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Uses of Molecular Spectroscopy

e Diagnostics, monitoring and classification:
e Composition
 Density
e [emperature

e "Physical” structure
e Electronic structure

* Jesting physical theories



This Lecture

Spectroscopy: Rotational Vibrational

Focus on:

 Theory and meaning of molecular spectra
e Small molecules (esp. diatomics)
 \Where the key formulae come from

Not so much:

e Experimental techniques

* Modelling spectra, line shapes

e Condensed-matter spectroscopy

(Electronic)
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Remote Sensing of the Atmosphere
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Exoplanet Spectroscopy

Transmission spectroscopy
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Fusion Plasma Spectroscopy
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The molecular Hamiltonian
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The molecular Hamiltonian

Thue = —— Z FV% is the kinetic energy of the two nuclei;
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The molecular Hamiltonian
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is the kinetic energy of the two nuclei;

is the kinetic energy of the N electrons;

is the potential energy of repulsion between
the two nuclei, of charges Z4 and Zp
separated by a distance R;




The molecular Hamiltonian
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The molecular Hamiltonian
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is the kinetic energy of the two nuclei;

is the kinetic energy of the N electrons;

is the potential energy of repulsion between
the two nuclei, of charges Z4 and Zp
separated by a distance R;

is the potential energy of repulsion between
all pairs of N electrons for each interelectron

distance r;;;

is the potential energy of attraction between

each electron and the two nuclei (separations

pia and p;p).




The molecular Hamiltonian
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Separating electronic and nuclear motion




The adiabatic approximation

@ The nuclei in a molecule move much more slowly
than the electrons: (m,/m, ~ 1836)
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compared to that of the electrons




The adiabatic approximation

@ The nuclei in a molecule move much more slowly
than the electrons: (m,/m, ~ 1836)

e The electrons adjust their positions rapidly following
a change in the internuclear separation

® The
com

Kinetic energy of the nuclear motion is small

nared to that of the electrons

@ Treatitasa perturbatlon to the Hamiltonian for the
rigid molecule: H = HO + Tnuc



The adiabatic approximation
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e The adiabatic approximation: factorize the total molecular
wavefunction into the product of a nuclear part and an

electronic part: W(ri, Ry) = X(Ry) * $(ri5 Ry)



The adiabatic approximation
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e The adiabatic approximation: factorize the total molecular
wavefunction into the product of a nuclear part and an

electronic part: W(ri, Ry) = ¥(Ry) * $(ri5 Ry)

o The electronic wavefunction, ¢(#;; &), depends
parametrically on the nuclear positions, &, : the effect of the
nuclear velocities is ignored




The adiabatic approximation
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The adiabatic approximation
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The adiabatic approximation
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This can only hold if each side is equal to some constant, EJ”:

ﬁod’ = Er(10)¢ and (Tnuc + EI(IO)) X=Eumx



The potential energy curve

@ Solve the electronic Schrodinger equation,

Hodn(ri; Ry) = EL u(ris Ry

for different nuclear geometries, &,, to obtain the potential
energy curve of the nth state.
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The potential energy curve

@ Solve the electronic Schrodinger equation,

Hodn(ri; Ry) = EL u(ris Ry

for different nuclear geometries, &,, to obtain the potential
energy curve of the nth state.

@ Then solve for the nuclear motion:

~ 0
(Toue + En”) X(Re) = Epm 2(Ry)
for the rovibrational states, m, “within” this potential

From now on, we will relabel E® as V,(R).




The potential energy curve




Separating vibration and rotation

@ The Schrodinger equation governing the nuclear motion is:
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Separating vibration and rotation

@ The Schrodinger equation governing the nuclear motion is:

h? h?
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® In the centre-of-mass frame this becomes:

h2
[_ 2_ V2 + Vn (R)] Anm (R) — En,m Anm (R)
H
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where u= Is the reduced mass.




Separating vibration and rotation

@ The Schrodinger equation governing the nuclear motion is:

h? h?
[ V2 VzB + Vn(R)] Anm (Ra) — En,mIn,m (Ra)-

2M, A 2My
® In the centre-of-mass frame this becomes:

h2
[_ 2_ Vz + Vn (R)] Anm (R) — En,m Anm (R)
H

mamepg
ma + mpg
@ Note that the potential energy does not depend on the

angular components of R: it is spherically symmetric.

where u= Is the reduced mass.

@ So the nuclear Schrodinger equation is separable, as for the
hydrogen atom:
X(R) = x(R,0,¢) = S(R) - Y(6,9)



Separating vibration and rotation

e We then have two equations:

1 Y 1 0%
, I sinHa— + 0 +JJ+1D)Y =0
sin @ 06 00 sin? @ 0¢?

forJ=0.,1,2, ... describes the molecule’s rotation and Y (6, ¢)
are the spherical harmonic functions.



Separating vibration and rotation

e We then have two equations:

1 0 oY 1 0%
sinf— | + +JJ+1)Y =0
Sin ae( . 09) g age TIUHD

forJ=0.,1,2, ... describes the molecule’s rotation and Y (6, ¢)
are the spherical harmonic functions.

® and

2
L d (redS) 2K E—V,,(R)—J(J+1)h S =0
R2dR\  dR h2 2uR?

describes the molecule’s vibration.



Rotational spectroscopy



The rigid rotor

@ A rigid rotor is one with a fixed internuclear separation
(bond length), R.:

2
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R? dR dR h?2 2uR?

then implies:




The rigid rotor

@ A rigid rotor is one with a fixed internuclear separation
(bond length), R.:

2
L d (pedS) 2k E—V,,(R)—J(J+l)h S =0
R? dR dR h?2 2uR?

then implies:

h2
E = J(J +1)
2uR?
@ Spectroscopists like to use term values, F(J) = E/hc, in units

of cm-1;
F(J)=BJ(J+1), B,= =

where I = uR? is the moment of inertia.



The rigid rotor
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The rigid rotor populations

e The equilibrium populations of the rotational energy levels
are given by statistical mechanics:

grexp(—15)

p(J) = o)

where g; = 2J+1 is the degeneracy of the Jth energy level and

E
g(T') = Z g7 CXP( kB{F)

J=0

IS the temperature-dependent partition function.



The rigid rotor populations
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The rigid rotor spectrum

e Electromagnetic radiation can induce a transition between
rotational energy levels subject to the selection rule:

AJ = +1
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The rigid rotor spectrum

e Electromagnetic radiation can induce a transition between
rotational energy levels subject to the selection rule:

AJ = +1
@ S0, absorption and emission occurs at wavenumbers:
WJ)=F(J +1)— F({J) =2B,(J + 1)
e Lines, evenly spaced every 2B.
e Corresponds to:
e Wavenumbers: 0.1 - 100 cm-;
e Frequency: 10° - 1072 Hz (“Gigahertz-Terahertz radiation”);

e Wavelength: 1 pm - 10 cm (“microwaves”).



The rigid rotor
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The rigid rotor spectrum

e Transition intensities depend on:

e The transition frequency;
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The rigid rotor spectrum

e Transition intensities depend on:
e The transition frequency;

e The population difference between the two states
involved,;

e The permanent electric dipole moment of the molecule,
Ho,

@ A Honl-London factor: for a linear molecule with no
electronic angular momentum projection along the
internuclear axis, thisisJorJ+ 1for 4] =-1 and A4J = +1
respectively.



The rigid rotor spectrum

@ In absorption (4J = +1), the absorption cross section is:

2B,(J + 1)? o - F(D)he - _D(J)hc)
Ty PP\ T Tk T P\™ kaT




The rigid rotor spectrum

@ In absorption (4J = +1), the absorption cross section is:

o X Hp

g(T)

e.g. CO at 100 K:
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The rigid rotor spectrum

e Estimating temperature: the most intense transition in
absorption originates on the level

2
7 _ kg1 _ ﬁ = T ~ 2B.he [ Jmax + l
e 2B, hc 2 kg \/-3- 2

T+ 6

— 5| |e——2B.=386cm™!
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The rigid rotor spectrum

@ In emission (4J =-1), the emission intensity (J/ =)' - 1) in
units of energy per unit time varies as

B,J'(J' +1) gl \/5
I...(J) x8B,;J exp( T ) = \/ 2B, he >




The rigid rotor spectrum

@ In emission (4] =-1), the emission intensity (/7 —J’ - 1) in
units of energy per unit time varies as:

B,J'(J"+1) gl \/3
! 4 !5 ——0 — Jnax ~ 1/ - —
I...(J) x8B,;J exp( T ) 2B, he >

e If the detector used to measure emission counts the
number of emitted photons rather than their energy (e.g. a
photoelectric detector):

B,J'(J +1)
ke T

Iem(J’) X 882-],4 exp(— ) = Jmax ®



The rigid rotor spectrum

e Example: CO, excited by collisions with H, in molecular
clouds in the ISM




The rigid rotor spectrum

@ Carbon monoxide (CO) emission spectrum
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The rigid rotor spectrum

J =1 — 0emission of CO in the Milky Way

Unobserved

log W_, (K kms™)



Centrifugal distortion

e A real molecule is not rigid, but subject to a centrifugal
force, F. = uw? R as it rotates:
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Centrifugal distortion

@ A real molecule is not rigid, but subject to a centrifugal
force, F, = uw® R as it rotates, where the angular velocity, o,
satisfies:

E=Ll0? = L 2R = P JJ + 1)
- Tk T 2uR?

hence: F,=—JJ+1)

This force is balanced by a restoring force due to the
potential binding the atoms together:

F. = —dV,(R)/dR



Centrifugal distortion

@ Near the bottom of the potential well, V,(R) may be
approximated as a parabola: Vu(R) = 1k(R - R.)?




Centrifugal distortion

e For equilibrium in a given rotational state, J, we must have
FC ~+ Fr — O:

h2

—J(J+1) =k(R- R,

U+ = KR = R)
2

>R =R, +

J(J +1
kR ( )

3
2
zRe(1+

KR J(J + 1)) :



Centrifugal distortion

e For equilibrium in a given rotational state, J, we must have
FC ~+ Fr — O:

h2
—_J(J +1)=k(R—-R,)

HR3
2 h?
SR =R+ == +1) E = 2/,{R2J(J+1)
h2 R,
~ R, (1 + R J(J + 1)) .



Centrifugal distortion

e For equilibrium in a given rotational state, J, we must have
FC ~+ Fr — O:

hZ
—_J(J +1)=k(R—-R,)

UR>
2 hz
=R =R, + J(J +1) E = JJ+ 1
h? —T
zRe<1+ J(J+1)).
HkRZ
Now, since #Z; < 1, we may expand R™* = R;?*(1 + x)_2= R7*(1 = 2x 4 3x + -+*):
2 4
112 J(J+ 1)+ oh J2(J+1)2—---‘
R?  R? uk R% k2R3
h? h* 3h0
E = JJ +1) - J2(J + D* + J3(J+1)° + .

- 2uR2 2u’k RS 2u3k2R10
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Centrifugal distortion

@ In terms of wavenumbers:

F(J) =B JUJ +1) =D, J*(J+ 1>+ HJ>(J+ 1) + -

B, = h
872 ucR?
3
D, = h
3274 kucRS
3K
H,

 12876k2 u3cR10



Centrifugal distortion

e Example: the microwave spectrum of hydrogen iodide (HI)
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Centrifugal distortion

e Example: the microwave spectrum of hydrogen iodide (HI)

e lgnoring higher-order terms,
WJ)=F(J+1)-FWJ)=2B,(J+1)—4D,(J + 1)°



Centrifugal distortion

@ Example: the microwave spectrum of hydrogen iodide (HI)
e lgnoring higher-order terms,

WJ) = F(J +1)— F(J) = 2B,(J + 1) = 4D,(J + 1)’
® B. and D. may be retrieved by linear regression:

wJ)

= 2B, —4D,(J + 1)*
J+1 ( )




Centrifugal distortion

@ Example: the microwave spectrum of hydrogen iodide (HI)
e lgnoring higher-order terms,

WJ) = F(J +1)— F(J) = 2B,(J + 1) = 4D,(J + 1)’
® B. and D. may be retrieved by linear regression:

wJ)

= 2B, —4D,(J + 1)*
J+1 ( )

In this case, we get

B. =6.42749 cm-!
D.=2.066 x 104 cm-!

V/(+1)cm™?




