Electron-driven reactivity of molecular cations in cold plasmas

Zsolt J. Mezei¹, Jeoffrey Boffelli², Riyad Hassaine², Fréderic Gauchet², Nicolina Pop³, Felix Iacob⁴, Sebastian Niyonzima⁵, Michel Douglas Epée Epée⁶, Kalyan Chakrabarti⁷, Ousmanou Motapon⁶, Jonathan Tennyson⁸, Ioan F. Schneider²

Electron impact recombination, (ro-)vibrational, electronic and dissociative excitation of molecular cations:

$$AB^{+} + e^{-} \rightarrow AB \rightarrow AB^{+} + e^{-}$$
$$A + B^{+} + e^{-}$$

are in the heart of the molecular reactivity in the cold ionized media [1], being major charged particles destruction reactions and producing often atomic species in metastable states, inaccessible through optical excitations. They involve super-excited molecular states undergoing predissociation and autoionization, having thus strong resonant character.

The methods based on the Multichannel Quantum Defect Theory (MQDT) [1,2] are the most suitable for modeling these processes, since they account the strong mixing between ionization and dissociative channels, open – direct mechanism – and closed – indirect mechanism, via capture into prominent Rydberg resonances correlating to the ground and excited ionic states - and the rotational effects. These features will be illustrated for several cations of high astrophysical, planetary atmosphere and fusion edge plasma relevance, such as H_2^+ [3], BeH⁺ [4-6], SH⁺ [7], N_2^+ [8], NeH⁺, NS⁺ [9], N_2 H⁺ [10], C_2 H⁺, etc.

Comparisons with other existing theoretical and experimental results, as well as the isotopic effects, will be displayed.

¹Institute for Nuclear Research (ATOMKI), Hungary

² Université Le Havre Normandie, France

³Politehnica University Timisoara, Romania

⁴West University of Timisoara, Romania

⁵ Université du Burundi, Bujumbura, Burundi

⁶ University of Douala, Cameroon

⁷Scottish Church College, Kolkata, India

⁸ University College London, UK

References

- 1. I. F. Schneider, O. Dulieu, J. Robert, eds., EPJ Web of Conferences 84 (2015).
- 2. J. Zs. Mezei et al, ACS Earth and Space Chem 3 2276 (2019).
- $3.\,$ M. D. Epée Epée et al, MNRAS 512 424 (2022).
- 4. S. Niyonzima et al, At. Data Nucl. Data Tables 115-116 287 (2017).
- 5. S. Niyonzima et al, Plasma Sources Sci. Technol. 27 025015 (2018).
- 6. N. Pop et al, ADNDT 139 101414 (2021).
- 7. J. Boffelli et al, submitted to MNRAS (2023).
- 8. A. Abdoulanziz et al, J. Appl. Phys. 129 052202 (2021).
- 9. F. Iacob et al, Journal of Physics B: At. Molec. Optical Phys. 55, 235202 (2022).
- 10. J. Zs. Mezei et al, submitted to EPJST (2023).

Acknowledgements

Research supported by the Normandy region, LabEx PTOLEMEE, IEPE, CNRS-CEA CNES/PCMI and FR-FCM, ANR-MONA, NKFIH-OTKA and IAEA.

Presenting Author Email Address: mezei.zsolt@atomki.hu