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One of the key opportunities offered by the development of x-ray free-electron lasers is
the determination, at atomic resolution, of the three-dimensional structure of biologically
relevant macromolecules [1]. The basic idea underlying molecular imaging using x-ray
free-electron lasers is the “diffract-and-destroy” concept: Since at a photon energy of 10
keV or so (corresponding to a potential spatial resolution near 1 A), the x-ray absorption
cross section per carbon atom is higher by an order of magnitude than the x-ray elastic
scattering cross section, radiation damage is unavoidable in x-ray diffractive imaging.
However, if one uses an x-ray pulse that is sufficiently short, then in a single shot an x-ray
scattering pattern may be obtained that is practically unaffected by atomic displacements
triggered by ionization events during the x-ray pulse. What cannot be eliminated in this
way is the impact of the electronic damage on the x-ray scattering patterns. The diffract-
and-destroy method goes hand in hand with the formation of a nanoplasma within just a
few femtoseconds.

Theory, therefore, plays an important role in the development of this new imaging
technique: A quantitative understanding is required of the damage processes occurring
during the exposure of a molecule to an ultraintense, ultrafast x-ray pulse. In this talk,
I will present progress we have made in order to address this challenge. One tool we
have developed, XMDYN [2], is a molecular-dynamics code that utilizes ab-initio atomic
electronic-structure information, computed on the fly, within a Monte-Carlo framework.
XMDYN has been successfully tested through experiments at LCLS [3] and SACLA [4].
XMDYN is part of a powerful start-to-end simulation framework for single-particle imag-
ing at the European XFEL [5, 6].

Recently, we have taken first steps towards a full ab-initio framework for simulating
high-intensity x-ray—matter interactions [7, 8]. Our new XMOLECULE software solves the
polyatomic quantum-mechanical electronic-structure problem for every electronic state
arising during the exposure of a molecule to a strong x-ray pulse. From this information,
electronic transition rates (such as Auger decay rates) are computed on the fly, and the
associated rate equations are integrated utilizing a Monte-Carlo method. XMOLECULE
played a key role in a recent LCLS experiment on iodomethane, in which hard x-rays
focused to a peak intensity exceeding 10" W/cm? produced the highest charge states
ever formed using light [9]. Not only did XMOLECULE correctly predict the charge-state
distribution observed, but it also helped identify a new molecular ionization enhancement
mechanism based on intramolecular charge transfer.
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