Electron-driven reactivity of molecular cations in cold plasmas

Zsolt J. Mezei, Jeffery Boffelli, Riyad Hassaine, Frédéric Gauchet, Nicolina Pop, Felix Iacob, Sebastian Niyonzima, Michel Douglas Epée Epée, Kalyan Chakrabarti, Ousmanou Motapon, Jonathan Tennyson, Ioan F. Schneider

1 Institute for Nuclear Research (ATOMKI), Hungary
2 Université Le Havre Normandie, France
3 Politehnica University Timisoara, Romania
4 West University of Timisoara, Romania
5 Université du Burundi, Bujumbura, Burundi
6 University of Douala, Cameroon
7 Scottish Church College, Kolkata, India
8 University College London, UK

Electron impact recombination, (ro)-vibrational, electronic and dissociative excitation of molecular cations:

\[
AB^+ + e^- \rightarrow AB \rightarrow AB^+ + e^- \rightarrow A + B^+ + e^-
\]

are in the heart of the molecular reactivity in the cold ionized media [1], being major charged particles destruction reactions and producing often atomic species in metastable states, inaccessible through optical excitations. They involve super-excited molecular states undergoing predissociation and autoionization, having thus strong resonant character.

The methods based on the Multichannel Quantum Defect Theory (MQDT) [1,2] are the most suitable for modeling these processes, since they account the strong mixing between ionization and dissociative channels, open – direct mechanism – and closed – indirect mechanism, via capture into prominent Rydberg resonances correlating to the ground and excited ionic states - and the rotational effects. These features will be illustrated for several cations of high astrophysical, planetary atmosphere and fusion edge plasma relevance, such as H$_2^+$ [3], BeH$^+$ [4-6], SH$^+$ [7], N$_2^+$ [8], NeH$^+$, NS$^+$ [9], N$_2$H$^+$ [10], C$_2$H$^+$, etc.

Comparisons with other existing theoretical and experimental results, as well as the isotopic effects, will be displayed.
References

Acknowledgements
Research supported by the Normandy region, LabEx PTOLEMEE, IEPE, CNRS-CEA
CNES/PCMI and FR-FCM, ANR-MONA, NKFIH-OTKA and IAEA.

Presenting Author Email Address: mezei.zsolt@atomki.hu