

MOLECULAR PROCESSES II

Jimena D. Gorfinkiel School of Physical Sciences The Open University

Electronic resonances

Shape resonance: 1 particle

Core-excited: 2-particle, 1 hole

Metastable state where the electron is temporarily captured by target

- Target in electronic ground state
- Can be modelled as a single-electron problem
- Visible in ETS experiments
- Short-lived
- Target in an excited state
- Multi-electronic description essential
- Shape or Feshbach
- Harder to observe (particularly Feshbach): EELS experiments
- Longer-lived

Resonances

Metastable state where the electron is temporarily captured by target. Decay by autoionization: energy and width (lifetime) or dissociative electron attachment.

Applied relevance

Osaka University

plasma

 $\mathbf{C}_{\mathbf{x}}\mathbf{F}_{\mathbf{x}}^{+}$

Chapman, Lawrence Livermore National Laboratory

Plasma etching

C,F,

SiF_x

e,F⁺,C_xF_y,CF₄⁺,F,hv

e,F⁺,C₁F₂,CF₄⁺,F,hv

Radiation damage

Low energy e⁻ scattering calculations

- Quantum mechanical approach needed
- Time-independent approaches developed and implemented computationally for over 40+ years
- Electron in the continuum means bound state Quantum Chemistry methods are not valid
- Electronic transitions are treated in the fixed-nuclei approximation
- To treat rotational excitation: adiabatic nuclei rotation approximation
- To treat vibrational excitation: AN, Discrete Momentum Representation, etc.

Computational machinery

- Electronic scattering approaches:
 - R-matrix (UK, Czech Republic, India, etc.)
 - Schwinger multichannel (Brazil, USA)
 - Kohn variational method (USA)
 - Single-centre approaches (Italy, Poland)
 - Convergent Close-Coupling (Australia)
- In addition, to identify and characterize resonance, methods adapted from Quantum Chemistry: CAP, stabilization techniques, analytical continuation,....

Low energy electron-molecule scattering

Time-independent approaches developed and implemented computationally over 40+ years

$$(H_{N+1} - E)\Psi_E(\mathbf{x}, \gamma) = 0$$
$$H_{N+1} = H_N(\mathbf{x}) + \hat{T}_e(\gamma) + \hat{V}_{int}(\mathbf{x}, \gamma)$$

subject to the appropriate boundary conditions

- Main issues: description of continuum and electron correlation
- Polarization is also an important effect, especially if target is non-polar

Exchange and correlation

- Exchange arises due to electrons being indistinguishable particles.
- Indistinguishability must be taken into account when wavefunctions are built.
- Electrons are fermions and must obey Fermi-Dirac statistics. (For bound electrons in atoms and molecules this translates into the Pauli Exclusion principle)
- Exchange integrals describing exchange interaction (with no classical equivalent) arise
- **Correlation** is due to the interaction of N moving charged particles, the electrons.
- Can be seen as the effect of the instantaneous repulsion felt by one electron due to all others.
- Can be difficult to model accurately for electron-rich molecules

Molecular R-matrix method

Fixed-Nuclei approximation but use of other software to treat nuclear motion

Inner region:

- exchange and correlation important
- Explicitly multielectronic
- Basis set methods
- Multicentre expansion

Outer region:

- exchange and correlation are negligible
- One explicit electron
- single centre expansion
- long-range multipolar interactions

R-matrix sphere (box) of radius a

P. Burke, R-matrix theory of Atomic Collisions (Springer Series on Atomic, Optical, and Plasma Physics, 2011)

Describing electronic target states

Use computational chemistry approaches

$$\Phi_i^N = \sum_{i,j} \mathbf{C}_{i,j} \zeta_j^N$$

 $\zeta_{j}^{N} = \text{N-electron configuration state function (CSF)} \\ = \| \varphi_{1} \varphi_{2} \varphi_{3...} \varphi_{N} \|$

 φ_i = molecular orbitals

 $C_{i,j}$ = variationally determined coefficients

Molecular R-matrix method

Inner region: close-coupling expansion

$$\psi_k^{N+1} = \mathcal{A} \Sigma_{i,j} a_{i,j,k} \Phi_i^N \eta_{i,j} + \Sigma_j b_{j,k} \phi_j^{N+1}$$

Choice of continuum orbital $\eta_{i,j}$, L² functions ϕ_j^{N+1} and target states Φ_1^N defines the quality of the calculation and model Coefficients $a_{i,j,k}$ and $b_{j,k}$ obtained variationally

Static-Exchange (SE): Φ_1^N (HF ground state) + FEW L² functions Static-Exchange plus Polarization (SEP): Φ_1^N (HF ground state) + L² functions Close-Coupling (CC): Φ_i^N (*i*=1,2,3....) + L² functions

Molecular R-matrix method

Outer region:

$$\left(\frac{\mathsf{d}^2}{\mathsf{d}r^2} - \frac{l_i(l_i+1)}{r^2} + k_i^2\right)F_i(r) = 2\sum_j V_{ij}(r)F_j(r)$$

with inner region data providing initial conditions via R-matrix

$$w_{pk}(a) = \frac{1}{\sqrt{2}} \left\langle \overline{\Phi}_{p}^{\Gamma} \frac{1}{r} \left| \psi_{k}^{N+1} \right\rangle \right|_{r=a} = \frac{1}{\sqrt{2}} \left\langle \Phi_{i_{p}}^{N} \frac{1}{r} X_{l_{p},m_{p}}(\hat{\mathbf{r}}) \left| \psi_{k}^{N+1} \right\rangle \right|_{r=a}$$

At r > 50-100 a0 K-matrices obtained $F_{ij} \sim \frac{1}{\sqrt{k_i}} \left((\sin(k_i r - \frac{1}{2}l_i \pi)\delta_{ij} + \cos(k_i r - \frac{1}{2}l_i \pi)K_{ij} \right)$

$$S = (1 + iK)(1 - iK)^{-1}$$

$$\sigma(i \to i') = \frac{\pi}{k_i^2} \sum_{s} \frac{(2S + 1)}{(2S_i + 1)} \sum_{\Gamma ll'} |T_{ili'l'}^{\Gamma S}|^2$$

$$T = S - 1$$

UKRmol+ suite

Publication date:

January 15, 2021

DOI:

DOI 10.5281/zenodo.4442407

Keyword(s):

electron scattering, positron scattering, resonances, photoionization,

License (for files):

C GNU General Public License v3.0 or later

Versions Version 3.1.1

10.5281/zenodo.4442407	
Version 3.1 10.5281/zenodo.4120705	Oct 23, 2020
Version 3.0 10.5281/zenodo.3371125	Aug 19, 2019
Version 2.0.5	Jun 28, 2019

Jan 15, 2021

Source code: https://zenodo.org/ (cmake files and test suite included)

zenodo

UKRmol

Mašin et al, CPC, **249**, 107092 (2020) <u>https://doi.org/10.1016/j.</u> <u>cpc.2019.107092</u>

arxiv.org/abs/1908.03018

UKRMol+: UKRMol-out UK R-matrix community

Outer region programs for the re-engineered UIV comput

UKRmol+ suite

Electron scattering:

Positron scattering:

Photoionization:

 $e^{-} + H_{2} \rightarrow H_{2} + e^{-}$ $e^{+} + H_{2} \rightarrow H_{2} + e^{+}$ $H_{2} + hv \rightarrow H_{2}^{+} + e^{-}$

change the sign half a collision

- **Positron**-molecule collisions (excluding Ps formation)
- Photoionization of molecules
- Input for R-matrix with time approach that solves TDSE to model strong-field processes

UKRMol-scripts: A Perl-based system for the automated operation of the photoionization and electron/positron scattering suite UKRmol+

Houfek et al, CPC, **298**, 109113 (2024) https://doi.org/10.1016/j.cpc.2024.109113

UKRmol+ suite

Initial code for electron-diatomic molecules (early 80s). Polyatomics: mid-90s. Parallelization and modernization early-00s. Overhaul of most of the programs 2010s: UKRmol+ a interfacing with time-dependent R-matrix with time (RMT) codes for strong-field processes. Multiphoton ionization...

Capabilities:

- 2000: electronic excitation of H₂O:10 e⁻, 9 electronic states, 60 channels (per symmetry)
- 2014: CH₄ > 1000 channels (Brigg *et al* JPB)
- 2016: electronic excitation of pBQ, 56 e⁻ (Loupas PCCP); 2017: elastic scattering from thymine-(H₂O)_{5.} > 100 e⁻ (Sieradzka JCP)
- 2020: H_2 , $a = 100 a_0$ (Meltzer *et al* JPB). Excellent agreement with CCC.

In practice:

- < 1 hour on a desktop computer for elastic scattering for mid-size molecules
- > days on a supercomputer for electronic excitation of molecules with 40+ electrons
- Finding appropriate model can take some effort!

Inelastic cross sections BeH₂

Present in plasma in divertors of thermonuclear fusion reactors (e.g. ITER)

С____Ве____С

State-to-state integral and DCS for electron excitation Expected behaviour for singlets and triplet states

10

Scattering energy [eV]

2³Π_g → 3¹Π_g →

20

Sukuba and Gorfinkiel, PRA (2020) **101**, 052709

2.5

2

1.5

0.5

0

6

Cross section $[Å^2]$

Elastic scattering from pyrazine

Elastic DCS

Experiment: Palihawadana et al., JCP 137 (2012); Theory: Winstead and McKoy PRA 76 (2007); Z. Mašín and J. D. Gorfinkiel, JCP **137**, 204312 (2012), V. H. Graves and J.D. Gorfinkiel, EPJD (2022) **76**:43 https://doi.org/10.1140/epjd/s10053-022-00371-0

EELS: Pyrimidine

EELS: measurement of **absolute** electronic excitation cross sections using relative flow technique and accurate calculated cross sections for He.

State overlap implies EEL measurements for **bands** not individual states.

Regeta et al, JCP 144 (2016)

 $\tilde{a}^2 B_1$

 $\tilde{x}^2 B_1$

7.45

10.3

8.47

12.3

Regeta et al, JCP 144 (2016)

Rotational excitation

- Adiabatic nuclei rotation (ANR) method (Lane 1980)
- Assumes that the electron loses no energy in the inelastic collision
- Cross-section is expressed as a partial-wave expansion
- For low partial-waves contribution from FN T-matrices obtained via the Rmatrix calculations: electronically elastic scattering
- Born approximation to obtain the cross section for the high partial-waves not included in the FN T-matrices (Crawford & Dalgarno 1971). Essential for dipolar molecules
- Final cross-section calculated as the sum of two contributions: can be regarded as a short-range correction to the Born approximation

$$\frac{d\sigma_{j_0,\mathbf{p}\to j,\mathbf{p}_j}}{d\Omega} = |f^B_{j_0,\mathbf{p}\to j,\mathbf{p}_j}(\cos\theta)|^2 + \sum_{L=0}^{L_{max}} (A'_L - A^B_L) P_L(\cos\theta)$$

Rotational excitation of water

Disagreement between experiment and theory due to effect of dipole : Experiment uses extrapolation procedure at forward angles Theory needs top-up procedure to complete the partial wave expansion

Vibrational resolution in R-matrix calculations

Simple approach: use of **Franck-Condon factors** and equilibrium geometry (R_0) scattering data.

Electronically inelastic scattering (and vibronically elastic)

Alternatively, **vibrational averaging (adiabatic nuclei, AN)**

- No energy balancing: works best when electronic energy curves are parallel (energy difference is the same for all geometries)
- Can't model effect of resonances
- Used for diatomics but could in principle be used for normal modes of polyatomics
- Reduces to FN if T-matrix dependence on R where vibrational wf is non-negligible is small (no good near thresholds)

and

$$F_{i\nu_i f}\nu_f = \left| \int \chi(R)_{i\nu_i} \chi(R)_{f\nu_f} dR \right|^2$$

$$\sigma(i\nu_i \to f\nu_f) = \sigma(i \to f) (R_0) F_{i\nu_i f} \nu_f$$

$$T_{l'v',lv} = \int \chi_{v'}(R)^{\mathrm{FN}} T_{l',l}(R) \chi_v(R) \,\mathrm{d}R$$

Vibrational resolution

- □ Transitions from ground vibronic state to lowest electronic excited state of BeH/BeD/BeT
- □ Size of vibrationally resolved cross sections very different for both models

Other low energy approaches

Schwinger multichannel method (SMC)

- based on Lippmann–Schwinger integral equation
- applied within the FN approximation
- restricted to closed-shell molecular targets
- uses many strategies similar to R-matrix: GTOs used to bound and scattering orbitals, Hartree–Fock description for target state, Born top-up procedure...
- Elastic cross sections (integral and differential) of similar quality to R-matrix

SCMPP

- Analytic pseudopotentials used to describe the nuclei and core electrons
- Reduces computational cost
- Allows study of targets with electron-rich atoms (e.g. halogen atoms)

da Costa et al EPJD 69 159 DOI: 10.1140/epjd/e2015-60192-6

Other low energy approaches

Zammit et al 2017 JPB 50 123001 DOI 10.1088/1361-6455/aa6e74 Scarlett et al 2020 EPJD74 36 DOI 10.1140/epjd/e2020-100549-0

Convergent close-coupling (MCCC)

- For quasi-one and two-electron targets
- Uses close-coupling expansion
- Orbitals built from products of Laguerre polynomials, exp(-αr) and spherical harmonic
- Works will at intermediate energies (pseudostates)
- Uses Born top-up
- Applied within the FN approximation but also beyond: AN for vibrationally resolved calculations
- Vibrational wavefunctions are obtained diagonalizing the vibrational Hamiltonian in a basis of above Laguerre functions
- Integral and differential cross-sections for elastic, vibration and electronic excitation, ionization and neutral dissociation

H_2

- Simplest multielectronic molecule
- High quality calculations available and converged

Excellent agreement between theoretical methods: UKRmol+ (Rmatrix) and MCCC (molecular convergent close-coupling)

- ✓ 2 electrons
- ✓ t-aug-cc-pVTZ
- ✓ Full CI
- ✓ 98 target states
- ✓ a = 100 a₀
- ✓ B-splines only continuum

What is still hard at low energies

- Calculations for
 - very big or electron rich targets
 - vibrationally resolved cross sections for molecules with many vibrational modes
- Very accurate elastic cross sections for dipolar molecules
- Data for molecules not initially in their ground state
- Neutral dissociation and dissociative electron attachment (DEA) beyond triatomics (and even then....). Experiment can measure DEA (in general yields not cross sections) but neutral dissociation is very hard

Bibliography

Scattering theory: The Quantum Theory of Nonrelativistic Collisions

J R Taylor, Dover

► The Theory of Atomic Collisions

N F Mott and H S W Massey, Springer

Scattering Theory of Waves and Particles

Roger G. Newton Springer

Scattering Theory

Harald Friedrich, Springer

 Roadmap on photonic, electronic and atomic collision physics: Lightmatter interaction, Electron and antimatter interactions, Heavy particles: with zero to relativistic speeds (Journal of Physics B, Volume 52, Number 17,2019, 171001-171003) <u>https://doi.org/10.1088/1361-6455/ab26dJ</u>
 Plasma Modeling, Methods and applications, Gianpiero Colonna and Antonio D'Angola Eds

IOP Publishing https://doi.org/10.1088/978-0-7503-3559-1

