Neutralisation of highly charged ions at surfaces

Anna Niggas1, Matthias Werl1, Richard Wilhelm1

1Institute of Applied Physics, TU Wien, Austria

Radiative and non-radiative decay are both important de-excitation mechanisms of ions. To study these processes, collisions including ions in very high charge states ($q \geq 20$) are an ideal playground: When close to a surface, resonant electron transfer leads to a population of high-n shells (with $n \sim q$ \cite{1}), initiating a de-excitation cascade of this – then neutral albeit still highly excited – projectile. X-ray emission is one of the de-excitation channels, however the measured yield drops with decreasing ion charge states \cite{2,3}. To understand this behaviour it is crucial to consider also competing mechanisms, e.g. non-radiative Auger-like processes leading to the emission of electrons instead of photons.

We perform coincidence measurements to correlate the ion charge states after transmission through atomically thin samples \cite{4} with electrons emitted during the interaction (energy and yield information) \cite{5}. This allows us to disentangle de-excitation channels and identify participating processes in the neutralisation of highly charged ions upon interaction with a surface.

References

\begin{enumerate}
\end{enumerate}

Presenting Author Email Address: niggas@iap.tuwien.ac.at