			
7.0E+04	3.68E+08	9.40E-18			
1.0E+05	4.39E+08	6.79E-18			
1.50+05	5.38E+08	4.61E-18			
2.0E+05	6.21E+08	3.51E-18			
3.02+05	7.61E+08	2.50E-18			

<u>References:</u> 524, 525

Accuracy: 20%

Note: There is only one set of experimental measurements.

	Chebyshev	Fitting	Paramete	rs for C	ross Sect	ions	
	E _{min} =	1.82+03	eV∕amu,	E _{max} ≖	3.0E+05	eV/annu	
AO	A1	A2	A3	λ4	λ5	A6	
-79.0633	259790	938476	.154218	.0364114	.00411484	.00724986	
The fit rep The maximum	resents ti deviation	ne above is 1.3	cross sec at 2.0	ction with 2+03 eV/am	an rms d u.	leviation of	0.94.

See appendix for Chebyshev fit details.

Cross Sections for Double Electron Detachment of H⁻ in H

I.

H" + H' -> H + H' + e				
Energy (eV/amu)	Velocity (cm/s)	Cross Section (cm ²)		
2.8E+03	7.35E+07	3.99E-16		
3.0E+03	7.61E+07	6.57E-16		
4.0E+03	8.79E+07	1.55E-15		
5.0E+03	9.82E+07	2.24E-15		
6.0E+03	1.08E+08	2.73E-15		
7.0E+03	1.16E+08	3,11E-15		
8.0E+03	1.24E+08	3.40E-15		
9.02+03	1-32E+08	3.64E-15		
1.0E+04	1.395+08	3.82E-15		
1.5E+04	1.70E+08	4.238-15		
2.02+04	1.96E+08	4.186-15		
3.CE+04	2.41E+08	3.88E-15		
4.0E+04	2.78E+08	3.518-15		
5.0E+04	3-11E+09	3,198-15		
6.0E+04	3-40E+08	2.925-15		
7.0E+04	3.68E+08	2.66E-15		

Cross Sections for Single Electron Detachment of H⁺ Colliding with H⁺

References: 69, 569, 572, 573

Accuracy: 40%

1

Note: Accuracy taken from the only experimental data available. Theoretical calculations presented by Fussen and Claeys (Ref. 572), and Ermolaev (Ref. 573) agree very well with experimental data.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	2.8E+03	eV∕amu,	e _{max} =	7.02+04	eV/amu
AO	A1	٨2	EA	A4	A5	٨6
-67.3879	.650676	658353	,211309	0972717	.0547639	0359904

The fit represents the above cross section with an rms deviation of 2.6%. The maximum deviation is 5.7% at 2.8E+03 eV/amu.

	H + H ₂ -> H + H ₂ +	e
Energy	Velocity	Cross Section
(eV/amu)	(cma/s)	(cm²)
2.3E+00	2.11E+06	8.91E-17
4.0E+00	2.78E+06	1.92E-16
7.0E+00	3.68E+06	3.18E-16
1.0E+01	4.39E+06	3.68E-16
1.5E+01	5.38E+05	4.14E-16
2.0E+01	6.21E+06	4.28E-16
4.0E+01	8.79E+06	4.15E-16
7.0E+01	1.16E+07	4.36E-16
1.0E+02	1.39E+07	4.80E-16
1.5E+02	1.70E+07	5.60E-16
2.0E+02	1.96E+07	6.29E-16
4.0E+02	2-78E+07	8.412-16
7.0E+02	3.68E+07	1.00E-15
1.0E+03	4.39E+07	1.06E-15
1.4E+03	5.20E+07	1.10E-15
2.0£+03	6.21E+07	1.13E-15
4.0E+03	8.79E+07	1.14E-15
7.0E+03	1.16E+08	1.096-15
1.0E+04	1.39E+08	1.02E-15
1.5E+04	1.70E+08	9.24E-16
2.0E+04	1.96E+08	8.36E-16
4.0E+04	2.78E+08	6.33E-16
7.0E+04	3.68E+08	4.82E-16
1.0E+05	4.39E+08	3.95E-16
1.5E+05	5.38E+08	3.06E-16
2.0E+05	6.21E+08	2.51E-16
4.0E+05	8.78E+08	1.43E-16
7.02+05	1.16E+09	9.02E-17
1.0E+06	1.396+09	6.43E-17
1.52+06	1.70E+09	4.41E-17
2.0E+06	1.96E+09	3.29E-17
4.0E+06	2.77E+09	1.552-17
7.02+06	3.65E+09	8.13E-18
1.0E+07	4.36E+09	5.16E-18
1.5E+07	5.32E+09	3.17E-18
1.72+07	5.65E+09	2.722-18

Cross Sections for Single Electron Detachment of H^* in H_2

$H^{-} + H_{2} -> H + H_{2} + e$

<u>References:</u> 27, 32, 82, 269, 299, 301, 303, 3^o7, 321, 395, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 541, 542, 544

Accuracy: 25%

A0

1

1

<u>Note:</u> For total detachment cross sections $(\sigma_{-10} + \sigma_{-11})$ see: Muschlitz, Jr. et al., (Ref. 514, 516); Stedeford and Hasted (Ref. 82); Hasted and Smith (Ref. 515'; Risley and Geballe (Ref. 520); Risley (Ref. 544); Jorgensen, Jr. et al. (Ref. 32); Lichtenbert et al. (Ref. 523)

<u>Chebyshe</u>	v Fitting	<u> Parameter</u>	s for C	cross Sec	tions
^E min [≖]	2.3E+00	eV∕amu,	e _{ntax} =	1.76+07	eV/amu
At	A2	À S	A4	A 5	A6

-73.1506 -1.75695 -2.00168 -.190280 .0171353 .127083 -.152313

The fit represents the above crose section with an rms deviation of 7.2%. The maximum deviation is 16.6% at 7.0E+01~eV/amu.

1

	$H^- + H_2 \rightarrow H^+ + H_2 +$	2e
Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(cm²)
1.0E+03	4.39E+07	1.48E-17
2.0E+03	6.21E+07	2.31E-17
4.0E+03	8.79E+07	3.24E-17
7.0E+03	1.16E+08	3.79E-17
1.0E+04	1.39E+08	4-03E-17
1.5E+04	1.70E+08	4. 16E-17
2.0E+04	1.96E+08	4-11E-17
4.0E+04	2.78E+08	3.97E-17
7.0E+04	3.68E+08	3.36E-17
1.0E+05	4.39E+08	2.84E-17
1.58+05	5.38E+08	2.20E-17
2.0E+05	6.21E+08	1.76E-17
4.0E+05	8.785+08	8.71E-18
7.0E+05	1.16E+09	4.98E-18
1.0E+06	1.392+09	3.42E-18
1.5E+06	1.70E+09	2.232-18
2.0E+06	1.96E+09	1.67E-18
4.0E+06	2.77E+09	8.12E-19
7.0E+06	3.65E+09	4.52E-19
1.0E+07	4.36E+09	3.13E-19

References: 269, 299, 303, 307, 321, 518, 521, 522, 524, 525, 526, 556, 563, 567

Accuracy: 30%

<u>Note:</u> There are no experimental or theoretical data for energies below 1 keV/amu.

Chebyshev Fitting Parameters for Cross Sections

E_{min} = 1.0E+03 eV/amu, E_{max} = 1.0E+07 eV/amu

80	A 1	10	83	8.4	85	86
70	~ ~ ~	n 4	~ ~ ~		~ ~ ~	n v

-79.0159 -2.10252 -1.24073 .174799 .106249 -.000434273 -0.0465674

The fit represents the above cross section with an rms deviation of 2.0%. The maximum deviation is 4.3% at 4.02+05 eV/amu.

See appendix for Chebyshev fit details.

Cross Sections for Double Electron Detachment of H in H2

CIOSE DECEIDING IOI DINGLE CIECCION DECOCIMENTE DI N IN	CLOSE	H 10 H	Re .
---	-------	--------	------

H" + He -> H + He + e

Energy	Velocity	Cross Section
(ev/amu)	(Cm/5)	(C∎°)
1.0E+00	1.39E+06	6.132-17
2.02+00	1.96E+06	1.258-16
4.0E+00	2.78E+06	2.33E-16
7.0E+00	3.68E+06	2.94E-16
1.0E+01	4.39E+06	3.03E-16
1.56+01	5.382+06	3.14E-16
2.0E+01	6.21E+06	3.22E-16
4.0E+01	8.79E+06	3.42E-16
7.0E+01	1.16E+07	3.70E-16
1.02+02	1.39E+07	3.91E-16
1-58+02	1.70E+07	4.21E-16
2.0E+02	1-965+07	4.482-16
4.0E+02	2.78E+07	5.10E-16
7.0E+02	3.68E+07	5.60E-16
1.0E+03	4.39E+07	6.Q2E-16
1.52+03	5.386+07	6.382-16
2.0E+03	6.21E+07	6.53E-16
3.48+03	8.10E+07	6.78E-16
4-0E+03	8.79E+07	6.73E-16
7.0E+03	1.16E+08	6.34E-16
1.0E+04	1.39E+08	6.08E-16
1.58+04	1.702+08	5.50E-16
2.0E+04	1.96E+08	5.01E-16
4.02+04	2.78E+08	3.83E-16
7.0E+0 4	3.68E+08	2,80E-16
1.0E+05	4.392+08	2.24E-16
1.5E+05	5.38E+08	1.72E-16
2.0E+05	6.21E+0B	1.42E-16
4-02+05	8.78E+08	8.332-17
7.0E+05	1.162+09	5.27E-17
1.02+06	1.392+09	4.00E-17
1.58+06	1.702+09	2.92E-17
2.02+06	1.962+09	2.27E-17
4.0E+06	2.77E+09	1.23E-17
7.0E+C6	3.652+09	6.78 E -18
1.0E+07	4.36E+09	4.632-18
1.52+07	5.322+09	2.82 E-18

<u>References:</u> 27, 82, 269, 299, 300, 303, 307, 318, 321, 518, 519, 520, 521, 522, 523, 525, 527, 529, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 584

Accuracy: 254

<u>MOLes:</u> (1) For total detachment cross sections $(o_{T0} + 2o_{T1})$ see: Stedeford and Hasted (Ref. 82); Lichtenberg et al. (Ref. 523); Risley (Ref. 544); Hasted (Ref. 553); Bailey et al. (Ref. 543); Risley and Geballe (Ref. 520); Champion et al. (Ref. 545); Andersen et al. (Ref. 551); Anderson et al. (ref. 547); Hug et al. (Ref. 548); Risley and Olson (Ref. 549); Risley (Ref. 318).

(2) For D⁻ + He -> D see: Risley (Ref. 544); Berkner et al. (Ref. 307); Champion et al. (Ref. 545); Anderson et al. (Ref. 547); Hug et al. (Ref. 548).

 Chebyshev
 Fitting
 Parameters
 for
 Cross
 Sections

 Emin
 1.0E+00
 eV/amu,
 Emax
 1.5E+07
 eV/amu

 A0
 A1
 A2
 A3
 A4
 A5
 A6

 -73.7795
 -1.54839
 -1.84526
 -.140437
 -.0282587
 .183809
 -.132562

The fit represents the above cross section with an rms deviation of 3.0%. The maximum deviation is 14.4% at 2.05+00 eV/amu.

1

See appendix for Chebychev f.t details.

1 1

.

Energy	Velocity	Cross Section
(eV/annu)	(cm/s)	(Cm ²)
4.0E+02	2.78E+07	2.03E-18
7.0E+02	3.68E+07	7.10E-18
1.0E+03	4.39E+07	1.30E-17
1.5E+03	5.38E+07	2.32E-17
2.0E+03	6.21E+07	3.16E-17
4.0E+03	8.79E+07	4.96E~17
7.0E+03	1.16E+08	5.51E-17
1.0E+04	1.39E+08	5.46E-17
1-5E+04	1.70E+08	5.12E-17
2.0E+04	1.96E+08	4.66E-17
4.0E+04	2.78E+08	3.25E-17
7.0E+04	3.68E+08	2.01E-17
1.0E+05	4.39E+08	1.37E-17
1.5E+05	5.38E+08	8.92E-18
2.0E+05	6.21E+08	6.54E-18
4.0E+05	8.78E+08	3.16E-18
7.0E+05	1.16E+09	1.75E-18
1.02+06	1.39E+09	1.19E-18
1.5E+06	1.70E+09	7.74E-19
2.0E+06	1.96E+09	5.59E-19
4.0E+06	2.77E+09	2.68E-19
7.02+06	3.65E+09	1.48E-19
1.0E+07	4.36E+09	1.01E-19
1.5E+07	5.32E+09	6.53E-20
2.0E+07	6.11E+09	4-89E-20
2.3E+07	6.54E+09	4.16E-20

Cross Sections for Double Electron Detachment of ${\rm H}^-$ on He

$H^{-} + He -> H^{+} + He + 2e$

References: 268, 269, 299, 303, 307, 318, 321, 518, 521, 522, 523, 525, 552, 556, 561, 568, 584

Accuracy: 30%

<u>Note:</u> There are no experimental data for energies below 400 eV/amu. Theoretical calculations extend down to 100 eV/amu.

Chebyshev Fitting Parameters for Cross Sections

Emin = 4.0E+02 eV/amu, Emax = 2.3E+07 eV/amu

AO A1 A2 A3 A4 A5 A6

-81.1984 -2.71121 -1.94690 .784427 -.i31737 .0264605 -.00697915

The fit represents the above cross section with an rms deviation of 2.6%. The maximum deviation is 5.1% at 2.0E+05 eV/amu.

1

Cross	Sections	for Single	Electron	Detachment	of	He ⁻	in	H
		He ⁻ + H	-> He +	H + e				

Cross Section (cm²) Velocity Energy (eV/amu) (cm/s) 3.7E+05 8.45E+08 6.39E-16 4.0E+05 8.78E+08 6.16E-16 7.0E+05 1.16E+09 4.29E-16 1.39E+09 3.29E-16 1.0E+06 1.5E+06 1.70E+09 2.39E-16 2.0E+06 1.96E+09 1.88E-16 4.0E+06 2.77E+09 1.04E-16 7.0E+06 3.65E+09 6.34E-17 9.0E+06 4.14E+09 4.99E-17

References: 301, 583

Accuracy: 40%

Note: There is only one set of experimental measurements.

Chebyshev Fitting Parameters for Cross Sections

P .	~	3 78+06	ot/amu	F	=	9 08+06	eV/am
^c min	-	3.76709	ev/anu,	^c max	-	3.05.00	

AO	A1	A2	A3	A4	A5	A 6
-72.3804	-1.28777	0622952	.0122474	00652473	.000145452	00224648

1

The fit represents the above cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 2.0E+06 eV/amu.

See appendix for Chebyshev fit details.

I.

Cross Sections for Single and Double Electron Detachment of He in H_2

He" + H₂ -> He + H₂ + e -> He' + H₂ + 2e

 $He + H_2 + e$

He' + H₂ + 2e

Energy	Cross Section	Energy	Cross Section
(ev/a-u)	(can)	(20.440)	
1.3E+02	2-158-15	2.6E+04	3.86E-17
2.0E+02	2.17E-15	3.0E+04	3.89E-17
4.0E+02	2.146-15	4.0E+04	3.928-17
7. OE+02	2.09E-15	5.0E+04	3.94E-17
1.02+03	2.06E-15	6.0E+04	3.91E-17
1.52+03	2-02E-15	7.0E+04	3.918-17
2.02+03	1.972-15	8.0E+04	3.86E-17
4.02+03	1.84E-15	9. DE+04	3.82E-17
7. OE+03	1-698-15	1.0E+05	3.738-17
3. OE+04	1.562-15	1.58+05	3.318-17
1 58+04	1.416-15	2.0E+05	2.968-17
2.02+04	1.30E-15	3.02+05	2.428-17
4. 0E+04	9.76E-16	4. 0E+05	2.018-17
7 02+04	7 158-16	5 0E+05	1.728-17
1 02+05	5 67E-16	6 0E+05	1.50E-17
1 58+05	A 27F-16	7 05+05	1 338-17
2 02+05	3 AAF-16	8 05+05	1 195-17
4 02+05	1 978-16	3102.03	11250-17
7 08+05	1.310-10		
	1.275-10		
0.05703	1-110-10		

References: 32, 301, 519, 521, 522, 525, 577, 580, 582, 583

Accuracy: 30%

<u>Notes:</u> (1) The total electron detachment cross section (single and double) has been measured by Jorgensen and Kuyatt (Ref. 32).

(2) For single detachment see: Ryding et al. (Ref. 577); Simpson and Gilbody (Ref. 519); Heinemeier et al. (Ref. 581); Heinemeier et al. (Ref. 521); Coggiola (Ref. 582); Hvelplund and Andersen (Ref. 301).

(3) For double detachment see: Ryding et al. (Ref. 577); Heinemeier et al. (Ref. 581); Heinemeier et al. (Ref. 521).

Chebyshev Fitting Parameters for Cross Sections

		Single Double	det. Eain det. Eain mín	= 1.3E+0 = 2.6E+0	2 eV/amu, 4 eV/amu,	e _{max} " E _{max} "	8.0E+05 e 8.0E+05 e	V/amu V/amu
		AO	A1	A2	A3	A4	A 5	A6
Single Double	det. det.	-69.4085 -76.3306	-1.41471	581942 226903	-,0905120 -,00774557	.0321529	.0250996 00347756	.000363782 .000402148

The fit represents the single detachment cross section with an rms deviation of 0.4%. The maximum deviation is 0.8% at 1.0E+04~eV/amu. The fit represents the double detachment cross section with an rms deviation of 0.4%. The maximum deviation is 0.7% at 6.0E+04 = V/amu.

Cross Sections for Single and Double Electron Detachment of Re in He

Re" + He -> He + He + e -> Re' + He + 2e

He + He + e

He 🐪	+	He	+	2e
------	---	----	---	----

Energy (eV/amu)	Cross Section {cm ² }	Energy (eV/amu)	Cross Section (cm ²)			
1.22+02	1.27E-15	2.7E+04	4.125-17			
2.0E+02	1.292-15	3.0E+04	4.16E-17			
3.02+02	1.322-15	4.0E+04	4.05E-17			
4.0E+02	1.33E-15	5.0E+04	3.90E-17			
7.0E+02	1.35E-15	6.0E+04	3.82E-17			
1.0E+03	1.358-15	7.02+04	3.71E-17			
2.0E+03	1.328-15	8.0E+04	3.58E-17			
4.02+03	1.238-15	9.02+04	3.476-17			
7.0E+03	1.128-15	1.02+05	3.37E-17			
1.02+04	1.04E-15	1.52+05	2.985-17			
2.02+04	8.07E-16	2.0E+05	2.66E-17			
4.0E+04	5.722-16	3.0E+05	2.238-17			
7.05+04	4.072-16	4.0E+05	1.938-17			
1.02+05	3.228-16	5.02+05	1.72E-17			
2.0E+C5	1.946-15	6.02+05	1.58E-17			
4.0E+05	1.112-16	7.02+05	1-478-17			
7.02+05	6.98E-17	8.02+05	1.36E-17			

References: 519, 521, 522, 525, 575, 576, 577, 578, 581, 582, 583

Accuracy: 254

•

<u>Botes:</u> (1) The total electron detachment cross section (single and double) has been measured by Windham et al. (Ref. 575); Wicholas et al. (Ref. 578); Simpson and Gilbody (Ref. 519).

(2) For single detachment see: Sweetman (Ref. 576); Ryding et al. (Ref. 577); Heinemeier et al. (Ref. 581); Heinemeier et al. (Ref. 521); Coggiola (Ref. 582).

(3) For double detachment see: Ryding et al. (Ref. 577); Heinemeier et al. (Ref. 521).

Chebyshev Fitting Parameters for Cross Sections

			Single Double	det. Emi det. Emi	n = n =	1.2 2+0 2 2.7 2+04	eV/annu eV/annu	, E _{ni}	1x	7.02+05 8 02+05	ev/am ev/am	u U	
			A 0	A1		A2	A3	,	4	A5		A6	
Sing Doub	le le	det. det.	-70.3313 -76.3309	-1.40200	 5	626470 112122	056933 .010914	0 .045 6 .005	8639 65444	.019237 .000461	9 - 742 -	.00527677 .00146987	7
The The	fit max	repr iman	esents deviatio	the single m is 1.1%	det at	achment 4.0E+03	Cross eV∕amu.	Bection	with	an rms	deviat	ion of	0.5%
The The	fit max	rep: imun	deviatio	the double on is 0.6%	det at	achment 5.0E+04	cross ev/anu.	section	with	an Ims	deviat	ion of	0.4%

Cross Sections for Single and Double Electron Detachment of Li in H,

Li^{*} + H₂ -> Li + H₂ + e -> Li^{*} + H₂ + 2e

Li' + H₂ + 2e

Energy	Cross Section	Energy	Cross Section
(eV/amu)	(cm²)	(eV/amu)	(cm²)
1.52+03	1.89E-15	1.5E+64	1.00E-16
2.02+03	1.91E-15	2.05+04	8.79 5 -17
4.0E+03	1.815-15	3-06+04	7.408-17
7.0E+03	1.642-15	4.0E+04	6.67E-17
1.02+04	1.505-15	5.0E+04	6.27E-17
1.5E+04	1.34E-15	6-02+04	5.98E-17
2.0E+04	1.238-15	7.02+04	5.768-17
4.05+04	9.458-16	8.0E+04	5-558-17
7.0E+04	7.43E-16	9.0E+04	5.43E-17
1.02+05	6.305-16	1.02+05	5.282-17
1.56+05	5-156-16	1.52+05	4.83E-17
2.08+05	4.462-16	1.8E+05	4.67E-17
4.02+05	3.102-16		

References: 250, 522, 583, 588

Li + H_2 + e

Accuracy: 254

-

<u>Hote:</u> For total electron detachment (single and double) see: Allision et al. (Ref. 250). For both single and double detachment see: McCullough et al. (Ref. 588).

Chebyshev Fitting Parameters for Cross Sections

	Single d Double d	det. Emin det. Emin	= 1.5E+03 = 1.5E+04	eV/annu, eV/annu,	$E_{\text{max}} = 4.$ $E_{\text{max}} = 1.$	0€+05 eV/aa 8E+05 eV/aa	
	AO	A1	A2	A3	24	A5	A 6
Single det. Double det.	-69.2100 -74.5383	932154 376194	-,198400 .C491243	.0257913 00831956	00111248 00149259	.00258484 .00388870	00164526 000530605
The fit repr The maximum	esents t deviation	he single is 0.3%	detachment at 1.0E+04	CTOBE SECt eV/amu.	ion with a	n r ms devia	tion of 0.28
The fit repi The maximum	esents t deviation	he double is 0.4%	detachment at 8.02+04	cross sect eV/amu.	ion with a	n rms devia	tion of 0.2%

Li ⁻ + Be -> Li, Li [*]										
Energy	Velocity	Cross Section								
(eV/amu)	(Cm/8)	(CM ²)								
1.82+02	1.862+07	4.228-16								
2.0E+02	1.96E+07	4.565-16								
4.02+02	2.78E+07	6.65£-16								
7.02+02	3.688+07	8.07g-16								
1.02+03	4-398+07	8.83E-16								
1-52+03	5-382+07	9.57E-16								
2.02+03	6.21E+07	9.93E-16								
1.0E+03	8.79E+07	1.058-15								
7.02+03	1.16E+08	1.042-15								
1.06+04	1.396+08	1.002-15								
1.58+04	1.702+08	9.428-16								
2.0E+04	1.962+08	8.87E-16								
4.02+04	2.78E+08	7.43E-16								
6.0E+04	3.402+08	6.462-16								

References: 250, 522, 551, 583, 587

Accuracy: 25%

<u>Hote:</u> Reported values for cross sections correspond to the sum of those for single and double detachment.

Chebyshev Fitting Parameters for Cross Sections

E_{min} = 1.8E+02 eV/amu, E_{max} = 6.0E+04 eV/amu A0 A1 A2 A3 A4 A5 A6 -69.6625 .18135 -.342099 .0241112 -.0117377 .00823347 -.00361753

The fit represents the above cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 2.0E+03 eV/amu.

See appendix for Chebyshev fit details.

Cross Sections for Total Electron Detachment of Li on He

1 1

G. Cross Sections for Dissociation of Molecules and Molecular Ions

Page

I I I

$H + H_2 -> H^- + (H^+ + H^+) + e$	G-2
$-> H + (H^+ + H^+) + 2\rho$	G-2
$-> H^{+} + (H^{+} + H^{+}) + 3\phi$	6-2
$= \sum_{n=1}^{n} \sum_$	G-2
$= n + (n + n) + e + \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots$	
$-> H' + (H + H') + 2e \dots$	G-0
$-> H^{-} + (H^{+} + H)$,	G-8
$H^+ + H_2 -> H^+ + H^+ + H^+ + 2e$	G-10
$He^{+} + H_2 -> He^{+} + H^{+} + H^{+} + 2e$	G-12
$He^{2+} + H_2 -> He^{2+} + (H^+ + H) + e (via ls_{og})$.	G-14
-> He ²⁺ + (H ⁺ + H) + e (via 2p ₀₀) .	G-16
-> He ⁺ + (H ⁺ + H)	G-18
-> He ⁺ + (H ⁺ + H ⁺) + e	G-20
$-> He^{2+} + (H^+ + H^+) + 2e$	G-22
-> He + (H ⁺ + H ⁺)	G-24
	0 0 0
$H_2^+ + H_2 -> H_{Proj}^+$	G-26
$H_2^+ + H -> H^+_{Proj}$.	G-28
H_0^+ + H_0 => H_{rest}	6-30
$-> (H^+ + H) + H_0$	G-32
	0-52
$H_{2}^{+} + He -> Total H^{+}$	G-34
-> (H ⁺ + H) + He	G-36
$H_2 + H_2 -> H^+(Fast, Total)$	C-38
-> H(Fast, Total)	G-40
-> Total Destruction of Fast H ₂ Proj	G-42
	• • • •
H_3^+ + H_2 -> Total Destruction of H_3^+	G-44
H_2^+ + H_2 -> Total Destruction of H_2^+	G-46
H_3^+ + H_2 -> H^+ (Total Projectile)	G-48
-> Hot (Total Projectile)	6-50
-> H/Total Drojoctila)	6-50
$= \sum_{i=1}^{n} \left(\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n}	C EA
$- $ n_2 (TOLGI, PIOJECLITE) ,	6-24

-

1

G. (Cont'd)

H3 ⁺ -	+ 1	le	-> ->	H ⁺ (T H ₂ ⁺	ot.	al)	•	•	•	•	•	•	•	•	•	•	•	•	G-56 G-58
HeH ⁺	+	H ₂	->	Tot	al	H	eH	•	Di	85	oc	ia	ti	on	P	ro	d.		•	G-60
HeH ⁺	+	He	->	Tot	al	H	eH	r	Di	88	oc	ia	ti	оп	P	ro	d.		•	G-62

(H + 2H	+ 2e)	(H° + 3	2H' + 3e)	(H [−] + 2	H' + e)
Energy	م	Energy	0	Energy	۰,
(eV/amu)	(cm²)	(eV/amu)	(cm*)	(eV/amu)	(cm*)
5.0E+03	1.622-19	5.7E+03	1.06E-20	4.7E+03	2.18E-20
6.0E+03	2.59E-19	7.0E+03	1.65E-20	7.0E+03	6.65E-20
7.0E+03	3.908-19	1.0E+04	3.87E-20	8.5E+03	1.00E-19
8.02+03	5.406-19	1.36+04	9.90E-20	9.02+03	1.17E-19
9.02+03	7.04E-19	1.5E+04	1.38E-19	1.0E+04	1.516-19
1.0E+04	8.88E-19	2.02+04	2.79E-19	1.5E+04	3.228-19
1.5E+04	1.912-18	2.52+04	4.68E-19	2.0E+04	3.69E-19
2.02+04	2.586-18	3.02+04	6.32E-19	2.5E+04	3.47E-19
3.02+04	3.22E-18	3.52+04	7.82E-19	3.06+04	3.05E-19
4.06+04	3.35E-18	4.0E+04	9.19E-19	3.5€+04	2.70E-19
5.0E+04	3.11E-18	4.58+04	1.00E-18	4.0E+04	2.43E-19
		5.02+04	1.14E-18	4.5E+04	2.22E-19
		5.2E+04	1.17E-18	5.0E+04	2.05E-19

Reference: 30

Accuracy: Unknown

Hote: Kinetic energy of the slow H' ions is approximately 9 eV.

. .

Chebyshev Fitting Parameters for Cross Sections

(н + 2я	(* + 2e)	E _{min}	= 5.084	03 eV/amu,	E _{ktax}	= 5.0e+04	eV/aamu
(н* + 2	H* + 3e)	E _{min}	= 5.784	03 eV/amu,	E _{max}	= 5.2e+04	eV/aamu
(н ⁻ + 2	(A* + e)	E _{min}	= 4.784	03 eV/amu,	E _{max}	= 5.0e+04	eV/aamu
	A0	A1	A2	E A	84	A 5	A6
(R + 2R ⁺ + 2m)	-82,5844	1.50087	514162	0138263	.0276858	09853833	0116637
(R ⁺ + 2R ⁺ + 3m)	-86,7735	2.46227	301192	105842	.0379990	00417294	.0122290
(R + 2R ⁺ + m)	-86,8910	1.09636	754871	00932842	.0855477	.0300822	0393792

The fit represents the (H + 2H + 2e) cross section with an rms deviation of 0.8%. The maximum deviation is 1.1% at $6.00\pm03~eV/amu$.

The fit represents the (H + 2H + 3e) cross section with an rms deviation of 1.8%. The maximum deviation is 2.9% at 1.0E+04 = V/amu.

The fit represents the $(H^2 + 2H^2 + e)$ cross section with an rms deviation of 1.3%. The maximum deviation is 3.0% at 8.5E+03 eV/amu.

1

÷.

See appendix for Chebyshev fit details.

ī.

I.

Cross Sections for Dissociative Ionization of H₂ in Collisions with Hydrogen Atoms.

$H + H_2 \rightarrow H + (H + H^*) + e$

via 180g	State (Curve 1)	via 2po _u St	ate (Curve 2)
Energy	Cross Section	Energy	Cross Section
(eV/amu)	(CB ²)	(eV/amu)	(Cm²)
5.0E+03	6.40E-19	5.02+03	2.25E-18
6.0E+03	8.21E-19	6.0E+03	3.23E-18
7.0E+03	9.67E-19	7.00+03	4.12E-18
8.0E+03	1.09E-18	8.02+03	4.97E-18
9,06+03	1-182-18	9.0E+03	5.76E-18
1.0E+04	1.25E-18	1.0E+04	6.47E-18
1.5E+04	1.402-18	1.58+04	8.076-18
2.02+04	1.382-18	2.06+04	7.496-18
2.58+04	1.31E-18	2.52+04	6.24E-18
3.02+04	1.23E-18	3.02+04	5.132-18
3.52+04	1.17E-18	3.52+04	4.112-18
4.0E+04	1.122-18	4.06+04	3.246-18
4.52+04	1.06E-18	4.58+04	2.51E-18
5.0E+04	1.00E-18	5.0E+04	1.978-18

Reference: 30

Accuracy: Unknown

Hotes: (1) Cross section values plotted in curve 1 refer to the dissociation of the H_2 ion from the $18\sigma_g$ state. Energy of the slow ion is Approximately zero. (2) Cross mection values plotted in curve 2 refer to the electron transitions to the $2p\sigma_u$ state and also to all the excited electron states of the H_2 ion. Energy of the slow ion is approximately 7 eV.

Chebyshev Fitting Parameters for Cross Sections

		(via (via	1.80g 200 ₁₁	state state) E _{min}) E _{min}	*	5 - 0E+(5 - 0E+(03 eV/ 03 eV/	amu, amu,	e _{max} E _{max}	-	5.02 5.02	+04 +04	eV/aunu eV/aunu
				A 0	AI		A2	A3		34	,	15		A.6
(via {via	leo 2pog	state) state)	-02 -80	2.7739	.176787 050777	27 66	7 60 6 3 49 0 -	.0497340	00 .00	003387 050407	002 005	77 426 21411	00 00	425677 79559 6

The fit represents the cross section (via lso_g state) with an rms deviation of 0.2%. The maximum deviation is 0.4% at 3.02+04 eV/amu.

The fit represents the cross section (via $2p\sigma_u$ state) with an rms deviation of 0.6%. The maximum deviation is 1.2% at 4.52+04 eV/amu.

See appendix for Chebyshev fit details.

Cross Sections for Dissociative Ionization of H₂ Ly H-Atom Impact Accompanied by Stripping of the H Projectile

 $H + H_2 -> H^* + (H + H^*) + 2e$

Via 190g	state (Curve 1)	via 2p _{ru}	state (Cirve 2)
Energy	Cross Section	Energy	Cross Section
(ev/amu)	(C2)*)	(۲۷/نیما)	(CM*)
5.08+03	2.49E-20	5.0E+03	2.38E-20
6.05+03	3.27E-20	6.0E+03	5.83E-20
7.0E+03	4.07E-20	7.0E+03	1.07E-19
8.02+03	4.91E-20	8.0E+03	1.66E-19
9.05+03	5.77E-20	9.06+03	2.34E-19
1.06+04	6.688-20	1.0E+04	3.07E-19
1.5E+04	1.156-19	1.5E+04	6.88E-19
2.02+04	1.66 E -19	2.0E+04	1.04E-18
3.0E+04	2.73E-19	2.5E+04	1.26E-18
4.06+04	3.65E-19	3.0E+04	1.37E-18
5.0E+04	4.102-19	3.5E+04	1.37E-18
		4.0E+04	1.32E-18
		4.5E+04	1.23E-18
		5.0E+04	1.132-18

Reference: 30

З,

ų.

Accuracy: Unknown

Hotes: (1) Cross section values plotted in curve 1 refer to the dissociation of the H_2^* ion via the $1s_{og}$ state of H_2^* . Energy of the slow ion is approximately zero. (2) Cross section values plotted in curve 2 refer to the dissociation of the H_2^* ion via the $2po_n$ state and also all higher excited electronic states of the H_2^+ ion. Energy of the slow ion is approximately 7 eV.

Chebyshev Fitting Parameters for Cross Sections

		(via (via	180g 2po _u	state) state)	E _{min} E _{min}	-	5.0E+03 5.0E+03	eV/aanu eV/aanu	, ^E max , E _{max}	*	5.0e+04 5.0e+04	eV/annu eV/annu
			*	0	A 1		A2	A3	A4		A5	A 6
(via (via	1so 2po _u	state) state)	-87.2 -84.1	2 426 1 8972 1	.43882 .86566	094	18243 -,0 1017 ,0	30 858 0 497586	0190257 0434187	0 0.	07 44929 151155	00364561 .00206675

The fit represents cross section (via $16\sigma_g$ state) with an rms deviation of 0.1%. The maximum deviation is 0.1% at 2.0E+04 eV/amu.

The fit represents cross section (La 2pou state) with an rms deviation of 0.3%. The maximum deviation is 0.6% at 1.5E+04 eV/amu.

Cross Sections for Dissociative Electron Capture from H₂ by H-Atoms

$$H + H_2 -> H^{-} + (H^{+} + H)$$

via leog	state (Curve 1)	via 2po _e 6	tate (Curve 2)
Energy	Cross Section	Energy	Cross Section
(eV/amu)	(C#*)	(eV/amau)	(cm*)
5.02+03	8.20E-20	5.0E+03	2.91E-15
6.0E+03	1.058-19	6.0E+03	4.728-19
7.06+03	1.26E-19	7.06+03	6.57E-19
8.02+03	1.458-19	8.02+03	8.34E-19
9.02+03	1.63E-19	9.0E+03	9.978-19
1.02+04	1.79E-19	1.0E+04	1.156-18
1.56+04	2.18E-19	1.56+04	1.452-18
2.0E+04	1.81E-19	2.0E+04	1.13E-18
2.52+04	1.312-19	2.5E+04	7.75E-19
3.02+04	1.02E-19	3.0E+04	5.33E-19
3.58+04	8.51E-20	3.5E+04	3.518-19
4.02+04	7.392-20	4.0E+04	2. 185-19
4.52+04	6-68E-20	4.5E+04	1. 785-19
5.0E+04	6.17E-20	5.0E+04	1.27E-19

Reference: 30

Accuracy: Unknown

Botes: (1) Cross section values plotted in curve 1 refer to the dissociation of the H_2 ion via the Iso_g state of H_2 . The energy of the slow particles is approximately zero. (2) Cross section values plotted in curve 2 refer to the dissociation of the H_2 ion via the $2po_0$ and also all excited electronic states of the H_2 ion. The energy of the slow particles is approximately 7 eV.

Chebyshev Fitting Parameters for Cross Sections

	V) V)	ia la _{og} ia 2po _u	state) state)	E _{min} = E _{min} =	5.0E+03 e 5.0E+03 e	v/amu, v/amu,	E _{max} = : E _{max} = :	5.0E+04 eV/a 5.0E+04 eV/a	
			AO	A 1	A2	A3	84	A5	A6
(via (via	160g 200u	state) state)	-87.2731 -84.2975	218951 438944	522211 978064	.0736627 .0211660	.0971637 .0476037	.00270336 .00159449	0307172 0175 0 91

The fit represents cross section (via $1ao_g$ state) with an rms deviation of 0.8%. The maximum deviation is 1.5% at 2.5E+04 eV/amu.

The fit represents cross section (via $2p\sigma_0$ state) with an rms deviation of 0.8%. The maximum deviation is 1.1% at 4.02+04 eV/amu.

Dissociative Double Ionization Cross Sections for

$H^{*} + H_{2} -> H^{*} + H^{*} + H^{*} + 2e$

Energy (eV/amu)	Velocity (Cmi/s)	Cross Section (cm²)
1.02+05	4. 39E+08	3.96E-19
1.5E+05	5.38E+08	1.796-19
2.02+05	6.21E+08	1.02E-19
3.0E+05	7.61E+08	4.90E-20
7.0E+05	1.16E+09	1.17E-20
1.0E+06	1.39E+09	7.16E-21
1.5E+06	1.70E+09	4.30E-21
2.0E+06	1.96E+09	3.26E-21
3.02+06	2.40E+09	2.49E-21

Reference: 365

Accuracy: Within factor of 4

<u>Hote:</u> The data are reported for the H_2 internuclear axis oriented at 90° and 30° relative to the ion beam direction and no apparent difference was found between the measured cross section values.

Chebyshev Fitting Parameters for Cross Sections

Emin		1.0E+0	5 eV∕annu,	, ^E max	= 3.0E+06	eV/amu	
94		A1	A2	λ3	A4	A 5	A6
-90.4247	-2.	58979	.296205	.0536430	.00747606	.00133207	.00152342

The fit represents the above cross section with an rms deviation of 0.6%. The maximum deviation is 0.9% at 2.0E+05~eV/amu.

Cross Sections for the Dissociative Double Ionization of H₂ By Fast He*

$He^{+} + H_{2} -> He^{+} + H^{+} + H^{+} + 2e$

Energy	Velocity	Cross Section
	(Cm/ 5)	(Cm)
2.5E+03	6.95E+07	5.00E-18
3.0E+03	7.61E+07	4.226-18
4.0E+03	8.79E+07	3.12E-18
7.0E+03	1.16E+08	1.62E-18
1.0E+04	1.39E+08	1.02E-18
1.5E+04	1.70E+08	5.89E-19
2.0E+04	1.96E+08	3.916-19
4.02+74	2.786+09	1.40E-19
7.0E+04	3.68E+08	5.95E-20
9.UE+04	4.17E+08	4.U2E-20

Reference: 482

I.

Accuracy: The absolute cross section values are estimated to within a factor of 4.

<u>Hote:</u> The data are reported for the H_2 internuclear axis oriented at 90° and 30° relative to the ion beam direction, and no apparent difference was found between the cross section values.

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 2.5E+03 \text{ eV/amu}, E_{max} = 9.0E+04 \text{ eV/amu}$

AO	λ1	A2	A3	٨4	A5	٨6
-84-2206	-2.43620	134853	.0237772	00240081	.000622206	00103783

The fit represents the above cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at $1.0E+04 \, \text{eV}/\text{amu}$.

Cross Sections for the Dissociative Ionization of H_2 by Fast He^{2+}

 He^{2+} + H_2 -> He^{2+} + $(\text{H}^+ + \text{H})$ + e

Energy	Velocity	Cross Section
(eV/amu)	(CR/S)	(cm²)
3.8E+03	8.56E+07	1.10E-19
4.0E+03	8.79E+07	1.38E-19
5.0E+03	9.82E+C7	2.74E-19
6.0E+03	1.08E+08	4.31E-19
7.0E+03	1.16E+08	5.63E-19
9.0E+03	1.24E+08	6.27E-19
9.02+03	1.32E+08	6.48E-19
1.0E+04	1.39E+08	6.57E-19
1.5E+04	1.70E+08	5.65E-19
2.0E+04	1.96E+08	1.04E-18
2.5E+04	2.20E+08	1.81E-18

Reference: 95

Accuracy: 20%

<u>Note:</u> These cross sections values refer to the ionization with dissociation of H_2 via the $16\sigma_g$ state of the H_2 ion.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} ≈	3.8E+03	eV∕amu,	^E max [≖]	2.5E+04	eV/amu
0A	A 1	A2	A3	A 4	A5	A6
-84.1813	1.12091	170391	.319582	.0335842	0467173	0198793

The fit represents the above cross section with an rms deviation of 1.0%. The maximum deviation is 1.3% at 5.0E+03 eV/amu.

ī.

1

Т

Cross Sections for the Dissociative Ionization of H_2 by Fast He^{2*} $He^{2*} + H_2 \rightarrow He^{2*} + (H^* + H) + e$

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(cm²)
2.5E+03	6.95E+07	1.46E-19
3.0E+03	7.61E+07	2.05E-19
4.0E+03	8.79E+07	4.28E-19
5.0E+03	9-82E+07	7.94E-19
6.0E+03	1.08E+08	1.05E-18
7.02+03	1.16E+08	1.23E-18
8.0E+03	1.24E+08	1.35E-18
9.0E+03	1-32E+08	1.422-18
1.0E+04	1-39E+08	1.46E-18
1.58+04	1.70E+08	1.53E-18
2.0E+04	1.96E+08	2.23E-18
2.58+04	2.20E+08	3.13E-18
3.02+04	2.41E+08	4-22E-18

Reference: 95

Accuracy: 30%

Notes: (1) The cross section values are for the ionization with dissociation of H_2 via the $2po_u$ state of H_2^* . See reference 95. (2) The measured energy of the slow ion is approximately 7 eV.

Chebyshev	<u>Fitting</u>	<u>Parameters</u>	tor	Cross	<u>Sections</u>

	Emin =	2.58+03	eV∕amu,	E _{max} =	3.0E+04	eV/amu
AO	A 1	A2	A3	A4	A 5	A 6
-82.9850	1-52994	280153	246249	.0922114	0977812	00881272

The fit represents the above cross section with an rms deviation of 2.1%. The maximum deviation is 2.9% at $1.5E+04 \, \text{eV}/\text{amu}$.

Cross Sections for Dissociative Electron Capture from H_2 By Fast ${\rm He}^{2*}$

$$He^{2*} + H_2 -> He^* + (H^* + H)$$

Energy (eV/amu)	Velocity (cm/s)	Cross Section (cm ²)
•		-
1.3E+03	5.01E+07	2.77E-18
1.5E+03	5.38E+07	3.01E-18
2.0E+03	6.21E+07	3.47E-18
3.0E+03	7.61E+07	4.37E-18
4.0E+03	8.79E+07	5-25E-18
5.06+03	9.82E+07	6.17E-18
6.0E+03	1.08E+08	6.96E-18
7.0E+03	1.165+08	7.79E-18
8.0E+03	1.24E+08	8.51E-18
9.02+03	1.32E+08	9.31E-18
1.02+04	1.39E+08	1.02E-17
1.56+64	1.70E+08	1-27E-17
2.02+04	1.96E+08	1.298-17
2.5E+04	2.20E+08	1.29E-17

Reference: 95

Accuracy: 20%

<u>Hote:</u> The cross section values are for capture with dissociation from the $18\sigma_g$ state of the H_2^* ion.

Chebyshev Fitting Parameters for Cross Sections

	e _{min} '	= 1.3E+03	eV/amu,	E _{max} =	2.5E+04 eV/	antu
A0	A1	▲2	A .3	٨4	A 5	A6
-79,1499	.840316	0633082	0783071	0271766	.00205805	.00727217

The fit represents the above cross section with an rms deviation of 1.0%. The maximum deviation is 1.5% at $2.0E+04 \, \text{eV}/\text{amu}$.

I.

I.

Cross Sections for Dissociative Electron Capture with Ionization in Collisions of Fast ${\rm He}^{2+}$ with ${\rm H}_2$

 $He^{2*} + H_2 \longrightarrow He^* + (H^* + H^*) + e$

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(Cm ²)
1.22+03	4.91E+07	1.10E-16
1.5E+03	5.38E+07	1.01E-16
2.0E+03	6.21E+0?	8.84E-17
2.5E+03	6.95E+07	8.01E-17
3.0E+03	7.61E+07	7.47E-17
3.5E+03	8.22E+07	6.84E-17
4.0E+03	8.79E+07	6.01E-17
5.0E+03	9.82E+07	5.04E-17
6.0E+C3	1.08E+08	4.90E-17
7.0E+03	1.16E+08	5.11E-17
8.0E+03	1.24E+08	5.53E-17
9.0E+03	1.32E+08	6.10E-17
1.0E+04	1.39E+08	6.54E-17
1.5E+04	1.70E+08	7.88E-17
2.0E+04	1.96E+08	8.57E-17
2.5E+04	2.20E+08	8.70E-17

Reference: 95

Accuracy: 30%

Note: The measured energy of the slow H' ions is approximately 9 eV.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	1.2E+03	eV∕amu,	E _{max} =	2.5E+04	eV/amu
AO	A1	A2	A3	A4	A5	A6
-74.1562	104398	.277805	.00632922	107311	024787	0.0511068

The fit represents the above cross section with an rms deviation of 2.9%. The maximum deviation is 3.9% at 2.0E+03 eV/amu.

Cross Sections for Double (Dissociative) Ionization of H_2 By Fast He^{2*}

$He^{2*} + H_2 -> He^{2*} + (H^* + H^*) + 2e$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(CM ²)
2.58+03	6.95E+07	1.44E-19
3.0E+03	7.61E+07	2.15E-19
4.0E+03	8.79E+07	4.24E-19
5.02+03	9.826+07	7.90E-19
6.02+03	1.08E+08	1.07E-18
7.0E+03	1.16E+08	1.25E-18
8.05+03	1.24E+08	1.35E-18
9.0E+03	1.32E+08	1.39E-18
1.0E+04	1.39E+08	1.44E-18
1.5E+04	1.706+08	1.52E-18
2.0E+04	1.96E+08	2.24E-18
3.0E+04	2.41E+08	4.23E-18

Reference: 95

Accuracy: 30%

Note: The measured energy of the slow H' ions is approximately 9 eV.

	Chebyshev	Fitting	Parameter	s for Cr	ions	
	P	2.5E+03	eV/amu,	E _{max} =	3.0E+04	eV/amu
AO	A1	٨2	A3	٨4	A 5	A6
-82.9515	1.54494	254833	.255864	.0749613	113726	0359609

The fit represents the above cross section with an rms deviation of 2.0%. The maximum deviation is 4.4% at 4.0E+03 eV/amu.

Cross Sections for (Dissociative) Double Electron Capture from H₂ Ry Fast He^{2*}

 $He^{2+} + H_2 -> He + (H^+ + H^+)$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/s)	(Cm ²)
1.1E+03	4.61E+07	5.15E-17
1.5E+03	5.38E+07	3.00E-17
2.0E+03	6.21E+07	1.70E-17
2.5E+03	6.95E+07	1.45E-17
3.0E+03	7.61E+07	1.42E-17
4.ſ <i>3</i> +03	8.79E+07	1.68E-17
5. JE+03	9.82E+07	2.14E-17
F.0E+03	1.08E+08	2.55E-17
7.0E+03	1.16E+08	2.90E-17
8.0E+03	1.242+08	3.23E-17
9.02+03	1.326+08	3.496-17
1.02+04	1.395+08	3.75E-17
1.5E+04	1.70E+08	4.42E-17
2.0E+04	1.962+08	4.59E-'7
2.5E+04	2.20E+08	4.48E-17

VETETENCE: 11

Accuracy: 15%

Notes: None

	Chebysh	ev_Fitt	ing Param	<u>eters for</u>	ections	
	₽ _{min}	= 1.1E	+03 eV/amu	ı, E _{max}	= 2.5 e +	04 eV/amu
A0	A1	A2	A3	A4	A5	A6
-75.9688	.211347	.437455	355845	.0231353	.0708411	0517123

The fit represents the above cross section with an rms deviation of 1.7%. The maximum deviation is 2.9% at 2.0E+03 eV/amu.

Cross Sections for the Conversion of Fast ${\rm H_2}^+$ Ions Into Fast Protons in Passage Through ${\rm H_2}$

H2 + H2 -> H*Pro1.

LOW	Energy	High	Energy
Energy	Cross Section	Energy	Cross Section
(eV/amu)	(Cm²)	(eV/amu)	(C111 ²)
1.6E+00	3.31E-17	1.5E+03	2.09E-16
2.0E+00	6.46E~17	2.0E+03	2.26E-16
2.5E+00	8.09E-17	4.0E+03	2.42E-16
3.0E+00	8.66E-17	7.0E+03	2.31E-16
3.5e+00	8.67E-17	1.0E+04	2.13E-16
4.0E+00	8.58E-17	1.5E+04	1.88E-16
4.5E+00	8.33E-17	1.8E+04	1.80E-16
5.0E+00	7.96E-17	2.0E+04	1.86E-16
		3.0E+04	2.23E-16
		4.0E+04	2.30E-16
		5.0E+04	2.26E-16
		8.0E+04	1.99E-16
		1.0E+05	1.802-16
		1.5E+05	1.46E-16
		2.0E+05	1.21E-16
		4.0E+05	7.43E-17
		7.0E+05	4.22E-17
		1.0E+06	2.70E-17
		1.5E+06	1.46E-17
		2.0E+06	1.11E-17
		4.0E+06	6.21E-18
		7.0E+06	4.118-18
		1.0E+07	3.28E-18

<u>References:</u> 86, 208, 210, 214, 218, 219, 527, 528, 531, 557, 558, 559, 571, 590

Accuracy: 25%

Hote: No attempt has been made to interpolate between the low-energy data and the data taken at higher energies.

Chebyshev Fitting Parameters for Cross Sections

	Low En High E	ergy Inergy	E _{min} ≖ E _{min} ≖	1.6E+0 1.5E+0)0 eV/au)3 eV/au	nu, Ema nu, Ema	ax * 5. ax = 1	.0E+00 eV .0E+07 eV	/amu //amu
		A0		A1	A2	A3	λ.	4	15 A6
Low High	Energy Energy	-74.4493 -74.9261	.351 -2.19	8782 443	849279 855834	.0781924 .0421307	029552 .21622	7 .008530 7 .09211	6]700490330 470893079
The The	fit rep maximum	resents deviatio	the Low on is	Energy 0.3% at	cross 3.5E+00	section) eV/amu.	with an	rms devi	ation of 0.2%.
The The	fit rep maximum	resents deviatio	the Hig on is	h Energy 12,4% a	/ Cross t 1.8E+0	section)4 eV/amu	with an	rms devi	ation of 6.3%.

Cross	Sections	for the	Conversion	of Fast	H ₂ * Ions	Into
	Fast Pr	otons i	n Passage 1	Chrough H	Atoms	

H₂* + H -> H*_{Proj}.

Energy (eV/amu)	Velocity (C%/s)	Cross Section (cm²)	
1.5E+03	5.38E+07	1.60E-16	
2.0E+03	6.21E+07	1.83E-16	
4.0E+03	8.79E+07	2.16E-16	
7.0E+03	1.16E+08	2.20E-16	
1.0E+04	1.39E+08	2.15E-16	
1.52+04	1.70E+08	2.06E-16	
2.0E+04	1.96E+08	1.96E-16	
4.0E+04	2.78E+08	1.69E-16	
5.0E+04	3.11E+08	1.59E-16	

Reference: 599

Accuracy: 25%

Notes: None

		Chebyshev	Fitting	Parameters	for Cross	Sections	
	1	Emin ≖ 1.9	5E+03 eV/a	amu, E _m	ax = 5.0E+	04 eV/aaau	
	AO	A1	A2	A3	A4	A5	A6
	-72.4228	0319629	156039	.0287214	00752456	.000228203	.000526627
The The	fit repre maximum	esents the deviation	above cre is 0.2% a	oss sectio at 2.0E+04	on with an eV/amu.	rms deviatio	on of 0.1%.

Cross Section for the Formation of Fast H Atoms by Passage of $\rm H_2^{\circ}$ Through $\rm H_2$

H2' + H2 -> Hprot.

Velocity	Cross Section
(CM/8)	(cm²)
6.21E+07	4.988-16
8.79E+07	7.09E-16
1.16E+08	8.12E-16
i.392+08	8.22E-16
i.70E+08	8.05E-16
1.962+08	7.44E-16
2.78E+08	4.70E-16
3.682+08	2.21E-15
4.392+08	1.21E-16
	Velocity (cm/s) 6.21E+07 8.79E+07 1.16E+08 1.392+08 1.70E+08 1.96E+08 2.78E+08 3.68E+08 4.39E+08

<u>R ferences:</u> 208, 210, 214, 218, 219, 271

Accuracy: 20%

<u>Hote:</u> The data refer to the sum of the cross sections for $H_2^+ + H_2 \rightarrow (H^+ + H)_{proj.}$ and $H_2^+ + H_2 \rightarrow (H + H)_{proj.}$.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} = :	2.0E+03 eV/	amu, E _{ma}	x = 1.0E+05	ev/amu	
AD	A1	A2	A 3	A4	A5	A 6
-70.6702	632612	2606521	0915143	0121710	.0168179	.0104797

The fit represents the above cross section with an rms deviation of 0.3%. The maximum deviation is 0.6% at 1.0E+04 = V/amu.

1

-

Partial Cross Sections for Dissociation of Fast H_2^* Ions in Passage Through H_2

$$H_2^{\bullet} + H_2 \rightarrow (H^{\bullet} + H) + H_2$$

Energy	Velocity	Cross Section
(eV/antu)	(Cm/S)	(C m ²)
1.02+01	4.39E+06	6.14E-17
2.0e+91	6.21E+06	6.58E-17
4.0E+01	8.796+06	6.96E-17
7.0E+01	1.16 E+0 7	7.64E-17
1.0E+02	1.396+07	8.16E-17
1.50+02	1.705+07	9.19E-17
2.0E+02	1.96E+07	1.01E-16
4.0E+ 02	2.78E+07	1.24E-16
7.0E+02	3.68E+07	1.472-16
1.0E+03	4.39E+07	1.605-16
1.5e+03	5.36E+07	1.656-16
2.02+03	6.21E+07	1.67E-16
4.0E+03	8.79E+07	1.68E-16
7.0E+03	1.16E+08	1.67E-16
1.0E+04	1.39E+08	1.65E-16
1.5E+04	1.70E+08	1.55E-16
2.02+04	1.96E+08	1.47E-16
4.0E+04	2.78E+08	1.13E-16
7.0E+04	3.68E+08	8.34E-17
1.02+05	4.392+08	6.73E-17
1.52+05	5.38E+08	5.12E-17
2.02+05	6,21E+08	4.22E-17
4.0E+05	8.78E+08	2.588-17
7.02+05	1.16E+09	1.74E-17
1.02+06	1-392+09	1.34E-17

<u>References:</u> 271, 527, 528, 529, 560, 589, 591

<u>Hotes:</u> (1) At the lower impact energies, the results of the various investigators depend on the initial vibrational-state distributions of the H_2^+ ion. (2) In the eV range, H_2^+ projectiles were used with D_2 target and D_2^+ projectiles with H_2 target (see Ref. 589).

Chebyshev Fitting Parameters for Cross Sections

	E _{min} ≕	1.02+01	eV∕amu,	e _{max} =	1.02+06	ev/amu
AO	A1	A2	A 3	۸4	A5	A6
~74.5723	555602	906658	238001	.110022	.0251005	.00343160

The fit represents the above cross section with an rms deviation of 2.6%. The maximum deviation is 5.8% at $4.0E+03 \, \text{eV}/\text{amu}$.

1

Cross Sections for the Formation -f Fast Protons from H_2^+ in He

 H_2^* + He -> Total H^*

*о*_н+(Не)

Energy	Cross Section			
(eV/amu)	(cm²)			
1.0E+03	3.69E-17			
1.5 E+0 3	5.75 € -17			
2.05+03	7.43E-17			
4.0E+03	1.17E-16			
7.0E+03	1.53E-16			
1.0E+04	1.72E-16			
1.5E+04	1.86E-16			
2.0E+04	1.94E-16			
3.0E+04	2.01E-16			
3.50+04	2.01E-16			
4.0E+04	2.00E-16			
7.0E+04	1.84E-16			
1.0E+05	1.57E-16			
1.56+05	1.22E-16			
2.0E+05	9.81E-17			
4.06+05	5.21E-17			
6 . 0E+05	3.35E-17			
6.5E+05	3.06E-17			

References: 86, 527, 528, 531, 562, 570

Accuracy: 20%

Notes: (1) More recent cross-section data from Ref. 562 (between 2×10^3 to 8×10^3 eV/amu) exceed the earlier data by approximately 40% at 8×10^3 eV/amu to approximately 360% at 2×10^3 eV/amu. (2) $\sigma_1 * (He)$ refers to the sum: $\sigma(H^* + H)_{\text{Proj.}} + 2\sigma(H^* + H^*)_{\text{Proj.}}$

Chebyshev Fitting Parameters for Cross Sections

 $\sigma_{\rm H^+}({\rm He})$ $E_{\rm min} \approx 1.02+03$ eV/amu, $E_{\rm max} \approx 6.5E+05$ eV/amu

	AO	A1	A2	A3	34	A5	A5
° _H +(%е)	-74.0323	-,0812968	- 900960	0399950	-,0205556	.0309465	.00869410

The fit represents the o_{H^+} cross section with an rms deviation of 1.0%. The maximum deviation is 1.4% at 2.0E+05 eV/amu.

1

I.

 H_2^* + He -> (H^{*} + H) + He

Low Energy		High Energy			
Energy (eV/amau)	Cross Section (CH2 ²)	Energy (eV/aatu)	Cross Section (cm ²)		
9.7E+00 1.1E+01 1.2E+01 1.3E+01 1.5E+01 1.5E+01 1.6E+01 1.6E+01 1.8E+01 1.9E+01 2.0E+01 2.1E+01 2.2E+01	6.55E-17 6.55E-17 6.55E-17 6.56E-17 6.56E-17 6.56E-17 6.56E-17 6.56E-17 6.56E-17 6.57E-17 6.57E-17 6.59E-17 6.59E-17 6.59E-17 6.59E-17	2.0E+03 4.5E+03 7.0E+03 1.0E+04 1.5E+04 2.0E+04 4.0E+04 7.0E+04 1.0E+05 1.5E+05 2.0E+05 4.0E+05 7.0E+05	2.11E-16 1.93E-16 1.69E-16 1.46E-16 1.22E-16 1.07E-16 7.35E-17 5.39E-17 4.46E-17 3.35E-17 2.68E-17 1.51E-17 8.82E-18 6.37E-18		
2.3E+01 2.4E+01	6.57E-17 6.55E-17				

References: 527, 528, 560, 562

<u>Accuracy:</u> $E > 5x10^4 \text{ eV/ann:}, 20\%$ $2x10^3 < E < 8x10^3 \text{ eV/annu}, 15\%$ (see Ref. 562) $E < 10^2 eV/amu$, Unknown

Hotes: (1) At lower impact energies the results of the various investigators depend on the initial vibrational state distribution of the H_2^+ ion. (2) The data at 10 to 25 eV/amu were taken with D_2^+ instead of H_2^+ as the projectile. (3) No attempt has been made to interpolate between the low and high energy data.

Chebyshev Fitting Parameters for Cross Sections

	Low Ene	ergy E _{min}	= 9.7E+00) eV/amu,	E _{max} ≖	2.4E+01 e	V/amu
	High Er	Dergy E _{min}	= 2.0E+03	} fV/amu,	E _{max} =	1.0E+06 e	V/amu
	A0	A 1	A2	A 3	R4	25	A 6
Low Ene	rgy -74.52	50 .0017132	7000929677	00133213	000620656	000378036	000458557
High En	ergy -75.00	72 -1.76360	334933		70200220	.0135139	.0139802

The fit represents the Low Energy cross section with an rms deviation of 0.2%. The maximum deviation is 0.4% at 1.9E+01 = v/amu.

The fit represents the High Energy cross section with an rms deviation of 6.8%. The maximum deviation is 1.3% at 2.0E+05 eV/amu.

ī

Cross Sections for Formation of Fast H' for Fast H₂ Projectiles Passing Through H₂

$$H_2 + H_2 \rightarrow H^*$$
 (Fast, Total)

LOW E

High E

Energy (eV/amu)	Cross Section (Cm2 ²)	Energy (eV/amu)	Cross Section (Cm ²)
2.5E+03	2.04E-17	1.5E+05	6.13E-17
4.0E+03	2.62E-17	2.0E+05	4.61E-17
7.0E+03	3.61E-17	2.5E+05	3.70E-17
1.0E+04	4.52E-17	3.0E+05	3.13E-17
1.5E+04	5.74E-17	4.0E+05	2.56E-17
2.0E+04	6.71E-17	5.0E+05	2.25E-17
2.4E+04	6.89E-17	6.0E+05	2.12E-17
3.0E+04	6.25E-17		
4.0E+04	4.34E-17		
5.0E+04	2.80E-17		

References: 31, 535

Accuracy: Unknown

Low High

<u>Hotes</u>: (1) The low energy data are from Ref. 31, while the high energy data are taken from Ref. 535. (2) This data involves the sum of the cross sections for the products: $o(H^{+} + H)_{Proj.} + 2o(H^{+} + H^{+})_{Proj.} + o(H^{+} + H^{-})_{Proj.}$. (3) No attempt has been made to join the high and low energy data sets.

Chebyshev Fitting Parameters for Cross Sections

Low E	Emir."	= 2.5E+03	eV/amu,	E _{max} =	5.0E+04 eV/am	LU
High E	Emir."	= 1.5E+05	eV/amu,	E _{max} =	6.0E+05 eV/am	LU
AC	A1	A2	A3	24	A 5	A6
E -75.7161	.371301	373363	209805	0677263	00389719	.0259767
E -75.8616	542987	.0642733	.0118753	00148111	.000221649	.00636358

The fit represents the Low E cross section with an rms deviation of 0.7%. The maximum deviation is 1.2% at 1.5E+04 eV/amu.

The fit represents the High E cross section with an rms deviation of 0.0%. The maximum deviation is 0.0% at 4.0E+05 eV/amu.

Cross Sections for the Formation of Fast H from Fast ${\rm H}_2$ Projectiles Passing Through ${\rm H}_2$

$H_2 + H_2 \rightarrow H$ (Fast, Total)

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(cm²)
2.58+03	6.95E+07	2.62E-16
3.0E+03	7.61E+07	2.898-16
4.0E+03	8.79E+07	3.08E-16
5.02+03	9-82E+07	3.08E-16
6.0E+03	1.08E+08	2.95 E -16
7.0E+03	1.16E+08	2.85 E -16
8.02+03	1.24E+08	2.93E-16
9.0E+03	1.326+08	3.13E-16
1.0E+04	1.39E+08	3.32E-16
1.32+04	1.58E+08	3.46E-16
1.5E+04	1.70E+08	3.43E-16
2.0E+04	1.962+08	3.16E-16
3.0E+04	2-41E+08	2.49E-16
4.0E+04	2.78E+08	2.00E-16
5.0E+04	3.11E+08	1.65E-16

References: 31, 536

Accuracy: 40%

1

1

<u>Hote:</u> This data involves the sum of the cross sections for the products: $o(H^* + H)_{Proj} + 2o(H + H)_{Proj}$. Variations in ion source conditions produce changes up to 10% in the measured values (see Ref. 536).

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	2.5E+03	eV/amu,	E _{max} =	5.0E+04	eV/a∎n.	I
A0	A1	A2	¥3	۸4		A5	AG
-71.7329	200109	223241	0773361	01408	387 .056	3 18 5 -	.00955263

The fit represents the above cross section with an rms deviation of 2.5%. The maximum deviation is 4.4% at 7.0E+03 eV/amu.

I.

Total Destruction Cross Sections for Fast ${\rm H}_2$ Projectile in ${\rm H}_2$

H₂ + H₂ -> Total Destruction of Fast H₂ Projectile

Energy (eV/amu)	Velocity (cm/s)	Cross Section (Cm ²)
1.3E+03	5.01E+07	1.59E-16
1.5E+03	5.38E+07	1.64E-16
2.0E+03	6.21E+07	1.76E-16
4.0E+03	8.79E+07	2.16E-15
7.0E+03	1.16E+08	2.64E-16
1.0E+04	1.39E+08	3.09E-16
1.52+64	1.70E+08	3.45E-16
2.02+04	1.96E+08	3.52E-16
4.02+04	2.78E+08	3.17E-16
5.02+04	3.11E+08	2.92E-16

Reference: 536

Accuracy: 20%

<u>Hotes</u>: (1) This cross section is the cum of cross sections for all reactions that destroy the fast H₂ molecule in passage through H₂, i.e. those producing fast H₂^{*}, (H+H), (H+H^{*}), and (H^{*}+H^{*}) products. (2) Large variations in ion source operating conditions were found to produce changes up to 10% in the measured cross section (see Ref. 536).

Chebyshev Fitting Parameters for Cross Sections

 $E_{min} = 1.3E+03 \text{ eV/amu}, E_{max} = 5.0E+04 \text{ eV/amu}$

A 0	A1	A2	.3	٨4	A 5	A 6

-71.8671 .380700 -.137630 -.0886297 -.00459765 .0134628 .00197498

The fit represents the above cross section with an rms deviation of 0.6%. The maximum deviation is 1.2% at 7.0E+03 eV/amu.

 $H_2 + H_2 ->$ Total Destruction of Fast H_2 Projectiles

Total Destruction Cross Sections for H_3 Projectile lons in H_2

H_3^* + H_2 -> Total Destruction of H_3^*

Energy (eV/am)	Velocity (Cm/s)	Cross Section
(((), ()))		()
1.62+03	5.56E+07	3.39E-16
2.0E+03	6.21E+07	3.78E-16
4.0E+03	8.79E+07	5.078-16
7.0E+03	1.16E+08	6.10E-16
1.02+04	1.39E+08	6.65E-16
1.56+04	1.70E+08	7.06E-16
2.02+04	1.96E+08	6.81E-16
3.0E+04	2.41E+08	5.938-16
3.5e+04	2.60E+08	5.58E-16

Reference: 536

Accuracy: 20%

<u>Hotes:</u> (1) This cross section is the sum of cross sections for all reactions that destroy the H_3^+ molecular ion in passage through H_2 . (2) Large variations in ion source operating conditions were found to produce changes up to 10% in the measured cross sections (see Ref. 536).

Chebyshev Pitting Parameters for Cross Sections

	E _{min}	= 1.62+03	eV/amu,	E _{max} *	3.5E+04 eV/	amu
AO	A1	A2	A3	84	۸5	A6
-70.3701	.284601	184305	0425670	00921848	.00698594	.00725332

The fit represents the above cross section with an rms deviation of 0.3%. The maximum deviation is 0.5% at $1.0E+04 \, \text{eV}/\text{amu}$.

 $H_3^+ + H_2^- >$ Total Destruction of H_3^+ Projectiles

Total Destruction Cross Sections for ${\rm H_2}^*$ Projectile Ions in ${\rm H_2}$

H_2^+ + H_2 -> Total Destruction of H_2^+

Energy (eV/assu)	Velocity (cm/s)	Cruss Section (cm ²)
1.5E+03	5-386+07	8.12E-16
2.0E+03	6.21E+07	8.18E-16
4.02+03	8.79E+07	8.30E-16
7.0E+03	1.16E+08	8.15E-16
1.0E+04	1.39E+08	8.18E-16
1.52+04	1.70E+08	8.462-16
2.02+04	1.96E+08	7.758-16
4-02+04	2.78E+08	4.69E-16
5.0E+04	3.11E+08	3.81E-16

References: 536, 589

Accuracy: 20%

<u>Hotes:</u> (1) This cross section is the sum of cross sections for all reactions that destroy the H_2^* molecular ion in passage through H_2 . (2) Large variations in ion source operating conditions were found to produce changes up to 10% in the measure cross sections (see Ref. 536).

Chebyshev Fitting Parameters for Cross Sections

	Emin =	1.3E+03	eV/amu,	E _{max} = 1	5. 0E+04 eV	/aenu
AO	A1	λ2	A3	۸4	A5	A6
-69.7995	288081	216489	102343	0344599	.0155290	.0223268

The fit represents the above cross section with an rms deviation of 0.9%. The maximum deviation is 1.3% at $1.0E+04 \, \text{eV/amu}$.

1

П

 $H_2^+ + H_2^-$ > Total Destruction of H_2^+ Projectiles

Cross Sections for Production of Fast H^{*} From H_3^* Projectiles in H_2 $H_3^* + H_2 \rightarrow H^*$ (Total, Projectile)

Velocity	Cross Section
(CTR/S)	(Cm ²)
8.84E+06	6.00E-18
3.16E+07	6.91E-18
1.39E+07	7.61E-18
1.962+07	8.89E-18
2.78E+07	1.19E-17
3.682+07	1.78E-17
4.39E+07	2.49E-17
5.38E+07	3.99E-17
6.21E+07	5.41E-17
8.79E+07	9.802-17
1.16E+08	1.42E-16
1.39E+08	1.77E-16
1.96E+08	2.14E-16
2.78E+08	2.33E-16
3.68E+08	2.39E-16
4.39E+08	2.28E-16
6.21E+08	1.74E-16
8.78E+08	1.08E-16
1.08E+09	7.15E-17
	Velocity (Cm/s) 8.84E+06 1.16E+07 1.39E+07 1.96E+07 2.78E+07 3.68E+07 4.39E+07 5.38E+07 6.21E+07 8.79E+07 1.16E+08 1.39E+08 1.96E+08 3.68E+08 4.39E+08 6.21E+08 8.78E+08 8.78E+08 1.08E+09

References: 86, 214, 535, 574

Accuracy: 30%

<u>Note:</u> Large variations in measured dissociation cross sections have been ascribed to the influence of H_3^+ ions formed in ion sources with varying degrees of vibrational excitation.

Chebyshev Fitting Parameters for Cross Sections

	₽ _{min} =	4.0E+01	eV∕amu,	[£] max [≖]	6.0E+05	eV/amu
AO	A1	A2	A3	A4	A5	A6
-75.3369	1.74367	759749	559135	.0918355	.0438106	0940811

The fit represents the above cross section with an rms deviation of 3.4%. The maximum deviation is 5.3% at 7.0E+02 eV/amu.

Cross Sections for Production of Fast H_2^+ From H_3^+ Projectiles in H_2^-

 $H_3^* + H_2 \rightarrow H_2^*$ (Total, Projectile)

Energy (eV/amu)	Cross Section (cm ²)		
1.12+02	1.34E-17		
2.0E+02	1.99E-17		
4.0E+02	2.93E-17		
7.0E+02	4.17E-17		
1.0E+03	5.09E-17		
1.58+63	6.53E-17		
2.05+03	7.96E-17		
4.0E+03	1.18E-16		
7.0E+03	1.29E-16		
1.0E+04	1.29E-16		
2.0E+04	1.18E-16		
4.02+04	9.62E-17		
7.02+04	7.75E-17		
1.02+05	6.62E-17		
2.0E+05	4.69E-17		
4.0E+05	2.86E-17		
6.0E+05	2.03E-17		

References: 86, 214, 535, 574

Accuracy: 30%

<u>Note:</u> Large variations in measured dissociation cross sections have been accribed to the influence of H_3 ions formed in ion sources with varying degrees of vibrational excitation.

Chebyshev Fitting Parameters for Cross Sections

	ev/amu	6.0E+05	^E max [≖]	eV∕amu,	1.1E+02	E _{min} =	
A6	A5	A4	A3	٨2	A1	A0	
0512818	0248092	.0980699	0762360	985779	.295854	75.4231	-79

1 1

The fit represents the cross section with an rms deviation of 2.4%. The maximum deviation is 4.1% at 4.0E+05 eV/amu.

See appendix for Chebyshev fit details.

Cross Sections for Production of Fast H from H_3 Projectiles in H_2

H₃ + H₂ -> H (Total, Projectile)

Energy	Velocity	Cross Section
(eV/annu)	(Cm/s)	(C m ²)
1.5E+03	5.42E+07	3.20E-16
2.0E+03	6.21E+07	4.26E-16
4.0E+03	8.79E+07	6.94E-16
7.0E+03	1.16E+08	8.90E-16
1.0E+04	1.39E+08	9.69E-16
1.3E+04	1.58E+08	9.96E-16
2.0E+04	1.96E+08	9.02E-16
4.0E+04	2.78E+08	5.77E-16
7.0E+04	3-68E+08	3.56E-16
1.0E+05	4.39E+08	2.62E-16
2.0E+05	6.21E+08	1.45E-16
4.0E+05	8.78E+08	7.79E-17
6.0E+05	1.08E+09	5.486-17

References: 214, 535

Accuracy: 30%

<u>Hete:</u> Large variations in measured dissociation cross sections have been ascribed to the influence of H_3^+ ions formed in ion sources with varying degrees of vibrational excitation.

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	1.5E+03	eV∕annu,	E _{max} =	6.0E+05	eV/amu
AO	A1	A2	A3	Α4	۸5	A 6
-71.5391	-1.05347	826342	.203507	.0536140	0425785	0185315

The fit represents the above cross section with an rms deviation of 1.8%. The maximum deviation is 2.9% at 4.0E+05 eV/amu.

Cross Sections for Production of Fast H_2 from H_3 Frojectiles in H_2

Energy	Velocity	Cross Section
(eV/amu)	(Cm/5)	(Cm ²)
3.0E+01	7.61E+06	5.03E-17
4.0E+01	8.792+06	5.18E-17
7.0E+01	1.16E+07	5.74E-17
1.0E+02	1.392+07	6.29E-17
1.58+02	1.70E+07	7.07E-17
2.0E+02	1.962+07	7.822-17
4.02+02	2.78E+07	1.10E-16
7.02+02	3.68E+07	1.48E-16
1.06+03	4.39E+07	1.81E-16
1.5E+03	5.38E+07	2.25E-16
2.02+03	6.21E+07	2.63E-16
4.0E+03	8.79E+07	3.64E-16
7.02+03	1.16E+08	4.26E-16
8.0E+03	I.24E+08	4.31E-16
1.02+04	1.392+08	4.30E-16
1.5E+04	1.70E+08	3.832-16
2.02+04	1.96E+08	3.22E-16
4.0E+04	2.78E+08	1.50E-16
7.0E+04	3-68E+08	6.49E-17
1.0E+05	4-396+08	3.652-17
1.52+05	5.382+08	1.98E-17
2.02+05	6.21E+08	1.34E-17
4.0E+05	8.78E+08	6.90E-18
6.0E+05	1.08E+09	6.09E-18

$H_3^* + H_2 \rightarrow H_2$ (Total, Projectile)

References: 214, 535, 585

Accuracy: 30%

<u>Hote:</u> Large variations in measured dissociation cross sections have been ascribed to the influence of H_3^+ ions formed in ion sources with varying degrees of vibrational excitation.

	Chebyshev	Fitting	Parameters	for Cr	oss Sect	ions
	^E min [≞]	3.0E+01	eV/amu,	e _{max} =	5.0 2+0 5	eV/amu
0A	A1	٨2	٤٨	24	A 5	A 6
-74.8168	-,899995	-1.57067	379862	. 384429	.264557	.0263143

The fit represents the above cross section with an rms deviation of 4.1%. The maximum deviation is 6.5% at 1.0E+05 eV/amu.

Cross Sections for the Formation of Fast H^* From the Dissociation of H_3^* Projectiles in He

H_3^* + He -> H^{*} (Total)

Energy (eV/amu)	Velocity (Cm/s)	Cross Section (Cm ²)
1.GE+03	4.39E+07	2.19E-17
1.5E+03	5.38E+07	3.20E-17
2.0E+03	6.21E+07	4.18E-17
4.0E+03	8.79E+07	7.20E-17
7.0E+03	1.16E+08	1.02E-16
1.0E+04	1.39E+08	1.20E-16
1.58+04	1.702+08	1.36E-16
1.76+04	1.81E+08	1.39E-16

Reference: 86

Accuracy: 20%

Notes: None

Chebyshev Fitting Parameters for Cross Sections

	E _{min} =	1.02+93	eV/annu,	E _{max} = 1.	.76+04 eV/aam	1
¥0	A1	A2	A3	λ4	A5	A 6
-74.5849	.941781	146192	0143319	.000599232	00304737	.00231477

The fit represents the above cross section with an rms deviation of 0.1%. The maximum deviation is 0.2% at 1.0E+04 = V/amu.

Cross Sections for the Formation of Fast ${\rm H_2}^{\star}$ From the Dissociation of ${\rm H_3}^{\star}$ Projectiles in He

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(C#²)
1.0E+03	4.39E+07	1.67E-17
1.5E+03	5.38E+07	2.50E-17
2.0E+03	6.21E+07	3.258-17
4.0E+03	8.79E+07	5.48E-17
7.0E+03	1.16E+08	7.57E-17
1.02+04	1.39E+08	9.00E-17
1.5E+04	1.70E+08	1.06E-16
1.7E+04	1.81E+08	1.10E-16

Reference: 86

Accuracy: 201

Notes: None

	Chebyshev	Fitting	Parameter	s for Cros	s Sections	
	E _{min} ≂	1.02+03	eV∕amu,	E _{max} = 1	.712:+04 eV/aar	Ru
0A	A1	A2	¥ 3	A4	A5	A 6
-75.1127	.939201	132028	.00680760	.000497736	00339960	000620124

The fit represents the above cross section with an rms deviation of 0.0%. The maximum deviation is 0.0% at 1.0E+04 eV/amu.

See appendix for Chebyshev fit details.

.

Total Cross Sections for the Dissociation of HeH* in H_2 HeH* + H_2 -> Total HeH* Dissociation Products

Energy (eV/amu)	Velocity (cm/s)	Cross Section		
()	()	()		
1.0E+04	1.39E+08	6.85E-16		
1.5E+04	1.70E+08	6.33E-16		
2.0E+04	1.962+08	5.59E-16		
4.0E+04	2.78E+08	3.658-16		
7.0E+04	3.68E+08	2.14E-16		
1.0E+05	4.39E+08	1.41E-16		
1.52+05	5.38E+08	1.05E-16		
2-0E+05	6.21E+08	9.07E-17		

Reference: 610

Accuracy: 20%

Hotes: (1) This reaction involves the total dissociation cross section obtained from the sum of the partial cross sections for the formation of fast projectile fragments, i.e. (He+H), (He+H), (He+H^{*}) and (He⁺+H^{*}). (2) See Ref. 610 for partial cross sections in the $1-2 \times 10^5$ eV/amu energy range.

Chebyshev Fitting Parameters for Cross Sections

	Ê _{min} =	1.0E+04	eV/amu,	^E max =	2.02+05	≥V/amu
AO	A1	A2	A3	A4	A5	A6
-71.6345	-1.10463	128721	.0876009	.0373958	.0071988	70189657

The fit represents the above cross section with an rms deviation of 0.9%. The maximum deviation is 1.5% at 1.0E+05 eV/amu.

 $HeH^{+} + H_{2} -> Total HeH^{+} Dissociation$

Total Cross Sections for the Dissociation of HeH^* in He

HeH' + He -> Total HeH' Dissociation Products

Energy	Velocity	Cross Section
(eV/amu)	(cm /s)	(Cm ²)
1.0E+04	1.39E+08	2.09E-16
1.5E+04	1.70E+08	2.98E-16
2.0E+04	J.96£+08	3.14E-16
3.0E+04	2.416+08	3.00E-16
4.0E+04	2.78E+08	2.73E-16
5.0E+04	3.11E+08	2.44E-16
6.0E+04	3.40E+08	2.15E-16
7.0E+04	3.68E+08	1.93E-16
8.0E+04	3.93E+08	1.73E-16
9.0E+04	4.17E+08	1.58E-16
1.0E+05	4.39E+08	1.44E-16
1.5E+05	5.38E+08	1.03E-16
2.02+05	6.21E+08	8.54E-17

Reference: 610

Accuracy: 20%

Hotes: (1) This reaction involves the total dissociation cross section obtained from the sum of the partial cross sections for the formation of fast projectile fragments, i.e. (H_2+H) , (He^+H) , (He^+H^+) and (He^+H^+) . (2) See Ref. 610 for partial cross sections in the 1-2 x 10^5 eV/amu energy range.

	Chebyshev	<u>Fittiny</u>	Parameters	for Cros	s Sections	2
	E _{min} =	1.0E+04	ey/amu,	E _{max} * 2	.0E+05 eV,	/amu
AO	A1	A2	λ3	A4	۵5	A6
-72.4377	561126	322720	.0959965	00323223	.017197	00704447

The fit represents the above cross section with an rms deviation of 0.3%. The maximum deviation is 0.6% at 6.0E+04 eV/amu.

HeH* + He -> Total HeH* Dissociation

H. Cross Sections for Interchange Reactions

$H^+ + D_2$	> D ⁺ + HD . > HD ⁺ + D .	•••	•	•	•	•	•	•	•	•	•	•	H-2 H-2
$HD^+ + D_2$	$-> HD_2^+ + D$ $-> D_3^+ + H$.	•••	•	•	•	•	•		•	•	•	•	H-4 H-4
$HD^{+}(v=0) + HD^{+}(v=1) + HD^{+}(v=2) + HD^{+}(v=3) + HD^{+}(v=3) + HD^{+}(v=4) + $	He -> HeH ⁺ He -> HeH ⁺ He -> HeH ⁺ He -> HeH ⁺	+ D + D + D + D + D	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	H-6 H-6 H-6 H-6
H_2^+ + He - H_2^+ + H ₂ -	-> $HeH^+ + H$ -> $H_3^+ + H$.	•••	•	•	•	•	•	•	•	•	•	•	H-8 H-10
$D_2^+ + D_2 -$	$> D_3^+ + D$.	••	•	•	•	•	•	•	•	•	•	•	H-12
$D_{2}^{+}(v=0) + \\D_{2}^{+}(v=1) + \\D_{2}^{+}(v=2) + \\D_{2}^{+}(v=3) + \\$	$\begin{array}{rrrr} H_2 & -> & HD_2^+ \\ H_2 & -> & HD_2^+ \\ H_2 & -> & HD_2^+ \\ H_2 & -> & HD_2^+ \end{array}$	+ H + H + H + H	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	H-14 H-14 H-14 H-14
$H_{2}^{+}(v=0) + H_{2}^{+}(v=1) + H_{2}^{+}(v=2) + H_{2}^{+}(v=3) + H_{2}^{+}(v=3) + H_{2}^{+}(v=4) + H_{2$	$\begin{array}{rcrcr} D_2 & -> & HD_2^+ \\ D_2 & -> & HD_2^+ \\ D_2 & -> & HD_2^+ \\ D_2 & -> & HD_2^+ \\ D_2 & -> & HD_2^+ \end{array}$	+ D + D + D + D + D	• • •	• • •	• • • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	H-16 H-16 H-16 H-16 H-16

Page

Cross Reactions for Interchange Reactions Between Protons and D_2

$H' + D_2 \rightarrow D' + HD$ -> HD' + D

D* + RD

RD

HD* + 1	D
---------	---

Energy (eV/amu)	Cross Section (Cm²)	Energy (eV/amu)	Cross Section (Cm ²)	
4.5E-01	1.188-15	2.2E+00	4.67E-18	
7.0E-01	7.38E-16	4.0E+00	2.22E-17	
1.0E+00	4.69E-16	4.5E+00	2.26E-17	
1.5E+00	2.59E-16	7.0E+00	1.29E-17	
2.02+00	1.59E-16	1.0E+01	4.03E-18	
4.0E+00	4.15E-17	1.5E+01	1.28E-18	
7.0E+00	1.47E-17	2.0E+01	6.95E-19	
1.0E+01	1.10E-17	4.0E+01	2.72E-19	
1.5E+01	9.80E-18	7.0E+01	1.87E-19	
2.0E+01	8.78E-18	1.0E+02	1.67E-19	
4.0E+01	5.18E-18			
7.0E+01	2.90E-18			
1.02+02	2.01E-18			

<u>References:</u> 602, 603, 604, 605, 606, 620

Accuracy: Unknown

<u>Hotes:</u> (1) For proton energies about 5 eV the production of D⁺ may proceed also via H⁺ + D₂ -> D⁺ + D + H. (2) For total reaction cross sections see: Maier (Ref. 602); Ochs and Teloy (Ref. 604); Schlier et al. (Ref. 605); and Holliday et al. (Ref. 603). (3) For relative yields of D⁺ and HD⁺ see: Krenos and Wolfgang (Ref. 620). (4) Rate coefficient for thermal energy is: k = 3.7×10^{-10} cm³/s from Fehsenfeld et al. (Ref. 606).

Chebyshev Fitting Parameters for Cross Sections

D [*] + HD	E _{min} =	4.5E-01	eV∕amu,	E _{max} =	1.0E÷02	eV/amu
HD [*] + D	E _{min} =	2.2E+00	eV/amu,	E _{max} =	1.02+02	ev/aunu

	A0	A1	A2	A3	A4	A 5	A 6
D ⁺ + HD	-75.6468	-3.22911	.412113	.0393398	261749	.00129512	.120885
HD [*] + D	-82.0488	-2.46136	299817	.833081	341103	0343948	.0959803

The fit represents the E^* + HD cross section with an rms deviation of 4.9%. The maximum deviation is 9.3% at 7.0E+00 eV/amu.

The fit represents the HD^* + D cross section with an rms deviation of 3.5%. The maximum deviation is 7.0% at 1.0E+01 eV/agu.

Cross Sections for Interchange Reactions Between HD^4 and U_2

 $HD^{*} + D_{2} \xrightarrow{->} HD_{2}^{*} + D$ $\xrightarrow{->} D_{3}^{*} + H$

 $HD_2^+ + D$

 $D_{3}^{*} + H$

Energy (eV/amu)	Cross Section (CM ²)	Energy (eV/amu)	Cross Section (Cm ²)
6.0E-03	1.17E-14	6.0E-03	6.52E-15
7.0E-03	1.10E-14	7.0E-03	5.99E-15
1.0E-02	9.45E-15	1.0E-02	5.03E-15
1.58-02	7.92E-15	1.5E-02	4.15E-15
2.0E-02	6.93E-15	2.0E-02	3.588-15
4.0E-02	5.08E-15	4.0E-02	2.488-15
7.0E-02	4.11E-15	7.08-02	1.80E-15
1.0E-01	3.58E-15	1.0E-01	1.47E-15
1.58-01	3-07E-15	1.58-01	1.14E-15
2.0E-01	2.708-15	2.0E-01	9.55E-16
4.0E-01	1.858-15	4.0E-01	5.782-16
7.02-01	1,118-15	7.02-01	3.54E-16
1.02+00	7.058-16	1.05+00	2.305-16
1.52+00	3.498-16	1.58+00	1.208-16
2 08+00	1 828-16	2 08+00	6.60E-17
4 08+00	1 478-17	4 0P+00	6.33E-18
4.3E+00	9.62E-18	4.3E+00	4.59E-18

References: 607, 608

Accuracy: Unknown

None None

Che	ebyshev f	itting Par	ameters fo	or Cross		
HD ₂ * + D	E _{min} =	6.02-03 eV	7/amu, E	max = 4.	32+00 eV/amu	1
D ₃ * ⊁ H	E _{min} =	6.02-03 eV	7/amu, E	max = 4.	32+00 eV/amu	
AO	A1	A2	A3	34	A5	AG
HD ₂ * + D -68.6683	-2.92522	-1.000391	570210	198731	0387800	0184986
D ₃ * + H -70.3595	-3.11828	916067	449998	194126	0628098	00822327

The fit represents the HD_2^* + D cross section with an rms deviation of 1.3%. The maximum deviation is 2.9% at 4.3E+00 eV/amu. The fit represents the D_3^* + H cross section with an rms deviation of 0.5%. The maximum deviation is 0.9% at 4.0E+00 eV/amu.

Cross Sections for Interchange Reactions Between HD⁴ and He

 $HD^{*}(v) + He -> HeH^{*} + D$

¥	- 0	v	- 1	Ŷ	- 2	v	- 3	u - 4		
Energy (eV/amu)	ہ (دھ²)	Energy (eV/asu)	0 (cm²)	Roergy (eV/amu)	0 (cm²)	Energy (eV/asu)	د (دھ²)	Energy (eV/ams)	ح (دھ ²)	
1.0E-01	7.76E-18	1.98-01	2.53E-17	2.0E-01	6.15E-17	2.05-01	1.258-16	1.8E-01	2.258-16	
2.08-01	7.718-10	2.0E-01	2.44E-01	3.0E-01	3.822-17	2.5E-01	1.03E-16	2.0E-01	2.06Z-16	
3.02-01	7.36E-10	3.02-01	1.842-17	4.CE-01	2.482-17	3.0E-01	8.06E-17	3.0E-01	1.268-16	
4.08-01	6.79E-10	4.02-01	1.462-17	5.0E-01	1.71E-17	4.0E-01	4. 17	4.0E-01	0.05g-17	
5.0E-01	6.27E-10	5.08-01	1.22E-17	6.0E-01	1.278-17	5.0E-01	2.54E-17	5.0E-01	5.298-17	
6.0E-01	5.798-18	6.0E-01	1.04E-17	7.02-01	1.04E-17	6.0E-01	3.78E-17	6.0E-01	3.542-17	
7.02-01	5.37E-18	7.0E-01	9.228-10	8.0E-01	0.90E-18	7.0E-CI	1.422-17	7.02-01	2.442-17	
8.0E-01	5.00g-18	8.0E-01	8.26Z-18	9.08-01	8.08E-18	8.0E-01	1.238-17	■.0E-01	1.695-17	
9.08-01	4.682-18	9.0E-01	7.528-18	1.02+00	7.452-18	9.0E-01	1.138-17	9.0E-01	1.228-17	
1.02+00	4.378-18	1.02+00	6.94E-18	1.5E+30	6.51E-18	1.0E+00	1.06E-17	1.02+00	8.942-18	
1.5E+00	3.31E-16	1.52+00	5.298-10			1.5E+00	1.01E-17	1.52+00	2.362-18	
1.72+00	3.08E-18									

References: 609, 611

Accuracy: Unknown

Botes: (1) Cross sections are presented as a function of initial vibrational quantum number v. (2) The HD⁺ ion beam was prepared in a given vibrational state by selective photoionization of HD (Turner et al. Ref. 611). (3) The thermal-energy (~0.1 eV) rate coefficient k for the HD⁺ + He reaction leading to all products in Smith et al. (Ref. 609) is: $k = (1.25 \pm 0.1)x??^{10}$ cm³/s.

				Che	bysh	ev.	- 71	<u>tti</u>	ŵÿ	Païanic	ien	s for		CI088	Secti	ons		
			A = (A = (A = () L 2 5	E E ^{min} E ^{min} E ^{min} E ^{min}	*	1 1 2 2 1	. 8E . 9E . 0E . 0E . 8E	-01 -01 -01 -01 -01	eV/am eV/am eV/am eV/am eV/am	u, u, u, u,	E _{ma} E _{ma} E _{ma} E _{ma}		= 1 = 1 = 1 = 1 = 1	7E+00 5E+00 5E+00 5E+00 5E+00	eV, eV, eV, eV,	/ анны / анны / анны / анны / анны	
		AC		A	1		A2			A3		84			AS		A6	
y -	0	-79.522	3.	. 474	196	۰.	10602	22		.0091071	ı	.004121	70	.00	308534	.0	034316	2
y =	1	-78.005	•	802	720		0006	1956	5	.0202372	-	.001816	75	.00	0206519	.0	01 9659	6
y •	2	-77.195	- -	. 208	51		1410	92		.101616	-	.007860	21	01	59891		014320	4
v =	3	-76.149	- 5 -)	. 422	70		2272	07		.182149	-	.060789	5	01	78064		032645	4
	4	-75.880	· -:	2.2710	34		3697	22	-	.0086457	>	.006471	17	.00	107548	0	058953	2
•			-															
The	fi	t repr	esen	t s	the	υ	- 0	cre		sectio	ж	with	an	rms	deviat	ion	of	0.1%.
The	-	tximum	devi	atio	in j		0.1	۰.	t d	4.0E-01	e	// 8804 .						
									_		-	•						
The	f f i	it repr	esen	18	the	v	- 1	cre		sectio	n	with	an	rms	deviat	ion	of	0.2%.
The	-	axi mum	devi	atic	n i		0.4	۹. ۵	it (6.0E-01	e	7/amu.						
The	e fi	lt repr	esen	ts 👘	the	v	- 2	CI		section	วก	with	ងរា	I'M6	deviat	ion	of	0.2%.
The	28-6	aximum	devi	atio	in n		0.5	1 a	it I	6.0e-01	e	7/amu.						
The		t ren	-	ha i	the			cri	~~~	sect in	20	with		736	dov i at	100	of	0.85
1110		se sops	daul			-		•		5 NO A1		1/2011			00.4180	1011	.	
1 2 2 2 4			ORA1	at 10	nti)	. 19	1-4	- a	IC I	2.06-01	- <u>-</u>							
The	f fi	it repr	esen	ts	the	v	- 4	cre		sectio	n	with	an		deviat	ion	of	0.2%.
The	168	aximum	devi	atic	n i		0.6	۱ ه	it i	8.0E-01	e'	J/amu.						
See	aţ	opendix	fo	r Ch	ebys	he:	v 1	it	det	tails.								

H~6

H-7

Cross Sections for Interchange Reactions Between H_2^+ and He

Energy	Velocity	Cross Section
(eV/amu)	(cm/s)	(CR ²)
5.6E-01	1.04E+06	5.13E-16
6.0E-01	1.08E+06	4.81E-16
7.0E-01	1.16E+06	4.17E-16
8.0E-01	1.24E+06	3.67E-16
9.0E-01	1.32E+06	3.24E-16
1.0E+00	1.39E+06	2.86E-16
1.5E+00	1.70E+06	1.66E-16
2.0E+00	1.96E+06	1.04E-16
3.0E+00	2.41E+06	4.91E-17
4.0E+00	2.782+06	3.07E-17
5.0E+00	3.11E+06	2.23E-17
6.0E+00	3.40E+06	1.77E-17
7.0E+0G	3.68E+06	1.49E-17
8.0E+00	3.93E+06	1.29E-17
9.02+00	4.17E+06	1.16E-17
1.0E+01	4.39E+06	1.05E-17

 H_2^* + He -> HeH^{*} + H

References: 609, 611, 612, 613, 614, 615, 616, 617, 618, 619

Accuracy: Unknown

ı

Motes: (1) For relative total cross sections see: Neynaber and Magnuson (Ref. 618). (2) For absolute cross sections as a function of vibrational states of H_2^+ see: Chupka and Russell (Ref. 616); Chupka et al. (Ref. 617); Turner et al. (Ref. 611); and Govers and Guyon (Ref. 619). (3) For absolute rate constants for production of HeH⁺ as a function of the energy see: Von Koch and Friedman (Ref. 615); and Smith et al. (Ref. 609). (4) Rate coefficient k, at thermal energy for HeH⁺ production is: $k = \{1.4 \pm .15\} \times 10^{-10} \text{ cm}^2/\text{mol s.}$ (5) For data on D_2^+ + He -> HeD⁺ see: Smith et al. (Ref. 609). (6) Rate coefficient k at thermal energy for HeH⁺ production is: $k = \{1.15 \pm 0.1\} \times 10^{-10} \text{ cm}^2/\text{mol.s.}$

Chebyshev	Fitting	Parameters	for	Cross	Sections

	^E min [≢]	5.6E-01	eV/amu,	E _{max} =	1.0E+01 eV/a	A MU
80	A1	A2	A3	A 4	A 5	A6
-74.2766	-2.05811	0177676	.136014	.00555409	0251696	000631817

The fit represents the above cross section with an rms deviation of 0.6%. The maximum deviation is 1.4% at 3.0E+00 eV/amu.

Cross Sections for Interchange Reactions Between H_2^* and H_2

$H_2^{+} + H_2 -> H_3^{+} + H_1$

Energy (eV/amu)	Velocity (cm/s)	Cross Section (cm²)		
1 05 01	1 305:05	1 160 15		
1.08-02	1.396+05	1.105-14		
2.0E-02	1.96E+05	1.03E-14		
4.0E-02	2.78E+05	8.63E-15		
7.0E-02	3.68E+05	7.20E-15		
1.02-01	4.39E+05	6.23E-15		
2.0E-01	6.21E+05	4.62E-15		
4.0E-01	8.79E+05	3.27E-15		
7.0E-01	1.16 E +05	2.43E-15		
1.0E+00	1.392+06	1.87E-15		
1.5E+00	1.70E+06	1.25E-15		
2.02+00	1.96E+06	8.51E-16		
4.02+00	2.78E+06 2.09E-			
7.05+00	3.68E+06	2.228-17		

<u>References:</u> 607, 612, 613, 621, 622, 623, 624, 625, 626, 527, 628, 629, 631, 632, 633, 636, 637

Accuracy: ± 45%

Notes: (1) For relative total cross sections see: Clow and Futrell (Ref. 625); and Vance and Bailey (Ref. 628). (2) For absolute rate constants as a function of the energy see: Clow and Futrell (Ref. 625); Bowers et al. (Ref. 626); and Reuben and Friedman (Ref. 627). (3) For energy distributions of H_3^+ see: Lees and Rol (Ref. 638); and Gentry et al. (Ref. 621). (4) For cross sections as a function of v see: Chupka et al. (Ref. 629); and Koyano and Tanaka (Ref. 633). (5) For k as a function of v see: Theard and Hunterss (Ref. 613). (6) Rate coefficient k at thermal energy for production of H_3^+ is: $k = [2.0 \pm .15] \times 10^{-9}$ cm³/s, from Refs. 613, 621, 623, 625, 626, 627, 631, 637.

Chebyshev Fitting Parameters for Cross Sections

	e _{min} =	1.02-02	eV∕amu,	E _{max} =	7.0E+00 e	V/amu
AO	Al	A2	A 3	٨4	A5	A 6
-67.8902	-2.58783	-1.02353	461932	229219	0763343	0170793

The fit represents the above cross section with an rms deviation of 1.2%. The maximum deviation is 2.7% at 2.0E+00 eV/amu.

H-11

Cross Sections for Interchange reactions Between D_2^+ and D_2

$D_2^* + D_2 \rightarrow D_3^* + D$

Energy	Velocity	Cross Section
(eV/amu)	(Cm/S)	(Cm ²)
1.6E-01	5.568+05	2.60E-15
2.0E-01	6.21E+05	2.43E-15
3.0E-01	7.61E+05	2.00E-15
4.0E-01	8.79E+05	1.69E-15
5.0E-01	9-32E+05	1.45E-15
6.0E-01	1.086+06	1.29E-15
7.0E-01	1.16E+06	1.16E-15
8.0E-01	1.24E+06	1.06E-15
9.0E-01	1.32E+06	9.77E-16
1.0E+00	1.39E+06	9.07E-16
1.5E+00	1.70E+06	6.90E-16
2.0E+00	1-96E+06	5.55E-16
3.02+00	2.41E+06	4.01E-16
4.02+00	2.78E+06	3.15E-16
4.2E+00	2.85E+06	3.04E-16

References: 623, 625, 626, 627, 631, 647

Accuracy: Unknown

Botes: (1) For relative cross sections see: Clow and Futrell (Ref. 625). (2) For absolute rate constants as a function of energy see: Drewitz (Ref. 631); Harrison et al. (Ref. 623); Reuben and Friedman (Ref. 627); Clow and Futrell (Ref. 625); and Bowers et al. (Ref. 626). (3) For kinetic energy distributions of D₃^{*} products see: Doverspike and Champion (Ref. 647). (4) Rate coefficient for production of D₃^{*} is: k = 1.55×10^{-9} cm³/mol s from Refs. 623, 625, 626, 627, 631. The states of reactants are unknown.

Chebyshev Fitting Parameters for Cross Sections

E_{min} ≈ 1.6E-01 eV/amu, E_{max} = 4.2E+00 eV/amu

AO A1 A2 A3 A4 A5 A6

-69.1270 -1.09264 -.0827553 .0133959 -.0140139 .00530178 .00343451

The fit represents the above cross section with an rms deviation of 0.2%. The maximum deviation is .4% at 1.0E+00 eV/amu.

.

H-13

H-14

Cross Sections for Interchange Reactions Between D_2^* and H_2

$D_2^*(v) + H_2 -> HD_2^* + H$

v = 0		v "	- 1	U	≖ Z	υ = 3		
Energy (eV/awu)	о (Сщ ²)	Energy (eV/amu)	ح (Cm²)	Energy (eV/amu)	o (Cm²)	Energy (eV/amu)	0 (can²)	
5.82-02	1.88g-15	5.7E-02	2.032-15	5.8E-02	2.015-15	5.8E-02	1.932-15	
6.0E-02	1.84E-15	6.0E-02	1.92E-15	6.0E-02	1.96E-15	6.0E-02	1.90E-15	
7.0E-02	1.52E-15	7.0E-02	1.61E-15	7.0E-02	1.762-15	7.02-02	1.78E-15	
8.0E~92	1.20E-15	8.00-02	1.29E-15	8.06-02	1.57E-15	8.0E-02	1.62E-15	
9.0E-02	9.67E-16	9.0E-02	1.10E-15	9.02-02	1.42E-15	9.0E-02	1.498-15	
1.0E-01	8.312-16	1.0E-01	9.662-16	1.08-01	1.28E-15	1.0E-01	1.36E-15	
1.58-01	5.702-16	1.58-01	6.93E-16	1.5E-01	8.29E-16	1.5E-01	8.81E-16	
2.0E-01	4.29E-16	2.0E-01	5.258-16	2.0E-01	5.668-16	2.0E-01	5.70E-16	
3.02-01	2.47E-16	2.5E-01	3.78E-16	2.5E-01	3.79E-16	2.5E-01	3.75E-16	
3.5E-01	1.81E-16	3.02-01	2.79E-16	3.05-01	2.778-16	3.0E-01	2.46E-16	
4.0E-01	1.52E-16	3.5E-01	2.00E-16	3.58-01	2.01E-16	3.58-01	1.65E-16	
4.62-01	1.158-16	4.0E-01	1.44E-16	4.05-01	1.47E-16	4.0E-01	1.12E-16	
••		4.5E-01	1.04E-16	4.5E-01	1.04E-16	4.5E-01	7.55E-17	
		4.6E-01	9.61E-17	4.6E-01	9.58E-17	4.6E-01	6.93E-17	

References: 625, 626, 627, 634, 638, 647, 652

Accuracy: 25%

Notes: (1) For relative cross sections see: Clow and Futrell (Ref. 625). (2) For rate constants, energy dependence see: Bowers et al. (Ref. 626); and Clow and Futrell (Ref. 625). (3) For kinetic energy distributions of HD₂° products see: Lees and Rol (Ref. 638); Doverspike and Champion (Ref. 647), and Krenos et al. (Ref. 652). (4) Rate coeficient for reaction $D_2^\circ + H_2 \rightarrow$ products is: $k = (3.0 \pm 0.6) \times 10^{-9}$ cm³/mols from Clow and Futrell (Ref. 625). (5) Data are presented as a function of u, as reported in Anderson et al. (Ref. 634).

Chebyshev Fitting Parameters for Cross Sections

V	-	0	E	78	5.8E-02	eV/amu,	E	=	4.6E-01	eV/āmu
U	=	1	E ^{min}		5.7 2-02	eV/amu,	Emax	=	4.6E-01	eV/amu
υ	-	2	Emin	e	5.8E-02	eV∕amu,	Emax	#	4.6E-01	eV∕āmu
v	2	3	emin	Rt.	5-80-02	eV∕amu,	Emax	-	4.62-01	ev/aunu

		AO	AI	A2	A 3	٨4	A5	A6
บ =	ο.	-70,4879	-1.34605	0400746	0884724	.00327275	.0410225	0238082
u =	1	-70.3174	-1.41371	174436	131909	00594907	.0250115	0190350
υ¤	2.	-70.1696	-1.46820	256068	0411502	0107313	00889023	0110482
v 4	3	-70.3104	-1.61386	377596	0473991	00736333	.000736757	00411866

The fit represents the v = 0 cross section with an rms deviation of 1.3%. The maximum deviation is 3.3% at 3.5E-01 eV/amu.

The fit represents the v = 1 cross section with an rms deviation of 0.7%. The maximum deviation is 1.3% at 6.05-02 eV/amu.

The fit represents the v = 2 cross section with an rms deviation of 0.7%. The maximum deviation is 1.4% at 2.5E-01 eV/amu.

The fit represents the v = 3 cross section with an rms deviation of 0.3%. The maximum deviation is 0.4% at 8.02-02 eV/anu.

1

1

Cross Sections for Interchange Reactions Between H_2^* and D_2

$H_2^{\bullet}(u) + D_2 -> HD_2^{\bullet} + H$

		u = }		u = 2		v = 3		υ * 4	
Energy (eV/asu)	0 (CB ²)	Energy (eV/amu)	0 {cm ² }	Energy (eV/amu)	σ (cm²)	Energy (eV/amu)	σ (cm²)	Energy (eV/amu)	0 {cm2 ² }
1.7E-01	2.92E-15	1.7E-01	2.53E-15	1.7E-01	2.462-15	1.05-31	2.45E-15	1.8E-01	2.47E-15
2.0E-01	2.91E-15	2. CE-01	2.43E-15	2.0E-01	2.41E-15	2.0E-01	2.39E-15	2.0E-01	2.40E-15
3.0E-01	2.64E-15	3.0E-01	2.15E-15	3.0E-01	2.128-15	3.0E-01	2.13E-15	3.CE-01	2-14E-15
4.0E-01	2.262-15	4.0E-01	1.91E-15	4.0E-01	1.91E-15	4.0E-01	1.91E-15	4.0E-01	1.95E-15
5.0E-01	1.92E-15	5.0E-01	1.72E-15	5.9E-01	1.71E-15	5.0E-01	1.71E-15	5.0E-01	1.00E-15
6.0E-01	1.62E-15	5.0E-01	1.68E-15	5.CE-01	1.54E-15	6.0E-01	1.58E-15	6.0E-01	1.67E-15
7.0E-01	1.36E-15	6.0E-01	1-49E-15	7.0E-01	1.42E-15	7.0E-01	1.46E-15	7.0E-01	1.56E-15
8.0E-01	1.142-15	7.0E-01	1.32E-15	8.0E-01	1.30E-15	8.0E-01	1.37E-15	8.0E-01	1.47E-15
9.0E-01	9.72E-16	8.0E-01	1.19E-15	9.0E-01	1.21E-15	9.0E-01	1.29E-15	9.0E-01	1.39E-15
1.0E+00	0.51E-16	9.02-01	1.085-15	1.02+00	1.13E-15	1.0E+90	1.23E-15	1.0E+00	1.32E-15
1.5E+00	5.40E-16	1.9E+00	9.81E-16	1.5E+00	r.39E-16	1.5E+C0	9.64E-16	1.5E+00	1.06E-15
2.0E+00	4.24E-16	1.5E+00	6.61E-16	2.0E+00	6.65E-16	2.0E+00	7.74E-16	2.0E+00	8.60E-16
3.0E+00	3.02E-16	2.02+00	5.13E-16	3.0E+00	4.65E-16	3.02+00	5.21E-16	3.0E+00	5.53E-16
4.0E+00	2.39E-16	3.0E+00	3.71E-16	4.0E+00	3.58E-16	4.0E+00	3.73E-16	4.0E+00	3.55E-16
4.5E+00	2.19E-16	4.0E.00	3.07E-15	5.0E+00	2.90E-16	5.0E+00	2.85E-16	4.5E+00	2.84E-16
		5.0E+00	2.74E-16	5.4E+00	2.70E-16	5.2E+00	2.80E-16		

References: 625, 626, 627, 634, 638, 652

Accuracy: 25%

Notes: (1) For energy dependence of rate constants see: Bowers et al. (Ref. 626); Clow and Futrell (Ref. 625); and Reuben and Friedman (Ref. 627). (2) For kinetic energy distributions of HD₂⁺ products sections see: Lees and Rol (Ref. 638); and Krenos et al. (Ref. 652). (3) For relative cross sections see: Clow and Futrell (Ref. 625). (4) Rate coefficient for reaction: $H_2^+ + D_2^- >$ Products is: k = (3.2 ± 0.6)xl0⁻⁹ cm³/mol.s from Clow and Futrell (Ref. 625). (5) Data are presented as a function of v, as reported in Anderson et al. (Ref. 634).

Chebyshev Fitting Parameters for Cross Sections

			υ = 0 ν = 1 ν = 2 ν = 3 ν = 4	E Emin Emin E ^{min} E ^{min} min	= 1.7E = 1.7E = 1.7E = 1.8E = 1.8E	-01 eV/au -01 eV/au -01 eV/au -01 eV/au -01 eV/au	mu, E _{ma} mu, E _{ma} mu, E _{ma} mu, E _{ma} mu, E _{ma}	x = x = x = x = x = x	4.5E+0(5.0E+0(5.4E+0(5.2E+0(4.5E+0() eV/amu) eV/amu) eV/amu) eV/amu) eV/amu
			AO	A1	A 2	A3	A4	J	45	A 6
υ		0	-69.2456	-1.40946	120223	.139770	0170479	033	0555	.00606671
U.		1	-69.2502	-1.19199	116093	.0911706	.0196857	011	8162 -	.000510451
υ	•	2	-69.1336	-1.12492	176104	.0165999	. 300760447	. 002	73290 -	.000454869
U I	-	3	-59.0426	-1.06802	213967	0360351	00493123	.016	1013	.00775590
υ		4	-68.8659	992859	-,258499	0853432	0286104	003	72291	.00520865

The fit represents the $v \neq 0$ cross section with an rms deviation of 1.3%. The maximum deviation is 2.0% at 1.0E+00 eV/amu.

The fit represents the v = 1 cross section with an rms deviation of 0.6%. The maximum deviation is 0.8% at 7.0E-01 eV/amu.

The fit represents the v = 2 cross section with an rms deviation of 0.3%. The maximum deviation is 0.7% at 3.0E-01 eV/amu.

The fit represents the $\sigma \sim 3$ cross section with an rms deviation of 0.5%. The maximum deviation is 1.3% at 5.08+00 $e^{\gamma/ami}$.

The fit represents the $\sigma < 4$ cross section with an rms deviation of 0.24. The maximum deviation is 0.3% at 3.0E+00 eV/amu.

REFERENCES

REFERENCES

1.	J. E. Bayfield, Phys. Rev. <u>185</u> , 105 (1969).
2.	V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov, Sov. PhysJETP <u>25</u> , 777 (1967).
3.	W. L. Fite, R. T. Brackmann, and W. R. Snow, Phys. Rev. <u>112</u> , 1161 (1958).
4.	W. L. Fite, R. F. Stebbings, D. G. Hummer, and R. T. Brackmann, Phys. Rev. <u>119</u> , 663 (1960).
5.	W. L. Fite, A.C.H. Smith, and R. F. Stebbings, Proc. Roy. Soc. London, Sect. <u>A268</u> , 527 (1962).
6.	H. B. Gilbody and G. Ryding, Proc. Roy. Soc. London, <u>291</u> , 438 (1966).
7.	P. Hvelplund and A. Andersen, Phys. Scr. <u>26</u> , 375 (1982).
8.	G. W. McClure, Phys. Rev. <u>148</u> , 47 (1966).
9.	J. H. Newman, J. D. Cogan, D. L. Ziegler, D. E. Nitz, R. D. Rundel, K. A. Smith, and R. F. Stebbings, Phys. Rev. & <u>25</u> , 2976 (1982).
10.	A. B. Wittkower, G. Ryding, and H. B. Gilbody, Proc. Phys. Soc. <u>89</u> , 541 (1966).
11.	J. E. Bayfield, Phys. Rev. Lett. <u>20</u> , 1223 (1968).
12.	Y. P. Chong and W. L. Fite, Phys. Rev. A <u>16</u> , 933 (1977).
13.	J. Hill, J. Geddes, and H. B. Gilbody, J. Phys. B <u>12</u> , L341 (1979).
14.	T. J. Morgan, J. Geddes, and H. B. Gilbody, J. Phys. B <u>6</u> , 2118 (1973).
15.	T. J. Morgan, J. Stone, and R. Mayo, Phys. Rev. A <u>22</u> , 1460 (1980).
16.	G. Ryding, A. B. Wittkower, and H. B. Gilbody, Proc. Phys. Soc. <u>89</u> , 547 (1966).
17.	T. Kondow, R. J. Girnius, Y. P. Chong, and W. L. Fite, Phys. Rev. A <u>10</u> , 1167 (1974).
18.	T. J. Morgan, J. Geddes, and H. B. Gilbody, J. Phys. B 6, 2118 (1973).
19.	P. F. Stebbings, R. A. Young, C. L. Oxley, and H. Ehrhardt, Phys. Rev. <u>138</u> , A1312 (1965).
20.	E. W. Thomas, ed., Table 5-3-4, P. 99 in <u>Excitation in Reavy Particle</u> <u>Collisions</u> , Wiley-Interscience, New York, 1972 (Table contains Corrections applied to Ref.19).
21.	J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A <u>12</u> , 869 (1975).
22.	R. E. Olson, A. Salop, R. A. Phaneuf, and F. W. Meyer, Phys. Rev. A <u>16</u> , 1867 (1977).
23.	W. L. Nutt, R. W. McCullough, K. Brady, M. B. Shah, and H. B. Gilbody, J. Phys. B <u>11</u> , 1457 (1978).
24.	M. B. Shah and H. B. Gilbody, J. Phys. B <u>11</u> , 121 (1978).
25.	H. B. Shah and H. B. Gilbody, J. Thys. B 7, 630 (1974).
26.	J. P. Willi ams , Phys. Rev. <u>153</u> , 116 (1967).
27.	P. M. Stier and C. F. Barnett, Phys. Rev. <u>103</u> , 896 (1956).

- R-2
- 28. B. Van Zyl, T. Q. Le, and R. C. Amme, J. Chem. Phys. <u>74</u>, 314 (1981).
- 29. F. Roussel, P. Pradel, and G. Spiess, Phys. Rev. A 16, 1854 (1977).
- 30. V. V. Afrosimov, G. A. Leiko, Yu. A. Mamaev, M. H. Panov, and H. V. Fedorenko, Sov. Phys.-JETP <u>35</u>, 1070 (1972).
- 31. G. W. McClure, Phys. Rev. 134, A1226 (1964).
- 32. T. Jorgensen, Jr., C. E. Kuyatt, W. M. Lang, D. C. Lorents, and C. A. Sautter, Phys. Rev. <u>140</u>, A1481 (1965).
- 33. J. Hill, J. Geddes, and H. B. Gilbody, J. Phys. B 12, 3341 (1979).
- 34. G. W. McClure, Phys. Rev. 166, 22 (1968).
- 35. von U. Schryber, Helv. Phys. Acta A 40, 1023 (1967).
- 36. V. V. Afrosimov, G. A. Leiko, Yu. A. Mamaev, and M. N. Panov, Sov. Phys.-JETP 29, 648 (1969).
- 37. C. F. Barnett and H. K. Reynolds, Phys. Rev. 109, 355 (1958).
- 38. K. H. Berkner, R. V. Pyle, and J. W. Stearns, Nucl. Fusion <u>10</u>, 145 (1970).
- 39. W. H. Cramer, J. Chem. Phys. <u>35</u>, 836 (1961).
- 40. F. J. de Heer, J. Schutten, and H. Moustafa, Physica <u>32</u>, 1766 (1966).
- M. G. Holliday, J. T. Muckerman, and L. Friedman, J. Chem. Phys. <u>54</u>, 1058 (1971).
- 42. Von O. Hollricher, Z. Physik 187, 41 (1965).
- 43. D. W. Koopman, Phys. Rev. 154, 79 (1967).
- 44. G. W. McClure, Phys. Rev. 132, 1636 (1963).
- 45. F. Schwirzke, Z. Physik 157, 510 (1960).
- 46. B. Van Zyl and M. W. Gealy, Phys. Rev. A <u>35</u>, 3741 (1987).
- 47. L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. <u>171</u>, 114 (1968).
- 48. J. F. Williams, Phys. Rev. 179, 240 (1969).
- 49. L. M. Welsh, K. H. Berkner, S. W. Kaplan, and R. V. Pyre, Phys. Rev. <u>158</u>, 85 (1967).
- 50. V. F. Kozlov and S. A. Bondar, Sov. Phys.-JETP 23, 195 (1966).
- 51. J. F. Williams, Phys. Rev. <u>157</u>, 97 (1967).
- 52. J. F. Williams, Phys. Rev. <u>150</u>, 7 (1966).
- 53. L. H. Toburen and M. Y. Nakai, Phys. Rev. <u>177</u>, 191 (1969).
- 54. Ya. M. Fogel, R. V. Mitin, V. F. Kozlov, and N. D. Romashko, Sov. Phys.-JETP <u>35</u>, 390 (1959).
- 55. R. Hippler, W. Harbich, M. Faust, H. O. Lutz, and L. J. Dube, J. Phys. B <u>19</u>, 1507 (1986).
- 56. M. B. shah and H. B. Gilbody, J. Phys. B 2, 1933 (1976).
- 57. M. C. Van Hemert, E. F. Van Dishoeck, J. A. Van der Hart, and F. Koike, Phys. Rev. A <u>31</u>, 2227 (1985).

58.	T. G. Winter and W. F. Lane, Phys. Rev. A <u>17</u> , 66 (1978).
59.	M. B. Shah and H. B. Gilbody, Atomic Data for Fusion $\underline{3}$, 27 (1977), and private communication.
60.	G. J. Lockwood, G. H. Miller, and J. M. Loffman, Bull. Am. Phys. Soc. <u>21</u> , 1266 (1976), and private communication.
61.	C. Harel and &. Salin, J. Phys. B <u>16</u> , 55 (1983).
62.	E. Gustafsson and E. Lindholm, Ark. Physik <u>18</u> , 219 (1960).
63.	J. Momeley, W. Aberth, and J. R. Peterson, Phys. Rev. Lett. <u>24</u> , 435 (1970).
64.	R. D. Rundel, K. L. Aitken, and M.F.A. Harrison, J. Phys. B 🛓, 954 (1969).
65.	B. Peart, R. Grey, and K. T. Dolder, J. Phys. B <u>9</u> , L369 (1976).
66.	T. D. Gaily and M.F.A. Harrison, J. Phys. B 3, L25 (1970).
67.	S. Szucs, M. Karemera, M. Terao, and F. Brouillard, J. Phys. B <u>17</u> , 1613 (1984).
68.	B. Peart, M. A. Bennett, and K. T. Dolder, J. Phys. B <u>18</u> , L439 (1985).
69.	K. T. Dolder and B. Peart, Rep. Prog. Phys. <u>48</u> , 1283 (1985).
70.	R. Shakeshaft, Phys. Rev. A <u>18</u> , 1930 (1978).
71.	M. Kimura and W. R. Thorson, Phys. Rev. A <u>24</u> , 1780 (1981).
72.	M. C. Chidichimo-Prank and R. D. Piacentini, J. Phys. B 7, 548 (1974).
73.	B. Peart, K. Rinn, and K. T. Dolder, J. Phys. B <u>16</u> , 1461 (1983).
74.	K. Rinn, F. Melchert, and E. Salzborn, J. Phys. B <u>18</u> , 3783 (1985).
75.	B. Peart, R. Grey, and K. T. Dolder, J. Phys. B <u>10</u> , 2675 (1977).
76.	G. C. Angel, E. C. Sewell, K. F. Dunn, and H. B. Gilbody, J. Phys. B 11, L297 (1978).
77.	G. C. Angel, K. F. Dunn, E. C. Sewell, and H. B. Gilbody, J. Phys. B $\underline{11}$, L49 (1978).
78.	T. G. Winter, Phys.Rev. A <u>25</u> , 697 (1982).
79.	T. G. Winter, G. J. Hatton, and W. F. Lane, Phys. Rev. A <u>22</u> , 930 (1980).
80.	W. Pritech and C. D. Lin, J. Phys. B <u>15</u> , 1255 (1982).
81.	J.B.A. Mitchell, K. F. Dunn, G. C. Angel, R. Browning, and H. B. Gilbody, J. Phys. B <u>10</u> , 1897 (1977).
82.	J.B.H. Stedeford and J. B. Hasted, Proc. Roy. Soc. London <u>A227</u> , 466 (1955).
83.	M. E. Rudd, R. D. DuBois, L. H. Toburen, C. A. Ratcliffe, and T. V. Goffe, Phys. Rev. A <u>28</u> , 3244 (1983).
84.	Z. Z. Latypov and A. A. Shaporenko, Sov. PhysTech. Phys. <u>21</u> , 1277 (1976).
85.	R. K. Colegrave and D.B.L. Stephens, J. Phys. B 1, 856 (1968).
86.	J. F. Williams and D.W.F. Dunbar, Phys. Rev. <u>149</u> , 62 (1966).

- 87. V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, and N. V. Fedorenko, Sov. Phys.-Tech. Phys. <u>14</u>, 109 (1969).
- 88. K. H. Berkner, S. N. Kaplan, G. A. Paulikas, and R. V. Pyle, Phys. Rev. <u>140</u>, A729 (1965).
- 89. J. Desesquelles, G. D. Cao, and M. Dufay, C. R. Acad. Sci. Paris <u>262B</u>, 1329 (1966).
- 90. L. I. Pivovar, M. T. Novikov, and V. M. Tubaev, Sov. Phys.-JETP <u>15</u>, 1035 (1962).
- 91. A. Itoh, M. Asari, and F. Fukuzawa, J. Phys. Soc. Jpn. <u>48</u>, 943 (1980).
- 92. J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A 11, <u>920</u> (1975).
- 93. R. A. Bavagiola and I. B. Nemirovsky, Nucl. Instrum Methods <u>110</u>, 511 (1973).
- 94. S. K. Allison, Phys. Rev. <u>109</u>, 76 (1958).
- 95. V. V. Afrosimov, G. A. Leiko, and M. N. Panov, Sov. Phys.-Tech. Phys. <u>25</u>, 313 (1980).
- 96. M. E. Rudd, T. V. Goffe, A. Itoh, and R. D. DuBois, Phys. Rev. A <u>32</u>, 829 (1985).
- 97. L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys.-JETP <u>14</u>, 20 (1962).
- 98. H. B. Gilbody, K. F. Dunn, R. Browning, and C. J. Latimer, J. Phys. B <u>4</u>, 800 (1971).
- 99. A. B. Wittkower, G. Levy, and H. B. Gilbody, Proc. Phys. Soc. <u>91</u>, 862 (1967).
- 100. M. B. Shah and H. B. Gilbody, J. Phys. B 9, 2685 (1976).
- 101. S. K. Allison, J. Cuevas, and P. G. Murphy, Phys. Rev. 102, 1041 (1956).
- 102. H. Tawara, J. Phys. Soc. Jpn. 31, 871 (1971).
- 103. C. F. Barnett and P. M. Stier, Phys. Rev. 109, 385 (1958).
- 104. F. J. de Heer: J. Schutten, and H. Moustafa, Physica <u>32</u>, 1793 (1966).
- 105. P. B. Gilbody, J. B. Hasted, J. V. Ireland, A. R. Lee, E. W. Thomas, and A. S. Whiteman, Proc. Roy. Soc., London <u>A274</u>, 40 (1963).
- 106. R.L.C. Wu and D. G. Hopper, Chem. Phys. 57, 385 (1981).
- 107. T. F. Moran and R. J. Conrads, J. Chem. Phys. <u>58</u>, 3793 (1973).
- 108. H. Helm, J. Phys. B 10, 3683 (1977).
- 109. R. D. Rundel, D. E. Nitz, K. A. Smith, M. W. Geis, and R. F. Stebbings, Phys. Rev. A <u>19</u>, 33 (1979).
- 110. E. A. Hinda and R. Novick, J. Phys. B 11, 2201 (1978).
- 111. R. Hegerberg, T. Stefansson, and M. T. Elford, J. Phys. B <u>11</u>, 133 (1978).
- 112. B. I. Kikiani, Z. E. Saliya, and I. B. Bagdasarova, Sov. Phys.-Tech. Phys. <u>20</u>, 364 (1975).
- 113. A. Galli, A. Giardini-Guidoni, and G. G. Volpi, Nuovo Cimento <u>26</u>, 845 (1962).
- 114. R. F. Potter, J. Chem. Phys. <u>22</u>, 974 (1954).

- 115. V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov, Sov. Phys.-JETP 27, 924 (1968). 116. R. J. Conrads, W. Pomerance, and T. F. Moran, J. Chem. Phys. 57, 2468 (1972). 117. V. S. Nikolaev, I. S. Dmitriev, L. N. Fateeva, and Ya. A. Teplova, Sov. Phys.-JETP 13, 695 (1961). 118. F. L. Eisele and S. W. Wagy, J. Chem. Phys. 65, 752 (1978). 119. W. K. Shelton and P. A. Stoycheff, Phys. Rev. A 3, 613 (1971). 120. P. Mahadevan and G. D. Magnuson, Phys. Rev. 171, 103 (1968). 121. M. B. Shah, J. Geddes, and H. B. Gilbody, J. Phys. B <u>13</u>, 4049 (1980). E. P. Andreev, V. A. Ankudinov, and S. V. Bobashev, p. 309 in <u>V</u> <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions, Leningrad, USSR, July 17-23, 1967, Publishing House Wauka</u>, 122. Collisions, Leningrad 1967. J. E. Bayfield, Phys. Rev. 182, 115 (1969). 123. 124. J. H. Birely and R. J. McWeal, Phys. Rev. A 5, 692 (1972). 125. R. H. Hughes, E. D. Stokes, S. Choe, and T. J. King, Phys. Rev. A 4, 1453 (1971). 126. L. Colli, F. Cristofori, G. E. Frigerio, and P. G. Sona, Phys. Lett. 3, 62 (1962). 127. H. B. Gilbody, Adv. At. Mol. Phys. 22, 143 (1986). 128. R. H. Hughes, T. J. King, and S. Choe, Phys. Rev. A 5, 644 (1972). 129. R. H. Hughes, H. R. Dawson, B. M. Doughty, D. B. Kay, and C. A. Stigers, Phys. Rev. 146, 53 (1966). 130. R. H. Hughes, H. R. Dawson, and B. M. Doughty, Phys. Rev. <u>164</u>, 166 (1967). 131. J. C. Ford and E. W. Thomas, Phys. Rev. A 5, 1701 (1972). 132. D. H. Loyd and H. R. Dawson, Phys. Rev. A 11, 140 (1975). 133. I. D. Williams, J. Geddes, and H. B. Gilbody, J. Phys. B <u>15</u>, 1377 (1982). R. H. Hughes, C. A. Stigr 3, B. M. Doughty, and E. D. Stokes, Phys. Rev. 134. A 1, 1424 (1970). R. J. Knize, S. R. Lundeen, and F. M. Pipkin, Phys. Rev. A 29, 1114 135. (1984). H. R. Dawson and D. H. Loyd, Phys. Rev. A 15, 43 (1977). 136. W. R. Hess, Phys. Rev. A 9, 2036 (1974). 137. 138. W. R. Hess, Phys. Lett. <u>41A</u>, 66 (1972). R. H. Hughes, S. Lin, and L. L. Hatfield, Phys. Rev. 130, 2318 (1963). 139. 140. K. H. Berkner, R. V. Pyle, J. W. Stearns, and J. C. Warren, Phys. Rev. 166, 44 (1968). 141. G. R. Hertel and W. S. Koski, J. Chem. Phys. 40, 3452 (1964).
- 142. P. H. Hvelplund, J. Heinemeier, E. H. Pedersen, and P. R. Simpson, J. Phys. B 2, 491 (1976).

- 143. L. J. Puckett, G. O. Taylor, and D. W. Martin, Phys. Rev. <u>178</u>, 271 (1969).
- 144. M. E. Rudd, T. V. Goffe, and A. Itoh, Phys. Rev. A <u>32</u>, 2128 (1985).
- 145. M. B. Shah and H. B. Gilbody, J. Phys. B 7, 256 (1974).
- 146. Z. Z. Latypov and A. A. Shaporenko, Sov. Phys.-Tech. Phys. <u>19</u>, 976 (1975).
- 147. Z. Z. Latypov, N. H. Fedorenko, I. P. Flaks, and A. A. Shaporenko, Sov. Phys.-JETP Lett. <u>11</u>, 116 (1970).
- 148. V. V. Afrosimov, G. A. Leiko, Yu. A. Mamaev, and M. N. Panov, Sov. Phys.-JETP <u>40</u>, 661 (1975).
- 149. J. S. Cohen and J. N. Bardsley, Phys. Rev. A 18, 1004 (1978).
- 150. V. S. Mikolaev, L. N. Fateeva, I. S. Dwitriev, and Ya. A. Teplova, Sov. Phys.-JETP <u>14</u>, 67 (1962).
- 151. T. Kusakabe, H. Hanaki, N. Nagai, K. Kuroda, N. Maeda, and M. Sakisaka, Nucl. Instrum. Methods <u>198</u>, 577 (1982).
- 152. M. Schrey and B. Huber, Z. Phys. A 213, 401 (1975).
- 153. A. F. Ferguson and B. L. Moiseiwitsch, Proc. Phys. Soc. 74, 437 (1959).
- 154. R. J. Conrads, T. W. Nichols, J. C. Ford, and E. W. Thomas, Phys. Rev. A 7, 1928 (1973).
- 155. H. R. Dawson and D. H. Loyd, Phys. Rev. A <u>9</u>, 166 (1974).
- 156. J. C. Ford and E. W. Thomas, Phys. Rev. A 5, 1694 (1972).
- 157. F. T. Chan and J. Eichler, Phys. Rev. A 20, 1841 (1979).
- 158. J. L. Edwards and E. W. Thomas, Phys. Rev. A 2, 2346 (1970).
- 159. E. P. Andreev, V. A. Ankudinov, and S. V. Bobashev, p. 307 in V <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u>, Leningrad, USSR, July 17-23, 1967, Publishing House Nauka, Leningrad, 1967.
- 160. J. Lenormand, J. Phys. (Paris) 37, 699 (1976).
- 161. J. E. Bayfield, <u>Atomic Physics</u> Vol. 4, p. 397, ed. G. Zu. Putlitz, E. W. Weber, and A. Winnacker, Plenum Press, New York, 1974.
- 162. V. A. Esaulov, J. Phys. B 13, 4039 (1980).
- 163. F. J. de Heer, J. Van Eck, and J. Kistemaker, Vol. 1, p. 73, in <u>VI</u> <u>International Conference on Ionization Phenomena in Gases</u>, Paris, July 8-13, 1963.
- 164. J. S. Risley, F. J. de Heer, and C. B. Kerkdijk, p. 93 in <u>IX</u> <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u>, Seattle, July 24~30, 1975, University of Washington Press Seattle, WA, 1976.
- 165. J. S. Rigley, F. J. de Heer, and C. B. Kerkdijk, J. Phys. B <u>11</u>, 1759 (1978).
- 166. F. J. de Heer, <u>Advances in Atomic and Molecular Physics</u> Vol. 2, P. 327, ed. D. R. Bates and L. Estermann, Academic Press, New York, 1966.
- 167. E. P. Andreev, V. A. Ankudinov, S. V. Bobashev, and V. B. Matveev, Sov. Phys-JETP <u>25</u>, 232 (1967).

т т

- 168. C. W. Newby, J. Phys. B 18, 1781 (1985).
- 169. M. Kimura and W. R. Thorson, Phys. Rev. A <u>24</u>, 3019 (1981).
- 170. S. Datta and S. C. Mukherjee, J. Phys. B 13, 539 (1980).
- 171. G. J. Hatton, W. F. Lane, and T. G. Winter, J. Phys. B <u>12</u>, L571 (1979).
- 172. D. Ciric, D. Dijkkamp, E. Vlieg, and F. J. de Heer, J. Phys. B <u>18</u>, L17 (1985).
- 173. D. Ciric, D. Dijkkamp, E. Vlieg, and F. J. de Heer, J. Phys. B <u>18</u>, 4745 (1985).
- 174. B. H. Bransden, C. J. Noble, and J. Chandler, J. Phys. B <u>16</u>, 4191 (1983).
- 175. T. G. Winter and G. J. Hatton, Phys. Rev. A 21, 793 (1980).
- 176. H. J. Ludde and D. M. Dreizler, J. Phys. B <u>15</u>, 2713 (1982).
- 177. G. A. Khayrallah and J. E. Bayfield, Phys. Rev. A <u>11</u>, 930 (1975).
- 178. Dz. S. Belkic and R. K. Janev, J. Phys. B <u>6</u>, 1020 (1973).
- 179. S. C. Mukherjee, K. Roy, and M. C. Sil, J. Phys. B <u>6</u>, 467 (1973).
- 180. K. E. Banyard and B. J. Szuster, J. Phys. B <u>10</u>, L503 (1977).
- 181. Dz. S. Belkic and R. Gayet, J. Phys. B <u>10</u>, 1923 (1977).
- 182. J. W. Gallagher, B. H. Bransden, and R. K. Janev, J. Phys. Chem. Ref. Data <u>12</u>, 8.3 (1983).
- 143. E. P. Andreev, V. A. Ankudinov, and S. V. Bobashev, Sov. Phys.-JETP 23, 375 (1966).
- 184. V. Dose, Helv. Phys. Acta <u>39</u>, 683 (1966).
- 185. D. Pretzer, B. Van Zyl, and R. Geballe, p. 618 in <u>III International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u>, London, July 22-26, 1963, North-Holland Publishing Co., Amsterdam, 1964.
- 186. D. Pretzer, B. Van Zyl, and R. Geballe, Phys. Rev. Lett. <u>10</u>, 340 (1963).
- 187. B. Van Zyl, M. W. Gealy, and H. Weumann, Phys. Rev. A <u>35</u>, 4551 (1987).
- 188. G. H. Dunn, R. Geballe, and D. Pretzer, Phys. Rev. <u>128</u>, 2200 (1962).
- 189. D. H. Crandall and D. H. Jaecks, Phys. Rev. A 4, 2271 (1971).
- 190. D. Jaecks, B. Van Zyl, and R. Geballe, Phys. Rev. <u>137</u>, A340 (1965).
- 191. R. L. Fitzwilson and E. W. Thomas, Phys. Rev. A <u>3</u>, 1305 (1971).
- 192. B. Van Zyl, M. W. Gealy, and H. Neumann, Phys. Rev. A 33, 2333 (1986).
- 193. R. J. McMeal and J. H. Birely, p. 815 in <u>VII International Conference on the Physics of Electronic and Atomic Collisions</u>, Amsterdam, July 26-30, 1971, North-Holland Publishing Co., Amsterdam, 1971.
- 194. D. A. Dahlberg, D. K. Anderson, and I. E. Dayton, Phys. Rev. <u>170</u>, 127 (1968).
- 195. B. Van Zyl, D. Jaecks, D. Pretzer, and R. Geballe, Phys. Rev. <u>158</u>, 29 (1967).
- 196. R. E. Miers, A. S. Schlachter, and L. W. Anderson, Phys. Rev. <u>183</u>, 213 (1969).

- 197. H. B. Gilbody, K. F. Dunn, R. Browning, and C. J. Latimer, p. 785 in <u>VII</u> International Conference on the Physics of Electronic and Atomic Collisions, Amsterdam, July 26-30, 1971, North-Holland Publishing Co., Amsterdam, 1971.
- 198. H. B. Gilbody, R. Browning, G. Levy, A. I. McIntosh, and K. F. Dunn, J. Phys. B <u>1</u>, 863 (1968).
- 199. R. C. Isler and R. D. Nathan, Phys. Rev. A <u>6</u>, 1036 (1972).
- 200. G. N. Polyakova, V. F. Erko, and A. V. Zats, Opt. Spectrosc. <u>29</u>, 219 (1970).
- 201. P. J. MacVicar-Whelan and W. L. Borst, Phys. Rev. A 1, 314 (1970).
- 202. D. P. Sural, S. C. Mukherjee, and N. C. Sil, Phys. Rev. <u>164</u>, 156 (1967).
- 203. R. Hippler, K-H. Schartner, and H. F. Beyer, J. Phys. B 11, L337 (1978).
- 204. L. W. Muller and and F. J. de Heer, Physica <u>48</u>, 345 (1970).
- 205. F. J. de Heer, L. W. Huller, and R. Geballe, Physica <u>31</u>, 1745 (1965).
- 206. C. E. Head and R. H. Hughes, Phys. Rev. <u>139</u>, A1392 (1965).
- 207. F. J. de Heer and J. Van den Bos, Physica <u>31</u>, 365 (1365).
- 208. D. R. Sweetman, Proc. Roy. Soc. London A256, 416 (1960).
- 209. H. B. Gilbody, Phys. Scr. 24, 712 (1981).
- 210. R. Schmid, Z. Phys. 161, 550 (1961).
- 211. D. W. Vance and T. L. Bailey, J. Chem. Phys. <u>44</u>, 486 (1966).
- 212. H. L. Rothwell, B. Van Zyl, and R. C. Amme, J. Chem. Phys. <u>61</u>, 3351 (1974).
- 213. C. J. Latimer, R. Browning, and H. B. Gilbody, J. Phys. B <u>2</u>, 1055 (1969).
- 214. G. W. McClure, Phys. Rev. 130, 1852 (1963).
- 215. N. Noda, J. Phys. Soc. Jpn. 43, 1021 (1977).
- 216. H. C. Hayden and R. C. Amme, Phys. Rev. <u>172</u>, 104 (1968).
- 217. Yu. S. Gordeev and M. N. Panov, Sov. Phys.-Tech. Phys. 9, 656 (1964).
- 218. A. Bouliou, M. Sarret, and P. Frere, C. R. Acad. Sci. Paris <u>296</u>, 1217 (1983).
- 219. E. S. Solov'ev, R. H. Il'in, V. A. Oparin, and N. V. Fedorenko, Sov. Phys-JETP <u>26</u>, 1097 (1968).
- 220. H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc. London A238, 334 (1956).
- 221. F. M. Campbell, R. Browning, and C. J. Latimer, J. Phys. B <u>14</u>, 3493 (1981).
- 222. T. P. Moran, K. J. McCann, M. R. Flannery, and D. L. Albritton, J. Chem. Phys. <u>65</u>, 3172 (1976).
- 223. R. N. Stocker and H. Neumann, J. Chem. Phys. <u>61</u>, 3852 (1974).
- 224. E. L. Duman and A. V. Evseev, Sov. Phys.-JETP 58, 1108 (1983).
- 225. C-Y. Lee and A. E. DePristo, J. Chem. Phys. 80, 1116 (1984).

- 226. T. F. Moran, M. R. Flannery, and D. L. Albritton, J. Chem. Phys. <u>62</u>, 2869 (1975).
- 227. M. R. Flannery, J. V. Hornstein, and T. F. Moran, Chem. Phys. Lett. <u>32</u>, 455 (1975).
- 228. Z. Karpas, V. Anicich, and W. T. Buntress, Jr., J. Chem. Phys. <u>70</u>, 2877 (1979).
- 229. R. D. Smith, D. L. Smith, and J. H. Futrell, Int. J. Mass Spectrom Ion Phys. <u>19</u>, 369 (1976).
- 230. S. L. Varghese, W. Waggoner, and C. L. Cocke, Phys. Rev. A <u>29</u>, 2453 (1984).
- 231. R. D. DuBois and L. H. Toburen, Phys. Rev. A 31, 3603 (1985).
- 232. R. D. DuBois, Phys. Rev. A 32, 3319 (1985).

, i T

900. 1

- 233. F. Aumayr and H. Winter, Phys. Rev. A <u>31</u>, 67 (1985).
- 234. M. B. Skah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 18, 4245 (1985).
- 235. W. Gruebler, P. A. Schmelsbach, V. Konig, and P. Marmier, Helv. Phys. Acta <u>43</u>, 254 (1970).
- 236. R. H. Il'in, V. A. Oparin, E. S. Solov'ev, and H. V. Fedorenko, Sov. Phys.-JETP Lett. 2, 197 (1965).
- 237. R. H. Il'in, V. A. Oparin, E. S. Solov'ev, and H. V. Pedorenko, Sov. Phys.-Tech. Phys. <u>11</u>, 921 (1967).
- 238. B. A. D'yachkov, Sov. At. Energy 27, 958 (1959).
- 239. O. Auciello, E. V. Alonso, and R. A. Baragiola, Phys. Rev. A <u>13</u>, 985 (1976).
- 240. D. Dijkkamp, A. Boellaard, and F. J. de Heer, Mucl. Instrum. Methods Phys. Res. B <u>9</u>, 377 (1985).
- 2.1. M. Sasao, A. Matsumoto, A. Mishizawa, K. M. Sato, S. Takagi, S. Amamiye, T. Masuda, Y. Tsurita, Y. Kanamori, Y. Haruyama, and F. Fukuzawa, p. 559 in XIII International Conference on the Physics of Electronic and Atomic <u>Collisions</u>, Berlin, July 27-Aug. 2, 1983.
- 242. R. W. McCullough, T. V. Goffe, M. B. Shah, M. Lennon, and H. B. Gilbody, J. Phys. B <u>15</u>, 111 (1982).
- 243. K. Kadota, D. Dijkkamp, R. L. van der Woude, A. de Boer, P. G. Yan, and T. J. de Heer, J. Phys. B <u>15</u>, 3275 (1982).
- 244. G. A. Murray, J. Stone, M. Mayo, and T. J. Morgan, Phys. Rev. A <u>25</u>, 1805 (1982).
- 245. K. Kadota, D. Dijkkamp, R. L. van der Woude, P. G. Yan, and F. J. de Heer, Phys. Lett. A <u>88</u>, 135 (1982).
- 246. M. Sasao, K. Sato, A. Matsumoto, A. Wishizawa, S. Takagi, S. Amemiya, T. Masuda, Y. Tsurita, F. Fukuzawa, Y. Haruyama, and Y. Kanamori, J. Phys. Soc. Jpn. <u>55</u> 102 (1986).
- 247. M. F. Shah, T. V. Goffe, and H. B. Gilbody, J. Phys. B <u>11</u>, L233 (1978).
- 248. W. Seim, A. Muller, I. Wirkner-Bott, and E. Salzborn, J. Phys. B <u>14</u>, 3475 (1981).
- 249. i. Wirkner-Bott, W. Seim, A. Muller, P. Kester, and E. Salzborn, J. Phys. B <u>14</u>, 3987 (1981).

250. S. K. Allison, J. Cuevas, and M. Garcia-Munoz, Phys. Rev. <u>120</u>, 1266 (1960). V. S. Bikolaev, Yu. A. Tashaev, and Ya. Teplova, Sov. 251. I. S. Dmitriev, Phys.-JETP 40, 1017 (1975). K. E. Banyard and G. W. Shirtcliffe, Phys. Rev. A <u>30</u>, 604 (1984). 252. 253. A. L. Ford, J. F. Reading, and R. L. Becker, J. Phys. B <u>15</u>, 3257 (1982). 254. P. H. Hvelplund, J. Phys. B 9, 1555 (1976). 255. F. Aumayr, G. Lakits, W. Husinsky, and H. Winter, J. Phys. B <u>18</u>, 2493 (1985). 256. P. Aumayr, M. Fehringer, and H. Winter, J. Phys. B 17, 4201 (1984). 257. A. M. Ermolaev, J. Phys. B 17, 1069 (1984). F. Aumayr, M. Pehringer, and H. Winter, J. Phys. B 17, 4185 (1984). 258. 259. J. L. Barrett and J. J. Leventhal, Phys. Rev. A <u>23</u>, 485 (1981). R. Hippler, W. Harbich, H. Madeheim, K. Kleinpoppen, Phys. Rev. A <u>35</u>, 3139 (1987). 260. and H. O. Lutz, 261. J. T. Park, Adv. At. Mol. Phys. <u>19</u>, 67 (1983). 262. P. G. Yan, R. L. van der wurde, D. Dijkkamp, and S. J. de Heer, Phys. scr. T3, 120 (1983). 263. B. H. Bransden and A. K. Ermolaev, Phys. Lett. <u>84A</u>, 316 (1981). L. T. Redmon, J. C. Browne, and R. E. Olson, Phys. Rev. 264. E. J. Shipsey, A <u>18</u>, 1961 (1978). 265. R. Johnsen and M. A. Biondi, Phys. Rev. A <u>18</u>, 996 (1978). 266. J. W. Bardsley, J. S. Cohen, and J. M. Wadehra, Phys. Rev. A 19, 2129 (1979). 267. F. Aumayr and H. Winter, J. Phys. B 18, L741 (1985). C. J. Anderson, R. J. Girnius, A. M. Howald, and L. W. Anderson, Phys. Rev. A <u>22</u>, 822 (1980). 268. 269. H. Tawara, Atomic Data Nucl. Data Tables 22, 491 (1978). 270. Ya. M. Fogel, V. A. Ankudinov, D. V. Pilipenko, and N. V. Topolia, Sov. Phys.-JETP 7, 400 (1958). 271. D. M. Davidovic and R. K. Janev, Phys. Rev. <u>186</u>, 89 (1969). 272. A. Dalgarno and M.R.C. McDowell, Proc. Phys. Soc. <u>A69</u>, 615 (1956). W. Schwab, G. B. Baptista, E. Justiniano, 273. R. Schuch, H. Vogt, and E. W. Weber, J. Phys. 3 20, 2825 (1987). B. Feart and R. A. Forrest, J. Phys. B 12, L23 (1979). 274. 275. F. Brouillard, W. Claeys, G. Poulaert, G. Rahmat, and G. Van Wassenhove, J. Phys. B <u>12</u>, J253 (1979). K. T. Dolder, "The measurement of inelastic ion-ion and electron-ion collisions" p. 373 in <u>Physics of Ion-Ion and Electron-Ion Collision</u>: Plenum Press, New York, 1983. 276. of Ion-Ion and Electron-Ion Collisions, Plenum Press, New York, 277. B. Peart, K. Rinn, and K. T. Dolder, J. Phys. B 16, 2831 (1983). 278. M. F. Watts, K. F. Dunn, and H. B. Gilbody, J. Phys. B 19, L355 (1986).

279.	K. Rinn, F. Melchert, K. Rink, and E. Salzborn, J. Phys. B 19, 3717 (1986).
280.	_D. Fussen and C. Kubach, J. Phys. B <u>19</u> , L31 (1986).
281.	D. G. Hummer, R. F. Stebbings, W. L. Fite, and L. M. Branscomb, Phys. Rev. <u>119</u> , 668 (1960).
282.	R. D. DuBcis, Phys. Rev. A 33, 1595 (1986).
283.	F. Melchert, K. Rink, K. Rinn, E. Salzborn, and M. Grun, J. Phys. B <u>20</u> , L223 (1987).
284.	R. J. Allan, J. Phys. B <u>19</u> , L683 (1986).
285.	R. Abrines and I. C. Percival, Proc. Phys. Soc., London <u>88</u> , 861 (1966).
286.	R. J. McWeal, D. C. Clark, and R. A. Klingberg, Phys. Rev. A <u>2</u> , 131 (1970).
287.	H. R. Fleischmann and R. A. Young, Phys. Rev. <u>178</u> , 254 (1969).
288.	R. E. Olson, J. Phys. B 11, L227 (1978).
289.	F. Brouillard and D.J.W. Delfosse, p. 159 in <u>V International Conference</u> <u>on the Physics of Electronic and Atomic Collisions</u> , Leningrad, USSR, July 17-23, 1976, Publishing House Mauka, Leningrad, 1967.
290.	M. Terao, M. Cherkani, S. Szucs, and F. Brouillard, p. 620 in <u>XIV</u> <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u> , Palo Alto, July 24-30, 1985.
291.	M. Terao, S. Szucs, M. Cherkani, P. Brouillard, and R. J. Allan, Europhys. Lett. <u>1</u> , 123 (1986).
292.	a. Peart, R. Gray, and K. T. Dolder, J. Phys. B 2, L373 (1976).
293.	T. D. Gaily and M.F.A. Harrison, J. Phys. B 3, 1098 (1970).
294.	B. Peert and M. A. Bennett, J. Phys. B <u>19</u> , L321 (1986).
295.	CL. Liao, CX. Liao, and C. Y. Ng, J. Chem. Phys. <u>81</u> , 5672 (1984).
296.	R. C. Dehmel, H. K. Chau, and H. H. Pleischmann, Atomic Data <u>5</u> , 231 (1973).
297.	A. B. Wittkower, G. Levy, and H. B. Gilbody, p. 205 in <u>V International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u> , Leningrad, USSR, July 17-23, 1976, Publishing House Mauka, Leningrad, 1967.
298.	A. B. Wittkower, G. Levy, and H. B. Gilbody, Proc. Phys. Soc. <u>9</u> , 306 (1967).
299.	H. Tawara and A. Russek, Rev. Mod. Phys. <u>45</u> , 178 (1973).
300.	N. V. Fedorenko, Sov. Phys. Tech. Phys. <u>15</u> , 1947 (1971).
301.	P. H. Hvelplund and A. Andersen, Phys. Scr. <u>26</u> , 370 (1982).
302.	M. A. Prasid and K. Unnikrishnan, Phys. Rev. A <u>22</u> , 514 (1980).
303.	R. Ext the and J. W. Toevs, Phys. Rev. <u>139</u> , A15 (1965).
304.	N. Noda, J. Phys. Soc. Jpn. <u>41</u> , 625 (1976).
205.	D. V. Pilipenko, and Ya. M. Fogel, Sov. PhysJET? <u>15</u> , 646 (1962).
306.	B. Donnally and W. Sawyer, p. 488 in VI International Conference on the

Physics of Electronic and Atomic Collisions, MIT, July 28-Aug 2, The MIT Press, Cambridge, Masmachusetts, 1969.

- 307. K. H. Berkner, S. N. Kaplan, and R. V. Pyle, Phys. Rev. <u>134</u>, A1461 (1964).
- 308. R. Curran and T. M. Donahue, Phys. Rev. <u>118</u>, 1233 (1950).
- 309. H. H. Fleischmann, C. F. Barnett, and J. A. Ray, Phys. Rev. A <u>10</u>, 569 (1974).
- 310. J. H. Montague, Phys. Rev. 81, 1026 (1951).
- 311. F. Roussel, P. Pradel, and G. Spiess, p. 462 in <u>X International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u>, Paris, July 21-27, 1977, North-Holland Publishing Co., 1977.
- 312. F. Roussel, P. Pradel, A. S. Schlachter, and G. Spiess, p. 27 in <u>IX</u> <u>International Conference on the Physics Electronic and Atomic Collisions,</u> <u>Seattle, July 24-30, 1975, University of Washington Press, Seattle,</u> WA, 1975.
- 313. K. A. Smith, M. D. Duncan, M. W. Geis, and R. D. Rundel, J. Geophys. Res. <u>81</u>, 2231 (1976).
- 314. X. A. Smith, M. D. Duncan, M. W. Geis, and R. D. Rundel, p. 25 in <u>iX</u> <u>International Conference on the Physics Electronic and Atomic Collisions,</u> <u>Seattle, WA, July 24-30, 1975</u>, University of Washington Press, Seattle, WA, 1975.
- 315. E. S. Solov'ev, R. H. In'in, V. A. Oparin, and H. V. Fedorenko, Sov. Phys.-JETP <u>15</u>, 459 (1962).
- 316. S. K. Allison, Rev. Mod. Phys. <u>30</u>, 1137 (1958).
- 317. A. M. Kudryavtsev and A. F. Sorokin, Sov. Phys. Tech. Phys. <u>22</u>, 1368 (1977).
- 318. J. S. Risley, Comments At. Mol. Phys. <u>12</u>, 215 (1983).
- 319. N. V. Fedorenko, p. 54 in <u>Lectures Summer School on Physics Ionized</u> <u>Gases</u>, Herceq-Novi, Yugoslavia, 1970.
- 320. E. H. Pedersen and L. Larsen, J. Phys. B <u>12</u>, 4099 (1979).
- 321. G. I. Dimov and V. G. Dudnikov, Jov. Phys.-Tech. Phys. <u>11</u>, 919 (1967).
- 322. Y. Nakai, A. Kikuchi, T. Shirai, and M. Sataka, Japan Atomic Energy Research: Institute Report <u>JAERI-M_83-143</u>, September (1983).
- 323. R. J. McWeal, D. C. Clark, and R. A. Klingberg, Phys. Rev. A <u>2</u>, 131 (1970).
- 324. R. N. 11'in, V. V. Afrosimov, and N. V. Fedorenko, Sov. Phys.-JETP <u>9</u>, 29 (1959).
- 325. F. Schwirzke, Z. Phys. 157, 540 (1960).
- 326. G. Spiess, A. Valance, and P. Pradel, Phys. Rev. A 6, 746 (1972).
- 327. H. B. Gilbody, R. Browning, R. M. Reynolds, and G. I. Riddell, p. 1080 in <u>VII International Conference on the Physics of Electronic and Atomic Collisions</u>, Amsterdam, July 26-30, 1971, North-Holland Publishing CO., Amsterdam, 1971.
- 328. R. H. Hughes and P. O. Berge, Phys. Rev. A 11, 906 (1975).
- 329. H. B. Gilbody and J. L. Corr, J. Phys. B 7, 1953 (1974).
- 330. H. B. Gilbody, R. Browning, R. M. Reynolds, and G. I. Riddell, J. Phys. B 4, 94 (1971).
- 331. V. Dose and R. Gunz, J. Phys. B 5, 636 (1972).

- 332. A. Cornet, W. Claeys, V. Lorent, J. Jureta, and D. Fussen, J. Phys. B <u>17</u>, 7543 (1984).
- 333. J.D.A. McKee, J. Geddes, and H. B. Gilbody, J. Phys. B 12, 1701 (1979).
- 334. R. H. Hughes and S. S. Choe, Phys. Rev. A 6, 1413 (1972).
- 335. M. E. Rudd, Y.-K. Kim, D. H. Madison and J. W. Gallagher, Rev. Mod. Phys. <u>57</u>, 965 (1985).
- 336. M. B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 2481 (1987).
- 337. M. B. Shah and H. B. Gilbody, J. Phys. B <u>14</u>, 2361 (1981).
- 338. M. B. Shah and H. B. Gilbody, p. 791 in <u>XII International Conference on</u> the Physics of Electronic and Atomic Collisions, Gatlinburg, TW, July 15-<u>21</u>, 1961.
- 339. J. T. Park, p. 109 in <u>XII International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Gatlinburg, TE, July 15-21, 1981. (Invited Papers)
- 340. J. T. Park, J. E. Aldag, J. H. George, and J. L. Peacher, p. 753 in <u>IX</u> <u>International Conference on the Physics of Electronic and Atcaic</u> <u>Collisions</u>, Seattle, July 24-30, 1975, University of Washington Press, Seattle, WA, 1975.
- 341. J. T. Park, J. E. Aldag, J. M. George, J. L. Peacher, and J. H. McGuire, Phys. Rev. A <u>15</u>, 508 (1977).
- 342. H. B. Gilbody, IEEE Trans. Nucl. Sci. <u>MS-30</u>, 1201 (1983).
- 343. H. B. Gilbody and J. V. Ireland, Proc. R. Soc. London <u>A277</u>, 137 (1963).
- 344. M. E. Rudd, Phys. Rev. A 28, 3244 (1983).
- 345. M. E. Rudd, Phys. Rev. A 20, 787 (1979).
- 346. M. B. Shah and H. B. Gilbody, J. Phys. B 15, 3441 (1982).
- 347. M. E. Rudd and T. Jorgenseis, Jr., Phys. Rev. 131, 666 (1963).
- 348. V. V. Afrosimov, R. H. Il'in, and H. V. Fedorenko, Sov. Phys.-JETP 7, 968 (1958).
- 349. L. H. Toburen and W. E. Wilson, Phys. Rev. A 5, 247 (1972).
- 350. J. W. Hooper, E. W. McDaniel, D. W. Martin, and D. S. Harwer, Phys. Rev. <u>121</u>, 1123 (1961).
- 351. C. Z. Kuyatt and T. Jorgensen, Jr., Phys. Rev. <u>130</u>, 1444 (1963).
- 352. Ia. M. Fogel, L. I. Krupnik, and B. G. Safronov, Sov. Phys.-JETP 1, 415 (1955).
- 353. L. I. Pivovar and Yu. Z. Levchenko, Sov. Phys.-JETP 25, 27 (1967).
- 354. H. B. Gilbody and A. R. Lee, Proc. R. Soc. London A 274, 365 (1963).
- 355. H. B. Gilbody and J. B. Hasted, Proc. R. Soc. London A 240, 382 (1957).
- 356. V. V. AfroBimov, G. A. Leiko, Yu. A. Mamaev, H. H. Panov, and N. V. Fedorenko, p. 114 in <u>VI International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, MIT, July 28-Aug 2, 1969, The MIT Press, Cambrdige, Massachusetts, 1969.

- 357. M. E. Rudd, T. V. Goffee, R. D. DuBois, L. H. Toburen, and C. A. Ratcliffe, p. 413 in <u>XIII International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Berlin, (1983).
- 358. J. P. Keene, Philos. Mag. 40, 369 (1949).
- 359. E. W. McDaniel, J. W. Hooper, D. W. Martin, and D. S. Harmer, Vol. 1, p. 60 in <u>V International Conference on Ionization Phenomena in Gases</u>, Munich, August 28-September 1, 1961, North-Holland Publishing Co., Amsterdam, 1962.
- 360. A. K. Edwards, R. M. Wood and R. L. Ezell, Phys. Rev. A <u>34</u>, 4411 (1986).
- 361. B. G. Lindsay, F. B. Yousif, F. R. Simpson, and C. J. Latimer, J. Phys. B <u>20</u>, 2759 (1987).
- 362. R. Browning and H. B. Gilbody, J. Phys. B 1, 1149 (1968).
- 363. Yu. Z. Levchenko, L. I. Pivovar, and G. D. Tolstolutskaya, Sov. Phys.-JETP <u>37</u>, 1004 (1973).
- 364. H. B. Gilbody, J. B. Hasted, A. R. Lee, J. V. Ireland, E. W. Thomas, and A. S. Whiteman, Vol. 1, p. 91 in <u>VI International Conference on</u> <u>Ionization Phynomena in Gases</u>, Paris, July 8-13, 1963.
- 365. A. K. Edwards, R. M. Wcod, and R. L. Ezell, Phys. Rev. A <u>31</u>, 99 (1985).
- 366. H. V. Fedorenko, V. V. Afrosimov, R. N. Il'in, and E. S. Solov'ev, Vol. 1, p. 47 in <u>IV International Conference on Jonization Phenomena in</u> <u>Gases</u>, Uppsala, 1959.
- 367. S. Wexler, J. Chem. Phys. <u>41</u>, 1714 (1964); <u>44</u>, 2221 (1966).
- 368. J. W. Hooper, D. S. Harmer, D. W. Martin, and E. W. McDaniel, Phys. Rev. <u>125</u>, 2000 (1962).
- **J69. M. E. Rudd, C. A. Sautter, and C. L. Bailey, Phys. Rev. <u>151</u> 20 (1966).**
- 370. M. Becker and A. Scharmann, Z. Naturforsch. A <u>24</u>, 854 (1969).
- 371. J. T. Park and F. D. Schowengerdt, Phys. Rev. 185, 152 (1969).
- 372. L. J. Puckett and D. W. Martin, Phys. Rev. A 1, 1432 (1970).
- 373. N. Stolterfoht, Z. Phys. 248, 81 (1971).
- 374. Z. Z. Latypov and A. A. Shaporenko, Sov. Phys-JETP Lett. 18, 258 (1973).
- 375. P. Hvelplund, H. K. Haugen, and H. Knudsen, Phys. Rev. A 22. 1930 (1980).
- 376. R. D. DuBois and S. T. Manson, Phys. Rev. A 35, 2007 (1987).
- 377. D. K. Gibson and I. D. Reid, J. Phys. B 19, 3265 (1986).
- 378. R. J. McNeal and J. H. Birely, Rev. Geophys. Space Phys. <u>11</u>, 633 (1973).
- 379. M. E. Rudd and D. H. Madison, Phys. Rev. A <u>14</u>, 128 (1976).
- 380. J. H. Miller, L. H. Toburen, and S. T. Manson, Phys. Rev. A <u>27</u>, 1337 (1983).
- 381. H. K. Haugen, L. H. Andersen, P. Hvelplund, and H. Knudsen, Phys. Rev. A <u>26</u>, 1962 (1982).
- 382. L. H. Andersen, IEEE Trans. Nucl. Sci. <u>NS-30</u>, 973 (1983).
- 383. M. B. Shah and H. B. Gilbody, J. Phys. B <u>18</u>, 899 (1985).

- 384. H. Knudsen, L. H. Andersen, P. Hvelplund, G. Astner, H. Cederquist, H. Danared, L. Liljeby, and K.-G. Rensfelt, J. Phys. B <u>17</u>, 3545 (1984).
- 385. D. W. Martin, L. J. Puckett, and G. O. Taylor, p. 207 in <u>V International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u>, Leningrad, USSR, July 17-23, 1967, Publishing House Wauka, Leningrad, 1967.
- 386. L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Moller, K. Elsener, K.-G. Rensfelt, and E. Uggerhoj, Phys. Rev. Lett. <u>57</u>, 2147 (1986).
- 387. L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Moller, A. H. Sorensen, K. Elsener, K.-G. Rensfelt, and E. Uggerhoj, Phys. Rev. A <u>36</u>, 3612 (198²).
- 388. R. D. DuBois, L. H. Toburen, and M. E. Rudd, Phys. Rev. A 29, 70 (1984).
- 389. W. Schon, S. Krudener, F. Melchert, K. Rinn, M. Wagner, and E. Salzborn, J. Phys. B <u>20</u>, L759 (1987).
- 390. S. W. Bagy, W. J. Savola, Jr. and E. Pollack, Phys. Rev. <u>177</u>, 71 (1969).
- 391. A. S. Dickinson and D.J.W. Hardie, J. Phys. B 12, 4147 (1979).
- 392. A. Jognaux, F. Brouillard, and S. Szucs, J. Phys. B 11, L669 (1978).
- 393. B. Peart and K. Dolder, J. Phys. B <u>12</u>, 4155 (1979).
- 394. R. E. Clson, J. R. Peterson, and J. T. Mosely, J. Chem. Phys. <u>53</u>, 3391 (1970).
- 395. M. W. Gealy and B. Van Zyl, Phys. Rev. A <u>36</u>, 3091 (1987).
- 396. M. W. Gealy and B. Van Zyl, Phys. Rev. A 36, 3100 (1987).
- 397. W. H. Cramer and J. H. Simons, J. Chem. Phys. 26, 1272 (1957).
- 398. E. H. Pedersen and L. Larsen, J. Phys. B 12, 4085 (1979).
- 399. E. H. Pedersen and P. Rvelplund, J. Phys. B 7, 132 (1974).
- 4CO. P. Hvelplund and E. H. Pedersen, Phys. Rev. A 9, 2434 (1974).
- 401. S. K. Allison, Phys. Rev. <u>110</u>, 670 (1958).
- 402. F. Bastien, E. Depuydt, and A. Sinturei, C. R. Acad. Sci. Paris B <u>269</u> 459 (1969).
- 403. D. W. Martin, L. J. Puckett, and G. O. Taylor, p. 280 i. <u>IV International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u>, Quebec, Canada, August 2-6, 1965, Science Bookcrafter, Inc., New York, 1965.
- 404. E. H. Pedersen and P. Hvelplund, p. 522 in <u>VII International Conference</u> on the Physics of Electronic and Atomic Collisions, Amsterdam, July 26-30, 1971, North-Holland Publishing Co., Amstordam, 1971.
- 405. A. Itoh, K. Ohnishi, and F. Fukuzawa, J. Phys. Soc. Jpn. 49, 1513 (1980).
- 406. K. Tobita and H. Takeuchi, J. Phys. Soc. Jpn. <u>55</u>, 4231 (1986).
- 407. Ya. M. Fogel, V. A. Ankudinov, D. V. Pilipenko, Sov. Phys.-JETP <u>11</u>, 18 (1960).
- 408. H. B. Gilbody, K. F. Dunn, R. Browning, and C. J. Latimer, J. Phys. B <u>3</u>, 1105 (1970).
- 409. K. Okuno, p. 26 in Magoya University Report <u>IPPJ-AM-9</u>, December, (1978).

- 410. E. H. Pedersen, J. Heinemeier, L. Larsen, and J. V. Mikkelsen, J. Phys. B <u>13</u>, 1167 (1980).
- 411. R. E. Miers and L. W. Anderson, Phys. Rev. A 1, 819 (1970).
- 412. E. E. Benton, E. E. Ferguson, F. A. Matsen, and W. W. Robertson, Phys. Rev. <u>128</u>, 206 (1962).
- 413. E. H. Pedersen, Phys. Rev. A 15, 53 (1977).
- 414. E. H. Pedersen, Phys. Rev. A 10, 110 (1974).
- 415. R. W. McCullough, T. V. Goffe, and H. B. Gilbody, J. Phys. B <u>11</u>, 2333 (1978).
- 416. E. H. Pedersen, Phys. Rev. Lett. 42, 440 (1979).
- 417. X. Urbain, A. Giusti-Suzor, D. Fussen, and C. Kubach, J. Phys. B <u>19</u>, L273 (1986).
- 418. G. Poulaert, F. Brouillard, W. Claeys, J. W. McGowan, and G. Van Wassenhove, J. Phys. B <u>11</u>, L671 (1978).
- 419. G. Poulaert, F. Brouillard, W. Claeys, P. DeFrance, and J. W. McGowan, p. 876 in <u>XI International Conference on the Physics of Electronic and Atomic Collisions</u>, Kyoto, August 29-September 4, 1979.
- 420. M. J. Shaw, R. C. Bolden, R. S. Hemsworth, and N. D. Twiddy, Chem. Phys. Lett. <u>8</u>, 148 (1971).
- 421. J. S. Howard, J. P. Riola, R. D. Rundel, and R. F. Stebbings, J. Phys. B <u>6</u>, L109 (1973).
- 422. J. Fort, J. J. Laucagne, A. Pesnelle, and G. Watel, Phys. Rev. A <u>14</u>, 658 (1976).
- 423. J. Fort, J. J. Laucagne, A. Pesneile, and G. Watel, Chem. Phys. Lett. <u>37</u>, 60 (1976).
- 424. J. Fort, J. J. Laucagne, A. Pesnelle, and G. Watel, p. 302 in X <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u>, Paris, July 21-27, 1977, Worth-Holland Publishing Co., Amsterdam, 1977.
- 425. G. D. Magnuson and R. H. Neynaber, J. Chem Phys. 60, 3385 (1974).
- 426. C. Manus, A. Pesnelle, and G. Watel, p. 525 in <u>X International Conference</u> on the <u>Physics of Electronic and Atomic Collisions</u>, Paris, July 21-27, 1977, North-Holland Publishing Co., Amsterdam, 1977.
- 427. H. Morgner and A. Niehaus, J. Phys. B <u>12</u>, 1805 (1979).
- 428. R. H. Neynaber, p. 287 in <u>XI International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Kyoto, August 29-September 4, 1979.
- 429. R. H. Neynaber and G. D. Magnuson, J. Chem. Phys. <u>62</u>, 4953 (19¹5).
- 430. R. H. Neynaber and S. Y. Tang, J. Chem. Phys. <u>69</u>, 4851 (1978).
- 431. J. Fort, J. J. Laucagne, A. Pesnelle, and G. Watel, Phys. Rev. A <u>10</u>, 2063 (1978).
- 432. A. P. Hickman and H. Morgner, J. Chem. Phys. <u>67</u>, 5484 (1977).
- 433. C. Manus, Physica <u>82C</u>, 165 (1976).
- 434. R. C. Bolden, R. S. Hemsworth, M. J. Shaw, and N. D. Twiddy, J. Phys. B <u>3</u>, 61 (1970).

436.	F. B. Dunning and A.C.H. Smith, J. Phys. B $\underline{3}$, L60 (1970).
437.	J. Fort, T. Bolzinger, D. Corno, T. Ebding, and A. Pesnelle, Phys. Rev. A <u>18</u> , 2075 (1978).
438.	J. Fort, T. Bolzinger, D. Corno, and T. Ebding, p. 314 in <u>X International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u> , Paris, July 21-27, 1977, North-Holland Publishing Co., Amsterdam, 1977.
439.	H. Botop and A. Niehaus, Z. Phys. <u>215</u> , 395 (1968).
440.	P. A. Jerram and A.C.H. Smith, J. Phys. B <u>18</u> , 1747 (1985).
441.	C. R. Jones and W. W. Robertson, J. Chem. Phys. <u>49</u> , 4241 (1968).
442.	D. W. Martin and P. E. Siska, J. Chem. Phys. <u>82</u> , 2630 (1985).
443.	A. Munzer and A. Wiehaus, J. Electron Spectrosc. Relat. Phenom. 23, 367 (1981).
444.	R. H. Weynaber and G. D. Magnuson, J. Chem. Phys. <u>61</u> , 749 (1974).
445.	J. R. Penton and E. E. Jschlitz, Jr., J. Chem. Phys. <u>49</u> , 5083 (1968).
446.	A. Pesnelle and S. Runge, p. 559 in <u>XIII International Conference on the</u> <u>Physics of Electronic and Atomic Collisions</u> , Berlin, July 27-August 2, 1983.
447.	P. Pradel and J. J. Laucagne, J. Phys. (Paris) <u>44</u> . 1263 (1983).
448.	J. P. Riola, J. S. Howard, R. D. Rundel, and R. F. Stebbings, J. Phys. B 7, 376 (1974).
449.	T. Sinda and A. Pesnelle, p. 1107 in <u>VII International Conference on the Physics of Electronic and Atomic Collisions</u> , Amsterdam, July 26-30, 1971, Worth-Holland Publishing Co., Amsterdam, 1971.
450.	L. T. Specht, K. D. Foster, and E. E. Muschlitz, Jr., Cnem. Phys. <u>63</u> , 1582 (1975).
451.	G. E. Veatch and H. J. Oskam, Phys. Rev. A <u>8</u> , 389 (1973).
452.	W. P. West, T. B. Cook, F. B. Dunning, R. D. Rundel, and R. F. Stebbings, J. Chem. Phys. <u>63</u> , 1237 (1975).
453.	A. L. Schmeltekopf and F. C. Fehsenfeld, J. Chem. Phys. <u>53</u> , 3173 (1970).
454.	W. Lindinger, A. L. Schmeltekopf, and F. C. Pehsenfeld, J. Chem. Phys. <u>61</u> , 2890 (1974).
455.	W. P. Sholette and E. E. Muschlitz, Jr., J. Chem. Phys. <u>36</u> , 3568 (1962).
456.	R. H. Neynaber, G. D. Magnuson, and J. K. Layton, J. Chem. Phys. <u>57</u> , 5128 (1972).
457.	F. Melchert, K. Rink, K. Rinn, and E. Salzburn, J. Phys. B <u>20</u> , L797 (1987).

- 458. H. B. Gilbody, p. 223 in <u>XII International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Gatlinburg, TN, July 15-21, 1981. (Invited Paper)
- 459. R. Browning, C. J. Latimer, and H. B. Gilbody, J. Phys. B <u>3</u>, 667 (1970).
- 460. N. G. Utterback, Phys. Rev. Lett. <u>12</u>, 295 (1964).

435. J. S. Cohen and R. K. Preston, p. 310 in <u>X International Conference on</u> <u>the Physics of Electronic and Atomic Collisions</u>, Paris, July 21-27, 1977, North-Holland Publishing Co., Amsterdam, 1977.

- 461. V. A. Gusev, G. N. Polyakova, V. F. Erko, Ya. M. Fogel, and A. V. Zats, p. 809 in <u>VI International Conference on the Physics of Electronic and Atomic Collisions</u>, MIT, July 28-August 2, 1969, The MIT Press, Cambridge, Massachusetts, 1969.
- 462. E. S. Solov'ev, R. N. Il'in, V. A. Oparin, and N. V. Fedorenko, p. 692 in <u>III International Conference on the Physics of Electronic and Atomic Collisions</u>, London, July 22-26, 1963, North-Holland Publishing Co., Amsterdam, 1964.
- 463. E. S. Solov'ev, R. N. Il'in, V. A. Oparin, and N. V. Fedorenko, Sov. Phys.-JETP <u>18</u>, 342 (1964).
- 464. G. N. Polyakova, V. A. Gusev, V. F. Erko, Ya. M. Fogel, and A. V. Zats, Sov. Phys.-JETP <u>31</u>, 637 (1970).
- 465. S. Krasner, Phys. Rev. 99, 520 (1955).
- 466. A. B. Wittkower, G. Levy, and H. B. Gilbody, Proc. Phys. Soc. <u>91</u>, 862 (1967).
- 467. H. Tawara, J. Phys. Soc. Jpn. 31, 236 (1971).
- 468. W. L. Williams and F. M. Goldberg, p. 1087 in <u>VII International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u>, Amsterdam, July 26-30, 1971, North-Holland Publishing Co., Amsterdam, 1971.
- 469. A. B. Wittkower, G. Levy, and H. B. Gilbody, p. 202 in <u>V International</u> <u>Conference or the Physics of Electronic and Atomic Collisions</u>, Leningrad, USSR, July 17-23, 1967, Publishing House Nauka, Leningrad, 1967.
- 470. Y. Kanamori, Y. Haruyama, T. Kido, and F. Fukuzawa, Phys. Lett. A <u>101</u>, 391 (1984).
- 471. I. S. Dmitriev, N. F. Vorob'ev, Zh. M. Konovalova. V. S. Nikolaev, V. N. Novozhilova, Ya. A. Teplova, and Yu. A. Fainberg, Sov. Phys.-JETP <u>57</u>, 1157 (1983).
- 472. V. S. Mikolaev, V. S. Senashenko, V. A. Sidorovich, and V. Yu. Shafer, Sov. Phys.-Tech. Phys. <u>23</u>, 789 (1978).
- 473. N. G. Utterback, p. 661 in <u>III International Conference on the Physics</u> of <u>Electronic and Atomic Collisions</u>, London, July 22-26, 1963, North-Holland Publishing Co., Amsterdam, 1964.
- 474. H. C. Hayden and N. G. Utterback, Phys. Rev. <u>135</u>, A1575 (1964).
- 475. H. Fetz and H. Bussmann, p. 222 in <u>V International Conference on the Physics of Electronic and Atomic Collisions</u>, Leningrad, USSR, July 17-23, 1967, Publishing House Nauka, Leningrad, 1967.
- 476. M. B. Shah, T. V. Goffe, and H. B. Gilbody, J. Phys. B <u>10</u>, L723 (1977).
- 477. M. B. Shah and H. B. Gilbody, J. Phys. B 8, 372 (1975).

T

ī.

- 478. D. W. Martin, R. A. Langley, D. S. Harmer, J. W. Hooper, and E. W. McDaniel, Phys. Rev. <u>136</u>, A385 (1964).
- 479. R. A. Langley, D. W. Martin, D. S. Harmer, J. W. Hooper, and E. W. McDaniel, Phys. Rev. <u>136</u>, A379 (1964).
- 480. L. I. Pivovar, Yu. Z. Levchenko, and A. N. Grigor'ev, Sov. Phys.-JETP <u>27</u>, 699 (1968).
- 481. R. Browning, C. J. Latimer, and H. B. Gilbody, J. Phys. B 2, 534 (1969).
- 482. A. K. Edwards, R. M. Wood, and R. L. Ezell, Phys. Rev. A 31, 3972 (1985).
- 483. P. R. Jones, E. P. Ziemba, H. A. Moses, and E. Everhart, Phys. Rev. <u>113</u>, 182 (1959).

- 484. N. V. Fedorenko, V. V. afrosimov, and D. M. Kaminker, Sov. Phys-Tech. Phys. <u>1</u>, 1861 (1956).
- 485. N. V. Fedorenko and V. V. Afrosimov, Sov. Phys.-Tech. Phys. <u>1</u>, 1872 (1955).
- 486. A. R. Lee and H. B. Gilbody, p. 123 in <u>VI International</u> <u>Conference</u> on <u>Ionization Phenomena in Gases</u>, Paris, July 8-13, 1963.
- 487. H. Fetz, M. Saar, and H. Scheidt, p. 1143 in <u>VII International Conference</u> on the Physics of Electronic and Atomic Collisions, Amsterdam, July 26-30, 1971, Worth-Holland Publishing Co., Amsterdam, 1971.
- 488. H. Knudsen, L. H. Andersen, H. K. Haugen, and P. Hvelplund, Phys. Scr. <u>26</u>, 132 (1532).
- 489. I. S. Dmitriev, V. S. Mikolaev, L. M. Fateeva, and Ya. A. Teplova, Sov. Phys.-JETP <u>15</u>, 11 (1962).
- 490. A. R. Lee and H. B. Gilbody, p. 672 in <u>III International Conference on</u> <u>the Physics of Electronic and Atomic Collisions</u>, London, July 22-26, 1963, North-Holland Publishing Co., Amsterdam, 1964.
- 491. K. F. Man, W. Steckelmacher, and M. W. Lucas, J. Phys. B <u>19</u>, 4171 (1986).
- 492. E. V. de Castro Faria, F. L. Freire, Jr., and A. G. de Pinho, Phys. Rev. A <u>37</u>, 280 (1988).
- 493. E. Snitzer, Phys. Rev. <u>89</u>, 1237 (1953).
- 494. R. M. Wood, A. K. Edwards, and R. L. Ezell, Phys. Rev. A <u>34</u>, 4415 (1986).
- 495. S. H. Be, T. Tonuma, H. Kumagai, H. Shibata, M. Kase, T. Kambara, I. Kohno, and H. Tawara, J. Phys. B <u>19</u>, 1771 (1986).
- 496. A. K. Edwards, R. M. Wood, and R. L. Ezell, Phys. Rev. A <u>32</u>, 1346 (1985).
- 497. D. W. Martin, R. A. Langley, J. W. Hooper, D. S. Harmer, and E. W. McDaniel, p. 679 in <u>III International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, London, July 22-26, 1963, North-Holland Publishing CO., Amsterdam, 1964.
- 498. B. I. Kikiani, G. M. Mirianashvili, Z. E. Saliya, and I. G. Bagdasarova, Sov. Phys.-Tech. Phys. <u>21</u>, 634 (1976).
- 499. W. V. Fedorenko, Sov. Phys.-Usp. 2, 526 (1959).
- 500. R. H. Hughes, H. M. Petefish, and H. Kisner, Phys. Rev. A 5, 2103 (1972).
- 501. R. H. Neynaber and S. Y. Targ, Chem. Phys. <u>69</u>, 213 (1982).
- 502. R. H. Neynaber and S. Y. Tang, p. 613 in <u>XII International Conference on</u> the Physics of Electronic and Atomic Collisions, Gatlinburg, TN, July 15-21, 1981.
- 503. D. Rapp and W. E. Prancis, J. Chem. Phys. <u>37</u>, 2631 (1962).
- 504. P. Gangopadhyay and J. N. Bardsley, Chem. Phys. Lett. <u>96</u>, 379 (1983).
- 505. D. P. Hodgkinson and J. S. Briggs, J. Phys. B <u>9</u>, 255 (1976).
- 506. R. K. Janev and L. P. Presnyakov, J. Phys. B 13, 4233 (1980).
- 507. D.S.F. Crothers and J. F. McCann, J. Phys. B 16, 3229 (1983).
- 508. R. E. Olson and A. Salop, Phys. Rev. A 16, 531 (1977).

- 509. D.J.W. Hardie and R. E. Olson, J. Phys. B <u>16</u>, 1983 (1983).
- 510. M. B. Shah and H. B. Gilbody, J. Phys. B <u>14</u>, 2361 (1981).
- 511. J. E. Golden and J. H. McGuire, J. Phys. 9 9, L11 (1976).
- 512. C. R. Garibotti and J. E. Miraglia, Phys. Rev. A 25, 1440 (1982).
- 513. A. C. Whittier, Can J. Phys. <u>32</u>, 275 (1954).
- 514. E. E. Muschlitz, Jr., T. L. Bailey, and J. H. Simons, J. Chem. Phys. <u>24</u>, 1202 (1956).
- 515. J. B. Hasted and R. A. Smith, Proc. Roy. Soc. London Sect. A 235, 349 (1956).
- 516. E. E. Muschlitz, Jr., T. L. Bailey, and J. H. Simons, J. Chem. Phys. <u>26</u>, 711 (1957).
- 517. P. H. Rose, R. J. Connor, and R. P. Bastide, Bull. Am. Phys. Soc. II 3, 40 (1958).
- 518. J. F. Williams, Phys. Rev. 154, 9 (1957).
- 5)9. F. R. Simpson and H. B. Gilbody, J. Phys. B 5, 1959 (1972).
- 520. J. S. Risley and R. Geballe, Phys. Rev. A 9, 2485 (1974).
- 521. J. Heinemeier, P. Hvelplund, and P. R. Simpson, J. Phys. B <u>9</u>, 2669 (1976).
- 522. J. S. Risley, p. 619 in <u>XI International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Kyoto, August 29-September 4, 1979, North-Holland Publishing Co., Amsterdam, 1980. (Invite: Paper)
- 523. W. J. Lichtenberg, K. Bethge, and H. Schmidt-Bocking, J. Phys. B <u>13</u>, 343 (1980).
- 524. J. Geddes, J. Hill, M. B. Shah, T. V. Goffe, and H. B. Gilbody, J. Phys. B <u>13</u>, 319 (1980).
- 525. H. B. Gilbody, Proc. US-Mexico Joint Seminar on the Atomic Physics of Negative Ions, April 1-4, 1981 (Mexico), Notas de Fisica 5, 146 (1982).
- 526. Y. Nakai, T. Shirai, T. Tabata, and R. Ito, At. Data Bucl. Data Tables 37, 69 (1987).
- 527. L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys.-JETP <u>13</u>, 23 (1961).
- 528. J. Guidini, C. R. Acad. Sci. Pari. 253, 829 (1961).
- 529. N. N. Tunitskii, E. S. Zhurkin, and M. V. Tikhomirov, Sov. Phys.-JETP Lett. <u>12</u>, 210 (1970).
- 530. M. Vogler and B. Meierjohann, p. 711 in <u>IX International Conference on</u> the Physics of Electronic and Atomic Collisions, Seattle, July 24-30, 1975, University of Washington Press, Seattle, WA, 1975.
- 531. R. N. Il'in, B. I. Kikiani, V. A. Oparin, E. S. Solov'ev, and N. V. Fedorenko, Sov. Phys.-JETP <u>19</u>, 817 (1964).
- 532. A. Itoh, M. E. Rudd, and T. V. Goffe, p.406 in <u>XIV International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u>, Pale Alto, July 24-30, 1985.
- 533. W. G. Graham, C. J. Latimer, R. Browning, and H. B. Gilbody, J. Phys. B <u>7</u>, 1405 (1974).
534. P. S. Rudolph and C. E. Melton, J. Chem. Phys. <u>45</u>, 2227 (1966).

- 535 K. H. Berkner, T. J. Morgan, R. V. Pyle, and J. W. Stearns, Phys. Rev. A 8, 2870 (1973).
- 536. I. D. Williams, J. Geddes, and H. B. Gilbody, J. Phys. B 17, 311 (1984).
- 537. J. H. McGuire, E. Salzborn, and A. Muller, Phys. Rev. A 35, 3265 (1987).
- 538. R. D. DuBois, Phys. Rev. A 36, 2585 (1987).
- 539. H. Shibata, S. H. Be, T. Tonuma, H. Kumagai, M. Kase, T. Kombara, I. Kohno, and H. Tawara, p. 407 in <u>XIV International Conference on the</u> <u>Physics of Electronic and Atomic Collisions</u>, Palo Alto, July 24-30, 1985.
- 540. Z. L. Latypov, I. P. Flaks, and A. A. Shaporenko, Sov. Phys.-JETP <u>30</u>, 1076 (1970).
- 541. M. S. Hug, L. D. Doverspike, and R. L. Champion, p. 401 in <u>XIII</u> <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u>, Berlin, July 27-August 2, 1983.
- 542. M. S. Hug, L. D. Doverspike and R. L. Champion, Phys. Rev. A <u>27</u>, 2831 (1983).
- 543. T. L. Balley, C. J. May, and E. E. Muschlitz, Jr., J. Chem. Phys. <u>26</u>, 1446 (1957).
- 544. J. S. Risley, Phys. Rev. A 10, 731 (1974).
- 545. R. L. Champion, L. D. Doverspike, and S. K. Lam, Phys. Rev. A <u>13</u>, 617 (1976).
- 546. J. P. Gauyacq and V. A. Esaulov, p. 655 in <u>XI International Conference</u> on the Ph<u>ysics of Electronic and Atomic Collisions</u>, Kyoto, August 29-September 4, 1979, North-Holland publishing Co., Amsterdam, 1980. (Invited papers)
- 547. C. J. Anderson, R. J. Girnius, A. M. Howald, and L. W. Anderson, Phys. Rev. A <u>22</u>, 822 (1980).
- 548. M. S. Hug, L. D. Doverspike, R. L. Champion, and V. A. Esaulov, J. Phys. B <u>15</u>, 951 (1982).
- 549. J. S. Risley and R. E. Olson, US-Mexico Joint Seminar on the Atomic Physics of Negative Ions, April 1-4, 1981 (Mexico). Notas de Fisica 5, 108 (1982).
- 550. L. D. Doverspike and R. L. Champion, US-Mexico Joint Seminar on the Atomic Physics of Negative Ions, April 1-4, 1981 (Mexico). Notas de Fisica 5, 1 (1982).
- 551. N. Andersen, T. Ansersen, L. Jepsen, and J. Macek, J. Phys. B <u>17</u>, 2281 (1984).
- 552. D. P. Almeida, N. V. de Castro Faria, F. L. Freire, Jr., F. C. Montenegro, and A. G. de Pinho, Phys. Rev. A <u>36</u>, 16 (1987).
- 553. J. B. Hasted. Proc. Roy. soc. London A <u>212</u>, 235 (1952).
- 554. J. Geddes, J. Hill, M. B. Shah, T. V. Goffe, and H. B. Gilbody, p. 610 in <u>XI International Conference on the Physics of Electronic and Atomic Collisions</u>, Kyoto, August 29-September 4, 1979.
- 555. V. A. Esaulov, p. 608 in <u>X1 International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Kyoto, August 29-September 4, 1979.

R-21

- 556. Ya. : A. Fogel, V. A. Ankudinov, and P. E. Slabospitskii, Sov. Phys.-JETP 5, 382 (1957).
- 557. C. F. Barnett and J. A. Ray, <u>Atomic Collisions Processes</u>, p. 743, ed. M.R.C. McDowell, North Polland Publ. Co., Amsterdam, 1964.
- 558. K. H. Berkner, S. N. Kaplan, R. V. Pyle, and J. W. Stearns, Phys. Rev. <u>146</u>, 91 (1966).
- 559. S. E. Kupriyanov, N. N. Tunitskii, and A. A. Prov, Sov. Phys.-Tech. Phys. <u>B</u>, 932 (1964).
- 560. E. S. Zhurkin, M. V. Tikhomirov and N. N. Tunitskii, Sov. Phys.-Tech. Phys. <u>16</u>, 495 (1971).
- 561. J. S. Risley and F. D. Tennyson, p. 614 in <u>XI International Conference</u> on the Physics of Electronic and Atomic Collisions, Kyoto, August 29-September 4, 1979, 1979.
- 562. Y. Suzuki, T. Kaneko, M. Tomita, and M. Sakisaka, J. Phys. Soc. Jpn. <u>55</u>, 3037 (1986).
- 563. G. Tisone and L. M. Branscomb, Bull. Am. Phys. Soc. 9, 535 (1964).
- 564. G. H. Gillespie, Phys. Lett. 70A, 329 (1979).
- 565. T.J.M. Boyd, B. L. Moiseiwitsch, and A. L. Stewart, Proc. Phys. Soc. London <u>A70</u>, 110 (1957).
- 566. S. L. Willis, G. Peach, M.R.C. McDowell, and J. Banerji, J. Phys. B <u>18</u>, 3939 (1985).
- 567. Ya. M. Fogel, Sov. Phys.-JETP 5, 499 (1957).
- 568. V. A. Esaulov, p. 175 in <u>XIV International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Palo Alto, July 24-30, 1986.
- 569. B. Peart, R. Grey, and K. T. Dolder, J. Phys. B 9, 3047 (1976).
- 570. E. P. Kanter, P. J. Cooney, D. S. Gemmell, K. O. Groeneveld, W. J. Pietsch, A. J. Ratkowski, Z. Vager, and B. J. Zabransky, Phys. Rev. A 20, 834 (1979).
- 571. M. Vogler and B. Meierjohann, Z. Phys. A 283, 11 (1977).
- 572. D. Fussen and W. Claeys, J. Phys. B 17, L89 (1984).
- 573. A. M. Ermolaev, J. Phys. B 21, 81 (1988).
- 574. G. Lange, B. Huber, and K. Wiesemann, Z. Phys. A <u>281</u>, 21 (1977).
- 575. P. M. Windham, P. J. Joseph, and J. A. Weinman, Phys. Rev. <u>109</u>, 1193 (1958).
- 576. D. R. Sweetman, Proc. Roy. Soc. London 76, 998 (1960).
- 577. G. Ryding, A. B. Wittkower, and P. H. Rose, Phys. Rev. <u>174</u>, 149 (1968).
- 578. D. J. Nicholas, C. W. Trowbridge, and W. D. Allen, Phys. Rev. <u>167</u>, 38 (1968).
- 579. R. D. BuBois and S. T. Manson, Phys. Rev. Lett. <u>57</u>, 1130 (1986).
- 580. E. H. Pedersen and P. Hvelplund, J. Phys. B 6, 2600 (1975).
- 581. J. Heinemeier, P. Hvelplund, and F. R. Simpson, J. Phys. B <u>8</u>, 1880 (1975).

1 1

582.	M. J. Coggiola, US-Mexico Joint Seminar on the Atomic Physics of Megative Ions, April 1-4, 1981 (Mexico). Notas de Fisica <u>5</u> , 78 (1982).
583.	F. Rahman and B. Hird, Atomic Data Nucl Jata Tables <u>35</u> , 123 (1986).
584 .	D. P. Almeida, W. V. de Castro Faria, F. L. Freire, Jr., E. C. Montenegro, and A. G. de Pinho, Mucl. Instrum. Methods Phys. Res. B <u>24-25</u> , 228 (1987).
585.	B. A. Huber, U. Schulz, and K. Wiesemann, Phys. Lett. <u>79A</u> , 58 (1980).
586.	J. T. Park, <u>Advances in Atomic and Molecular Physics</u> Vol. 19, p. 67, ed. D. R. Bates and B. Bederson, Academic Press, New York, 1983.
587.	Yu. F. Bydin, Sov. PhysJETP <u>23</u> , 23 (1966).
588.	R. W. HcCullough, M. B. Shah, M. Lennon, and H. B. Gilbody, J. Phys. B 15, 791 (1982).
589.	C. W. Eaker and J. L. Muzyka, Chem. Phys. Lett. <u>119</u> , 169 (1985).
590.	T. F. Moran and J. R. Roberts, J. Chem. Phys. <u>49</u> , 34 <u>3</u> 1 (1968).
591.	E. S. Zhurkin, V. A. Kaminskii, M. 7. Tikhomirov, and N. N. Tunitskii, Z. Tech. Fiz. USSR <u>43</u> , 405 (1973).
592.	J. Hill, J. Ged.'es, and H. B. Gilbody, J. Phys. B <u>12</u> , 2875 (1979).
593.	T. J. Morgan, J. Geddes, and H. B. Gilbody, J. Phys. B 7, 142 (1974).
594.	M. r. Flannery, Phys. Rev. <u>183</u> , 241 (1969).
595.	B. M. McLaughlin and K. L. Bell, J. Phys. B <u>16</u> , 3797 (1983).
596.	R. Shingal, B. H. Bransden, and D. R. Flower, J. Phys. B <u>20</u> , 1477 (1987).
597.	I. Khurana, R. Srivastava, and A. W. Tripathi, Can. J. Phys. <u>64</u> , 826 (1986).
598.	B. M. McLaughlin and K. L. Bell, J. Phys. B <u>20</u> , L217 (1987).
599.	G. W. McClure, Phys. Rev. <u>153</u> , 182 (1967).
600.	R. H. Hughes and R. F. Kouri, J. Chem. Phys. <u>57</u> , 4503 (1972).
601.	B. Van Zyl, M. W. Gealy, and H. Neumann, Phys. Rev. A <u>28</u> , 176 (1983).
602.	W. B. Maier,III, J. Chem. Phys. <u>54</u> , 2732 (1971).
603,	M. G. Holliday, J. T. Muckerman, and L. Friedman, J. Chem. Phys. <u>54</u> , 1058 (1971).
604.	G. Ochs and E. Teloy, J. Chem. Phys. <u>61</u> , 4930 (1974).
605.	Ch. Schlier, U. Nowotny, and E. Teloy, Chem. Phys. <u>111</u> , 401 (1987).
606.	F. C. Fehsenfeld, D. L. Albritton, Y. A. Bush, P. G. Fournier, T. R. Govers, and J. Fournier, J. Chem. Phys. <u>61</u> , 2150 (1974).
607.	C. H. Douglass, D. J. McClure, and W. R. Gentry, J. Chem. Phys. <u>67</u> , 4931 (1977).
608.	C. H. Douglass, D. J. Mcclure, D. J. Trevor, and W. R. Gentry, p. 584 in <u>IX International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u> , Seattle, July 24-30, 1973, University of Washington Press, Seattle, WA, 1975.
609.	R. D. Smith, D. L. Smith, and J. H. Futrell, Int. J. Mass Spectrom. Ion Phys. <u>19</u> , 369 (1976).

J. W. Stearns, K. H. Berkner, R. V. Pyle, B. P. Briegleb, and M. L. 610. Warren, Phys. Rev. A 4, 1960 (1971). 611. T. Turner, O. Dutuit, and Y. T. Lee, J. Chem. Phys. <u>81</u>, 3475 (1984). 612. C. F. Giese and W. B. Maier, III, J. Chem. Phys. <u>39</u>, 739 (1963). 613. L. P. Theard and W. T. Hunterss, Jr., J. Chem. Phys. <u>60</u>, 2840 (1974). J. A. Rutherford and D. A. Vroom, J. Chem. Phys. <u>58</u>, 4076 (1973). 614. 615. H. von Koch and L. Friedman, J. Chem. Phys. 38, <u>1115</u> (1963). 616. W. A. Chupka and H. E. Lussell, J. Chem. Phys. <u>49</u>, 5426 (1968). W. A. Chupka, J. Berkowitz, and M. E. Russell, p. 71 in <u>VI International</u> <u>f Electronic and Atomic Collisions</u>, MIT, Ju 617. Conference on the Physics of Electronic and a 28-August 2, 1969, The MIT Press, Cambridge, MIT, July 1969. Massachusetts, R. H. Heynaber and G. D. Magnuson, J. Chem. Phys. 59, 825 (1973). 618. T. R. Govers and P. M. Guyon, Chem. Phys. <u>113</u>, 425 (1987). 619. 620. J. Krenos and R. Wolfgang, J. Chem. Phys. 52, 5961 (1970). W. R. Gentry, D. J. McClure, and C. H. Douglass, Rev. Sci. Instrum. <u>46</u>, 621. 367 (1975). 622. M. Saporoschenko, J. Chem. Phys. <u>42</u>, 2760 (1965). A. G. Harrison, A. Ivko, and T. W. Shannon, Can. J. Chem. 44, 1351 623. (1966). 624. L. T. Specht, K. D. Foster, and E. E. Muschlitz, Jr. J. Chem. Phys. 63, 1582 (1975). 625. R. P. Clow and J. H. Futrell, Int. J. Mass Spectrom. Ion Phys. 8, 119 (1972). M. T. Bowers, D. D. Elleman, and J. King, Jr., J. Chem. Phys. <u>50</u>, 4787 626. (1969). B. G. Reuben and L. Friedman, 627. J. Chem. Phys. <u>37</u>, 1636 (1962). 628. D. W. Vance and T. L. Bailey, J. Chem. Phys. 44, 486 (1966). 629. W. A. Chupka, M. E. Russell, and K. Refaey, J. Chem. Phys. 48, 1518 (1968). 630. T. Terao and R. A. Back, J. Phys. Chem. 73, 3884 (1969). 631. H. J. Drewitz, Int. J. Mass Spectrom. Ion Phys. 19, 313 (1976). 63?. R. H. Neynaber and S. M. Trujillo, Phys. Rev. <u>167</u>, 63 (1968). 633. I. Koyano and K. Tanaka, J. Chem. Phys. <u>72</u>, 4858 (1980). 634. S. L. Anderson, F. L. Houle, D. Gerlich, and Y. T. Lee, J. Chem. Phvs. <u>75, 2153 (1981).</u> 635. W. R. Gentry and G Ringer, J. Chem. Phys. <u>67</u>, 5396 (1977). T. F. Moran and J. R. Roberts, J. Chem. Phys. <u>49</u>, 3411 (1968). 636. 637. P. Warneck, J. Chem. Phys. <u>46</u>, 502 (1967). 638. A. B. Lees and P. K. Rol, J. Chem. Phys. <u>61</u>, 4444 (1974). J. H. Birely and R. J. McNeal, Phys. Rev. A 5, 257 (1972). 639.

U		0 42 0 •	Physics of Electronic and Atomic Collisions, Berlin, July 27-August 2, 1983.
		641.	J. Grosser and W. Kruger, Z. Phys. A <u>318</u> , 25 (1984).
		642.	R. H. Hughes and SS. Choe, Phys. Rev. A <u>5</u> , 1758 (1972).
		643.	R. K. Hughes and SS. Choe, Phys. Rev. A <u>5</u> , 656 (1972).
		644.	R. Krotkov and J. Stone, Phys. Rev. A <u>22</u> , 473 (1980).
		645.	A. L. Orbeli, E. P. Andreev, V. A. Ankudinov, and V. M. Dukelskii, Sov. PhysJETP <u>30</u> , 63 (1970).
		646.	I. Sauers and E. W. Thomas, Phys. Rev. A <u>10</u> , 822 (1974).
		647.	L. D. Doverspike and R. L. Champion, J. Chem. Phys. <u>46</u> , 4718 (1967).
	<u> </u>	648.	V. A. Ankudinov, E. P. Andreev, and A. L. Orbeli, p. 312 in <u>V</u> <u>International Conference on the Physics of Electronic and Atomic</u> <u>Collisions</u> , Leningrad, USSR, July 17-23, 1967, Publishing House Nauka, Leningrad, 1967.
(-)		649.	D. Hasselkamp, A. Scharmann, and K. H. Schartner, p. 284 in X International Conference on the Physics of Electronic and Atomic Collisions, Paris, July 21-27, 1977, North-Holland Publishing Co., Amsterdam, 1977.
1 		650.	C. Benoit and J. P. Gauyacq, J. Phys. B <u>9</u> , L391 (1976).
		651.	V. Dose, R. Gunz, and V. Meyer, Helv. Phys. Acta <u>41</u> , 269 (1968).
		652.	J. R. Krenos, K. K. Lehmann, J. C. Tully, P. M. Hierl, and G. P. Smith, Chem. Phys. <u>16</u> , 109 (1976).
		653.	M. B. Shah, D. S. Elliott, P. McCallion, and H. B. Gilbody, J. Phys. B <u>21</u> , 2455 (1988).
		654.	M. E. Rudd, J. Quant. Spectrosc. Radiat. Transfer <u>31</u> , 387 (1984).
		655.	J. L. Edwards and E. W. Thomas, Phys. Rev. <u>165</u> , 16 (1968).
		656.	K. A. Quickert and D. J. Le Roy, J. Chem. Phys. <u>53</u> , 1325 (1970).
		657.	F. C. Fehsenfeld, A. L. Schmeltekopf, P. D. Goldan, H. I. Schiff, and E. E. Ferguson, J. Chem. Phys. <u>44</u> , 4087 (1966).
	`~~·'	658.	P. H. Dawson and A. K. Tickner, J. Chem. Phys. <u>45</u> , 4330 (1966).
		659.	A. A. Westenberg and N. de Haas, J. Chem. Phys. <u>47</u> , 1393 (1967).
		660.	E. Graham, IV, D. R. James, W. C. Keever, I. R. Gatland, D. L. Albritton, and E. W. McDaniel, J. Chem. Phys. <u>59</u> , 4648 (1973).
		661.	K. R. Ryan and I. G. Graham, J. Chem. Phys. <u>59</u> , 4260 (1973).
		662.	F. C. Fehsenfeld, C. J. Howard, and E. E. Ferguson, J. Chem. Phys. <u>58</u> , 5841 (1973).
		663.	N. G. Adams, D. K. Bohme, and E. E. Ferguson, J. Chem. Phys. <u>52</u> , 5101 (1970).
		664.	D. W Trainor, D. O. Ham, and F. Kaufman, J. Chem. Phys. <u>58</u> , 4599 (1973).
		665.	T. J. Kvale, D. G. Seely, D. M. Blankenship, E. Redd, T. J. Gay, M. Kimura, E. Rille, J. L. Peacher, and J. T. Park, Phys. Rev. A <u>32</u> , 1369 (1985).

. •

- 666. D. L. Smith and J. H. Futrell, Chem. Phys. Lett. <u>40</u>, 229 (1976).
- 667. M. Kneba, U. Wellhausan, and J. Wolfrum, Ber. Bunsenges. Phys. Chem. 33, 940 (1979).
- 668. R. Johnsen and M. A. Biondi, J. Chem. Phys. <u>61</u>, 2112 (1974).
- 669. G. P. Glass and B. K. Chaturvedi, J. Chem. Phys. <u>77</u>, 3478 (1982).
- 670. O. J. Orient, Chem. Phys. Lett. 52, 264 (1977).
- 671. A. L. Schmeltekopf and H. P. Broida, J. Chem. Phys. <u>39</u>, 1261 (1963).
- 672. V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. <u>43</u>, 1969 (1965).
- 673. E. C. Beaty and P. L. Petterson, Phys. Rev. <u>137</u>, 3346 (1965).
- 674. E. B. Gordon, B. I. Ivanov, A. P. Perminov, V. E. Balalaev, A. N. Ponomarev, and V. V. Filatov, Chem. Phys. Lett. <u>58</u>, 425 (1978).
- 675. D. J. Le Roy, B. A. Ridley, and K. A. Quickert, Disscuss. Faraday Soc. <u>44</u>, 92 (1967).
- 676. A. V. Phelps, p. 690 in <u>XV International Conference on the Physics of</u> <u>Electronic and Atomic Collisions</u>, Brighton, UK, July 22-28, 1987.
- 677. W.G.F. Blair and H. B. Gilbody, J. Phys. B <u>6</u>, 483 (1973).
- 678. J. Van Eck, F. J. de Heer, and J. Kistemaker, Physica <u>30</u>, 1171 (1964).
- 679. J. M. Robinson and H. B. Gilbody, Proc. Phys. Soc. London <u>92</u>, 589 (1967).
- 68C. R. Hippler and K.-H. Schartner, J. Phys. B 7, 618 (1974).
- 681. J. T. Park, J. M. George, J. L. Peacher, and J. E. Aldag, Phys. Rev. A <u>18</u>, 48 (1978).
- 682. J. T. Park and F. D. Schowengerdt, Phys. Rev. <u>185</u>, 152 (1969).
- 683. D. Krause and E. A. Soltysik, Phys. Rev. <u>175</u>, 142 (1968).
- 684. E. W. Thomas, ed. p. 134 in <u>Excitation in Heavy Particl- Collisions</u>, Wiley-Interscience, New York, 1972.
- 685. D. Hasselkamp, R. Hippler, A. Scharmann, and K. H. Schartner, Z. Phys. <u>248</u>, 254 (1971).
- 686. J. van den Bos, G. J. Winter, and F. J. de Heer, Physica <u>40</u>, 357 (1968).
- 687. A. Scharmann and K.-H. Schartner, Z. Phys. <u>228</u>, 254 (1969).
- 688. E. W. Thomas and G. D. Bent, Phys. Rev. <u>164</u>, 143 (1967).
- 689. J. G. Dodd and R. H. Hughes, Phys. Rev. <u>135</u>, A618 (1964).
- 690. A. Denis, M. Dufay, and M. Gaillard, C. R. Acad. Sci. Paris Ser. B 264, 440 (1967).
- 691. J. Hill, J. Geddes, and H. B. Gilbody, J. Phys. B <u>13</u>, 951 (1980).
- 692. V. Dose and W. Hett, J. Phys. B 7, L454 (1974).
- 693. E. P. Andreev, V. A. Ankudinov, and S. V. Bobashev, Opt. Spectrosc. <u>16</u>, 103 (1964).
- 694. R. D. Nathan and R. C. Isler, Phys. Rev. Lett. <u>26</u>, 1091 (1971).

695.	D. Dowek, D. Ehuicq, V. Sidis, and M. Parat, Phys. Rev. A <u>26</u> , 746 (1992).
696.	F. J. de Hær and J. van den Bos, Physica <u>31</u> , 365 (1965).
697.	G. Rahmat, G. Vassilev, and J. Bauden, J. Phys. (Paris) <u>41</u> , 319 (1980).
698.	D. Hasselkamp, R. Hippler, A. Scharmann, and KH. Schartner, Z. Phys. 257, 43 (1972).
699.	V. Pol, W. Kauppila, and J. T. Park, Phys. Rev. P. <u>8</u> , 2990 (1973).
700.	R. A. Young, R. F. Stebbings, and J. W. McGowan, Phys. Rev. <u>171</u> , 85 (1968).
701.	J.D.A. McKee, J. R. Sheridan, J. Geddes, and H. B. Gilbody, J. Phys. B 10, 1679 (1977).
702.	V. A. Ankudinov, S. V. Bokashev, and E. P. Andreev, Sov. PhysJETP <u>25</u> , 236 (1967).
703.	W. G. F. Blair, R. W. McCullough, F. R. Simpson, and H. B. Gilbody, J. Phys. B <u>6</u> , 1265 (1973).
704.	D. Bordenave-Montesquieu, A. Boutonnet, C. Bergnes, and R. Dagnac, J. Phys. B <u>16</u> , 1937 (1983).
705.	R. Okasaka, Y. Konishi, Y. Sato, and K. Fukuda, J. Phys. B <u>20</u> , 3771 (1987).
706.	M. B. Shah and H. B. Gilbody, J. Phys. B 7, L122 (1974).
707.	S. H. Dworetsky, R. Novick, and N. Tolk, p. 294 in <u>VI International</u> <u>Conference on the Physics of Electronic and Atomic Collisions</u> , MIT, July <u>28-August 2, 1969</u> , The MIT Press, Cambridge, Massachusetts, 1969.
708.	S. H. Dworetsky, R. Novick, W. W. Smith, and N. Tolk, Phys. Rev. Lett. 18, 939 (1967).
709.	J. T. Park, J. E. Aldag, J. M. George, and J. L. Peacher, Phys. Rev. A 14, 608 (1976).
710.	J. T. Park, J. E. Aldag, and J. M. George, Phys. Rev. Lett. <u>34</u> , 1253 (1975).
711.	D. R. Bates and G. Griffing, Proc. Phys. Soc. London <u>66</u> , 64 (1953).
712.	R. A. Young, R. F. Stebbings, and J. W. McGowan, Phys. Rev. <u>171</u> , 85 (1968).
713.	D. R. Schoonover and J. T. Pak, Phys. Rev. A 3, 228 (1971).
714.	A. I. Dashchenko, I. P. Zapesochnyi, A. I. Imre, V. S. Bukstich, F. F. Danch, and V. A. Kel'man, Sov. PhysJETP <u>40</u> , 249 (1975).
715.	J. Fayeton, J. C. Houver, M. Barat, and F. Masnou-Seeuws, J. Phys. B <u>9</u> , 461 (1976).
716.	J. E. Alday, J. L. Peacher, P. J. Martin, V. Sutcliffe, J. George, E. Redd, J. T. Kvale, D. M. Blarkenship, and J. T. Park, Phys. Rev. A <u>23</u> , 1062 (1981).

717. D. R. Schoonover and J. T. Park, p. 839 in <u>VII International Conference</u> un the <u>Physics of Electronic and Atomic Collisions</u>, Amsterdam, July 26-30, 1971, North-Holland Publishing Co., Amsterdam, 1971.

718. M. Kimura, T. Egawa, and T. Iwai, p. 554 in <u>XI International Conference</u> on the Physics of Electronic and Atomic Collisions, Kyoto, August 29-September 4, 1979, 1979.

Т

Calculation of Cross Sections and Rate Coefficients from Chebyshev Fitting Parameters

.

<u>Calculation of Cross Sections and Rate Coefficients</u> <u>from Chebyshev Fitting Parameters</u>

For ease of numerical data retrieval, the method of leastsquares fitting to the recommended cross sections and rate coefficients using the Chebyshev orthogonal polynomials has been used throughout this compilation. In general, it produced high accuracy fits to the recommended data.

A measure of the accuracy of the Chebyshev fit representation to the recommended cross sections has been calculated and appears at the bottom of each cross section page as a relative rms error with a maximum deviation. In a handful of cases, the recommended crc. τ sections had associated Chebyshev fits with an error of greater than 100% rms error. These fits have not been included and only the recommended cross section data is presented.

The recommended cross-section and rate coefficient data have been fitted to the following analytical expression:

$$ln[\sigma(E)] = \frac{k}{\sqrt{2}} + \frac{k}{\Sigma} A_i T_i(X) ,$$

where k is the smallest number of coefficients that provides an accurate fit (usually k=6), and

$$X = [(\ell n E - \ell n E_{nin}) - (\ell n E_{max} - \ell n E)] / (\ell n E_{max} - \ell n E_{nin}),$$

and where $T_i(X)$ are the Chebyshev orthogonal polynomials. Fitting to the natural logarithms of the cross section and energy values increases the Chebyshev fit accuracy by reducing the ranges of values for the cross section and energy by several orders of magnitude.

The values of fitting parameters A_i , E_{min} , and E_{max} are given for each reaction after each cross-section or rate-coefficient table. In each case, the minimum number of parameters A_i are listed which are required to produce a satisfactory fit to the data. The cross section σ is given in units of cm², with collision energies E in units of eV/amu. The rate coefficient α is in units of cm³/s, with Maxwellian temperatures T in units of eV. (We follow the convention used frequently in plasma physics of expressing temperature in eV energy units, recognizing that kT is understood, where k is Boltzmann's constant.) The analytic representation of the cross section or rate coefficient should be used only in the region between E_{min} and E_{max} . The expressions for the Chebyshev polynomials are reproduced below for convenience. $T_{1}(X) = X$ $T_{2}(X) = 2 X^{2} - 1$ $T_{3}(X) = 4 X^{3} - 3 X$ $T_{4}(X) = 8 X^{4} - 8 X^{4} + 1$ $T_{5}(X) = 16 X^{5} - 20 X^{3} + 5 X$ $T_{6}(X) = 32 X^{6} - 48 X^{4} + 18 X^{2} - 1$ $T_{7}(X) = 64 X^{7} - 112 X^{5} + 56 X^{3} - 7 X$ $T_{8}(X) = 128 X^{8} - 256 X^{6} + 160 X^{4} - 32 X^{2} + 1$

Al) the rate-coefficient and cross-section data in this volume may be reproduced by using either of the model Chebyshev fitting programs listed at the end of this Appendix. For each reaction and pair of reactants there are given Chebyshev fitting parameters to be used as input to the CHEBFOR Fortran or CHEB Basic code.

In the plots of recommended data the Chebyshev or alternative fits have been added as dashed lines to give a visual inspection of the accuracy of the fit. Also, the pages containing cross section tables include rms deviations of the fit to the recommended data over the energy range from E_{min} to E_{max} .

The sample programs listed below utilize recursion relations to rapidly generate the Chebyshev polynomials and require input of the parameters E_{min} , E_{max} , and the Chebyshev coefficients A0, A1, A2, ... to enable calculation of a rate coefficient or cross section at a given energy. The programs direct the user to input these parameters at the proper time during program execution. To simplify data input, the tabulations of coefficients contain the minimum number of significant digits required to produce an accurate representation of the polynomial fit.

The ALADDIN database system may also be used to generate the cross-section data directly from the fitting coefficients. See Appendix 2 for details.

Sample FORTRAN Program

	Program CHESFOR
C	This Fortran program is derived from a program in 'Elementary Numerical Analysis: An
C	Algorithmic Approach', S. D. Conte and C. de Soor, NcGraw-Will, Inc., P.254, 1972.
	DIMENSION D(10)
	REAL*4 ANS, ANS2
1000	TYPE 14
14	FORMAT(' IS THIS A FIT TO RATE COEFFICIENTS? : ENTER "Y" FOR YES, "N" FOR NO')
	ACCEPT 199. ANS
199	FORMAT(A1)
1010	TYPE 15
15	FORMAT(' ENTER THE NUMBER OF COEFFICIENTS')
	ACCEPT 200. NTERMS
200	FORMAT(12)

Sample FORTRAN Program (Cont'd.)

```
IF(ANS .EQ. "N") GO TO 16
        TYPE 1
FORMAT(1 ***** ENTER Emin (eV) *******
1
        ACCEPT *, ENIN
        TYPE 9
        FORMAT(" **** ENTER EMAX (eV) ******)
ACCEPT *, ENAX
9
        GD TO 25
        FORMAT( * **** ENTER Emin (eV/amu) *****)
10
        TYPE 19
16
        ACCEPT *, EKIN
        TYPE 29
        FORMAT( ***** ENTER Emax (eV/am.:) *****)
29
        ACCEPT *, ENAX
ENINL=ALOG(ENIN)
ð
         ENAXL=ALOG(ENAX)
        TYPE 2, NTERMS
FORMAT(' ENTER ', 12, ' COEFFICIENTS ')
ACCEPT *, (D(J), J=1, NTERMS)
2
100
         IF (ANS .EQ. 'N')GD TO 24
        TYPE 3, ENIN, ENAX
FORMAT(' INPUT TEMPERATURE (av) BETWEEN ',1PE10.1,' AND ',1PE10.1,' FOR THE RATE
3
    & COEFFICIENT CALCULATION ')
        60 10 26
26
         TYPE 23, ENIN, ENAX
23
         FORMAT( INPUT ENERGY (ov/amu) DETWEEN ', 1PE10.1, ' AND ', 1PE10.1, ' FOR THE CROSS SECTION
    & CALCULATION ')
C
         TAKE ENERGY FOR CALCULATION AND USE THREE TERM RECURRENCE RELATION
26
         KellTERIE
         CHEB=O(K)
        ACCEPT +, X
1F(X .LT. 0.) GO TO 101
        X=ALOG(X)
         K=K-1
         XMORN=(X-ENINL-(ENAXL-X))/(ENAXL-ENINL)
         THOK=2.*XNORM
         PREV2=0.
10
         PREV-CHER
         IF(K .EQ. 1) GO TO 20
         CHEB=D(K)+TWOK*PREV-PREV2
         PREV2=PREV
         K=K-1
         GO TO 10
         CHEB=.5*D(1)+XNORM*PREV-PREV2
20
         IF(ANS .EQ. 'Y') TYPE 69, EXP(CHTB)
69
         FORMAT( * RATE COEFFICIENT (CNG/S) = 1, 1PE12.4)
         IF(ANS .EQ. 'N') TYPE 45, EXP(CHEP)
45
         FORMAT(' CROSS SECTION (CM2) = ', 1PE12.4)
         TYPE 48
48
         FORMAT(* DO YOU WANT ANOTHER CALCULATION FOR THIS FIT?, ENTER "Y" FOR YES; "N" FOR NO')
         ACCEPT 199, ANS2
         IF(ANS2 .EQ. 'Y') GO TO 100
         TYPE 49
         FORMAT( ' DO YOU WANT A DIFFERENT FIT CALCULATION?, ENTER "Y" FOR YES; "N" FOP NO')
49
         ACCEPT 199, ANS2
         IF(ANS2 .EQ. 'Y') GO TO 1000
101
         END
```

1

Sample BASIC Program

5 REIL CHEB. BAS 10 REN CHEB PROGRAM IS A BASIC PROGRAM DERIVED FROM A FORTRAM 20 REN PROGRAM IN "ELEMENTARY NUMERICAL AMALTSIS: AN ALGORITHMIC 30 REN APPROACH", S. D. CONTE AND C. de BOOR, 30 REN NGRAN-WILL, INC., P 40 NEN 254, 1972. 50 DIN D(10) INPUT "IS THE A RATE FIT?; ENTER 'Y' FOR YES, 'N' FOR NO ", ANSS 60 IF ANSS-"Y" THEN INPUT "ENTER Emin (eV) ", ENIN 70 IF ANSS="Y" THEN IMPUT "ENTER EMBX (eV) ", ENAX 80 IF ANSS-"N" THEN IMPUT "ENTER Emin (oV/amu) ", ENIN IF ANSS-"N" THEN IMPUT "ENTER Emax (oV/amu) ", ENAX 90 100 INPUT "NOW NAMY COEFFICIENTS FOR THIS FIT?"; NTERNS 110 120 ENINL=LOG(ENIN) 130 FINAL SLUG(FRAX) PRINT USING"ENTER # COEFFICIENTS";NTERMS 140 150 FOR J=1 TO INTERINS 160 INPUT D(J):NEXT J 170 IF ANSS="Y" THEN PRINT USING "IMPUT ENERGY (OV/AMU) BETWEEN \$88.# AND #.8^^^^ FOR THE RATE COEFFICIENT CALCULATION"; ENIN; ENAX 180 IF ANSS-"W" THEN PRINT USING "INPUT ENERGY («V/amu) BETWEEN ###.# AND #.#^^^ FOR THE CROSS SECTION CALCULATION"; ENIN; ENAX 190 REN GET ENERGY FOR CALCULATION AND USE THREE TERM RECLARENCE 200 REN RELATION INPUT X 210 220 K=NTERNS 230 CHEB-O(K) 240 IF X-D THEN END 250 X=LOG(X) 260 K=K-1 1F K=0 THEN END 270 280 XNORN=(X-ENINL-(ENAXL-X))/(ENAXL-ENINL) 290 THOM=2*X010RH 300 PREV2=0 310 PREV=CHEB 320 1F K=1 GOTO 370 330 CHEB=D(K)+TVCK*PREV-PREV2 340 PREV2=PiteV 350 K=K-1 360 GOTO 310 370 CHEB=.5*D(1)+X00RH*PREV-PREV2 IF ANSS-"Y" THEN PRINT USING"NE, MPAAAA = RATE COEFFICIENT (CH3/S)"; EXP(CHER) 380 IF ANSS-"N" THEN PRINT USING"AN, ANAAAA = CROSS SECTION (CH2)"; EXP(CHEB) 390 400 GOTO 170 410 END

ALADDIN Database System and Data Piles

T.

•

ALADDIN Database System and Data Files

ALADDIN^{1,2} is an atomic physics database system which has been developed by R. A. Hulse of Princeton Plasma Physics Laboratory in conjunction with the Atomic and Molecular Data Unit of the International Atomic Energy Agency (IAEA) to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN has been adopted by the IAEA as the standard international atomic physics data exchange format for magnetic confinement fusion applications.

ALADDIN consists of a data format definition together with supporting software for both interactive searches and access to the data by plasma modelling and other computer codes. The ALADDIN software has been written in strict FORTRAN-77 to ensure compatibility with the widest possible range of scientific computers. The data are stored in straightforward ASCII text files either in tabular x,y or parametrized format. Provision has been made within ALADDIN to incorporate the subroutines which are needed to extract the atomic data from each ALADDIN data entry. The Chebyshev polynomial fits which are presented for the data in this volume are one example of such a parametrization.

All recommended cross-section data from the compilations in the Atomic Data for Fusion series are available in ALADDIN format (including those from this volume). Table 2.1 contains a sample ALADDIN data entry from each chapter of this volume. Each entry contains a page-number label to expedite locating specific data within the file. Complete ALADDIN data files for this series and a copy of the ALADDIN Database program are available on PC-DOS-formatted diskettes from:

> Controlled Fusion Atomic Data Center Oak Ridge National Laboratory P. O. Box 2008 MS-6372 Oak Ridge, TN 37831-6372, U.S.A.

A copy of the ALADDIN Manual² which contains instructions for its use and a dictionary of abbreviations and symbolic notations for collision processes is also available from the above address. The ALADDIN code and reference material are also available directly from the IAEA (see address below).

The ALADDIN data files and FORTRAN program may also be transmitted readily by electronic mail, and are available by contacting:

phaneufforn.MFENET or phaneufforph01.BITNET

With input from a number of international data centers, the Atomic and Molecular Data Unit of the IAEA is assembling a larger ALADDIN data base of atomic and molecular processes relevant to fusion applications, and is providing officially recommended data in ALADDIN format. Further information may be obtained by contacting:

> Atomic and Molecular Data Unit Nuclear Data Section International Atomic Energy Agency P. O. Box 100 A-1400 Vienna, Austria

or by electronic mail at:

RNDSGIAEA1.BITNET

- R. A. Hulse, "The ALADDIN Atomic Physics Database System," pp. 63-72 in Atomic Processes in Plasmas, AIP Conference Proceedings 206, ed. Y. K. Kim and R. C. Elton, AIP, New York, 1996.
- 2. ALADDIN Manual, A System for Storage, Exchange and Management of Atomic and Molecular Data for Fusion, IAEA-NDS-AM-17, Atomic and Molecular Data Unit, Nuclear Data Section, International Atomic Energy Agency, Vienna, June 1989.

TABLE 2.1

Sample ALADDIN Data File

\$ CX H [+1] H [+0] H [+0] H [+1] & XS EVAL ACC-B ORNL-CFADC DOC-ORNL-6086 A-22 6/90 #CHEB
 -72.6656
 -5.49142
 -3.42948
 -1.98377
 -0.878009

 -0.198932
 0.0837431
 0.121252
 0.0827182
 0.12
 6300
 0.0827182 0.12 630000. \$ CXSS He [+2] H [+0] (G) He [+1] (2s) H [+1] & XS EVAL ACC-C ORNL-CFADC DOC-ORNL-6086 B-89 6/90 #CHEB -89.4268 -0.438776 -8.73454 0.130314 -0.0101210 0.0343355 0.227699 -0.188121 -0.130396 23. 2500000. \$ EXC H [+0] (G) H [+0] (G) H [+0] (2s) h [+0] & XS EVAL ACC-? ORNL-CFADC DOC-ORNL-6086 C-2 8/89 #CHEB -79.1098 -0.784062 -0.651723 0.0462865 0.114234 -0.00487654 0.0 -0.0114391 0.0 2000, 90000, \$ ION H [+1] H [+0] H [+1] H [+1] e & XS EVAL ACC-B ORNL-CFADC DOC-CRNL-6086 D-6 5/90 #CHEB -75.505348206 -0.409784913 -0.996553540 0.355360299 -0.049000371 0.0 9400. 1500000. -0.034998417 0.043782476 0.0 \$ STRIP H [+0] H [+0] H [+1] H [+0] e & XS EVAL ACC-B ORNL-CFADC DOC-ORNL-6086 E-2 5/90 #CHEB -77.1793823242 -0.4514082074 -1.5175991058 0.5439749956 -0.0355154276 0.00258953:0 -0.0750899166 0.0 0.0 1200. 3500000. \$ ELDET H [-1] H [+0] H [+0] H [+0] e & XS EVAL ACC-C ORNL-CFADC DOC-ORNL-6086 F-2 5/90 #CHEB -72.0698776245 -2.4792380333 -0.9363254905 0.0886530057 0.0175392255 0.0545278080 -0.0645320490 0.0 0.0 110. 4000000. \$ DISION2 H [+0] H(2) [+0] H [+0] H [+1] H [+1] 2e & XS EVAL ACC-? ORNL-CFADC DOC-ORNL-6086 G-2 6/90 #CHEB -82.5844192505 1.5008718967 -0.5141620040 -0.0138262566 0.0274858437 -0.0085383281 -0.0116637163 0.0 0.0 5000, 50000, \$ PX H [+1] D{2} [+0] D [+1] HD [+0] & XS EVAL ACC-? ORNL-CFADC DOC-ORNL-6086 H-2 9/89 #CHEB -75.6467819214 -3.2291088104 0.4121128917 0.0393397696 -0.2617489398 0.0012951158 0.1208853275 0.0 0.0 0.45 100.

Atomic Physics

Handy Conversion Units and Formulas

I.

Atomic Physics

Handy Conversion Units and Formulas

Conversion Units

· • .

1 electron volt = 1 eV = $8065.76 \text{ cm}^{-1} = 23.069 \text{ kcal/mol} =$ $1.6022 \times 10^{-12} \text{ ergs} = 1.6022 \times 10^{-19} \text{ joules}$ 1 atomic unit = 1 a.u. = 2 Rydbergs = 27.21 eV = 1 Hartree **1 atomic mass unit** = 1 a.m.u. = 1.6605×10^{-24} gm Atomic velocity = velocity of 13.6 eV electron = 2.18×10^{6} cm/sec = velocity of 24.97 keV proton Atomic radius = radius of first Bohr orbit of H° = 5.29 × 10^{-9} cm **1 angstrom** = 1 Å = 1 × 10^{-8} cm **Electron mass**, $m_{a} = 9.110 \times 10^{-28} \text{ gm}$ Electron charge, $e = 4.8032 \times 10^{-10}$ statcoulomb, or 1.6011 × 10⁻¹⁹ coulombs **Proton mass = 1.673 \times 10^{-24} gm** Atomic unit of time = atomic radius/atomic velocity = 2.42 × 10⁻¹⁷ sec **Bolysmann constant**, $k = 1.331 \times 10^{-16} \text{ erg/}^{\circ} \text{K}$ 1 mm Hg = 133.3 pascals = 1 torr; 1 mBar = 100 pascals Atomic cross section = $\pi \times (\text{atomic radius})^2 = \pi a_0^2 = 8.797 \times 10^{-17} \text{ cm}^2$ **1 mol** = 6.022169×10^{23} molecules = Avogadro's number Loschmidt's number = number of molecules at 1 mm Hg at 0'C = $2.687 \times 10^{16} \text{ cm}^{-3}$

Formulas

Velocity (non-relativistic) (cm/sec) = 1.38×10^6 (E/m)^{1/2}, where E = energy of the particle in eV, of mass m in a.m.u.

Energy levels in hydrogen-like atoms,

$$E_n(eV) = \frac{-13.6 Z^2}{n^2};$$

where Z is the atomic number and n is the total quantum rumber.

Wavelength of a photon,

$$\lambda(\mathbf{A}) = \frac{1.2398 \times 10^{6}}{E},$$

where E is the photon energy in eV.

Wavelength of a non-relativistic electron,

$$\lambda(\dot{A}) = \frac{17.34}{T^{1/2}},$$

where T is the temperature of the electrons in eV.

Relative velocity (cm/s) = $V_1 = (V_1^2 + V_2^2 - 2V_1V_2\cos\theta)^{1/2}$, where V_1 = velocity of particle 1 in cm/sec, V_2 = velocity of particle 2, and θ = angle of approach.

Energy (center of mass) (eV) =

$$\frac{M_1M_2}{M_1+M_2}\left[\frac{E_1}{M_1}+\frac{E_2}{M_2}\cdot 2\left(\frac{E_1E_2}{M_1M_2}\right)^{1/2}\cos\Theta\right]$$

where M_1 , E_1 are the mass and energy of particle 1 and M_2 , E_2 are the mass and energy of particle 2, respectively, and Θ is the angle of approach.

Plasma Physics

Handy Formulas

Gaussian units are used in the formulas below except for the following: Temperatures, T_e of electrons, and T_i of ions in eV. Mass of ions, m_i is expressed in units of proton mass, m_p by $\mu = m_i/m_p$; B in gauss; k is Boltzmann's constant; n_ and n_ are number densities of electrons and ions, respectively, in cm⁻³; Z is the charge state of an ion; λ is wavelength in Å; c is the speed of light in vacuum (3 × 10¹⁰ cm/sec); and frequency is ω (rad/sec) = $2\pi \cdot f(cycles/sec)$

For Electrons:

Plasma frequency, ω_{pe} (rad/sec) = 5.64 × 10⁶ n_e^{1/2} Gyrofrequency, ω_{ce} (rad/sec) = 1.76 × 10⁷ B Gyroradius, r_e (cm) = 2.38 T_e^{1/2} B⁻¹ Electron thermal velocity, v_{te} (cm/sec) = 4.19 × 10⁷ T_e^{1/2} Electron deBroglie length, λ (λ) = $\frac{17.34}{T_{e}^{1/2}}$

For Ions:

Plasma frequency, \mathbf{e}_{pi} (rad/sec) = $1.32 \times 10^3 \text{ Z } \mu^{-1/2} \text{ n}_i^{-1/2}$ **Gyrofrequency**, \mathbf{e}_{ci} (rad/sec) = $9.58 \times 10^3 \text{ Z } \mu^{-1} \text{ B}$ **Gyroradius**, \mathbf{r}_i (cm) = $1.02 \times 10^2 \mu^{1/2} \text{ Z}^{-1/2} \text{ T}_i^{-1/2} \text{ B}^{-1}$ **Ion thermal velocity**, \mathbf{v}_{ti} (cm/sec) = $9.79 \times 10^5 \mu^{-1/2} \text{ T}_i^{-1/2}$

Drift velocity of particles in a constant electric field, E (volts/cm), perpendicular to a constant magnetic field, B (gauss), independent of mass m, or charge Z, of the particle is given by:

 v_{g} (Cm/sec) = 1 × 10⁸ $\frac{E}{B}$

Phase velocity, v_{ϕ} (cm/sec) = ω/k , where ω is in rad/sec and k is the wavenumber in cm⁻¹.

Group velocity, v_a (cm/sec) = du/dk

Alfven velocity, v_A (cm/sec) = 2.18 × 10¹¹ $\mu^{-1/2}$ $n_i^{-1/2}$ B

Debye length, λ_0 (cm) = 7.43 × 10² T₁^{1/2} n₂^{-1/2}

Maxwellian velocity distribution for a constant temperature plasma, for one-dimension:

$$F_{max}(v)$$
 (cm⁻³) = n (m/2\pi kt)^{1/2} exp(-mv²/2kt)

where t is in ^{*}K, m is the particle's mass in gm, n is the number density (cm^{-3}) , k is Boltzmann's constant $(1.38 \times 10^{-16} \text{ erg/}^{\circ}\text{K})$, and v is the particle's velocity (cm/sec) for one-dimension.

Saha thermal equilibrium:

.

 $n_i/n_n \approx 2.4 \times 10^{15} (t^{3/2}/n_i) \exp(-U_i/kt)$,

where n_{n} is the number density of neutrals in cm⁻³, U_i is the ionization energy of the gas in ergs, and t is the temperature of the gas in 'K.