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Uses of Molecular Spectroscopy

• Diagnostics, monitoring and classification: 
• Composition  
• Density 
• Temperature  

• “Physical” structure 

• Electronic structure 

• Testing physical theories 



This Lecture

Spectroscopy: Rotational    Vibrational     (Electronic) 

Focus on: 
• Theory and meaning of molecular spectra 
• Small molecules (esp. diatomics) 
• Where the key formulae come from 

Not so much: 
• Experimental techniques 
• Modelling spectra, line shapes 
• Condensed-matter spectroscopy



Remote Sensing of the Atmosphere



Remote Sensing of the Atmosphere
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(2013)



OCO-2: Orbiting Carbon Observatory

High temporal and 
spatial resolution of 
CO2 column 
amounts

e.g. Las Vegas, 8 
February 2018



Exoplanet Spectroscopy
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Separating electronic and nuclear motion
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The adiabatic approximation

๏ The nuclei in a molecule move much more slowly 
than the electrons:  

๏ The electrons adjust their positions rapidly following 
a change in the internuclear separation 

๏ The kinetic energy of the nuclear motion is small 
compared to that of the electrons 

๏ Treat it as a perturbation to the Hamiltonian for the 
rigid molecule: 



The adiabatic approximation

๏ The adiabatic approximation: factorize the total molecular 
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The adiabatic approximation

๏ The adiabatic approximation: factorize the total molecular 
wavefunction into the product of a nuclear part and an 
electronic part: 

๏ The electronic wavefunction,               , depends 
parametrically on the nuclear positions,      : the effect of the 
nuclear velocities is ignored 
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We have: 

And hence: 



The adiabatic approximation

We have: 

And hence: 

This can only hold if each side is equal to some constant,       : 

and
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The potential energy curve

๏ Solve the electronic Schrödinger equation, 

for different nuclear geometries,     , to obtain the potential 
energy curve of the nth state. 

๏ Then solve for the nuclear motion: 

for the rovibrational states, m, “within” this potential 

From now on, we will relabel        as          .



The potential energy curve

R=RB - RARe
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Separating vibration and rotation

๏ The Schrödinger equation governing the nuclear motion is: 

๏ In the centre-of-mass frame this becomes: 

where                        is the reduced mass. 

๏ Note that the potential energy does not depend on the 
angular components of R: it is spherically symmetric. 

๏ So the nuclear Schrödinger equation is separable, as for the 
hydrogen atom:
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Separating vibration and rotation

๏ We then have two equations: 

for J = 0, 1, 2, … describes the molecule’s rotation and 
are the spherical harmonic functions. 

๏ and 

describes the molecule’s vibration.



Rotational spectroscopy
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The rigid rotor

๏ A rigid rotor is one with a fixed internuclear separation 
(bond length), Re: 

then implies: 

๏ Spectroscopists like to use term values, F(J) = E/hc, in units 
of cm-1: 

where                 is the moment of inertia.



The rigid rotor
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The rigid rotor populations

๏ The equilibrium populations of the rotational energy levels 
are given by statistical mechanics: 

where gJ = 2J+1 is the degeneracy of the Jth energy level and 

is the temperature-dependent partition function.



The rigid rotor populations
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The rigid rotor spectrum

๏ Electromagnetic radiation can induce a transition between 
rotational energy levels subject to the selection rule: 

๏ So, absorption and emission occurs at wavenumbers: 

๏ Lines, evenly spaced every 2Be 

๏ Corresponds to: 

๏ Wavenumbers: 0.1 – 100 cm-1; 

๏ Frequency: 109 – 1012 Hz (“Gigahertz–Terahertz radiation”); 

๏ Wavelength: 1 μm – 10 cm (“microwaves”).
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The rigid rotor spectrum

๏ Transition intensities depend on: 

๏ The transition frequency; 

๏ The population difference between the two states 
involved; 

๏ The permanent electric dipole moment of the molecule, 
μ0; 

๏ A Hönl-London factor: for a linear molecule with no 
electronic angular momentum projection along the 
internuclear axis, this is J or J + 1 for ΔJ = -1 and ΔJ = +1 
respectively.



The rigid rotor spectrum

๏ In absorption (ΔJ = +1), the absorption cross section is: 



The rigid rotor spectrum

๏ In absorption (ΔJ = +1), the absorption cross section is: 

e.g. CO at 100 K:

C
IO



The rigid rotor spectrum

๏ Estimating temperature: the most intense transition in 
absorption originates on the level 

⇒

In this case, Jmax = 6 
and estimate 
T ≈ 87 K 



The rigid rotor spectrum

๏ In emission (ΔJ = -1), the emission intensity ( J’ → J’ - 1) in 
units of energy per unit time varies as  

⇒



The rigid rotor spectrum

๏ In emission (ΔJ = -1), the emission intensity (J’ → J’ - 1) in 
units of energy per unit time varies as:  

๏ If the detector used to measure emission counts the 
number of emitted photons rather than their energy (e.g. a 
photoelectric detector):

⇒

⇒



The rigid rotor spectrum

๏ Example: CO, excited by collisions with H2 in molecular 
clouds in the ISM 



The rigid rotor spectrum

๏ Carbon monoxide (CO) emission spectrum 



The rigid rotor spectrum

J = 1 → 0 emission of CO in the Milky Way



Centrifugal distortion

๏ A real molecule is not rigid, but subject to a centrifugal 
force,                     as it rotates:
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Centrifugal distortion

๏ A real molecule is not rigid, but subject to a centrifugal 
force,                     as it rotates, where the angular velocity, ω, 
satisfies: 

hence: 

This force is balanced by a restoring force due to the 
potential binding the atoms together: 



Centrifugal distortion

๏ Near the bottom of the potential well,            may be 
approximated as a parabola: 
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Centrifugal distortion

๏ For equilibrium in a given rotational state, J, we must have 
Fc + Fr = 0:

E = ℏ2

2μR2 J(J + 1)
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Centrifugal distortion

๏ In terms of wavenumbers:



Centrifugal distortion

๏ Example: the microwave spectrum of hydrogen iodide (HI)

H
I
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Centrifugal distortion

๏ Example: the microwave spectrum of hydrogen iodide (HI) 

๏ Ignoring higher-order terms, 

๏ Be and De may be retrieved by linear regression:

In this case, we get 
Be = 6.42749 cm-1 
De = 2.066 × 10-4 cm-1


