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Multi-scale approaches in materials science face a traditional dichotomy in the choice of the atomistic
force fields: robust, accurate and numerically expensive ab initio methods against less transferable but
fast empirical methods. The ML methods propose a third avenue that allows control of the balance
between the accuracy and numerical efficiency. Moreover, the ML-based vision of fundamental concepts
in materials science, such as structural defects, can augment and revise traditional interpretations.
We will present recent advances in atomistic material simulations by means of machine learning and
data-driven approaches.

Machine learning (ML) methods cannot fully replace traditional approaches in physics and/or materials
science. The phase space in physics / materials science has a well defined structure and is too vast and
complex to be described only by the inherent statistical correlations within the data points. Statistical
methods trained on the physical data can be of great help when the traditional approaches are limited
and/or their direct application is hindered by factors such as high computational cost.

In metals, the interaction and transformation of crystal defect networks give rise to an extraordinarily
diverse range of defect morphologies [1]. Using the recently developed package MiLaDy (Machine
Learning Dynamics) [2]: (i) we redefine the concept of defects in materials science [3]; (ii) we provide
reliable force fields for complex defects such as interstitial, dislocation loops, dislocations; (iii) we are
able to explore the atomistic free energy landscape of point defects in metals with ab initio accuracy up to
the melting temperature [4], and, finally, (iv) we are able to propose surrogate models that bypass the
traditional approaches [5]. We exemplify and discuss, in the framework of experimental findings, the
case of energetic landscape of defects in body-centered and face-centered cubic metals.
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