Contribution of Quantitative Spectroscopy to Fusion Plasma Research

T. Nakano

National Institutes for Quantum and Radiological Science and Technology

In fusion plasmas, different roles are required for impurities in terms of atomic number, Z; in low temperature peripheral (divertor) plasmas, enhancement of low Z impurity radiation is of importance for mitigating plasma heat load onto plasma-facing walls, while in high temperature core plasmas, suppression of impurity radiation, particularly by high Z impurity ions, is essential for maintaining high temperature. This talk discusses a mechanism, which enhances low Z impurity radiation in divertor plasmas and a method available for validating ionization and recombination rates of high Z impurity, tungsten (W) based on quantitative spectroscopy.

In the divertor plasma of JT-60U tokamak, we successfully provided a comprehensive picture of the carbon radiative cooling process [1]. In high-density divertor plasmas, typically an electron density above 1×10^{20} m⁻³, strong radiation zone appeared, and intense line emissions from carbon ions, originating from the carbon divertor targets, were observed. It was found, in this radiation zone, that the C III line emission contributed 30% of the total radiation power, and C IV 60%, and that the C IV ions were produced by ionization of C III ions and at a higher rate by recombination of C V ions (He-like). These indicate that C III and C V ion flowed into the radiation zone, and were converted into the biggest radiator, C IV. In particular, a newly discovered channel [2], conversion of an inefficient radiator C V into an efficient C IV contributed to enhance the radiative cooling more than that of C III to C IV. Interestingly, in Ne-seeded plasmas, recombination of Ne IX (also, He-like ion) was observed in the Ne radiation zone [3], suggesting recombination of impurity He-like ion is one of common key processes to enhance the impurity radiation.

In the core plasma of JT-60U tokamak, W density was determined from the intensity of W^{45+} spectral line (4s-4p: 6.2 nm). The determined W density over electron density ranged from 1×10^{-5} up to 1×10^{-3} [4]. In addition, to investigate the validity of W^{44+} ionization rate and W^{45+} recombination rate, a density ratio of W^{45+} to W^{44+} calculated with an ionization equilibrium model was compared to that determined from an intensity ratio of W^{45+} to W^{44+} 4s-4p lines. One of the advantages of this method is cancellation-out of electron temperature dependence of excitation rates of 4s to 4p by taking the intensity ratio. This is due to similar transitions in simple systems; closed 3d shell + 4s electron, exciting to 4p level for W^{45+} and one additional 4s for W^{44+} . This analysis resulted in agreement between measurement and calculation within experimental uncertainty (~30%), showing the validity of the ratio of W^{46+} to W^{45+} ap-4d lines (0.52 nm), showed the measured W^{46+}/W^{45+} ratio was systematically higher by 16% than that calculated. This indicates a possibility that the calculated W^{46+} recombination rate is overestimated or the calculated W^{45+} ionization rate is underestimated. The reason for this deviation is not yet clear.

[1] T. Nakano, et al., J. Nucl. Mater. 390-391 255 (2009).

- [2] T. Nakano, et al., Nucl. Fusion 47 1458 (2007).
- [3] T. Nakano, et al., J Nucl. Mater. 438 S291 (2013).
- [4] T. Nakano and the JT-60 Team, J. Nucl. Mater. 415 S327 (2011).
- [5] T. Nakano, et al., J. Phys. B 48 144023 (2015).