P21

Edge Toroidal Rotation of Different Ions in ADITYA-U Tokamak

<u>Ankit Kumar</u>^{1,2}, Aman Gauttam¹, M.B. Chowdhuri¹, Dipexa³, N.Yadava⁴, N. Ramaiya¹, K.Shah⁵, Kaushlender Singh^{1,2}, K. A. Jadeja¹, Bharat Hedge^{1,2}, Suman Dolui^{1,2}, Ashok Kumawat^{1,2}, Utsav¹, S.Patel³, Injamul Houqe^{1,2}, Soumitra Banerjee^{1,2}, Komal^{1,2}, G. Shukla¹, Pramila Gautam¹, M.Shah¹, Laxikanta Pradhan¹, Ankit Patel¹, K. M. Patel¹, A. Kanik³, Harshita Raj¹, Suman Aich¹, Rohit Kumar¹, Kalpesh Gadoliya¹, R. Manchanda¹, R.L. Tanna¹, Joydeep Ghosh^{1,2}

 11nstitute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, 2Homi Bhabha National Institute (HBNI), Mumbai 400085,
3Pandit Deendayal Petroleum University, Raisan, Gandhinagar 382007, Gujarat, 4Oak Ridge Associated Universities, USA
5 Princeton Plasma Physics Laboratory, Princeton, USA

Intrinsic toroidal rotation velocity (self-driven flow) are very crucial in large tokamak like ITER [1,2]. Intrinsic rotation of two different charge states of Carbon ions (C^{5+} at 529nm, C^{2+} at 464.74nm) has been studied in the edge region of ADITYA-U tokamak. In several ohmic discharges, these two lines are monitored using 1m high resolution, Czerny-Turner configuration spectrometer. The intrinsic toroidal rotation of these lines are also studied in the presence medium-Z impurity (e.g. Neon, Nitrogen and Argon) seeded discharges. In medium-Z impurity seeded discharges, the toroidal rotation of the seeded impurity ions (e.g. Neon and Argon ions) is compared with the rotation velocity of C^{2+} and C^{5+} ions. In all these scenarios, the flow of neutral Hygrogen atoms is also monitored by analysing the shift in H_a line emission (at 656.28nm). All the measurements are done in the flat-top region of discharge. The time resolution as well as the exposure time for the spectroscopic measurement of C^{5+} ions is 30ms, while for all other spectral lines it is 20ms. It has been observed that the rotation of C^{5+} ions reverses its direction in the edge region as a result of medium-Z impurity injection (e.g. Neon, Argon).

References:

[1] J. E. Rice, Plasma Phys. Controlled Fusion 58, 083001 (2016).

[2] G. Shukla et al., Nucl. Fusion 59, 106049 (2019).